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GIRTH, PEBBLING, AND GRID THRESHOLDS*

ANDRZEJ CZYGRINOW! AND GLENN HURLBERTT

Abstract. The pebbling number of a graph is the smallest number ¢ such that from any
initial configuration of ¢ pebbles one can move a pebble to any prescribed vertex by a sequence of
pebbling steps. It is known that graphs whose connectivity is high compared to their diameter have
a pebbling number as small as possible. We will use the above result to prove two related theorems.
First, answering a question of the second author, we show that there exist graphs of arbitrarily
high constant girth and least possible pebbling number. In the second application, we prove that
the product of two graphs of high minimum degree has a pebbling number equal to the number of
vertices of the product. This shows that Graham’s product conjecture is true in the case of high
minimum degree graphs. In addition, we consider a probabilistic variant of the pebbling problem and
establish a pebbling threshold result for products of paths. The last result shows that the sequence
of paths satisfies the probabilistic analogue of Graham’s product conjecture.
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1. Introduction.

1.1. Pebbling. A pebbling configuration C on a graph G is a distribution of
pebbles on the vertices of G. Given a particular configuration, one is allowed to move
the pebbles about the graph according to this simple rule: if two or more vertices
sit at vertex v, then one of them can be moved to a neighbor provided another is
removed from v. Given a specific root vertex r, we say that C is r-solvable if one can
move a pebble to r after a finite number of pebbling steps, and that C is solvable if
it is r-solvable for every r. The pebbling number is the least number 7 = 7(G) such
that every configuration of m pebbles on G is solvable.

The two most obvious pebbling facts are for complete graphs and paths. The
pigeonhole principle implies that w(K,) = n, and 7(P,) = 2"~! follows by induction
or a simple weight function method. In fact, 7(G) > min{n(G),29*™(@} for every
G. Results for trees (a formula based on the maximum path partition of a tree in [13];
see also [3]), d-dimensional cubes Q? (see [3]), and many other graphs with interesting
properties are known (see surveys [11, 12]).

A probabilistic version of pebbling was introduced in [6]. Let G = (G;)$2 be a
sequence of graphs with strictly increasing numbers of vertices N = n(G;). For a func-
tion t = ¢t(IV) let C; denote a configuration on G; that is chosen uniformly at random
from all configurations of ¢ pebbles. The sequence G has a pebbling threshold T = 7(G)
if, for every w > 1, (1) Pr[C; is solvable]—0 for t = 7/w and (2) Pr[C; is solvable]—1
for t = wr.

It was proved in [4] that the sequence of cliques has threshold 7(K) = O(N'/?).
Bekmetjev et al. [1] showed recently that every graph sequence has a pebbling thresh-
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old. Bounds on the sequence of paths have undergone several improvements, the
results of which are summarized as follows.
RESULT 1. The pebbling threshold for the sequence of paths P = (P,)32, satisfies

7(P) € Q(N26m> N O(NQC’\/I?N>

for every ¢ < 1/v/2 and ¢ > 1.

The lower bound is found in [1] and the upper bound is found in [9].

It is important to draw a distinction between this random pebbling model and the
one in which each of ¢t pebbles independently chooses uniformly at random a vertex
on which to be placed. In the world of random graphs, the analogues of these two
models are asymptotically equivalent. However, in the pebbling world they are vastly
different. For example, in the independent model the pebbling threshold for paths is
at most IV lg N since, with more than that many pebbles, almost always every vertex
already has a pebble on it.

1.2. Results. Pachter, Snevily, and Voxman [14] proved that every graph of
diameter two on N vertices has a pebbling number either V or N +1. Graphs G with
m(G) = n(G) are called Class 0, and in [5] a characterization of diameter two Class
0 graphs was found and used to prove that diameter two graphs with connectivity at
least 3 are Class 0. The authors also conjectured that every graph of fixed diameter
and high enough connectivity was Class 0. This conjecture was proved by Czygrinow
et al. [7] in the following result.

RESULT 2. Let d be a positive integer and set k = 223, If G is a graph of
diameter at most d and connectivity at least k, then G is of Class 0.

In this note, we present two applications of this result. Our first application
concerns the following girth problem posed in [11].

QUESTION 3. Does there exist a constant C such that if G is a connected graph
on n vertices with girth(G) > C, then m(G) > n?

We answer the above question in the negative. Let go(n) denote the maximum
number g such that there exists a graph G on at most n vertices with finite girth(G) >
g and 7(G) = n(G). That is, go(n) is the highest girth, as a function of n, among all
Class 0 graphs. It is easy to see that

go(n) <1+21gn

(because the cycle on k vertices has a pebbling number at least 21%/2]—gee [14]) and
we prove the following lower bound.
THEOREM 4. For all n > 3 we have

go(n) = [V/(lgn)/2+1/4—1/2] .

We prove this theorem in section 2.1 using Result 2.

Our second application concerns the following conjecture of Graham (see [3]).

CONJECTURE 5. FEvery pair of graphs G and H satisfy 7(GOH) < n(G)n(H).

Here, the Cartesian product has vertices V(GOH) = V(G) x V(H) and edges
E(GOH) = {ux E(H)}yev(c) UL E(G) X v}yev(a). A number of theorems have been
published in support of this conjecture, including the recent work of Herscovici [10]
which verifies the case for all pairs of cycles. We show the following.
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THEOREM 6. Let G and H be connected graphs on n vertices with minimum
degrees §(G), 6(H) and let § = min{6(G),8(H)}. If 6§ > 2'2/3+15 then GOH is of
Class 0.

In particular, there is a constant c such that if 6 > c*-, then GOH is of Class
0. We prove this in section 2.2, again using Result 2. As a corollary we obtain that
Graham’s conjecture is satisfied for graphs with minimum degree 6 > clgin.

COROLLARY 7. Let G and H be as in Theorem 6, with 6 > 212n/6+15  Thep
m(GOH) < n(G)r(H).

Proof. We have n(GOH) = n(GOH) =n(G)n(H) < 7n(G)r(H). ad

Finally, in this paper we also consider the following probabilistic analogue of
Graham’s Conjecture 5, which we consider a correction of one from [11].

PROBLEM 8. Let G = (Gr)52, and H = (H,)$2, be two graph sequences. Define
the product sequence GOH = (G,0H,)5%,. Find 7(GOH).

Let Ny = N(G,), N = N(H,,) denote the number of vertices of graphs G,
and H,, from Problem 8. It would be interesting to determine for which sequences
G =(Gn)S2, and H = (H,)%2; we have

(1.1) f(N1N2) € O(Q(Nl)h(N2)>7

where f € 7(GOH), g € 7(G), and h € 7(H). We call pairs of sequences which satisfy
(1.1) well behaved. One might conjecture that all pairs of sequences are well behaved,
but we believe counterexamples might exist.

We define the two-dimensional grid P? = P,,0P,, and in general the d-dimensional
grid P¢ = P,0P%~L. Tt is easy to show that P¢ = P*OP? for all a and 8 for which
a+ B = d. If we denote P4 = (P9)>°,, then we have P¢ = P*OPP. Thus, for

n=1»

example, in light of Result 1, the truth of (1.1) would imply that
2
T(P?) € O<<\/N20’Vlg W) ) = 0<N20’\/215N> .

Here we prove the following stronger theorem.

THEOREM 9. Let P4 = (P42, be the sequence of d-dimensional grids, where
Pd = (P,)? is the Cartesian product of d paths on n vertices each, and let N = n? be
the number of vertices of P2. Then

T(Ph) CQ <N2Cd(lg NW“*”) no <N262<lg NW‘”’“))
for all cqg < 2= @+ and ¢/, > d + 1.
This verifies (1.1) in the case of grids.
COROLLARY 10. Let o, B be any pair of positive integers; then for G = P% and
H =P, (1.1) holds.
Proof. Indeed, if g € 7(G) and h € 7(H), then Theorem 9 says that

g(NT)R(NP) € Q(Nazcaﬂg N N Bgealls N"*“‘“”)
c Q(N?C(lgml/(wl))

cq <N2C(1g N)1/<d/2+1)>



4 ANDRZEJ CZYGRINOW AND GLENN HURLBERT

for some ¢, where v = min{«, 8}, d = a + 3, @ = a/d, and 3 = $/d. On the other
hand, Theorem 9 also says that

T(PaJrB) _ T(Pd) c O<N2cfi(1g]v)1/(d+1)> :

which is asymptotically smaller. |
We prove Theorem 9 in section 2.3.
2. Proofs.

2.1. Proof of Theorem 4. We will make use of Mader’s theorem (see [8]) below.

REsSuLT 11. Ewvery graph having average degree at least d has a subgraph of
connectivity at least |d/4].

We will also make use of the following result from [2, Chapter III, Theorem 1.1].

REsuLT 12. For any g > 3 and 6 > 3 there exists some graph H with girth at
least g, minimal degree at least 6, and no more than (26)9 vertices.

Proof of Theorem 4. Set § = 229t1 and n = 22909TY); then g = |/(Ign)/2 + 1/4
—1/2]. Let H be a graph guaranteed to exist by Result 12. By Result 11, H has
some subgraph, F say, which is 229~ !-connected; clearly, F also has girth at least
g. Now let F be an edge-maximal graph on the same vertices as F' such that F is a
subgraph of F and F has girth at least g. F can have diameter no more than qg—2,
for if there existed vertices z and y in F such that the shortest path between z and
y had length g — 1 or more, adding the edge xy to F would give a graph of girth g or
more, contradicting maximality. Therefore F has diameter at most g—2and is 2297 1-
connected, so by Result 2 it is of Class 0, and it has no more than (26)¢9 = 229(9+1)
vertices. O

2.2. Proof of Theorem 6. Theorem 6 follows from the following two lemmas
and Result 2.

LEMMA 13. Let G be a connected graph on n vertices with minimum degree 0.
Then the diameter of G is at most 3% + 3.

Proof. Fix two vertices x, y in G and consider the shortest path z = x1,..., 25y =y
between x and y. Let ¢ = L%j Then x1,x4,27,...,23;41 must have disjoint
neighborhoods, and thus i(6 + 1) < n, which yields £5% < |52 ] = < 547 such that
k<@g +3<%+3 O

The next lemma was proved by Czygrinow and Kierstead. We reproduce the
proof here.

LEMMA 14. For connected graphs G and H, the product GOH has connectivity
k(GOH) > min{6(G),6(H)}.

Proof. Set § = min{é6(G),6(H)}. Let v1 = (g,h1),v2 = (g, ha),...,vs = (g, hs),
w1 = (g1,h),wa = (g2,h),...,ws = (gs, h) be distinct vertices (other than perhaps
v = wq) in GOH that satisfy

(2.1) distq(9i,9) < distg(giv1,9)
and
(2.2) diStH(hi, h) S diStH(hiJrl, h)

for i = 1,...,8 — 1. We shall construct vertex-disjoint paths Pj,..., Ps such that
P; connects v; with w;. Construct P; as follows: let g1g(1)...g(k)g be any shortest
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path in G connecting g; with g and let hh(1)...h(I)h; be any shortest path in H
connecting h with h;. Then P; is the following path:

w1 = (91,h) (g1, h(1)) ... (91, h1)(g(1), h1) ... (g, h1) = v1.

Delete v; and w; and construct Ps, ..., Ps inductively. We claim that Ps,..., Ps are
vertex-disjoint with P;. Indeed, suppose that V (P;)NV (Py) # () for some j = 2,...,6.
There are two similar cases to consider. First, suppose that (g;, f) € V(P;) NV (Py).
Since g; # g1, f = h1 and g; = g(¢) for some ¢ =1,..., k. Then, however,

distg (gj ,9) < dista(g1,9),

contradicting (2.1). Similarly, if (f, ;) € V(P;) NV (P1), then f = g1 and h; = h(i)
for some ¢ = 1,...,I, which implies that

disty (hy, h) < distg(hy, h),

contradicting (2.2).

By induction, paths Py,. .., Ps are vertex-disjoint. Now, for any two distinct ver-
tices v = (g, h),w = (g,h) € V(GOH), let v1 = (g, h1),v2 = (g, h2),...,vs = (g, hs)
be neighbors of v in the H-dimension, and let wy = (g1, h),ws = (g2, h),...,ws =
(gs, h) be neighbors of w in the G-dimension ordered according to (2.1) and (2.2). By
the previous argument we can find vertex-disjoint paths Py, ..., Ps connecting the v;s
with the w;s. These paths now can be used to connect v with w by ¢ internally vertex-
disjoint paths. Indeed, if any of the paths contains v or w, then it yields a shorter
path between v and w which is disjoint with other paths. Therefore the connectivity
of GOH is at least 0. 0

Proof of Theorem 6. By Lemma 13, the diameter d of GOH is at most 6% + 6,
and by Lemma 14, the connectivity k of GOH is at least §. Since § > 2127/6+15 the
assumptions of Result 2 are satisfied and so GOH is of Class 0. O

2.3. Proof of Theorem 9. Throughout, we let N = n?. Also, we define <Z> =

(“‘Hg_l). Note that <Z> is the number of ways to place b unlabeled balls into a labeled
urns. For our purposes, it equals the number of configurations of b pebbles on a graph
of a vertices. We will also use the fact that <Z> counts the number of points in Z%
whose coordinates are nonnegative and sum to b.

We begin by proving that a configuration with relatively few pebbles almost
always has no vertices having a huge number of pebbles. For natural numbers a and
b, define a® = a!/(a—1b)!. For a configuration C of pebbles on a graph let C(v) denote
the number of pebbles on vertex v.

LEMMA 15. Let s > 1 andt = sN. Let C be a random configuration of t pebbles
on the vertices of P2, and let p= (1+ ¢€)sln N for some ¢ > 0. Then

Pr[C(v) <p for all v]—1 as n—oo .

Proof. Let q be the probability that the vertex v satisfies C(v) > p. Then ¢ is at
most

<tN ) tr

<f:Vp> (N+t—12
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p
-t
N+t-1

(=N Y
" s+1-1/N

< ¢ P(1=1/N)/(s+1-1/N)

Hence, the probability that some vertex v satisfies C(v) > p is at most

Ne—p(l—l/N)/(s+1—1/N) _ elnN(l—es+[(1+e)s—1]/N)/(s+1—1/N) =0

as n—oo. Therefore the probability that every vertex v satisfies C(v) < p tends to 1
as n—00. ]

Next we show that a configuration with relatively few pebbles almost always has
some large hole with no pebbles in it. For any set S of vertices, denote by C(S) the
number of pebbles on its vertices.

LEMMA 16. Let N = n?, 0 < ¢ < 2=# D) 4 = ¢(Ig N)Y/ @+ 5 = 2% and
t=[sN|. Writec= ((1—€)/(2+6)")Y @D for some e, 6 > 0, and set m = | (2+6)u),
M =m?, and k = |n/m|%. Let By,..., By be a collection of k pairwise disjoint blocks
of vertices of P%, each having every side of length m. Let C be a random configuration
of t pebbles on the vertices of P3. Then

Pr[C(By) =0 for some h]—1 as n—oo .

Proof. The second moment method applies. Let X} be the indicator variable
for the event that the block Bj contains no pebbles, and let X = Zﬁzl X;,. Then
Chebyshev’s inequality yields

and

var[X] = E[X?] - E[X]?
=Y E[X,X;] - > E[X)]E[X}]
h,j h,j
<Y E[X;i],
h
since E[X;, X;] < E[X,,]E[X]] for h # j. Hence,
var[X] < Y E[X}] = Y E[X,] = E[X].
h h

Moreover, we have
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Hence Pr[X = 0] < var[X]/E[X]? < 1/E[X]—0 as n—oo. O

The following lemma records the structure of the d-dimensional grid in order to
keep track of the results of pebbling steps.

LEMMA 17. For any intervals I, ..., Ig in Z such that each I; contains r
integers, let B =1, x --- x Iy C Z%, and for i > 0, let S; be the set of points in Z¢
having distance i from B, where distance between a pair of points in Z% is defined by
the sum of the absolute values of the differences of their coordinates. Then

)

1<j<d

Proof. We partition Z¢ according to the number j of coordinates in which a given
point differs from its nearest neighbor in B. Given a fixed j, there are (”.l) ways to pick
which j coordinates to change, each of the changed coordinates can be to either side
of B, giving 27 possibilities, and there are r ways to pick each unchanged coordinate,
giving 79477 possibilities. Given this information, we can specify an element of S; by
specifying a j-tuple of positive integers with sum ¢, which can be done in <1£]> = (j:i)
ways. 0

Finally, our proof of Theorem 9 in the case of the lower bound will use this
technical lemma to bound the number of pebbles that can reach the empty hole.

Lemma 18. 37 (Cp2i<1.

Proof. 1t is straightforward to use generating functions or induction to prove
Yo ()2 =1. O

Turning to the case of the upper bound, we show that almost every configuration
with relatively many pebbles fills every reasonably large block with plenty of pebbles.
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LEMMA 19. Let N = n¢, ¢ = d+ 1+ € for some € > 0, v’ = ¢/(IgN)Y/(@+1),
s = 2u" = [S/NW, m = ((dzl)l/d(lgN)l/(dJrl)L M = (m/)d’ and k' = {n/m/]d.
Let By,..., By, be a collection of k' blocks, each having every side of length m/', that
cover the vertices of PL. Let C be a random configuration of t' pebbles on the vertices

of P3. Then

Pr[C(B}) > M'2%™" for all f] —1 as n—oo .

Proof. Define Z; to be the event that block B} contains fewer than M* = M'29m’
pebbles and approximate the probability Pr[U’Jil:lZ ] by

M*—1
/ M'\ /N — M’ N
k
Pl < K ) <f>< v—f > <t>
f=0
Now use the estimate
M/
N — M’ < N N
t—f /) - \N+v t

N\
o) S )

Then use the upper bound

PEVIED AV ED s FIVEN RS

f=0 f=0 j=1

to obtain

to obtain

N+t

N <M’2dm/>M
<
~u\ T

1 21g N—M'(u' —1g M’ —dm')

MI

M/
N ,
Pr{UZ;] < k’( > MM

1 14d, L
21gN—(1+d)lgN+o(1gN)+d(T’) d g N

M/

1

d+1

B M/Nd_d(lj—/d) a —o(1)

—0.

Thus, almost surely, every f satisfies C(B}) > M’ gdm’ 0
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Proof of Theorem 9. We begin with the lower bound. Given N = n? and 0 <
c < 27U e write ¢ = ((1 — €)/(2 + 8DV @D for some €,6 > 0, and set
u=c(gN)/@+D s =2u t = |sN|, m=|(2+6)u], M =m? and k = |[n/m|% Let
Bi,..., By, be a collection of k pairwise disjoint blocks of vertices of P, each having
every side of length m. Let C be a random configuration of ¢ pebbles on the vertices
of PZ. By Lemma 16 we know that, almost surely, some block By, has no pebbles on
its vertices. By Lemma 15 we know that, almost surely, no vertex has more that p
pebbles on it, where p = (1 + ¢)sln N for some € > 0.

Let By be the boundary of Bj. Any vertex v with C(v) pebbles on it can
contribute at most C(v)/2" pebbles to By, where i is the distance from v to By,.
Also, the number of vertices of P4 — By, at distance i from By, is at most R;. Thus,
according to Lemmas 17 and 18, the number of pebbles that can be amassed on By,
via pebbling steps almost surely is less than or equal to

Sonse <05 (oo ()

=1 j=1

3 (e ()

< p(m+2)

The last line holds because the dominant term in p(m + 2)4 is 2%, and we have
m = [(2+ 6)u]. Therefore, almost surely, too few vertices are amassed on B}, to be
able to move a single pebble to the center of Bj,. This shows that 7(P%) € Q(sN), as
required.

Next we prove the upper bound. Given N = n? and ¢ = d + 1 + € for some
€ >0, set v = (lgN)V/HD o = 2v ¢ = [¢N|, m' = [(L2)/d(1gN)V/ (1],
M’ = (m')%, and k' = [n/m/]%. Let B{,..., B}, be a collection of k' blocks, each
having every side of length m/, that cover the vertices of PZ. Let C be a random
configuration of ¢ pebbles on the vertices of P4, Then Lemma 19 states that, almost
surely, every block B’ has at least M’ 29m" hebbles. Since (see [6]) every graph G is
solvable by n(G)242m(%) pebbles, any given vertex v in P4 almost surely is solvable
by the pebbles in the block B} which contains v. This shows that 7(P%) € O(s'N),
as required. 1]

3. Remarks. Let | = I(n) and d = d(n), and denote by P{ the sequence of

graphs (Pz(gL)))n 1» where P¢ = (P))¢. For I(n) = 2, P/ = Q, which can be shown to
have a threshold asymptotically less than V.

We conjecture that the same result holds for all fixed .

CONJECTURE 20. Let P; denote the graph sequence (P*)S%;. Then for fized
we have T7(P;) € o(N).

In contrast, we have proved that 7(P9) € w(N) for fixed d. Thus we believe there
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should be some relationship between two functions ! = I(n) and d = d(n), both of
which tend to infinity, for which the sequence Pld has threshold on the order of N.

PROBLEM 21. Denote by P? the graph sequence (P,';“”))m Find a function

n=1-

d = d(n)—oo for which 7(P%) = ©(N). In particular, how does d compare to n?

Acknowledgment. The authors thank one of the referees for extensive assis-

tance in simplifying the paper.
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1. Introduction. Discrete Morse theory was developed by Forman [8, 10] as a
combinatorial analog to the classical smooth Morse theory. Applications to questions
in combinatorial topology and related fields are numerous: e.g., Babson et al. [3],
Forman [9], Shareshian [30], Batzies and Welker [4], and Jonsson [19].

It turns out that the topologically relevant information of a discrete Morse func-
tion f on a simplicial complex can be encoded as a (partial) matching in its Hasse
diagram (considered as a graph), the Morse matching of f. A matching in the Hasse
diagram is Morse if it satisfies a certain, entirely combinatorial acyclicity condition.
Unmatched k-dimensional faces are called critical; they correspond to the critical
points of index k£ of a smooth Morse function. The total number of noncritical faces
equals twice the number of edges in the Morse matching. The purpose of this paper
is to study algorithms which compute maximum Morse matchings of a given finite
simplicial complex. This is equivalent to finding a Morse matching with as few critical
faces as possible.

A Morse matching M can be interpreted as a discrete flow on a simplicial com-
plex A. The flow indicates how A can be deformed into a more compact description
as a CW complex with one cell for each critical face of M. Naturally one is interested
in a most compact description, which leads to the combinatorial optimization prob-
lem described above. This way optimal (or even sufficiently good) Morse matchings
of A can help to recognize the topological type of a space given as a finite simplicial
complex. The latter problem is known to be undecidable even for highly structured
classes of topological spaces, such as smooth 4-manifolds. We have to admit, however,
that so far no new topological results have been obtained by our approach.

Optimization of discrete Morse matchings has been studied by Lewiner, Lopes,
and Tavares [23, 24]. Hersh [17] investigated heuristic approaches to the maximum
Morse matching problem with applications to combinatorics. Morse matchings can
also be interpreted as pivoting strategies for homology computations; see [20]. Fur-
thermore, the set of all Morse matchings of a given simplicial complex itself has the
structure of a simplicial complex; see [6].
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The paper is structured as follows. First we show that computing optimal Morse
matchings is NP-hard. This issue has been addressed previously by Lewiner, Lopes,
and Tavares [24], but their argument omits details which to us seem quite important
to address carefully. Then we give an integer programming (IP) formulation for the
problem. The formulation consists of two parts: one for the matching conditions and
one for the acyclicity constraints. This turns out to be related to the acyclic subgraph
problem studied by Grétschel, Jiinger, and Reinelt [14]. We derive polyhedral results
for the corresponding polytope. In particular, we give two different polynomial time
algorithms for the separation of the acyclicity constraints. The paper closes with
computational results.

Like most of discrete Morse theory, also most of our results extend to arbitrary
finite regular CW-complexes. We stick to the simplicial setting, however, to simplify
the presentation.

2. Discrete Morse functions and Morse matchings. We will first intro-
duce discrete Morse functions as developed by Forman. The essential structure of
discrete Morse functions is captured by so-called Morse matchings; see Forman [8]
and Chari [5]. It turns out that this latter formulation directly leads to a combi-
natorial optimization problem in which one wants to maximize the size of a Morse
matching.

We first need some notation. Let A be a (finite abstract) simplicial complez, i.e.,
a set, of subsets of a finite set V' with the following property: if F' € A and G C F,
then G € A; in other words, A is an independence system with ground set V. In the
following we will ignore @ as a member of A. The elements in V are called vertices
and the sets in A are called faces. The dimension of a face F' is dim F := |F| — 1.
Let d = max{dim F : F € JF} be the dimension of A. We often write i-faces for
i-dimensional faces. Let F be the set of faces of A and let f; = f;(A) be the number
of faces of dimension 7 > 0. The maximal faces with respect to inclusion are called
facets and 1-faces are called edges. The complex A is pure, if all facets have the same
dimension. For F', G € A, we write F' < G if F C G and dim F' = dim G — 1, i.e., “<”
denotes the covering relation in the Boolean lattice. The graph of A is the (abstract)
graph on V in which two vertices are connected by an edge if there exists a 1-face
containing both vertices. Throughout this paper we assume that A is connected, i.e.,
its graph is connected. This is no loss of generality since the connected components
can be treated separately.

The size of A is defined as the coding length of its face lattice, i.e., if A has n
faces, then size A = O(n -d-logn). Statements about the complexity of algorithms
in the subsequent sections are always with respect to this notion of size.

A function f: A — R is a discrete Morse function if for every G € A the sets

(2.1) {F:F <G, f(G)< f(F)} and {H:G=<H, f(H)< f(G)}

both have cardinality at most 1. The first set includes the faces covered by face G
which are not assigned a lower value than G, while the second set includes the faces
covering GG which are not assigned a higher value. The face G is critical if both sets
have cardinality 0. A simple example of a discrete Morse function can be obtained
by setting f(F) = dim F for every F' € A. With respect to this function every face is
critical.

Discrete Morse functions are interesting because they can be used to deform a
simplicial complex into a (smaller) CW-complex that has a cell for each critical face;
see section 3.
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Consider the Hasse diagram H = (F, A) of A, that is, a directed graph on the
faces of A with an arc (G, F) € A if F' < G; note that the arcs lead from higher to
lower dimensional faces. Let M C A be a matching in H, i.e., each face is incident to
at most one arc in M. Let H(M) be the directed graph obtained from H by reversing
the direction of the arcs in M. Then M is a Morse matching of A if H(M) does not
contain directed cycles, i.e., is acyclic (in the directed sense). Morse matchings are
also often called acyclic matchings. Given M C A, one can decide in linear time (in
the size of A) whether it is a Morse matching: the matching conditions are trivial
and acyclicity of H(M) can be checked by depth first search in linear time (see, e.g.,
Korte and Vygen [22]).

There is the following relation between Morse functions and Morse matchings; see
Forman [8] and Chari [5]. Let f be a discrete Morse function and let M be the set
of arcs (G, F) € A such that f(G) < f(F), i.e., f is not decreasing on these arcs. A
simple proof shows that at most one of the sets in (2.1) can have cardinality one. This
shows that M is a matching. Since the order given by f can be refined to a linear
ordering of the faces of A, the directed graph H(M) is in fact acyclic and therefore
a Morse matching. To construct a discrete Morse function from a Morse matching,
compute a linear ordering extending H (M) (which is acyclic) and then number the
faces consecutively in the reverse order.

Although we lose the concrete numbers attached to the faces when going from a
discrete Morse function f to the corresponding Morse matching M, we do not lose the
information about critical faces: Critical faces of f are exactly the unmatched faces
of M. Hence, by maximizing |M| we minimize the number of critical faces of f. In
fact, the number of critical faces is |F| — 2 |M]. For 0 < j <d, let ¢; = ¢;(M) be the
number of critical faces of dimension j and let ¢(M) be the total number of critical
faces.

It seems helpful to briefly describe the case of Morse matchings for a one-dimen-
sional simplicial complex A. Then A represents the incidences of a graph GG. A Morse
matching M of A matches edges with nodes of G. Let G be the following oriented
subgraph of G: take all edges which are matched in M and orient them towards its
matched node. Since M is a matching, this construction is well defined and the in-
degree of each node is at most one. The acyclicity property shows that G contains no
directed cycles and hence is a branching, i.e., the underlying graph is a forest and each
(weakly) connected component has a unique root. Therefore, the Morse matchings
on a graph G are in one-to-one correspondence with orientations of subgraphs of G
which are branchings.

Building on this idea, Lewiner, Lopes, and Tavares [23] computed maximum
Morse matchings, i.e., Morse matchings with maximal cardinality, for combinatorial
2-manifolds. In [24] they developed a heuristic for computing Morse matchings for ar-
bitrary simplicial complexes. In the general case, however, this problem is AP-hard,
as shown in section 4.

3. Properties of Morse matchings. In this section we briefly review some
important properties of Morse matchings which we need in what follows.

Let F be a facet of A and let G be a facet of F, which is not contained in any
other facet of A. The operation of transforming A to A\ {F, G} is called a simplicial
or elementary collapse. We will simply use collapse in the following.

PROPOSITION 3.1 (see Forman [8]). Let A be a simplicial compler and ¥ a
subcomplex of A. Then there exists a sequence of collapses from A to ¥ if and only
if there exists a discrete Morse function such that A\ ¥ contains no critical face.
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Forman [8] also proved the following result, which describes one of the most
interesting features of Morse matchings:

THEOREM 3.2. Let A be a simplicial complex and M be a Morse matching on A.
Then A is homotopy equivalent to a CW-complex containing a cell of dimension i for
each critical face of dimension 1.

We refer to Munkres [27] for more information on CW-complexes. By Theorem 3.2
we can hope for a compact representation of the topology of A (up to homotopy) by
computing a Morse matching with few critical faces. This is the main motivation for
the combinatorial optimization problem studied in this paper.

Let K be a field and let 3; = 8;(K) be the Betti number for dimension j over K
for A; see again Munkres [27] for details. Forman [8] proved the following bounds on
the number of critical faces c; of a Morse matching M:

THEOREM 3.3 (weak Morse inequalities). Let K be a field, A be a simplicial
complex, and M a Morse matching for A. We have

(31) CjZﬂj Vj:07,d
and
(3.2) co—crtca—- A+ (—1)ca= 00— P+ Ba— -+ (—1)pa.

The Betti numbers over Q and finite fields can easily be obtained in polynomial
time (in the size of A), by computing the ranks of the boundary matrices for each
dimension. Although harder to compute (see Iliopoulos [18]), the homology over Z
can be used to choose among the finite fields or Q, in order to obtain the strongest
form of the Morse inequalities (3.1).

4. Hardness of optimal Morse matchings. In this section we prove N P-
hardness of the problem to compute a maximum Morse matching, i.e., to find a
Morse matching M with maximal cardinality. As we saw previously, this is equivalent
to minimizing the number of critical faces.

We want to reduce the following collapsibility problem, introduced by Egecioglu
and Gonzalez [7], to the problem of finding an optimal Morse matching: Given a
connected pure 2-dimensional simplicial complex A that is embeddable in R? and an
integer k, decide whether there exists a subset K of the facets of A with |KC] < k such
that there exists a sequence of collapses which transforms A\ K to a 1-dimensional
complex. Egecioglu and Gonzalez proved that this collapsibility problem is strongly
NP-complete. Using Proposition 3.1, this result reads as follows in terms of discrete
Morse theory.

THEOREM 4.1. Given a connected pure 2-dimensional simplicial complex A that
is embeddable in R3 and a nonnegative integer k, it is N'P-complete in the strong sense
to decide whether there exists a Morse matching with at most k critical 2-faces.

When £k is fixed, we can try all possible sets IC of size at most k& and then decide
whether the resulting complex is collapsible to a 1-dimensional complex in polynomial
time. Therefore we let k£ be part of the input.

We need the following construction. Consider a Morse matching M for a simplicial
complex A, with dim A > 1. Let I'(M) be the graph obtained from the graph of A
by removing all edges (1-faces) matched with 2-faces. Note that I'(M) contains all
vertices of A.

LEMMA 4.2. The graph T'(M) is connected.
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Fic. 1. Lilustration of the proof of Lemma 4.2.

Proof. Without loss of generality we assume that dim A > 2. Otherwise, I'(M)
coincides with the graph of A, which is connected (recall that A is connected).

Suppose that T'(M) is disconnected. Let N be its set of nodes in a connected
component of I'(M), and let C' be the set of cut edges, that is, edges of A with one
vertex in NV and one vertex in its complement. Since A is connected, C is not empty.
By definition of I'(M), each edge in C' is matched to a unique 2-face.

Consider the directed subgraph D of the Hasse diagram consisting of the edges
in C' and their matching 2-faces. The standard direction of arcs in the Hasse diagram
(from the higher to the lower dimensional faces) is reversed for each matching pair
of M, i.e., D is a subgraph of H(M).

We construct a directed path in D as follows; see Figure 1. Start with any node
of D corresponding to a cut edge e;. Go to the node of D determined by the unique
2-face 71 to which e; is matched to. Then 7 contains at least one other cut edge es,
otherwise e; cannot be a cut edge. Now iteratively go to es, then to its unique
matching 2-face 75, choose another cut edge es, and so on. We observe that we obtain
a directed path ey, 71, €2, 7o, ... in D, i.e., the arcs are directed in the correct direction.

Since we have a finite graph at some point the path must arrive at a node of D
which we have visited already. Hence, D (and therefore also H(M)) contains a di-
rected cycle, which is a contradiction since M is a Morse matching. O

Now pick an arbitrary node r and any spanning tree of I'(M) (which can be
computed in polynomial time; see Korte and Vygen [22]) and direct all edges away
from 7. This yields a maximum Morse matching on I'(M); see the end of section
2. Tt is easy to see that replacing the part of M on I'(M) with this matching yields
a Morse matching. This Morse matching has only one critical vertex (the root r).
Note that every Morse matching contains at least one critical vertex; this can be seen
from the Morse inequalities (3.1) in Theorem 3.3. Furthermore, the total number of
critical faces can only decrease, since we computed an optimal Morse matching on
T'(M). The number of critical i-faces for ¢ > 2 stays the same. We have thus proved
the following corollary, which is also implicit in Forman [8].

COROLLARY 4.3. Let M be a Morse matching on A. Then we can compute a
Morse matching M’ in polynomial time which has exactly one critical vertex and the
same number of critical faces of dimension 2 or higher as M, such that ¢(M') <
c(M).

We can now prove the hardness result.

THEOREM 4.4. Given a simplicial complex A and a nonnegative integer c, it is
strongly N'P-complete to decide whether there exists a Morse matching with at most ¢
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critical faces, even if A is connected, pure, 2-dimensional, and can be embedded in R3.
Proof. Clearly this problem is in N'P. So let (A, k) be an input for the collapsi-
bility problem. We claim that there exists a Morse matching with at most & critical
2-faces if and only if there exists a Morse matching with at most g(k) := 2(k+1)—x(A)
critical faces altogether. Here, x(A) = By — B1 + - - + (—1)%Bq is the Euler charac-
teristic, which can be computed in polynomial time; see section 3. Hence g is a
polynomial-time computable function. Using Theorem 4.1 then finishes the proof.
So assume that M is a Morse matching on A with at most k critical 2-faces. We
use Corollary 4.3 to compute a Morse matching M’, in polynomial time, such that
co(M') =1, ca(M') = co(M), and e¢(M’) < ¢(M). By (3.2) of Theorem 3.3, we have
(M) =ca(M'")+1—x(A). Since ¢(M') = cg(M') +c1(M') + co(M’) it follows that

(4.1) e (M) = e (M') = L(e(M') + x(A)) — 1.

Solving for ¢(M'), it follows that M’ has at most 2(k + 1) — x(A) critical faces
altogether.

Conversely, assume that there exists a Morse matching M with at most g(k)
critical faces. Computing M’ as above, we obtain by (4.1), that

(M) = e2(M') < 5(g(k) + x(A)) =1 =k,

which completes the proof. 1]

Lewiner, Lopes, and Tavares [24] showed that it is NP-hard to compute an opti-
mal Morse matching, but their proof omits an argument similar to Lemma 4.2 above.
We therefore provided a proof for it.

Since there exists a Morse matching with at most c critical faces if and only if
there exists a Morse matching of size at least %(|F| — c), we proved the following
corollary.

COROLLARY 4.5. Let A be as in Theorem 4.4 and m be a nonnegative integer.
Then it is N'P-complete in the strong sense to decide whether there exists a Morse
matching of size at least m.

We do not know about the complexity status for this problem with m fixed.

Egecioglu and Gonzalez [7] additionally proved that the collapsibility problem is
as hard to approximate as the set covering problem. In particular, the collapsibility
problem cannot be approximated better than within a logarithmic factor in polyno-
mial time, unless P = N'P. Using this, Lewiner, Lopes, and Tavares [24] claimed
that the problem to compute a Morse matching minimizing the number of critical
faces is hard to approximate. However, the function ¢ used in the proof above is
not “approximation preserving” and we do not see how the nonapproximability result
carries over.

Similarly, the problem to approximate the size of a Morse matching seems to be
open.

5. An IP-formulation. In this section we introduce an integer programming
formulation for the problem to compute a Morse matching of maximal size. From now
on we assume that dim A > 1, since the other cases are uninteresting in our context.

We use the following notation. We depict vectors in bold font. Let e; be the
ith unit vector and let 1 be the vector of all ones. For any vector & € R™ and
IC{l1,...,n} we define

xz(I) := Zx’

icl
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Fia. 2. Ezample for a directed cycle of size 6; at least three arcs with reversed orientation
(pointing “up”) are necessary to close a 6-cycle in the Hasse diagram of a simplicial complex.

Furthermore, for S C {1,...,n}, I(S) € R™ denotes the incidence vector of S.

For a node v in a directed graph, let §(v) be the arcs incident to v, i.e., the arcs
having v as one of their endnodes. For a subset A’ C A, we denote by N(A’) the nodes
incident to at least one arc in A’. Throughout this article, all directed or undirected
cycles are assumed to be simple, i.e., without node repetitions.

For ease of notation, we consider the Hasse diagram H as directed or undirected
depending on the context; we will explicitly say directed when we refer to the directed
version.

We split H into d levels Hy = (F°, Aq),...,Hg1 = (F¥1, A4_1), where H;
denotes the level of the Hasse diagram between faces of dimension ¢ and i+1. Then A
is the disjoint union of Ay, ..., Ag_1 and F* =1 NJ? consists of the faces of dimension 1.
Recall that the arcs in the Hasse diagram are directed from the higher to the lower
dimensional faces.

Let M C A be a Morse matching of A. By definition, its incidence vector =
I(M) € {0,1}* satisfies the matching inequalities

(5.1) z(8(F)) <1 VFed.

Now assume that for some M C A there exists a directed cycle D in H(M). Then
in D “up” and “down” arcs alternate; for an example, see Figure 2. In particular,
the size of D is always even. Hence, %|D| arcs are contained in M, i.e., are reversed
in H(M). We will use the following well-known observation.

OBSERVATION 1. Let M C A be a matching. If D is a directed cycle in H(M),
the edges in D can only belong to one level H; (i € {0,...,d — 1}), i.e., we have
{dimF : F € N(D)} = {i,i+ 1}.

Putting these arguments together we obtain: If M is acyclic, = I(M) satisfies
the following cycle inequalities:

(5.2) z(C)<iC|-1 VCEeC,i=1,...,d—1,

where C; are the cycles in H;.

Conversely, it is easy to see that every x € {0, 1} which fulfills inequalities (5.1)
and (5.2) is the incidence vector of a Morse matching. Hence, we arrive at the following
IP formulation for the problem to find a maximum Morse matching:

(MAXMM) max 1Tz

st. x(6(F)) <1 VEFedF
z(C)<iC|—1 VCeC,i=1,...,d—1
z € {0,1}4.
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This formulation can easily be extended to arbitrary weights on the arcs, i.e., replac-
ing 1 in the objective function by an arbitrary nonnegative vector w.

A different view on this optimization problem is to find directed spanning trees
in the hypergraph defined by H; and to patch them together (see Warme, Winter,
and Zachariasen [31] for spanning trees in hypergraphs).

We define the corresponding polytope as

Py = conv {z € {0, 134 : x satisfies (5.1) and (5.2)}.

Let M be a Morse matching and & = I(M) be its incidence vector. Then F' € Fis
a critical face with respect to M if and only if it is unmatched by M, i.e., z(6(F)) = 0.
Hence, the total number of critical faces is

(5.3) o(M)=>" (1 -y :c) =|F]-2) z.=F-21"a,

FeF a€s(F) acA

since every arc is incident to exactly two nodes. Using this formula one can eas-
ily switch between the number of critical faces and the number of arcs in a Morse
matching.

The LP relaxation of MAXMM can be strengthened by using the weak Morse
inequalities (3.1) of Theorem 3.3. Applying (5.3), this yields the following Betti
inequality for dimension i:

(5.4) > (1— > a:a> > 3 & oY < fi- 8

F:dim F=1 a€é(F) F:dim F=i a€é(F)

Observe that we can choose the field in Theorem 3.3 to employ the Morse inequalities
in their strongest form.

Ezample 1. This can be illustrated by the real projective plane RP;. The Betti
numbers with respect to Q and Zy are 8(Q) = (1,0,0) and B(Z2) = (1,1, 1), respec-
tively. The resulting lower bounds are (1,1,1), i.e., we have at least three critical
faces in any Morse matching (this is, in fact, optimal).

Remark 1. The cycle inequalities (5.2) are similar to the cycle inequalities for
the acyclic subgraph problem (ASP); see Jiinger [21], and Grotschel, Jinger, and
Reinelt [14]. The separation problem for (5.2), however, is more complicated than the
corresponding problem for ASP; see section 5.2.

Furthermore, there is a similarity to the relation between the ASP and the lin-
ear ordering problem (see Reinelt [28], and Grotschel, Jiinger, and Reinelt [13]): an
alternative formulation for our problem can be obtained by modeling discrete Morse
functions as linear orders on the faces, subject to matching requirements. Since this
formulation is based on the relation between faces, it leads to quadratically many
variables in the number of faces; therefore we have opted for the above formulation,
at the cost of having to solve the separation problem for the cycle inequalities; see
section 5.2.

5.1. Facial structure of Pp;. It is easy to see that Pj; is a full dimensional
polytope and x, > 0 defines a facet for every a € A. Furthermore, Pj; is mono-
tone, since every subset of a Morse matching is a Morse matching. It is well known
that this implies that every facet defining inequality aTa < 3 not equivalent to the
nonnegativity inequalities fulfills & > 0, 8 > 0; see Hammer, Johnson, and Peled [16].
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Fic. 3. Ezample of a nonmonotone behavior of acyclic matchings. The directed graph on the
right, obtained from the left graph by reversing the dashed arcs, is acyclic. However, if the top arc is
set to its original orientation, the graph is not acyclic anymore. This shows that subsets of acyclic
matchings are not necessarily acyclic.

Interestingly, if we consider acyclic matchings as defined above for arbitrary
acyclic directed graphs, the collection of such acyclic matchings is not necessarily
monotone anymore; see the example in Figure 3. Therefore, the structure of the
generalized problem is likely to be more complicated.

We have the following two results.

PROPOSITION 5.1. The matching inequalities x(6(F)) < 1 define facets of Py
for F € F, except if |6(F)| = 1, in which case F is a vertez.

Proof. Let F be a face with |§(F)| > 1 (note that |6(F)| = 0 does not occur since
dim A > 1 and A is connected). We can assume that A = {a1,...,ax, ag+1,-.-,am},
where 6(F) = {ay,...,ax}. For i = k+1,...,m, observe that a; cannot be adjacent
to every arc in 6(F): since |§(F)| > 1, a; would either be incident to at least two
nodes of the same dimension or to two nodes whose dimensions are two apart, which is
impossible. Therefore, choose p(i) € {1,...,k} such that a; and a,; are not adjacent.
It follows that e; + e,(;) € Pas. Then

€1,..., €L, €yl T €p(kt1)s-- -3 €m T €p(m)

are affinely independent and fulfill (6(F)) = 1. d

It follows that the inequalities z, < 1, a € A, never define facets, since each arc
has a nonvertex endpoint.

THEOREM 5.2. The cycle inequalities (5.2) define facets of Pyy.

Proof. We extend the corresponding proof by Jinger [21] for the ASP.

Let C be a cycle in H. Without loss of generality we can assume that A =
{ai,...,ak, k41, .-, Qn}, where C = (aj,...,a;) and k is even. We will construct
affinely independent feasible vectors vy, ..., Vg, Vgt1, ..., Uy satisfying the cycle in-
equality corresponding to C' with equality.

Let Cy = {a1,a3,...,ax—1} and Co = {ag,a4,...,ar}. Hence C; and Cs are the
“up” and “down” arcs in C.

Define
v; = I(Cy \ {ai}) ?fal'EC'l fori=1,... k.
I(CQ \ {az}) if a; € Co
Hence, for i = 1,...,k we have v;(C) = % —1.
Fori=Fk+1,...,m, consider a; = {u,v} ¢ C. We have four cases.

>u,v € N(C): Let C = C'\ (6(u) U 6(v)). We have that |C| = k — 4 (since there
exist no odd cycles) and C splits into two odd nonempty parts, C, and Cs, which
are both paths. Let ki := |C| and kg := |Cs]; k1 and ko are odd, since u and v
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Fic. 4. Illustration of the first case in the proof of Theorem 5.2. The sets P and P2 are shown
by continuous lines. The edges in C1 are drawn gray and hence P; C Ci; edges in Ca are drawn
black. The dashed edges incident to u and v are not considered. The right-hand side shows the
graph embedded in the Hasse diagram.

are on opposite sides of the bipartition. We choose a subset P; C 4 by taking
every second arc in order to get |P;| = %; similarly we choose Py C Cy with
|Py| = % By construction either P; C Cy or P; C Cs and either P,NCy = &
or P,NCy =@ for i =1,2. An easy calculation shows that |P; U P| = g —1; see

Figure 4 for an illustration of this case. Then define v; := I(P; U P, U {a;}).
>u ¢ C, veC: Here we define v; := I(Cy \ 6(v) U{a;}).
>u € C, v¢C: Define v; := I(Cy \ 6(u) U{a;}).

>u,v ¢ C: Choose any a € Cy and define v; := I(Cy \ {a} U {a;}).

It is easy to check in each case that v, € Py and that v;(C) = g —1.
It can be shown that the m vectors vq,...,v,, are affinely independent, which
concludes the proof. ]

The separation problem for the cycle inequalities is discussed in the next section.

5.2. Separating the cycle inequalities. Of course, there are exponentially
many cycle inequalities (5.2). Hence we have to deal with the separation problem for
these inequalities.

We can assume that we are given x* € [0,1]4, which satisfies all matching in-
equalities (5.1). We consider the separation problem for each graph H; in turn,
1=0,...,d— 1. The problem is to find an undirected cycle C' in H; such that

z*(C) > i|C| -1

or conclude that no such cycle exists. In the next sections we describe two methods
to solve this problem in polynomial time.

5.2.1. Undirected shortest path with conservative weights. A well-known
trick to solve the above separation problem is to apply an affine transformation and
obtain a shortest cycle problem. The transformation suitable for our needs is ' =
%]1 — ¢, which yields

2(C)<iC]-1 o  &(C)>1.

1
2

The separation problem can now be solved as follows: compute a shortest cycle in H;
with respect to the weights %]1 —a*. If its weight is at most 1, this cycle yields a
violated cycle inequality, otherwise no such cycle exists.

However, the weights can be negative and we have to rule out negative cycles
in order to apply polynomial time methods from the literature; that is, we want the
weights to be conservative.
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Fi1G. 5. Example of the construction in section 5.2.2. Left: original graph G. Right: constructed
graph G'. The 6-cycle on the left corresponds to the 3-cycle on the right (both shown with dashed
lines).

LEMMA 5.3. There exists no cycle of negative weight in H; with respect to %]l—m*,
for0<i<d-—1.

Proof. Let C = (as,...,ax) be a cycle in H; and let Fy,..., F) be the faces that
are visited by C. Recall that * satisfies the matching inequalities. We obtain

(5.5) oY ar =2 ap = 227(0),

j=1a€é(F;)NC aeC

k
since each edge weight is counted twice in the first term. Applying the matching
inequalities (5.1) on the left-hand side yields that @*(C) < 1k = £|C|. Hence, the
weight of C with respect to %ll — x* can be bounded as follows:

S (h-ap) = Lc| -2 (C) >0,

acC

which proves the lemma. ]

We have now reduced the separation problem to finding a shortest cycle in a
weighted undirected graph G = (V, E) without negative cycles.

By using T-join techniques, one can compute a shortest path in an undirected
graph without negative cycles in O(n;(m; + n;logn;)) time, where in this formula
n; = |FY and m; = |A;|; see Schrijver [29, Chapter 29]. It follows that a shortest
cycle can be computed in O(m;n;(m; + n;logn;)) time. Since |A;| < (i + 2)n;, this
leads to an O((d + 1)?n® + (d + 1)n3logn) overall algorithm, where n := |F] is the
number of faces and d is the dimension of the complex.

5.2.2. Transforming the graph. Another method for the separation problem
of cycle inequalities, which is easier to implement, works as follows.

Let G = (UUW, E) be a bipartite graph, e.g., G = H; (i € {0,...,d — 1}), the
ith level of the Hasse diagram. Let ¢ : E — R>( be a length function for the edges of
G. In the following we write £(u,v) = £(v, u) for the length ¢({u,v}).

We construct a graph G’ = (V', E’) and lengths ¢’ : E/ — R>( as follows; see
Figure 5 for an example. The set of nodes of G is

{{u,v'}w) : u,w’ €U, u#u', we W, {u,w} € E, {v,w} € E}.

Hence, G’ has a node for each path with two edges in G. There is an edge between
two nodes ({ug, v} }, wr) and ({ug, uh}, wy) if

Hup,u)} N{ug,us}| =1 and wy # we.
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The length of such an edge ¢’ is defined by
C(€') = 1 (0(ur, wy) + £(uf, wr) + L(ug, wa) + £(uh, wa)).

Hence, G’ contains an edge for each path with four edges in G and its length is the
length of this path divided by 2. We now consider the relation of cycles in G and G’.

LEMMA 5.4. C = (ug,wp,u1,wn,...,Wg—1,u1) s a cycle in G with k > 1 of
length £(C) if and only if

O/ = (({Umul}, ’wo), ({ul,UQ},wl), ey ({Uk_l, ul},wk_l), ({uo,ul},wo))

is a cycle in G’ with ¢/(C") = £(C).

We omit the straightforward proof.

The previous lemma does not cover cycles in G of length four. These do not
occur for the case of G = H;, since H; is a level in the Hasse diagram of a simplicial
complex. Moreover, cycles of length four can readily be detected in the construction
of G’ and handled accordingly (there is only a polynomial number of them).

To solve our separation problem, let G = H;, i € {0,...,d — 1}, and £(e) = z
for e € G. Then we have ¢'(¢’) € [0,1] for each ¢ € E’, because of the matching
inequalities. We now set £(e') = 1 — £/(¢/) for ¢/ € G’ and hence /(¢') € [0,1]. Let C
be a cycle in G with at least six edges and C” be the corresponding cycle in G’. Note
that [C’| = |C|. We then have the following:

icy=Sie)=>S -0 <1

e'eC! e'eC!
& Y ) > -1
erec!
s (CH)>|C-1
& ((C)>3|cl-1 (by Lemma 5.4).

Hence, C violates the cycle inequality (5.2) if and only if £(C") < 1. Since £(¢') > 0,
we can use the Floyd—Warshall algorithm to solve the separation problem in time
O(|V'[?); see Korte and Vygen [22].

If G = H; and W is the part arising from the higher dimensional faces, we have
V'] = (122) [W| = (222) fi+1. This leads to an O((d + 1)°n?) algorithm for separating
cycle inequalities, which is roughly as fast as the method discussed in section 5.2.1,
but much easier to implement.

6. Computational results. In this section we report on computational ex-
perience with a branch-and-cut algorithm along the lines of section 5. The C++
implementation uses the framework SCIP (Solving Constraint Integer Programs) by
Achterberg; see [1]. It furthermore builds on polymake; see [11, 12]. As an LP solver
we used CPLEX 9.0.

As the basis of our implementation we take the formulation of MAXMM in sec-
tion 5. Matching inequalities (5.1) and Betti inequalities (5.4) (together with variable
bounds) form the initial LP. The computation of the simplicial homology from which
the Betti numbers are computed is very fast, because the examples are small; its
running time is not included in the following. Cycle inequalities (5.2) are separated
as described in section 5.2.2. Additionally, Gomory cuts are added. As a branch-
ing rule we use reliability branching implemented in SCIP, a variable branching rule
introduced by Achterberg, Koch, and Martin [2].
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TABLE 1
Computational results of the branch-and-cut algorithm with separating cycle inequalities and
Gomory cuts.

name n m d nodes depth time Jé] c
solid_2_torus 24 42 2 1 0 0.00 2 2
simon2 31 60 2 1 0 0.00 1 1
projective (RP2) 31 60 2 1 0 0.01 3 3
bjorner 32 63 2 1 0 0.05 2 2
nonextend 39 7 2 6 5 0.16 1 1
simon 41 82 2 1 0 0.18 1 1
dunce 49 99 2 385 10 2.62 1 3
c-ns3 63 128 2 349 10 3.47 1 3
c-ns 75 152 2 28 10 1.95 1 3
c-ns2 79 159 2 14 7 1.11 1 1
ziegler 119 310 3 1 0 0.01 1 1
gruenbaum 167 434 3 1 0 25.24 1 1
lockeberg 216 600 3 1 0 36.25 2 2
rudin 215 578 3 " 30 103.78 1 1
mani-walkup-D 392 1112 3 111 23 512.81 2 2
mani-walkup-C 464 1312 3 135 83 1658.02 2 2
MNSB 103 267 3 12 10 73.39 1 1
MNSS 250 698 3 292 110 750.36 2 2
CP2 255 864 4 230 80 558.14 3 3

We implemented the following primal heuristic. First a simple greedy algorithm
is run: We start with the empty matching M = @. We add arcs of the Hasse diagram
to M in the order of decreasing value of the current LP solution as long as M stays
an acyclic matching (which can easily be tested). Then the outcome is iteratively
improved by a method described in Forman [8]; one searches for a unique path between
two critical faces in H(M). Such a path is alternating with respect to M. Then M
can be augmented along the path (the new matching is the symmetric difference of M
and the path). As is easily seen, this generates an acyclic matching, because the path
is unique. This heuristic turns out to be extremely successful; see below.

We tested the implementation on a set of simplicial complexes collected by Hachi-
mori; see [15] for more details. This test set was also used by Lewiner, Lopes, and
Tavares [24]. Additionally, we considered the following complexes: CP2 (complex pro-
jective plane), CP2+CP2 (connected sum of CP2 with itself), MNSB (vertex minimal
nonshellable ball), and MNSS (nonshellable sphere with the fewest number of vertices
known). The last two examples are due to Lutz [25, 26].

All computational experiments were run on a 3 GHz Pentium machine running
Linux. In the tables of computational results, n denotes the number of faces, m the
number of arcs in the Hasse diagram (= number of variables), d the dimension, nodes
the number of nodes in the branch-and-bound tree, depth the maximal depth in the
tree, time the computation time in seconds, 3 the lower bound obtained by adding
all Betti inequalities (5.4), and ¢ the number of critical faces in the optimal solution.

Our implementation could not solve the larger problems of Hachimori’s collection
in reasonable time: bing, knot, poincare, nonpl_sphere, and nc_sphere. In fact, for
poincare we ran our code in different settings, each for about a week, without success.
Table 1 shows the results of a computation where we separate cycle inequalities and
Gomory cuts and run the heuristic every 10th level. At most seven separation rounds
of cycle inequalities were performed at a node. We do not report results on the
problems by Moriyama and Takeuchi in Hachimori’s collection—they all could be
solved within a second. The version with cut separation could not solve CP2+CP2
within 90 minutes.
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TABLE 2
Computational results of the branch-and-cut algorithm without separation.

name n m d nodes depth time Ié] c
solid_2_torus 24 42 2 1 0 0.00 2 2
simon2 31 60 2 1 0 0.01 1 1
projective (RP2) 31 60 2 1 0 0.00 3 3
bjorner 32 63 2 1 0 0.01 2 2
nonextend 39 7 2 3 2 0.02 1 1
simon 41 82 2 4 3 0.02 1 1
dunce 49 99 2 168367 42 145.60 1 3
c-ns3 63 128 2 3665581 53 3940.40 1 3
c-ns 75 152 2 16625713 58 19359.69 1 3
c-ns2 79 159 2 4 3 0.03 1 1
ziegler 119 310 3 1 0 0.01 1 1
gruenbaum 167 434 3 21 20 0.68 1 1
lockeberg 216 600 3 1 0 0.05 2 2
rudin 215 578 3 81 80 3.18 1 1
mani-walkup-D 392 1112 3 107 100 2.00 2 2
mani-walkup-C 464 1312 3 1498 456 30.54 2 2
MNSB 103 267 3 1 0 0.01 1 1
MNSS 250 698 3 163 126 4.63 2 2
CP2 255 864 4 198 190 4.77 3 3
CP2+4-CP2 460 1592 4 5178 534 110.21 4 4

For most problems the bound obtained by adding Betti inequalities (5.4), as
indicated in column “G,” is tight. This means that the algorithm is done once an
optimal solution is found. This usually happens very fast and shows that the heuristic
is efficient. In fact, there are only three problems for which the bound is not tight and
could be solved by our algorithm (dunce, c-ns, and c-ns3). These three problems
are solved easily by the version with cut separation. In our problem set there exists
no hard but still solvable problem with a “Betti bound” which is not sharp. We
therefore cannot estimate the limits of our implementation for these cases (poincare
is the next larger problem of this kind with 1112 variables, but we could not solve it).

The tractability of problems with a tight “Betti bound” is supported by the results
obtained by running the implementation without any separation; see Table 2. Only
integer solutions are checked whether they are acyclic and the heuristic is run every
10th level. This essentially is a test of the performance of the primal heuristic. Indeed,
all problems with tight “Betti bound” were solved within a few seconds (CP2+CP2 and
mani-walkup-C being the exception, but could be solved within two minutes). The
results for the problems c-ns, c-ns3, and dunce show that the cycle inequalities and
Gomory cuts are very effective in reducing the number of nodes in the tree and the
computing time for problems where the “Betti bound” is not sharp.

Summarizing, we can say that our implementation can solve large instances with
up to about 1500 variables if the bounds from the Betti numbers are tight and small
instances with up to about 150 variables if the bounds are not tight. In all the
instances computed so far, the topology of the spaces involved was known. In the
future, we plan to apply our techniques to other cases.

Acknowledgments. We are indebted to Tobias Achterberg for his support of
the implementation. We also thank both referees for their helpful comments.
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RANDOMIZED PURSUIT-EVASION WITH LOCAL VISIBILITY*

VOLKAN ISLER, SAMPATH KANNAN?, AND SANJEEV KHANNA

Abstract. We study the following pursuit-evasion game: One or more hunters are seeking to
capture an evading rabbit on a graph. At each round, the rabbit tries to gather information about
the location of the hunters but it can see them only if they are located on adjacent nodes. We
show that two hunters suffice for catching rabbits with such local visibility with high probability.
We distinguish between reactive rabbits who move only when a hunter is visible and general rabbits
who can employ more sophisticated strategies. We present polynomial time algorithms that decide
whether a graph G is hunter-win, that is, if a single hunter can capture a rabbit of either kind on G.

Key words. pursuit-evasion games, local information, path planning, visibility
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1. Introduction. Pursuit-evasion games are problems of fundamental interest
in many diverse fields such as computer science, operations research, game theory, and
control theory. The goal of a pursuit-evasion game is to find a strategy for a pursuer
trying to catch an evader who, in turn, tries to avoid capture indefinitely. There are
many different variations of pursuit evasion games based on the following:

o FEnvironment where the game is played: Examples include plane, grid, and
graph.

o Information available to the players: Do they know each others’ positions all
the time? Does the pursuer know the evader’s strategy?

e Controllability of the players’ motion: Is there a bound on their speed? Can
they turn with arbitrary angles?

e Meaning of capture: In some games, the pursuer captures the evader if the
distance between them is less than a threshold. In other games, the pursuers
must see or surround the evader in order to capture it.

Earlier studies of pursuit-evasion were motivated by control tasks such as in-
tercepting missiles [4]. The problem is addressed in the robotics community for its
applications in collision avoidance, search and rescue, and air-traffic control [10, 9].
In these models typically the motion of the evader is modeled by a stochastic process.
However, recently there has been increasing interest in modeling games where the
evader is more “intelligent” and has certain sensing capabilities [19]. Pursuit-evasion
games on graphs [18, 16, 13, 12, 6, 1] have been studied not only for their applica-
tions in network security and protocol design (e.g., [3, 11]) but also for their relations
to fundamental properties of graphs such as vertex separation [7]. A remark about
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the terminology is in order. In the literature, the names pursuer-evader, cop-robber,
monster-princess, hunter-rabbit, and sheriff-thief have been used somewhat synony-
mously. We adopt the hunter-rabbit term for it emphasizes the discrete nature of the
game [5, 1].

In this paper, we address a different aspect of the problem that has not received
much attention so far. We study the relationship between the information available to
the rabbit and the conditions to capture it. The basic model of our game is as follows:
The players are located on the nodes of a graph. At every time step, they move to
nodes in their neighborhoods (which include the current node) simultaneously. We
say a rabbit is caught or captured if at the beginning of a time step it occupies the
same node as a hunter. We associate the information available to the rabbit with its
visibility. If the rabbit has complete information about the location of the hunter(s)
during the entire game, we say the rabbit has full visibility. On the contrary, if the
rabbit has no information about the hunters, then we say it has no visibility.

In our present work, we study the game when the rabbit has local visibility. That
is, it can only see the nodes that are adjacent to its current location. When the
hunter is located at an adjacent node, the rabbit has complete information about his
location. However, if the hunter is not visible, then the rabbit must infer the hunter’s
location based on the time and location of their last encounter. Note that this model
is different from the “visibility-based pursuit-evasion” work [9, 17], where the goal is
to eventually “see” an evader which has complete visibility and unbounded speed.

Recently, Adler et al. studied the game when the rabbit has no visibility [1]. They
showed that a single hunter can catch the rabbit on any (connected) graph. The full
visibility version has also been studied [16, 6]. It is known that under the full visibility
model, the class of graphs on which a single hunter suffices is the class of dismantlable
graphs. The number of hunters necessary to capture the rabbit on a graph G is known
as the cop (hunter) number of G. It is known that [2] the cop number of planar graphs
is at most 3 but the cop number of general graphs is still an open question [15, 8].

FiG. 1. On this graph, the hunter cannot capture the rabbit using a deterministic strategy.

An interesting aspect of our game is that on most graphs the rabbit cannot be
captured using a deterministic strategy. A simple example is illustrated in Figure 1.
Suppose that, on this graph, the hunter has a deterministic strategy of visiting the
labeled vertices in the order a,b,c. Then, we can design a rabbit strategy that waits
until the hunter arrives at b and escapes to a. Afterward, while the hunter is visiting c,
the rabbit escapes to b and it is easy to see that by repeating similar moves, the rabbit
can always avoid the hunter. However, on this graph there is a simple randomized
strategy for the hunter: Pick one of the leaves at random and visit that leaf!

Therefore, we will focus on randomized strategies. The previous body of work for
the full visibility case [16, 6, 15, 8, 2] derandomized the game by forcing the players to
take turns moving, rabbit followed by hunter at each step. However, when the players
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move simultaneously, the game is not well defined for deterministic strategies even if
the players have full visibility: Suppose the game is played on a complete graph. In
this case it is easy to see that a single hunter can catch the rabbit simply by guessing its
location in the next turn. However, if the hunter’s strategy is deterministic, knowing
it, the rabbit would never get caught. Similarly, the hunter could always catch the
rabbit in a single move if he knew its strategy.

Our results and techniques. Our main result is an algorithmic characteriza-
tion for the local visibility case. We show that two hunters always suffice on general
graphs and present a polynomial time procedure that decides whether a single hunter
is sufficient to capture the rabbit on an input graph G. In order to obtain an efficient
decision procedure, we establish that the uncertainty in the rabbit’s knowledge of the
hunter’s location satisfies an interesting monotonicity property. This monotonicity
property turns out to be crucial for obtaining a polynomial time characterization.

In the winning strategy for two hunters, a central component is to have one hunter
mainly focus on keeping the rabbit on the move. This motivated us to study a natural
class of reactive rabbit strategies, where the rabbit moves only when the hunter is in
its sight. We show that the class of hunter-win graphs (i.e., graphs on which a single
hunter suffices) against general rabbits is strictly smaller than the class of hunter-win
graphs against reactive rabbits. We present a characterization algorithm for reactive
rabbits as well.

The characterization algorithms mark pairs of vertices according to certain rules,
where the pairs correspond to players’ positions. To understand the corresponding
hunter strategies on hunter-win graphs, we first present a hunter strategy for the full
visibility case. Next, we show that omitting one of the rules from the characterization
algorithms yields an algorithm that recognizes graphs that are hunter-win against
rabbits with full visibility. Using these two results, we show how the hunter exploits
the local visibility if the game is played on a graph G such that on G, the hunter can
win against a rabbit with local visibility but not against a rabbit with full visibility.

We note that when the rabbit’s visibility is extended to distance 2, there exist
graphs for which Q(y/n) hunters are necessary.

Organization of the paper. The paper is organized as follows: In section 2,
we review necessary concepts that will be used throughout the paper. In section 3,
we present a winning strategy for two hunters on general graphs. Next, we study the
graphs on which a single hunter suffices, both for reactive (section 4.1) and general
(section 4.2) rabbits. Section 5 is dedicated to the study of hunter strategies on
hunter-win graphs. A gap example distinguishing the power of the two types of rabbit
strategies is also presented in section 5. We conclude the paper with a discussion on
extensions of our work.

2. Preliminaries. Throughout the paper, we use the following notation for the
neighborhood of vertex v: N(v) denotes the set of vertices that are adjacent to v
and we always assume that v € N(v). N*(v) is defined as Uyepni-1(,)N(u). Unless
otherwise stated, n denotes the number of vertices.

The game we study is formally defined as follows: It is played in rounds. In the
beginning of a round, suppose a player (either a hunter or a rabbit) is located at
vertex v. First, the player checks N(v) and if there is another player located at a
vertex u € N(v), this information is revealed to the player. In this case we say the
two players see each other. Next, all the players make a decision about where to move
and choose a vertex in their neighborhoods. At the end of the round, all players move
to their chosen vertex simultaneously. A hunter catches the rabbit if they are located



RANDOMIZED PURSUIT-EVASION WITH LOCAL VISIBILITY 29

on the same vertex.

A reactive rabbit strategy is a rabbit strategy where the rabbit is not allowed
to move from a vertex v unless the hunter is in N(v). A rabbit strategy is general
(sometimes called nonreactive) if it is not forced to be reactive. In other words, the
rabbit can move even if the hunter is not visible. A graph G is hunter-win against
reactive rabbits if there exists a hunter strategy that catches any reactive rabbit on
G with nonzero probability for all possible starting configurations. A graph that is
hunter-win against general rabbits is defined similarly.

Configuration versus state. For a single hunter game, a configuration refers
to an ordered pair (h,r) which corresponds to the locations of the hunter and the
rabbit, respectively. Note that this information may not be available to the rabbit
at all times due to its local visibility. A configuration (h,r) is adjacent if h € N(r).
We use the notation (H,r) to denote the state of the game where r is the location of
the rabbit and H corresponds to the set of vertices where the hunter can possibly be
located (based on the information available to the rabbit). For the full visibility case,
if the current configuration is (h,r), the state is ({h},r). For the zero visibility case,
the state is either (G — {r},r) or ({r},r). For the local visibility case that we study,
state has a more complex structure, and it evolves over time even when neither the
hunter nor the rabbit is in motion.

Suppose u and v are two nodes of a graph G such that N(u) C N(v). Then, the
operation of deleting u from G is called a folding of G and we say u folds onto v.
A graph is called dismantlable if there is a sequence of folds reducing it to a single
vertex. We say u eventually folds onto v if there is a sequence ug = u, u1,...,ux = v
such that u; folds onto u;4+1, 0 < i < k. Let G be a dismantlable graph and ¢ be
a folding sequence reducing G to a single vertex v. We can visualize ¢ as a tree T’
whose vertices are the vertices of G such that when rooted at v every vertex in T is
folded onto its parent.

If a graph G is not dismantlable, this means that after a sequence of foldings v it
reduces to a graph H which cannot be folded any further. We refer to the graph H as
the residual graph of G, or just the residual, if G can be inferred from the context. It is
known that the residual is unique up to isomorphism [6]. We can visualize the folding
process for nondismantlable graphs as a forest of trees T} hanging from each vertex
h € H (see Figure 3). T}, is composed of vertices that eventually fold onto h. We
define ¢(u) = w if and only if u € Ty, w € H. We note that the tree representation
depends on the folding sequence 1 and in general it is not unique.

3. A winning strategy with two hunters. In this section, we present a strat-
egy with two hunters that catches the rabbit on any graph. In general, a single hunter
cannot always capture the rabbit. This can be seen by considering a cycle of length at
least 4 as the input graph: The rabbit’s strategy is to wait until the hunter becomes
visible and move to its neighbor which does not contain the hunter. This strategy
guarantees that it will never get caught.

The strategy of the two hunters is divided into epochs that are comprised of two
phases. An epoch starts with the hunters located at a predetermined vertex. The
first phase starts at time ¢t = 1.

In Phase One, two hunters move together and their goal is to see the rabbit.
To achieve this, the hunters generate a random vertex label v € {1...n} and move
together to v. Afterward, they wait at v until either (¢ mod n) = 0 or the rabbit
becomes visible. If the rabbit becomes visible at any time, the first phase is over and
the second phase starts. Otherwise, the hunters repeat the same process by generating
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a new label v.

We claim that the first phase lasts only n?logn steps with high probability. To
see this, let r1,79,... be the location of the rabbit at times n,2n,3n,.... Suppose
the hunters have not seen the rabbit until time 7 X n. At that time, the probability
that they generate a label in N(r;41) is at least % Since they generate a label after
every n steps, the first phase will be over in n?logn steps with high probability.

In Phase Two, the hunters try to catch the rabbit as follows: Suppose the second
phase starts at time t = to and let t; = g + 9. At that time both hunters H; and
Hj are at vertex h and the rabbit is at vertex r, with » € N(h). For the rest of the
second phase, let r; denote the position of the rabbit at time ¢ = ¢; and let us define
To = h.

The strategy of H; is as follows: At time ¢t = ¢;, he is located at r;_y. With
probability p; = %, he attacks the rabbit by generating a random neighbor of r;_1
and going there in the next step. With probability 1 — p;, he chases the rabbit by
going to r; in the next step. The second phase ends with failure if H; attacks and
misses the rabbit.

The strategy of Hj is based on the following observation: If H; chases the rabbit
for more than n steps, the rabbit must revisit a vertex by the pigeonhole principle.
Let u be the first vertex revisited and suppose that at time ¢,, the rabbit visits a
vertex v € N(u) for the first time before revisiting u. The goal of Hs is to enter v at
the same time as the rabbit. To achieve this, first he guesses u, v, and ¢,.. In order
to reach u, he chases H; by moving to his location in the previous time step until
u. Afterward, Hy waits until time ¢ = ¢, — 1 and goes to v from u. We say Hs is in
chasing mode if he is following H; and he is in attacking mode after he arrives at u.
The second phase ends with failure if Ho misses the rabbit when it arrives at v. To
summarize, at time t = tg, the hunters are at r¢y and the rabbit is at r;. When the
hunters are chasing, the locations of the rabbit H; and H, at time ¢; are r;,7;_1,7;—_2,
respectively. The phase ends when either hunter attacks. If no hunter attacks within
n? steps, they end the phase and move to the predetermined vertex to start a new
epoch.

Next, we state the crucial property of the strategy of the hunters.

LEMMA 1. During Phase Two, the rabbit cannot distinguish between the modes
of hunter Hs.

Proof. If the attacking mode starts at time ¢ = t1, the location of Hs is the same
for both modes. If it starts afterward, we show that if the rabbit sees Hs, it will get
caught with nonzero probability.

Suppose the rabbit sees Hy at time ¢ = t5, which implies ro € N(rg). In this case,
with probability at least %, H; can decide to attack from rg to ro at time ¢ = ¢; and
catch the rabbit.

Next, suppose the rabbit sees Ho at time t > t5. If Hy was in chasing mode at
that time, the fact that the rabbit sees Ho implies 7; € N(r;—2). In this case as well,
H; could decide to attack in the previous step and catch the rabbit with probability %1.
Therefore Hy must be invisible to the rabbit during the chasing mode. But, Hs will
also be invisible in the attacking mode because as soon as the rabbit enters a vertex
v where it can see Ho, Hy can catch it by guessing v and the arrival time correctly.

Therefore in order to avoid getting caught, the rabbit must avoid seeing Hy. But
then the information available to the rabbit will be the same, no matter which mode
H, is in: Hs is out of its sight since the beginning of the second phase. 0

LEMMA 2. During Phase Two, the hunters succeed with nonzero probability.
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Proof. As discussed previously, after the start of the second phase, the rabbit
must revisit a vertex u at time k < m. If the rabbit does not see Hs until ¢t = k,
H, can catch it with probability % at least by guessing t,.,u,v < n. Note that H;
will still be chasing the rabbit with probability at least 1 — % >1- % On the other
hand, if the rabbit sees Hs, it is caught with probability at least % = min{£, % ,
by Lemma 1. 0

The length of an epoch is O(n?logn): Phase One lasts O(n?logn) time with high
probability and Phase Two lasts ©(n?) steps. We have established that in Phase Two,
the rabbit is caught with probability at least % Therefore after n3 log n epochs, each
of which last O(n?logn) steps at most, the rabbit will be caught, yielding our main
result.

THEOREM 3. Two hunters can catch a rabbit with local visibility on any graph
with high probability.

4. Hunter-win graphs. In this section, we start the study of graphs on which a
single hunter suffices. An interesting feature of the strategy of two hunters is that one
hunter makes the rabbit move constantly and therefore forces it into making mistakes.
This suggests that moving when a hunter is not visible may be a disadvantage for the
rabbit.

To study this phenomenon we introduce reactive strategies where the rabbit moves
only when the hunter is visible and ask the question of whether the class of hunter-win
graphs against reactive graphs is equivalent to the class of hunter-win graphs against
general rabbits. The answer turns out to be negative.

Fic. 2. This graph is hunter-win against reactive rabbits but not against general rabbits.

The graph in Figure 2 is hunter-win against reactive rabbits. The input graph
consists of a cycle and the gadget shown in the figure. The hunter’s strategy is to
drive the rabbit into the gadget, by chasing it along the cycle. Once the rabbit is in
the gadget, the hunter drives the rabbit to a vertex such that he can reach another
vertex (without being seen) whose neighborhood dominates the rabbit’s neighborhood.
Next, we present the details of the hunter’s strategy. In the following, without loss of
generality, we assume that the hunter knows the rabbit’s next move.

In order to capture the (reactive) rabbit, the hunter first chases it counter-
clockwise until the rabbit is at b and the hunter is at a. It can be easily verified
that the rabbit cannot avoid reaching b without being captured.

If the rabbit moves to = from b, the hunter travels clockwise, arrives at ¢ via y, and
wins the game (note that the rabbit, being reactive, will not move in the meantime).
Otherwise, if the rabbit moves to ¢, the hunter moves to b. In the next move, if the
rabbit moves to y from ¢, the hunter travels clockwise, arrives at d through e, and
wins the game. If the rabbit moves to d from ¢, then the hunter moves to c.

From d (while the hunter is at ¢), the rabbit has two options (it will be captured
if it goes to y). If it moves to e from d, the hunter goes to y and then to z. The rabbit
must then move to w to avoid capture. In this case the hunter goes to f and wins the
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game. Otherwise, if the rabbit moves to z from d, the hunter travels clockwise again
and arrives at e through g and w. From 2z the rabbit can only go to y, in which case
the hunter moves to d from e and wins the game.

Therefore, no matter which strategy it chooses, the hunter can capture a reactive
rabbit. However, once it arrives at b, a general rabbit can keep moving in the opposite
direction of a until it leaves the gadget. If the length of the cycle is greater than 14, the
hunter cannot reach the other entrance of the gadget before the rabbit and therefore
a general rabbit is safe on this graph.

4.1. Characterization of hunter-win graphs against reactive rabbits.
In this section, we describe an algorithm that recognizes hunter-win graphs against
reactive rabbits. The algorithm marks configurations (h,r) according to the following
rules.

Algorithm Mark-Reactive:
Mark all configurations (v, v) for every vertex v. (Initialization)
Repeat

Mark (h,r) if for all # € N(r) there exists a vertex b’ € N(h) with (b, ") marked.
(Stride Rule)

For all (R, r) that are marked, mark (h,r) for all h € N(h')\ N(r). (Stealth Rule)
Until no further marking is possible.

Next, we prove the soundness (if all configurations are marked, then the graph is
hunter-win) and completeness (if the graph is hunter-win, then all configurations will
be marked) properties of the marking algorithm.

Soundness. The proof is by induction on the round k in which a configuration is
marked.

When k& = 1 only the configurations (v,v) are marked and the hunter trivially
wins the game in these configurations.

Suppose the configurations marked in the first k£ rounds are sound and consider
the configuration (h,r) marked during step k + 1. If (h,r) was marked using the
Stride Rule, during the execution of the game, the hunter can force a configuration
marked during the kth step with nonzero probability. Hence these configurations
are sound. If, on the other hand, the configuration (h,r) is marked by the Stealth
Rule, we observe that the rabbit will remain at vertex r since the hunter is out of its
sight and hence the hunter can reach the configuration (h',r) which has been marked
during the previous steps. Therefore the Stealth Rule is also sound by the inductive
hypothesis.

Completeness. Clearly, if the rabbit is captured the game ends at a marked
configuration. Otherwise, we show that the rabbit can always stay in an unmarked
configuration and hence never get caught. Suppose there is an unmarked configuration
(h,r) and the hunter and the rabbit are at vertices h and r, respectively. There are
two cases: If h € N(r), the rabbit must have a move to a vertex 7’ such that there
exists no A’ € N(h) with (h',r") marked. Otherwise (h,r) would be marked by the
Stride Rule. On the other hand, if A ¢ N(r), no matter which vertex A’ the hunter
moves, (h',r) is unmarked. Otherwise (h,r) would be marked by the Stealth Rule.

We can now state the result of this section which follows from the soundness and
completeness of the marking algorithm.

THEOREM 4. A graph G is hunter-win against reactive rabbits if and only if the
algorithm Mark-Reactive marks all configurations.
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4.2. Characterization of hunter-win graphs against general rabbits. For
reactive rabbits, it is easy to see that on a hunter-win graph every rabbit walk can be
intercepted (i.e., the rabbit gets caught) by the hunter in O(n?) steps. However, it is
far from being clear that such a polynomial length intercepting walk (i.e., a witness)
exists for nonreactive rabbits. The difficulty is that at any point in time, the rabbit
can infer a subset H C V of possible hunter locations and plan its motion accordingly.
This suggests that the state of the game may require specifying arbitrary subsets of
vertices, potentially leading to exponential witnesses. Fortunately, we can establish a
monotonicity property to establish once again polynomial size witnesses.

Let (H,r) be the state of the game where H is the set of possible hunter locations
when the rabbit is at . When the rabbit and the hunter are at adjacent vertices r and
h, respectively, the rabbit knows the hunter’s position with certainty and therefore
H = {h}. Now suppose the game starts at configuration (h,r).

PROPOSITION 5. The hunter can reach an adjacent configuration from any start-
ing configuration (h,r).

The proof of Proposition 5 is implicit in the strategy presented in section 3.
During Phase One, the two hunters act as one and we showed that their strategy
ensures that the hunters and the rabbit will end up in adjacent vertices in n steps
with nonzero probability. This means that, no matter which path rabbit takes, there
exists a hunter path of length at most n that leads to an adjacent configuration.

PROPOSITION 6. A graph G is hunter-win if and only if the hunter wins starting
from any adjacent configuration.

Proof. If the graph is hunter-win, the hunter must win from all starting con-
figurations including the adjacent ones. Conversely, if the hunter can win from any
adjacent configuration, then starting from any configuration he can reach an adjacent
configuration by Proposition 5 and win the game from here on. 0

Therefore, by Proposition 6, on a hunter-win graph, we can assume that the game
starts from an initial configuration where the players see each other. In addition,
without loss of generality, we assume that the rabbit moves so as to maximize the
time taken for capture and the hunter moves so as to minimize it.

We can view any hunter-win game as a sequence of rounds Ry, ..., R, where each
round starts with the players located at adjacent vertices. Hence, the rabbit has full
knowledge of the hunter’s position. Clearly, there are at most n? rounds and the
rounds do not repeat.

LEMMA 7. For the optimal hunter strategy, the length of each round is O(n?).

Proof. Partition the round into segments of length n + 1 each. The rabbit must
revisit a vertex r within the same segment. Let (Hy,r1) and (Ha,73) be the state
of the game during the first and second visits. First, we show that H; C H,. This
is because, between 71 and 7o, the rabbit cannot visit any vertex u with u € N(h),
h € H;. If the hunter is at h, the rabbit would be captured. Next, if H; = Ha, then
the part of the hunter strategy between r; and ry is redundant and hence the hunter
can shorten the game. Therefore as the rabbit keeps visiting the same vertex, its
uncertainty is monotonically increasing and after at most n revisits the state of the
game becomes (G — N(r),r). In this case, either the rabbit gets caught if it moves or
the hunter reveals himself, ending the round. Since the rabbit has to revisit a vertex
every n steps and there are at most n revisits, the lemma follows. 1]

Since the length of a round is O(n?) and there are n? rounds, we conclude that
the total length of a hunter-win game is O(n?).

Our characterization algorithm for general rabbits is based on the existence of
such a polynomial size witness. We will mark only adjacent configurations: if the
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adjacent configurations are all marked, by Proposition 6 the hunter wins from all
starting configurations. A general rabbit can move even if the hunter is not visible.
In order to capture this capability we need to generalize the stealth moves, described
next.

4.2.1. Stealth moves. A k-stealth move from configuration (h,r) with h €
N(r) to a marked configuration (h',r’) is defined as follows: For every rabbit path
P.={r,r,...,7, =1’} of length k, the hunter has a path P, = {h, hy,...,hx = h'}
such that h; ¢ N(r;) for i = 1,...,k — 1, hy € N(rg), and (hg,rg) is marked. We
refer to P, as the stealth path corresponding to P,. A configuration (h,r) is marked
by the Stealth Rule if for all 7/ € N¥(r), there exists a k-stealth move to a marked
configuration (h',r’). Note that the Stealth Rule for & = 1 subsumes the Stride Rule.

LEMMA 8. The markings corresponding to stealth moves are sound.

Proof. Suppose all previously marked adjacent configurations are sound and con-
sider the next adjacent configuration (h,r) marked by a stealth move of length k. At
time ¢ = 0 the rabbit is located at r. Since we mark only the adjacent configurations,
the state of the game is ({h},r). Take any rabbit path of length k, and suppose at
time ¢ = 7 the rabbit is at vertex r;. Let rf,... ,7“; be the vertices accessible from r;
in the remaining k& — i steps and P,... P, be the corresponding stealth paths such
that at the end of k steps, P; ends at vertex h; and (hf,7}) is marked. Let E; be
the event that the hunter has chosen path P;, j = 1,...,p, and let h; be the jth
vertex on P;. The claim follows from the observation that no matter which path
P; the hunter chooses, the information available to the rabbit is the same—namely,
the hunter was not visible for the last ¢ steps. Therefore the state of the game is
(H,r) where {h;|1 < j < p} C H. Since the rabbit cannot distinguish between the
events F/;, no matter which final destination r; it chooses, the hunter can be at the
corresponding vertex h; and arrive at the already marked configuration (h;, r;) 1]

The stealth moves starting from configuration (h,r) and ending at configuration
(h',r") can be computed efficiently by dynamic programming.

We will need an intermediate look-up table T', with T'[h,r, h’,7’ k] = TRUE if
and only if for any rabbit path {r,r1,...,7, = r'} of length k there is a stealth path
of length k that starts from h and ends at h’.

The entries of the table T" are filled as follows:

(i) T[h,r,h',7",0] = TRUE if and only if h = A/, r =+, and b’ € N(+’).

(ii) T[h,r, k', 7’,1] = TRUE if and only if h’ € N(h), r' € N(r), and b’ € N(r').

(iii) T[h,r,n',r" k + 1] = TRUE if and only if for all u € N(r) there is a vertex
v € N(h) \ N(u) with T[v,u,S,h',7" k] = TRUE for 1 < k < n?.

We now present a marking algorithm that uses the look-up table T' to compute
the stealth moves.

Algorithm Mark-General:
Mark all configurations (v, v) for every vertex v. (Initialization)
Repeat

For all configurations (h,r) with h € N(r), mark (h,r) if there exists an index
k < n? such that for all »' € N¥(r) there exists a vertex h’ with T[h,r, h',7’" k] =
TRUE and (h',r") is marked. (Stealth Rule)
Until no further marking is possible.

LEMMA 9. If the graph is hunter-win, then the marking algorithm Mark-General
will mark all adjacent configurations.
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Proof. Let (h,r) be an adjacent configuration left unmarked after the execution
of algorithm Mark-General. We claim that the rabbit can get to an adjacent config-
uration (h’,7’) that is unmarked. Suppose not. This means that for any rabbit path
T T1,72,. .., there is a hunter path h, hy, ha, ..., hy with hy € N(ry) and (hg,rg) is
marked. By Lemma 7, we have k < n?. This implies that (h,r) would be marked by
the Stealth Rule, which gives us the desired contradiction.

Therefore, starting from any unmarked adjacent configuration (h,r), the rabbit
can reach another unmarked adjacent configuration. This means that the rabbit will
never get caught, since a capture implies that the game enters the configuration (v, v)
for some vertex v which is a marked adjacent configuration. 0

THEOREM 10. A graph G is hunter-win against general rabbits if and only if the
algorithm Mark-General marks all adjacent configurations.

Proof. If all the configurations are marked, G is hunter-win due to the fact that the
Stealth Rule is sound (Lemma 8). Conversely, if there is an unmarked configuration,
the rabbit is never caught by Lemma 9. a

5. Complete visibility and dismantlable graphs. When the rabbit has full
visibility, the Stealth Rule does not make sense. In fact, we will show that the Stride
Rule against reactive rabbits is sound and complete against rabbits with full visibility.

Algorithm Mark-FullVisibility:
Mark all configurations (v,v) for every vertex v.
Repeat
Mark (h,r) if for all ¥’ € N (r) there exists a vertex b’ € N (h) with (h/,r") marked.
(Stride Rule)
Until no further marking is possible.

It turns out that the algorithm Mark-FullVisibility recognizes hunter-win graphs
against rabbits with full visibility.

Fic. 3. Visualization of the folding procedure for a nondismantlable graph. The vertices w, v,
and x are in the residual H. Since there is no edge from w to x, the edges shown with dashed lines
cannot exist.

We will need the following property of nondismantlable graphs.

ProOPOSITION 11. Let G be a nondismantlable graph, ¥ be a folding sequence,
and H be the residual. Let x and w be two distinct vertices in H and T, and T, be
the corresponding folding trees (see Figure 3). If there exists a vertex u € T, that is
adjacent to a vertex v’ € T, then z € N(w).

Proof. Without loss of generality, suppose u was folded before u’. This implies
that the parent of u must be adjacent to u’. We replace v with its parent and continue
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this process of propagating the edge between u and u’, which must eventually reach
the roots w and x of the corresponding trees. 0

THEOREM 12. The algorithm Mark-FullVisibility marks all configurations if and
only if the input graph is dismantlable.

Proof. Suppose the input graph G is dismantlable. We can prove that all con-
figurations will be marked by induction on the order of G. Since G is dismantlable,
it must have two vertices v and v with N(u) C N(v). Let G’ = G — {u} and run
algorithm Mark-FullVisibility on G’. Suppose, inductively, that all configurations in
G’ are marked. Consider the marking algorithm for G which marks (u,u) first and
simulates the marking algorithm on G’ afterward. In addition, whenever (z,v) is
marked for a vertex x € G’, we also mark (x,u). This is possible since that (z,v) is
marked implies that for all v" € N(v), there exists a vertex 2’ € N(z) with (z/, ")
marked and N(u) C N(v). Next, we show that all the configurations (x,y) in G’ will
also get marked in G. Suppose there exists a configuration (z,y) that is marked in G’
but not in G. Consider the first such configuration that is discovered in the marking
of G. Tt must be that v € N(y) and that for all ' € N(z), (¢',u) is not marked at
this point. Also, v € N(y) since N(u) C N(v). Now using the fact that (z,y) gets
marked at this stage in G, we know that there exists z” € N(x) such that (z”,v)
is already marked. But then (z”,u) must also be marked at this point according to
the modified marking rule. A contradiction! Thus, any (z,y) marked in G’ will also
be marked in G. Tt follows that for any x such that (z,v) is marked in G’, we can
mark (z,u) in G. Tt is easy to see that for any x, the configuration (u,x) will also be
marked in G since u is adjacent to v and, by the argument above, for all ' € N(x),
(v, 2') is marked.

Now suppose the input graph is not dismantlable. Let ¢ be a sequence of folds
reducing G to a residual graph H. For any two vertices v € G and v € H, we claim
that (u,v) is unmarked if ¥)(u) # v. Suppose this is not true and let (u, v) be the first
marked configuration such that ¢ (u) # v (Figure 3). Let w = ¢(u), w # v. Note that
v must have a neighbor x such that « ¢ N(w); otherwise, v would fold onto w. When
(u,v) gets marked, there must be a vertex v’ € N(u) such that (v/,z) is marked. If
¥(u') = z, this would imply 2 € N(w) by Proposition 11. So it must be the case that
Y(u') # x. But then, the fact that (u/,x) is marked contradicts the fact that (u,v)
is the first configuration marked with ¥ (u) # v. Therefore, we conclude that if the
graph is not dismantlable, the marking process will not mark all configurations. 0

As stated earlier, it has been shown that the class of graphs that are hunter-win
against rabbits with full visibility are precisely the class of dismantlable graphs [6].
Therefore we obtain the following corollary.

COROLLARY 13. A graph G is hunter-win against rabbits with full visibility if
and only if the algorithm Mark-FullVisibility marks all configurations.

We know that there are nondismantlable graphs that are hunter-win against rab-
bits with local visibility. An example is shown in Figure 4. The labels on the vertices
indicate their folding order: First, vertex 1 folds onto vertex 2; afterward, vertex 2
folds onto vertex 9, etc. After folding vertices 1 to 8, vertices 9 to 12 cannot be folded,
leaving a four-cycle as the residual. Therefore this graph is not dismantlable and con-
sequently it is not hunter-win against rabbits with full visibility. To see that the
hunter wins against rabbits with local visibility, let us define the mapping p: V — V|,
where V is the set of vertices. For v € V with 1 < v < 8, p(v) is the vertex which v
folds onto. We define p(9) = 2, p(10) = 8, p(11) = 6, and p(12) = 4. The first obser-
vation is that the hunter wins the game if he can force the rabbit to go to vertex 1
while he is at vertex 2. Next, we observe that if the rabbit is at vertex v # 1 and the
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Fic. 4. This graph is hunter-win against rabbits with local visibility. However, a rabbit with
full visibility never gets caught.

hunter is at p(v), the rabbit must move to a lower numbered vertex. Now suppose the
rabbit is reactive. In this case, it can be verified that for any rabbit location r and
for any hunter location h ¢ N(r), the hunter has a path to p(r) that does not enter
N(r). Therefore, by visiting p(r) repeatedly the hunter can force a reactive rabbit to
eventually move to vertex 1 and win the game afterward.

Hence, the rabbit must have a nonreactive strategy, meaning that it must move
when the hunter is not visible. Consider the first time this happens: Suppose the
hunter and the rabbit are at vertices h and r with h € N(r) and the rabbit takes
the path r — ' — 7" such that the hunter is not visible from r’. It can be shown,
by enumeration, that for any such vertices h, v, r’, and 7", the hunter has a path
h — h' — r" that captures the rabbit. Therefore the rabbit cannot have a nonreactive
strategy either and the graph is hunter-win against both types of rabbits.

We conclude this section with an interpretation of Theorem 12: If G is a graph
that is hunter-win against rabbits with local visibility but not against rabbits with
full visibility, the hunter captures the rabbit with local visibility using the stealth
moves.

5.1. Hunter strategy for dismantlable graphs. Given a folding tree T rooted
at vertex v, consider the vertex r where the rabbit is located. We say the hunter is an
ancestor of the rabbit if he is located on the path from r to v. Suppose the vertices
of T are ordered by their deletion times. The hunter strategy is based on the following
two lemmas.

LEMMA 14. The hunter can always maintain ancestry.

Proof. Suppose the hunter is at vertex h and is an ancestor of the rabbit who
is located at vertex r. Let 7’ be the rabbit’s location in the next round. If h is a
common ancestor of r and r’ on the folding tree T, then the lemma is trivially true.
Otherwise, since h is an ancestor of r and (r,r’) is an edge, using basic properties of
foldings it can be shown that h is adjacent to a vertex on the path that connects 7’
to the root of T. We show that there is always such a vertex b’ with h’ > 7’ by a case
analysis on 1’ (see Figure 5). Suppose for contradiction k' < r'. We will show that h
must be adjacent to r’ thus allowing the hunter to catch the rabbit in one step.

Case (h > 1" > r). In this case all the ancestors of h’ deleted before h (including
r’) must have edges to h.
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h>7r >r

Fic. 5. The hunter can always stay above the rabbit. The height of a vertex is proportional to
its label.

Case (r' > h). All the ancestors of r deleted before 7’ (including h) must have
an edge to 7’.

Case (r" < r). All the ancestors of h’ deleted before r (including ') must have
an edge to h. 0

In fact, not only can the hunter maintain ancestry, but he can also reduce his
height in the tree gradually and therefore get closer and closer to the rabbit.

Fic. 6. The hunter can make progress every time the rabbit revisits a vertexz.

LEMMA 15. FEvery time the rabbit revisits a vertex, the hunter can reduce its
height in the tree while maintaining ancestry.

Proof. Fix any rabbit cycle C, and let v be the vertex with the lowest label on
this cycle and p(v) be its parent (see Figure 6). Since v was deleted first, p(v) must
have edges to the neighbors of v on the cycle, so we can make a new cycle by replacing
v with p(v). We continue this process until the cycle reaches h, the location of the
hunter (this must happen since the hunter is an ancestor at all times). Let us call this
cycle C. Let C, be the cycle just before C' which contains h’s child h,, instead of h.
Consider the path P = {h} U (C N C,) U {hy,}. If the rabbit follows the cycle C,., the
hunter can follow the path P and end up at h, which is lower than h. 0

We are now ready to present the hunter strategy on a dismantlable graph G.
First, the hunter builds the folding tree T for any folding sequence . Afterward, he
simply guesses the vertex the rabbit will jump to and jumps to the lowest possible
ancestor of this vertex (see Figure 6). By Lemma 14 he can always remain an ancestor
of the rabbit. Further, he can reduce his height in T' every time the rabbit revisits
a vertex (Lemma 15). Since the tree has a finite height, he can eventually catch the
rabbit.
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5.2. Extension to nondismantlable graphs. For nondismantlable graphs,
we can extend the notion of ancestry as follows. Suppose the rabbit is at r and the
hunter is at h. We say the hunter is an ancestor of the rabbit if there is a folding
of the vertices such that in the corresponding forest representation, h is located on
the path from r to the root of the tree that contains r. Once the hunter establishes
ancestry, it is easy to see that Lemmas 14 and 15 still hold—both for reactive and
general rabbits. Therefore the hunter can win the game afterward. Note that the
hunter can trivially establish ancestry on dismantlable graphs.

In addition, if we define each vertex as its trivial parent, it is clear that the rabbit
wins the game if the hunter can never become an ancestor. Therefore the class of
hunter-win graphs is precisely the class of graphs on which the hunter can become an
ancestor. One can view the stealth moves as giving the hunter the power to become
an ancestor on nondismantlable but hunter-win graphs such as the one in Figure 4.

6. Extending the rabbit’s visibility. Let us define rabbits with i-visibility as
the rabbits who can see all vertices within distance i. It is known that one hunter
always suffices to catch rabbits with O-visibility [1]. In this paper, we studied rabbits
with 1-visibility and established that two hunters always suffice to catch such rabbits.
A natural question is how many hunters suffice when the rabbit has i-visibility.

Surprisingly, the number of hunters required for 2-visibility is unbounded: Con-
sider the random bipartite graph G = (U, V, E) with |U| = |V| = n and each edge
(u,v) is added with probability 1/+/n.

For an arbitrary vertex u, let x; be the 0/1 random variable, which takes the
value 1 if and only if (u,i) € E. The size of N(u) then becomes a random variable
X =3, z; with the expected value of E[X]|=mn - ﬁ =./n.

Using the Chernoff bound (see [14, p. 70]) with § = 0.5,

(1) Pr[X < (1 - 6)E[X]] < exp (—E[X]62/2) = exp (—v/n/8).

Let E; be the event that a vertex has neighborhood of size less than y/n/2. Using
the union bound and (1), the probability of F; is at most W.

Let us also define the random variable y; which takes the value 1 if and only if
(u,i) € E and (v,i) € E. Here, v # u is an arbitrary vertex. Let Y = )", y; be the

size of the common neighborhood N(u) N N(v) with E[Y] =n - 1 % =1

3

To bound the value of Y, we use the equation (see [14, p. 71])

1
(2) PrlY > (1 +8)E[Y]] < 27 UFOEN] = 5
where 6 is chosen such that (1 + 6) = 3log(n).

Let E5 be the event that no two vertices have a common neighborhood of size
greater than 3log(n). Summing (2) over all pairs of vertices and using the union
bound, we get that the probability of Fs is at most %

The probability that neither of the events, F; and FE5, happen is at least

n 1
(3) pzl—m—ﬁ-

Since p becomes nonzero as n grows large, this means that for any (large) n, there

exists a graph G* where every vertex has at least 4 neighbors and the common
neighborhood of any two vertices has size at most 3logn.
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Now suppose a rabbit with 2-visibility is evading G*. Note that the rabbit can see
the hunters all the time. Without loss of generality, suppose the rabbit is located at a
vertex u € U. We can also assume that all the hunters are located in U without any
decrease in their power. It easy to see that, on G*, the number of hunters required is

at least (@) /(3logn) = Q(y/n). Otherwise the rabbit will always have a safe vertex
not accessible by the hunters.

7. Concluding remarks. In this paper, we have studied a pursuit-evasion game
where the players have only local visibility. We showed that two hunters can catch the
rabbit with high probability on any graph. In addition, we presented an algorithmic
characterization of graphs on which a single hunter suffices for capture. To the best
of our knowledge, this is the only pursuit-evasion game in the literature where the
pursuers’ strategy explicitly exploits the local visibility of the evader.

An important aspect of the game is the time required to catch the rabbit. For
0-visibility, one hunter succeeds in time O(nlogn) [1]. For 1-visibility we showed that
two hunters succeed in O(n®) time. However, it is not clear whether a single hunter
can catch a rabbit on a hunter-win graph in polynomial time. We leave this as a
direction for future work.
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Abstract. In a graph G, an odd hole is an induced odd cycle of length at least 5. A clique
of G is a set of pairwise adjacent vertices. In this paper we consider the class C; of graphs whose
cliques have a size bounded by a constant k. Given a graph G in C, we show how to recognize in
polynomial time whether G contains an odd hole.
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1. Introduction. A hole is a graph induced by a cycle of length at least 4. A
hole is odd if it contains an odd number of vertices. Otherwise, it is even. Graph
G contains graph H if H is isomorphic to an induced subgraph of G. Chudnovsky,
Cornuéjols, Liu, Seymour, and Vuskovi¢ recently proved that it is polynomial to test
whether a graph contains an odd hole or its complement [2]. However, it is still an
open problem to test whether a graph contains an odd hole. Bienstock [1] proved that
it is N P-complete to test whether a graph contains an odd hole passing through a
specific vertex. A clique is a set of pairwise adjacent vertices. The cligue number of a
graph is the size of its largest clique. In this paper, we show that it is polynomial to
test whether a graph of bounded clique number contains an odd hole.

We use the same general strategy as in [2]. Let H be an odd hole in a graph G.
We say that w € V(G)\ V(H) is H-minor if its neighbors in H lie in some 2-edge path
of H. In particular, v is H-minor if u has no neighbor in H. A vertex u € V(G)\V (H)
is H-major if it is not H-minor. We say that H is clean if G contains no H-major
vertex. A graph G is clean if either it is odd-hole-free or it contains a clean shortest
odd hole. As in [2] our approach for testing whether a graph G of bounded clique
number contains an odd hole consists of two steps:

(i) constructing in polynomial time a clean graph G’ that contains an odd hole

if and only if G does, or in some cases identifying an odd hole of G, and

(ii) checking whether the clean graph G’ contains an odd hole.
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For step (ii), we can use the polynomial algorithms in [2]. The main result of this
paper is a polynomial algorithm for step (i). Step (i) is called cleaning the graph G.

1.1. Notation. For a graph G and a set B of vertices of G, we denote by G(B)
the subgraph of G induced by the vertex set B. For a vertex v, N(v) denotes the set
of vertices adjacent to v.

A pyramid TI(zyz;u) is a graph induced by three paths P, = z,...,u, P, =
Y,...,u, and P3 = z,...,u having no common or adjacent intermediate vertices, such
that at most one of the paths is of length 1 and the vertex set {z,y, 2} induces a
clique of size 3. Note that every two of the paths P;, P>, P3 induce a hole. Since two
of the three paths must have the same parity, one of these holes is odd. Therefore,
every pyramid contains an odd hole.

A wheel, denoted by (H, x), is a graph induced by a hole H and a vertex z ¢ V(H)
having at least three neighbors in H, say, z1,...,z,. Vertex x is the center of the
wheel. A subpath of H connecting x; and z; is a sector if it contains no intermediate
vertex xy, [ € {1,...,n}. A short sector is a sector of length 1, and a long sector is
a sector of length at least 2. A wheel is odd if it contains an odd number of short
sectors and even otherwise. Each of the long sectors together with vertex x induces a
hole. If each of these holes is even and the wheel (H,v) is odd, then H is an odd hole,
since the wheel (H,x) contains an odd number of short sectors. Therefore, every odd
wheel contains an odd hole.

In a graph G, a jewel is a sequence vy, ..., vs, P such that vy,...,vs are distinct
vertices, v1vs, Va3, U3y, V45, U5V are edges, v1vs, Vavy4, V104 are nonedges, and P is
a path of G between v; and vy such that vq, v3, v5 have no neighbors in V(P)\{vy, v4}.
Clearly a jewel contains either an odd wheel or a 5-hole, so if there is a jewel in a
graph G, then there is an odd hole in G.

Chudnovsky and Seymour found an O(|V (G)|°) algorithm to test whether a graph
G contains a pyramid and an O(|V (G)|®) algorithm to test whether a graph G contains
a jewel (see [2]).

2. Cleaning. In this section, we show how to clean a graph G of bounded clique
number. That is, we perform step (i) above. The cleaning algorithm produces a
polynomial family of induced subgraphs of G such that if G contains a shortest odd
hole H*, then one of the graphs produced by the cleaning algorithm, say, G’, contains
H* and H* is clean in G'.

Roughly speaking, this is accomplished by showing that there exists a set X of
vertices of H*, whose size depends only on the clique number, such that every major
vertex for H* has a neighbor in X. Since the set Y of vertices of H* with neighbors
in X has at most 2| X| elements, we may enumerate all possible choices for X and Y,
and for each choice of X and Y add to the family the graph obtained by removing
the vertices of V(G) \ Y that have a neighbor in X.

2.1. Vertices with at most three neighbors in H*.

LEMMA 1. Let H* be a shortest odd hole in G. Suppose that G does not contain
a pyramid. If a vertex u ¢ V(H*) has a neighbor but no more than three neighbors in
H*, then u is H*-minor.

Proof. If u has one neighbor in H*, then u is H*-minor. Now suppose that u has
two neighbors in H*, say, u; and us. Let P; and P, be the two ujus-subpaths of H*.
Since H* is odd, P; and P, have different parity; say, P, is odd. If P; is of length
1, then u is H*-minor. Otherwise, V(P;) U {u} induces an odd hole. Since this hole
cannot be shorter than H*, P is of length 2, and hence v is H*-minor.



44 CONFORTI, CORNUEJOLS, LIU, VUSKOVIC, AND ZAMBELLI

Now assume that u has three neighbors in H*, and let P;, P>, and Ps3 be the three
sectors of the wheel (H*,u). If exactly one of the sectors is short, then V(H*) U {u}
induces a pyramid. If two of the sectors are short, then w is H*-minor. Finally
suppose that all three sectors are long. Since H* is odd, at least one of the sectors,
say, Pp, is odd. Then V(P;) U {u} induces an odd hole shorter than H*, which is a
contradiction. ]

2.2. Vertices with more than three neighbors in H*. Let H* be a shortest
odd hole in G. Let S(H*) be the set of H*-major vertices that have four or more
neighbors in H*. Note that, for any v € S(H*), every long sector of the wheel (H*, )
is of even length since H* is a shortest odd hole of G; hence, (H*, ) contains an odd
number of short sectors.

Let S C V(G). We say that vertex « € V(G)\ S is S-complete if x is adjacent to
every vertex in S. We say that an edge xy is S-complete if both vertices x and y are
S-complete.

LEMMA 2. Let H* be a shortest odd hole in G. Suppose that G does not contain
a jewel. If u,v € S(H*) are not adjacent, then an odd number of edges of H* are
{u,v}-complete.

Proof. Let u and v be nonadjacent vertices of S(H*). Suppose that an even
number of edges of H* are {u,v}-complete. Then some long sector P of the wheel
(H*,u) contains an odd number of short sectors of (H*,v). Let uy; and ug be the
endvertices of P. P has even length. Let P’ be the subpath of H* induced by
(V(H*)\ V(P)) U{ui,uz}. P’ has odd length. Note that P’ must be of length at
least 4, since otherwise (H*, u) is a jewel, which is a contradiction. If P contains three
or more neighbors of v, then the vertex set V(P) U {u, v} induces an odd wheel with
center v, and hence contains an odd hole shorter than H*, contradicting our choice
of H*. Otherwise, let v; and vs be the two neighbors of v in P. Vertex v cannot
have exactly four neighbors in H*, say, v1, v, v3, v4, such that both vsu; and vqus are
edges, because otherwise the vertex set (V(H*)\ V(P)) U {v} induces a shorter odd
hole than H*, since P is even and P’ is of length at least 4. Therefore, there exist
vertices us, vz € V(H*)\V(P), the neighbors of u and v, respectively, such that u and
v have no other neighbors on uzvs-subpath of H* (call it ) and vertices us and vs
are not adjacent to u; or ug. But now the vertex set V(Q) UV (P)U {u,v} induces a
pyramid II(v;vou;u), and hence contains an odd hole shorter than H*, contradicting
our choice of H*. d

The following, which is an easy consequence of Lemma 2, will be used in several
places.

LEMMA 3. Let H* be a shortest odd hole in G, P be a subpath of H* such that
[V(H*)\V(P)| > 3, and x,y be two nonadjacent vertices in S(H*). Assume that no
ends of P are {x,y}-complete and there is no {x,y}-complete edge in P. Then there
exists an {x,y}-complete vertexr in H* with no neighbor in P.

Proof. By Lemma 2, there exists an {x,y}-complete edge e in H*. One of the
two endvertices of e has the desired property. 0

LEMMA 4. Suppose that G does not contain a jewel. If A C S(H*) is a stable
set, then an odd number of edges of H* are A-complete.

Proof. Let A C S(H*) be a stable set and suppose that an even number of edges
of H* are A-complete. Let A’ be a smallest subset of A with the property that an
even number of edges of H* are A’-complete. Note that by Lemma 2, |A’| > 3. Let
$1,...,8m be the vertices of H* adjacent to at least one vertex in A’, encountered in
that order when traversing H* clockwise. For i € [m], let S; be the s;s;1-subpath
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of H* (indices taken modulo m) that does not contain any intermediate vertex s,
j € [ml.

Claim. For every i € [m], either S; is an edge whose endvertices are both adjacent
to some vertex © € A, or S; has even length.

Proof of claim. If there is a vertex x € A" adjacent to both s; and s;11, then S; is
a sector of the wheel (H*, x) and hence the result holds. Otherwise, let 1 and x5 be
vertices of A’ such that x; is adjacent to s; and s is adjacent to s;41. By Lemma 3
there exists an {x1,xs}-complete vertex w in H* with no neighbor in S;. Then the
vertex set V(S;) U{z1,22,u} induces a hole. Since both z; and x5 have at least four
neighbors in H*, this hole is shorter than H*, so it must be even; hence S; is of even
length. This completes the proof of the claim. ]

For C C A, let ¢ denote the number of edges of H* that are C-complete. Let
6 be the number of paths in Si,..., 5, of length 1. Then

1A

= (=" Y e

i=1 cca|c|=i

By the choice of A’, for every C' C A’ such that C' # A’, 6¢ is odd. Hence the parity
of ¢ is equal to the parity of

|A"]—1
Al
( |A'| )JHSA,’
i=1 !

which is itself equal to the parity of 64/ since

[A"]-1

> ( V;/' ) =2l _ 2,

=1

By the claim and because H* is odd, 6 is odd. Hence 64/ must be odd as well,
contradicting the choice of A’. |

THEOREM 5. Suppose that G does not contain a jewel. Let A be a stable set of
S(H*) and let z1x2 be an edge of H* such that every vertex of A is adjacent to both
x1 and xo (such an edge exists by Lemma 4). Let B be the set of vertices of S(H™)
that have no neighbor in {x1,x2} and have both a neighbor and a nonneighbor in A.
Then there exists an edge y1ys of H* such that y; is A-complete and every vertex of
B has a neighbor in {y1,y2}.

Proof. If B = () then the result is trivially true, so we may assume that B # ().
Since every vertex of B is major, this implies that H* is of length greater than 5.

CLAIM 1. For every u € B, an edge of H* is (AU {u})-complete.

Proof of Claim 1. Let A; be the neighbors of u in A and As = A\ A;. By Lemma
4, there is an edge ujue of H* such that every vertex of A; U {u} is adjacent to both
u1 and wue. Since u has no neighbor in {z1,z2}, every vertex of A; must be adjacent
to both uy and ug, or else there is a 5-hole. This completes the proof of Claim 1. ]

CLamM 2. If X is a stable set of B, then there exists an edge z1zo of H* such
that zy is A-complete and every vertex of X has a neighbor in {z1,22}.

Proof of Claim 2. We consider the following two cases.

Case 1. There is a vertex in A that is not adjacent to any vertex in X.

Let A; C A be such that A; UX is a maximal stable set. By Lemma 4, an edge of
H* is (A1 UX)-complete—say, ujus. Let w € A\ A;. Note that w is adjacent to some
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x € X. If w is not adjacent to u; or us, then there is a 5-hole in the graph induced by
{z,y,w,us,us, 1,2}, where y € Ay. So every vertex of A\ A; is adjacent to both
uy and us.

Case 2. Every vertex of A is adjacent to some vertex in X.

By Claim 1 and Case 1, we may assume w.l.o.g. that | X| > 1 and for every proper
subset of X the result holds. Let w € A be such that |N(w) N X| is minimum. Let
Z = N(w)N X. Since every vertex of X has a nonneighbor in A and |Z| is minimum,
|Z] < |X|. By our assumption, there exists an edge y1y2 of H* such that y; is A-
complete and every vertex of X \ Z has a neighbor in {y1,42}. By Lemma 4 an edge
of H* is X-complete—say, edge y3y4.

We may assume that vertices y1,y2,ys,ys are all distinct and y,y3 and y1y4 are
not edges, since otherwise the result trivially holds. Also w.l.o.g. y2y4 is not an edge.

Suppose that wy, is not an edge. We may assume that some z € Z is not adjacent
to y1, since otherwise the edge y1y2 satisfies the claim. If some v € X \ Z is adjacent
to yi1, then {y1,v,w, z,ys} induces a 5-hole. So for every v € X \ Z, vy; is not an
edge, and hence vys is an edge. If w is adjacent to ya, then {ya,w,v, z,ys} induces a
5-hole. So w is not adjacent to y3. By Lemma 3, there is a vertex u of H* adjacent
to both v and w, but with no neighbor in {y;,y2}. Then {y1,y2,u,v,w} induces a
5-hole.

Therefore wy, is an edge. We now show that y, is A-complete. Let w’ € A and
assume w’yy is not an edge. By the choice of w and by the above argument, there is a
vertex v € X \ Z adjacent to w’. But then the graph induced by {w,w’, 21, z2,v,ys4}
contains a 5-hole. This completes the proof of Claim 2. ]

CLAIM 3. For every edge vivs in G(B), there exists v € A that is adjacent to
neither vy nor vs.

Proof of Claim 3. Let A; be the set of neighbors of v; in A, and Ay = A\ A;.
Suppose the claim does not hold. Then v, is universal for As. Let wy be a vertex of
Aj that vs is not adjacent to. Then vy, ve, wo, xo, w1, vy, Where wo € As, is a 5-hole.
This completes the proof of Claim 3. ]

By Claim 1, we may assume that for every proper subset B’ of B, the statement
holds. By Claim 2 we may assume that B is not a stable set. Let vivs be an edge
of G(B). By Claim 3, let v be a vertex of A that is adjacent to neither v; nor wvs.
Let y1y2 be an edge of H* such that y; is A-complete and all vertices of B \ ve have
a neighbor in {y1,y2}. Let y3ys be an edge of H* such that ys is A-complete and
all vertices of B\ v; have a neighbor in {ys,y4}. Then the theorem follows from the
following claim.

CLAIM 4. v1 has a neighbor in {ys,ya}, or va has a neighbor in {y1,y2}.

Proof of Claim 4. Suppose the claim does not hold. v has no neighbor in {ys, y4}
and vy has no neighbor in {y1,ys2}.

If a vertex of {y1, y2 } coincides with a vertex of {ys, y4}, then {y1,y2,ys, ya,v1,v2}
induces a 5-hole. Therefore, vertices 1, y2, Y3, y4 are all distinct.

We now show that v and v; must have a common neighbor in {y;,y2}. Assume
not. Then vy; and v1y2 are edges, and vy, and vyy; are not. By Lemma 3, there
is a vertex u of H* that is {v,v;}-complete but has no neighbor in {y;,y2}. Then
{y1,¥2,v,v1,u} induces a 5-hole. Therefore, v and v; have a common neighbor y in
{y1,y2}, and similarly v and vy have a common neighbor ¥’ in {ys,ys}. If yy’ is not
an edge, then {y,y’,v,v1,v2} induces a 5-hole. Therefore, yy’ is an edge.

Let a,y,y’, b be the subpath of H* induced by {y1, y2, y3, y4}. Then vy, vy’, v1y, voy’
are edges and voa, vy, v1y’, v1b are not.
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Let 29 be the neighbor of v, in H* that is closest to a in H* \ {y,y’}. Note that
2o # b since vy is a major vertex. Let P, be the azs-subpath of H* that does not
contain y.

Suppose v does not have a neighbor in P,. By Lemma 3, some vertex u of H* is
{v, vy }-complete and has no neighbor in P». Note that u # b since b is not {v, vy }-
complete. But then P, U {y,y’,v,vs,u} induces a pyramid II(vyy’,v2), and hence
there is an odd hole shorter than H*, which is a contradiction. Therefore v must have
a neighbor in Ps.

We now show that a is the unique neighbor of v in P,. Let v’ be the neighbor of
v in P, that is closest to z3. Assume that v’ # a. Let P’ be the v'zo-subpath of Ps.
If v; has no neighbor in P’, then the graph induced by S = P’ U{y,y,v,v1,v2} is a
pyramid II(vyy’, v2); hence there is an odd hole shorter than H*. If v; has a neighbor
in P’ \ z, then the graph induced by S contains a pyramid II(vyy’, v1); hence there
is an odd hole shorter than H*. So wv; is adjacent to zy. If the graph induced by
Py U{y,y',v1,v2} is an odd wheel with center vy, there is an odd hole shorter than
H*. Hence v1 must have a neighbor in P, \ P’. If v; has a neighbor z in P, that lies
strictly between a and v’, then there is a path @ from v to v, with interior in z, Py, v’.
But then Q U {y,y’,v2} induces a pyramid II(vyy’,v1), which contains an odd hole
shorter than H*. Therefore a and zy are the only neighbors of v; in P,. Then v is
not adjacent to a for otherwise a,v,y’, v2,v1, a is an odd hole. Let v/ be the neighbor
of v closest to a in P,. Note that v" # 2z since otherwise P, U {y,y’, v2, v} induces an
odd wheel with center v; hence there is an odd hole shorter than H*. Let P” denote
the av’-subpath of P,. By Lemma 3, some vertex u of H* is {v,v; }-complete and
has no neighbor in P”. But then the graph induced by P’ U{y, v, vy, u} is a pyramid
II(ayvi,v); hence there is an odd hole shorter than H*. Therefore a is the unique
neighbor of v in Ps.

Then v; is not adjacent to a for otherwise a,v,y’, va, v1, a is an odd hole. Suppose
v1 has a neighbor in P,. By Lemma 3, there exists a vertex u of H* adjacent to both
v and v1, but with no neighbor in P5. Then the graph induced by P» U {y,v,v1,u}
contains a pyramid II(ayv, v1); hence there is an odd hole shorter than H*. Therefore,
v1 has no neighbor in Ps.

Let z; be the neighbor of vy in H* that is closest to b in H* \ {y,y'}. Let P,
be the bzi-subpath of H* that does not contain y. By symmetry, b is the unique
neighbor of v in P; and vs has no neighbor in P;. Since P»,a,y,y’ is a sector of
wheel (H*,v3), P> must be even, and similarly P; is even. Note that zq29 is not an
edge since H* and the path a,y,y’,b have odd length and P;, P, have even length.
But then Py U P, U {v,v1,v2} induces an odd hole shorter than H*, which is a con-
tradiction. ]

2.3. Cleaning algorithm. In this section, we present our cleaning algorithm
for the class of graphs of bounded clique number. The running time depends on the
clique number.

Input: A graph G of bounded clique number k.
Output: Either an odd hole or a family F of induced subgraphs of G that satisfies
the following properties:
(1) G contains an odd hole if and only if some graph of F contains a clean
shortest odd hole.
(2) 1] is O(IV(G) ).
Step 1. Check whether G contains a jewel or a pyramid (by algorithms in [2]). If it
does, output an odd hole and stop. Otherwise, set F; = {G} and F» = {).
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Step 2. Repeat the following k times. For each graph F € F; and every (P, P»)
where P; = xq, 1, x2,x3 and P> = yo, Y1, Y2, y3 are two induced paths of F,
add to Fy the graph obtained from F' by removing the vertex set (N(z1) U
N(l’g) U N(yl) U N(yg)) \ (V(Pl) @] V(PQ)) Set Fi = F» and Fp = 0.

Step 3. Set F = Fj.

THEOREM 6. This algorithm produces the desired output, and its running time is
O(IV(G)[*F).

Proof. Suppose that the algorithm does not output an odd hole. Suppose G
contains a shortest odd hole H*. By Step 1 G contains no jewel and no pyramid.
Now we show how Step 2 generates a graph in F; that contains H* and H* is clean
in it.

By Lemma 1, S(H*) is the set of all H*-major vertices. Let A be a maximal
stable set of S(H*). We follow the notation in Theorem 5. Let P, = z¢, 21, 22,23 and
P> = yo,y1,y2,y3 such that z;zo and y1yo satisfy the conditions stated in Theorem
5. Let S'(H*) denote the set of vertices of S(H*) that have no neighbor in {z1,z2}
and are A-complete. Let G’ be the graph obtained from G by removing (N (1) U
N(22)UN(y1) UN(y2))\ (V(P1)UV(P,)). Then G’ contains H* and the set of major
vertices for H* in G’ is contained in S'(H*). The clique number of the graph induced
by S’(H*) is one less than the clique number of the graph induced by S(H*). Hence,
by the fact that the clique number of G is bounded by &, Theorem 5 implies that,
when the k iterations of Step 2 are completed, some graph F' € F; contains H* and
H* is clean in F'. Hence (1) holds.

O(]JV(G)|®%) graphs are created in Step 2. Hence, (2) holds. The running time of
Step 1 is O(|V(G)|?) as discussed in [2]. The running time of Step 2 is O(|V (G)[®¥).
Therefore, the overall running time is O(|V (G)|®*). O

In [2] a polynomial time algorithm with following specification is obtained.
Input: A clean graph G.

Output: ODD-HOLE-FREE when G is odd-hole-free, and NOT ODD-HOLE-FREE
otherwise.

The above two algorithms imply that it is polynomial to test whether a graph of
bounded clique number contains an odd hole.
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Abstract. Let A= {A1,..., A} be apartition of aset {1,... ,m}x{1,...,n} into r nonempty
subsets, and let A = (a;;) be an m X n matrix. We say that A has a pattern A provided that
a;j; = ayy if and only if (4,5),(i',j’) € At for some ¢t € {1,...,r}. In this note we study the

following function f defined on the set of all m X n matrices M with s distinct entries: f(M;.A) is
the smallest number of positions where the entries of M need to be changed such that the resulting
matrix does not have any submatrix with pattern A. We give an asymptotically tight value for

f(m,n;s, A) = max{f(M;.A) : M is an m X n matrix with at most s distinct entries}.
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1. Introduction. The problem of studying the properties of matrices that avoid
certain submatrices or patterns is a classical and well-studied problem in combina-
torics. It is investigated from a matrix point of view as well as in an equivalent
formulation of forbidden subgraphs of bipartite graphs; see [1], [7], [4], [12]. Most of
the previous research is devoted to extremal and structural problems of matrices with
no forbidden submatrices. There are only a few results studying efficient modifications
of matrices or graphs such that the resulting structure satisfies certain properties—for
example, [5] and [6]. In this paper, we apply powerful graph theoretic techniques to
study the distance properties between certain classes of matrices. Our main goal is
to investigate the number of positions where the entry-changes need to be performed
on a given matrix such that the resulting matrix does not have a fixed subpattern.
Although this problem is of independent theoretical interest, it has multiple applica-
tions in computational biology such as in the compatibility of evolutionary trees and
in studying metabolic networks; see [3], [13].

For positive integers m,n, s, with s < mn, let M(m,n;s) denote the set of all
m x n matrices with a fixed number, s, of distinct entries. Let [m)] def {1,...,m}. Let
A={Ay,..., A} be a partition of pairs from [m] x [n] into 7 nonempty classes. An
mxn matrix A = (a;;) is said to have a pattern A provided that a;; = a;/; if and only
if (4,4), (7', j") € A; for some t € {1,...,r}. It follows, in particular, that two m x n
matrices A and B with sets of distinct entries S(A) and S(B), respectively, have the
same pattern if there is a bijection g : S(A) — S(B) such that B(i,j) = g(A(4,)) for
alll<i<mandalll<j<n.

Example 1. Matrices A and B have the same pattern with a corresponding bi-
jection g; matrices A and B’ have different patterns:

(1 4 3 (51 2 , (5 1 2
A‘(114>’ B_(551>’ B_(051>'
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In this case, g(1) =5, g(4) =1, ¢(3) = 2.

A kx/{ matrix B is a submatriz of an m xn matrix A if there are nonempty subsets
{i1,...,ix} and {j1, ..., je} of distinct indices with {i1,... ,ix} C [m], {j1,... ,J¢} C
[n] such that B(«, ) = A(ia,js), 1 <a <k, 1<pg <[ If, for a matrix M’, there is
a submatrix M with pattern A, then we say that M’ has a subpattern A.

DEFINITION 1. For a pattern A and positive integers m,n, s, we define Forb(m,n;
s, A) to be the set of all m x n matrices with at most s distinct entries and not
containing subpattern A.

Ezample 2. Let A = {{(1,1),(1,2),(2,1)},{(2,2)}}. The set Forb(m,n;2,.A)
consists of all m x n matrices which have at most two distinct entries and contain no
submatrix of the form (7). (17), (7). (7 1),  # y. In particular, Forb(m,n; 2, A)
consists of m x n matrices with all entries equal and all m x n matrices with two
distinct entries such that each row has all equal entries.

Next we define the distance between two matrices and between classes of matrices.
For two matrices A and B of the same dimensions, we say that Dist(A4, B) is the
number of positions in which A and B differ; i.e., it is the matrix Hamming distance.
For a class of matrices F and a matrix A, all of the same dimensions, we denote
Dist(A, F) = min{Dist(A, F') : F' € F}. Finally,

f(m,n;s, A) = max{Dist(A, F) : A € M(m,n;s),F = Forb(m,n;s, A)}.

This function corresponds to the minimum number of positions on which the entries
need to be changed in any m x n matrix with at most s distinct entries in order to
eliminate all subpatterns A. This problem is also called an editing distance problem,
since we consider the minimum number of editing operations on a matrix, where each
editing operation is a change of an entry in some position.

Note that Forb(m,n;s,.A4) might be an empty set of matrices for some patterns
A. For example, let s be fixed, and let A be a pattern having exactly one set, i.e., a
pattern corresponding to matrices with all entries being equal. We call such a pattern
a trivial pattern. If m and n are large, then there is no m x n matrix with a fixed
number of distinct entries avoiding pattern .A. This follows from the finiteness of the
bipartite Ramsey number; see [8]. On the other hand, when a pattern 4 has at least
two distinct entries, then the class Forb(m,n; s, .A) is nonempty since it contains all
m X n matrices with a trivial pattern. Our main result is the following.

THEOREM 1.1. Let s,r be positive integers, s > r. Let by, by be positive constants
such that by < m/n < by. Let A be a nontrivial pattern with r distinct entries; then

i A) = (14 o0) (=5 )

We shall prove these results using graph-theoretic formulations. A graph H =
(V, E) is bipartite if its vertex set can be partitioned such that V' = XUY, XNY =0,
and its edge set E is a subset of X xY. If m = | X|, n = |Y], and F = X XY, then this
graph is denoted K, ,, and called a complete bipartite graph. Now, we can introduce
a pattern on the edges of a complete bipartite graph as a partition of the edges in
exactly the same manner as above. Let A = {A;,..., A} such that E = A;U---UA,
and A;’s are nonempty and pairwise disjoint. Then A is called a pattern on E. Now,
let ¢ be a coloring of edges of Ky, . We say that ¢ has a pattern A if it satisfies
the property that c(e) = c(e’) if and only if e,e¢’ € A; for some i = 1,... ,r. If ¢
is an edge-coloring of a graph G, we say that a coloring ¢’ of a graph G’ occurs in
G under coloring c if there is a subgraph H of G isomorphic to G’ such that the
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coloring ¢ restricted to H coincides with the coloring ¢’ of G’. Similar to the case
with matrices, for a color pattern A defined on the edges of a graph G’, we say that
G has a subpattern A if there is an occurrence of a subgraph H in G such that H is
isomorphic to G’ and the coloring c restricted to H has a pattern A.

For two edge-colorings ¢ and ¢’ of a graph G, we say that the edit distance between
c and ¢’ on G is the smallest number of edge-recolorings in G colored under ¢ needed
to obtain ¢/. For a given pattern A on edges of a complete bipartite graph, and an
edge-colored K, , with coloring ¢, let F'(m,n;c, A) be the smallest number of edge-
recolorings of K, , colored by c such that the resulting coloring does not contain a
subpattern A. Define

F(m,n;s, A) :== max{F(m,n;c, A) : c uses s colors}.

Observation. There is a bijection g between all m X n matrices with s distinct
entries and all edge-colorings of K, , using s colors. Indeed, this bijection can be
defined as g(M(i,7)) = c({i,5}), i € {1,... ,m}, j € {1,...,n}, where c({i,j}) is
the color of an edge {i,j} and M (i, 7) is the (i, j)th entry of the matrix. Moreover, a
matrix M does not have subpattern A if and only if a coloring g(M) does not have a
subpattern A.

For all other graph-theoretic terminology, we refer the reader to [14]. Our main
theorem is proven in terms of graph colorings.

THEOREM 1.2. Let e, 0 < € < 1, be fized, and let m',n’,s,r, s > r, be fized as
well. Let m 4+ n be sufficiently large and let A be a pattern on Ky, s with r colors.
Then,

<1 —e<5s+2—|—(5+1)(7§ + ;))) <HS+1> mn < F(m,n;s, A)
< (25

Observe that now Theorem 1.1 is an immediate corollary of Theorem 1.2 which
we prove in section 3. Section 2 describes the techniques that we use in the proof.

2. Main tools. For two disjoint sets of vertices X and Y, we shall refer to a
pair (X,Y) as a complete bipartite graph with partite sets X and Y. We denote its
edges by E(X,Y). Let ¢: E(X,Y) — {1,..., s} be an edge-coloring of a pair (X,Y).
For each color v € {1,...,s} and any two subsets X’ C X, Y’ C Y, we denote by
E, (X', Y") the set of edges of color v in a pair (X', Y”). Then d,(X’,Y”) is the density
of a color v in the subgraph induced by X’ and Y’, defined as follows:

E, (X')Y")|
ay(x',y"y = B Y|
Y= v

For x € X UY, we define N, (x) to be the set of all vertices joined to x by edges of
color v. We say that a pair (X,Y) is e-regular in color v if for every X’ C X and
Y’ CY with sizes | X'| > €| X|, |[Y'| > €]|Y|, we have

(2.1) d,(X,Y) — dy (X', Y")] < e.

Lemma 2.1 is based on the so-called many-color regularity lemma of Szemerédi
(see [10]) and is an implication of the refinement argument, i.e., Theorem 8.4 in [11].
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LEMMA 2.1 (bipartite many-color regularity lemma [11]). For any ¢ > 0 and
integers s, mq there exists M, a positive integer, such that if the edges of a pair
(X,Y) are colored with 1,... | s, then the vertex set X UY can be partitioned into sets
Vo, Vi, ..., Vi for some k, mg < k < M, so that [Vp| < e(|X| +|Y]), and |V;| = |V}]
fori,je{l,...,k}, and all but at most ek? pairs (V;,V;) are e-regular in color v for
eachv=1,...,s, and either V; CX orV; CY fori=1,... k.

In addition, we need to prove a multicolor version of the so-called intersection
property, which is stated in [11] and revised in [2].

FACT 2.2 (many-color intersection property). Let e > 0 and § > 0 be fized
and r and € be positive integers. Let (A, B) be a pair with edges colored such that
color v is e-reqular with density d,, d, > 6 forv =1,... ,r. LetY C B. Assume
that (5 — €)*"YY| > ¢|B|. Let k, for v = 1,...,r be a positive integer such that
Sk, =L and let any vector a € A® be indexved such that

v=1
a= (0[1,1], s A1k ] A12,1]5 - - 5 Qlr =1,k 1]y Or1]5 - - - ,a[r,m]) .
Then,
r ky, r
(2.2) # {a eA |y n () Nolapa)| <[] (dn — )™ |Y|} < le| Al
v=11=1 v=1

The proof of Fact 2.2 is a standard argument which follows by induction on £.
COROLLARY 2.3. Let € > 0 and 6 > 0 be fixred and r and ¢ be positive integers.
Let ¢ be an edge-coloring of a pair (A, B) with at least v colors from {1,... ,r,...}

such that color v is e-reqular with density d,,, d, > 6, forv=1,... ,r. Let us be given
that (6 —€)'=! > ¢, 2r'le < 1, and (6 — €)*|B| > L. Then any edge-coloring of Ky
with colors from {1,... ,r} will occur as a subcoloring of c.

3. Proof of Theorem 1.2.

3.1. Upper bound. We shall show that for any s-edge-coloring of a complete
bipartite graph with vertex class of sizes m and n, there are at most (%) mn
editing operations sufficient to destroy a fixed color pattern with r colors.

Let A be a color pattern with r sets defined on a complete bipartite graph G and
let ¢ be an edge-coloring of K, , with s colors. Without loss of generality, let 1 be
the color of the largest color class in ¢. We shall recolor the s — r + 1 smallest color
classes of ¢ so that their new color is 1. The resulting coloring will use only r — 1
colors and thus will not contain a forbidden pattern. The s — r + 1 smallest color
classes account for at most (1 — (r — 1)/s) mn edges. Thus,

F(n,m;s, A) < <S_T+1> mn.

S

3.2. Lower bound. To establish the lower bound, we show that there is a col-
oring of the given complete bipartite graph requiring many edit-operations to destroy
a forbidden pattern. We begin with a claim that gives us a coloring which is highly
regular.

CLAM 1. Let s be a positive integer, and 0 < € < 1/2. There is an integer M
such that if | X| > M and |Y| > M, then there is an edge-coloring ¢ of a complete
bipartite graph G = X XY, with colors 1,2,... s, satisfying the following property:
IFX' CX andY' CY, such that | X'|,|Y'| > (| X|+|Y])(1—€)/M, then d, (X', Y') €
(1/s—e€1/s+¢€),v=1,...,s.
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Claim 1 follows from standard applications of the Chernoff bound (see [9, Chapter
2)).
Fix € > 0, let ¢’ be a coloring of the pair (X,Y) |X| = m,|Y]| = n, of minimum
edit distance from ¢ with the property that ¢’ contains no subpattern A. Apply
Lemma 2.1 with parameters €, s, and mg = 1 to the coloring ¢’. Let M be the
constant given by Lemma 2.1 and the partition having all the nonleftover sets being
enumerated as Xi,...,X,,Y1,...,Y, with |X;| =|Y;|=Q and X; C X, Y; CY for
1<i<p,1<j<gq. Wecall apair (X;,Y;) a good pair if it is e-regular in each color
v € {1,2,...,s} in coloring ¢’. We have that there are at most se(p+ ¢)? pairs which
are not good. Moreover, for each good pair (X;,Y;) there are at most r» — 1 colors
such that the density of those classes in coloring ¢’ is at least § = 2¢. Otherwise,
Corollary 2.3 would imply that pattern A appears in ¢/, which is a contradiction.
Therefore, for a good pair (X;,Y;), there are at least (s —r + 1) (% - 36) Q? edit-
operations needed to obtain coloring ¢ from the coloring c¢. The regularity lemma
gives that m > p@Q > m — e(m +n) and n > ¢Q > n — e(m + n). Therefore, the total
number of recolored edges is at least

(s—r+1) <i - 36) Q? (pq — se(p+ q)z)

> (STH> (1= 3s€) (pQqQ — se(pQ + qQ)?)

S

S

(i eeenn(302).

Remark. It should be noted that, although we prove theorems for submatrices,
our results easily follow for other patterns. Suppose we wish to forbid patterns of
the form (1 z), where the * represents any entry, either a repeated 1 or 2 or a new
entry 3. Our result depends only on the number of distinct entries in the pattern,
so the (asymptotic) number of changes necessary and sufficient to forbid this pattern
is the same as the number of changes needed to forbid (} ?) or (1 3) (that is, (1 +
o(1)) (£3%) mn) but fewer than to forbid (] 3) (that is, (1 +o(1)) (£32) mn).

S

> (S_TH> (1—3se) ((m —e(m+n)) (n—e(m+n)) — se(m + n)?)
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A THEOREM ABOUT A CONTRACTIBLE AND LIGHT EDGE*
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Abstract. In 1955 Kotzig [A. Kotzig, Math. Slovaca, 5 (1955), pp. 111-113] proved that every
planar 3-connected graph contains an edge such that the sum of degrees of its end-vertices is at
most 13. Moreover, if the graph does not contain 3-vertices, then this sum is at most 11. Such an
edge is called light. The well-known result of Steinitz [E. Steinitz, Enzykl. Math. Wiss., 3 (1922),
pp. 1-139] that the 3-connected planar graphs are precisely the skeletons of 3-polytopes gives an
additional trump to Kotzig’s theorem. On the other hand, in 1961, Tutte [W. T. Tutte, Indag.
Math., 23 (1961), pp. 441-455] proved that every 3-connected graph, distinct from K4, contains a
contractible edge. In this paper, we strengthen Kotzig’s theorem by showing that every 3-connected
planar graph distinct from K4 contains an edge that is both light and contractible. A consequence
is that every 3-polytope can be constructed from tetrahedron by a sequence of splittings of vertices
of degree at most 11.
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1. Light edges. Throughout this paper, we consider 3-connected planar graphs
without loops and multiple edges. The weight of an edge is the sum of the degrees of
its end-vertices. It is well known that every planar graph contains a vertex of degree
at most 5. Kotzig [5] proved a similar result on edges.

THEOREM 1 (Kotzig). Fuvery 3-connected planar graph G contains an edge of
weight at most 13. Moreover, if G has minimum degree at least 4, then G contains
an edge of weight at most 11.

An edge of a 3-connected planar graph is called light if it satisfies the requirements
of the above theorem. In particular, if the graph has minimum degree at least 4, then
an edge is light only if it is of weight at most 11.

The bounds of 13 and 11 from Kotzig’s theorem are the best possible in the sense
that there exists a planar 3-connected graph G such that each edge of G; has weight
at least 13, and that there exists a planar 3-connected graph G of minimum degree
4 such that each edge of G5 has weight at least 11. As for (G1, consider a copy of
icosahedron and insert into each face a vertex and connect it with the three vertices
of the face. As for G, consider any fulleren where no two vertices of degree 5 are
adjacent.

The well-known theorem of Steinitz [9, 10] states that the 3-connected planar
graphs are precisely the skeletons of the 3-dimensional polytopes. This gives an ad-
ditional importance to Theorem 1.

Kotzig’s Theorem has been generalized in many directions. It served as a starting
point for looking for other subgraphs of small weight in plane graphs. This subject
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Fic. 1. A double wheel.

later developed into light graph theory: let H be a family of graphs, and let H
be a connected graph such that infinitely many members of H contain a subgraph
isomorphic to H. Let Hpy be the subfamily of graphs in H that contain H as a
subgraph. We say that H is a light graph in the family H if there exists a constant ¢
such that each graph G € Hp contains a subgraph K = H with dg(v) < ¢ for every
vertex v € K. Let us mention a few results from light graph theory: Fabrici and
Jendrol’ [2] proved that only the paths are light in the family of all 3-connected plane
graphs; the same holds also for the family of all 3-connected plane graphs of minimum
degree 4 (see [3]). A survey on light graphs in various families of plane, projective
plane and general graphs can be found in the paper by Jendrol’ and Voss [4].

1.1. Light edge avoiding prescribed triangle. In this section, we prove the
existence of a light edge which avoids vertices of a prescribed triangular face.

LEMMA 1. Let G # Ky be a plane 3-connected graph with the outer-face O =
21223 of length 3. Let &' be the minimum degree of the vertices of G that are distinct
from x1, xo and x3. Let d be 13 if & = 3, and 11 otherwise. The graph G then
contains an edge of weight at most d which is not incident with x1, x2 and x3.

Proof. Suppose that the statement of the lemma is false and G is a counterexample
on n vertices. Obviously, n > 5. In addition, we assume that G has maximum number
of edges among all such graphs.

We claim that every face incident with x1,x2, or x3 is a triangle. Otherwise, we
may assume that z; lies on a face f’ of length > 4. Hence, we can insert an edge
between x; and a vertex of f’ which is not adjacent to x1. This is always possible
since G is 3-connected. Let G’ be the resulting graph. Notice that if G is a graph
of minimum degree > 4, then G’ also has minimum degree > 4. Hence, G’ is a
counterexample to the lemma with the same number of vertices but it has more edges
than G, a contradiction.

By the above-mentioned claim, it easily follows that at most one of x1,zs and x3
is a vertex of degree 3. Thus, we may assume that d(z1) > 4 and d(z2) > 4. Notice
that d(z3) > 3 since G is 3-connected.

Next, consider the double wheel W of order 8 as depicted in Figure 1. Let w;
and wy be the two 6-vertices of W. We construct a planar graph W by gluing a
copy of G in each face of W in such a way that the vertex x3 of the copy is identified
with either wy or wy. It follows from the assumption on the degrees of vertices z1,
9 and z3 in G that each vertex of W has degree > 12 in Wi. It is easy to see that
if two 3-cycles of two 3-connected graphs are identified, the resulting graph is also
3-connected. This implies that W is 3-connected.

By Kotzig’s Theorem, the graph W contains a light edge e,,. This edge is not
incident with any vertex of the copy of W, since all these vertices are of degree > 12.
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Hence, e,, corresponds to an edge e of G which is not incident with x;, zo and z3.
Notice that if ¢ > 4, then W has minimum degree > 4 and thus the weight of e,, is at
most 11. This implies that the weight of e satisfies requirements of the lemma. ]

2. Contractible edges. A subset S of vertices of a connected graph G is a cut,
if the graph G — S is disconnected and S is a minimal set with this property. If S is
of size k, then it is called a k-cut. A graph G is k-connected if it has at least k + 1
vertices and it has no cuts of size < k.

Let ¢ = ab be an edge of a 3-connected graph G, and let G/e be the graph
obtained by identifying the vertices a and b into a new vertex w, and by removing the
arising loop and multiple edges (in order to obtain a simple graph). We say that G/e
is obtained from G by contracting the edge e. Similarly, we say that G is obtained
from G/e by splitting w. If G/e is a 3-connected graph, then we say that the edge e
is contractible. If e is not contractible, we say it is noncontractible. It is easy to see
that e is noncontractible if and only if G has a 3-cut S such that {a,b} C S.

Tutte [11] proved that every 3-connected graph, that is distinct from K, contains
a contractible edge, and as a consequence, Theorem 2 follows.

THEOREM 2 (Tutte). A graph G is 3-connected if and only if there exists a
sequence Gy, ..., Gy, of graphs with the following properties:

(a) GO = K4, Gn = G, and
(b) Git1 has an edge xy with d(x),d(y) > 3 and G; = G;11/xy, for every i < n.

In fact, every 3-connected graph on > 5 vertices has more than just one con-
tractible edge. See the survey of Kriesell [6] for more results of this kind.

Notice that if G is a 3-connected planar graph and S is a 3-cut, then G — S
comprises of precisely two components: there cannot be more than two, otherwise we
obtain a subdivision of K33 in G. Let these two components be denoted by G1(S5)
and G2(S). Let G7(S) be the subgraph of G induced by V(G;(5))US. In particular,
Gi(S) = G¥(S) — S for i € {1,2}. Observe that if z,y € S are nonadjacent, then
there exists precisely one face incident with both of them. When the graph G is clear
from the context, its face which contains the vertices x and y is denoted by f ,,.

A triangle vivovs of a graph is called separating if {v1,ve,v3} is a cut. If vivovs is
a separating triangle of G, then each of the edges v1v2, v1v3 and vovs is obviously non-
contractible. On the other hand, it is not necessarily true that every noncontractible
edge of G belongs to a separating triangle. However, in this section we show that
unless G contains a light contractible edge, we may extend G to a supergraph that
satisfies this condition by adding new noncontractible edges and without creating any
new contractible edges; see Lemma 8.

The proofs of the following three folklore lemmas can be found in [1, 7, 8]:

LEMMA 2. Let G be a 3-connected graph of order at least five. Suppose x is
a 3-verter of G whose nmeighbors are a,b and c. If ab is an edge of G, then xc is
contractible.

If H is a subgraph of G, then we denote by G/H the graph constructed from G
by contracting all edges of H.

LEMMA 3. Let x© be a 3-vertex of a 3-connected graph G # Ky. If xa and xb
are two noncontractible edges of G, then a and b are adjacent vertices of degree 3.
Moreover, G* = G/axb is 3-connected.

LEMMA 4. Let G be a 3-connected graph and let C = x1x9x3 be a 3-cycle of
G with all vertices of degree 3. An edge e of G/C is contractible if and only if its
corresponding edge e in G is contractible.
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We are now ready to prove the following lemma on minimal 3-connected graphs
without a light contractible edge.

LEMMA 5. If G # Ky is a 3-connected planar graph with the smallest possible
number n > 5 of vertices such that every light edge of G is noncontractible, then G
does mot contain a 3-cycle whose vertices are all of degree 3.

Proof. First, suppose that n < 7. Hence, the degree of each vertex of G is at
most 5, and thus each edge of G is light. Since every 3-connected graph of order at
least 5 contains a contractible edge, the graph G contains a light contractible edge.

Let us now assume that n > 7. Suppose that C' = xyx2x3 is a 3-cycle of G such
that all vertices of C are of degree 3. Let y; be the neighbor of x; that does not
belong to C'. Note that the vertices y1, y2 and y3 are mutually distinct, since G is
3-connected and G # Ky. Let G* = G/C and let w be the vertex of G* into which
C is contracted. By Lemma 3, the graph G* is 3-connected. Hence, w is a 3-vertex
whose neighbors are y1,y2 and ys. Also notice that each edge e* of G* has the same
weight as the corresponding edge e of G. Lemma 4 claims that e* is contractible
in G* if and only if e is contractible in G. This implies that every light edge of G*
is noncontractible. Since G* has at least five vertices, it contradicts the minimality
of G. d

The following two lemmas describe the structure of a graph containing a non-
contractible edge xy that becomes contractible after a new edge bc is inserted in the
graph.

LEMMA 6. Let G be a planar 3-connected graph, xy a noncontractible edge of G,
and b and ¢ two nonadjacent vertices of G that lie on a common face. Suppose that
xy 1is contractible in G U {bc}. If a vertex z is contained in a 3-cut S = {x,y,z} of
G, then the following four claims hold:

(i) b and c are distinct from x, y and z, and they belong to distinct components

of G— S,
(ii) z belongs to fy.., and precisely one of x and y belongs to fy . (let this vertex
be denoted by w),

(iil) fre=w---b---z---c---w, and

(iv) w and z are nonadjacent.

Proof. Since xy is contractible in G U {bc} but not in G, it follows that b and ¢
belong to distinct components of G — S. Therefore, the vertices b and ¢ are distinct
from z,y and z.

Since S is a cut and the edge be connects the two components of G — 5, it follows
that b, c and z belong to a common face. Moreover, one of x and y lies on the same
face as well (but not both since no face may contain all three vertices of a 3-cut of
G). The order of the vertices w, z,b and ¢ that appear around the face must be as
described in the claim, because b and ¢ belong to distinct components of G—S. Since
G is 3-connected, it follows that w and z are nonadjacent. 0

LEMMA 7. Let ab and zy be two noncontractible edges and let S1 = {a,b,c} and
Sy = {z,y, 2z} be two 3-cuts of G. If the edge xy is contractible in G U {bc}, then the
following two claims hold:

(i) If a & {=z,y}, then c is a 3-vertex with N(c) = {z,z,y} and cxy is a 3-face.

(ii) If a =z, then y is a 3-vertex with N(y) = {a,b,c} and aby is a 3-face.

Proof. First notice that G U {bc} is a planar graph, since the vertices b and ¢ lie
on a common face in G. Also notice that b and ¢ are nonadjacent in G. By Lemma 6,
the vertices b and ¢ belong to different components of G — S5, and they are distinct
from x, y and z. By the same lemma, without loss of generality, we may assume
that y and z are nonadjacent and that they lie on the same face with b and ¢ (i.e.,
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Fic. 2. Configurations in Lemma 7.

foe=1fyz)and fy.=y---c---z---b---y. We may also assume that z is a vertex of
¥ = G5(51) and z,y are vertices of G5 = G5(S1). Consider now the claims of this
lemma separately and see Figure 2 for illustration:

(i) Observe that z is a cut-vertex in G which separates a and b from ¢; otherwise
we can infer that S5 is not a cut of G. Since G is 3-connected it follows that
¢ is adjacent only to z in G7.

Similarly one can show that {x,y} is a cut in G3 which also separates a and b
from ¢. To show the minimality of {x,y} observe that if = or y is a vertex-cut
in G3%, then {z, z} or {y, 2z} is a 2-cut in G, respectively.

If there is a vertex adjacent to c¢ in G3% which is distinct from z and y, then
{¢,z,y} is a 3-cut in G U {bc} but this contradicts the assumption that xy is
a contractible edge in G U {bc}. Since {z,y} is a cut in G, both x and y are
adjacent to c. Thus, =,y are the only neighbors of ¢ in G5. This implies that
cxy is a 3-face and N(c) = {z,z,y}.

(ii) Since {z,y, b} is not a 3-cut in GU{bc}, we infer that aby is a 3-face. Similarly,
since {x,y,c} is not a 3-cut in G U {bc}, it follows that cy is an edge of G,
and hence N(y) = {a, b, c}. |

We are now ready to show that in a maximal graph which does not contain a
light contractible edge, every noncontractible edge belongs to a separating 3-cycle.

LEMMA 8. Suppose that there exists a planar graph on m > 5 wvertices such
that each of its light edges is noncontractible. If G is such a graph with n vertices
with maximum number of edges, then every noncontractible edge of G belongs to a
separating 3-cycle.

Proof. Suppose that the claim is false and G is a counterexample with minimum
number of vertices n > 5. Let ab be a noncontractible edge which does not belong to
a separating 3-cycle and let S = {a,b,c} be a 3-cut of G. Without loss of generality,
we may assume that b and ¢ are nonadjacent.

Consider the graph G U {bc}. By the maximality of |E(G)|, the graph G U {bc}
contains a light contractible edge xy. Obviously the edge zy is distinct from be, since be
is noncontractible. The edge xy is light in G as well, thus it must be noncontractible
in G. Let {z,y,z} be a 3-cut of G. We may assume that z,y € V(G5(S)) and
z € V(G3(5)). By Lemma 6, we may assume that b,y,c and z belong to a common
face. Consider now the following two cases and see Figure 3 for illustration:

Case 1: a & {z,y}. By Lemma 7(i), we may assume that ¢ is a 3-vertex with
neighbors z, y and z. The maximality of G implies that the graph G U {yz} must
contain a light contractible edge e = a’b’. Notice that this edge is noncontractible
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a

Fic. 3. Configurations in Lemma 8.

in G. By Lemma 6 one of the end-vertices of e must be incident with f, ., say ¥'.
Observe that the only 3-cut that shows noncontractibility of e is {a’, V', ¢}. If e belongs
to G5(9), then {a’, ¥, z} is a cut of GU{yz} which separates a or b from y, x or ¢, and
a’t’ would be noncontractible in G U {yz}. Therefore, we may assume that e belongs
to G%(S). See the left graph of Figure 3. In particular, the edges a’d’ and xy are not
incident. Hence, by Lemma 7(i), z is a 3-vertex and za'd’ is a 3-face of G. Finally,
Lemma 2 implies that zc is a contractible edge of weight 6.

Case 2: a € {x,y}, say a = x. We assume that no choice of z,y, z,a,b and ¢ may
satisfy Case 1. By Lemma 7(ii), y is a 3-vertex with neighbors a,b, ¢ and aby is a
face. By the maximality of G, the graph G U {yz} contains a light contractible edge
a't/. The edge a’b’ must be noncontractible in G and distinct from ay. Excluding
Case 1, the edge a’b’ must be incident with the edge ay. However, adding the edge
yz does not affect contractibility of any edge incident with y or z; therefore, the edge
a’l’ must be incident with a. We may assume that a = a/. Notice that b’ is a vertex
of G5(S) and by Lemma 7(ii), we conclude that ayb’ is a 3-face and that degree of b’
is 3. Hence b’ =bor V) =c. If b’ = ¢, then the edge cy has weight 6 and by Lemma 2
it is contractible in G.

Now consider the case b = b’ and see the right graph of Figure 3. The degree of b
is 3 and the edge by has weight 6. If by is a noncontractible edge, then b is a 3-vertex
incident with two noncontractible edges ab and by. Lemma 3 implies that the degree
of a is also 3. Hence, G contains a 3-cycle with each vertex of degree 3, but Lemma 5
excludes such a subgraph in G. We conclude that by is a contractible light edge in G.
This finishes the proof. 0

3. Contractible light edge. If C is a cycle of a plane graph G, then Int(C)
denotes the subgraph of G induced by the vertices and edges of G which lie on C' or
in its interior. We are now ready to prove the theorem.

THEOREM 3. Fwvery 3-connected planar graph, distinct from Ky, contains a light
and contractible edge.

Before we proceed with the proof of the theorem, let us emphasize that this
result strengthens Theorem 1, i.e., we show precisely the same bounds on the weight
of contractible edges.

Proof. Suppose that the theorem is false and G is a counterexample with the
minimum number of vertices n > 5. In particular, every light edge of G is noncon-
tractible. We may also assume that G has the maximum number of edges among all
such graphs of order n.
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By Lemma 8, every noncontractible edge of G belongs to a separating 3-cycle.
Since G is 3-connected, it follows that every vertex that belongs to a separating 3-
cycle is of degree > 4. Therefore, every 3-vertex is incident only to contractible edges.
This implies that every 3-vertex of G is adjacent only to vertices of degree > 11. In
order to complete the proof, consider the following two possibilities:

First, suppose that every separating 3-cycle C' of G satisfies Int(C) = K4. By
Theorem 1, the graph G contains a light edge e = wv. This edge e does not lie on a
separating 3-cycle; otherwise v and v are adjacent with a 3-vertex, and each of them
is of degree > 11 by the argument in the above paragraph. We conclude that e is a
contractible light edge.

Now suppose that G has a separating 3-cycle C such that Int(C) # Ky. We
may additionally assume that C' = zjz2x3 is chosen so that G’ := Int(C) has the
smallest possible number of vertices. The graph G’ has at least five vertices. By the
choice of C, each separating 3-cycle C’ of G’ satisfies Int(C") = K4. By Lemma 1, G’
contains an edge €’ that is not incident with x1, zo and x3 such that €’ is light in G.
Applying a similar argument as in the previous paragraph, one can observe that €’ is
also contractible. This establishes the theorem. |

Theorems 2 and 3 imply the following result:

COROLLARY 1. FEwvery 3-polytope G can be constructed from tetrahedron by se-
quential splittings of vertices of degree at most 11.
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Abstract. We prove that every graph of minimum degree at least r and girth at least 27
contains a subdivision of K,41. This implies that the conjecture of Hajds, that every graph of
chromatic number at least r contains a subdivision of K, is true for graphs of girth at least 27. This
conjecture is known to be false in general.
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1. Introduction. It is well known that the existence of a subdivision of the
complete graph K. is forced by large but constant minimum degree: let d(r) be the
smallest number such that every graph G of minimum degree at least d(r) contains a
subdivided K,. The existence of d(r) was proved by Mader (see, e.g., [1]). Bollobds
and Thomason [2, 3] as well as Komlés and Szemerédi [8] independently proved that
d(r) is quadratic in r. As observed by Jung [7] earlier on, complete bipartite graphs
show that d(r) is at least quadratic in r.

On the other hand, Mader [15] proved that the situation is rather different for
graphs which have large girth, i.e., which do not contain short cycles: he showed that
there is a function g(r) so that every graph of minimum degree at least r and girth at
least g(r) contains a subdivided K, 1. At first, this might seem rather surprising since
the condition on the minimum degree only ensures that every vertex has sufficiently
many neighbors to be a candidate for a branch vertex. Mader’s bound on the g(r)
was linear in r. He asked about the growth of g(r) and pointed out that it might
even be true that g(r) = 5 for r > 4 (see [17]). The complete bipartite graph K, ,
provides the lower bound g(r) > 5 for » > 4. In [9], we showed that g(r) < 186 and
that g(r) < 15 for all » > 435. In this paper, we prove that g(r) < 27.

THEOREM 1. Let r > 1 be a natural number. Every graph of minimum degree at
least r and girth at least 27 contains a subdivision of K,1.

In [12] we proved the related result that if we relax the condition of having girth
at least 27 to being Cy-free, then at least we can find a subdivision of a complete
graph whose order is almost linear in the minimum degree of the host graph.

Theorem 1 has an immediate application to the well-known conjecture of Hajés
(see [6]), which states that every graph of chromatic number r contains a subdivision
of K,. Catlin [4] found several counterexamples to this. A little later, Erdés and
Fajtlowicz [5] proved that the conjecture fails even for almost all graphs. On the
other hand, since every graph of chromatic number at least r has a subgraph of
minimum degree at least » — 1, Theorem 1 shows that the conjecture does hold for all
graphs whose girth is at least 27.

*Received by the editors October 27, 2004; accepted for publication (in revised form) September
13, 2005; published electronically February 21, 2006.
http://www.siam.org/journals/sidma/20-1/61776.html
fSchool of Mathematics, Birmingham University, Edgbaston, Birmingham B15 2TT, UK (kuehn@
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COROLLARY 2. Let r > 2 be a natural number. Every graph of chromatic num-
ber r and girth at least 27 contains a subdivision of K.

Thomassen [22] asked whether the conjecture of Hajés might even be true for all
triangle-free graphs. Note that there is a difference to the minimum degree condition
here: while it may be that Theorem 1 remains true if one replaces the condition
of “girth > 277 by “girth > 5,” one cannot replace it by “girth > 4.” Also, no
counterexamples to the conjecture of Hajés are known for r = 5, 6.

Based on a result of Mader [18], in [11] we proved an analogue of Theorem 1 with
the minimum degree condition replaced by one on the average degree: for every € > 0
there exists an integer f(e) such that for all » > 2 every graph G of average degree at
least r + ¢ and girth at least f(e) contains a subdivision of K, 5. (In [18], the same
result is proved with the difference that the function f also depends on r.)

Apart from the obvious question of whether the girth bound in Theorem 1 and
its relatives can be improved, one could also try to strengthen the above results
by asking for an induced subdivision. In particular, Shi [19] posed the following
question.

PROBLEM 3. Is there a function h(r) such that every graph of minimum degree
at least r > 3 and girth at least h(r) contains a subdivision of K11 as an induced
subgraph?

This question was motivated by our earlier result [13] that for all integers s > 2
and r > 3 there exists an integer d such that every K, s-free graph of minimum
degree at least d contains an induced subdivision of K,.. (Clearly, the condition of
being K s-free cannot be omitted here.) Thus the above problem has an affirmative
answer if we assume that the minimum degree is sufficiently large compared to r.

The assumption of large girth also makes a major difference if one asks for or-
dinary minors instead of subdivisions. The first result in this direction was proved
by Thomassen [21], who showed that there is a function ¢(r) so that every graph of
minimum degree at least 3 and girth at least ¢(r) contains a K, minor. In [10], we
proved much more precise bounds on the existence of large complete minors in graphs
of given minimum degree and given girth. Also, in [14] we proved that one obtains
surprisingly large complete minors if one relaxes the condition of having large girth
to being K -free.

This paper is organized as follows. In the next section, we give a brief outline of
the proof of Theorem 1. In section 3 we then present the necessary definitions and
some tools which we will need later on. Section 4 is devoted to the proof itself and
is divided into two subsections: one for the easier case when we seek a subdivision of
K, 1 for r > 5 and one for the case where we seek a subdivision of K5. In the final
section, we then very briefly discuss possible approaches for further improvements and
the obstacles to these.

2. Outline of the proof. Suppose that we are given a graph G of minimum
degree r and girth at least 27. First we choose a maximal set X of vertices whose
pairwise distance is at least 7. We then extend these vertices into rooted induced
subtrees of G such that each tree sends many edges to different other trees. (The
vertices in X are the roots of these trees.) Then the minor G’ of G which is obtained
by contracting each of the trees into a single vertex has large minimum degree (at
least 7(r — 1)3). One could then show that G’ contains an ("}')-linked subgraph
G* (provided that r is not too small). Thus G*, and therefore also G’, contains a
subdivision of a K,;. But unfortunately, this need not correspond to a subdivision
of a K41 in our original graph G.
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Thus we have to find a highly linked substructure G* of G’ which allows us more
control on what the subdivision of K,1; in G* (and in G’) looks like in order to
guarantee that this subdivision will correspond to one in G. Indeed, we find a set A
of vertices of G’ together with their neighbors B having the property that the graph
G* obtained from G’[A U B] by contracting an independent set F' of A-B edges is
highly connected (Lemma 5). At first it might not seem to be a good idea to consider
a highly connected minor of G’ instead of a highly connected subgraph. But the
advantage of this is that at least the vertices in A are now guaranteed to “keep” all
their neighbors in the connected substructure. In the case r > 5 this property can be
used to find r + 1 disjoint r-stars in G'[A U B] (with centers in A) which correspond
both to disjoint r-stars in G* as well as subdivided r-stars in G. As G* is highly
connected and thus highly linked, we can link the leaves of the stars to obtain a
subdivision of K, 11 in G*. Since each star in G* corresponds to a subdivided star in
G, this subdivision of K41 in G* will then correspond to one in G.

This strategy was first used by Mader [15] and subsequently also by us in [9]. The
improvements we obtain here are partly due to a more economical construction of the
stars in G'[AU B]. In particular, in order to find stars with the desired properties, the
graph G’ was required to have a girth which was linear in r in [15] and to have a girth
of least 6 in [9], where the weaker bound of 186 on the girth of G was proved. Dropping
this requirement on G’ immediately leads to a significantly lower requirement on the
girth of G.

The strategy described above does not work when r = 4 since in this case we
cannot guarantee that the graph G* is sufficiently linked. So we have to work harder
here (see the beginning of section 4.2 for more details).

3. Notation and tools. We will now collect some definitions and results which
we will need later. We denote the minimum degree of a graph G by §(G). The girth
g9(GQ) of G is the length of the shortest cycle in G. A subdivision of a graph G is a
graph T'G obtained from G by replacing the edges of G with internally disjoint paths.
The branch vertices of TG are all those vertices that correspond to the vertices of
G. An r-star is a star with r leaves. Given a set A of vertices of a graph G, we
write Ng(A) for the set of all those neighbors of vertices in A that lie outside A.
Given ¢ € N, the ¢-ball around a vertex x of a graph G is the subgraph of G induced
by all its vertices of distance at most £ from z (including z itself). We denote this
subgraph by B (z). Given integers 7 > 3 and ¢ > 1, we define an r-uniform tree
of radius £ to be the rooted tree in which all leaves have distance ¢ from the root
and all other vertices have degree r. Thus an r-uniform tree of radius ¢ has precisely
r(r — 1)%~! leaves. Given a tree T with root = and a vertex v € T, we say that a
vertex u € T' lies above v if v lies on the subpath of T which joins x to u. The branch
above v is the subtree of T which is spanned by all the vertices lying above v.

Given k € N, we say that a graph G is k-linked if |G| > 2k and for every 2k
distinct vertices x1,...,zr and yi,...,yx of G there exist disjoint paths P, ..., Px
such that P; joins x; to y;. We will make essential use of the following recent result
of Thomas and Wollan [20].

THEOREM 4. Let k > 1 be a natural number. Every 2k-connected graph of average
degree at least 10k is k-linked.

The first linear bound on the necessary average degree was established by Bollobés
and Thomason [2], who obtained the same result but with the 10k replaced by 22k.

The following lemma is essentially due to Mader [15], who proved a slightly
stronger result for triangle-free graphs. A proof of the version below is contained in [9].
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LEMMA 5. Let ¢ > 1 be an integer and let G be a graph of minimum degree at
least 2c. Then there exist disjoint sets A, B C V(G) and a set F' of |B| independent
A-B edges such that |A| > ¢ > |B|, Na(A) C B and so that the graph G* obtained
from G[A U B] by contracting the edges in F is [c¢/3]-connected.

4. Proofs. Note that Theorem 1 is trivial for » < 2. Moreover, it is easy to
check that every graph of minimum degree at least 3 contains a subdivision of Kj.
(This was first observed by Dirac; see, e.g., [1, Ch. VII, Thm. 2.2].) Thus Theorem 1
also holds when r = 3 (even with no assumption on the girth). Pelikdn showed
that every graph of minimum degree at least 4 contains a subdivision of the graph
obtained from Kj; by deleting one edge (see, e.g., [1, Ch. VII, Thm. 2.5]). However,
as mentioned in the introduction, an additional assumption on the girth is needed to
guarantee a subdivision of K. (Alternatively, instead of increasing the girth, one can
also guarantee a subdivided K5 by increasing the minimum degree to 6. This follows
from the result of Mader [16] that 3|G| — 5 edges force a T K5.) As the proof of the
K5-case of Theorem 1 needs some special arguments, it will be considered separately.
So let us first prove Theorem 1 for the case r > 5.

4.1. Finding a subdivision of K, ; for » > 5. Let G be a graph of minimum
degree r > 5 and girth at least 27. Consider a maximal set X of vertices of G such
that every two vertices in X have distance at least 7 from each other. Since the girth
of G is at least 27, the 3-ball BZ(x) around any vertex z € X is a tree. Since the
vertices in X have distance at least 7 from each other, all these trees must be disjoint.
We now extend these trees to connected subgraphs T, (x € X) by adding first every
vertex of distance 4 from X to one of the trees to which it is adjacent, then adding
all vertices of distance 5 from X to one of the subgraphs constructed in the previous
step and then those of distance 6. By the maximality of X, every vertex in V(G)\ X
has distance at most 6 from X and is thus contained in some T,. Our assumption
that the girth of G is at least 27 now implies that the T, (z € X) satisfy the following
properties:

(i) T, is an induced subtree of G. We will view x as the root of T.

(ii) Each leaf of T}, has in T, distance at most 6 from the root z of T.

(iii) The 3-ball Bf(x) = B} (x) around z contains an r-uniform tree of radius

3. Thus T, has at least 7(r — 1) leaves and so there are at least r(r — 1)3

edges in G emanating from T;. All these edges go to different other trees T,

i.e., between every pair T, and T, of trees there exists at most one edge in G.
We now consider the graph G’ obtained from G by contracting each T, (x € X) into
a single vertex. For each z € X, we denote by ' the vertex of G’ corresponding to
the (contracted) tree T,,. Note that (iii) implies that

5(G) > r(r—1)3.
Put
1
(1) c;za(r; >+3(7"+1).
Using that r» > 5, it is easy to check that
(2) 5(G") > 2.

Thus we can apply Lemma 5 to G’ to obtain sets A and B and a set F of |B|
independent A—B edges as described there. The edges of F' are called F'-edges.
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branch of T, above v

FiG. 2. The star S; corresponds to a subdivided star in G.

Given a vertex v € T, and a neighbor ' of 2’ in G’, we say that 3 lies above v if
v lies on the subpath of T, which joins x to the unique T,-T), edge of G (Figure 1).
Our next aim is to find disjoint r-stars Sy, ..., Sr+1 in G’'[A U B] such that, writing
x} for the center of S;, they satisfy the following properties:

(a) No edge of S; belongs to F. No F-edge joins 2 leaves of S;.

(b) There are no F-edges joining two different S;.

(¢) The leaves of S; lie above different neighbors of z; in Ty, .
The vertices x; will be the branch vertices of our subdivided K,,;. Property (c)
ensures that each S; corresponds to a subdivided r-star in G (Figure 2). The stars
S1,...,5-41 can be found greedily as follows. Suppose that we have already chosen
S1,...,5;—1 for some i < r+ 1. Let W be the set consisting of all those vertices in
G'[AU B] which send an F-edge to some vertex in V(S1)U---UV(S;—1) =: W’. Since
the F-edges are independent, we have [W U W'| < 2|W'| < 2r(r + 1). Take 2} to be
any vertex in A\ (W UW’). To see that such a vertex exists, we have to check that
|A] > |W U W’|. But this holds since all the vertices in A have their neighbors in
AU B and thus

(2)
|[A| > 6(G") = |B| > 6(G")—c>c>2r(r+1)> |WUW'|,

as desired. Now we have found the center z} of S;. So next we will choose its leaves.
Let vy,...,v, be distinct neighbors of x; in the tree T, (Figure 2). (So the v; are
vertices of G.) Let V; be the set of all those neighbors of z} in G’ which lie above v;,.
Let U; :=V; N (W UW'). We assume that the v; are ordered descendingly according
to the size of Uy, i.e., if k > j, then |Ug| < |U;|. For each v; in turn we have to choose
a neighbor y; of z} in G’ such that (I) y; € V;, (I) y; ¢ U;, (II) iy} ¢ F, (IV) no
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F-edge joins y; to any yi,...,y;_; chosen previously for vy,...,v;_1 and such that
(V) y; # y; for k < j. Then (a)—(c) are satisfied and y1, ...,y can be taken as leaves
of S;. We call every neighbor of 2/ in V; which violates one of the properties (II)~(IV)
a forbidden neighbor. We will show that there exists one such neighbor yg which is
not forbidden. For this, first note that V; NV, = 0 for j # k. (Indeed, if y' € V; NV,
then G would contain at least two edges between T;, and T, contradicting (iii). In
particular, this shows that (V) will automatically be satisfied.) Thus also U; NUy = ()
for j # k. By our assumption on the ordering of the vertices vy, ..., v,, this implies
that |U;| < |[W U W’|/j. Since the number of neighbors which are forbidden by (III)
and (IV) is clearly at most j, this implies that the total number of forbidden neighbors
is at most

JHIU <j+2r(r+1)/j <142r(r+1).

The final inequality is due to the fact that j + 2r(r + 1)/j is a decreasing function in
jlor1<j<r.

On the other hand, property (iii) implies that the branch of T}, above v; has at
least (r —1)? leaves and thus sends out at least (r —1)3 edges going to other trees T),.
So there are at least (r — 1)® neighbors of z} which lie above v;, i.e., [V;| > (r —1)3,
which is greater than 1 + 2r(r 4+ 1) for » > 5. Thus there exists a neighbor yg of
lying above v; which is not forbidden, as desired. This proves the existence of the
stars S1,...,S04+1-

We now consider the graph G* obtained from G’[A U B] by contracting every
edge in F. Conditions (a) and (b) ensure that the images of Si,...,S,41 in G* are
still disjoint r-stars. Our aim now is to delete the centers of these stars and then to
link the leaves of them by (T‘gl) disjoint paths in such a way that (after adding the
centers again) we obtain a subdivision of K, 1 in G* whose branch vertices are the
centers. Since by condition (c¢) each S; corresponds to a subdivided r-star in G, it is
easy to see that this subdivision of K, ;1 in G* would then correspond to one in G
(with branch vertices x1,...,&p11).

Thus it suffices to show that the graph obtained from G* by deleting the centers
of the images of Sy,...,S.41 is (r'gl)—linked. By Theorem 4 this is the case if the
minimum degree of this graph is at least 10(TJ£1) and if its connectivity is at least
2(TJ2F1). Thus is suffices to show that the minimum degree of G* is at least 10(7’;1) +
r+ 1 and its connectivity is at least 2(T§1) -+ 7+ 1. The second condition is satisfied
since Lemma 5 implies that G* is [¢/3]-connected and ¢/3 = 2(T‘£1) +r+1. Moreover,
when contracting F', each vertex a € A looses one neighbor for each F-edge to which a
is either incident or which has the property that a is joined to both of its endvertices.
Thus

+1

5(G*) > 68(G") — |B| >r(r—1)° —¢> 10(T ) )+T+1’

as desired (use that r > 5).This completes the proof of Theorem 1 for the case when

r>5.

4.2. Finding a subdivision of Kj5. Let G be a graph of minimum degree 4
and girth at least 27. Set

mams(e ()99
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F1G. 3. The subgraph of G corresponding to graph H' C G’ defined in condition (§).

Thus c¢ is a little smaller than the number obtained by substituting » = 4 in (1).
Proceed similarly as in the first part of section 4.1 to obtain trees T, (x € X), a graph
G', vertex sets A,B C V(G’), and a set F of |B| independent A-B edges. Again,
denote by G* the graph obtained from G’[A U B] by contracting each edge in F. We
now would like to choose stars Si,...,S5 in G'[AU B] and continue as in section 4.1.
However, ¢ is now smaller and thus the graph obtained from G* by deleting any five
vertices (e.g., the star centers) will only be ((g) —4)-linked in Case 1 below instead of
(5)-linked as in section 4.1, and in Case 2 it will only be ((}) — 5)-linked. So we have
to argue more carefully to ensure that when applying the linkedness we only have to
find 6 of the 10 subdivided edges of our T K35 in Case 1 and 5 subdivided edges in
Case 2. The reason why we choose ¢ to be smaller now is that when passing from G’
to G*, the minimum degree may decrease by |B| < ¢ — 1, and thus we can guarantee
a larger minimum degree of G* in this way.

The idea is to distinguish two cases according to the minimum degree of G*.

Case 1. The minimum degree of G* is at least 65.

The strategy here is to choose the stars Sy, ..., S5 in such a way that their centers
form a path of length 5. Then we can use the edges of this path to find four of the
subdivided edges of our T'K5 and thus we only need the linkedness of G* to find the
six remaining edges. More formally, we wish to find stars Si,...,Ss in G’ satisfying
the following properties:

() Both S7 and S5 are 3-stars and each of Sg,S3,54 is a 2-star. All the S; are

disjoint from each other. The centers zf ...2% of S1,...,S5 form a path in
G'[A].

(8) No edge of S; belongs to F. No F-edge joins 2 leaves of S;.

(7) There are no F-edges joining two different S;. In particular, none of the edges
on the path «f ...z} lies in F.

(6) Let H' denote the union of all the stars S; and the path zf...zf. (Thus
every x; has degree 4 in H’'.) The neighbors of 2} in H’ lie above different
neighbors of z; in T,, (Figure 3).

This can be achieved as follows. We first choose the path z ...xz%. This can be done
greedily. Indeed, suppose that we have already found /. . x; for some 1 < j < 5. For
;41 we can take any neighbor y’ of ; which lies in A\ {1, ..., 2}, does not send an
F-edge to any of z, ..., 2%, and is such that y" and 2, _, lie above different neighbors of
xj in T, But by (iii) there are at least 3-3% = 81 neighbors of z; satisfying the latter
property and at most [B| + j < ¢+ 4 = 55 of them lie in BU {1, ...,2}}. Moreover,
at most j < 4 of the remaining neighbors send an F-edge to any of 2/, ... ,ac’? Thus
we can find the path 2] ...z§ consisting of the centers of Sy,...,Ss.
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We now have to choose the leaves of the S;. As before, this can be done greedily.
It is easy to check that one can find leaves for each of Sy,...,S4 in turn. So let us now
choose the three leaves for S5. Let v1, v, v3 be three neighbors of 25 in T}, such that
x}y does not lie above v; for each i = 1,2,3. Let W be the set consisting of all those
vertices in G'[AUB] which send an F-edge to some vertex in V(S7)U- - .UV (Sy)U{zt}.
Set W’ := (V(S1) U---UV(Sy)) \ {=}}. Given i < 3, we say that a vertex ' is a
candidate for the ith leaf of S5 if y' lies above v; and if y' ¢ W U W'. We are looking
for three candidates, one for the first leaf, one for the second, and one for the third,
such that no F-edge joins two of them. (Then these candidates can be taken as
leaves of Ss. Indeed, note that the candidates are automatically distinct from a
since otherwise G would contain at least two T,,~T,. edges.) There are at least 27
neighbors of zf which lie above v;. Since at most [WUW’| < 26 of these neighbors lie
in WU W/, there is at least one candidate for the ith leaf. Moreover, this argument
also shows that for at most one index i there are less than three candidates for the ith
leaf. (Indeed, suppose there are at most two candidates for the first leaf, say. Then at
most one of the vertices above vy or vz can be in W U W', as G’ contains no multiple
edges.) Thus there must be three candidates, one for each of the three leaves, such
that no F-edge joins two of them, as required.

Similarly as in section 4.1 we now consider the graph G* obtained from G'[AU B
by contracting each edge in F'. Again, conditions (3) and () ensure that the image
of H' in G* is still isomorphic to H’, i.e., nothing in H’ will be contracted. As in
section 4.1 we now delete the images of the centers zi,...,zf in G* and then wish
to link the images of the leaves of the S; to obtain a subdivision of K5 in G* whose
branch vertices are the centers. However, since the centers lie on a path of length 4
in G* we can link adjacent branch vertices via an edge of the path. Thus we now
only have to find the (g) — 4 = 6 remaining subdivided edges of our T K5 in G*. For
this, it suffices that the graph obtained from G* by deleting the five branch vertices
is 6-linked. By Theorem 4 this is the case if the minimum degree this graph is at
least 60 and if its connectivity is at least 12. This in turn holds if the minimum
degree of G* is at least 65 and its connectivity is at least 17. The first requirement
holds by our assumption. The latter is satisfied since by Lemma 5 the graph G* is
[¢/3]-connected and ¢/3 = 17. Condition (§) now implies that our subdivision of K3
in G* corresponds to a subdivision of K5 in G whose branch vertices are x1,...,xs.

Case 2. The minimum degree of G* is at most 64.

Recall that, as in section 4.1, when contracting the edge set F' to obtain G* from
G'[A U B], each vertex =’ € A loses one neighbor for each F-edge which is incident
with a or of which a sees both endvertices. Thus we obtain the lower bound

(3) 8(G*) > 8(G") — |B| > 4-3° — ¢ = 5T.

This is too small for us to be able to proceed as in Case 1, since with this bound
we can now only guarantee that the graph obtained by deleting five vertices of G*
is 5-linked instead of 6-linked as it was in Case 1. Our solution is to find in G’ a
suitable subgraph @’ consisting of a triangle and a path attached to it. The branch
vertices and 5 of the 10 subdivided edges of our subdivision will be contained in the
subgraph of G which corresponds to )'. The existence of some triangle in G’ is easy
to show: our assumption on the minimum degree of G* implies that there exists a
triangle 2’'y’2" in G'[A U B] which is formed by some vertex ' € A and an F-edge
y'Z'. (In fact, some ' € A must form such a triangle with at least 108 — 64 — 1 =43
of the F-edges, but we will not make use of this.)
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Fi1c. 4. The trees corresponding to the docking points for vi and va.

Given a triangle v'v'w’ in G’, we denote by C(uvw) its corresponding cycle in G,
i.e., the unique cycle which consists of the T,—T, edge, the T,,—T, edge, the T,—T,
edge as well as the unique paths in Ty, T, and T}, joining endvertices of these edges.
The turning point of C(uvw) in T, is that vertex in C'(uvw) N T, whose distance to
u is minimal. The turning points in T, and T,, are defined similarly. Consider all
triangles as described in the previous paragraph, i.e., all triangles in G’'[A U B] which
meet A in precisely two vertices and contain an F-edge. Among all these triangles
choose a'b’c’ such that the distance of a to the turning point ¢ of C'(abc) in T, is
minimal, where a’,¢’ € A and b’ € B. We have to distinguish two cases.

Case 2.1. The distance between a and ¢ is at most 1.

Let us start with a definition. Given v € T, we say that distinct neighbors
Yis. oy of &' in G’ form a v-join if all the subpaths of T, which join v to the unique
T,~T,, edges meet in v and are otherwise disjoint from each other. This means that if
2’ is the center of an i-star S in G’ whose leaves form a v-join for some vertex v € Ty,
then S corresponds to a subdivided i-star in G whose center is v. Moreover, note
that neighbors v/,...,y} of 2’ form an z-join if and only if they lie above different
neighbors of = in T,.

Now let v; and vy denote the neighbors of ¢t on C(abc). The vertices t, vy, vy will
be three branch vertices of our subdivision of K5. We will use the cycle C(abc) to
join these three branch vertices pairwise. Before this we will choose for each v; two
neighbors y} and z; of o’ in G’ which will serve as “docking points” when using the
linkedness of G* to join v; to the remaining two branch vertices of the subdivided Kj
(Figure 4). (These “docking points” play the same role for v; as the leaves of S; do
for x; in both section 4.1 and Case 1.) The desired docking points y; and z; have to
satisfy the following properties:

e No F-edge joins a’ or ¢ to any of the y or z..

e There is no F-edge between any of the four vertices y; and 2.

e The vertices y; and z] are neighbors of ¢’ in G’ — {V/, ¢’} which lie above v;.

Moreover, yj, z},b', ¢ form a v;-join.

Note that the third condition together with the fact that either ¥’a’ € F or b'c’ € F
implies that neither y; nor z; can be joined to b’ by an F-edge. Let us now show
that such docking points v}, y5, 27, and 2z} exist. (For this, without mentioning it
explicitly, we will make frequent use of the fact that every vertex sends out at most
one F-edge and that G contains at most one edge between every pair T, T}, of trees.)
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First fix two different neighbors v¢ and v? of v; in T, which lie above v; and avoid
C(abc). Such neighbors exist since v; is not the turning point of C(abc) in T, and
thus only one of the at least three neighbors of v; lying above v; in T, lies on C'(abc).
Since v; has distance at most 2 from the root a of Ty, the branches of T}, above v} and
v7 both send out at least three edges. (Note that the definition of v{ and v implies
that none of these edges can go to Ty, or T,..) Thus there are at least three neighbors
of ' in G’ —{V/, '} which lie above v/ and the same holds for v7. This means that for
each of yi,yh, 21, 2, there are at least three candidates which satisfy the third of the
above properties. Without loss of generality we may assume that no F-edge joins a’
to a candidate for 21, y5 or 25 (relabel if necessary to achieve this). Moreover, we will
consider only the case when no F-edge joins ¢’ to a candidate for 2} or z5. In this case
we will first choose y] and then y5. The remaining cases are analogous. Since there
are at least three candidates for y}, one of them sends no F-edge to a’ or ¢’. Denote
it by y;. Similarly, for y} take any candidate which does not send an F-edge to yj or
¢’. Note that a'y ¢ F by our assumption. Next we have to choose 2] and z}. We will
consider only the case when there are at least two candidates for z) which are joined
to neither y| nor y5 by an F-edge. (The case when this holds for 2] instead of 2} is
analogous.) Take z] to be any candidate which is joined to neither ¢} nor y5 by an
F-edge. Finally, we can choose 2} since by assumption there is at most one candidate
for it which is joined to yj or y5 by an F-edge and at most one of the remaining > 2
candidates sends an F-edge to z{. (Recall that our earlier assumptions imply that
neither a’ nor ¢’ sends an F-edge to 2] or z}.)

Next we will choose one docking point for ¢. Let v/ and v? be two neighbors
of ¢t in T, which are distinct from v; and ve. If ¢ # a, we choose v} to be a. Note
that the branch of T, above v} sends out at least nine edges and none of them goes
to Ty, Te, Ty,, Ty, Ty, or T.,. Thus there are at least nine neighbors of a’ in
G —{V,c,y,vh, 21, 25} which lie above v{. Let y; be one such neighbor which sends
an F-edge to none of a', ¢, yi, vh, 21, 25.

For i = 1,2 let S; denote the 2-star in G’[A U B] whose center is ¢’ and whose
leaves are y; and z{. Let S3 be the 1-star with center o’ and leaf y;. Thus the stars
S1, S2, and S5 meet in a’ and are disjoint otherwise. We will now choose a 2-star Sy
and a 3-star S5 satisfying the following properties:

(o/) S4 and S5 are disjoint and avoid V(S1)UV (S2) UV (S3)U{d,¢'}. The centers

xy and zf of Sy and Sy lie in A. Moreover, either o’z zf forms a path or else
there is a vertex z; € B\ (V(S1 U---US5) U {V,'}) such that o'z} 2} is a
path and z;z) € F.
(8") No edge of Sy or S5 belongs to F. No F-edge joins two leaves of Sy or of Ss.
(") There is no F-edge joining Sy to a vertex in V(S; U S, US3US5)U{d, ¥, c'}.
The analogous condition holds for Ss.
(6") Let P’ denote the path a’z)jzf or o’ zjxjxk guaranteed in (o). Let H' be the
union of P/, Sy, and Ss. (Thus both z) and z} have degree 4 in H'.) For each
i = 4,5 the 4 neighbors of =} in H' form an x;-join. Moreover, the neighbor
of @’ on P’ lies above v}.
(The vertices x4 and x5 will be the two remaining branch vertices of our subdivision
of K5 in G.) We will only show that we can either find a path a’zjzf or a path
a'zjx ol with the desired properties. The existence of the leaves of Sy and S5 then
follows by an argument analogous to the one in Case 1 (but with more room to spare
this time). So let us consider all those at least 27 neighbors of @’ that lie above v7.
Clearly, none of them lies in V(S; U Sy U S3) U {V/,¢'}. Moreover, at most eight of
them are joined by an F-edge to a vertex in V(51 U Sy U S3) U {b,’}. If one of the
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remaining neighbors lies in A, we take it to be z). Thus we may assume that each of
the at least 19 remaining neighbors lies in B. Take z; to be any such neighbor which
has the property that the endvertex in A of the unique F-edge incident to z; does not
lie in V(S1 U Sy U S3) U {d, V', ¢'}. Take a) to be this endvertex. The vertex zf can
now be found in the same way as in Case 1.

Having chosen our stars Sy, ..., S5, we proceed similarly as in Case 1. Again, we
consider the graph G* obtained from G’[A U B] by contracting each edge in F. The
stars S, ..., S5 have been chosen is such a way that in the subgraph of G’ induced by
all the stars S;, the path P’ and the triangle a’b’c’ at most two edges are contracted,
namely, the F-edge lying on a'b'¢’ and the F-edge zz/, (if z; exists). Otherwise
nothing changes in this subgraph when passing over to G*.

We will now choose our subdivision of K5 in GG. As indicated before, the branch
vertices will be t, vy, v, x4, and x5. Five of the pairs of branch vertices can be linked
directly. Indeed, we can use the cycle C'(abc) to link ¢, v; and vy pairwise. Moreover,
x4 will be linked to x5 by the path consisting of the unique 7,,-T,, edge together
with the paths in T,, and T, joining x4 and x5 to this edge. In the case when a’
and xjy are joined by an edge, we can link ¢ to «/ in a similar way. If 2] exists, i.e., if
a'z,x)) is a path of length 2, then the path linking ¢ to x4 will run through T,,. We
now have to find paths joining the remaining five pairs of branch vertices. Similarly
as in Case 1, this will be done by using the linkedness of G* to connect the docking
points, i.e., the images of the leaves of the stars Si,...,S5. Each of the five paths
we are looking for has to avoid the star centers as well as the image of ¢’ in G*.
Thus we delete these four vertices. We can now link the images of the star leaves if
the subgraph of G* thus obtained is 5-linked. So by Theorem 4 we are done if the
minimum degree this graph is at least 50 and if its connectivity is at least 10. This
in turn holds if the minimum degree of G* is at least 54 and its connectivity is at
least 14. Inequality (3) shows that the first condition holds. The latter condition is
satisfied since by Lemma 5 the graph G* is [¢/3]-connected and ¢/3 = 17.

Case 2.2. The distance between a and t is at least 2.

Similarly as in Case 2.1, also in this case we will choose the branch vertices in
such a way that three of them lie on the cycle C(abc) and thus this cycle can be used
to link them pairwise. The two remaining branch vertices will also be chosen in an
analogous way, i.e., they will be attached to C(abc) by a path. However, this time
we cannot choose the first three branch vertices in T, N C(abc) as C(abc) stays too
far away from the center when passing through 7T,. Instead, we will only choose two
vertices in T, N C(abc) and one in T, N C(abe).

Since by assumption the distance from a to the turning point of C'(abc) in T, is at
least 2 and since by the choice of a’b’c’ the analogue also holds for the turning point
of C(abc) in T, the cycle C'(abc) meets both T, and T, in at most nine vertices (use
condition (ii) to see this). Since C(abc) meets Ty in at most 13 vertices and the girth
of G is at least 27, it follows that C'(abc) has to meet each of T,, and T, in at least five
vertices. Moreover, it follows that C(abc) meets at least one of T, and T}, in at least
seven vertices. Thus without loss of generality we may assume that C(abc) meets Ty,
in at least seven and at most nine vertices and that C(abc) meets T, in at least five
and at most nine vertices (otherwise relabel a’ and ¢’).

Let us now prove that there exists a vertex ¢y € T, and neighbors y. and 2/, of
c in G' — {d’,b'} satisfying the following properties (the “moreover” part of the first
property will not be used until Case 2.2.2):

e The vertex ¢ is either the first, the second, or the third vertex on C(abc) in T,
when coming from T,. Moreover, ¢ is not the turning point of C(abc) in T.
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F1c. 5. Choosing yg and zé in the case when c; has a neighbor v in T, — C(abc).

e The vertices y/, 2/, a/, b’ form a cy-join.

e F does not contain y/z..

e Neither y/ nor z/ sends an F-edge to any of a’, V', ¢
The vertex ¢y will be one of the branch vertices of our subdivision. Both ¢/, and 2/, will
serve as docking points for ¢g. So let us now show that there exist such vertices ¢, 4.,
and z/. Choose any two vertices ¢; and ¢y such that they are among the first three
vertices on C(abc) in T, when coming from T, and such that none of them equals
the turning point. (These two vertices exist since C(abc) meets T, in at least five
vertices.) Thus ¢; and ¢y are candidates for cg in the sense that they satisfy the first
property above.

Before we continue, we need some more notation which generalizes the notion of
“lying above.” Given a subtree T' C T, and a neighbor 2’ of 2’ in G’, we say that 2’
belongs to T if T contains an endvertex of the unique 7,7, edge. Thus if v € T,,
then 2’ lies above v if and only if 2z’ belongs to the branch of T, above v.

Next we show that for each ¢ = 1,2, one can find neighbors y; and 2] of ¢’ in
G’ — {d/,v'} such that o', V', y}, 7, form a ¢;-join and yz, ¢ F. To do this, we first
consider the case that all neighbors of ¢; in T, are contained in C'(abc). This implies
that ¢; sends out at least two edges to vertices in G — (T, UT, UT,), i.e., there are (at
least) two neighbors of ¢ in G’ — {a’, b’} which form a ¢;-join together with a’ and ¥'.
Take y; and z; to be two such neighbors. Suppose that y}z; € F. We may assume that
y; € A and z; € B (relabel if necessary). Since the triangle ¢'y.z; was a candidate for
the choice of a'b’c, it follows that the turning point of C'(cy;2;) in T}, has distance at
least 2 from y;. Thus C(cy;2;) meets T, in at most nine vertices. However, it meets
T., in at most 13 vertices and T, in precisely one vertex. Thus the length of C(cy;z;)
is at most 23, contradicting the fact that the girth of G is at least 27. So we may turn
to the case that ¢; has a neighbor v in T, — C(abc). In the case when v is the only
such neighbor, ¢; has to send out an edge to G — (T, UT, UT,). Take y; to be the
vertex for which the corresponding tree T}, contains the endvertex of that edge. If ¢;
has another neighbor w in T, — C'(abc), take for y; any neighbor of ¢’ which belongs
to the component of T, — ¢; containing w. To find 2}, consider those at least three
neighbors of ¢/ which belong to the component of T, — ¢; containing v (Figure 5). At
most one of them sends an F-edge to y;. Take 2. to be any other such neighbor. Thus
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FIG. 6. The neighbors y; and z| chosen for a;.

in each case we have found vertices y, and z} as required. Note that the sets {y{, 2]}
and {yj, 25} are disjoint. (Indeed, if, for example, y] = y4, then G would contain at
least two T,.-T), edges.)

Let us now show that for some i we have a'y},a'z.,c'y;, 'z, ¢ F. (Note that
b'y., bzl ¢ F holds automatically since either a’b’ € F or b'c¢’ € F and F consists of
independent edges.) If this is not the case, then, for example, we have that o'y}, v} €
F. But this contradicts the fact that either a’ or ¢’ already sends an F-edge to b'.
The vertices ¢;, yj, z} for which o'y}, a’z}, 'y}, 'z ¢ F are a good choice for cg, y., 2.

Having found one branch vertex ¢g in C(abc)NT., we will choose two other branch
vertices in C'(abc) NTy. So let a1, as, ..., a; denote all those vertices on C'(abe) which
lie in T, in the order in which they appear when coming from T,. Thus 7 < j <9 by
our assumption. For each i =1,...,j we choose neighbors y; and z; of o’ in G—{V', '}
which satisfy the following properties (Figure 6):

(A) The vertices y}, z,b’, ¢ form an a;-join.

(B) F does not contain y;z,.

Such neighbors can be found in the same way as before. (Recall that the fact that
¢p was not a turning point was not used when showing the existence of y. and z..)
Among all possible choices, we choose each pair y., 2 such that |{y}, 2.} N {y.,z.}| is
minimal. Thus we try to keep the pair ¥/, 2} as disjoint as possible from ¥/, z.. Again,
the sets {y}, z;} are automatically disjoint for different indices ¢ < j.

Next we show that there exists an index ip < j for which we can take a;, to be
the second branch vertex and both y; and z; to be docking points for a;,. So ip has
to satisfy the following properties:

(C) Neither y; nor z sends an F-edge to any of a/,V', ¢, ., 2.

(D) Neither y; nor z; lies in {y,, 2.}.

Since either o'’ € F or b'¢ € F, at most one of a’,b’,c’ sends an F-edge to a
vertex in G’ — {da/,¥’,c’}. Thus altogether the vertices a’,b’,c,y., 2. send out at
most three F-edges to vertices in G’ — {a’,¥’,¢’}. This implies that at most five of
the indices ¢ < 7 violate (C) or (D). Hence there exists an index iy as required. Put
I:= {137J}\{ZO}

Our next aim is to show that there is another a; which we can take as a branch
vertex (and such that y, and z] can serve as docking points for a;). Thus we have to
show that there exists an index i; € I which satisfies the following properties:
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Fi1G. 7. The three neighbors of a’ lying above u.

(C') Neither y; mnor z; sends an F-edge to any of a’,b', ¢, y., 2., v, %4, -

(D') Neither y; mor z; lies in {y, 2, ¥i,, 2, }-
As before, it follows that at most five indices i € I violate (C’). Since {y; ,z; } is
disjoint from {y}, 2/} for each ¢ € I, at most two indices ¢ € I violate (D’). Hence
altogether at most seven of the indices i € I are forbidden. Thus i; exists if j = 9
(since then |I| =j —1=28).

So we only need to consider the case when 7 < j < 8. Moreover, we may
assume that for some index k € I either y;, or z;, lies in {y,,z.}. Let us assume that
Y = Y. =: y' (relabel if necessary to achieve this). Furthermore, if j = 8, we may
assume that there is some index ¢ € I'\ {k} for which either y or z, equals z.. So let
us assume that y, = 2, in the case when j = 8. To show the existence of the index
i1, we will now prove that these assumptions lead to a contradiction. To do this, we
distinguish the following two cases.

Case 2.2.1. The vertex ay is not an endvertex of the unique 7,7, edge.

Let u denote the neighbor of aj on the subpath of T}, joining aj to the endvertex of
the unique 7,-T, edge (Figure 7). Thus there are at least three neighbors of a’ which
belong to the component of T, — aj containing u. So each of these three neighbors
was a candidate for y;, when choosing the pair y;, z;.. Since y;, z;, was chosen to be as
disjoint as possible from y., 2/, this implies there are precisely three such neighbors:
one of which (namely, ¢y = y;,) is equal to y., one of which, w’, say, is equal to 2.,
and the third one, v/, say, sends an F-edge to z,. (Otherwise the pair consisting of
2, together with one such neighbor would have been a better choice for y;, z;..) Since
there are precisely three such neighbors, u has to be an endvertex of all the three
edges joining T, to each of T,,, T,,, and T,,. Moreover, the choice of yj,, zj, implies that
ay, is an endvertex of the unique 7,-T, edge (Figure 7). Let us consider the cycle
C(avzy) corresponding to the triangle a’v’zj. This cycle meets T, in precisely two
vertices. Since the girth of G is at least 27, it meets both T, and T, in at least
27 — 2 — 13 = 12 vertices. Thus the turning points of C(avzt) in T, and T, have to
be v and 2. But this shows that the triangle a’v’z,, would have been a better choice
for a’b’c’, a contradiction.

Case 2.2.2. The vertex aj, is an endvertex of the unique 7,,-T,, edge.

This time consider the cycle C(acy) corresponding to the triangle a’c’'y’. Let us
first estimate the number of vertices in C(acy) N T.. Note that the distance from



76 DANIELA KUHN AND DERYK OSTHUS

the root ¢ of T, to ¢y is as least one larger than the distance from ¢y to the turning
point of C(abc) in T, (this holds since ¢q is not this turning point). Since the latter
distance is at least 2, it follows that the segment of C(acy) N T, which joins ¢y to
the endvertex of the T,.-T), edge consists of at most four vertices. Since ¢y was one
of the first three vertices on C(abc) in T. when coming from Ty, it follows that the
segment of C'(acy) NT, which joins ¢y to the endvertex of the T,~T. edge consists
of at most three vertices. Thus C(acy) contains at most six vertices in T, (we have
counted ¢y twice). Since C(acy) contains at most 13 vertices in T} and the girth of
G is at least 27, it follows that C(acy) meets T, in at least 8 vertices. On the other
hand, since by assumption ay is an endvertex of the unique 7,7, edge, it follows
that C(acy) meets T, precisely in the vertices aq,...,ar. Thus we may assume that
k = 8 and therefore j = 8. (Recall that we had previously ruled out all possibilities
for j except 7 and 8.) As shown before Case 2.2.1, this in turn implies that we may
assume that y;, = z/ =: 2’ for some index ¢ € I\ {k}. Thus ¢ < 7. The case when
ap is not an endvertex of the unique T,—T, edge can be dealt with as in Case 2.2.1.
Thus we may assume that ay is an endvertex of the unique 7,-T, edge. But just as
for C(acy), one can show that the cycle C'(acz) corresponding to the triangle a’c’z’
has to meet T, in at least eight vertices. But this is a contradiction since it meets
T, precisely in ay,...,ap and £ < 7. This completes the proof of the existence of the
index 7.

So far, we have chosen three branch vertices ¢, a;,, and a;, on C(abc) together
with two docking points for each of them. We will now find our subdivision of K35
similarly as in Case 2.1. As there, the remaining two branch vertices will be attached
to C'(abc) by a path. So we have to find a suitable path in G'[A U B] of length 2
or 3 which starts in either a’ or ¢. As in Case 2.1, the last two vertices on this path
will be the centers of the stars S; and S5. The remaining two branch vertices of our
subdivision will be the roots of the two trees corresponding to the centers of S; and
Ss. Again, Sy will be a 2-star and S5 a 3-star.

More precisely, we proceed as follows. First consider the case that one of the
docking points y., y;., ¥i, > e 21, %, lies in A. Suppose, for example, that z; € A.
(The other cases are analogous.) Then we take z; to be the center x of Sy. Sy will
be the 2-star in G'[A U B] whose center is ¢/ and whose leaves are y.. and z... Sy will
be the 2-star in G’'[A U B] whose center is a’ and whose leaves are y; and z; . S3 will
be the I-star in G’'[A U B] whose center is a’ and whose leaf is y; .

So let us now consider the case that all the six docking points lie in B. Then
at least one of them, z; , say, sends an F-edge to a vertex outside {a’,c'}. Let )
denote this vertex. Since z), € A, x is automatically distinct from b" and from all the
docking points. Moreover, z/; sends neither an F-edge to any of a’,0’, ¢ nor to any
docking point other than z . We take x; to be the center of Sy. The stars Sy, S2, 3
are defined similarly as before.

In both cases, the center x} of the star S5 as well as the two leaves of Sy and the
three leaves of S5 can now be found similarly as in Case 2.1. Having chosen Sy, ..., S5,
the subdivision of K5 can also be found as in Case 2.1. This completes the proof of
Case 2.2 and thus of the case when r = 4.

5. Further improvements: Approaches and obstacles. Below, we briefly
discuss three rather natural modifications to the proof strategy which one might try
out in order to improve the bound of 27 on the girth in Theorem 1.

Recall that throughout this paper, the trees which were contracted to yield the
auxiliary graph G’ have radius at least 3. It would of course be desirable if we could
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adapt our strategy to work also for trees of radius at least 2. In this case a girth of at
least 19 would now suffice to ensure that the auxiliary graph G’ graph has no multiple
edges. However, the obvious drawback is that the minimum degree of G’ may now be
smaller. In particular, in the case r = 4 we can only guarantee §(G’) > 36 instead of
8(G") > 108, so this does not seem feasible for small r.

Another approach is of course to work with trees of radius at least 3 as before but
now to relax the girth requirement a little. This leads to the possibility of multiple
edges between pairs of trees. One can show that this does not reduce the minimum
degree by more than a constant factor (e.g., by a factor of six if one assumes a girth of
at least 21 instead of a girth of 27; see Lemma 15 in [9] for the argument). However,
the resulting bound on the minimum degree is again too small for our techniques to
apply if r is small. (Moreover, multiple edges cause other problems, too.)

Thirdly, one might hope for an improvement on the bound of 10k on the necessary
average degree in order to ensure k-linkedness in Theorem 4. An example in [20] shows
that the best one can hope for is to replace the constant 10 by 4. But even with such
an optimal bound our proof would not give a better bound on the girth. However,
maybe combining this with the allowance of multiple edges and some new ideas would
work.

On the other hand, one might wonder how much of our improvement from a girth
of 186 in [9] to 27 here is due to the fact that we did not use Theorem [20] in [9] but
used the previous bound of Bollobds and Thomason [2], where the 10k is replaced by
22k: it is easy to check that our proofs would still work using the latter bound if one
requires the girth to be at least 35 (and considers trees which now have radius at least
4 instead of radius at least 3).

Finally, recall that there is a lot of room to spare in the estimates in section 4.1
when 7 is large. However, even if we assume r to be large, the arguments in section 4.1
no longer work for trees of radius at least 2 instead of radius at least 3. (Thus they
do not provide a short proof of the fact that the girth bound can be reduced to 19
instead of 27 for large r.) It is still an open question if the bound of 15 on the girth
for large r [9] can be reduced.
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1. Introduction. (k,n) threshold secret sharing schemes [20, 2] have been stud-
ied extensively because of their wide applications in fields such as key management
and secure computation. In such a scheme, a dealer D distributes a secret s to n
participants P, ..., P, in such a way that any k& or more participants can recover the
secret s, but any k — 1 or fewer participants have no information on s. A piece of
information given to P; is called a share and is denoted by v;. An important issue in
secret sharing schemes is the size of shares. Let V; be the set of possible shares for
P;. Let S be the set of possible secrets. Then it is well known that

(1) Vil = |S]

in any (k,n) threshold scheme [13].

Tompa and Woll [23] considered the following scenario: Suppose that k—1 partic-
ipants, say Py, ..., Py_1, want to cheat a kth participant, Py, by opening forged shares
vl,...,v,_y. They succeed if the secret s’ that is reconstructed from vf, ..., v,_; and
v is different from the original secret s. Tompa and Woll showed that Shamir’s
scheme [20] is insecure against this attack in that even a single participant can, with
high probability, deceive k& — 1 honest participants. They provided a scheme that is
secure against this attack, but |V;] in their scheme is much larger than in (1):

(2) Vi| = ((|S|_16)(k_1) + k‘) ,
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where ¢ denotes the cheating probability. Carpentieri, De Santis, and Vaccaro [5]
showed the following lower bound on |V;]| for this problem:
15|

-

There is a gap between the bounds of (2) and (3). In fact, both of them can be
improved. Furthermore, in the derivation of (3) it is assumed that k — 1 cheaters
Py, ..., P,_1 somehow know the secret s before they cheat Py. (We call this assump-
tion the CDV assumption.)

In this paper, we define a (k, n, 6) secure secret sharing scheme without the CDV
assumption. Here, ¢ is the maximum probability that k—1 participants (cheaters) suc-
ceed in cheating another participant, without knowing s. (We use a different symbol,
0 rather than e, to denote the cheating probability, in order to highlight the different
assumptions we make.) We stress here that the optimum cheating probability 6 is
determined by the dealer’s secret sharing algorithm and the probability distribution
on the secret.

Next, we derive a tight lower bound on |V;| by using basic probability arguments:

(4) V| > \3|T—1+L

(3) Vi >

We then present an optimal scheme which meets the equality of our bound by
using “difference sets.” A planar difference set modulo N = ¢(¢ — 1) + 1 is a set of £
numbers B = {dy,ds,...,d¢—1} C Zy with the property that the (¢ — 1) differences
d; — d; (d; # d;), when reduced modulo N, are exactly the nonzero elements in Zy
in some order [15, p. 397]. It is known that there exists a planar difference set if [ is
a prime power [15, p. 398, Theorem 22]. Our optimal scheme is then characterized
as follows. If there exists a planar difference set modulo N = £(¢ — 1) + 1 such
that N is a prime, then there exists a (k,n) threshold secret sharing scheme with
|S| = ¢, 6§ =1/¢, and n < N which meets the equality of our bound (4).

Next, we prove a weak converse of the above characterization. It is known that a
difference set is equivalent to a certain symmetric balanced incomplete block design
(BIBD) having a certain automorphism. We prove that there exists a symmetric
BIBD if there exists a (k,n) threshold secret sharing scheme which meets the bound
(4). Therefore, we see that there is a tight connection between the optimal schemes
and difference sets (or symmetric BIBDs).

Our optimal scheme can be generalized as follows. Let (I', 4+) be an abelian group
of order N and let B = {dp,d1,...,d¢—1} CT. Then B is called an (N, ¢, \) difference
set [1, p. 261] if each nonzero element = of I' appears exactly A times as a difference
d; —d; (d; # dj). Our generalized scheme is as follows: There exists a (k, n) threshold
secret sharing scheme which meets (4) such that |S| =¢, § = A\/¢, and n < N if there
exists an (N, £, \) difference set B in (Fy,+). It is known that there exists an (N, £, \)
difference set B in (Fy,+) if N is a prime power, N =4t—1, ¢ =2t—1,and A =¢—1
[1, p. 264].

Finally, for the model with CDV assumption, we show a lower bound on |V;| that
improves (3) by using the same technique we use to derive (4). Our bound for the
model with CDV assumption is as follows. If S is uniformly distributed, then
S -1

[Vi| > = + 1L

Note that we can prove this bound only for uniformly distributed secrets. (Actually,
for nonuniformly distributed secrets, we show some counterexamples to this bound.)
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1.1. Some historical remarks. Mainly, there are two concerns on secret shar-
ing schemes with malicious players. The first is that each participant should be able
to make sure that his/her share was obtained from a legitimate distribution procedure
even if a dealer is dishonest. The second one is that participants should be able to
make sure that the reconstructed secret is the correct one.

The problem we consider here focuses only on the second aspect. In particular, we
assume that the dealer is honest. Under this assumption, a slightly different problem
has been studied by other researchers. McEliece and Sarwate [16] showed that in
Shamir’s (k,n) threshold scheme, any group of k + 2e participants which includes at
most e cheaters can always correctly calculate the secret. For additional work on this
problem, see [19, 24].

The problem of identifying cheaters has also been studied; see [18, 3, 4, 14]. These
schemes, however, require |V;| much bigger than the bound given in (4). On the other
hand, in this paper, we are interested only in detecting the fact of cheating.

Verifiable secret sharing schemes (VSSs) have been well studied [7, 11, 17, 6,
18, 22, 9, 10]. Although VSS can protect against both concerns mentioned above,
they generally require some computational assumption such as the discrete logarithm
assumption [11, 17] or they are complicated protocols involving many interactions to
distribute a secret [6, 18, 9, 11].

2. Preliminaries.

2.1. Definition of cheating. Throughout this paper, D denotes a probabilistic
Turing machine called a dealer, S denotes a random variable distributed over a finite
set S, and s € S is called a secret. On input s € S, D outputs (vy, . ..,v,) according to
some fixed probability distribution. For 1 <+ < n, each participant P; holds v; as his
share. V; denotes the random variable induced by v;. Let V; = {v; | Pr[V; = v;] > 0}.
V; is the set of possible shares held by P;.

DEFINITION 2.1. We say that D is a (k,n) threshold secret sharing scheme
for S if the following two requirements hold: For any {i1,...,i;} C {1,...,n} and
(Viys -y vi;) such that Pr[V;, =wv;,..., Vi, =v;] >0,

(A1) if j > k, then there exists a unique s € S such that

Pr[S=s|Vy =vy,.... Vi, =v,] = 15
(A2) if j < k for each s € S, then
Pr[S=s|Viy =vi,..., Vi, = v,] = Pr[S = s].

In the above, a secret sharing scheme is defined based on a given probability
distribution S. In contrast, most constructions of secret sharing schemes will be valid
for any probability distribution defined on S.

DEFINITION 2.2. For v, € V4,,...,v;, € V;,, define

SeC(vil,.-.,vik)Z{ j_ if 3s€ S st. PrS=s |V, =viy,..., Vi, =05, ] =1,

otherwise.
That is, Sec(v;,,...,v;, ) denotes the secret reconstructed from the %k possible
shares (vi,...,v;,) associated with (P;,...,P;, ), respectively. The symbol L is

used to indicate when no secret can be reconstructed from the k shares. We will often
aggregate the first k—1 arguments of Sec into a vector, by defining b = (v, ,...,v;,_,)
and Sec(b, v;, ) = Sec(v;,, ..., v, ).
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DEFINITION 2.3. Suppose that k — 1 cheaters P;,,...,P;, |, possess the list of
shares b = (viy,...,v4,_,). Let b = (vj ,...,v; ) # b be a list of k — 1 forged

shares. Then we say that P;, is cheated by b’ if
Sec(b’,v;, ) & {Sec(b,v;, ), L},

where v;, denotes the share of P, .
3. New lower bound on |V;]|.

3.1. Definition of secure secret sharing. In this section we derive a tight
lower bound on |V;| by using basic probability arguments. In deriving this bound we
do not use the CDV assumption. That is, we assume that, according to the definition
of a (k,n) threshold secret sharing scheme, k — 1 cheaters have no information on s.

To define a secure secret sharing scheme clearly, we consider the following game
called the “cheating game.”

1. k—1 cheaters and the target participant are fixed. That is, we fix 41, ...,75_1
and iy.

2. The dealer picks s € § according to distribution S, and uses D to compute
shares vy, ..., v, for the n participants. v; is given to P; for i € {1,...,n}.

3. Let b= (v;,,...,v;_,). The cheaters jointly use a probabilistic algorithm A
to compute forged shares b’ = (vj,,..., v, ) from b.

4. The cheaters open the forged shares b’. If P;,_ is cheated by b’ (as defined
above), then we say that the cheaters win the cheating game.
In order to analyze cheating probabilities, we define some useful notation. First,
define

O mwa = {) e
and
(6) v(b,b') =" (v(b,b’,z) Pr[Vi, =z | b]).

T

The value (b, b’) is the probability that the cheaters win if they change b to b’.
A cheating strategy C defines conditional probabilities Pr[b’ | b] for every b such
that Pr[b] > 0. The success of the cheating strategy C is computed to be

(7) Suce(C) = <Pr[b] > (Pr[b’ | b] y(b, b'))) .

b b’

Note that the probabilities Pr[b] are determined by the dealer’s secret sharing algo-
rithm, while the probabilities Pr[b’ | b] are chosen by the cheaters.

For future use, we record some equivalent formulations of Succ(C). These are
obtained by substituting (6) into (7) and interchanging the order of summation:

(8) Suce(C) = (Pr[b] > <Pr[b’ | b] > (Pr[z | b] 'y(b,b’,z))>>

b b’ T

©) ¥ (Pr[b] 5 (w B 3 (Prlb [ ) v(b,b’,x»)) .

T b’
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We define the mazimum average cheating probability to be the maximum value
of Succ(C) over all cheating strategies C. A (k,n) threshold secret sharing scheme
is called a (k,n,8) secure secret sharing scheme if the maximum average cheating
probability is at most 6 for any k — 1 cheaters P;,, ..., F;, _, and any target P;, .

3.2. New lower bound on |V;|. As before, we fix k — 1 cheaters P, P,
and a target P;, . Here we consider a simple cheating strategy in order to prove a lower
bound on the number of possible shares. Let b = (v;,,...,v;,_,) be the shares held by
the cheaters. We consider a strategy Co where P;, opens a forged share v; # v;,, and
the other cheaters P;,,..., P, , open their shares v;,,...,v;, , honestly. Suppose
that P;, chooses v;, # v;, uniformly at random. More precisely,

IERERE

s !
if v, # vy,

if vi, = v;,.

1
Pr{b’ = (o)., iy, 05,_,) | b] = { s

Furthermore,

Prlb’ = (v] vl ,...,vi )| bl =0 if (v) ,...,0} )# Wigy---)Vip_,)-

i1 Vi) Tk—1 i) Tk—1

LEMMA 3.1. Suppose that Pr[b] > 0 and Pr[z | b] > 0. Then it holds that

10) S (Prb b (b, b0 > A0
b’ "

Proof. Let b = (viy, Uiy, ..., 0i,_,) and let s = Sec(b,z). Observe that s € S
because (b, ) is a distribution of shares to k participants that occurs with positive
probability.

Now, for every s’ € S, s’ # s, there exists at least one possible share for P; |
namely vy € V;,, such that Sec(vs/, viy, ..., v, _,,2) = . This is because the k — 1
shares vi,, ..., v;,_,,x yield no information on the value of the secret.

Therefore the |S| — 1 vectors (vs, viy,...,0;,_,) (8 €S, s’ # s) are such that

¥(b, (ver, Vigy vy iy, ), ) = 1.

There are |V;,| — 1 possible vectors b’ considered in the given strategy, each of which
is chosen with probability 1/(|V;,| — 1). Therefore the desired result follows. a
THEOREM 3.2. The cheating strategy Cqo (described above) has

S| -1

SUCC(CO) Z W

for any 1.
Proof. We use (9) and Lemma 3.1:

Succ(Co) = > <Pr[b] > (Pr[a: | b] > (Pr[b/ | b]y(b,b’,x))))

r rir X|‘S“7_1
z%j(mb];(m b |Vi1|_1)>
sl

B |Vi1|71-
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Observe that the above bound holds for any distribution on S. Now our lower
bound on |V;| is an immediate consequence of Theorem 3.2.
COROLLARY 3.3. In a (k,n,0) secure secret sharing scheme,

(11) iz B2ty

for any 1.

3.3. Generalization. Our bound (11) holds for general secret sharing schemes
with monotone access structures. Let P = {P1,...,P,}. Let I" be a collection of
subsets of P that is monotone: A € T', and B C A implies that B € I". We say that
a secret sharing scheme has access structure I' if A can determine the secret s for all
A €T and A has no information on s for all A C P, A € I'. It is known that there
exists such a secret sharing scheme for any monotone access structure; see [12].

Our definition of (k,n,8) secure secret sharing schemes can be naturally gener-
alized to secret sharing schemes with monotone access structures. We call such a
scheme a (T, §) secret sharing scheme.

Now suppose that there exists a (T, §) secret sharing scheme such that min{|A4| :
A €T} > 2. Tt is easy to see that this implies that there exists a (2,2, §) secure secret
sharing scheme. Moreover, for any P; € P, there is a (2,2,8) secure secret sharing
scheme in which P; is a participant. Hence (11) holds for any P; € P.

4. Optimum (k,n,d) secure scheme. In this section, we show an optimum
scheme which meets the equality of Corollary 3.3 by using “difference sets.”

4.1. Difference set.

DEFINITION 4.1 (see [15, p. 397]). A planar difference set modulo N = £({—1)+1
is a set B = {dy,d1,...,di—1} C Zn with the property that the £(¢ — 1) differences
d; — d; (d; # d;), when reduced modulo N, are exactly the numbers 1,2,...,N —1 in
some order.

Ezample 4.1 (see [15, p. 398]). {dp = 0,d; = 1,d2 = 3} is a planar difference set
modulo 7 with ¢ = 3. Indeed, the differences modulo 7 are

1-0=1, 3-0=3, 3-1=2 0-1=6, 0-3=4, 1-3=05.

PROPOSITION 4.1 (see [15, Theorem 22, p. 398]). Let II be a projective plane
PG(2,q). A point in II can be represented as (B1,B2,83) € (Fg)®, or o' € Fys for
some i, where « is a generator of Fys. If £ = q+1 points a% ... a%-1 gre the points
on a line in 11, then {do,...,d¢_1} is a planar difference set modulo ¢*> + q + 1.

Definition 4.1 is generalized as follows.

DEFINITION 4.2 (see [1, p. 261]). Let (', +) be an abelian group of order N. B
is called an (N, £, \) difference set if it satisfies the following:

(i) BCT and |B|=¢.
(ii) The list of differences d — d' # 0, where d,d’ € B, contains each nonzero
element of I' precisely \ times.

PROPOSITION 4.2 (see [1, p. 264]). Suppose N = 3(mod4) is a prime power.
Then there exists an (N, £, \) difference set B in (Fy,+) such that N = 4t — 1,{ =
2t —1,and X =t — 1, where t is a positive integer.

Ezample 4.2 (see [1, p. 262]). B = {1,3,4,5,9} is an (11,5,2) difference set in
(Fi1,4).
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4.2. Optimum scheme based on planar difference set. Corollary 3.3 proves
that we should take |V;| much larger than |S| in order to have a secure scheme.
The simplest idea of constructing a secure scheme is to use Shamir’s scheme with a
random polynomial f(x) over F,, where ¢ > (|S] —1)/6 + 1. Suppose that the value
£(0) reconstructed in the reconstruction phase is accepted as a secret if and only if
7(0) € {0,1,...,]|S| — 1} (then s = f(0)).

However, for this scheme, the probability of successful cheating can be larger than
6 = (|S|—1)/(g —1). For example, consider a Shamir (2,2) threshold scheme with
a polynomial f(z) over Z7, and let S be a uniformly distributed secret over {0, 1,2}.
Then (|S|—1)/(¢—1)=1/3.

Suppose that P, opens vy = vy + 1. Then P; is cheated with probability 2/3,
since the secret s = f(0) is reconstructed using the formula s = 2v; — v9 mod 7. In
fact, this cheating strategy is the optimal one for P;. Therefore, this scheme is only
a (2,2,2/3) secure secret sharing scheme.

This example suggests that we should not assign valid secret values to continuous
values in a larger domain, such as {0, 1,2} in Z;.

In this subsection, we show that if there exists a planar difference set modulo
N = ¢(¢ — 1) + 1 such that N is a prime, then there exists a (k,n,8) secure secret
sharing scheme with |S| = ¢, 6 = 1/¢,and n < N which meets the bound proven in
Corollary 3.3.

Let B = {do,...,d¢—1} be a planar difference set modulo N = ¢(/ — 1) + 1
such that N is a prime. We construct a (k,n,8) secure secret sharing scheme for S,
assuming a uniformly distributed secret over S = B. In what follows, we assume that
all operations are done over Zy .

Distribution phase. For a secret ds € S (= B), the dealer D chooses a random
polynomial f(z) of degree at most k — 1 over Zy such that f(0) = ds. The share for
P; is given as v; = f(i). Note that

(12) Vil=N=¢0l-1)+1
for all 4.
Reconstruction phase. Suppose that P; ,...,P;, open (correct or faulty) shares
vi,,---,v;, . Bach participant can compute
k
d, = Rec(vj,,...,v; ) = Z Cjv; s

j=1

where

_il
C; =
J || ]
15 — 1

1£i

1 <j <k Ifd, € B, then Sec(v],,...,v;, ) = d; otherwise, Sec(v; ,...,v; ) = L.

» Yig

Note that, for any k honest shares v;, = f(i1),...,v;,, = f(ix), we have that
k
(13) Rec(vil, AN 7Uik) = SeC(’Ui17 AN ,’Uik) = chvij7
j=1

which follows from the Lagrange interpolation formula (see [21, p. 331]).
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LEMMA 4.3. The proposed scheme is a (k,n,8) secure secret sharing scheme for
a uniform distribution over S with |S|=4¢, 6 =1/¢, andn < N.

Proof. First of all, it is obvious that the proposed scheme is a (k,n) threshold
secret sharing scheme, since it is basically Shamir’s scheme where the domain of the
secrets is not the entire field. It is also clear that |S| = ¢ and n < N.

Next, we prove it is secure; that is, the success probability of £ — 1 cheaters
is at most 1/¢ = 1/|S|. Suppose that cheaters P;,,...,P;, _, have shares b =
(Viys ..., 0i,_,). Let the share of P;, be denoted by z. Then, from (13), we have

k—1
(14) Rec(b,x) = Z Cjvi; + CrT.
j=1

Note that Rec(b, z) € B. Now define
Ty, = {2’ : Rec(b,z’) € B}.

Then T3, is the set of all possible shares held by P;,, given that the £ — 1 cheaters
hold the shares in b. Since the secret is chosen uniformly at random, it follows that

1
Pr[z’ | b] = -
o' | b] = |
for all 2’ € Tp.
For any k — 1 tuple b’ = (vj ,...,v; ), define

k-1
C(b') = Z ¢y -
j=1

Now, consider the effect of changing b to b’. It is not hard to verify the following two
facts:

1. If C(b) = C(b’), then Rec(b, z) = Rec(b’, z). In this case, P;, is not cheated
if b’ is opened.

2. If C(b) # C(b’), then P, is cheated by opening b’ if and only if € Ty NTy .
Moreover, |Ty N Ty| = 1 and

1
PI“[Z‘ € (Tb ﬂTb/) | b] = 7

In the case of fact 2, we have

> (Prfz | b]y(b, b/, z)) = %

x

For every b with Pr[b] > 0, an optimal strategy is to choose a b’ such that
C(b) # C(b’). The success of this strategy can be computed, using (8), to be 1/¢.
Thus this scheme is a (k,n,§) secure scheme such that 6 = 1/¢.

It is clear that |S| = |B| = 4. 0

Now the following theorem is obtained from Lemma 4.3.

THEOREM 4.4. If there exists a planar difference set modulo N = £(£ — 1) + 1
such that N is a prime, then there exists a (k,n, ) secure secret sharing scheme for a
uniformly distributed secret over S which meets the bound (11), such that |S| = ¢, 6 =
1/¢, and n < N.



OPTIMUM SECRET SHARING SECURE AGAINST CHEATING 87

Proof. Finally, from (12), |[V;] = N = ({ —1){+1 = (|S| —1)/6 + 1 for all j.
Hence, this scheme meets the bound (11). d

From Proposition 4.1, we obtain the following corollary.

COROLLARY 4.5. Let q be a prime power such that ¢*> + q + 1 is a prime. Then,
there exists a (k,n,8) secure secret sharing scheme for a uniform distribution over S
which meets the bound (11) such that |S| =q+1,6=1/(¢+1), and n < ¢*> +q+ 1.

Remark 4.1. The above theorem holds only if the secret is uniformly distributed.
If S is not a uniform distribution, it is easier for cheaters to guess the share of an
honest participant and to succeed in cheating him. For example, consider the following
situation: S = {0,1}, Pr[S = 0] = 2/3,Pr[S = 1] = 1/3, and k = 2. Since |S| = 2,
we can use a planar difference set B = {0,1} modulo N = 3. Assume that P; tries
to cheat Py. The best strategy of Pj, given his share vy, is to find v} such that
Rec(v1, v4) = 0 and to find v} such that Rec(v],v4) = 1. If P, has v} as her share, she
is cheated by v}. Further, P, has v} with probability 2/3. Therefore, this strategy
succeeds with probability 2/3.

Remark 4.2. Instead of publicizing a (¢ + q + 1,q + 1,1) difference set B, it is
enough to publicize two points a® and a' of PG(2,|S|—1). According to Proposition
4.1, B can be obtained from (a?, at).

4.3. Optimum scheme based on an (N, ¢, \) difference set. Theorem 4.4
is generalized as follows.

THEOREM 4.6. If there exists an (N, ¢, \) difference set B in (Fy,+), then there
exists a (k,n,6) secure secret sharing scheme which meets the equality of our bound
(11) such that |S| =€, 6 = A/l,and n < N.

Proof. We use the same argument as in the proof of Lemma 4.3. In this case,
however, |T, N Tyw/| = A. Therefore we use 6 = A/ instead of 1/¢. It is clear that
Vil=N=0{(—-1¢/x+1=(|S|-1)/6 + 1. 0

The following corollary is obtained from Proposition 4.2.

COROLLARY 4.7. For a positive integer t such that 4t —1 is a prime power, there
exists a (k,n,0) secure secret sharing scheme which meets the equality of our bound
(11), such that |S|=2t—1,6=(t—-1)/(2t —1),and n < 4t — 1.

5. Symmetric BIBD and secret sharing secure against cheaters. Theo-
rem 4.4 shows that, if there exists a certain planar difference set, then there exists
an optimal (k,n, ) secure scheme. In this section, we prove a weak converse which
shows that, if there exists an optimal (k,n, ) secure scheme, then there exists a cer-
tain symmetric BIBD. (Note that a difference set is equivalent to a symmetric BIBD
having a certain automorphism—see Proposition 5.1.)

DEFINITION 5.1 (see [8, p. 3]). A balanced incomplete block design (BIBD, for
short) is a pair (V,B) where V is an N-set and B is a collection of b {-subsets of V
(blocks) such that every 2-subset of V' is contained in exactly A blocks. If N = b, the
BIBD is called a symmetric BIBD.

PROPOSITION 5.1 (see [8, p. 298]). The existence of an (N,¢,\) difference set
over an abelian group G is equivalent to the existence of a symmetric BIBD(N, ¢, \)
admitting G as a point reqular automorphism group; i.e., for any two points p and q,
there is a unique group element g which maps p to q.

We now proceed to develop the tools needed for our proof.

LEMMA 5.2. Suppose that equality in (11) holds for any i. Then for any b =
(Viys- o,y Vip_y) where vy, € Vi, ... 05, _, € Vi, _,, such that Pr[b] > 0, it holds that

‘{Uik S Vik : Sec(b,vik) c 8}| = |S‘
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Proof. This easily follows from the proof of Lemma 3.1. ]
THEOREM 5.3. Suppose that there exists a (k,n,d) secure secret sharing scheme
such that equality holds in (11) for uniformly distributed secrets. Define

S]-1

N =V = +1

and
RRIEE
N-1 ~
Then there exists a symmetric BIBD(N, |S|, A).
Proof. Let V;; =V = {1,2,...,N} and let S = {1,...,¢}. Fix k participants
.., P;, and choose any list of k—2 shares v} v;, _ such that Pr[(vi,...,v; )]

Pila- gro Vi » Vi

> 0. Now define an N x N matrix D = (d; ;) such that

dy = { 1 if Sec(i,vj,,...,vj, _,,j) €S,

A

0 otherwise.

We will show that D is an incidence matrix of a symmetric BIBD(N, ¢, \) (where
d; ; = 1 if and only if the ith point is in the jth block). Note that the Hamming weight
of a column in D corresponds to the cardinality of a block, a row in D corresponds
to a point, and the inner product of two rows is the number of blocks that contain
the corresponding 2-subset. Thus we have to show that (a) any column of D has
Hamming weight equal to ¢ and (b) any two rows of D have inner product equal to
A

From Lemma 5.2, it is easy to see that any row or column of D has Hamming
weight equal to 0 or £. If we delete the rows and columns having Hamming weight
0, then we obtain a submatrix of D, denoted D’, in which every row and column has
Hamming weight ¢.

Suppose that D’ has dimensions N’ by N”. The total number of 1’s in D’ is
(N’ = (N" which implies that N’ = N”. We will eventually show that N’ = N and
hence D’ = D. Assume, by relabelling if necessary, that D’ consists of the first N’
rows and columns of D and let d; ; denote the entry of D" in row i and column j for
all ¢ and j.

We will now show that any two rows of D’ have a constant inner product equal

to \. Pick a row r of D’. Let ¢q,...,c be the columns such that
dy oy = =d.. =1

Let E,. be the (N’ —1) x £ submatrix of D’ formed by deleting row r and deleting all
the columns except the columns cy, ..., c,. Every column of E, has Hamming weight
¢ —1, so the total number of 1’s in E, is (£ — 1). Let s, be the row of E, having the
largest Hamming weight, and denote the Hamming weight of this row by w,. Then

L0 —1)
Wy > N1

For each value of r (1 < r < N’), we can define E,, s,, and w, as described above.
Now we define a certain cheating strategy C as follows:
1. Given alist of shares b = (7, V. cyunerates - - - V5, _, ) for Py, ..., Py, _,, respec-
tively, open the list of shares (s;,v

iys >V, ). That is, for each of these N’ values
of r (where r is the share for P; ), we change r to the false value s,.
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2. Given a list of shares b = (v;,, vi,, ..., v;,_,) other than the ones considered
in case 1 (i.e., a list of shares such that (vi,,...,vi,_,) # (vi,,...,v;, . )), use the
strategy Cg described in section 3.2.

We refer to (8) and (9) to compute a bound on Succ(C). First, suppose we are in
case 1. Then C defines a unique b’ such that Pr[b’|b] = 1. For this b’ we have

Hz :v(b,b',z) =1} = w,.

Since the secrets are equiprobable, it follows that

3" (Prfz | b]y(b, b, 2)) = “’7 >

x

Hence,

5 <Pr[b/ ) 3 (il b]v(b,b/,w))> R

b’ T

In case 2, we apply Lemma 3.1, obtaining the following bound:

Z <PI‘[$ | b} Z (Pr[bl ‘ b]’7<b7b/,$)>> 2 ]ffill

xT b’

Now, combining (8) and (9), we have

Succ(C) > 3 <Pr[b] x fv_ll> -4
b

However, from Corollary 3.3, the optimal cheating strategy succeeds with probability
at most (¢ —1)/(N — 1). Therefore, we can conclude that N’ = N and w, = £(¢ —
1)/(N —1). Hence, every row of E, has Hamming weight equal to

0 —1)
N-1

=\

This means that the inner product of row r and any other row of D’ is equal to .
Since r is an arbitrary row of D’, any two distinct rows of D’ have inner product equal
to A. This completes the proof. 0

6. Tighter bounds under the CDV assumption. In this section, we consider
a model where the CDV assumption holds (that is, k& — 1 cheaters P;,,..., P;, _,
somehow know the value of the secret s). For this model, we show a lower bound on
|V;| that is stronger than (3).

Before proving our new bound, we reformulate the cheating model under the CDV
assumption. We introduce the “CDV cheating game,” which is slightly different from
the cheating game presented in section 3.1. The boxed text indicates where the model
differs from the previous model.

1. k—1 cheaters and the target participant are fixed. That is, we fix 41, ..., 451
and ik.

2. The dealer picks s € S according to distribution S, and uses D to com-
pute shares vy,...,v, for the n participants. wv; is given to P; for ¢ € {1,...,n}.

Also, s is given to P;,,..., P, _,.
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3. Let b = (v;,,...,v;,_,). The cheaters use a probabilistic algorithm A to
compute forged shares b’ = (v;,,...,v, ) from b .
4. The cheaters open the forged shares b’. If P;, is cheated by b’, then we say
that the cheaters win the CDV cheating game.
We now modify our previously defined notation which we use to analyze cheating
probabilities. First, define

1 if Sec(b,z) = s and Sec(b’, z) & {s, L},

/ —
(15) ’Vch(ba s, b 71‘) - { 0 otherwise

and

(16) 7Cdv(ba va/) = Z (’YCdv(ba S, blvx) Pr[‘/Zk =T | ba S]) .

T

The value 7cqy (b, s,b’) is the probability that the cheaters win if they change b to b’
when the secret is s.

A cheating strategy C defines conditional probabilities Pr[b’ | b, s] for every (b, s)
such that Pr[b, s] > 0. The success of the cheating strategy C is computed to be

(17) Succeay(C) =Y (Pr[b,s] > (Pr[b’ | b,s] %dv(b,s,b’))) .
b,s b’

The probabilities Pr[b, s] are determined by the dealer’s secret sharing algorithm,
while the probabilities Pr[b’ | b, s] are chosen by the cheaters.
Here are some equivalent formulations of Succ.qy(C):

Succeay(C) = Z (Pr[b,s] Z (Pr[b' | b, 5] Z (Pr[z | b, 5] 'ycdv(b,s,b’,x))>>

b,s b’ ©
(18) = Z (Pr[b,s] Z (Pr[m | b, s] Z (Pr[b’ | b, s] 'ycdv(b,s,b’,m))>> i
b,s z b’
Suppose we fix i1,...,i;_1, and b represents the vector of shares given to F;,, ...,

P;,_,, as usual. For any pair (b, s), define

(19) Vi, (b, s) = {v;, €V, :Sec(b,v;,) = s}.

Observe that V;, (b, s) denotes the set of possible shares held by P;
s and the vector b as discussed above.

We first consider a certain cheaters’ strategy which we denote by Cguess. For any
(b, s), choose & € V;, (b, s) such that Pr[V;, = & | b, s] is maximized. Then choose
any vector b’ such that Sec(b’,Z) & {s, L}. Then replace b by b’. Thus, for any
(b, s), the result of Cguess is to choose a certain b’ = b’(b, s) with probability equal
to 1 (i.e., b’ is a function of (b, s)).

It is obvious from (16) that the following equation holds for any (b, s):

.» given values for

1

(20) Vedv (bv S, b/(b’ S)) = m



OPTIMUM SECRET SHARING SECURE AGAINST CHEATING 91

Hence, we can compute Succedy(Cguess) using (17):

1
21 Succedv (Cguess) > Prb,s] x —— |.
o) o >>§;< b, Mk(b’s)')

Using the fact that the function z +— 1/x is convex, and applying Jensen’s in-
equality!, we have the following:

1
22 Pr[b, s .
(22) EZ([ “n@m@

b,s

1
) - s (Prlb,s] x Vi, (b,5)])

Now, Succedv(Cguess) < €. Combining this fact with (21) and (22), the following
result is immediate.

LEMMA 6.1. In a (k,n,€) robust secret sharing scheme under the CDV assump-
tion,

S (Pelb.s] x [V, (b)) > %

b,s

We will actually apply Lemma 6.1 in an equivalent form, where we interchange
the roles of F;, and P;,. Suppose we define d to be the vector of shares given to
Pi,,..., P, . Then we have the following.

LEMMA 6.2. In a (k,n,€) robust secret sharing scheme under the CDV assump-
tion,

1
> (Prid,s] x Py, (@ s)]) = -
d,s
Now we recall the cheating strategy Cy which we considered in section 3.2:

3 !/
if v, # vy,

1
Plb = 0] o) B = { PRET DT

Let  be the share held by P;, and define d to be the list of shares held by

P; P;,. That is,

iy e s
d = (Vig,.--,Vip_,, ).
Then it is clear from Figure 1 that the following equation holds:

|V“ (d,s")

(23) Z (Pr[b’ | b, 8] Yeav (b, s,b’, z)) Z A 1 :

b/ /#S
We now consider Succeqyv(Cp). From (18) and (23), this is computed to be

(24) Succedy (Co) = Z Pr[b, s, x Z T{}l (|j Sl
b,s,z il

LJensen’s inequality is as follows. Suppose f is a continuous strictly convex function on the
interval I. Suppose further that Z?:l a; = 1and a; > 0,1 < i < n. Then Zzlzl a; f(zi) >

f (Z?:l aixi), where z; € I, 1 <i<n.
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SZ(S_SOa S1, e ) S|S\—l)a 1

Vi, = (v, () D ) ))

Vi (s1,d)| Vi (s15-1, )]

F1G. 1. Success of strategy Co (CDV setting).

If we denote y = v;,, then (b,z) = (y,d), and (24) becomes

Vi, (d,s)]

(25) Succeay (Co) = Z Pr[d, s, y] Z |V -1

d,s,y s'#s

The innermost sum of (25) is independent of y, so (25) can be rewritten as

L (d,
(26) Succear(Co) = Y | Prld, s § : lTv | 51
d,s T

By the defining property of a (k,n) threshold scheme, d and s are independent,
SO

Pr[d, s] = Pr[d] Pr][s].

Under the assumption that the secret is uniformly distributed, we have

for all s. Using these properties, we can recompute (26) as follows:

Succedy (Co) = Z Pr[d, s Z |V“ (d, s)

d,s |V11|_1
|VZ1 (d,s")
- X (Pl L2 T
st Vi (d,5)]
S Z( Zw—l)
S| — .
|1|/z| _11 x Z(Prd s |Vi1(d,s)|)
5|1
= (Val- D¢

where the last inequality comes from Lemma 6.2.
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TABLE 1
Reconstruction rule.

S Vi
0o 1 2 3
o0 1 1 1
Vo 1|1 1 1 0
211 1 0 1
3|11 0 1 1

Finally, using the fact that
SUCCCdV(CO) < €,

we obtain our main theorem.
THEOREM 6.3. In a (k,n,e€) robust secret sharing scheme under the CDV as-
sumption, if S is uniformly distributed, then

S -1

€2

(27) Vil > +1

for any i.

In Theorem 6.3, we cannot remove the condition that the secret is uniformly
distributed. We show examples below such that (27) does not hold for a nonuniformly
distributed secret.

Ezample 6.1. Consider a (2,2) threshold secret sharing scheme constructed as
follows: |S| = 2 and |V;| = 4. The dealer D chooses v1 € {0,1,2,3} randomly. If
S =0, let vo = —vymod4. If S = 1, D chooses vy such that ve # —wv; mod 4
randomly. Then D distributes v1,vs to P; and P,. In this scheme, reconstruction is
done by using Table 1.

Let the probability distribution of S be Pr[S = 0] = 1/4 and Pr[S = 1] = 3/4.
Suppose that P; is a cheater. Let’s compute the cheating probability of this scheme.
We can assume that the cheating algorithm A satisfies that A(s,v1) # vy. First,
suppose that s = 0. Then P, is cheated with probability one:

Pr[P; is cheated by A(0,v1) | P, has vy, S =0] = 1.
Next suppose that s = 1. From the table, we obtain
Pr[P; is cheated by 1| P; has 0,5 =1] = Pr[V2 =3 | P, has 0,5 = 1]
= 1/3.
Similarly, we obtain
Pr[P, is cheated by v} | Py has v1,S =1] =1/3
for any vy € V; and v] # vy. Therefore, for any vy,
Pr[P; is cheated by A(1,v1) | P, has vy, S = 1]
= Z (Pr[A(1,v1) = v}] x Pr[P, is cheated by v} | P; has v1,S = 1])
’Ubévl
= 3 (PrlA(e) = o] x (1/3))
%751)1

=1/3.
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Therefore, the cheating probability is

1/4x1+3/4x1/3=1/2.

This means that e = 1/2 and therefore (27) does not hold.

Ezample 6.2. Consider a (2,2) threshold secret sharing scheme constructed as

follows. |S| = 2 and |V;| = 13. The dealer D chooses v; € Zy3 randomly. If S = 0,
D chooses r € {0,1} randomly and lets v = r — v; mod 13. If S = 1, D chooses
r € {2,4,6,8,10, 12} randomly and lets vo = r —v; mod 13. Then D distributes vy, va
to Py and P,. We can prove that this scheme is € = 1/4 robust when Pr[S = 0] =1/4
and Pr[S = 1] = 3/4. However, (27) does not hold.

[15]
[16]

(17]

18]

M.

M.
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DIFFERENTIAL METHODS FOR FINDING INDEPENDENT SETS
IN HYPERGRAPHS*

YUSHENG LIf AND WENAN ZANGH

Abstract. It is shown by using differential methods that if H is a double linear, r-uniform
hypergraph with degree sequence {d,} such that any subhypergraph induced by a neighborhood has
maximum degree less than m, then its independence number is at least ZU from(dv), where frm(z)

is a convex function satisfying frm(z) ~ (logz)/z if r = 2 and ¢/z1/("=1) if r > 3, as &z — oo,
and ¢ = ¢(r,m) > 0 is a constant. The proof yields a polynomial-time algorithm for finding such an
independent set in H.

Key words. hypergraph, independent set, differential method, convex function, algorithm
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1. Introduction. Hypergraphs are systems of sets which are conceived as natu-
ral extensions of graphs: elements correspond to vertices and sets correspond to edges
which are allowed to connect more than two vertices. Hypergraph theory is a part of
the general study of combinatorial properties of families of sets; for in-depth accounts
of the subject, see Berge [5] and Duchet [8]. The present paper concerns itself with
the independent set problem on hypergraphs.

A hypergraph H = (V, ) consists of a vertex set V' and an edge set £ such that
each edge is a nonempty subset of V. Throughout this paper we assume that each
edge contains at least two vertices. For each vertex v, the degree of v, denoted by d,,,
is the number of edges containing v, and the neighborhood of v, denoted by N(v), is
the set of all neighbors of v, where a vertex u is a neighbor of (or is adjacent to) v if
u # v and there is an edge that contains both u and v. Let U be a subset of V. Set
Ev ={E €& : E CU}. The hypergraph (U, E&y) is called the subhypergraph of H
induced by U. We say that U is an independent set of H if it contains no edge. The
independence number of H, denoted by a(H), is the maximum number of vertices in
an independent set of H. The independent set problem is to find an independent set
with the largest size. As is well known, this NP-hard problem arises in a rich variety
of applications, so it has attracted tremendous research efforts.

Let G = (V,E) be a graph on N vertices with average degree d. A classical
theorem of Turédn asserts that a(G) > %7 which was strengthened independently by
Caro [6] and Wei [17] as a(G) > > v/ ﬁ (this bound is better than the former
since function 1/(1 + z) is strictly convex); a nice probabilistic proof of this theorem
can be found in Alon and Spencer [4]. In case G is triangle-free, Turdn’s lower bound
can be improved substantially. As shown by Ajtai et al. [1, 2] and Ajtai, Komlds, and
Szemerédi [3], a(G) > %fgd, where (and throughout this paper) log z stands for the

*Received by the editors March 27, 2004; accepted for publication (in revised form) November
11, 2005; published electronically February 21, 2006.

http://www.siam.org/journals/sidma/20-1/44257 . html

tDepartment of Mathematics, Tongji University, Shanghai 200092, China (li_yusheng@mail.
tongji.edu.cn). The work of this author was supported in part by the National Natural Science
Foundation of China.

tDepartment of Mathematics, University of Hong Kong, Hong Kong, China (wzang@maths.hku.
hk). The work of this author was supported in part by the Research Grants Council of Hong Kong.

96



DIFFERENTIAL METHODS FOR FINDING INDEPENDENT SETS 97

natural logarithmic function, and constant ¢ can be set equal to 1/2.4 (cf. Griggs [9]).
Shearer [15] confirmed a conjecture of Ajtai, Komlds, and Szemerédi [3] and managed
to improve ¢ to 1 — o(1) by establishing that a(G) > Ng(d), where

zlogr —x+1

(1) g(x) = W’

he [16] further improved the bound as a(G) > >, g(d,), where the function g(z) is
asymptotically equal to g(z) as © — oco. In his proofs, Shearer first introduced the
appealing differential methods, which are proved to be very powerful in applications.
Shearer’s results can be extended [11, 12, 13] as follows: if in a graph G with N
vertices and average degree d, any subgraph induced by a neighborhood has no vertex
of degree at least m, then a(G) > >, gm(dy) > Ngp(d), where

1 _ \1/m
@ o) = [ L

(Notice that gy (z) is exactly Shearer’s function g(z) as specified in (1).) This result
has interesting applications in Ramsey theory [12, 14]; for instance, it yields R(m,n) <
(14 0(1))n™=1/(logn)™ 2, where Ramsey number R(m,n) is the smallest integer N
such that for any graph G of order N, either a(G) > m or a(G) > n holds. It is
worthwhile pointing out that since the order of magnitude of R(3,n) is n?/logn (see
Kim [10]), the above-mentioned lower bound due to Ajtai, Komlds, and Szemerédi
[3] cannot be improved more than a constant factor; we believe Shearer’s bound is
asymptotically sharp on extremal graphs for R(3,n).

The independent set problem on hypergraphs is much more difficult and in-
tractable than that on graphs. So it is natural to restrict our attentions to some
special classes of hypergraphs. A hypergraph H is called r-uniform if each edge of
‘H contains exactly r vertices (so a 2-uniform hypergraph is a graph), and called
triangle-free if H contains no three distinct vertices v, v2, v3 and three distinct edges
E., Es, E3 such that {v1,v2,v3} — {v;} is a subset of F; for i = 1,2,3. We say that
a hypergraph H is linear if any two edges of H have at most one vertex in com-
mon. A linear hypergraph H is said to be double linear if for any two nonadjacent
vertices u and v, each edge containing u contains at most one neighbor of v. Caro
and Tuza [7] proposed a problem on extending the lower bound of Ajtai, Komlds,
and Szemerédi [3] to triangle-free hypergraphs; as a solution to this problem, Zhou
and Li [18] proved that every r-uniform linear triangle-free hypergraph H satisfies
a(H) > N f,.1(d), where function f,(x) is much bigger than (logz)/x when r > 3.
Observe that if a linear hypergraph H is triangle-free, then its subhypergraph induced
by any neighborhood has maximum degree zero. However, the converse need not hold
in general. In this paper we consider hypergraphs whose subhypergraphs induced by
neighborhoods may have edges.

Let us define some functions before presenting our main result. As usual, let
B(p,q) = fol(l — t)P~14971dt denote the beta function with p, ¢ > 0. For integers
r > 2 and m > 1, set constants

1 r—2

“Ce-nr TS

and

1
B = B(a/m,1—b) = / (1 —t)¥/m=1=0q,
0
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Clearly, 0 <a <1,0<b< 1, and B > 0. For the above r, m and = > 0, define

N

Since

(1—t)/m (1—t)/m 1 afm—1,—
P iy ppe vy s ) Rabenl Gl AL

we see that f,,(x) is bounded above by 1 and thus is well defined.

THEOREM. Let H = (V, &) be an r-uniform, double linear hypergraph with degree
sequence {d,}. If the maximum degree of any subhypergraph induced by a neighborhood
is less than m, then

a(H) =Y frm(dy).

veV

Note that if r = 2, then a = 1, b =0, and B = m, s0 fa,, is the function g, (z)
defined in (2). And f,1(z) is precisely the function involved in the above Zhou-Li
bound. Since any graph and any linear triangle-free hypergraph are double linear,
our theorem generalizes all the results cited above, including Turan’s theorem and
the Caro—Wei theorem as long as graphs in consideration satisfy the conditions.

For any fixed integers » > 3 and M > 1, it was shown in [18] that f,.1(z) >
(log™ x)/z provided z is large enough. We shall verify that f,.,,(z) is a convex
function for # > 0 and that f,,,(z) ~ (logz)/x if r = 2 and ¢/ "=V if » > 3, as
x — 00, where ¢ = ¢(r,m) > 0 is a constant and ~ means an asymptotic equality. By
convexity of f,.,(z), we have f, ,(d) < ﬁ > wev frm(dy), where d = ﬁ > vev do-
Thus the following is an immediate consequence of the above theorem.

COROLLARY. For fized integers r > 3 and m > 1, let ¢ = ¢(r,m) > 0 be the
constant as described above. Then for any € > 0, there exists a constant D = D(r,m, €)
such that if a hypergraph H = (V, €) is double linear, r-uniform, and the subhypergraph
induced by any neighborhood has mazximum degree less than m, then

cN
OZ(H) 2 (1 - 6) dl/(rfl)’

where N = |V| and d is the average degree of H with d > D.

2. Properties of the function f, ,,. The purpose of this section is to exhibit
some properties satisfied by the function f; ,,, defined in the preceding section.

LEMMA 1. For fized integers r > 2 and m > 1 and for x > 0, the function
f(x) = frm(z) satisfies the differential equation

3) (r = 1)?x(z —m)f'(z) + [(r = Do+ 1]f(z) = 1.

Moreover, f(x) is strictly and completely monotonic, that is, (—1)* f(¥)(z) > 0 for all
x > 0. In particular, f(x) is positive, strictly decreasing, and strictly convez.
Proof. By differentiating x under the integral and then integrating by parts,
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we have

z(z —m) f'(z)
_ —mae—m) [ (L= g
- G

mz [ a/mal_b & 1
B 0(1_)/ t bdt( (x—m)t)dt
—mz ! 1

= B 0o m+ (;C _ m)t {(1 - b)(l — t)a/mtfb _ %(1 . t)a/mfltlfb} dt

ax ! (1-— t)“/m_ltl_b
B m —|—( —m)t

= —(1-b)zfla am/( = m+(:cl—m)t>(1t)a/mtbdt

= —(1-b)zf(z)+a—af(z)

:_<Tf1+(r_11)2>f(x)+(r_11)2’

so the desired differential equation follows. The strict and complete monotonicity of
f(x) can be seen by repeatedly differentiating « under the integral. 0

Let us now proceed to the asymptotic behavior of the function fa ., (z).

LEMMA 2. For any fized integer m > 1 and for x > 1, we have

dt

=—(1=bzf(z)+

log(z/m) — 1 zloge —xz+1
—— L < < -
. _fQ,W(x)— (1,_1)2

Therefore fom(x) ~ (logz)/x as x — co.
Proof. We first claim that for fixed x > 1, function
(1—t)t/mdt boot/mat

1
fonlo) = [ St = [

decreases as m > 1 increases. To justify the claim, setting t = u"™ gives

fom(@ / mum—i-xl—um)

So it suffices to show that if 6 > 0 and 0 < w < 1, then

mu™ (m + §)um+?
mu™ + z(1 —u™) = (m+ §)umts + z(1 — umt+d)’

Equivalently,
su™ 4 m — (m 4+ 8)u’ > 0.

For this purpose set h(u) = 6u™*% +m — (m + 8)u®. Then h(1) = 0 and h'(u) =
§(m+ §)u’~t(u™ — 1) < 0 for O < u < 1, and thus the claim follows.
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Since for x > 1, we have

1+(x-1)t  (z—12

1 J— J—
le(x):/o (1 —t)dt zloge —x+1

by the above claim f3 ,,,(z) < f2.1(x), and so the upper bound is established.
To derive the lower bound, note that

B 1 (1—t)1/mdt 1 (1—t)dt
f2,m(x)_/0 m_|_(gj—m)t> o m+(z—m)t

_ xlog(x/m) —x+m S log(z/m) — 1

- )

(x —m)? x

where the last inequality amounts to (2x — m)log(x/m) > x — m, or equivalently
(2t —1)logt >t — 1. Set ¢(t) = (2t — 1)logt —t + 1. Then ¢(1) = 0 and ¢'(¢) =
2logt + (1 — 1/t), which is less than 0 if 0 < ¢ < 1, equal to 0 if ¢ = 1, and greater
than 0 if ¢ > 1. Hence ¢(t) > 0 for ¢ > 0, implying the lower bound. 0

Our next lemma concerns the case when r > 3; it shows that the asymptotic
behavior of f, ., is dramatically different from that of fa ,,.

LEMMA 3. For fized integers r > 3 and m > 1, function f.m(x) ~ —76=y as
x — 00, where ¢ = c(r,m) > 0 is defined to be

m /1 (1—t)e/™ /°° dt
dt +a .
B(m+1)*/m Jo t(m+1t) mt1 UM (L —m)b=a/m

Proof. Our proof relies heavily on the theorem that a linear first-order differential
equation

%
dz

y = @) (yo N / q(t)e—qs(t)dt)
zo

satisfying yo = y(zo), where ¢(z f p(t)dt. Now let us transform the differential
equation (3) in Lemma 1 into the above standard form. Then we get

= p(x)y + q(z)

has a unique solution

77@((7"—1):10—1—1) an o) = a
Set rp = m + 1 and

(1 t)o/m

m
r,m 1 Thr L N
Yo = f (m+ / tbm+ )

It follows from the uniqueness of the solution that

fr,m(l') = €d>(ac) (yo + / q(t)ed’(t)dt) for x > m + 1.

m—+1
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Since
z —1t+1
o) = — [ AU,
m—+1 t(t - m)
1/m
1
= —alog ((TM—) (1, m)r—l-‘rl/m) ’
X
we obtain
(4) 6¢(I) = .Ta/m
(m + 1)(1/m($ _ m)l/(T—1)+a/m
1
(5) ~ (m + 1)(1/7er1/(7'—1) ’
and hence

e @) (m + 1)a/mxl/(rfl)_
Thus there exists a constant M > 0 such that for all t > m + 1,

Me/=1 M
—o(t —

Recall that b > 0 as 7 > 3, so fyzo_H q(t)e ?*Mdt < oo and

/m q(t)e_¢(t)dt = /OO q(t)e_d’(t)dt —o(1)

n+1 m—41

as x — oo. It follows from (5) that

(@)= (o [ gt Oai— o)
m+1
C
/1)

where ¢ = m(yo + fTZOH q(t)e=?Wdt). Using (4) and plugging yo, we see that
¢ is as defined in the lemma. |

3. Proof of the theorem. Let us introduce some notions before presenting the
proof. For each v € V| let H, be the subhypergraph of H induced by V — (N (v)U{v}),
and let {d],} denote the degree sequence of H,. For simplicity, write f, ., (z) as f(z).
Set S(H) = X, ev) f(du) and S(Hy) = 3, cy (3, f(d,). The default value of
S(Hy) is zero if V — (N (v) U {v}) = 0.

The key step of our proof is to establish the following statement.

LEMMA 4. There exists a vertex v in H such that 1 + S(H,) > S(H).

To show that H contains an independent set I with size at least )\ f(d,), we
may apply the following algorithm: Initially set I = (). Let v be the vertex exhibited
in Lemma 4. Set I = I U {v} and H = H,. Repeat the process until H contains no
vertex.

So Lemma 4 serves as a criterion for selecting vertices in I. Let us now prove
that such an independent set I is indeed as desired.
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Proof of the Theorem (assuming Lemma 4). We apply induction on |V, the
number of vertices in H. Since f(0) = 1 by (3), the assertion holds trivially for
|[V| = 1. So we proceed to the induction step.

Note that a(H) > 1+ «(H,) for any vertex u of H. Let v be a vertex as described
in Lemma 4. Then, by induction hypothesis, we have a(H) > 14+« (H,) > 1+S(H,) >
S(H), completing the proof.

It therefore remains to prove the above lemma.

Proof of Lemma 4. For each v € V, set

No(v) ={z € V = (N(v) U{v}) : N(z) N N(v) # 0}
and
Y(v) =1+ S(H,) — S(H)
=1+ > [f(d) = f(do)] = f(do) = D fldu).

zEV (Hy) wEN (v)

Besides, for each x € Na(v), set ny , = |N(v) N N(x)|. Let us consider the terms in
Y (v). Since any vertex z € V(H,) — Na(v) satisfies d/, = d, and any vertex x € Na(v)
satisfies di, = d;, — n, , (for H is double linear),

Y()=1-f(do)— > fldu)+ D [flde—n0z)— f(dy)]-

uEN (v) 2E€N2(v)

Clearly, (6) is equivalent to saying that Y (v) > 0 for some vertex v of H. So to prove
the lemma it suffices to show that

(6) > Y=o

veV (H)

Since H is linear and r-uniform,

veV (H) ueEN (v) veV (H)
So
d Y(v)
veV (H)
= > {1=(r=Dd+1Uf(d)}+ D > [f(de—nu) = f(do)].
veV (H) veEV (H) zEN2(v)

Observe that o € Ny(v) if and only if v € No(z) and that n, ; = n, .; exchanging the
variables in the sum gives

Z Z [f(dw - nv,w) - f(d:v)] = Z Z [f(dv - nv,$) - f(dv)]
vEV (H) z€N2(v) vEV (H) zEN2(v)

Let

Z(U) = Z [f(dv - nv,w) - f(dv)]

zEN>(v)
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Then
(7) YY) = Y {1-[r—Ddy +1f(d)}+ > Z(v)
veV (H) veV (H) veV (H)

Now comes the technical part of our proof, the analysis of the term ZUeV(H) Z(v).
Since f(z) is convex, we have

(®) flr—1) = f() > fly—1) — f(y) whenever 1<z <y,

(To see this, write x = a(z — 1)+ (1 —a)y and y — 1 = B(x — 1) + (1 — B)y, where
0 < o, < 1. By convexity, f(z) < af(x—1)+(1—a)f(y) and f(y—1) < Bf(x—1)+
(1-8)f(y). Summing up these two inequalities yields f(z)+ f(y—1) < f(z—1)+f(y)
as o+ = 1.) From (8) we deduce that

Ny,z

f(dv - nv,w) - f(dv) = Z [f(dv - Z) - f(dv - (Z - 1))] > [f(dv - 1) - f(dv)]nv,wa

i=1

and so

Z@) = [f(dy=1) = f(d)] Y nug

Note that H is double linear, r-uniform, and each vertex uw € N(v) is incident to at
most m — 1 edges in N (v). Moreover, there is precisely one edge in H containing both

u and v. So
Z Nyz > (r—1) Z (dy, —m).

€N (v) u€EN (v)

Write A, = f(dy, — 1) — f(dy). Then

ZZ ZT—IZZd—m

veV(H veEV (H) ueN (v)
=(r=1)Y " > {(du—m)A, + (dy —m)A,}
EeE uweE
=(r=1Y_ > {(dy—m)Ay + (dy — m)Ay + (du — dy)(Ay — A)}.
Ecf u,veE

By (8), we get (dy, — dy)(A, — Ay) > 0. Thus

> Zw)= (=1 > {(dy — m)Ay + (dy —m) Ay}

veEV(H) Ec& u,veE

(r—1) Z Z (dy —m)A

veEV (H) ueN(v)

r—l de—m

veEV (H)

From the convexity of f(z), it follows that f(y) > f(x)+ f'(z)(y—z) for any z,y > 0.
So A, = f(dy, — 1) — f(dy) > —f'(d,) and hence

(9) Yo Zw) = —(r—1)% > dyf f'(dy).

veEV(H) veEV (H)
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Finally, combining (7) with (9) and using differential equation (3) in Lemma 1, we
obtain

Y Y

veEV(H)

> > {1 [(r =Dy +1f(dy) — (r — 1)%dy(dy — m) f'(dy)}
veEV (H)

=0.

This completes the proof of (6) and hence the lemma.
It is easy to see that our proof yields a polynomial-time algorithm for finding an
independent set in H with at least > i, fr.m(dy) vertices.

M.

< <Qz
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LINEAR ORDERINGS OF SUBFAMILIES OF AT-FREE GRAPHS*
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LORNA STEWARTY

Abstract. Asteroidal triple free (AT-free) graphs have been introduced as a generalization of
interval graphs, since interval graphs are exactly the chordal AT-free graphs. While for interval
graphs it is obvious that there is always a linear ordering of the vertices, such that for each triple of
independent vertices the middle one intercepts any path between the remaining vertices of the triple,
it is not clear that such an ordering exists for AT-free graphs in general.

In this paper we study graphs that are defined by enforcing such an ordering. In particular,
we introduce two subfamilies of AT-free graphs, namely, path orderable graphs and strong asteroid
free graphs. Path orderable graphs are defined by a linear ordering of the vertices that is a natural
generalization of the ordering that characterizes cocomparability graphs. On the other hand, moti-
vation for the definition of strong asteroid free graphs comes from the fundamental work of Gallai
on comparability graphs.

We show that cocomparability graphs C path orderable graphs C strong asteroid free graphs C
AT-free graphs. In addition, we settle the recognition question for the two new classes by proving
that recognizing path orderable graphs is NP-complete, whereas the recognition problem for strong
asteroid free graphs can be solved in polynomial time.

Key words. graph algorithms, complexity, asteroidal triple free graphs, recognition algorithm,
linear ordering
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1. Introduction. We say that a vertex in a graph G = (V, E) intercepts a path
in G if it is adjacent to at least one vertex of the path, and it misses the path otherwise.
An asteroidal triple (AT) is an independent set of three vertices such that, between
every pair, there is a path that is missed by the third. A graph is AT-free if it does
not contain an AT.

One of the most compelling motivations for the study of AT-free graphs is the
idea that these graphs exhibit a type of linear structure. Indeed, the linear structure
exhibited by AT-free graphs is explained, in part, in [1], where it is shown that every
connected AT-free graph contains a dominating pair (two vertices such that every
path connecting them is a dominating set) and a type of linear “shelling sequence”
called a spine.

The original motivation for the results of the present paper was the idea that
AT-free graphs might be characterized by the existence of a vertex ordering satisfying
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certain conditions. Looking back at the introduction of AT-free graphs as general-
izations of interval graphs, there is an immediate candidate for such an ordering by
requiring that for any independent triple in this ordering the central vertex should
intercept every path between the remaining vertices of the triple. It is easy to see
that interval graphs and even cocomparability graphs have such an ordering of the
vertices (see below). However, it is not clear whether every AT-free graph possesses
such an ordering.

Vertex orderings have proven to be useful algorithmic tools for several families
of graphs. For example, chordal graphs (respectively, cocomparability graphs) are
characterized by the existence of vertex orderings that do not contain the forbidden
ordered configuration shown in Figure 1 (a) [2] (respectively, (b) [8]). A graph is
an interval graph if and only if it has a vertex ordering that contains neither of the
configurations of Figure 1 (see, for example, [11]). Such vertex orderings are referred to
as chordal orderings, cocomparability orderings, and interval orderings, respectively.

o v e o Do
(a) (b)

Fic. 1. Forbidden ordered configurations.

In other words, in an interval ordering, for every path on two vertices (that is, for
every edge), the left endpoint of the path is adjacent to all vertices between the two
endpoints of the path. In a cocomparability ordering, each vertex between the two
endpoints of a P, is adjacent to one or both endpoints of the Ps. It is well known that
interval graphs are exactly those graphs that are both chordal and cocomparability [5]
or, equivalently, both chordal and AT-free [9]. Furthermore, cocomparability graphs
are a proper subclass of AT-free graphs [6].

An alternate characterization of the cocomparability ordering is given in Obser-
vation 1.1.

OBSERVATION 1.1. A wertex ordering vy, ...,v, of graph G is a cocomparability
ordering if and only if for all v;,vj,vi, with i < j < k, vertex v; intercepts each
v, Vg -path of G.

From this, one can easily see that a cocomparability graph must be AT-free since
any independent triple occurs in some order, say, * < y < z, in a cocomparability
ordering “<.” and thus, there cannot exist an z, z-path missed by y. In an attempt
to generalize the cocomparability ordering while retaining the AT-free property, we
introduce the following definition.

DEFINITION 1.2. A graph G = (V, E) is path orderable if there is an ordering
v1,...,V, of the vertices such that for each triple of vertices v;,v;, vy with ¢ < j <k
and viv,, ¢ E, vertex vj intercepts each v, vi-path of G; such an ordering is called a
path ordering.

Observation 1.1 and Definition 1.2 imply that cocomparability graphs are path
orderable. Cj, the chordless cycle on five vertices, is a path orderable graph which
is not a cocomparability graph. It is clear that path orderable graphs must be AT-
free. However, can Definition 1.2 be used for characterizing AT-free graphs? Figure 2
shows an AT-free graph together with an ordering that is not a path ordering. Hence,
the question here is whether it can be turned into a path ordering. Unfortunately, we
shall see later that path orderable graphs form a strict subset of AT-free graphs; in
particular, the graph in Figure 2 will be shown to be not path orderable.
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Fic. 2. AT-free graph G with ordering that is not a path ordering; in particular, path 6-7-8-9
is not intercepted by 3 (the edges of the path are dashed).

Nevertheless, since path orderable graphs are interesting in their own right, we
attempted to provide a structural characterization of this graph class by identifying
a type of forcing relation on nonadjacent pairs of vertices and the type of structure
that makes the vertex ordering of Definition 1.2 impossible.

These investigations follow in Gallai’s footsteps [3, 10] in that they involve ideas
similar to his forcing relation on the edges of a comparability graph (equivalently, the
nonedges of a cocomparability graph) and his definitions of wreaths and asteroids.
Specifically, we define strong asteroids and show that path orderable graphs are strong
asteroid free. However, it turns out that the strong asteroid concept does not provide
a characterization of path orderable graphs; we shall see that path orderable graphs
form a proper subclass of strong asteroid free graphs which, in turn, form a proper
subclass of AT-free graphs.

Thus, we will identify two distinct subclasses of AT-free graphs, both of which
contain cocomparability graphs:

cocomparability C path orderable C strong asteroid free C AT-free.

The interest lies, in part, in the natural vertex ordering, in one case, and the
relationship with Gallai’s work, in the other case. Furthermore, the identification of
these graph classes should allow us to narrow the gap between known polynomial
and known NP-complete behavior of problems in the domain of AT-free graphs. For
example, the complexity status for coloring, Hamiltonian path, and Hamiltonian cycle
is still unresolved for AT-free graphs but is in P for cocomparability graphs.

We conclude the paper with a proof that the recognition of path orderable graphs
is NP-complete, and with a polynomial time recognition algorithm for strong asteroid
free graphs. We note that the NP-completeness result settles an open problem stated
in [13].

Background. In his paper on comparability graphs [3, 10], Gallai studies the
forcing between the edges imposed by a transitive orientation (to avoid misunder-
standings, from now on we will refer to the transitive-forcing as t-forcing). Let G
be an arbitrary graph. Two edges which share a common endpoint and whose other
endpoints are nonadjacent t-force each other directly. That is, in any transitive ori-
entation, either both edges are directed away from the common endpoint or both are
directed toward it. The transitive closure of the direct t-forcing relation partitions
the edges of G into t-forcing classes. Either there are exactly two different transitive
orientations of the edges of a t-forcing class, or there is none. The latter case occurs
when some edge is t-forced in both directions, in which case GG is not a comparability
graph. Edges xy and xz are said to be knotted if y and z are connected in G[N(z)],
the complement of the subgraph of G induced by N(z), where N(z), the neighborhood
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of x, is defined as N(z) = {u | uz € E}.

To capture the t-forcing in a given graph G, Gallai uses the concept of a knotting
graph: For a graph G = (V, E) the corresponding knotting graph is given by K[G] =
(Vk, Fx), where Vk and Ex are defined as follows. For each vertex v of G there
are copies vy, va,...,v;, in Vi, where i, is the number of connected components of
GIN(v)]. For each edge vw of E there is an edge v;w; in Ex, where w is contained
in the ith connected component of G[N(v)] and v is contained in the jth connected
component of G[N(w)]. Please refer to Figure 5 for an example of a graph together
with its knotting graph.

In this graph two edges are incident if and only if they are knotted. The edges of
the t-forcing classes of G are given by the connected components of K[G]. Using this
structure, Gallai shows that a graph G is a comparability graph if and only if K[G] is
bipartite.

The following definitions from [3] describe structures which lead to t-forcing
classes which cannot be transitively oriented and knotting graphs which are not bi-
partite.

DEFINITION 1.3. An odd wreath of size k in a graph is a cycle of knotted edges,
specifically, a sequence of wvertices vy, v1,va,...,Vg, where k is odd, vi,...,v; are
distinct, vg = vg, and for all i, 0 < i < k, edges v;v;41 and v;41V;42 exist in the graph
and are knotted (addition modulo k).

DEFINITION 1.4. An odd asteroid of size k in a graph is a sequence of vertices
Vo, U1, V2, - . ., U where k is odd, v1,...,vx are distinct, vg = vy, and for alli, 0 < i <
k, there exists a v;v;y1-path in G which is missed by Vi q ksl (addition modulo k).

Gallai points out that an odd asteroid is the complement of an odd wreath and
proves that a graph is a comparability graph if and only if it contains no odd wreath
or, equivalently, a graph is a cocomparability graph if and only if it contains no odd
asteroid. Note also that an AT corresponds to an odd asteroid of size three.

As an example of an odd asteroid, consider the graph G in Figure 2. Here, the
sequence of vertices 1,3,5,7,8,1 forms an odd asteroid of size 5 in G. The sequence
1,5,8,3,7,1 of vertices forms an odd wreath of size 5 in G.

2. Path orderable graphs and strong asteroid free graphs. As we have
seen, t-forcing is a fundamental concept for comparability graphs, and thus for co-
comparability graphs as well. Given the similarities of the linear ordering character-
izations of path orderable graphs and cocomparability graphs, one might expect a
similar forcing concept for path orderable graphs. In fact such is the case.

For a graph G and a vertex v of G let C1,...,C) be the connected components
of G\ N[v] and let B}, ..., B be the connected components of the graph induced by
the vertices of C; in G (1 < i < k); the B! are called the blobs of v in G. (Here
Nv] := N(v)U{v} denotes the closed neighborhood of vertex v in G.) As an example,
consider the graph in Figure 3.

LEMMA 2.1. Let G be a path orderable graph and let vy, ..., v, be a path ordering
of G. For every vertex v of G and for every blob B of v, the vertices of B occur either
all before v in the path ordering or all after v in the path ordering.

Proof. Suppose there are a vertex v and a blob B of v with u,w € B and
u < v < w in the path ordering “<” of G (see Figure 4 for a sketch of this setting).
By the definition of blobs, u and w are in the same connected component C' of G\ N[v].
Since v and w are also in the same connected component B of C in G, there has to
be a path of nonedges in B between u and w. Thus, there is a pair of vertices u’, w’
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5 10 9 11 14 15

Fic. 3.  The blobs of vertex v = 10 are given by the sets {0}, {1,2,3,4}, {6}, {8},
{11,12,14,15, 16}.

Fic. 4. Proof idea of Lemma 2.1.

in B with v/w’ ¢ E and v’ < v < w'. But «/,w’ € C; therefore there is a u’, w’-path
in G \ N[v], contradicting the path ordering. d

By Lemma 2.1, any path ordering has to fulfill the property that if one of the
vertices u of a blob B of v precedes v in the ordering, then all of the vertices of B
occur before v.

Consider now the graph G in Figure 2. Following the above definition of blobs, ver-
tex 3 has the three blobs {6,7,8,9}, {5}, {1}; vertex 7 has the blobs {3, 1,9}, {2}, {5};
vertex 8 has the blobs {3,5,6}, {4}, {1}; vertex 5 has only the blob {1,2,3,6,7,8,9};
and vertex 1 has only the blob {3,4,5,6,7,8,9}. Suppose there is a path ordering
of G. By Lemma 2.1 we can, without loss of generality, assume that 1 precedes all
vertices of its blob and thus 5 appears after all vertices of its blob in the path ordering;
in particular, vertices 3, 6, 7, 8, 9 are between 1 and 5. Since 7 and 8 are in the same
blob of 3, they appear either both before or both after 3 in the path ordering. How-
ever, if they both appear before 3, then, again by Lemma 2.1, we have a contradiction
because 3 and 1 are in the same blob of 7, but on different sides in the path ordering.
On the other hand, if both 7 and 8 appear after 3 in the path ordering we again have
a contradiction, since 3 and 5 are in the same blob of 8 but on different sides in the
path ordering. Hence there cannot be a path ordering for the graph in Figure 2.

COROLLARY 2.2. The class of path orderable graphs is strictly contained in the
class of AT-free graphs.

LEMMA 2.3. If a graph G is path orderable then every induced subgraph of G is
path orderable.

Proof. This follows by the definition of path orderable and since any path in an
induced subgraph of graph G is also a path in G. O

When interpreting the constraints of Lemma 2.1 as orientations of the edges of
G, in the sense that edges from the same blob of a vertex v to v in G have to have
the same orientation (i.e., representing before or after v in the path ordering), one
can define the following forcing on the edge set of G.

Let G be an arbitrary graph and let e; = wv, es = vw be edges of G with a
common end-vertex v. Then one can define a relation ~ by e; = ey (e and es force
each other or are knotted at v) if and only if u and w are in the same blob of v
(possibly u = w) in G. The transitive closure of this relation defines a class partition
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of the edges of G, where two edges e,, e are in the same class (forcing class) of G
if there is a sequence eq,es, ..., e, of edges such that e, = e; " ex ~ -+ = e = €.
Observe that the forcing classes are refinements of the t-forcing classes.

An orientation of the edges of G is said to agree with the forcing if for any vertex
v and any blob B of v all edges between B and v are oriented in the same direction
(either toward v or away from v). For a graph G a linear ordering vy, ..., v, of the
vertices of G is said to agree with the forcing if the corresponding implied orientation
of the edges of G (uv is oriented from u to v if u < v in the linear ordering “<”)
agrees with the forcing.

Note that when the orientation of one of the edges of a forcing class is fixed, then
the orientation of all the edges of its forcing class is determined; hence, either there
are exactly two different orientations of the edges of a forcing class that agree with
the forcing, or there is none. In the latter case, some edge is forced to be oriented in
both directions, meaning that there is no ordering consistent with the forcing.

LEMMA 2.4. A graph G is path orderable if and only if there is a linear ordering
of the vertices of G agreeing with the forcing.

Proof. If G is path orderable, then, by Lemma 2.1, the path ordering has to agree
with the forcing relation.

Suppose there is a linear ordering “<” of G that agrees with the forcing relation
and suppose there is a triple u < v < w of vertices that violates the path ordering
property, i.e., uw ¢ E, and there is a u,w-path in G \ N[v]. Hence, u and w are in
the same connected component C of G\ N[v] and, since uw ¢ F, u and w are also in
the same blob B of v. But then this ordering does not agree with the forcing relation,
which is a contradiction. ]

COROLLARY 2.5. A graph G is path orderable if and only if there is an acyclic
orientation of G, agreeing with the forcing relation.

Proof. Determine a topological ordering, using the acyclic orientation of G; then
the corollary follows from Lemma 2.4. 0

One can define a graph, similar to Gallai’s knotting graph, representing the forcing
classes of G. For a graph G = (V, E) the altered knotting graph is given by K*[G] =
(Vk, Ek), where Vi and Ek are defined as follows. For each vertex v of G there are
copies vy, ..., v;, in Vi, where i, is the number of blobs of v in G. For each edge vw
of F there is an edge v;w; in Ex, where w is contained in the 7th blob of v in G and
v is contained in the jth blob of w in G.

FIG. 5. A graph G together with its complement G, K[G], and K*[G].

As Gallai did for the knotting graph, we draw the altered knotting graph K*[G]
of a given graph G by putting different copies of the same vertex close together. See
Figure 5 for an example of a graph G, together with its complementary graph G, its
knotting graph K[G], and its altered knotting graph K*[G]. The blobs of the vertices
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of G are as follows: vertex 1: {2,3}, {4,5}; vertex 2: {1}, {3}, {6}; vertex 3: {1},
{2}, {6}; vertex 4: {1}, {5}, {7}; vertex 5: {1}, {4}, {7}; vertex 6: {2,3}, {7}; vertex
7: {4,5}, {6}.

Our next task is to examine configurations which cannot occur in path orderable
graphs. As a step toward this goal, we define restricted types of odd wreaths and
asteroids.

DEFINITION 2.6. An odd strong wreath of size k in a graph G is a sequence of
vertices vg,v1, ...,V where k is odd, v1,...,vx are distinct, vg = v, and for all i,
0 <1<k, edges v;viy1 and vi4+1vV;42 exist in the graph and are knotted in the altered
sense; that is, v; and v;1o are in the same blob of v;11 in G (addition modulo k).

DEFINITION 2.7. An odd strong asteroid of size k in a graph G is a sequence of
vertices vg,v1, ...,V where k is odd, vy,...,vr are distinct, vg = vg, and for all i,
0 <i<k,v; and v;y1 are in the same blob of Uig g1y in G (addition modulo k).

The two notions are complementary; that is, a graph G has an odd strong wreath
if and only if G contains an odd strong asteroid. Furthermore, strong asteroids and
strong wreaths are restricted types of asteroids and wreaths. We also note that the
ATs correspond to the odd strong asteroids of size three. Figure 6 features a graph
containing an odd strong asteroid as well as its complement that contains an odd
strong wreath.

U1 w1

V4 U3

F1G. 6. Graph of Figure 2, containing an odd strong asteroid and its complement, containing an
odd strong wreath (vertices of the asteroid and the wreath are marked by vi,...,vs and wi,...,ws,
respectively; the edges of the wreath are dashed).

DEFINITION 2.8. A graph G is strong asteroid free if it does not contain an odd
strong asteroid.

Similar to the t-forcing results, the following holds.

LEMMA 2.9. The forcing classes of a graph G are precisely the connected compo-
nents of K*[G].

The next two observations follow from the fact that an odd strong asteroid of size
k in G corresponds to an odd cycle of size k in K*[G].

OBSERVATION 2.10. A graph G is strong asteroid free if and only if K*[G] is
bipartite.

OBSERVATION 2.11. A graph G is AT-free if and only if K*[G] is triangle-free.

LEMMA 2.12. If a graph G is path orderable then K*[G] is bipartite.

Proof. Let v1,...,v, be a path ordering of G. Now orient the edges of K*[G] as
follows: v;v; is oriented from v; to v; if i < j. Now, by Lemma 2.1, each vertex of
K*[G] has either only incoming or only outgoing edges. Hence, it is bipartite. o

Not only does the graph in Figure 2 show that path orderable graphs are strictly
contained in AT-free graphs, but it also establishes that strong asteroid free graphs
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are strictly contained in AT-free graphs, as shown in the next lemma.

LEMMA 2.13. The class of strong asteroid free graphs is strictly contained in the
class of AT-free graphs.

Proof. Consider the graphs of Figures 2 and 6. It is easy to check that the vertices
named vy, ...,vs in Figure 6 form an odd strong asteroid in G, and that G is AT-
free. d

Similar to Lemma 2.3 one can prove the following lemma.

LEMMA 2.14. If a graph G is strong asteroid free then every induced subgraph of
G is strong asteroid free.

In the case of comparability graphs, Gallai not only showed that the knotting
graph K[G] of a comparability graph is bipartite but also proved that a bipartite
knotting graph K[G] is a sufficient condition for G being a comparability graph. The
major tool that he used for proving this result is a lemma which shows the following.
Given a bipartite knotting graph K[G] consider a triangle of G with the property that
at least two of the edges of the triangle are in the same t-forcing class; then in any
orientation of G that agrees with the t-forcing, the triangle is not oriented cyclically.

It turns out that a similar lemma holds for strong asteroid free graphs, too. Specif-
ically, for a graph G with a bipartite altered knotting graph K*[G], any orientation of
G that agrees with the forcing relation does not contain a cyclically oriented triangle.
However, contrary to the t-forcing relation, this lemma is not enough to imply that
the orientation is acyclic and, indeed, we shall show that this is not necessarily the
case.

OBSERVATION 2.15. Given a vertex v in a graph H and vertices u,w € N(v),
which are the endpoints of an induced Py in N(v), then the edges uv and wv force
each other (see Figure 7).

FI1G. 7. Vertex v with Py in N(v) together with the corresponding altered knotting graph.

Remark 2.16. Using this observation one can create a forcing path, i.e., a path
P, where each consecutive pair of edges of P is knotted at the common end-vertex
by the help of an added P, as described in Observation 2.15; see Figure 8 (in the
following, edges and vertices of the path P itself are called original edges/vertices,
and the added edges and vertices are denoted as auziliary edges/vertices). By the
forcing, the orientation of any original edge of P forces the orientation of all other
original edges of P. Note that the knotting graph of a forcing path does not contain
a triangle or any odd cycle. Furthermore, if P has even length, then the end-edges of
P are either both oriented toward the inner vertices of P or both oriented outward
from the inner vertices of P. Similarly, if P has odd length, the end-edges of P have
opposite orientations with respect to the inner vertices of P.

THEOREM 2.17. The class of path orderable graphs is strictly contained in the
class of strong asteroid free graphs.

Proof. Consider the left graph in Figure 9. This graph is the complement of a
strong asteroid free graph G. This is proved by constructing the altered knotting
graph K*[G] (see the right graph in Figure 9). By Observation 2.15, the thick edges
force each other, as shown in the altered knotting graph; and, without having a
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Fi1G. 8. A forcing path of length 4 (original edges and vertices are bold).

!

Tk

Fi1G. 9. Complement of a strong asteroid free graph, which is not path orderable (left), together
with its altered knotting graph (right). To ease understanding of its structure, in the knotting graph
the corresponding auziliary Py wvertices are drawn in the figure for only one of the arms of the
example. One of the two possible forced orientations of the main forcing class is given in the right
picture.

strong asteroid in G, there is a forced oriented cycle on the vertices z1, ...,z in G.
Consequently, by Corollary 2.5, GG is not path orderable. This construction holds for
any k > 4. 0

3. Recognition of path orderable and strong asteroid free graphs. In
this section, we show that the recognition of path orderable graphs is NP-complete.
This result answers a question posed by Spinrad in [13]. In contrast, we describe how
to recognize strong asteroid free graphs in polynomial time.

First, observe that the recognition problem of path orderable graphs is obviously
in NP, since by Lemma 2.1 for a given ordering one can easily check in polynomial time
whether it is a path ordering. If there is only one forcing class for the edge set of G

one can also check in polynomial time whether G is path orderable: Compute K*[G],
check whether it is bipartite, assign an orientation to K*[G] by orienting all edges
from one of the bipartition classes to the other, and check whether this orientation is
acyclic on G.

Similarly one can check whether G is path orderable if the number of forcing
classes of G is bounded by a constant.

For comparability graphs, Gallai’s results for the general case, i.e., where no
assumption on the number of edge classes is made, lead to a polynomial time recogni-
tion algorithm. For this he introduced the (by now well-known) concept of modular
decomposition and proved that, using this decomposition scheme, the problem of
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recognizing comparability graphs reduces to the problem of recognizing prime compa-
rability graphs. But what about the recognition of path orderable graphs? Can one
extend the decomposition scheme to this problem?

NOT-ALL-EQUAL 3SAT. [4]

INSTANCE: Set U of variables, collection C of clauses over U such that each clause
¢ € C has |c| = 3.

QUESTION: Is there a truth assignment A for U such that each clause in C' has at
least one true literal and at least one false literal?

Remark 3.1. Without loss of generality one can assume that none of the clauses
contains more than one literal of a variable.

To prove the NP-hardness of the recognition problem of path orderable graphs, we
use a transformation from NOT-ALL-EQUAL 3SAT (NAE 3SAT). Given an instance
I of NAE 3SAT, a graph G is constructed, which is the complement of a path orderable
graph if and only if I is NAE 3SAT-satisfiable. In particular, it will be shown that I
is NAE 3SAT-satisfiable if and only if there is an acyclic orientation of G that agrees
with the forcing. By Corollary 2.5 this is equivalent with G’ being path orderable.

The basic construction of G is as follows. For every variable x of U an edge e, is
created (called a wvariable edge in the following) and the two possible orientations of
e, are associated with the two possible values true and false of z.

T

z Y
a
x

z Y
b

Fic. 10. Gadget for clause x V yV z.

For each clause C' = x V y V z with literals z,y, z a gadget is constructed, mainly
consisting of two Cy4’s as shown in Figure 10. In each of the Cy’s three of the edges (the
base-edges) correspond to the three literals x,y, z of C. As will be explained below,
a true literal of C' will correspond to a clockwise orientation of the corresponding
base-edges in both of the Cy’s, whereas a false literal will correspond to a counter-
clockwise orientation of the corresponding base-edges in both Cy’s. Furthermore, in
each orientation that agrees with the forcing, the fourth edges of the two C}’s, which
will be called the bridge edges (edges a and b in Figure 10), will be guaranteed to have
opposite orientations in the two Cy’s. This is realized by making these bridge edges
the end-edges of a forcing path of length 4. Consequently, with this construction, a
truth assignment of the variables of U that sets all three literals of C to true (false)
results in a clockwise (counterclockwise) orientation of all three base-edges in both
Cy’s and, since the bridge edges have opposite orientations in the two Cy’s, at least one
of the Cy’s has a cyclic orientation. On the other hand, by the above correspondence
between the orientations of the base-edges and the truth-values of the corresponding
literals, each acyclic orientation of G that agrees with the forcing leaves at least one
literal of C' true and one false.

Next, it has to be ensured that the value of a variable and the value of the literals
of this variable coincide; i.e., the orientation of the variable edge of = for value true has
to result in a counterclockwise orientation of the base-edges for T in all the gadgets
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I’l

F1G. 11. General structure of K*[G] for the instance I = (T1 Va2 VZ3) A (z2 V3V za) A (T1V
x3 V T1) (auziliary vertices and edges are omitted,).

for clauses containing literal T and in a clockwise orientation of the base-edges for
z in all the gadgets for clauses containing literal x. This is realized by connecting
each variable edge to all corresponding base-edges by the help of forcing paths that
are joined appropriately. In other words, for each variable a separate edge class is
created, containing the variable edge and all base-edges corresponding to literals of
this variable. The general structure of the connection between variable edges and base-
edges by forcing paths is shown in Figure 11; for easier understanding the auxiliary
edges and vertices of the forcing paths are omitted in this picture. For a variable
edge e, (see top of Figure 11) a downward orientation corresponds to assigning false
to variable x, whereas an upward orientation corresponds to assigning true to x. For
each literal = or T, there is a forcing path of length 4, having e, and the corresponding
base-edge as its end-edges; depending on whether the literal is T or x, either the start-
or the end-vertex of the base-edge (with respect to a clockwise ordering in the Cy) is
made the end-vertex of the forcing path.

Now, by Remark 2.16, assigning an upward orientation to the variable edge e,
results in the desired clockwise orientation of the base-edges of the literals = and a
counterclockwise orientation of the base-edges of the literals T for any orientation
agreeing with the forcing.

In Figure 12 (left) the complete construction of G for a single clause C' together
with the variable edges and the forcing paths is given, including all auxiliary edges
and vertices. In the right part of the figure the corresponding altered knotting graph
K*[G] is shown.

We now study properties of orientations of G that agree with the forcing. For this
it is sufficient to consider K*[G]. Observe first, that, by the construction, K*[G] is
bipartite; indeed, K*[G] is even a forest and for each of the variables there is exactly
one connected component in K*[G] that contains both the variable edge and all base-
edges corresponding to this variable. Note furthermore that an oriented cycle in an
orientation of G can contain neither a source nor a sink vertex of that orientation.
Consequently, all the vertices of G, having only one copy in K*[G], cannot be contained
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Fi1G. 12. Left: Complete construction for a gadget of the clause (ZT1V x2 VT3) together with the
variable edges and the forcing paths. Right: The corresponding altered knotting graph.

in any such cycle, since they have to be sources or sinks in any orientation of GG, which
agrees with the forcing. After deleting all those vertices from G, the only cycles of the
remaining graph are the two four-cycles per gadget and some triangles, each consisting
of auxiliary edges and at most one of the Cy-edges (see Figure 13). Consider any of

’

[

Fic. 13. A clause-gadget after removing all source and sink vertices.

those remaining triangles. By the construction, at least two of the three triangle-edges
are incident to the same vertex of K*[G]. Consequently, in any orientation that agrees
with the forcing relation, these two edges prevent the triangle from being cyclically
oriented. Hence, when checking an orientation (that agrees with the forcing) of the
constructed graph G to be acyclic, it is sufficient to show that each of the two Cy’s
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per gadget is acyclically oriented.

OBSERVATION 3.2. Given an orientation of G that agrees with the forcing, this
orientation is acyclic if and only if it is acyclic on both C4’s of each of the clause
gadgets.

Now we are ready to show the following lemma.

LEMMA 3.3. There is an acyclic orientation of G agreeing with the forcing relation
if and only if C has an NAFE 3SAT satisfying assignment.

Proof. Suppose that there is an NAE 3SAT satisfying assignment A. An acyclic
orientation of GG that agrees with the forcing can be constructed as follows. We assign
orientations to the variable edges (the edges on top of Figure 11) by orienting an
edge downward if the corresponding variable is set false in A and upward otherwise.
Consequently, all edges of the connected components of those edges in K*[G] have a
forced orientation as well.

The only edges that have not been assigned an orientation in this way are the
forcing classes of the bridge edges of every Cy and the single edges of the auxiliary
Py’s (see connected components of the knotting graph in Figure 12, right). The single
edges can be assigned an arbitrary orientation and for each of the bridge edge classes
just one edge is oriented arbitrarily, forcing the orientation of all other edges of this
class. Obviously, this orientation agrees with the forcing.

By the forcing of the edges and the appropriate knotting of the forcing path from
the variable representing edges to the edges representing the literals, each true literal
in a clause C leads to a clockwise oriented edge, and analogously, each false literal
implies a counterclockwise oriented edge in the corresponding Cy’s. Since every clause
has at least one true and one false literal, each of the Cy4’s has both an edge that is
oriented clockwise and one that is oriented counterclockwise. Hence, none of the Cy’s
is cyclically oriented and, by Observation 3.2, the orientation is acyclic.

Suppose now that there is an acyclic orientation of G that agrees with the forcing
relation. We assign to a variable z of U the value true if the edge representing
variable = (edges on top of Figure 11) is oriented upward and false otherwise. Since
the orientation agrees with the forcing relation, all we have to show is that all of the
clauses have at least one true and one false literal. Suppose there is a clause C', which
has only true (false) literals. By the definition of G and the forcing relation, three
edges in each of the Cy’s in C’s gadget are oriented counterclockwise (clockwise).
Since the bridge edges have opposite orientations in the two Cy’s of C, exactly one of
the Cy’s is oriented cyclically, contradicting that the orientation of G is acyclic. O

Since it is easy to see that the construction of graph G is polynomial in the size
of the input U and C, Lemma 3.3 directly implies the following theorem.

THEOREM 3.4. The problem of deciding whether a graph is path orderable is
NP-complete.

In contrast to Theorem 3.4, a polynomial time recognition algorithm for strong
asteroid free graphs follows from Observation 2.10. Given graph G, the altered knot-
ting graph of G, K*[G], can be computed in polynomial time: for each vertex v of
G, the blobs of v in G can be computed in O(n?) time; each vertex has fewer than
n blobs. Thus, K*[G] has O(n?) vertices and O(n?) edges (since each edge of G cor-
responds to exactly one edge of K*[G]) and can be constructed in O(n?®) time. To
test whether K*[G] is bipartite can be done in O(n?) time. Overall, the recognition
algorithm requires O(n?) time.

THEOREM 3.5. Strong asteroid free graphs can be recognized in time O(n?).
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4. Concluding remarks. We have defined two graph classes and shown that
cocomparability graphs C path orderable graphs C strong asteroid free graphs C
AT-free graphs. Furthermore, we have shown that the recognition problem for path
orderable graphs is NP-complete, and the recognition of strong asteroid free graphs
can be solved in polynomial time. We note that AT-free graph recognition is also in
P[1, 7).

Although it is somewhat disappointing that no two of these families are equiva-
lent, these classes may give insight into some open problem complexities on AT-free
graphs. By adding graph classes in the hierarchy between cocomparability graphs
and AT-free graphs, we may be able to identify more precisely the boundary between
polynomial and NP-complete behavior of some of the problems which are known to
be polynomially solvable on cocomparability graphs but either NP-complete or unre-
solved on AT-free graphs. Examples of such problems include graph coloring, clique
cover, clique, and the Hamiltonian path and cycle problems. One step in this di-
rection is the observation that the clique problem is NP-complete for path orderable
graphs. This follows from the facts that the complements of triangle-free graphs are
contained in path orderable graphs, and the independent set problem is known to be
NP-complete on triangle-free graphs [12].
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Abstract. We show that the shortest-path metric of any k-outerplanar graph, for any fixed
k, can be approximated by a probability distribution over tree metrics with constant distortion and
hence also embedded into ¢; with constant distortion. These graphs play a central role in polynomial
time approximation schemes for many NP-hard optimization problems on general planar graphs and
include the family of weighted k X n planar grids.

This result implies a constant upper bound on the ratio between the sparsest cut and the max-
imum concurrent flow in multicommodity networks for k-outerplanar graphs, thus extending a the-
orem of Okamura and Seymour [J. Combin. Theory Ser. B, 31 (1981), pp. 75-81] for outerplanar
graphs, and a result of Gupta et al. [Combinatorica, 24 (2004), pp. 233-269] for treewidth-2 graphs.
In addition, we obtain improved approximation ratios for k-outerplanar graphs on various problems
for which approximation algorithms are based on probabilistic tree embeddings. We conjecture that
these embeddings for k-outerplanar graphs may serve as building blocks for £; embeddings of more
general metrics.
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1. Introduction. Many optimization problems on graphs and related combina-
torial objects involve some finite metric associated with the object. In particular, the
shortest-path metric on the vertices of an undirected graph with nonnegative weights
on the edges frequently plays an important role. While for general metric spaces such
an optimization problem can be intractable, it is often possible to identify a subset
of “nice” metrics for which the problem is easy. Thus, a natural approach to such
problems—and one which has proved highly successful in many cases—is to embed the
original metric into a nice metric, solve the problem for the nice metric, and finally
translate the solution back to the original metric.

When the optimization problem is monotone and scalable in the associated metric
(as is usually the case), it is natural to restrict one’s attention to nice metrics which
dominate the original metric, i.e., in which no distances are decreased. The maximum
factor by which distances are stretched in the approximating metric is called the
distortion of the embedding. Typically, the distortion translates more or less directly
into the approximation factor that one has to pay in transforming the problem from
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one metric to the other, so obviously we seek an embedding with low distortion. The
number of applications of this paradigm has exploded in the past few years, and it
has become a versatile and standard part of the algorithm designer’s toolkit; see the
surveys [21, 22], or the book [25, Chapter 10] for more details. These applications
have also given impetus to the study of the underlying theory of finite metric spaces.

In this paper we will be concerned with embedding finite metric spaces into ¢4, i.e.,
real space endowed with the ¢; (or Manhattan) metric. Low-distortion embeddings
into /1 have been recognized, along with embeddings into Euclidean space £5 and into
low-dimensional /,, to be of fundamental importance in applications of the above
paradigm, as well as for the underlying theory. One of several compelling reasons
for studying ¢; embeddings comes from their intimate connection with the maxflow-
mincut ratio in a multicommodity flow network. Namely, if every shortest-path metric
on a given graph with arbitrary edge lengths can be embedded into ¢; with distortion
at most «, then the ratio between the sparsest cut and the maximum concurrent
flow for any set of capacities and demands on the graph is bounded by « [23, 4]. In
fact, the connection is even stronger: if there is a metric on a graph G that incurs
distortion « when optimally embedded into ¢;, then there is a setting of capacities
and demands on the graph G that achieves a cut-flow ratio of « [19]. For more details
on the sparsest cut problem, its relation to embeddings, and its application to the
design of a host of divide-and-conquer algorithms, see the survey by Shmoys [32].

A related and equally important tool in algorithmic applications is the notion
of approximating a finite metric by a probability distribution over dominating tree
metrics [7]. A metric M’ dominates another metric M if, for every pair u,v € M, the
distance between v and v in M’ is no smaller than their distance in M. If a metric M
is approximated by a distribution over dominating metrics, then the distortion for pair
u, v is the ratio of the expected distance between them in the metric chosen according
to the distribution and their distance in M. The overall (expected) distortion is
defined to be the maximum distortion over all pairs of points in M. We can view
these probabilistic approximations as embeddings. We use the term embedding into
random trees to mean that we approximate a metric by a distribution over dominating
tree metrics. Since every tree metric can be embedded isometrically (i.e., exactly, or
with distortion 1) into ¢;, embedding into random trees with expected distortion «
immediately implies an embedding into ¢; with distortion . As has been recognized
in the work of Bartal and others [1, 7], embeddings into random trees have many
applications to online and approximation algorithms. Some of these applications are
not enjoyed by arbitrary ¢; embeddings.

For general metrics the question of embeddability into ¢; is essentially resolved:
Bourgain [11] showed that any n-point metric can be embedded into ¢; with O(logn)
distortion, and this result was made algorithmic by Linial, London, and Rabinovich
[23] and Aumann and Rabani [4]. A matching lower bound of Q(logn/p) distortion
into ¢,-spaces was established in [23, 24] for the shortest-path metric of unit-weighted
expander graphs. For the case of approximating distances by distributions over dom-
inating trees, a line of work [1, 7, 8, 12, 15] culminated in showing that any n-point
metric can be embedded into a distribution over dominating trees with distortion
O(logn) [15]; the lower bound for embeddings into ¢; shows that this is tight.

However, tight bounds on the distortion incurred when embedding into ¢; is
still not known for many important classes of graphs, including planar graphs and
graphs with bounded treewidth; many such restricted classes are conjectured to be
embeddable with constant distortion. Indeed, the general question of how the topology
of a graph affects its embeddability into ¢, and into random trees, is one of the most
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important open issues in the area of metric embeddings [21, 22]. In addition to its
inherent mathematical interest, this question impacts the design of approximation
algorithms for many problems on restricted families of graphs and networks.

Some limited but interesting progress has been made on embedding restricted"
metrics into ¢1. Rao [29] showed that the shortest-path metric of any graph that ex-
cludes K., is embeddable into ¢; with distortion O(r3y/logn). This beats the Q(logn)
lower bound for general graphs for any constant 7, and also gives O(y/logn) distortion
embeddings for the classes of planar and bounded-treewidth graphs. However, Rao’s
approach (of first embedding these graphs into ¢ and then using isometric embed-
dings of /5 into ¢1) was shown to be tight by Newman and Rabinovich [26], where a
lower bound of Q(+y/logn) distortion was shown for embedding even treewidth-2 (and
hence also planar) graphs into £5.

Approaching the question from the other direction, a celebrated theorem of Oka-
mura and Seymour [28] implies that any outerplanar metric can be embedded isomet-
rically into ¢;.2 However, it has been shown that outerplanar graphs are essentially the
only graphs (with the exception of K,) that are isometrically embeddable into £; [27].
More recently, Gupta et al. [19] showed a constant distortion embedding into ¢; for
treewidth-2 graphs (which are essentially series-parallel graphs, and hence also pla-
nar). This was the first natural class of graphs shown to be embeddable with constant
distortion strictly larger than 1. (For example, the graph K5 ,, has treewidth 2 but is
not isometrically embeddable into ¢1; see [2] for a simple proof of this fact.)

Some but not all of the above results carry over to the more restrictive setting of
embedding into random trees. In [19] it is shown how to embed outerplanar graphs
into random trees with small constant distortion; note that the isometric embedding
of Okamura and Seymour is not an embedding into random trees. On the other hand,
also in [19], it is shown that even series-parallel graphs incur a distortion Q2 (log n) when
embedded into random trees. Despite this limitation, it is worth pointing out that the
random tree embeddings of outerplanar graphs played a key role in the development
of constant distortion ¢; embeddings of series-parallel graphs in [19]; the trick was to
combine the special structure of the tree embeddings with judicious use of random
cuts.

1.1. Results. In this paper, we extend the above line of research to a wider class
of planar graphs, namely, k-outerplanar graphs for arbitrary constant k. Informally,
a planar graph is k-outerplanar if it has an embedding with disjoint cycles properly
nested at most k£ deep. A formal definition is given in section 2, while Figure 4.1 shows
a simple example; a canonical example of a k-outerplanar family is the sequence of
k x n rectangular grids. k-outerplanar graphs play a central role in polynomial time
approximation schemes for many NP-hard optimization problems on general planar
graphs (see, e.g., the work of Baker [6]). Our main result is the following.

THEOREM 1.1. There exists an absolute constant ¢ > 1 such that any shortest-
path metric of a k-outerplanar graph can be embedded into random trees, and hence
into {1, with distortion c*. Moreover, such an embedding can be found in randomized
polynomial time.

IWe emphasize here that our focus is on constraints imposed on metrics by the topological
properties of the graphs on which they are defined. Thus we exclude from our discussion the extensive
recent progress on embedding other types of restricted metrics, such as “negative type metrics,”
into #1, as in [3] and related papers.

2Their result deals more generally with the cut/flow ratio in planar networks where all terminals
lie on a single face; this and other results where restrictions are placed on both the supply graph and
the demand graph can be found in surveys by Frank [16] and Schrijver [31].
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Thus, not only do such graphs embed well into ¢;, but they even embed well
into random trees. This is in contrast to the lower bound of Q(logn) for treewidth-2
graphs [19] mentioned earlier.

Our result immediately implies a constant maxflow-mincut ratio for arbitrary
multicommodity flow problems on k-outerplanar graphs. Additionally, because our ¢,
embeddings are in fact random tree embeddings, we also obtain as a byproduct im-
proved approximation ratios for a number of algorithms for problems on k-outerplanar
graphs, including the buy-at-bulk problem [5] and the group Steiner problem [17]. For
any fixed k, the improvement in each case is by an Q(logn) factor.

We should also note that since the maximum treewidth among k-outerplanar
graphs is ©(k), our result is the first demonstration of ¢; embeddings with con-
stant distortion for a natural family of graphs with arbitrarily large (but bounded)
treewidth. Indeed, k-outerplanar graphs are a natural parameterized family of planar
graphs having bounded treewidth. (Note that although all treewidth-2 graphs are
planar, treewidth-3 graphs include nonplanar examples such as K3 3.)

Finally, recall that constant distortion random tree embeddings of 1-outerplanar
graphs were a key ingredient in the construction of good ¢; embeddings of series-
parallel graphs in [19]. We are therefore optimistic that, with the addition of suitably
chosen cuts, our new tree embeddings of k-outerplanar graphs may become a building
block for constant distortion ¢; embeddings of wider classes of graphs, such as bounded
treewidth graphs or planar graphs.

1.2. Techniques. We start with the approach of trying to extend the random
tree embeddings of outerplanar graphs [19] to 2-outerplanar graphs. We do not know
a way to solve this problem directly. The first main idea in the paper is to identify a
subclass of 2-outerplanar graphs that are easier to embed, namely, Halin graphs [20].
Informally, a Halin graph is obtained by embedding a tree in the plane and attaching
a cycle around the leaves. (The formal definition can be found in section 2.) Halin
graphs are useful for the following reason. Given a 2-outerplanar graph, if we remove
the outer face we are left with a collection of outerplanar graphs. We can use the
embedding of [19] to embed each of these outerplanar graphs into random trees with
constant distortion. If we now add the outer face to this collection of trees, we obtain
(essentially) a collection of Halin graphs. Hence, if we can embed Halin graphs, we
can embed 2-outerplanar graphs. We are then able to extend this approach to embed
any k-outerplanar graph by peeling off the outer layer and recursively embedding the
inner layers.

The second main idea is a technique for embedding Halin graphs. We note that
even for this deceptively simple subclass of 2-outerplanar graphs, it is apparently non-
trivial to obtain constant distortion embeddings. To obtain an embedding, we resort
to a subtle modification of the algorithm of Gupta [18] which showed how to remove
Steiner vertices® from a tree metric with only a constant factor distortion in distances
between the remaining vertices. Though seemingly unrelated to our problem (since
we have a priori no Steiner vertices), this algorithm can nonetheless be applied (with
suitable modifications) to the tree in the Halin graph, with the effect of reducing the
Halin graph to an outerplanar graph on its leaves. This we can once again embed
into random trees using [19].

3Given an induced metric defined on a subset of vertices of a graph, we call the vertices not
belonging to this subset the Steiner vertices. Although we are interested only in the metric space
induced on the non-Steiner vertices, the Steiner vertices might be necessary in order to define the
distances between the non-Steiner vertices.
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The rest of the paper is organized as follows. We first fix notation and give
essential definitions in section 2. In section 3 we show how to embed Halin graphs
into random trees with constant distortion. This is extended to obtain constant
distortion embeddings for all k-outerplanar graphs in section 4. In the interest of
clarity of exposition, we make no attempt to optimize the constants that arise in the
various steps of our procedure.

2. Notation and preliminaries.

Metrics. For general background on finite metrics and embeddings, see [13] or
[25, Chapter 15]. Given two metric spaces, (V,v) and (W, u), and amap f:V — W,
we define the quantities

@) f)
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We say that f has contraction ||f™Y||, expansion ||f||, and distortion D(f) = | f|| -
|l f=v)|. The distortion between p and v is at most r if there exists f : V — W with
D(f) <r. We often consider two metrics  and v over the same vertex set V; in such
cases, we assume that f is the identity map. Metric p is said to dominate v if for all
r,y €V, p(z,y) > v(z,y).

Let G = (V,E) be an undirected graph. A metric (V,u) is supported on (or
generated by) G if it is the shortest-path metric of G w.r.t. some nonnegative weighting
of the edges E. Given a graph G with edge weights w(-), dg denotes the shortest-
path metric of G, and we assume that the edge weights satisfy w(e) = dg(x,y) for
e = {z,y} € E unless otherwise stated.

For S C V, the cut metric 6s(x,y) is defined to be 1 if |[S N {z,y}| = 1, and
0 otherwise. It can be shown that a metric is isometrically embeddable into ¢; iff it
can be written as a nonnegative linear combination of cut metrics [13].

A metric dg supported on a graph G is a-probabilistically approximated by a
distribution D over trees if the following conditions hold:

1. Each tree T in the distribution D has V(G) C V(T).

2. For each tree T in the distribution, the metric dr dominates the metric dg;

i.e., for all nodes z,y € V(Q), dg(x,y) < dr(z,y).

3. For all z,y € V(G), the expected distance E pldr(z,y)] < a - dg(x, y).
We shall also refer to this as an embedding of G with distortion « into random trees.
(The fact that the distortion is only in expectation will often not be mentioned.) It
is known that general graphs can be embedded into random trees with distortion
O(logn) [7, 15].

We state two simple propositions (whose proofs we omit) which we will use ex-
tensively in what follows. The first allows us to embed each block (maximal 2-vertex
connected subgraph) of a graph separately; the second says that we may always re-
place a subgraph by its tree embedding without further loss.

PROPOSITION 2.1. Suppose G has a cut-edge whose removal results in a tree T
and a graph H. If H can be embedded into random trees with distortion «, then so
can G.

PROPOSITION 2.2. Let H = (Vy,Eg) be a subgraph of G = (V,E). Let
Hy,Hs,...,Hs be graphs on Vi such that dg(u,v) < dy,(u,v) < «; - dg(u,v) for
all u,v € Vi, 1 < i < s. Then in the graph G; = (V,(E \ Eg) U Eg,), we
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FiG. 2.1. A Halin graph, with the tree T = (V, E) in solid lines and the cycle C = (U, E¢) in
dashed lines.

have dg(u,v) < dg,(u,v) < a; - dg(u,v) for all u,v € V. Moreover, consider a
random variable X taking values in {1,2,...,s}, where Pr[X =i] = p;, and let
a=E[ax] =Y, pia;. Then, for any pair u,v € V, the expected distance between
uw and v in the random graph Gx is at most adg(u,v).

Graph-theoretic terms. A graph G’ is a minor of G if G’ is obtained from G
by a sequence of edge deletions and contractions. A class of graphs is closed under
taking minors if for every graph G in the class all its minors are also in the class. For
example, planar graphs are minor-closed.

For a formal definition of treewidth, the reader is referred to standard graph theory
texts such as [14, 34]. Informally, a graph has treewidth k if it can be decomposed
recursively by vertex separators where the size of the vertex separator at each stage
is at most k.

An embedding in the plane of a graph G is outerplanar (or 1-outerplanar) if it
is planar and all vertices lie on the unbounded face. An embedding of a graph G is
k-outerplanar if it is planar, and deleting all the vertices on the unbounded face leaves
a (k—1)-outerplanar embedding of the remaining graph. A graph is k-outerplanar if it
has a k-outerplanar embedding. It is known that a k-outerplanar graph has treewidth
at most 3k — 1 [10, 30]; other properties of these graphs and related concepts can
be found in [6, 10]. Given a planar graph, a k-outerplanar embedding for which k& is
minimal can be found in polynomial time [9].

A Halin graph [20] is obtained by taking a planar embedding of a tree T' = (V, E)
and attaching a cycle C' = (U, E,) around the leaves of the tree (in order). If the set
of leaves of T is denoted by L, then VNU = L; note that U \ L may not be empty and
hence there may be vertices on the cycle C that are not leaves of T'. (See Figure 2.1 for
an example.) Tt is known that any Halin graph G = (V UU, EW E,) is 2-outerplanar
and has treewidth 3. Many algorithmic problems can be solved efficiently on these
graphs (see, e.g., [33] and the references therein). We note that while Halin graphs (as
defined here) are not minor-closed, we will not need this property in our algorithms.

3. Embedding a Halin graph. The goal of this section is to prove the following
theorem.

THEOREM 3.1. The shortest-path metric of a Halin graph can be embedded into
random trees with distortion at most 200.

Before embarking on the proof, we give a high-level sketch of our strategy. Given
a Halin graph consisting of a tree 7" and a cycle C, we first process the tree T to
obtain a random dominating tree T") | which approximates distances in T" to within a
constant factor (in expectation). Furthermore, the tree (1) has a specific structure:
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it consists of a tree T” = (L, E”) on just the leaves L of the original tree T', and the
rest of the vertices in V' \ L lie in subtrees that are attached to vertices in T". Since
we can ensure moreover that the tree 7" is a minor of T, attaching the cycle C' back
to the vertices in T" gives us an outerplanar graph. Finally, this outerplanar graph
is embedded into random trees with constant distortion using known techniques [19].

We will describe the tree processing procedure (which is the main content of the
section) in section 3.1, and in section 3.2 we will explain how to use this to reduce to
the outerplanar case.

3.1. Processing the tree. We assume that the tree T is rooted at a root vertex
r € (V\ L). This imposes, in the usual manner, an ancestor-descendant relation
between the vertices in V. Each vertex v naturally defines a tree T'(v), namely, the
subtree induced by the vertices that are descendents of v. We will use the following
parameters extensively in what follows.

DEFINITION 3.2. For a vertex v € V, let I(v) be a leaf in T'(v) closest to v, and
let h(v) be the distance of v from l(v) in T.

Note that these functions h(v) and I(v) are fixed given the rooted tree T. Let
us first give a brief overview of the processing algorithm, which has two conceptual
parts.

e The first step of the algorithm, given in section 3.1.1, returns a tree T(/2),
This tree consists of a tree 7" defined on the vertices of L plus some extra (or
Steiner) vertices, and the vertices of V' \ L hang off the vertices of T” in the
form of (possibly several) subtrees. This is done while incurring a constant
expected distortion.

e The second part of the processing, given in section 3.1.2, eliminates the Steiner
vertices of T” by contracting some of its edges to yield a tree T" defined only
on the leaves L. As a result, T(!/2) is converted into a tree T(}) with the
properties claimed above. This part is shown to incur a further constant
factor distortion.

3.1.1. Processing I: Constructing the tree T(1/2), In this section, we will
show how to convert the tree 7" into the tree T1/2) while incurring only a constant
distortion. The procedure Process-Tree to perform this processing cuts off a subtree
Ty of T which contains the root but none of the leaves, recursively acts on the subtrees
thus created, makes a new root vertex and adds edges from it to the roots of each
of the processed subtrees, and finally hangs Ty off this new root. (See Figures 3.3
and 3.4.)

Before we make Process-Tree concrete, we define the auxiliary procedure Cut-
Midway in Figure 3.1. This procedure takes as input a tree 7" which has root r and
a set L of leaf nodes. It then cuts a random set of edges to separate r from all
the leaves in L; in particular, it returns a special tree Ty containing the root r and
none of the nodes in L, and a set of subtrees T;, 1 < i < t, each rooted at some
vertex r;, which between them contain the leaves L. We say that an edge e = {u, v}
is at distance d from a vertex r if e is in the cut defined by the set of vertices whose
distance from r is at most d, i.e., if B(r,d) N {u,v} has exactly one vertex. (Here
B(r,d) = {z | dr(r,z) < d} is the ball of radius d around the node r.) It should
be noted that, in each interation of Cut-Midway, the set L decreases in size and the
parameter d increases by at least a factor of 2.

The procedure Process-Tree, which outputs a tree T7(1/2)  is given in Figure 3.2. In
this tree 7/, we denote by T” the portion formed by the new edges added between
r" and r} (for 1 < i <t) during the various recursive calls to Process-Tree. (Note that
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while a path remains in T from the root r to a vertex in L
let L « vertices in L still reachable in T' from 7
let d «— distance in T to the closest vertex in L
let S(d) « {zx € L|dr(r,z) € [d,2d)}
let T'(d) < union of the paths from r to vertices in S(d)
choose D € [d/2,3d/4) uniformly at random
E(d) <« edges in T'(d) at distance D from r
delete the edges in E(d) from T
end while
let fo «— component of T' containing root r but no leaves of T’
let 1,15, ...,T; «— other components of T
let d; < value of d when edge connecting r to T; was cut

return (Ty; (Ty, dy), (Ts, da), . .., (T}, dy))

Fi1G. 3.1. Procedure Cut-Midway(T').

© PN G wN

10.
11.
12.

apply Cut-Midway(T") to get
(To, (T1,dvr), (Ta,da), ..., (T}, dt))
let 7’ be a new vertex, called the “Steiner twin” of T’s root r
attach r’ to r with an edge of length dy = h(r)
for 1 <i<t // We do not have to work on fo
if T; is just a single vertex = (hence x € L) then
let 7% — T,
else
let Ti(l/z) «— Process-Tree(T;)
let ] be the root of Ti(l/g)
// T is the Steiner twin of r;, the root of T;
add edge {r’,7}} with length 3d;
end for
return tree T("/2) with 1’ as its root

this does not include the edges added between r’ and r, i.e., between the original roots
and their Steiner twins.) For an example see Figure 3.3, where Cut-Midway performed
three cuts, and Process-Tree resulted in the tree in Figure 3.4. The solid edges in the
latter tree belong to T, the dashed ones belong to T”, and the edge {r,r'} is shown as
a faint line. We remark that T” includes all the leaves of T, plus all the Steiner twins

Fic. 3.2. Procedure Process-Tree(T).

created during Process-Tree.

Let us call an edge a candidate to be cut at some step if it has a nonzero probability
of being cut at that step. We show the following bound on the expected distortion

incurred by Process-Tree in passing from 7' to T(1/2).

THEOREM 3.3. The (expected) distortion introduced by procedure Process-Tree is

at most 25.
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T

Cut 3

Ty

Fic. 3.3. Cuts obtained by an invocation of Cut-Midway on a tree T'.

T

T

Fic. 3.4. The tree T(1/2) output by Process-Tree on the tree T from Figure 3.3. The dotted
lines indicate edges in T".

Proof. We first give a high-level sketch. The construction of the tree 71/2)
ensures that distances are not contracted by Process-Tree; the algorithm explicitly
ensures this in Process-Tree by the distances it chooses to connect the root 7’ to each
ri. Hence it suffices to bound the expected expansion of distances. We do this via two
lemmas: first, Lemma 3.4 shows that an edge is a candidate to be cut on at most two
(consecutive) occasions. Lemma 3.5 then shows that, when an edge is a candidate to
be cut, it suffers only a constant expected expansion. Combining these two results
then gives us Theorem 3.3.

LEMMA 3.4. No edge is a candidate to be cut more than twice during the entire
run of the procedure Process-Tree.

Proof. Let e = {u,v} be an edge with u being the parent of v. Consider the
first instant in time when the edge e is a candidate to be cut in a call to Cut-Midway.
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Fic. 3.5. Illustration for proof of Lemma 3.5.

Let r be the root at this time, and d* be the value of the parameter d in the while
loop of this call to Cut-Midway. In this call of Cut-Midway, it is clear that e cannot
be a candidate again. Indeed, after the cut, e will not lie on any path from r to a
leaf. A fact that will be useful later is that the portion of e that lies in the distance
interval [d*/2,3d*/4) from r is (min(dp(r,v),3d*/4) — max(dp(r,u),d*/2)), and this
value multiplied by 4/d* is the probability that e is cut at this time.

The edge e will never be a candidate again if the cut fell “below” v, or if it passed
through e, so let us assume that the cut was above u and thus e lies in one of the
trees T; with root r;. In this case the tree T; will be passed on to Cut-Midway by
Process-Tree. Now e clearly lies on some path from r; to a leaf, and hence it may be
a candidate to be cut again. Let d** be the value of the parameter d in Cut-Midway
when this happens for the first time after T; is formed.

We claim that the cut made at this point must fall below u; i.e., d**/2 > dp(r;, u).
Indeed, such a cut is made at a distance at least d**/2 = h(r;)/2 from the root r;,
where h(r;) > d* — dr(r,r;). Hence, taking distances from r, this cut is at distance
at least dp(r,r;) + h(r;)/2 > 3(dr(r,r;) +d*) > 3d* /4. But this distance is greater
than dp(r,u), and hence u always lies above this next cut. Thus, when this next cut
is made, either e will be deleted (if v lies below this cut), or the cut will fall below v
and the edge e will never again be a candidate to be cut, proving the lemma.

Before we end, let us note that the portion of e that lies in distance interval
[d**/2,3d**/4) is disjoint from the portion considered earlier and has a length of
at most max(dr(r,v) — 3d*/4,0). As before, multiplying this by 4/d** gives the
probability that e is cut if it is a candidate a second time. ]

LEMMA 3.5. Let e = {u,v} be an edge in G of length L.. If e is cut by Cut-
Midway with parameter d;, the expected distance between u and v in T2 is at most
6d; — L.

Proof. Consider an edge e = {u, v} of length ., with u the parent of v, which is
cut in some iteration of Cut-Midway, and let d; be the value of the parameter d at this
time. Consider the distance dgq /2 (u,v) between u and v in the resulting tree 7(/2),

The vertex u will be in ZA“O and the vertex v is the root r; of T; for some ¢ and
hence will be in Ti(l/ %) when T; is processed. From the description of Process-Tree
we see that dpay2) (u,v) = dpay2 (u,r;) can be expressed as dr(u,r) + dpasz (r, ') +
dpase (7' 7)) 4+ dpayse) (v, r;) (see Figure 3.5). From our construction, dpy2) (r, ') =
h(r), dpase (', 1)) = 3d;, and dpaye (1), ;) = h(r;). We observe that h(r) < d; for
all i, and that h(r;) < 2d; — dp(r,r;); the latter inequality holds because for e to
be cut, r; must lie on the path from r to a leaf in T" of length at most 2d;. Note

that this calculation also holds in the special case that v is a leaf (when 0 = h(r;) <
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2di - dT(’I"7 Tz))
Putting all these observations together we obtain

dpay (u, i) = dr(u,r) + dpay (r, 7’/) + dray2) (T’, T;) + dra/2) (7‘2, ;)
< dr(u,r) + h(r) 4+ 3d; + (2d; — dr(r,1;))
< dT(u, 7‘) +d; +3d; + (2dl - dT(T, 7‘2))
< dr(u,r) —dr(r,r;) + 6d;
= 6d; — le. 0

Now we complete the proof of Theorem 3.3. By Lemma 3.4, the edge e = {u, v}
is a candidate to be cut at most twice. From the proof of Lemma 3.4, the first time
it is a candidate it is cut with probability

p1 = (min(dr(r,v),3d*/4) — max(dr(r,u),d*/2)) x 4/d";

and, by Lemma 3.5, if it is cut, the expected distance between u and v becomes at
most 6d* — .. Similarly, the second time the chance of e being cut is

p2 = (max(dp(r,v) — 3d*/4,0)) x 4/d**,

and the expected distance is 6d** — ¢.. Finally, the distance remains unchanged at ¢,
with the remaining probability (1 — p; — p2). Putting these together, we get that the
expected distance between u and v after procedure Process-Tree is at most

6d" p1 + 6d"" pz + (1 — 2p1 — 2p2)Le

6(d" p1 +d™ p2) + Le

24 (min(dz(r,v), 3d* /4) — max(dr(r,u),d"/2)
+ max(dp(r,v) — 3d*/4,0)) + L.

24 (dp(r,v) — max(dy(r,u),d*/2)) + L.

24 (dp(r,v) — dp(r,u)) + Le

20, + 0, = 25 0.,

IN A

—~
N =
~—

IN N CIA

where we used the simplification min(z,y) + max(x — y,0) = x to obtain (3.2) from
(3.1). Thus the expected distortion is at most 25, which proves the theorem. 0

Recall that the tree T1/2) constructed by the procedure Process-Tree includes a
tree T" containing the leaves L of the original tree T'; we close this subsection with a
further observation about 7".

CLAIM 3.6. The tree T' can be obtained from tree T by edge contractions.

Proof. In each call to Process-Tree, we progressively construct T’ by removing the
tree Ty and replacing it with a star connecting 7’ to the various r; (for 1 < i < t).
But this star could equivalently be obtained by contracting all the edges of the tree
To. (Of course, we are placing new lengths on the remaining edges, but this does not
affect the topology.) d

Since L is also the set of leaves of T, and the edge contractions can be performed
without changing the planar layout of the trees, adding the cycle C around the leaves
of T also gives us a Halin graph.



130 CHEKURI, GUPTA, NEWMAN, RABINOVICH, AND SINCLAIR

3.1.2. Processing II: Removing the Steiner vertices. In this section, we
remove the Steiner vertices in the tree T’ that were created during runs of Process-
Tree, giving us a tree T”. Since T(1/2?) consists of T" with several subtrees attached
to it via cut-edges, attaching those subtrees to 7" will give us a new tree 7). The
argument in this section is similar in spirit to that in [18]. The Steiner twin vertices
from T(1/2) are removed in the same order in which they were created. Consider 7/,
the root of T"; it was created as the Steiner twin of vertex r € T. We now identify
all vertices on the path between r’ and I(r) with [(r). This process is performed on
each of the Steiner twin vertices in turn (in order of their creation), causing each of
them to be identified with some vertex in L C C. Call the resulting tree 7). This
has vertex set V', since we removed all the Steiner vertices we created in the previous
section. The following lemma proves the main result of this section.

LEMMA 3.7. The edge-contraction procedure described above ensures that the
distance between each pair of vertices of V. in T is no shorter than its distance
in T.

Proof. To show that there is no contraction, it suffices to check that no edge in
TM is shorter than the distance between its endpoints in T There are just three
kinds of edges remaining in 7": those which belong to the trees Ty in the various
invocations of Process-Tree, those between some 7 and [(r),* and those between ()
and I(r;). Note that the edges of this last type are the only edges that exist between
l(re) and I(rp), since such edges (without loss of generality) must be caused by 7,
being the root at some invocation of Process-Tree and r, being one of the r;’s created
at this step, and r, later being identified with I(r,).

Clearly, the edges in the trees fo are not changed at all. Now consider an edge
between a vertex {(r) and r. The length of this edge in T" is just h(r), which is also
the distance between [(r) and r in T. Finally, for an edge between I(r) and I(r;) in
T, the length is just 6dr(r,7;). However, the distance between these points in 7T is
at most dr(r,l(r)) + dr(r,lr,(r;)), which we upper bound next. Let d* be the value
of d when r; was separated from r in the procedure Cut-Midway. Then it follows that
dp(r,l(r)) = h(r) = d*; furthermore, the distance dr(r,l7,(r;)) < 2d*, since r; must
lie on a root-leaf path of length at most 2d*. Hence the distance between I(r) and I(r;)
in T is at most 3d*. However, dr(r,r;) > d*/2, so the distance is at most 6dr(r,r;)
as required. 0

3.2. Wrapping it all up. We now complete the proof of Theorem 3.1. Let G
be the given Halin graph, consisting of a tree T = (V, E) and a cycle C = (U, E,)
around the leaves L = V NU of T. We have seen how to transform 7" into a tree T'(!)
that consists of a tree 7" = (L, E") and a collection of trees T, T5,...,T; each of
which is connected by an edge to a vertex in L. Every vertex in V — L is contained
in exactly one of T1,T5,...,T;. Moreover, the tree 7" is a minor of 7. We have also
seen that T dominates T and that the expected expansion for any pair in 7T is at
most 25. Now consider the graph G") obtained by adding the cycle C' to the tree
TM. Let G’ be the graph obtained by adding C' to T”. (See Figure 3.6.) We claim
that G’ is an outerplanar graph. Assuming for the moment that this claim is true,
we show how we can embed G into trees with the claimed distortion.

First, from Proposition 2.2, it follows that G") dominates G and for every pair
u,v € Vg, the expected distance in GV is at most 25dg (u,v).

Next, note that G consists of G’ with the trees Ty, T, . .. ,T; connected to G’

4These edges were added between r and 7/, and the latter has been identified with I(r).



EMBEDDING k-OUTERPLANAR GRAPHS INTO ¢; 131

@ G

FIG. 3.6. G is a Halin graph; G’ is an outerplanar graph obtained from T U C, and G is
obtained by adding the trees T; to G'.

Fic. 3.7. Contracting edge {u,v} and removing u. Obtaining contours for new edges.

by cut-edges. From Proposition 2.1 it follows that embedding G’ into random trees
with distortion a produces an embedding of G(!) into random trees with distortion a.
Since G’ is an outerplanar graph, we can invoke the procedure of [19, Theorem 5.2]
to get a random subtree of G’ which approximates distances in G’ (in expectation) to
within a factor of 8. Thus G(!) can be embedded into random trees with distortion 8.

Finally, from Proposition 2.2 we see that embedding G") into random trees with
distortion 8 implies that G can be embedded into random trees with distortion 8-25 =
200. This completes the proof of Theorem 3.1.

It remains to sketch the proof that G’ is outerplanar, as was claimed above. From
Claim 3.6, T" is a minor of T, and hence T", which is obtained by contracting some
edges in T”, is also a minor of T. Moreover, since no two vertices of L are merged in
obtaining 7", G’ is a minor of G. Thus we can obtain G’ from G by a sequence of
edge deletions and contractions. This allows us to obtain an outerplanar embedding
of G’ from the given planar embedding of G as follows. First, remove any edges
of G that are removed in obtaining G’. Then consider the first edge {u,v} that is
contracted in G. Vertices u and v cannot both be in L, so let u be the vertex outside
of L. Let wui,usg,...,up be the neighbors of u that are not v. The edge {u;,u} is
a contour in the planar embedding of G. When {u,v} is contracted we remove u
and extend the edge {u;,u} to {u;,v}. By duplicating the contour of {u,v} h times
and shifting the resulting contours infinitesimally we can obtain new contours for the
edges {u1,v},...,{un,v}. (See Figure 3.7.) Thus we obtain a planar embedding of
the graph with the edge {u,v} contracted without changing the position of v. Thus
all the vertices remain in their original positions and any edge {x,y} that is not
contracted or deleted has its contour intact. We can continue this process and obtain
a planar embedding of G’ such that the vertices U D L and the contours of edges
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FiG. 4.1. A 3-outerplanar graph from [6]. The three layers A-G, a-g, and 1-8 are shown using
different shades of gray.

in E. are unchanged from the planar embedding of G that we started with. Since
all the vertices of G’ are on the outer face C, it follows that we have an outerplanar
embedding of G’.

4. On to k-outerplanar graphs. In this section, we extend the construction of
the previous section to k-outerplanar graphs. Recall that these are graphs embeddable
in the plane which are dismantled by k repetitions of the process of removing the
vertices on the outermost face. (See Figure 4.1 for an example.)

The main result of this section, and of the paper, is the following.

THEOREM 4.1. There is a universal constant ¢ such that the shortest-path metric
of a k-outerplanar graph can be embedded into random trees with distortion c”.

Proof. We begin with a high-level sketch of the proof, which proceeds by induction
on k. Since G is k-outerplanar, removing the outer face of G decomposes it into a
set of (k — 1)-outerplanar subgraphs G, ...,Gy. Each G; resides inside a face F; of
the graph induced by the vertices of the outer face of G. (See Figure 4.2.) By the
induction hypothesis, each G; can be embedded into random trees with distortion
ck=1: moreover, this can be done leaving the vertices on the outer face of G; in
their original positions. Replacing G; by its corresponding tree T; yields a Halin
graph whose outer cycle is the face F; (plus possibly some trees attached to internal
nodes of T;); see Figure 4.3. Now the procedure of section 3 can be used to embed
this Halin graph into an outerplanar graph on F; (plus some attached trees) with
constant distortion c¢;. Finally, the union (over i) of all these outerplanar graphs
is again outerplanar and so by [19, Theorem 5.2] can be embedded into random
trees with constant distortion co. The overall distortion incurred in this process is
=1 ¢y - ey < ¥ if we choose ¢ = ¢;cp.

Remark. The reader may recall from section 3 that we can take ¢; = 25 and
co = 8 in the above. Hence Theorem 4.1 holds with the constant ¢ = 200.

We now proceed to spell out the details of the above argument. We begin with
the induction hypothesis, which needs to be slightly stronger than the statement of
the theorem. We assume G = (V, E) is given along with its k-outerplanar embedding,
and Fy(G) is the set of vertices on the outer face of G. (In what follows, we will often
abuse notation and blur the distinction between a face and the vertices that lie on it.)

Induction hypothesis. Let G = (V, E) be a connected k-outer-
planar graph with Fy(G) as the outer face in some k-outerplanar em-
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bedding. Then the shortest-path metric of G can be probabilistically
approximated by a collection of trees on V' with expected distortion
at most c®. Moreover, for each subtree T in this distribution, the
vertices of the outer face Fy(G) induce a (connected) subtree that is
a minor of G.

The importance of the extra condition placed on the trees T is the following. Let
T’ be the subtree induced by the vertices of Fy(G); note that the vertices of V' \ T’
reside in subtrees hanging off 7" by single edges. Since 7" is a minor of G, we can
construct it by edge deletions and contractions while leaving the vertices of Fy(G) in
their original positions, as explained in section 3.2. This allows us in the induction to
replace G by T” without disturbing the outer face Fy(G).

The base case for the induction is K = 1, when G is an outerplanar graph. For
outerplanar graphs, [19, Theorem 5.2] shows an embedding of G into trees that are
subgraphs of G with constant distortion (at most 8). Being subgraphs these trees are
certainly minors, so the extra condition in the induction is satisfied.

Fi1G. 4.2. Partitioning of a k-outerplanar graph G into (k — 1)-outerplanar graphs G1,...,Gs.
The bold lines indicate G, the graph induced by the outer face.

For the induction step, we may assume that G is 2-vertex connected; otherwise
we can work with each block of G separately. Let G be the subgraph of G induced
by Fo(G), the vertices on its outer face; clearly G is an outerplanar graph. (See
Figure 4.2.) Let Fy, Fs, ..., Fy be the internal faces of G, V; the subset of V' \ Fy(G)
lying inside the face F;, and G; the induced graph on V;. We assume without loss
of generality that G; is connected, since otherwise we can work with its connected
components separately. We make the following assumption for technical reasons: for
any vertex v € F; there is at most one vertex u € V; such that {u,v} € E. This is
without loss of generality, since if it does not hold for a vertex v € F;, we can split v
into a path of vertices (with the edges between them of length 0) and connect each one
to a unique vertex of V; without violating planarity. Note the following fact, which
allows us to use the induction hypothesis.

FactT 4.2. For 1 <i</{, G; is a (k — 1)-outerplanar graph.

Thus, by the induction hypothesis, each G; can be ¢*~!-probabilistically approxi-
mated by trees satisfying the extra condition. We now give a procedure to extend the
embeddings of the various GG; to an embedding of G. For 1 < i < /¢, we independently
pick a tree T; from the distribution over tree metrics for G;. Let G’ be the graph
obtained by adding the vertices of Fy(G) and the edges incident to them (in G) to
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Fic. 4.3. Returning from the induction: The bold lines denote Gg. The lightly shaded region
on the left denotes the vertices Vi corresponding to the face F1 = (abde), and the darker shaded
region on the right denotes the set B1. Note that A1 ={2,3,5}, B1 \ A1 = {4}, and V1 \ B1 = {1}.

the trees T7,...,T;. Proposition 2.2 implies that the metric induced by G’ is within
expected distortion ¢*~1 of dg, and hence approximating G’ by tree metrics with an
expected distortion of ¢ will prove the induction hypothesis for G.

Let T} be the subtree of T; that is induced by Fy(G;); the fact that it is a tree is
guaranteed by the extra condition in the induction hypothesis. Let A; be the vertices
in V; that have an edge to some vertex in Fj; since G is planar, A; C Fy(G;). Let T}
be the minimal connected subtree of T/ that contains A4;. Let B; the vertices in T7’.
(Note that B; may contain vertices not in A; but by minimality of T/, any vertex in
B;\ A; is an internal vertex of T!”.) The remaining vertices, in V; \ B;, induce a forest
in T; that is connected via cut-edges to T}. (An example is given in Figure 4.3.)
Using Proposition 2.1, we can eliminate the vertices in V; \ B; (for 1 < i < ¢) from
G’. Tt now suffices to embed the resulting graph into trees with expected distortion
at most c.

The key claim that reduces this problem to the embedding of Halin graphs given
in the previous section is the following (see Figure 4.3).

CrAM 4.3. Let G} be obtained by adding to the tree T]' the vertices F; and the
edges in G connecting F; to A;. Then G, is a Halin graph with cycle F;.

Proof. By the induction hypothesis, the tree T is a minor of G;. Since T}/
is a subtree of T} it is also a minor of G; and hence, as in section 3.2, the planar
embedding of G; induces a natural planar embedding of 7}'. Furthermore, by our
earlier assumption, each vertex of F; has at most one edge to T)'; let E; be the set of
these edges. It follows that T along with these edges E; still forms a tree. Since T}’
was chosen to be minimal, the leaves in T are a subset of A;. Therefore the leaves
in the tree formed by adding E; to T’ are precisely the vertices of F; incident to an
edge in F;. The edges along the face F; form a cycle around these leaves, yielding a
Halin graph. a

Now we can apply the procedure of section 3 to G (omitting the final step of
embedding the outerplanar graph into trees). The resulting graph, which we call GY,
will be an outerplanar graph on F;, with the vertices of T/ attached as subtrees; the
expected distortion will be at most 25. Using Proposition 2.1 again, we can remove
these hanging subtrees to obtain the graph core(GY).

Note that the procedure in section 3 guarantees that core(GY) is a minor of Gj.
Furthermore, each core(GY) is an outerplanar graph on the face F; of the outerplanar
graph G . These two facts together imply that H = [, core(GY') is also an outerplanar
graph. Thus we can use [19, Theorem 5.2] to embed H into random subtrees of H
with expected distortion at most 8. Choosing ¢ = 25 - 8 = 200, we conclude that G’
can be embedded into random trees with expected distortion at most ¢, and hence
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that G' can be embeddded with expected distortion at most c*, as required.

To complete the inductive proof, it remains to verify that the random trees pro-
duced by the above procedure satisfy the extra property stated in the induction hy-
pothesis, namely, that the vertices of Fy(G) form a subtree that is a minor of G. The
final step of the procedure constructs a subtree Ty of the graph H whose vertex set
is exactly Fo(G). Now observe that the procedure discards vertices only when they
induce a subtree attached to the rest of the graph (invoking Proposition 2.1 on each
occasion to ensure that this introduces no additional distortion). Thus the final tree
consists of Ty with other subtrees hanging off it. To see that T is a minor of G, it
suffices to show that H is a minor of G since Tp is a subtree (and hence a minor)
of H. But H = |J, core(GY), and we already observed above that each core(G7) is
a minor of G}. Furthermore, G} is formed by replacing G; by the tree T}’ inside the
face F;, and T} is a subtree of T} and hence a minor of 7/. And we know from the
induction hypothesis that 7} is a minor of G;; hence G, is a minor of G;. This implies
that core(GY) is a minor of G;, and hence that H is a minor of G, as required. This
completes the inductive proof of Theorem 4.1. 0
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RANKING TOURNAMENTS*

NOGA ALONT

Abstract. A tournament is an oriented complete graph. The feedback arc set problem for
tournaments is the optimization problem of determining the minimum possible number of edges of
a given input tournament 7" whose reversal makes T" acyclic. Ailon, Charikar, and Newman showed
that this problem is NP-hard under randomized reductions. Here we show that it is in fact NP-hard.
This settles a conjecture of Bang-Jensen and Thomassen.
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1. Introduction. A tournament is an oriented complete graph. A feedback arc
set in a digraph is a collection of edges whose reversal (or removal) makes the digraph
acyclic. The feedback arc set problem for tournaments is the optimization problem of
determining the minimum possible cardinality of a feedback arc set in a given tour-
nament. The problem for general digraphs is defined analogously. Bang-Jensen and
Thomassen conjectured in [7] that this problem is NP-hard, and Ailon, Charikar, and
Newman proved in [1] that it is NP-hard under randomized reductions. Here we show
how to derandomize a variant of the construction of [1] and prove that the problem is
indeed NP-hard. This is based on the known fact that the minimum feedback arc set
problem for general digraphs is NP-hard (see [8, p. 192]) and on certain pseudorandom
properties of the quadratic residue tournaments described in [5, pp. 134-137]. Similar
constructions can be given using any other family of antisymmetric matrices with
{—1,1} entries whose rows are nearly orthogonal. We note that unlike the authors
of [1], we do not apply the known fact that the minimum feedback arc set problem is
APX-hard and need only the simpler fact that it is NP-hard, proved more than thirty
years ago. In fact, the proof in [1] can also be modified slightly so as to rely only on
this fact (to get hardness of approximation under randomized reductions).

2. Notation. For a digraph G = (V, E) and a permutation 7 of its vertices, an
oriented edge (u,v) € E is consistent with 7 if u precedes v in 7. Let FIT (G, ) denote
the number of edges whose orientation is consistent with 7 minus the number of edges
whose orientation is not consistent with 7. Similarly, if the edges of G are weighted,
we let FIT(G, ) denote the total weight of the edges whose orientation is consistent
with 7 minus the total weight of the edges whose orientation is not consistent with .
It is convenient to consider unweighted digraphs as weighted digraphs in which the
weight of each edge is 1, and the weight of each nonedge is 0. Most of the weighted
digraphs we use here have weights in {0,1,—1}, but it is helpful to use weights that
can be added and subtracted in order to simplify notation.
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Returning to unweighted digraphs, let F'A(G) denote the minimum size of a feed-
back arc set of G = (V, E). It is easy to see that FA(G) = (|E| —max,FIT(G,7))/2,
where the maximum is taken over all permutations 7 of V. This is because omitting
a feedback arc set leaves the remaining graph acyclic, ensuring that there is a permu-
tation 7 consistent with the orientation of all edges left, and similarly, for any 7= one
can omit all edges not consistent with 7 and get an acyclic digraph.

If G1 = (V,Ey) and Gy = (V, Eq) are two (weighted) digraphs on the same set
of vertices, the sum G; + G5 is the digraph on V in which the weight of each edge
is the sum of its weights in G; and in G3. The difference G; — G5 is defined in
a similar manner. Note that for every permutation 7 on V, FIT(Gy + Ga,7) =
FIT(GhTf') +FIT(G277T) and FIT(Gl - Gg,ﬂ') = FIT(Gh?T) - FIT(G277T)

If G is a digraph, and U C V, then G[U] denotes the induced subgraph of G on
U. We consider this subgraph, however, as a digraph whose vertex set is V', where
all vertices in V — U are isolated. If U and W are two disjoint subsets of V', then
G[U, W] denotes the subgraph of G consisting of all edges of G with an end in U and
an end in W. Here, too, the vertex set is the original set V. Let e(U, W) denote the
total number of edges of G that start at U and end at W. Thus, the total number of
edges of G[U, W] is e(U, W) + e(W,U).

3. The quadratic residue tournaments. Let p = 3 mod 4 be a prime, and
let T' = T, be the tournament whose vertices are all elements of the finite field GF'(p),
in which (4, 7) is a directed edge iff i — j is a quadratic residue. In [5, pp. 134-137] it is
shown that for every permutation 7 of the vertices of T),, FIT(T, ) < O(p*/?logp).
Here we need a stronger result, providing a similar bound for certain subgraphs of T'.

We need the following known fact, proved, for example, in [2] (see also [5, Lemma
9.1.2]).

LEMMA 3.1. Let T =T, = (V,E) be the quadratic residue tournament defined
above. Then, for every two disjoint sets Uy, Uy of T,

(U1, Uz) — e(Ua, Ur) < [ULV/2|U|/2p"/2,

Therefore, if |U;| and |Us| are large, then the number of edges of G oriented from
Uy to Us is roughly the number of edges oriented from Us to Uy, as the difference
between these two numbers is at most |U;|'/2|Us|'/?p*/2 whereas their sum is |U; ||Us|.
We next observe that this property implies that for every large set of vertices U of T',
and for every permutation 7, FIT(T[U], ) is small.

COROLLARY 3.2. Let T =T, = (V,E) be as above, let U C V be a set of
vertices of T, and let T[U] denote the induced subgraph of T on U. Then, for every
permutation w of V,

|FIT(T[U],m)| < |Ullogy [U[1p"/* < |U/log, (21U )p"/>.

Proof. We prove that for every set U of a most 2" vertices, and for every permu-
tation 7

(3.1) FIT(T[U],w) < r2" " 1pt/2.

Note that if 7 = m,ms,...,mp and T = 7w, Tp_1,...,m1, then FIT(T[U],T) =
—FIT(T[U],n), and hence the validity of (3.1) implies the assertion of the corol-
lary (including the absolute value). We prove (3.1) by induction on r. The result is
trivial for » = 1. Assuming it holds for » — 1 we prove it for r. Suppose |U| < 27.
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Given , split U into two disjoint sets Uy, Uy, each of size at most 2"~!, so that all
the elements of U; precede all those of Us in the permutation w. Clearly

FIT(T[U],7) = e(U1,Us) — e(Ua,Uy) + FIT(T|Us],7) + FIT(T[Us], 7).
By Lemma 3.1 and the induction hypothesis, the right-hand side is at most
27‘—1p1/2 + 2(7,_ _ 1)27‘—2p1/2 — T2T_1p1/2.

This completes the proof. 1]

COROLLARY 3.3. Let T = T, = (V,E) be as above, let U, W be two disjoint
subsets of vertices of T, and let T[U, W] denote the bipartite subgraph of T consisting
of all edges of T with an end in U and an end in W. Then, for every permutation m
of V,

|[FIT(TIU, W], m)| < [ (U] + [W])[logo(|U| + [W])] + [U][ogs |U]]
+ W [log [W1] Jp'/2.

In particular, if |U| < a and |W| < a, then |FIT(T[U, W], )| < 4alog,(4a)p*/?.
Proof. In the notation of section 2, T[U, W] = T[UUW]|—-T[U]—-T[W]. Therefore,
for every ,

\FIT(T[U,W], )| = |FIT(T[U UW], =) — FIT(T[U},x) — FIT(T[W], 7)|,

and the desired result follows from the triangle inequality and three applications of
the previous corollary. |

The a-blow-up of a digraph H, which we denote by H(a), is the digraph obtained
by replacing each vertex v of H by an independent set I(v) of size a, and each
directed edge (u,v) of H by a complete bipartite digraph containing all a? edges from
the members of I(u) to those of I(v). It is easy to check that the minimum size of a
feedback arc set of H(a) satisfies FA(H(a)) = a>FA(H). Indeed, this follows from
the fact that if 7 is a permutation of the vertices of the blow-up H(a) that maximizes
FIT(H(a), ), and if ,y are two vertices of H(a) that lie in the same I(v), then one
may always shift either x to lie right next to y in 7 or vice versa without decreasing
the number of consistent edges.

Our main technical lemma is the following.

LEMMA 3.4. Let H = (U, F) be a digraph, let p = 3 mod 4 be a prime, and
let T =T, = (V,E) be the quadratic residue tournament described above. Let a be
an integer and suppose that o|U| < p. For each u € U, let I(u) be an arbitrary
subset of size a of V', where all |U| sets I(u) are pairwise disjoint, and let T’ be the
tournament obtained from T as follows: for each edge (u,v) € F of H, omit all edges
of T that connect members of I(u) with those of I(v), and replace them with all the
a? directed edges that start at a member of I(u) and end at one of I(v). Then, for
every permutation m of V,

|FIT(T',7) = FIT(H(a), )| < p**logy(2p) + 4|F|alogy(4a)p'/?.

Proof. Consider H(a) as a digraph on the sets of vertices I(u), v € U. By
construction,
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T'=T— > Tl(u),I(v)]+H(a).
(u,w)EF

Therefore, for every ,

FIT(T',x) = FIT(T,7)— S FIT(T{I(u),1(v)}, ) + FIT(H(a), 7).
(u,v)EF

It follows that

|FIT(T ,7) — FIT(H(a),7)| < |FIT(T, )| + Z |FIT(T[I(w), I(v)],7)],
(u,w)EF

and the desired result follows from Corollary 3.2, which implies that |FIT(T, )| <
p°/?1og,(2p), and from Corollary 3.3, which implies that for each fixed (u,v) € F,
|FIT(T[I(u), I(v)],7)| < 4alogy(4a)p'/?. O

4. The main result.

THEOREM 4.1. The minimum feedback arc set problem for tournaments is NP-
hard.

Proof. Tt is known (cf., e.g., [8, p. 192]) that the minimum feedback arc set
problem is NP-hard, even for digraphs H in which all outdegrees and indegrees are
at most 3 (this last point is not essential here, but we use it to make the computation
explicit). Given a digraph H = (U, F)) as above, let a = |U|°, where ¢ > 3 is a fixed
integer, and let p = 3 mod 4 be a prime between |Ula and, say, 2|U|a. Such a prime
always exists, by the known results on primes in arithmetic progressions, and it is
easy to find such a prime in time polynomial in |U|, by exhaustive search. Let T”
be the tournament constructed from 7}, and the blow-up H(a) of H as described in
Lemma 3.4. Computing FA(T") is equivalent to computing max,FIT(T’, r), where
the maximum is taken over all permutations 7 of V. However, by Lemma 3.4 it follows
that the value of max, FIT(T’, ) provides an approximation up to an additive error
of p*/2log,(2p) + |F|4alog,(4a)p'/? < 13p3/2log,(4p) for max, FIT(H(a), ), where
here we used the fact that |F| < 3|U| and the fact that |U]a < p. Since, as explained
after the proof of Corollary 3.3, max, FIT(H (a),7) = a’*max, FIT(H,r), where the
last maximum is taken over all permutations o of the vertices of H, we conclude that if
a® > 13p/? log, (4p), this approximation will enable us to determine max, FIT (H, )
(and hence also FA(H)) precisely. Since a = |U|¢ and p < 2|Ul|a < 2|U|*T?, this is
the case provided ¢ > 4, completing the proof. ]

5. Remarks and problems.

e By choosing ¢ appropriately in the above proof it follows that for every fixed
€ > 0, it is NP-hard to approximate FA(T) for a tournament on n vertices
up to an additive error of n2~¢. Note that approximating it up to an additive
error of en? can be done in polynomial time using the algorithmic version of
the regularity lemma (for digraphs), or the methods of [6].

e It will be interesting to decide if the minimum feedback arc set problem
for tournaments is APX-hard. The authors of [1] describe a randomized
algorithm that provides a constant approximation of this quantity.

e The assertion of Lemma 3.1 here follows from the fact that the absolute value
of the sum of entries in any submatrix of the p by p matrix B in which B;; =
x(¢ — j), where x is the quadratic character, can be bounded as described
in the lemma. If G = (V, E) is a general directed graph, with weights on
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its edges, let A = Ag be a matrix whose rows and columns are indexed by
the vertices of G, in which for each u,v € V, A(u,v) = w(u,v) — w(v,u) is
the difference between the weight of the directed edge from w to v and that
from v to w (0 if both these edges are missing). Thus, the matrix B above is
the matrix Ar,, where T}, is the quadratic residue tournament described in
section 3.

The cutnorm ||A]|c of a real matrix A is the maximum absolute value of
the sum of entries in a submatrix of A. Note that if A = Ag, where G
is a weighted directed graph, then for two subsets U;,U; C V, the sum
Zu1€U1,uzeU2 A(uy,u2) can be expressed as follows. Put Uz = U; N Us. For
two disjoint subsets X, Y of V let D(X,Y") denote the total weight of all edges
oriented from X to Y minus the total weight of all edges oriented from Y to
X. Then

(5.1) > Afur,ug) = D(Uy — Uy, Ua) + D(Us, Uz — Uy).

u1 €Ur,u2€U2

The authors of [3, 4] describe a polynomial time algorithm that finds, given
a matrix A, two subsets Uy, Us such that |-, <, u,cp, Au1, uz)| is at least
al|A]|¢ for some absolute constant o > 0 (for randomized algorithms o >
0.56). As in our case the matrix A is antisymmetric, the algorithm provides
Ui,Us so that the above sum (with no absolute value) approximates the
maximum cutnorm. In view of the expression (5.1) this supplies an «/2
approximation for the maximum possible value of D(X,Y), as X and Y
range over all pairs of disjoint subsets of V.

The bound in Corollary 3.2 can be slightly improved, using the expression
in (5.1) and the fact that for the matrix A = A, of the quadratic residue
tournament, the absolute value of the sum of entries of any submatrix with s
rows and ¢ columns is at most v/stp. Indeed, plugging this fact into a simple
modified version of the proof of Corollary 3.2 one can prove the following: If
U is a set of vertices of T}, and |U| < 3" for some integer r, then for every
permutation 7 of the vertices of T},, FIT(T[U],x) < 2r3"'p'/2.

The basic approach of proving hardness results for dense instances of compu-
tational problems by reducing the task of solving precisely sparse instances
to dense ones, adding a pseudorandom collection of edges to a blow-up of a
sparse instance, can be applied to various additional similar problems. Sev-
eral far reaching applications of this approach, combined with some additional
ideas, will appear in subsequent joint work with Ailon and in another work
with Shapira and Sudakov.

REFERENCES

. AILON, M. CHARIKAR, AND A. NEWMAN, Aggregating inconsistent information: Ranking and

clustering, in Proceedings of the 37th ACM STOC, Baltimore, ACM, New York, 2005,
pp. 684-693.

. ALON, Eigenvalues, geometric expanders, sorting in rounds and Ramsey theory, Combina-

torica, 6 (1986), pp. 207-219.

. ALON AND A. NAOR, Approzimating the cut-norm via Grothendieck’s inequality, in Proceed-

ings of the 36th ACM STOC, Chicago, ACM, New York, 2004, pp. 72-80.

. ALON AND A. NAOR, Approzimating the cut-norm via Grothendieck’s inequality, STAM J.

Comput., 35 (2006), pp. 787-803.

. ALON AND J. H. SPENCER, The Probabilistic Method, 2nd ed., Wiley, New York, 2000.



142 NOGA ALON

[6] S. ARORA, D. KARGER, AND M. KARPINSKI, Polynomial time approzimation schemes for dense
instances of NP-hard problems, in Proceedings of the 27th ACM STOC, ACM, New York,
1995, pp. 284-293.

[7] J. BANG-JENSEN AND C. THOMASSEN, A polynomial algorithm for the 2-path problem for semi-
complete digraphs, SIAM J. Discrete Math., 5 (1992), pp. 366-376.

[8] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability, A Guide to the Theory of
NP-Completeness, W. H. Freeman and Company, New York, 1979.



SIAM J. DISCRETE MATH. (© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 143-159

THE LINKING PROBABILITY OF DEEP SPIDER-WEB NETWORKS*

NICHOLAS PIPPENGERT

Abstract. We consider crossbar switching networks with base b (that is, constructed from b x b
crossbar switches), scale k (that is, with b* inputs, b¥ outputs, and b links between each consecutive
pair of stages), and depth [ (that is, with [ stages). We assume that the crossbars are interconnected
according to the spider-web pattern, whereby two diverging paths reconverge only after at least k
stages. We assume that each vertex is independently idle with probability ¢, the vacancy probability.
We assume that b > 2 and the vacancy probability q are fixed, and that k and | = ck tend to infinity
with ratio a fixed constant ¢ > 1. We consider the linking probability @ (the probability that there
exists at least one idle path between a given idle input and a given idle output). In a previous
paper [Discrete Appl. Math., 37/38 (1992), pp. 437-450] it was shown that if ¢ < 2, then the linking
probability @ tends to 0 if 0 < ¢ < g (where g = 1/b(c=1)/¢ is the critical vacancy probability) and

tends to (1 — £)? (where £ is the unique solution of the equation (1 — g(1 — x))b = z in the range
0<z<1)if g¢ < g < 1. In this paper we extend this result to all rational ¢ > 1. This is done
by using generating functions and complex-variable techniques to estimate the second moments of
various random variables involved in the analysis of the networks.
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1. Introduction. We deal in this paper with linking in crossbar switching net-
works, a phenomenon not dissimilar to that of percolation in lattices (as introduced
by Broadbent and Hammersley [B] and surveyed by Grimmett [G]). An important
difference, however, is that while percolation can be studied in finite subgraphs of a
single infinite graph modeling the lattice, there is no single graph that naturally hosts
the graph modeling crossbars switching networks in which we are interested. Our first
order of business will be to describe these graphs.

A crossbar graph is characterized by three parameters: its base, b > 2, its scale,
k > 0, and its depth, [ > 0. Its vertices are partitioned into [ + 1 ranks, each
containing b* vertices, which are labeled with the strings of length k over the alphabet
{0,...,b—1}. The vertices in rank 0 are called inputs, those in rank [ are called
outputs, and those in all other ranks are called links. The edges of the graph are
partitioned into [ stages, each containing b**! edges. For 1 < m < [, the edges of
stage m are directed out of vertices in rank m — 1 and into vertices in rank m. In a
spider-web crossbar graph, which is our main concern in this paper, there is an edge
of stage m from vertex v of rank m —1 to vertex w of rank m if and only if v and w are
labeled by strings that differ at most in position j, where j = m (mod k). The edges
of each stage are thus partitioned into b*~' b x b complete bipartite graphs (called
crossbars). The spider-web crossbar graph with base b, scale k, and depth [ will be
denoted G 1,;. We shall see in section 2 that if [ > k, there are b'=* paths from a
given input to a given output; if [ < k, there is at most one path from a given input to
a given output. Our main interest is in spider-web crossbar graphs with [ > &, since
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in these graphs any input can be connected by a path to any output; in our analysis,
however, graphs with I < k will occur as subgraphs, so it will be necessary to allow
this case in some of our intermediate results.

We shall assume that each vertex in the graph G is independently assigned
the status idle, with probability ¢ (called the wvacancy probability), or busy, with
the complementary probability p = 1 — ¢ (called the occupancy probability). This
random assignment of a status to each vertex in a graph will be called the state of
the graph. Given an input v and output w, let @, ., (called the linking probability)
denote the probability that there exists a path consisting entirely of idle links from
v to w. (In this paper, “path” will always mean “directed path.” In general, the
linking probability is defined as the conditional probability that there exists an idle
path, given that v and w are themselves idle, but for the probabilistic model that we
are using, this condition is independent.) We shall see in section 2 that if [ > k, the
probability @, . does not depend on the choice of the input-output pair (v,w), so
we shall let @ denote the common value of these probabilities. The complementary
probability P = 1 — @ (called the blocking probability) is the probability that all
paths between a given input-output pair (v, w) are broken by a set of busy links.

In practice, the parameter p represents the amount of traffic being carried by a
crossbar network (which one would like to maximize), and the parameter P represents
the fraction of arriving traffic lost due to congestion within the network (which one
would like to minimize). In analysis, however, it is almost always more convenient to
work with the complementary parameters ¢ and @, so we shall work exclusively with
these parameters in what follows.

In practice, a graph G ,; would be fixed, and the linking probability ¢ would
be studied as a function of the vacancy probability ¢. It is found that @ undergoes
a rapid transition from a value near zero to a significantly positive value as ¢ passes
through a neighborhood of 1/b(!=%)/(=1) " This is easily understood in the following
way.

Let the random variable X, ,, denote the number of idle paths from v to w. We
shall see in section 2 that if [ > k, the distribution of X, ,, does not depend on the
choice of the input-output pair (v,w), so we shall let X denote a random variable
with this common distribution. Each of the b'~* paths from v to w contains [ — 1
links, which are all idle with probability ¢'~'. Thus we have

(1.1) Ex[X] ="k gt

Thus as ¢ passes through l/b(l_k)/(l_l)7 the expected number of idle paths from v
to w (called the specific transparency) goes from an exponentially decreasing to an
exponentially increasing function of k£ and [. This suggests that if k£ and [ tend to
infinity in such a way that their ratio ¢ = I[/k > 1 remains fixed while b and ¢ are also
held fixed, then @ will tend to a limit, and this limit will have a discontinuity as g
passes through the critical value

ge = 1/be=D/e.

(We note that 1 < ¢ < oo implies 1/b < ¢, < 1.) Our goals in this paper are to
confirm this conjecture and to determine the limiting value of Q.

Our first step toward these goals, taken in section 2, will be to derive the following
estimate for the second moment Ex[X?] of X.
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THEOREM 1.1. Let both b > 2 and 1/b < q <1 be fized. Then

2
Ex[X?] = Ex[X] - <(bz;_11) BT 1+ 00 ) + O q’“>>

as k,1 — oo with 1 > k and (log(l+1))/(k+1) — 0. (The constants in the O-terms
may depend on b and q, but are independent of k and [.)

We observe that this estimate is enough to establish that the limiting value (if it
exists) of @ for k — oo and | = ck cannot be a continuous function of @ as ¢ passes
through ¢.. Indeed, from Markov’s inequality and (1.1), we have

(1.2) Q=Pr[X >1] <Ex[X]=b""¢1 =0

for ¢ < g.. On the other hand, (1.1) and Theorem 1.1, together with the inequality

Ex[X]?
(1.3) Pr[X >1] > Ex[X?]’
imply
Ex[X]? bg — 1)? l
Q=rix=12 EX{X]Q] T - 1)2(61g + (Zq —1)%q (1 o <bk> +ol qk))
(1.4) (b — 1)° >0

T b-12¢ + (bg— 1)%q

for ¢ = q.. (To verify (1.3), we consider the distribution of X conditioned on the
event X > 1. Since 22 is a convex function of z, we have

Ex[X?| X >1] > Ex[X | X > 1%
Multiplying by Pr[X > 1]? yields

Ex[X?] Pr[X > 1] = Ex[X? | X > 1] Pr[X >1]?
> Ex[X | X > 1]? Pr[X > 1]?
= Ex[X]?,

which is equivalent to (1.3).) The inequalities in (1.2) and (1.4) show that the inferior
limit of @ for g = q. is strictly greater than the limiting value for ¢ < g., as claimed.

The argument of the preceding paragraph also sheds some light on the condition
(log(l41))/(k+1) — 0 in Theorem 1.1. (This condition involves k+1 and [+ 1 rather
than k and [ simply to avoid dividing by or taking the logarithm of 0.) This condition
is not the weakest one sufficient to give an estimate of the form Ex[X?] = O(Ex[X]?),
but it is clear that some upper bound on the growth of [ must be imposed, for with
probability (1 — q)bk all the links in a given rank are busy, disconnecting all input-
output pairs. Thus if [- (1 — q)bk — 00, we have Q — 0, contradicting the implication
of (1.3) when Ex[X?] = O(Ex[X]?).

In section 3, we shall combine Theorem 1.1 with branching-process arguments
from Pippenger [P3] to establish the existence and determine the limiting value of @
for ¢ > q..
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THEOREM 1.2. Letb > 2 and 0 < g <1 be fized, and let ¢ > 1 be rational. Then
as k — oo with | = ck, we have

0 if 0<q<qe,
Q—
(1-8)? ifg.<g<l,
where £ is the unique solution of the equation x = (1 —q(1 - x))b in the range

0<z <.

A comment is in order concerning the behavior of (1 —¢)? as a function of q. The
function f(z) = (1 —q(1 - x))b is a strictly convex function of z for 0 < ¢ < 1, since
f"(x) =b(b—1)g*(1 —q(1 — a:))b_2 > 0 in this range. Thus the graph of f(z) can
intersect the diagonal at most twice in this range. There is one intersection at x = 1,
and the conditions f(0) = (1 — ¢)” > 0 and f/(1) = bg > 1 imply that there is at
least one intersection in the range 0 < < 1 when 1/b < ¢ < 1. Thus there is indeed
a unique solution of the equation z = (1 —q(1— x))b in the range 0 < z < 1 when
1/b < g < 1, and this latter condition is implied by ¢. < ¢ < 1. The degree of this
equation can be reduced by 1 (because of the solution x = 1), and it is easy to see
that the resulting equation is irreducible over the field of rational functions of ¢; thus
¢ is an algebraic function of ¢ of degree b — 1. Since (1 — £)? is a polynomial in &, it
is also an algebraic function of ¢ of degree b — 1. Straightforward analysis shows that
Q—lasq—1withl-Q=1—(1-¢?2~1-2(1—q)" which may be interpreted
as saying that the main obstacle to linking when ¢ — 1 is complete occupation either
of the b links adjacent to the input in rank 1, or of the b links adjacent to the output
in rank [ — 1. As ¢ — 1/b from above, we have (1 — £)? ~ (bq — 1)2/(12’)2.

Theorem 1.2 was proved, under the additional restriction ¢ < 2, by Pippenger [P3],
so the additional contribution of the current paper consists of lifting this restriction.
Nevertheless, the techniques used in the current paper go considerably beyond those
employed in the previous paper in that the proof of Theorem 1.1 starts with a detailed
combinatorial examination of the intersections between paths, then uses complex-
variable techniques to determine the asymptotics of the quantities involved.

Spider-web networks were introduced by Ikeno [I] (though the term spider-web
has sometimes been used to refer to a broader class of networks). They have several
optimality properties among networks constructed from the same type and number of
crossbars. Takagi [T] showed that they have the largest linking probability in a large
class of crossbar networks called “rhyming” networks. Chung and Hwang [C] showed
that, surprisingly, these networks are not optimal in the larger class of “balanced”
networks. But Pippenger [P3] showed that they are asymptotically optimal in this
class for 1 < ¢ < 2, and the current paper extends this result to all ¢ > 1.

The probability distribution on states that we use was introduced by Lee [L1]
and Le Gall [L2, L3]. Tt is by far the easiest to use for analytical purposes, but it
suffers from the defect that the set of busy vertices does not form a set of coherent
paths from inputs to outputs. Models addressing this defect have been introduced by
Koverninskii [K] and Pippenger [P1], and the results in [P3] have been extended to
these models in [P2]. It seems likely that the results of the the present paper can be
similarly extended.

The current paper is self-contained, except for some estimates concerning branch-
ing processes taken from Pippenger [P3]. We have followed the notation of that paper,
except that the base, which was denoted d in that paper, is now denoted b (to free
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the symbol d for its traditional use in the calculus).

2. The second moment. Our goal in this section is to prove Theorem 1.1. We
begin with a combinatorial result concerning spider-web graphs.

LEMMA 2.1. The automorphism group of Gy, acts transitively on the paths
from inputs to outputs.

Proof. Since an automorphism must permute the vertices within each rank, an
automorphism ¢ may be regarded as a sequence ¢ = (¥, . .., ¥;) of permutations, one
for each rank. We shall focus on automorphisms in which each ¥, (for 0 < m <1) is
characterized by a string 9y, 1 - - - ¥ & of k digits from the alphabet {0,...,b—1} and
acts on the vertices of rank m by carrying the vertex labeled ai - - - ax to the vertex
labeled a - - - a},, where a;- = a; + Uy (mod b) for 1 < j < k. If, for 1 < m <, the
string ¢,,—1 differs from the string ¥, in at most position j, where j = m (mod k),
then the sequence ¥ = (Jy, ..., 9;) will constitute an automorphism.

To show that the automorphisms act transitively on the paths, it will suffice to
show, for some fixed path u*, that for every path u, there is an automorphism that
carries u* to u (since then the inverse of such an automorphism can be used to carry
any other path u’ to u*). A path u may be regarded as a sequence u = (ug,...,u;)
of vertex labels in which, for 1 < m < [, the string u,,_; differs from the string wu,,
in at most position j, where j = m (mod k). We shall choose for u* the path u* =
(0%,...,0%). Then clearly the automorphism 9 = (Jg,...,";) defined by ¥,, = un,
for 0 < m < carries u* to u. O

COROLLARY 2.2. Ifl >k, the graph Gy, contains b'=% paths from any given
input to any given output; if I < k, there is at most one path from any given input to
any given output.

Proof. If | > k, every input-output pair is joined by at least one path, since every
position in the strings labeling vertices has an opportunity to change at least once.
Thus, by Lemma 2.1 every input is joined by the same number of paths. Since each
of the b* inputs is the origin of b paths to outputs, there are a total of b'** paths
joining inputs to outputs, and thus b'~* paths joining each of the b%* input-output
pairs. If [ < k, there is a path from input v to output w only if the labels of v and
w agree in the last k£ — [ positions. Thus G 1, breaks into b*=! disjoint components,
each containing b' vertices in each rank; there is a unique path joining input v to
output w if they belong to the same component, but no path joining them if they
belong to different components. O

COROLLARY 2.3. Ifl >k, the automorphism group of Gy, acts transitively on
the input-output pairs.

Proof. If k > k, each input-output pair is joined by a path, so the corollary follows
from Lemma 2.1. |

This corollary, together with the fact that the probability distribution on states of
the graph is invariant under automorphisms of the graph, justifies our earlier assertion
that the linking probability Q. and the distribution of the random variable X, .,
are independent of the choice of the input-output pair (v, w) when [ > k. Henceforth
we shall focus our attention on the input-output pair (v*,w*) = (0%,0%). If [ > F,
this entails no loss of generality. When [ < k, we shall deal only with cases in which
the input and output of interest are joined by a path, and in these cases there is again
no loss of generality.

Fix b>2and k > 1. For I > 0, let ¢;(y) denote the generating function for the
number of paths from the input v* = 0F to the output w* = 0% classified according to
the number of links that have labels different from 0; that is, the coefficient of 4™ in
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¢i1(y) is the number of paths from v* to w* that have [ — 1 —m links in common with
the path u* = (0%, ...,0%). Clearly ¢;(y) = 1 for 0 <1 < k, and ¢;(y) is a polynomial
iny of degree [ — 1 if [ > k + 1.

We are interested in the polynomials ¢;(y) for various values of [ > 0, with b and
k fixed. To determine them, it will be convenient to work with a graph Gy that
contains as subgraphs all the graphs G, . for various values of [. For any m > 1> 0,
Gy,,0 may be regarded as the subgraph comprising the vertices in ranks 0 through [
and the edges in stages 1 through ! of G} i . Thus we may define the infinite graph

Gyi = U Gyl

1>k

as the union (inductive limit) of all these graphs. The graph Gy has inputs in rank 0,
but all other vertices will be referred to as links.

For I > 0, the polynomial ¢;(y) is the generating function for the number of
paths from the input v* = 0* to the link labeled 0% in rank [ classified according to
the number of links that have labels different from 0.

Let

Gy, 2) = euly) 2

1>0

be the generating function for the polynomials ¢;(y). The key to our estimate for the
second moment of X is the following proposition.
PRrROPOSITION 2.4. We have

1—byz+ (b—1)(yz)k+!
(1=2)(1 =byz) — (b— 1z(1 —y)(y2)*

Proof. In this proof, we shall employ a concise alternative representation of a
path w = (uq,...,u;) of length I > 0 as a string ¢ = t1 -+ tx4; of length k + [ over
the alphabet B = {0,...,b — 1}. The first k digits ¢1---tx of ¢ will be the k digits
of the label ug. For 1 < m < [, txy,, will be the digit in position j of wu,,, where
j =m (mod k) (the digit of u,, that might be different from that of u,,—1). Then for
0 <m <1, uy, is the string t,,41 - - - timtk. In particular, the last k£ digits of ¢ are the
k digits of the label u; of the link in rank [, and the paths from the input v* = 0F
to the link labeled 0* in rank [ are in one-to-one correspondence with the strings of
length k + [ over the alphabet B, whose first k digits and last k digits are 0’s.

Given a path t = Okthrl -+ t;_,0% let us overline each digit txim (1 < m <)
for which u,,_1 # 0F. The result is a string over the alphabet B U B, where B =
{0,...,b— 1} is the set of overlined digits. For [ > 0, let the language K; C (BUB)k*!
comprise the strings obtained in this way for all paths from the input v* = 0* to the
link labeled 0F in rank [, and define K C (B U B)* by

K:UKl.

1>0

Y(y,2) =

Then 1(y, z) is the power series in y and z in which the coefficient of y/z' is the
number of strings of length k£ 4 [ in K in which j digits are overlined. Let

L=0F"K={te(BUB)*:0"tec K}
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be the language obtained from K by deleting the k initial 0’s from each string. Since
none of this initial 0’s are overlined, ¥(y, z) is the power series in y and z in which
the coefficient of y?z! is the number of strings of length [ in L in which j digits are
overlined.

Our next step is to write a regular expression for the language L. Define the
alphabets B’ = {1,....,b—1} and B’ = {I,...,b—1}. Then L is described by the
regular expression

(2.1) ((A+ (E/<A+6+~--+6’“‘1))*§'6’“‘1) 0)*,

where A denotes the empty string. To see this, we observe that a string in L can be
uniquely parsed into zero or more stretches, each of which ends with an unoverlined 0.
A stretch consists of an unoverlined 0 optionally preceded by an excursion. An ex-
cursion consists of a final segment preceded by zero or more preliminary segments.
A final segment consists of a digit from B’ followed by exactly k — 1 overlined 0’s.

A preliminary segment consists of a digit from B’ followed by at most k — 1 over-
lined 0’s. Clearly a final segment is described by the regular expression B0, and

a preliminary segment is described by the regular expression E,(A +04---+ ﬁk_l).
Thus an excursion is described by the regular expression

(E’ (A+§+...+6k‘1>) B0,
and a stretch is described by the regular expression
(A + (P’ (A FO4-- +6’H)) P’G’H) 0.

Thus the strings in L are described by the regular expression (2.1).

We now observe that the regular expression (2.1) is unambiguous in the following
sense: A string described by a subexpression R + S is described by R or by S (but
not both); a string ¢ described by a subexpression RS has a unique parsing ¢ = rs
such that r is described by R and s is described by S; and a string ¢ described by a
subexpression S* has a unique parsing s = s1 ---s, with n > 0 such that s1,...,s,
are described by S.

For an unambiguous regular expression, if ¢ (y, z) and ¥s(y, z) are the generating
functions counting the strings described by subexpressions R and S, respectively, then
Vr(y, 2)+¥s(y, 2), Yr(y, 2) ¥s(y, z), and 1/ (1—1s(y, z)) are the generating functions
counting the strings described by the subexpressions R+ .5, RS, and S*, respectively.

Thus the final segments are counted by the generating function (b — 1)(yz)* and
the preliminary segments are counted by the generating function

(b= D(yz = (y2)"*1)

(b—Dyz(1+yz+ -+ (yz)kil) =

1—-yz
The excursions are counted by
b-D@z)* (- D((2)* - ()"
1— 0D 1 —yz— (b—1)(yz — (y2)*+1)’

1-yz
and the stretches are counted by

<1 L (b= Dm2)* = (y2)" ) > L2y = (b= 1)2(yz — (2)")
1—yz— (b= 1)(yz — (yz)k*1) 1—yz—(b—1)(yz — (yz)k+1)’
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Thus the strings in L are counted by

1 1 —byz+ (b—1)(yz)*+!

z—y22—(b—Dz(ye—(y2)*) (1 — — — — )
|- O (1= 2)(1— by) — (b— V(L - §)(57)

which completes the proof of the proposition. ]
PROPOSITION 2.5. Letb > 2 and 0 < g < 1 be fized. Then as k — oo, and as
1 > 0 behaves in such a way that (log(l+1))/(k+ 1) — 0, we have

b—1\>,,_ _
oi(q) = (bq1> VRGO ) + O(1g") + O(lgh).

(The constants in the O-terms may depend on b and q, but are independent of k andl.)
Proof. Write A(z) =1 —bgz + (b—1)(g2)*** and B(2) = (1 — 2)(1 — bgz) — (b —
1)z(1 — q)(g2)* so that (g, z) = A(2)/B(z). Then from Cauchy’s formula we have

1 [ ¥(g,2)d
vile) = 5 ﬁo %
1 A(z) dz

2.2 = o\ e
(22) 2mi Jr, B(z) 2+

where T is a contour taken counterclockwise around a circle |z| = ¢ centered at 0 and
having radius ¢ sufficiently small to exclude all other singularities of the integrand.

To make further progress, we must estimate the locations of these other singu-
larities, which are poles at the values of z for which the denominator B(z) vanishes.
One such singularity is at z = 1/q. Let

1 1
a=3(1-1),

and let I'; be a contour taken counterclockwise around the circle |z| = (; centered
at 0 and having radius (7. As z traverses this contour, the magnitude of the first term
(1 —2)(1 — bgz) of B(z) satisfies the lower bound

[(1=2)(1 =bgz)| = [1 = 2| |1 — bgz|

(i)
(et

since the minimum occurs when z is real and positive. The magnitude of the second
term, (b — 1)z(1 — q)(gz)¥, on the other hand, satisfies the upper bound

(b= 1)2(1 = q)(g2)*| < (b—1) (; - 1) (1 _ ;)M

<(b-1) ((11 1) ek
S(b—l)(;—l) (1_(6211%)'
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Here we have used the inequality 1—x < e™", which holds for all x because the graph of
the convex function e~ lies above that of 1—z, its tangent at x = 0, and the inequality
e ® < 1-— (e— 1)x/e, which holds for 0 < x < 1 because the graph of the convex
function e~ lies below that of 1 — (e — 1)a/e, its chord across the interval 0 < z < 1.
Thus for all sufficiently large k (specifically, for k > (bg — 1)e/(b — 1)(1 — q)(e — 1)),

we have the bound
1
BeI=9(7)

for z on the contour I'y. Since we also have A(z) = O(1) for z on I'y, we have the
estimate

1 A(z) dz

2. —
(23) 2mi Jp, B(z) 2!*1

=0(lqh.

Furthermore, as z traverses the contour I'y, the value of the first term, (1 —2z)(1—
bqz), in B(z) circles the origin twice, since it is a quadratic polynomial. Since the
second term, (b — 1)z(1 — q)(gz)*, has strictly smaller magnitude, the value of B(z)
also circles the origin twice. It follows that the denominator of B(z) has exactly two
zeros inside the contour I'y. These are perturbations of the zeros of the first term:
the zero of the first term at z = 1 is perturbed to one at

(2.4) z2=C=1+0("),

and the zero of the first term at z = 1/bq is perturbed to one at

(2.5) z:@:;(uﬁgif¢ﬁ+oggp_

The condition (log(l + 1))/(k + 1) — 0 ensures that the O-terms in (2.4) and (2.5)
have smaller orders of magnitude than the terms preceding them. We observe that
0 < (3 < (2 < (1, and thus 0, (3, and (5 lie inside I'; and lie in that order along the real
axis. Let T's be a contour taken counterclockwise around a circle |z — (3| = & centered
at (3 and having radius ¢ sufficiently small to exclude all other singularities of the
integrand, and let ' be a contour taken counterclockwise around a circle |z — (3| = ¢
centered at (3 and having radius ¢ sufficiently small to exclude all other singularities
of the integrand. Since the integral of an analytic function around a contour depends
only on the homology class of the contour in the domain of analyticity of the function,
and since Ty is homologous to I'y — 'y — '3 (indeed, Ty is homotopic to a contour
that joins a forward traversal of I'y with reverse traversals of I'y and I's by canceling
traversals of segments [(3 + €, (2 — €] and [(2 + €, (1] of the real axis), from (2.2) we

have
1 A(z) dz
ila) = 2mi ]{1 B(z) ZH1
1 A(z) dz
2mi Jp, B(z) 2!*!
1 A(z) dz
2. B S 7 e
(2:6) 2mi Jp, B(z) 2Tt

The first integral in (2.6) has already been estimated in (2.3). The remaining
integrals circle just one singularity of the integrand, and thus they can be evaluated
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by Cauchy’s formula. If ¢ is a simple pole of the integrand, and if I is a contour taken
clockwise around just this singularity of the integrand, then we have

(2) B A(z) 1

27i B (2) z“‘l © 2=¢ B(z) zt1
_AQ 1
- B/(C) Cl+1'

For the integral around T'y, we have A((3) = —(bg — 1) + O(q*) and B'(¢2) = (bq —
1) + O(k ¢*) so that

1A
2mi Jp, B(z) 2Tt

(2.7) =1+ 0(g").

For the integral around T's we have A((3) = (b — 1)2(bq _ l)b’“‘l + O(k/bzk) and
B'(¢3) = —(bg — 1) + O(k/b*) so that

2
A(z) b—1 I—k I+1 1—2k 1
(2.8) 21 8. B0 Zz+1 - (bq 1) bR g 012k ).

Substituting the estimates (2.3), (2.7), and (2.8) into (2.6) completes the proof of the
proposition. 0

We observe that by extending the asymptotic expansions in (2.4) and (2.5), it is
possible to extend the expansions in (2.7) and (2.8) and thus reduce their contributions
to the error terms in Proposition 2.4. The error term in (2.3), however, cannot be
improved without taking account of the zeros of B(z) outside the circle |z| = 1/¢,
which will in general contribute oscillatory terms to the expansion of ¢;(q).

Proof of Theorem 1.1. By Corollary 2.3, we may take X to be the number of idle
paths from v* = 0% to w* = 0. We then have

Ex(X? = ) > Prfuidle, v idle]
u i —w* wvt —w*

(2.9) = Y Prfidle] Y Prluidle]| v idle],

u' v —w* wv*F—w*

where the sums are over all paths from v* to w*. For each path u’, we can find by
Lemma 2.1 an automorphism ¢ that carries u’ to the path «* in which all links are
labeled 0*. Applying this automorphism to both v and «’ gives Pr[u idle | ' idle] =
Pr[d(u) idle | w* idle], since the probability distribution on states of the graph is
invariant under automorphisms. Furthermore,

> Prluidle | v idle] > Pr[d(u) idle | u* idle]

wuvF—w* wuv*F—w*

Z Priu idle | u* idle],

wuv*F—w*

since both right-hand sides sum the same terms in different orders. Thus the inner
sum in (2.9) is independent of u', and we have

Ex(X?|= Y Prlidle] > Prluidle|u* idle]

u’ v —w* wuvF—w*
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so that Ex[X?| factors as the product of two sums. The first sum is just Ex[X]. To
evaluate the second sum, we observe that Pr[u idle | u* idle] is just ¢/, where j is the
number of links on u that are not labeled 0¥. Thus the second sum is ¢;(q), and the
theorem follows from Proposition 2.5. 0

3. The linking probability. Our goal in this section is to prove Theorem 1.2.
Thus in this section we shall always assume that b > 2 and 0 < ¢ < 1 are fixed and
that £ — oo and [ = ck for some fixed rational ¢ > 1. Thus the constants in O-terms
may depend on c¢ as well as on b and ¢, but not on k or [. We shall also assume that
k is even; the case of odd k requires only that k/2 be replaced with |k/2] and [k/2]
in appropriate ways.

LeEMMA 3.1. Let G} ;. be the graph obtained from Gy, by reversing the direc-
tion of its edges and exchanging the roles of its inputs and outputs. Then Gy, is
isomorphic to Gy ;.

Proof. The isomorphism takes the vertex with label a; - - - ax in rank m of Gy 1
to the vertex with label aj---aj in rank I —m of G}, ;, where aj = a; with j =
I4+1—14 (mod k) (and, conversely, as it is an involution). O

Lemma 3.1 establishes a symmetry between G, and Glt,k,h which we shall
invoke by use of the term “dually.” (When [ is even, Gy is in fact isomorphic
to a graph with manifest bilateral symmetry, as is shown in the appendix of Pip-
penger [P3].)

LEMMA 3.2. Let (Gpri)mn, with 0 < m < n < I, be the subgraph of Gy,
comprising the vertices in ranks m (now considered inputs) through n (now considered
outputs) and the edges in stages m + 1 through n. Then (Gp k1)mn S isomorphic to
Gb,k,n—m-

Proof. The isomorphism takes the vertex with label a; - - - a in rank h of Gy 1 .n—m
to the vertex with label af ---aj, in rank m + h of (Gp k1)mn, where a} = a; with
j=i+m (mod k). |

COROLLARY 3.3. Between any given input and any given output of (Gpki)mn,
there are b"~™F paths if n—m > k, and there is either one path or none if n—m < k.

Proof. The proof is immediate from Lemma 3.2 and Corollary 2.2. O

We begin with the upper bound to Q. For 0 < ¢ < g., where g. = 1/b(c’1)/c,
we have @ — 0 by (1.2). For ¢. < ¢ < 1, we shall use the following lemma from
Pippenger [P3, Cor. 4.2].

LEMMA 3.4. Let T, be a complete balanced b-ary tree of depth r, and let each
vertex of T,. (except for the root) be considered idle with probability q independently.
Let the random variable Z, denote the number of leaves (vertices at depth r) for which
every vertex on the path from the root (exclusive) to the leaf (inclusive) is idle. Then
we have

Pr(Z, = 0] = £+ O(")

asr — oo with b > 2 and 1/b < q < 1 fized, where £ is the unique solution of the
equation (1 —q(1 75))1) =¢ in the range 0 < € <1, andn = b(l —q(1 75))1771 <1.
Now set r = k/2 and s = [ — k/2. The paths from an input v to links in rank r of
G,k form a tree isomorphic to T, (if we ignore the directions of the edges), and the
paths from links in rank s to an output w form a disjoint tree isomorphic to T;.. Thus
the number of links u in rank r for which all the links on the path from v to u are idle
is a random variable U with the same distibution as Z,.. Dually, the number of links
w in rank s for which all the links on the path from u to w are idle is an independent
random variable U’ with the same distribution as Z,. If v and w are linked, then we
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must have U > 1 and U’ > 1, so by Lemma 3.1 we have
Q<PrU>1,U >1]=(1-6*+0®0").

This completes the upper bound for Theorem 1.2.

We now turn to the lower bound for Theorem 1.2. Since this result has been
proved for ¢ < 2 in Pippenger [P3], we shall assume that ¢ > 2. (This assumption could
of course be avoided, but it would require a more complicated choice of parameters and
consideration of cases.) For 0 < ¢ < ¢, there is nothing to prove, since @ is certainly
nonnegative. For ¢. < ¢ < 1, we shall use the following lemma from Pippenger [P3,
Lem. 8.1].

LEMMA 3.5. With Z, as in Lemma 3.4 and 1 < H < (bq)", we have

Pr(Z. < H] <&+ 0 ((H/(bg)")")

asr — oo with b >2 and 1/b < q <1 fized, where oo =log(1/n)/log(bq) and n is as
in Lemma 3.4.
Supposing that g. < ¢ < 1, we shall define

2
¢x = ge—1 47V,

We observe that ¢ < 1 implies ¢. < g.—1 and that g, < g implies ¢, < q.
LEMMA 3.6. Let k — oo and l = ck, withb > 2, g. < q <1, and ¢ > 2 all fized.
Then for all sufficiently large k, we have

wh(Q*) < k

forall0<h<Il-—k.
Proof. From Proposition 2.4 we have

b—1\? ,_ -
onla) = (g ) 0RO ) + O(hat) + O(hal).

Since ¢. < g.—1 and h < [—k, each term is O(1), and thus at most & for all sufficiently
large k. a
Let

H= [(bq*)r]

We observe that v and w will be linked if the following three events occur:
I. The input v is joined by paths containing only idle links to all the links in a

set V' containing at least H idle links in rank 7.

IT. All the links in a set W containing at least H idle links in rank s are joined
by paths containing only idle links to the output w.

ITI. There is at least one path containing only idle links from some link in V to
some link in W.

By Lemma 3.5, we have

Pr(I] > 1-£40 ((a/q)"),

and since ¢, < ¢ we have Pr[I] — 1 — £. Dually, we have by Lemma 3.5

Pr(I1]>1-¢+0((¢./9)"),
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and thus also Pr[II] — 1 — . Since events I and II are independent, we have
Pr[I,II] — (1 —&)2. Thus to complete the proof of the lower bound for Theorem 1.2,
it will suffice to show that

Pr[[II|1,11]— 1.

Event III depends on events I and II through the sets V and W. We can avoid having
to consider this dependence by showing that Pr[ITI] — 1 for any sets V and W each
containing at least H links. Thus it will suffice to prove the following propostion.

PROPOSITION 3.7. Let V and W be any sets of links in ranks r and s, respectively,
each containing at least H links. Then

Pr[I11] — 1

as k — oo with | = ck, and with b> 2, ¢ > 2, and q. < q < 1 all fized.

Proof. Since Pr[I1I] can only increase if links are added to V or W, we may
assume that V and W each contain exactly H links. Also, since Pr[III] can only
increase if ¢ is increased, it will suffice to estimate Pr[III], assuming the vacancy
probability to be g, < g rather than q.

Let the random variable Y be the number of paths containing only idle links
joining some link in V' (exclusive) to some link in W (exclusive). Then event IIT is
equivalent to Y > 1 and thus it will suffice to show that Pr[¥Y = 0] — 0. To do this,
we shall use Chebyshev’s inequality:

Var[Y]
PrlY =0] < ExY ]2
Each path from a link in rank r (exclusive) to a link in rank s (exclusive) contains
s—1r—1=1—k —1 links. Since each of these links is independently idle with
probability g, the probability that such a path contains only idle links is ¢~*~!. By
Corollary 3.3, the number of such paths joining a given link in rank r with a given
link in rank s is b*~"~F = b'=2%_ Since there are H links in each of V and W, we have

Ex[Y] = H? b2k ¢\ 7k—1,
Next we must estimate Var[Y]. We have

Var[Y] = Z Z (Pr[u, v’ idle] — Prlu idle] Pr[u’ idle])
u VoW uV-W

Z Pr[v idle] Z (Pr[u idle | u" idle] — Prlu idle]).
u”:V—-W w:V—W

Here each sum is over all H? paths joining a link in V to a link in W, so there are H*
terms in all. If u is a path from a link in rank r to a link in rank s, let o(u) denote the
link in rank r and o(u) the link in rank s. By Lemma 2.1, we may assume (as in the
proof of Theorem 1.1) that u/ = u* is part of a path from v* = 0* through o(u') = 0*
and o(u') = 0¥ to w* = 0¥, in which all the links have label 0. Thus we have

Var[Y] = H>b' 72 g7 3" (Prfu idle | u* idle] — Prlu idle]).
wV—-W

The factor H? b'~2F g!=*=1 multiplying the sum is Ex[Y], so to show that

Var[Y]/Ex[Y]? — 0,
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it will suffice to show that J/Ex[Y] — 0, where

J= Y (Prfuidle|u" idle] — Pr[u idle]).
w:V—-W

We now partition the paths u into four classes as follows:
i. those for which o(u) = o(u) = 0%;
ii. those for which g(u) # 0% but o(u) = 0%;
iii. those for which o(u) = 0F but o(u) # 0*; and
iv. those for which o(u) # 0F and o(u) # 0F.
We shall denote the contributions to J over these four classes by J;, Jii, Jiii, and Jiy,
respectively, and estimate them in turn.
For J;, we have

i< Y Prluidle | u* idle]

u:0k —0F
= @sfr(Q*)
<k
by Lemma 3.6. Thus we have
Ji k
<
Ex[Y] = H2pi-2k q}l;kfl
k
= iR
— 0,

since . > qc.-
For J;;, we have

Ji< Y Priuidle | u* idlel.
VA{0k}—0F

To estimate Pr[u idle | u* idle], let ¢ be the first rank for which a link in u has
label 0F. Since there are two distinct paths in (Gy k)0, from v* through o(u*) = 0F
and o(u) # 0F to this link, we must have i > k + 1 by Corollary 3.3. Thus we have

Fa<H-1)| > a7 lecule)+ Y, VTR o i(a)

k+1<i<k+r k+r+1<i<s
<@E-DE( > @ Y e,
k+1<i<k-+r ktr+1<i<s

where the factor of H — 1 accounts for the choice of o(u) € V \ {0*}, the factors
preceding ¢s_;(g«) in the sums account for the probability that all the links on u
between ranks r (exclusive) and i (exclusive) are idle, the factors of ps_;(gx) account
for the probability that all the links of u between ranks 7 and s that are not labeled 0%
are idle, and we have bounded p;_;(g.) using Lemma 3.6. Bounding the sums by the
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number of terms (at most s — r =1 — k) times the largest term (the first for the first
sum, and the last for the second), we have

Ji < (H — Dk (1 — k) ("2 4 b2k gl=k—1y,

Thus we have

i R R Vg
BT T HY

1 1
Ski=F) (bl—w P (bq*>k/2)

— 0,

since b°~3/2¢¢~1 > b“‘_g/qu_1 = b_l/zqc_1 > b_l/zqg_1 =1 (because ¢, > q., b~ 1q¢ =
1, g < g2, and bgs = 1) and bg, > 1 (because g, > goo = 1/b).

Dually, we have Ji; /Ex[Y] — 0.

Finally, for Ji, we have

Jiv = Z (Pr[u idle | u* idle] — Pr[u idle])
wV\{0F } =W\ {0"}
= > (Pr[u idle | u* idle] — Prfu idle])

w:V\{0F}—Ww\{0"}
uNu*£Q

IN

Z Prlu idle | u* idle],
w:V\{0* } =W\ {0*}
uNu* #£Q
since if u N u* = (), the events “u idle” and “u* idle” are independent, and the sum-
mand Prfu idle | u* idle] — Pr|u idle] vanishes. Given a path u with u N u* # 0, let
be the first rank in which u has a link with label 0%, and let j > i be the last such
rank. As in case ii, we have k+1 < 4, and dually we have j <I—k — 1. Thus we have

< H-1*| Yo d T eila)e
kb 1<i<kdr I—k—r<j<l—k—1
1<j

+ Y. @ emi(e ) g

k+1<i<k+r r<j<i—k—r—1
i<j

+ Y Yo VTR (e

k+r+1<i<s I—k—r<j<l—-k-1
1<j

+ Z Z bi_r_kqi_r_lﬁpj,i(q*)bs_j_kqi_j_l
k+r+1<i<s r<j<l-k—r-—1
1<j
Here we have broken the sum into four parts, according to whether k+1<i<k+r
or k+r+1<1i < s, and also according to whether | —k —r < j <l —k—1 or
r < j <l—k—r—1. (We note that the second and third double sums will vanish unless
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¢ > 5/2, and the fourth double sum will vanish unless ¢ > 3.) The factor of (H — 1)?
accounts for the choice of o(u) € V'\ {0¥} and o(u) € W\ {0F}, the factors preceding
©;—i(gs) in the summands account for the probability that the links of u in ranks less
than ¢ are idle, the factors of ¢;_;(g«) account for the probability that the links of
u between i and j and not labeled 0% are idle, and the factors following ¢, _;(q.) in
the summands account for the probability that the links of w in ranks greater than j
are idle. Bounding the factors ¢;_;(g.) using Lemma 3.6, and bounding each double
summation by the number of terms (at most (I — k)?) times the largest term (which
occurs for i = k+1 and j =1 — k — r in the first sum, and for 4 = j in the remaining
three sums), we obtain

Jo < (H —1)%k(1 — k)? (qf n 2bl—5k/2—1qi—k—2 n bl—Skqi—k—Q) _

Thus we have

1 2 1
< k(l—k)?
Ex[Y] — ( ) ((bq*)”’“ - qubF/2 41 - q*b’“>

— 0,

since bg, > 1, ¢ > 2, and b > 2. This completes the proof of the proposition, and with
it the proof of Theorem 1.2. O

4. Conclusion. We have determined the limiting value of the linking probability
in spider-web networks with scale & and depth [ when [ = ck with ¢ > 1. The same
method could be used when {/k — oo but (log(l + 1))/(k + 1) — 0. In this case,
the phase transition would be less abrupt: the limiting value of ), and even its first
derivative with respect to g, would be continuous at the critical value g, = 1/0,
but the second derivative would be discontinuous. Little would be gained by such
networks, however, over those with a large fixed value of ¢: Their great cost would
decrease the critical vacancy probability through only a small interval [¢o, qc], and
would provide only a small linking probability in this interval.

Another extension of our results would be to consider, instead of the “indepen-
dent” probability distribution on states introduced by Lee [L1] and Le Gall [L2, L3],
the “coherent” distribution introduced by Pippenger [P1]. (The similar distribution
introduced by Koverninskii [K] does not have an obvious generalization for ¢ > 2, and
in any case it does not seem likely that the additional independence in Koverninskii’s
model would have much effect on its tractability for ¢ > 2.)

Yet another line of inquiry would be to consider the computational complexity of
path-search problems for spider-web networks with ¢ > 2, using the link-probe model
introduced by Lin and Pippenger [L4]. Such results were obtained by Pippenger [P4]
for ¢ = 2 (and these results are easily extended to the case 1 < ¢ < 2), but even for
¢ = 2 the known results are far from definitive.
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FULL RANK TILINGS OF FINITE ABELIAN GROUPS*

MICHAEL DINITZt

Abstract. A tiling of a finite abelian group G is a pair (V, A) of subsets of G such that 0 is in
both V and A and every g € G can be uniquely written as g = v 4+ a with v € V and a € A. Tilings
are a special case of normed factorizations, a type of factorization by subsets that was introduced
by Hajés [Casopsis Pést Path. Rys., 74, (1949), pp. 157-162]. A tiling is said to be full rank if
both V and A generate G. Cohen, Litsyn, Vardy, and Zémor [SIAM J. Discrete Math., 9 (1996),
pp. 393-412] proved that any tiling of ZJ can be decomposed into full rank and trivial tilings. We
generalize this decomposition from ZZ to all finite abelian groups. We also show how to generate
larger full rank tilings from smaller ones, and give two sufficient conditions for a group to admit a
full rank tiling, showing that many groups do admit them. In particular, we prove that if p > 5 is a
prime and n > 4, then Zy admits a full rank tiling. This bound on n is tight for 5 < p < 11, and is
conjectured to be tight for all primes p.

Key words. tiling, full rank, finite abelian group, factorization, direct sum, Hamming codes
AMS subject classifications. 05B45, 20K01

DOI. 10.1137/S0895480104445794

1. Introduction. Throughout this paper G is a finite abelian group. A fac-
torization of G is a collection (Aq,..., Ag) of subsets such that every g € G can be
uniquely represented as a; + - - - + ag, where a; € A;. A factorization is normed if
every subset in the factorization contains 0. A #iling is a special case of a normed
factorization in which there are only two subsets (usually denoted V and A rather
than A; and As). Any subset V for which there exists a subset A such that (V, A) is
a tiling of G is called a tile of G. Cohen, Litsyn, Vardy, and Zémor first introduced
this definition of a tiling in 1996 for the special case of tilings of Z7 in [2], but it
extends perfectly well to arbitrary finite abelian groups. Before then, there was no
separate term for a normed factorization into two subsets, despite the fact that they
had been studied by Hajés [7], Rédei [14], Sands [16], and others. The term “tiling”
was a natural choice since all of [2] is phrased in terms of F} rather than Z% and a
tiling of a vector space is a natural concept. In particular, tilings of the Euclidean
space R™ have been studied extensively (see [15, 18]). But since tilings do not depend
on multiplicative structure, IF4 is identical to Z5 with respect to tilings, and hence it
suffices to look at finite abelian groups rather than vector spaces over finite fields.

The study of factorizations of finite abelian groups by subsets was introduced by
Hajds in 1941 [6] as a tool to prove a conjecture on homogenous linear forms posed by
Minkowski. Hajés then began to study a certain type of factorization which he called
periodic (see [7]). A subset A C G is periodic if there is some nonidentity element
g € G such that g+ A = A and a periodic factorization is a factorization in which one
of the subsets is periodic. Hajés asked for which groups G any factorization into two
subsets G = A+ B necessarily has either A or B periodic. This question was eventually
solved by Sands [16] after major contributions from de Bruijn [3] and Rédei [14].
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A group G possesses the Rédei property if in every tiling (V, A) of G either V or
A is contained in a proper subgroup of G. The question of which groups possess the
Rédei property has been investigated since 1979, when Rédei [14] conjectured that
Zf’, has the Rédei property for all primes p. If G does not possess the Rédei property
then there is some tiling (V, A) of G in which (V) = (4) = G, where (S) denotes
the subgroup generated by S for any S C G. These tilings are said to be full rank
[2]. Note that having the Rédei property is equivalent to not admitting a full rank
tiling. Sands [17] asked whether every group has the Rédei property, which was shown
not to be the case by Fraser and Gordon [5], who used results from coding theory to
construct a full rank tiling of Z¢ as a counterexample.

Until recently the only motivation for studying full rank tilings was to find out
which groups had the Rédei property. Then in 1996 Cohen, Litsyn, Vardy, and Zémor
[2] found that any tiling of Z% can be decomposed into full rank tilings and trivial
tilings (a tiling is trivial if one of V or A is Z% and the other is just the zero vector).
This provided extra motivation for studying which elementary 2-groups (groups of
the form Z7) admit full rank tilings (or equivalently do not have the Rédei property).
Cohen, Litsyn, Vardy, and Zémor [2] showed that there do not exist full rank tilings
of Z% when n < 7 and that there do exist full rank tilings of Z3 when n > 112.
Etzion and Vardy [4] then constructed full rank tilings for n > 14 using techniques
that, together with unpublished work of LeVan and Phelps, were used to construct
full rank tilings when n > 10. Trachtenberg and Vardy then proved that Z§ does not
admit a full rank tiling [24], and the question of full rank tilings of Z% was resolved
when Ostergard and Vardy [9] showed that Z§ does not admit a full rank tiling.
All of the work done on full rank tilings of Z§ was actually done in terms of F7J,
since the authors were approaching the problem from a coding theory perspective
and were apparently not aware of much of the work done on the Rédei property or
the connection of full rank tilings to it.

It is interesting to note that work on full rank tilings of Fy and work on the
Rédei property have proceeded almost independently. In the paper which started
work on tilings of F3, Cohen, Litsyn, Vardy, and Zémor [2] reference the work of
Hajos on periodic factorizations but do not reference any of the work done on the
Rédei property, and neither do any of the papers mentioned above that extend the
work of [2]. The only exception to this is a paper by Szab6é and Ward [21] in which
they reference work done on the Rédei property to prove the existence of full rank
tilings of Fy for n > 14.

We begin in section 2 by generalizing the decomposition of Cohen, Litsyn, Vardy,
and Zémor [2, section 6] from Z% to arbitrary finite abelian groups. Then in section 3
we generalize a construction of Etzion and Vardy [4, section 5] and Szabé and Ward
[21, Lemma 1] to create a full rank tiling of a group from a full rank tiling of one of
its direct factors. Using this we devise two sufficient conditions for a group to admit
a full rank tiling, showing that many groups admit them. The first condition states
a group admits a full rank tiling if it contains as a direct factor a subgroup of the
type Zg X Zp X Z. with a,b, and ¢ composite. This is based on work done by Szabd
in [19]. Then in section 4 we extend the work done for Z% by showing that any group
containing Z, with p > 5 prime and n = 4 as a direct factor admits a full rank tiling.
Thus, there exists a full rank tiling of Z if p > 5 is prime and n > 4. A conjecture of
Rédei [14] implies that this is tight for all primes. This conjecture has been verified
for primes less than or equal to 11 by Szabé and Ward [22], which completely solves
the question of whether there exist full rank tilings of Z; when p is 5, 7, or 11. We
conclude by discussing some remaining open problems on tilings.
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2. Decomposition of tilings. In this section we study how tilings of arbitrary
finite abelian groups can be recursively decomposed, generalizing some of the work
done in [2] for Z%. We first develop a certain characterization of tilings which will
prove particularly useful. The notation V' — V denotes {vy — vs : v1,v3 € V'}.

PROPOSITION 1. Let V;AC G with0 €V and 0 € A. Then (V, A) is a tiling of
G if and only if (V — V)N (A — A) = {0} and |V]||A] = |G|.

Proof. Suppose that (V — V)N (A — A) = {0} and |V||4| = |G|. Assume that
v1 + a1 = v2 + az. Then vi — vy = as — a1 =0, so v1 = vy and a; = ao, and thus the
representation of each element of V' + A is unique. Since |V||A| = |G|, we have that
V + A =G and thus (V, A) is a tiling of G.

Now let (V, A) be a tiling of G, and suppose that (V —V)N(4A— A) # {0}. Then
there exist distinct elements v; and v in V and a; and as in A such that v; — vy =
a; —ag, and so v1+az = va+ay. Thus (V, A) is not a tiling. If (V-V)N(A—A) = {0}
and |V||A4| # |G|, then clearly |V||A| < |G| so some element of G is not in V + A and
thus (V, A) is not a tiling. 0

Note that the |V||A| = |G| condition can be replaced with the condition V4+A4 = G
if needed. To motivate our discussion of full rank tilings, we give one reason why the
subgroup generated by a tile is of interest.

PROPOSITION 2. A subset V C G is a tile of G if and only if it is a tile of (V).

Proof. Suppose that V is a tile of (V). Since (V) is a subgroup of G it is clearly
a tile of G. Let ((V), A1) be a tiling of G and let (V, Ag) be a tiling of (V). Then
clearly (V, Ag + A1) is a tiling of G.

Suppose that (V, A) is a tiling of G. Let A9 = AN (V). Since 49 C A and
(V-V)yn(A—-A) = {0}, we have that (V — V) n (Ay — 4p) = {0}. Clearly
V+ Ay C (V). Since (V) CG =V + A, any w € (V) can be written as w = v+ a
withv € V and a € A. Then a = w—v € (V) since (V) is a subgroup, and so a € Ay.
Hence (V) CV + Ag, so V + Ag = (V) and thus (V, Ap) is a tiling of (V). a

Because of this proposition we are naturally interested in tilings (V, A) in which
(V) = G. Tilings with this property are called proper tilings, a term devised by Cohen,
Litsyn, Vardy, and Zémor [2] that was originally used only for tilings of Z%. The
following theorem is a generalization to arbitrary finite abelian groups of Theorem 6.2
in [2], the original decomposition showing that every tiling of Z% can be decomposed
into proper tilings of its subgroups. This generalization shows that the classification
of all tilings of G can be reduced to the study of all proper tilings of the subgroups
of G.

THEOREM 3. Let V be a tile of G with (V) # G. Let z = |G|/|V|, and let
m = |G|/|{V)|. The pair (V,A) is a tiling of G if and only if A has the following
form:

1. Fori=0,1,....,m—1, let A; C (V) be such that (V, A;) is a tiling of (V).
2. Let cg =0,c¢1,...,¢m—1 be a set of coset representatives for G/{V).
Then

(1) A:A()U(Cl-i-Al)U"'U(Cmfl+Am,1).

Proof. Suppose that A is as in (1). Then |A4;| = z/m so |A| = z and |V||4| = |G|.
So we just need to show that (V — V)N (A — A) = {0}. Note that any element of
A — A has one of the following forms:
1. (Ci + ai) - (Ci + ai) == O,
2. (ci+an) — (¢ + ai2) = a;1 — a4, OF
3. (¢ +a;) — (¢j +ay), for i # j,
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where a;, a;1, a:2,a; € A. Let U denote the set of elements of type 2, and let W denote
the set of elements of type 3. Clearly any element of U is also an element of some
A; — Ay, sosince (V—V)N(A; — A;) = {0} for all ¢ we have that (V —V)NU = {0}.
Since ¢; — ¢; € (V) for all i # j and A; C (V) for all 4, it follows that (V) and W are
disjoint, so (V — V) NW = @ and hence (V, A) is a tiling of G.

Now let (V, A) be a tiling of G. Pick a set of representatives ¢g = 0,¢1, ..., Cm_1
of G/(V) and let A; = —c; +(AN(c; +(V))). We start by showing that we can always
pick representatives of G/(V') so that 0 € A; for all i. If 0 ¢ A; for some ¢, then let
a; € A; and let ¢ = a; + ¢;. Note that ¢} represents the same coset of (V') as ¢; since
a; € A; C (V). If we let A’ be the set we get by replacing ¢; with ¢} in the definition
of A;, then we get that A} = —a; —¢; + (AN (a; + ¢; + (V))) = —a; + A;. Together
with the fact that a; € A;, this gives us that 0 € A}, so we could have simply started
with ¢} instead of ¢;. Thus we can assume the 0 € A; for all i.

We have that ¢; + A; = AN (¢; + (V)), so

2) U e+ 4)= [ An(e+ V) =4
=0 =0

Now we need to show that (V, 4;) is a tiling of (V') for all . Any element of A; is
of the form —c¢;+a, so any element of A; — A; is of the form a1 —as. So A;—A; C A—A
and thus (4; — A;) N (V — V) = {0}. Note that A; C (V), so V+ A; C (V). Thus
to establish that (V, A4;) is a tiling of (V'), it remains to show that |4;| = z/m. Since
(V-V)n(A4; — A;) = {0} and V + A; C (V), we obviously have that |4;| < z/m.
However, z = |A| < 221_01 |A;] by (2), so |4;| = z/m for all i. 0

Theorem 3 implies that if all of the proper tilings of the subgroups of G are
known, then we can construct all the tilings of G. However, proper tilings can be
decomposed further by simply switching the roles of V and A. Suppose that (V) A) is
a (proper) tiling of (V), and consider the tiling (A4, V). Unless (A) = (V) this tiling
is not proper, so by the above theorem

(3) V:VOU(Cl+V71)U"'U(Cmfl+vmfl)a

where (A,V;) is a proper tiling of (A) for all ¢ and the elements 0,cy,...,c,, are
representatives of (V)/(A). So by using (3), each of the tilings (V, A;) of Theorem 3
can be decomposed into tilings of subgroups unless (V) = (4;). This process can be
iterated until the remaining tilings are either trivial or of full rank. So any tiling can
be decomposed into full rank and trivial tilings of its subgroups.

We can, however, decompose full rank tilings even further, into nonperiodic full
rank tilings. For any subset A C G, let Ag ={g € G: g+ A = A} denote the set of
periodic points of A. By definition Ay = {0} if and only if A is nonperiodic. In the
literature Ay is sometimes referred to as the kernel of A (see [1, 10, 12]), particularly
in regard to tilings derived from codes. Note that if 0 € A, then A9 C A. The
following proposition is rather obvious, first appearing in terms of codes over GF(2)
[1], but can easily be generalized to finite abelian groups.

PROPOSITION 4. If0 € A, then Ag is a subgroup of G contained in A and A is
the union of disjoint cosets of Ag.

Proof. Let aj,a9 € Ag. Then (a; +a2) + A=a1+ (aa + 4) =a1 + A=A, so
a1+ as € Ap. Since every a € Ag has some finite order this implies that —a € Ay and
thus Ag is a subgroup of G. Now let a € A. Then a + Ay € A by the definition of
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Ap, so A is the union of cosets of Ag. These cosets are clearly disjoint since Ag is a
subgroup of G, proving the proposition. 0

If A’ C A is a set of representatives for A/Ag, then it follows from this proposition
that A" + Ag = A. Now we show how to reduce tilings by the kernel of one of the
subsets.

THEOREM 5. Let (V, A) be a tiling of G, and let Ay be the kernel of A. Then
(V/Ao, A/Ap) is a tiling of G/Ap.

Proof. Let ¢ : G — G/Ap be the natural homomorphism. Suppose that the
restriction of ¢ to V' (which takes V to V/Aj) is not one-to-one. Then there exist
distinct elements v1 and vy in V' such that ¢(v1) = @(v2) = v/ + Ag. So p(vy —vg) =
o(v1) —@(ve) = (v + Ag) — (v + Ag) = Ao, which implies that vy — ve € Ag. This is
a contradiction since Ag C A and (V —V)N(A— A) = {0}. Hence |[V/Ao| = |V|, and
thus [V/Ao| - |A/Ao| = |G/ Aq|.

Suppose that there exist distinct elements v] and v} in V/Ap and o} and af
in A/Ap such that vj — vh = a} — a,. Then there exist vi,v3 € V,v1 # vy and
a1, az € A,jay # ag such that (v —ve) + Ag = (a1 — az) + Ag. So there is some
ag € Ag such that v1 — vo = a7 — as + ag, and since ag € Ap this implies that
there is some a3 € A such that v; — vo = a1 — a3, which is a contradiction since
(V-=V)Nn(A—-A)={0}. Thus (V/Ay, A/Ap) is a tiling of G/A,. O

PROPOSITION 6. If (V, A) is a full rank tiling of G, then (V/Ao, A/A) is a full
rank tiling of G/Ay.

Proof. We know from Theorem 5 that (V/Ag, A/Ap) is a tiling of G/Ag, so we
just need to show that it is full rank. Let w + Ay € G/Ag. Since (V) = G, there
are v1,...,v; € V, not necessarily distinct, such that vy + --- + vy = w. Then
(v +A0)+- -+ (v + Ag) = w+ Ap. Hence (V/Ap) = G/Ay. By the same argument,
(A/Ap) = G/Ag, so (V/Ag, A/Ap) is a full rank tiling of G/A,. 0

The following propositions concern the periodicity of the tiling resulting from this
decomposition.

PROPOSITION 7. A/Aq is nonperiodic.

Proof. Let a be a periodic point of A/Ag, and let A’ be a set of representatives for
A/Ap including 0. Let ¢ + Ag represent a, where ¢ € A’. Then clearly ¢ is a periodic
point of A and so is an element of Ay. However, A’ N Ay = {0}, and hence ¢ = 0, so
a=0. ]

PROPOSITION 8. V/Ay is periodic if V is periodic.

Proof. Let vg be a nonzero periodic point of V. Then since vy + v € V for any
v € V, we have that p(vg) + ¢(v) € p(V), so ¢(vg) is a periodic point of V/Aj. From
the proof of Theorem 5 we know that |V| = |V/Ayl, so ¢(vg) # 0 and thus V/A, is
periodic. O

By Proposition 8, after an application of Theorem 5 we can switch V/Ay and
A/Ap and apply it again. Since at each iteration one of the subsets loses all of its
periodic points, this might seem to imply that this recursion never needs to be carried
out more than twice, but it turns out that the other subset can acquire new periodic
points. Cohen, Litsyn, Vardy, and Zémor [2, section 8] provide an example of this in
75. The recursion will stop eventually, though, so we are interested not only in full
rank tilings but especially in nonperiodic full rank tilings. Note that Proposition 6
also gives us a way to construct smaller full rank tilings from larger ones, which is
helpful when trying to determine which groups admit full rank tilings.

3. Constructing full rank tilings of product groups. Etzion and Vardy [4,
Construction C] developed a construction to build a full rank tiling of Z;‘H from a
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full rank tiling of Z%, and Szab6 and Ward [21, Lemma 1] developed a similar but
more general construction to allow the direct product with arbitrary cyclic groups
rather than just Z,. We generalize both of these to a construction that gives a full
rank tiling of any finite abelian group having some direct factor with a full rank
tiling.

THEOREM 9. If there is a full rank tiling (V, A) of G, then there is a full rank
tiling of G x H, where G is any nontrivial finite abelian group and H is any finite
abelian group.

Proof. Szabé and Ward [21, Lemma 1] proved this for the case when H = (k) is
cyclic and there is an element a € A\ {0} such that (A4 \ {a}) = G. They did this by
letting V' = {(v,h) :v € V,h € H} and A’ = {(d/,0) : ' € (A\ {a})} U{(a,k)} and
proving that (V’, A’) is a full rank tiling of G x H. Note that the element (0,%) is
not necessary for (V') to equal G x H since (v, k) and (v, k + k) are both elements of
V' and (v, k + k) — (v, k) = (0,k). So we can switch the roles of V' and A and repeat
for another cyclic group by letting (0, k) play the role of a. Since any finite abelian
group can be decomposed into the direct product of cyclic groups, if there is initially
some a € A\ {0} that is not necessary for A to generate G, then there is a full rank
tiling of G x H for any finite abelian group H.

The only case when there is not such an a is when both A\ {0} and V \ {0}
are minimal generating sets of G. Let m equal the sum of the multiplicities of the
prime divisors of |G|. We first show that any minimal generating set of G has at
most m elements. Let A = {aj,...,ar} be a minimal generating set of G. Let
G; = {a1,...,a;), where Gy = {0}. Note that Hf;ol |Git1]/|Gi| = |G|. We know that
G, is a proper subgroup of ;41 since A is a minimal generating set, which means
that |Gi+1]/|Gi| > 1 for all i. Hence k < m. So if (V,A) is a full rank tiling and
V' \ {0} and A\ {0} are both minimal generating sets, then (m + 1)? > |G|. Clearly
m < |log, |G|], so (|log, |G|] + 1)? > |G|. This is true only if 1 < |G| < 36. Since
|G| = |V]|A], it is only possible for both V' and A to have at most m + 1 elements
when |G| is 2, 4, 6, 8, 9, 12, or 16, so we consider the finite abelian groups of those
orders. Clearly any tiling of Zs is trivial. Rédei [13] proved that if both V and A
have prime order, then one of them is a subgroup of G, which implies that there are
no full rank tlhngs of ZQ X ZQ, Z@, Zg X Zg, Z4, or Zg.

For the |G| = 8, |G| = 12, and |G| = 16 cases we need a few results on the Hajés
property. We say that a finite abelian group G has the Hajés property if in any tiling
(V, A) of G at least one of V and A is periodic. Groups with the Hajds property have
been completely classified [16]. In particular, all finite abelian groups of order 8, 12,
or 16 have the Hajés property. Szabé [20, Lemma 1] has shown that if a finite abelian
group has the Hajds property, then it has no full rank tilings. 0

Szabé [19, section 4] has proven that there exists a full rank tiling of the direct
product of at least three cyclic groups of composite orders other than 4 or 6. We
remove the restriction that the orders not be 4 or 6 and combine it with Theorem 9
to get the following theorem.

THEOREM 10. If G has Zg X Zy X Z. as a direct factor, where a, b, c are composite,
then G has a full rank tiling.

Proof. Let G be the direct product of cyclic groups of orders mj,ma, ms (all
composite) and generators g1, g2, gs respectively. Let v; = m;/u;, where u; is the
smallest prime divisor of m;. Also let [g],, denote the set {0,¢,2g,...,(m —1)g}. If
V ={(a,b,¢) : a € [g1]uy,b € [92]ussC € [93]us} and A = {(a,b,¢) : a € [u191]v,,b €
[U292]vys € € [U3g3]ws |, then it is not hard to see that (V, A) is a tiling of G. Let 7 be
some cyclic permutation of {1,2, 3}, and define the following two sets:
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3
X = U{(al,GQ,as) s a; € [uigi)y, and Ar (i) = Un(3)Gn(3) and Ar—=1(4) = 0}
i=1
3
Y = LJ{(al7 az,a3) : a; € [Uigilo, + gi and ar () = Ur(i)Gn(i) and az-1(;) = 0}.
i=1

Note that X C A. Szabd [19, section 2] proved that if A’ = AUY \ X then (V, A’) is
a tiling of G, and the tiling is full rank if v; is at least 4 for all . Note that if j = 7 (%)
and v; = 3 then 0,u,g; + ¢i,2ujg; € A, so 2u;g; + (ujg; + gi) = g; € (A’). If v; >3
then 3u;g; € A, s0 3ujg; —2u;9; = ujg; € (A') and thus ujg; +9; —ujg; = g; € (47).
So if every v; is at least 3 then (V, A’) is a full rank tiling of G.

If v; = 2 for all ¢ then u; = 2, and G is the group Z4 X Z4 X Z4. It is easy to check
by hand that Szabd’s construction results in a full rank tiling. In the final case, there
is some v; > 2. Let i = 7~!(j). Then by the above argument g; € (4’). Let k = ().
Since  is cyclic, k = 771(i). By definition u;g; + g, € A’, so since g; € (A’) we have
that g, € (A’). Also, upgr +g; € A’, so g; € (A’). Thus (A’) =G, so (V, A’) is a full
rank tiling of G. Now by Theorem 9 any group containing G as a direct factor has a
full rank tiling, which proves the theorem. 0

4. Constructions using codes. In this section we get another sufficient condi-
tion for G to admit a full rank tiling by using codes. We will work in vector spaces over
finite fields in this section since we will on occasion use properties of the vector space.
However, as noted in the introduction a tiling of a vector space is also a tiling of the
additive group associated with that space, so at the end of the section we translate
our main result back to groups. Throughout this section p is a prime. The Hamming
distance of two n-tuples is the number of coordinates in which they differ. A perfect
code is a subset C' C Fy such that (C,Sg(0)) is a tiling of Fy, where Sg(0) is the
Hamming ball of radius R centered on 0 [8]. Since a Hamming ball clearly generates
the entire space, this gives a full rank tiling if the code itself generates the entire
space. An important special case of perfect codes are the Hamming codes, which are
the linear perfect codes for R = 1 (see [8]). A Hamming code forms a proper subspace
of Fy, and so does not immediately result in a full rank tiling. However, we will see
how to slightly modify a Hamming code to get a full rank tiling.

Sands posed the question of whether every group has the Rédei property in [17].
Answering this question in the negative, Fraser and Gordon [5] constructed a full rank
tiling of F$ by applying permutations of GF(5) to a Hamming code. They state that
their construction generalizes to provide an infinite number of counterexamples, but
they omit the details. We begin by generalizing their argument to show that there
exist full rank tilings of Fg“, where p > 5 is prime. We do this by starting out with
the same code they do, a Hamming code on IFgH, and then permute the values in
the first two coordinates of the vectors in the code. Permuting only the first two
coordinates is a property that will prove important when computing the kernel. Let
p > 7 be prime and let H be the following 2 x (p 4+ 1) matrix:

o111 .- 1
H‘(1 01 2 - p—1>'
Let C = {u € FE™' : Hu” = 0}. It is easy to show that C' is a Hamming code,
which implies that (C, S1(0)) is a tiling of FE*1. Tt is not a full rank tiling since C'is a

proper subspace of IFg+1 of dimension p—1. Let uw; = (p—1i,p—1,0,...,0,1,0...,0),
where the 1 is in the (i4+2)nd coordinate. Note that {u1,us,...,u,—_1} is a basis for C.
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Now let 7;, for i = 1,...,p+ 1, be permutations of the elements of GF(p). Then
the map

T (@, @py1) o (M@)o T (Tpa1)

from Fg“ to itself clearly preserves the Hamming distance. Hence 7(C) is still a
perfect code with R = 1 for any choice of the 7;’s. We will use this fact to construct
full rank tilings from C.

PROPOSITION 11. There exists a full rank tiling of Fg“'l if p> 5.

Proof. Let m1 = ((p — 3)(p — 4)) be the transposition interchanging p — 3 and
p—4,let 12 = ((p — 2)(p — 3)) be the transposition interchanging p — 2 and p — 3,
and let every other m; be the identity permutation. We claim that (7(C), 51(0)) is a
full rank tiling of F&*! for p > 7. The basis we constructed of FE™! gets mapped to
p — 1 linearly independent vectors since only the first two coordinates get permuted.
Also, w(u; +uz) = (p—4,p—3,1,1,0,...,0) is another linearly independent vector,
since otherwise the 1’s in the third and fourth coordinates would force it to equal
m(u1) 4+ m(uz), which it does not since m(uy) + m(u2) = (p —3,p — 2,1,1,0,...,0).

Now consider the vector 7(us +up—1) = (p—3,p—3,0,...,0,1,0,...,0,1), where
the 1’s are in the seventh and the p + 1st coordinates. Assume that this is a linear
combination of the previous p vectors. Because of the placement of the 1’s it is clear
that m(us) and m(up_1) each have a coefficient of 1 in this linear combination, so
the remaining parts of the linear combination must sum to 7(us + up—1) — m(us) —
m(up—1) = (1,p — 1,0,...,0). Clearly the remaining 7(u;)’s other than m(u;) and
m(uz) do not appear in the linear combination. The only way 7(u1) and 7(usz) can
contribute is if each has the negative coefficient of 7(u; + us). If x is the coefficient
of m(uy + ug), then we get the following two equations from the first and second
coordinate, respectively:

P=D(=2)+(p-2)(=z)+(p-4z=1

p-D(2)+@-D(2)+(p-3)r=p-1

The left-hand side of each equation simplifies to (p — 1)z, which is a contradiction
since (p— 1)z cannot equal both 1 and p—1. Thus the coefficients of m(u1), 7(us2), and
7(u1+ug) are zero, so m(us+u,—1) = w(us)+7(up—1). However, this is a contradiction
since m(us) + m(up—1) = (p—4,p—2,...). Hence {m(w;) : 1 <i<p—-1}U{m(us +
ug)} U{m(us + up_1)} is a linearly independent set of size p + 1, and therefore forms
a basis of FA*!. Thus (n(C)) = F5*!, so (7(C),51(0)) is a full rank tiling of F5*!,
Since we used us this only works when p > 7, but the full rank tiling of F¢ given by
Fraser and Gordon starts with the same basis as our construction ({uy, ug,...,up—1})
and just uses different permutations (still only changing the elements in the first two
coordinates). a

To get even smaller full rank tilings we find the kernel of 7(C) and use Proposi-
tion 6.

PROPOSITION 12. There exist full rank tilings of IF?; when p > 5.

Proof. Since C'is a Hamming code, it is a subgroup of Fg“, and so every element
of C' is a periodic point. The map 7w used in Proposition 11 only changes the first
two coordinates of a vector, so any element of C' that has 0’s in the first and second
coordinates is still a periodic point of 7(C). We claim that these vectors form a
subspace of dimension at least p — 3. To see this, let u; = (0,0,...,0,1,0,...,0,i —
1,p — i), where the 1 is in the ith coordinate, for 3 < i < p — 1. Note that 1 + (i —
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D+(p—i)=0andi—2+(i—-1)(p—-2)+(p—i)(p—1)=0,s0 Hul =0 for all
i, and thus each of these p — 3 vectors is a periodic point of 7(C). They are linearly
independent, which shows that the periodic points form a subspace of dimension at
least p — 3. Thus by Proposition 6 there is a full rank tiling of IF;. 0

Now we use Proposition 12 to obtain another sufficient condition for a finite
abelian group to admit a full rank tiling.

THEOREM 13. If G has Z?, with p > 5 as a direct factor, then G admits a full
rank tiling.

Proof. Proposition 12 proves that there exists a full rank tiling of IF;‘,. Since tilings
depend only on the additive group structure, this is the same thing as saying that
there is a full rank tiling of Z;. Combining this with Theorem 9 we get that any
group containing Zé as a direct factor has a full rank tiling. O

Rédei [14] conjectured that there do not exist full rank tilings of Zi for any p.
This conjecture is still open, but it has been verified for p < 11 (see [22]), so when p
is 5, 7, or 11 we know exactly for which values of n there is a full rank tiling of Zy.

Unfortunately we could not get as strong a bound for the case when p = 3. The
construction that we have been using does not work when p = 3, so we need to use
something else. Phelps, Rifa, and Villanueva [11] have recently found full rank perfect
codes of ) when n = (p™ —1)/(p — 1), where m > 4, with a kernel of dimension

(p —1)™ 1. So when p = 3 this gives the existence of full rank tilings for Z? for
alln > ((p* —1)/(p — 1)) — (p — 1) = 4p® — 2p + 2 = 32. Thus there exists a full
rank tiling of Z% if n > 32. This is not nearly as good a bound as we have for either
p=2or p>5,so it can almost definitely be improved. The only lower bound in the
literature says that there do not exist full rank tilings of Z% when n < 4 [23], so it is
not known whether Z% admits a full rank tiling for 5 <n < 31.

5. Open problems. Probably the most tractable open problem remaining is
the one mentioned at the end of the last section, the existence of full rank tilings of
Zy for 5 < n < 31. Since p = 3 allows more freedom in the construction than p = 2
but less than p = 5, we conjecture that there is some k with 4 < k < 10 for which Z%
has a full rank tiling if and only if n > k. As with other cases of Zj, we suspect that
coding theory approaches will prove valuable, in particular finding full rank perfect
ternary codes.

A more difficult open question is what conditions on G are necessary for G to
admit a full rank tiling. We know that neither of our two sufficient conditions is
necessary on its own, and we suspect that it is not necessary for either of them to be
satisfied for G to have a full rank tiling. We have shown that many groups admit full
rank tilings, so our conditions are close to necessary, but there is no reason to think
that we have characterized all groups admitting full rank tilings. An easier subproblem
of this is Rédei’s conjecture, mentioned previously, that Z;’J does not admit a full rank
tiling for any prime p. This conjecture is still wide open, with the only progress being
a computer check for p < 11 by Szabé and Ward [22]. This conjecture immediately
implies that our bound of n > 4 for the existence of full rank tilings of Z;; with p > 5
is tight and so if proved would give a complete characterization of which elementary
p-groups (p > 5) admit full rank tilings.

There are many generalizations of this problem that could also prove to be in-
teresting. Tilings can easily be defined for groups that are not finite or abelian, so
removing those constraints gives many questions. We could also extend the work done
for Fy in a different direction by considering not more general groups but more gen-
eral transformations. We have pointed out that vector spaces are equivalent to groups
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with respect to tilings, but that is not true if we allow linear or affine transformations
other than translation. Define an affine factorization of Fy to be a pair (V, ®) with V/
a subset of Fy and ® = {¢;} a set of affine transformations satisfying ¥y = (J; ¢:(V)
and ¢;(V) N ¢;(V) = 0 for all i # j. Any tiling (V, A) of F} automatically gives
an affine factorization (V',®) by letting V' = V and ¢; € ® be translation by the
ith element of A. However, tilings only give a small subset of affine factorizations.
Allowing arbitrary affine transformations seems to make the problem very difficult,
but perhaps adding some extra restrictions would make it tractable. In particular,

requiring that |¢; (V)| = |V] for all ¢ might be helpful.

6. Conclusions. We have generalized the notions of tilings and full rank tilings
from FY to general finite abelian groups and have generalized many existing theorems
to this new setting. We then combined and extended these results to prove that a
group admits a full rank tiling if any of its direct factors do, allowing us to take any
sufficient condition for a group to admit a full rank tiling and extend it by simply
requiring a group to have a direct factor for which the condition holds. This method
results in two such sufficient conditions: a group G admits a full rank tiling if it has
a direct factor of the form Z, X Zy x Z. with a,b, and ¢ composite, or if it has a
direct factor of the form Zﬁ with p > 5 prime. Since any finite abelian group can be
decomposed into the direct product of finite abelian groups of prime power order, these
are obviously quite strong conditions when the size of the group is large, showing that
many groups admit a full rank tiling. We have also suggested some open problems in
the area that we feel are tractable and could lead to some interesting results.
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Abstract. A discrete point X-ray of a finite subset F' of R™ at a point p gives the number of
points in F' lying on each line passing through p. A systematic study of discrete point X-rays is
initiated, with an emphasis on uniqueness results and subsets of the integer lattice.
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1. Introduction. The (continuous) parallel X-ray of a convex body K in R
in a direction u € S"~! gives the lengths of all the intersections of K with lines
parallel to u, and the (continuous) point X-ray of K at a point p € R™ gives the
lengths of all the intersections of K with lines passing through p. (See section 2 for
all terminology.) In 1963, P. C. Hammer asked: How many parallel (or point) X-rays
are needed to determine any convex body among all convex bodies? Answers to these
questions are now known and are surveyed in [11, Chapters 1 and 5]. The topic of
determining convex bodies and more general sets by their X-rays forms part of a larger
area of inverse problems called geometric tomography, which concerns the retrieval
of information about a geometric object via measurements of its sections by lines or
planes or its projections on lines or planes. It is also clearly related to computerized
tomography, where sets are replaced by density functions, and lengths of intersections
with lines are replaced by line integrals.

Around 1994, Larry Shepp introduced the term “discrete tomography.” Here
the focus is on determining finite subsets of the integer lattice Z™ by means of their
discrete parallel X-rays. A discrete parallel X-ray of a finite subset F' of Z™ in the
direction of a vector v € Z" gives the number of points in F' lying on each line
parallel to v. The points in F' can model the atoms in a crystal, and indeed there is
a genuine application of discrete tomography in high resolution transmission electron
microscopy (HRTEM); see, for example, [15]. New techniques in HRTEM effectively
allow the discrete parallel X-rays of a crystal to be measured, and the main goal of
discrete tomography is to use these X-rays to determine the position of the atoms,
with a view to applications in the material sciences.

By now there are many results available on continuous parallel or point X-rays
of sets and on discrete parallel X-rays of finite subsets of the integer lattice. It is
the purpose of this paper to initiate a study of the obvious remaining category of
X-rays, namely, discrete point X-rays. The definition is the natural one: A discrete
point X-ray of a finite subset F' of R™ at a point p € R™ gives the number of points
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€] *

Fi1G. 1. A U-hezagon (left) and two convez lattice sets with equal discrete parallel X-rays in the
directions in U (right).

in F lying on each line passing through p. Note that the above definition of discrete
parallel X-ray also extends readily to finite subsets of R™, but as in that case, the
main interest here is with discrete point X-rays of finite subsets of Z" at points in Z".

In order to describe our results, it is useful to briefly recall the corresponding
results for discrete parallel X-rays. Firstly, given any finite set U of lattice directions
in Z2, there are two different finite subsets of Z? with equal discrete parallel X-rays
in the directions in U (see [11, Lemma 2.3.2] or [13, Theorem 4.3.1]). In view of this,
Gardner and Gritzmann [12] focused on convex lattice sets, employing the notion of a
U-polygon in R? for a given set U of directions. See section 2 for the formal definition;
an example for a set of three lattice directions is shown at the left of Figure 1.

When a lattice U-polygon exists, it is easy to construct two different convex
lattice sets with equal discrete parallel X-rays in the directions in U, as on the right
of Figure 1 (one set indicated by black dots, and the other by circles). In [12] it was
proved that in fact the nonexistence of a lattice U-polygon is necessary and sufficient
for the discrete parallel X-rays in the directions in U to determine convex lattice sets
(provided U has at least two nonparallel directions). It is easy to see that when
|U| = 3, lattice U-polygons always exist. With tools from p-adic number theory, it
was shown in [12] that they do not exist for certain sets of four lattice directions
and any set of at least seven lattice directions, but can exist for certain sets of six
lattice directions. Corresponding uniqueness results for discrete parallel X-rays follow
immediately.

Our investigation begins in section 3, where we prove that for discrete point X-
rays, there is also a general lack of uniqueness: Given any finite set P of points in
Z2, there are two different finite subsets of Z2? with equal discrete point X-rays at
the points in P. This is more involved than the corresponding result for discrete
parallel X-rays, requiring the solution of a system of linear congruences. Our proof
makes an unexpected use of the existence of arbitrarily long arithmetic progressions of
relatively prime numbers. Thereafter we focus on convex lattice sets in Z2. Section 4
provides a rather complete analysis when discrete point X-rays are taken at two points;
in fact, no open problems remain, in contrast to the continuous case (compare [11,
Problems 5.1 and 5.2]). The discussion in section 4 also shows that it is hopeless to
obtain uniqueness results unless the class of convex lattice sets is restricted to those
not meeting any line through two of the points at which the X-rays are taken, a
condition that we shall assume for the remainder of this introduction.

As with parallel discrete X-rays, uniqueness results hinge on the nonexistence of
special lattice polygons we call lattice P-polygons, for finite subsets P of Z2. (How-
ever, the connection is less clear than in the parallel case.) See section 2 for the formal
definition, and Figure 3 for an example. The construction of lattice P-polygons for
sets of three collinear lattice points again requires the solution of a system of lin-
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ear congruences; see section 5. It follows that for uniqueness when the points in P
are collinear, P must contain at least four points. In section 6, the above results
on discrete parallel X-rays, combined with the use of a new measure and projective
transformations, lead to Corollary 6.6, which states that when the points in P are
collinear, uniqueness is obtained for certain sets of four points and any set of at least
seven points, while six points are generally not enough.

The final two sections concern noncollinear sets P. By appealing to classic the-
orems of projective geometry, we show in section 7 that, somewhat surprisingly, for
any set P of less than five noncollinear points in Z? there is a rational P-polygon.
It follows that there are sets P of four noncollinear points in Z? such that there is
a lattice P-polygon, and we also show that there is a set of six noncollinear points
in Z? such that there is a lattice P-polygon. Corresponding nonuniqueness results
are deduced in section 8, including Theorem 8.1, a result quite different from the
analogous one concerning continuous point X-rays.

While there is at present no known application of discrete point X-rays in HRTEM,
we feel that this study is warranted by their natural role in the general theory of X-
rays and by the increasing attention to convex lattice sets (see, for example, [3], [7],
[8], and [9]). Moreover, the central role of P-polygons highlights these intriguing
structures, which should be of independent interest in incidence geometry. They may
also have consequences for number theory, as the analogous U-polygons do. (See,
for example, [2], where U-polygons are used to make progress on the Prouhet-Tarry-
Escott problem concerning multigrades. The connection between multigrades and
discrete tomography was first noticed by Ron Graham.) Much remains to be done.
For example, it is open at present whether convex lattice sets in Z? are determined
by their discrete point X-rays at some set of three noncollinear lattice points or at
any set of seven lattice points (provided they do not meet any line joining two of the
points).

An extended abstract of this paper appeared in [10].

2. Definitions and preliminaries. As usual, S®~! denotes the unit sphere
and o the origin in Euclidean n-space R™. If u € R", we denote by u* the (n — 1)-
dimensional subspace orthogonal to u. The standard orthonormal basis for R™ will
be {e1,...,en}. The line segment with endpoints z and y is denoted by [z, y], and we
write L[z, y] for the line through z and y.

If A is a set, we denote by |A|, A, and conv A the cardinality, boundary, and
convex hull of A, respectively. The notation for the usual orthogonal projection of A
on a subspace S is A|S. The symmetric difference of two sets A; and Ay is A1 AAs =
(A1 \ A2) U (A3 \ 4y).

We denote n-dimensional projective space by P”, and regard it as R"UH,, where
H, is the hyperplane at infinity. Points in H, can be associated with a pair {u, —u}
of directions in S"~1. If ¢ is a projective transformation from P" onto P mapping a
point p in Hy, to a finite point ¢p in P (i.e., a point in R™), then lines in R™ parallel
to a direction u associated with p map to lines passing through ¢p. If E C P™ is such
that ¢FE C R™ (i.e., ¢E does not meet the hyperplane at infinity in P™), then ¢ is
called permissible for E. Note that ¢ preserves the convexity of sets in R™ for which
it is permissible. See [11, pp. 2 and 7] for more details.

The cross ratio {p1, p2, s, pa) of four points p;, i =1,...,4 in a line L is given by

(z3 — 1) (24 — T2)
(x4 —x1)(w3 — 22)’

(1) <p1ap23p3ap4> =
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where x; is the coordinate of p;, i« = 1,...,4 in some fixed Cartesian coordinate system
in L. See, for example, [4, section 6.2].

A convex polytope is the convex hull of a finite subset of R™. We sometimes refer
to a finite subset of the n-dimensional integer lattice Z™ as a lattice set. A convex
lattice set is a finite subset F' of Z™ such that F' = (conv F) N Z™. A lattice polygon
is a convex polygon with its vertices in Z2. A polygon is called rational if its vertices
have rational coordinates. A lattice line is a line containing at least two points in Z2.

Call a vector u € Z™ primitive if the line segment [0, u| contains no lattice points
other than o and wu.

Let F be a finite subset of R™ and let u € R™ \ {o}. The discrete parallel X-ray
of I parallel to u is the function X, F' defined by

X, F(v) =|Fn(Llo,u] +v)|,

for each v € u'. The function X, F is in effect the projection, counted with multiplic-
ity, of F on u*. For an introduction to the many known results on discrete parallel
X-rays and their applications, see [5], [12], [13], and [15].

Let F be a finite subset of R™ and let p € R™. The discrete point X-ray of F at
p is the function X, F defined by

XpF(u) = [F 0 (Lo, u] + p)|;

for each u € R™ \ {o}.

Let U be a finite set of vectors in R2. We call a nondegenerate convex polygon
Q@ a U-polygon if it has the following property: If v is a vertex of @, and u € U, then
the line v + Lo, u] meets a different vertex v’ of Q.

Let P be a finite set of points in R?. A nondegenerate convex polygon Q is a
P-polygon if it satisfies the following property: If v is a vertex of @, and p € P, then
the line L[p, v] meets a different vertex v’ of Q.

Note that in view of these definitions, a lattice P-polygon is a convex subset of
R?, while a convex lattice polygon is a finite subset of Z2.

There is a convenient common generalization of the previous two definitions.
Consider P? = R? U H,, and let P be a finite set of points in P2. A nondegenerate
convex polygon @ in R? is a P-polygon if it satisfies the following property: If v is a
vertex of @, and p € P, then the line L[p,v] in P? meets a different vertex v’ of Q.
Note that if P C Hy,, then the P-polygon @ is also a U-polygon for the set U of unit
vectors associated with points in P.

Let F be a class of finite sets in R™ and P a finite set of points in R™. We say
that F' € F is determined by the discrete point X-rays at the points in P if whenever
F' € F and X, F = X, F' for all p € P, we have F = F’.

The greatest common divisor of integers m and n is denoted by ged(m,n). We
need the following strong form of the Chinese Remainder Theorem (see, for example,
[1, pp. 46 and 56]).

PROPOSITION 2.1. Leta; € Z andn; € N, i =1,..., k. The system

x=aqa; (modn;), i=1,...,k
has a solution x € Z if and only if
(2) ged(ng, ny)|(a; — a;)

for all1 <i# j <k. Moreover, if (2) holds, there are infinitely many solutions, each
pair of them congruent modulo ninsg - - - ng.
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3. The general case. The purpose of this section is to prove the following
result.

THEOREM 3.1. For each finite subset P of 72, there are two different finite
subsets of Z? with the same discrete point X-rays at the points in P.

Proof. Suppose that p; = (p1j,p2;), 5 = 1...,m are distinct points in Z2. Let
Cy and C3 be the two disjoint sets of 27! alternate vertices of the unit cube [0, 1]™
in R™. Then Cy and C3 have the same discrete parallel X-rays in the m coordinate
directions in R™. We aim to define a suitable projective transformation ¢ : P™ — P2
that maps the jth coordinate direction in R™ to p; in such a way that ¢(C1) and
#(Cy) are disjoint subsets of Z? with equal discrete point X-rays at each p;.

To this end, let a,b € N and ¢1,¢co € Z (all to be chosen later) and define ¢ :
P™ — P2, using homogeneous coordinates in both P and P2, by

(b(xlv s 7xma‘rm+1)
m m m
= <Z 21_1[91?11'%‘ + C1Tm+1, Z 21_1bp21'.’£@' + CoTm+1, Z 21_1b$i + al’m+1> .
i=1 i=1 i=1

Let e; be the jth vector in the standard orthonormal basis for R™*!. Then
plej) = (277 "bp1;, 27 Tbpay, 277 10)

for j = 1,...,m, and this shows that ¢ maps the jth coordinate direction in R™ to
pj,J=1,...,m.
As a map from R™ to R?, ¢ is given by
Z;il 2i71bp1ixi +c Z:nzl 2i71bp21‘13i + co
Y2 +a Y 27 b +a )

(3) ¢(x17...,xm):<

Denote an arbitrary vertex of the unit cube [0,1]™ in R™ by vr, I C {1,...,m},
where the ith component of vy is 1 if ¢ € I and 0 otherwise. In view of (3), we have
¢(vr) € Z? if and only if

(4) L= — ZQFlbpki (mod ZQi_lb + a> ,

iel i€l

for k =1,2. It is easy to check that

{Z?‘l:Ic{l,...,m}}:{0,17...,27"—1}.

icl

Therefore the set of possible moduli in the congruences (4) is precisely the arithmetic
progression

{a,a+b,...,a+ (2™ —1)b}.

Sierpinski [16] noted that if « = 1 and b = (2" — 1)!, each pair of this arithmetic
progression is relatively prime. It follows from the Chinese Remainder Theorem (see
Proposition 2.1) that for each k& = 1,2, the system (4), where I C {1,...,m}, has a
solution ¢, € Z. Then ¢ maps each vertex of [0, 1]™ to a point in Z2.

The basic properties of projective transformations guarantee that if C; and Co
are the two disjoint sets of 2™~1 alternate vertices of [0,1]™, then ¢(C1) and ¢(Cy)
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have equal discrete point X-rays at each p;. We will also have ¢(Cy) # ¢(Cs) if ¢ is
injective on the set of vertices of [0, 1]™. If this is not the case, then there are different
subsets I and J of {1,...,m} such that ¢(vr) = ¢(vs). By (3), this implies that

(5) X[(YJ"’Cl):XJ(}/[“FCl),

where

X = ZQi_lb—&— a and Y7 = ZT"lbpli,
i€l il
and X and Y are obtained by replacing I with J. Since I # J, X; # X and from
(5) we obtain
C1 S |XIYJ - XJY[l S 2 (a + (2m - 1) b) (27n - 1) b max |p1i|~
1<i<m

By Proposition 2.1 we can choose a solution ¢; to the system (4) so large that this
inequality is false, and the injectivity of ¢ on the set of vertices of [0, 1]™ follows. ]

Note that since Sierpinski’s result is constructive, the previous proof is also. An
alternative approach is to apply instead the remarkable recent result of Green and Tao
[14], who establish the existence of arbitrarily long arithmetic progressions of primes;
however, this proof is not constructive.

4. Discrete point X-rays at two points. We begin this section with the
following simple observation.

THEOREM 4.1. Letp; and ps be distinct points in Z?. Then there are two different
convex lattice sets that meet L[py,p2] and have equal discrete point X-rays at p1 and
p2-

Proof. Without loss of generality, let p; = (0,0) and py = (k,0) for some &k > 0.
Suppose that m € N. Then the sets K1 = {(k+14,0) : ¢ = 1,...,m} and Ky =
{(k+14,0):i=2,...,m+ 1} have equal discrete point X-rays at p; and ps. By
adjoining the point (k + m, 1) to both sets we can obtain two-dimensional examples
with the same property. ]

Note that the sets K1 and K5 in the previous theorem also have the same discrete
point X-rays at any lattice point on the x-axis.

THEOREM 4.2. Let K;, i = 1,2 be convex lattice sets in Z> with equal discrete
point X -rays at distinct points p,p2 € Z2. Suppose that

(1) L[pl,pQ] n Ki = (Z), 1= 1,2, and

(ii) conv K7 and conv Ky either both meet [p1,pa] or both meet L[p1,p2) \ [p1, p2].
Then K1 = KQ.

Proof. By (i) and the fact that K;, i = 1,2 are convex lattice sets, we have
pi € conv K1 Uconv Ko, ¢ = 1,2. Suppose that conv K; and conv K3 both meet
Llp1,p2) \ [p1,p2]- If p1 and ps lie between conv K; and conv K, these sets cannot
have equal supporting lines from p; and p3, contradicting the equality of the discrete
point X-rays of K; and Ks at p; and ps. Then we may assume that pi, p2, and
L{p1,p2) Nconv K;, i = 1,2 are in that order on L[p;,ps]. Suppose that K; # Ko.
Without loss of generality, we may assume that L[p1,ps] is the x-axis. Then by (i),
we can assume that (K;AKy) N {y > 0} # (. Let Ly be the line through ps and
containing a point of K1 A Ky, with minimal positive angle with the z-axis. Since K3
and K5 have equal discrete point X-rays at po, there are points v; € K; \ Ko and
vy € K3\ K7 on Ly, and we can assume that po, v1, and vy are in that order on Lj.
Since K7 and K5 have equal discrete point X-rays at py, the line Ly through p; and
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v; must meet Ko\ K in a point vs. If p1, vy, and vz are in that order on Lo, then the
line through ps and v3 has a smaller positive angle with the z-axis than L;. Therefore
v3 € [p1,v1]. Assumptions (i) and (ii) imply that there is a point ¢ € Ko N {y < 0},
but then vy € K5 lies in the interior of the triangle with vertices vo, v3, and ¢, all of
which lie in K5. This contradicts the fact that K5 is a convex lattice set, and proves
that K1 = Kg.

The case when conv K; and conv Ky both meet [p1,ps] is proved in similar
fashion. |

The next result shows that the assumption (ii) in Theorem 4.2 is necessary.

THEOREM 4.3. Let p; and py be distinct points in Z%. Then there are different
convez lattice sets K1 and Ko such that L{p1, p2] N K; = 0 and L{py, pa]Nconv K; # 0,
i =1,2, and with equal discrete point X-rays at p1 and ps.

Proof. Let p; = (0,0), and let py = ku, where u € Z? is primitive and k € N.
Then there is a v € Z2? such that {u,v} is a basis in R?2. The unimodular affine
transformation mapping {u,v} to {e1,es} is a bijection of Z? onto itself preserving
convexity and incidence. Therefore we may, without loss of generality, take p; = (0, 0)
and pe = (k,0) for some k > 0.

Suppose that k£ = 1. Then the sets K7 = {(2,3), (-1, -2)} and K5 = {(3,6), (-2,
—3)} fulfill the requirements of the theorem.

Now suppose that k > 1. Let a = (k, k), b= (k,k+1), c = (=k(k—1),1—k?), and
d=(—k(k?-1),—k(k*—1)). Let K; = {a,c} and Ko = {b,d}. It is easy to check that
Llp1,p2]Nconv K; # 0, i = 1,2 and that the sets K; and K» have equal discrete point
X-rays at p; and ps. It remains to show that K; and K5 are convex lattice sets. To
this end, note that the line L[a, c] has slope (k?>+k—1)/k%. Moreover, k?+k—1 and k?
are relatively prime; otherwise, if p > 1 is prime, p|(k®>+k—1), and p|k?, then p|(k—1),
so p does not divide k, contradicting p|k2. It follows that K; = (conv K;) N Z2, as
required. The line L[b, d] has slope (k*+1)/k?, and since k3 and k®+1 are consecutive
integers, they are relatively prime. Consequently, Ko = (conv K)NZ2, and the proof
is complete. a

The next two lemmas are rather general and will be useful also in subsequent
sections of the paper.

LEMMA 4.4. If Q is a P-polygon such that |P| > 2 and PN Q = 0, then Q does
not meet any line through two points in P.

Proof. Let p; and py be different points in P, and without loss of generality,
suppose that they lie on the z-axis and that ) is a P-polygon whose interior meets
the upper open half plane. Suppose that @ N [p1,p2] # 0. Let Ly be the lattice line
through p; with minimal positive angle with the x-axis such that L; contains vertices
v1 and vy of Q. Without loss of generality suppose that py, ve, and v lie on L; in that
order. Since @ meets [p1, p2], by convexity the line Ly through ps and vy contains a
vertex vg of @ with ps, v3, and vs in that order on Lo. But then the line Lg through
p1 and vz has a smaller positive angle with the z-axis than L;, a contradiction. A
similar argument applies to the case when ) meets the x-axis outside the segment
[p1,p2]. O

LEMMA 4.5. Let P be a set of points in Z2. If there is a lattice P-polygon Q,
then there are different convez lattice sets K1 and Ko with equal discrete point X-rays
at the points in P. Moreover, if PN Q = 0, then in addition conv Ky and conv K5 do
not meet any line through two points of P.

Proof. Let @ be a lattice P-polygon. Partition the vertices of ) into two disjoint
sets V; and V5, where the members of each set are alternate vertices in a clockwise
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ordering around 0Q. Let
C=(2nQ)\ (V1 UVa),

and let K; = CUYV;,i=1,2. Then K; and K> are different convex lattice sets with
equal discrete point X-rays at the points in P.

If PNQ = 0, then by Lemma 4.4, @ does not meet any line through two points
of P and the second statement follows immediately. 0

THEOREM 4.6. Let py and pa be distinct points in Z2 and let P = {p1,p2}. Then
there is a lattice P-polygon Q with PN Q = 0, and hence two different convez lattice
sets, with convex hulls disjoint from L[p1,pa] and with equal discrete point X-rays at
the points in P.

Proof. Without loss of generality, let p; = (0,0) and py = (k,0) for some &k > 0.
Then one can check that (2k, 2k), (3k, 3k), (3k, 4k), and (9%, 12k) are the vertices of a
lattice P-quadrilateral. The conclusion follows from Lemma 4.5. O

5. Lattice P-hexagons for collinear sets P. This section is devoted to the
proof of the following result.

THEOREM 5.1. If P is a set of three collinear points in 72, there exists a lattice
P-hexagon.

Proof. As in the proof of Theorem 4.3, we can assume, without loss of gen-
erality, that the points in P lie on the x-axis. More precisely, we may take P =
{(-a,0),(0,0),(b,0)}, a,b € N, where gcd(a,b) = 1 and b is odd, since the general
case then follows by applying a suitable dilatation and/or reflection in the y-axis, if
necessary. We suppose henceforth that a and b are fixed positive integers satisfying
these conditions.

Let r,s,t € Z and consider the projective transformation ¢ of P? given in homo-
geneous coordinates (x,y, z) by

o(z,y,2z) = (abx — aby + rz, sz, ax + by).

Then ¢(1,1,0) = (0,0,a + b), ¢(1,0,0) = (ab,0,a), and ¢(0,1,0) = (—abd,0,db). It
follows that ¢ is a projective transformation that takes lines parallel to u; = (1,1)
(or parallel to ug = (1,0) or parallel to uz = (0,1)) to lines through (0,0) (or through
(b,0) or through (—a,0), respectively). As a map from R? into itself, ¢ can be written
as

(6) (@, y) = (abx—aby+r s )

ar+by ax+by

Let U = {uy,us,us}. If k,1 € Z are such that ak + bl > 0 and if m,n € N, then
the points

(7)
(k, 1), (k,l+m), (E+n,0),(k+nl+m+n),(k+m+nl+m),(k+m+nl+m+

are the vertices of a U-hexagon @ such that ¢ is permissible for Q (i.e., @ does not
meet the line az + by = 0). It follows that ¢@Q is a P-hexagon, and remains to show
that k,l,r, s € Z with ak 4+ bl > 0 and m,n € N can be chosen so that the vertices of
¢Q have integer coordinates. Since obviously s can be chosen so that the y-coordinates
of these vertices are integers, we have only to consider the z-coordinates.

n)
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Let
(8) c=ablk—1)+r and d=ak+ bl
Then, by (6), (7), and (8), the z-coordinates of the vertices of ¢Q) are

c c—abm c+ abn c— abm c+ abn and c
d>d+bm’ d+an’ d+ (a+bn+bm’ d+ (a+bym+an’ d+ (a+b)(m+n)

Therefore we seek d,m,n € N such that there is a solution ¢ € Z to the following
system of congruences (which we have rearranged for our convenience):

(9) ¢ =0 (modd)

(10) ¢=0 (modd+ (a+b)(m+n))
(11) ¢ = abm (mod d + bm)

(12) ¢ =abm (modd + (a+ b)n + bm)
(13) ¢ = —abn (modd + an)

(14) ¢ = —abn (modd + (a + b)m + an).

By the Chinese Remainder Theorem (see Proposition 2.1), we have at first sight to
consider the division criterion (2) for 15 pairs of the congruences (9)-(14). However,
the following pairs can be eliminated: (9) and (10) (obviously), (9) and (11) (since
if j|d and j|d + bm, then j|bm, so ged(d,d + bm)|abm), (9) and (13) (by a similar
argument), (10) and (12) (since if j|d + (a + b)(m +n) and j|d + (a + b)n + bm, then
jlam, so ged(y + (a +b)(m +n),y + (a+ b)n + bm)|abm), (10) and (14) (by a similar
argument), (11) and (12) (obviously), and (13) and (14) (obviously). So only the
following eight pairs must in general be considered: (9) and (12), (9) and (14), (10)
and (11), (10) and (13), (11) and (13), (11) and (14), (12) and (13), and (12) and (14).

We claim that if d = ab, m = a + b, and n = a, there is a solution ¢ € 7Z to
the congruences (9)—(14). To see this, note first that since d = ab, we can obviously
eliminate the pairs of congruences (9) and (12), and (9) and (14). Consider the
division criterion (2) for the remaining six pairs of congruences, that is, (10) and (11),
(10) and (13), (11) and (13), (11) and (14), (12) and (13), and (12) and (14) in order:

(15) ged(2a? + 4ab 4 b2, 2ab + b?) | ab(a + b)
(16) ged(2a? 4 4ab + b%, a® + ab) | a®b

(17) ged(2ab + b2, a® + ab) | ab(2a + b)

(18) ged(2ab + b2, 2a® + 3ab + b?) | ab(2a + b)
(19) ged(a® + 3ab + b2, a* 4 ab) | ab(2a + b)
(20) ged(a? + 3ab + b2, 24 4 3ab + b*) | ab(2a + b).

Observe that (15) holds since if j|2a® + 4ab+ b then since b is odd, j is also odd;
if also j|2ab+ b2, then j|2a% + 2ab = 2a(a+b). Now j odd and j|2a(a + b) imply that
jla(a + b) and hence jlab(a + b).

For (16), suppose that j|2a? + 4ab + b® and j|a® + ab = a(a + b). Then we can
write j = pq, where pla and g|a + b, and it suffices to show that g|ab. Now gla + b
implies g|a® + 2ab + b?, which together with g|2a® + 4ab + b? gives q|a® + 2ab. Since
also qla® + ab, we get qlab as required.



180 PAOLO DULIO, RICHARD J. GARDNER, AND CARLA PERI

Conditions (17) and (18) hold since j|2ab+b* = b(2a+b) implies that j|ab(2a+D),
and (19) holds since if j|a® + 3ab + b2 and j|a® + ab, then j|2ab + b? = b(2a + b) and
hence j|ab(2a + b).

For (20), suppose that jla® + 3ab + b* and j|2a? + 3ab + b*> = (a + b)(2a + b).
Then we can write j = pq, where pla + b and ¢|2a + b, and it suffices to show that
plab. Now pla + b implies p|a® + 2ab + b?, which together with p|a? + 3ab + b? gives
plab, as required. This proves the claim.

We still have to prove that for d = ab, m = a + b, n = a, and a corresponding
solution ¢ € Z to the congruences (9)—(14), there are k,l,r € Z with ak 4+ bl > 0 so
that (8) holds. To see this, use the condition ged(a,b) = 1 to choose k',1I' € Z such
that ak’ 4+ bl’ =1 and then let & = dk’ and | = dI’. Then the second equation in (8) is
satisfied and ak + bl = d > 0. After this, we can find r € Z so that the first equation
in (8) is satisfied for this k and I. This completes the proof. 0

As an example in which the computations can be done by hand, suppose that
P ={(-1,0),(0,0),(1,0)}. Thena=b=1,s0 we haved=1, m=2,and n=1. It
is easy to see ¢ = 77 is a solution of the congruences (9)—(14) and we can take k = 1,
[ =0, and r = 76 in order that (8) holds. Moreover, s = 210 is a suitable choice. This
leads to a P-hexagon with vertices (in counterclockwise order around the hexagon)
(11, 30), (13, 35), (39, 105), (77, 210), (25, 70), and (15, 42).

6. Discrete point X-rays at collinear points. As we have seen, a convex
lattice set is determined by its discrete point X-rays at two different points only in
the situation of Theorem 4.2. Thus to have more general uniqueness results we need
more than two points. Moreover, the following result is an immediate consequence of
Theorem 5.1 and Lemma 4.5.

THEOREM 6.1. If P is a set of three collinear points in Z2, then convex lattice
sets not meeting the line containing P are not determined by discrete point X-rays at
the points in P.

To make progress, we require the following technical lemmas.

LEMMA 6.2. Let p € Z? and let Fy and Fy be finite subsets of Z> such that
P ¢ F1 U FQ and XpFl = XpFQ. Then |F1| = ‘F2|

Proof. Since p ¢ Fy U Fy, we have for i = 1,2,

Fl =Y [Fin(Lo,u] +p)| = Y X,Fi(u). 0O

ueSt u€St

Let L be a lattice line in R2, and suppose that L is taken as the z-axis in a
Cartesian coordinate system. For each finite set F in Z2, define

(21) vF) = 3 T;

(zy)EF

Then v is a measure in Z2, and we call L the baseline of v.

LEMMA 6.3. Let v be a measure defined by (21) with respect to the baseline L.
Suppose that Fy and Fy are finite subsets of Z2 contained in one of the open half
planes bounded by L and with equal discrete point X-rays at p € L NZ2. Then the
centroids of Fy and Fs with respect to v lie on the same line through p.

Proof. Without loss of generality we may take L to be the z-axis, p = (0,0), and
Fy and F, finite subsets of Z? contained in the upper open half plane. Let ¢; = (4, ;)
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be the centroid of F;, for i = 1,2, with respect to the measure v. Then

1 T
BUTE 2y

(@yer: !
and
Y — I
! V(Fl)
for ¢« = 1,2. Therefore
vi_ B il
i > (@/y) X (XpFi(u)cotB(u)’
(z,y)EF; ueSt

for i = 1,2, where 6(u) denotes the angle between the z-axis and a line parallel to w.
Since X,F1 = X,F5 and p ¢ F1 U F, we have |Fy| = |F5| by Lemma 6.2, and hence
y1/x1 = Y2 /22, as required. d

THEOREM 6.4. Let P be a set of at least three points in Z2 lying in a line L. If
there are different convex lattice sets not meeting L with equal discrete point X -rays
at the points in P, then there is a rational P-polygon disjoint from L.

Proof. Let K; and Ks be different convex lattice sets not meeting L and with
equal discrete point X-rays at the points in P. If L N convK; # (), then clearly
LNconv K3 # (). Then either for some 1 <4 # j < 3, conv K; and conv K5 both meet
[pi, p;], or for some 1 < # j <3, conv K; and conv Ky both meet Lp;, p;] \ [ps, Pyl
contradicting Theorem 4.2.

Consequently LNconv K; = () and therefore LNconv K5 = (). Then we can follow
exactly the proof of [12, Theorem 5.5] for discrete parallel X-rays, on replacing lattice
lines parallel to directions in a set with lattice lines through points in P, replacing
ordinary centroids with centroids with respect to the measure v defined by (21) with
baseline L, and using Lemma 6.3 instead of [12, Lemma 5.4]. Note that this argument
uses only cardinality and collinearity properties and the fact that the centroid of a
finite set of lattice points is a point with rational coordinates, a fact that still holds
when centroids are taken with respect to v. Also, note that the observation that
|U| > 4 in the second paragraph of the proof of [12, Theorem 5.5] is not needed. The
conclusion is that there is a rational P-polygon disjoint from L. a

THEOREM 6.5.

(i) Let U be a set of mutually nonparallel vectors in Z* such that there exists a
lattice U-polygon and let L be a lattice line. Then for some set P of |U| points in L,
there exists a lattice P-polygon disjoint from L.

(ii) Let P be a set of at least two points in Z* in a line L such that there exists a
rational P-polygon disjoint from L. Let ¢ be a projective transformation of P? taking
L to the line at infinity, and let U = ¢ P. Then there exists a lattice U-polygon.

Proof.

(i) Let @ be a lattice U-polygon and suppose that L is a lattice line. Let ¢
be a nonsingular projective transformation of P? such that ¢H., = L, where H,, is
the line at infinity in P2, so that LN ¢Q = (). If p € P? has rational coordinates
(rational slope if p € Hy,), then ¢p also has rational coordinates. By translating @,
if necessary, we may assume that Q N ¢~ 'H,, = (). Then (¢Q) N Hy, = 0, so ¢ is
permissible for @ and hence ¢Q is a rational ¢U-polygon, where ¢U is a set of |U]
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points in L with rational coordinates. Choose an m € N so that the |U| points in
m@U and the vertices of m¢@Q belong to Z2. Then moQ is a lattice m@U-polygon,
and m@U is a subset of the line mL. Let ¢ be a translation taking mL onto L and
let P = (me@U). Then ¢(m¢Q) is the required lattice P-polygon.

(ii) Let @ be a rational P-polygon disjoint from L. Since the hypotheses ensure
that @ is permissible for ¢ and L is a lattice line, ¢@Q is a rational U-polygon. Then
there is an m € N such that m¢Q@ is a lattice U-polygon. O

COROLLARY 6.6. Let P be a set of points in Z? in a line L. Then convex lattice
sets in Z? not meeting L are determined by discrete point X-rays at the points in P
if either:

(i) |P| =7, or

(ii) |P| = 4 and there is no ordering of points in P such that their cross ratio is
2, 3, or4.

On the other hand, it is possible that |P| = 6 and there exist different convex lattice
sets with convex hulls disjoint from L and equal discrete point X-rays at points in P.

Proof. Suppose that P is a set of points in Z2 in a line L, such that convex
lattice sets in Z2 not meeting L are not determined by discrete point X-rays at the
points in P. Then, by Theorem 6.4, there is a rational P-polygon disjoint from L.
Theorem 6.5(ii) implies that there is a set U of | P| mutually nonparallel vectors such
that there exists a lattice U-polygon. By [12, Theorem 4.5], we have |U| < 6, so
|P| <6 and (i) is proved. Moreover, if |P| = |U| = 4, [12, Theorem 4.5] implies that
there is an ordering of the vectors in U such that their cross ratio is 2, 3, or 4. Since U
is obtained from P by a projective transformation, and such transformations preserve
cross ratio, the same is true for P. Therefore (ii) is established.

By [12, Example 4.3], there is a set U of six mutually nonparallel vectors such
that there exists a lattice U-polygon. It follows from Theorem 6.5(i) that there is a
set P of six points in L N Z? such that there is a lattice P-polygon disjoint from L.
The proof is completed by an application of Lemma 4.5. a

In particular it follows from the previous result that convex lattice sets not meet-
ing the z-axis are determined by their discrete point X-rays at points in the set
{(0,0),(1,0),(2,0),(5,0)}.

7. The structure of P-polygons. Lemma 4.5 indicates that further progress
hinges on a deeper understanding of the structure of lattice P-polygons. In view of
the results of section 6, we focus on the case when the points in P are not collinear.
This section provides some constructions of P-polygons @ such that PN Q = (. Note

that Lemma 4.4 then guarantees that ) does not meet any line joining two points
of P.

7.1. P-hexagons. We begin with the following construction.

THEOREM 7.1. If P is a set of three points in R?, there exists a P-hexagon Q
such that PN Q = 0.

Proof. Let P = {p1,p2,p3}, and without loss of generality, suppose that the
points are labeled so that p, and ps lie on the z-axis and p; is in the closed half
plane {y < 0}. We may also assume that there is a line L; through p; meeting the
relative interior of [pe, p3]; see Figure 2. Let ¢1 € L1 N {y > 0}. Let ¢2 and g3 be in
the relative interior of [ps, ¢1] and [pa, q1], respectively, and let L; = L[p;, ¢i], i = 2, 3.
Let L4 = L[pl’QQ], L5 = L[pl,qﬂ, {Q4} = Lg n L5, and {Q5} = L3 N L4. Finally, let
Le¢ = L[p2,gs] and L7 = L[ps, qa].

We claim that Ly N Lg = L1 N Ly = {gs}, say. From this it would follow that the
points ¢;, ¢ = 1,...,6 form the vertices of the required P-hexagon ). To prove the
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p; Py

F1G. 2. A P-hezagon (left) and a special P-hexagon (right) for three points.

(0,0) (210,0)

F1a. 3. A lattice special P-hexagon for three noncollinear points.

claim, consider the collinear triples (q1, g2, p3) and (g4, g3, p1). Note that L[qi, ¢3] and
L[g2, q4] intersect at pa, L1 N Ly = [q1,p1] N [p3, qa], and {g5} = [g2,p1] N g3, p3]- By
Pappus’ theorem (see, for example, [6, section 4.3]), it follows that ps, L1 N Ly, and
g5 are collinear. Since py and g5 lie on Lg, L1 N Ly also lies on Lg and the claim is
proved. a

If in the construction of Theorem 7.1 the lines Lo and L3 are chosen so that
LiNLy=1LyNLs={c}, say, we call the P-hexagon a special P-hexagon with center
c. An example is shown in Figure 2.

COROLLARY 7.2. For every set P of three points in Z2, there is a rational special
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P-hexagon Q such that PN Q = (). Hence there are sets P of three collinear points in
72, or three noncollinear points in Z2, such that there exists a lattice special P-hezagon
Q such that PN Q = 0.

Proof. If the points in P = {p1, pa2, p3} are lattice points, each line in the construc-
tion of Theorem 7.1 may be chosen so that it is represented by a linear equation with
integer coefficients. The first statement in the corollary follows immediately. If @ is
a rational special P-hexagon, there is an integer k such that if P’ = {kp1, kpa, kps},
then kQ is a lattice special P’-hexagon. ]

Figure 3 depicts a particular lattice special P-hexagon, obtained from a variation
of the construction of Theorem 7.1 in which the hexagon is contained in the interior of
the triangle with vertices at the points in P. The center of the hexagon has coordinates
(105/2,105/2), so on multiplying each coordinate by 2, we obtain an example where
the center of the hexagon is also a lattice point.

The following theorem shows that in the first statement of Corollary 7.2,
“rational” cannot be replaced with “lattice.” Note that for P = {(—1,0), (0,0), (1,0)}
a specific example of a lattice P-hexagon was given immediately after Theorem 5.1.

THEOREM 7.3. If P = {(—1,0),(0,0),(1,0)}, there does not exist a lattice special
P-hezxagon.

Proof. Suppose that @ is a lattice special P-hexagon, and without loss of gener-
ality, suppose that it is constructed and labeled as in Theorem 7.1 with ps = (-1, 0),
p1 = (0,0), and p3 = (1,0). Let g¢ = (a,b) € Z?, where b # 0, so that ¢ = (ma, mb)
for some m € N, m > 1. Then we have

(22) 2am —m+1 2bm q 2am+m —1 2bm
— an = .
9 m-+1 "m+1 % m+1 "m+1

Subtracting the z-coordinates, we see that m + 1 divides 2(m — 1) and hence m = 3.
Substituting this value of m into (22), we see that a = 2k + 1 must be odd and b = 2]
must be even, and then ¢ = (6k + 3,60), ¢4 = (3k + 1, 30), and g5 = (3k + 2, 3]).

Now repeat the whole argument, replacing ¢, q4, g5, and ¢ by g1, q3, g2, and
¢, respectively. Since ¢ now plays the role of gg, the coordinates of ¢ and g3 are
given by the formulas (22) for g5 and g4, respectively, with m = 3, a = 6k + 3, and
b=06[l. So gy = (9 +5,90) and g3 = (9% + 4,9!). But then the line through ¢3 and
q4 is parallel to the line through g2 and g5, impossible since these lines should meet
at p1. |

7.2. P-octagons. We start with the following lemma.

LEMMA 7.4. For every set P of four noncollinear points in Z2, there exists a
convex quadrilateral V. with PNV = () such that lines containing opposite edges of V.
intersect at points in P and the lines containing the diagonals of V' each contain one
of the remaining points of P.

Proof. Suppose first that P = {p1,pa,p3,p4} is a set of four points in Z? such
that the points ps, p3, and p4 lie in a line L, and without loss of generality, suppose
p3 € [pa2,p4]. See Figure 4 (left). Let m € [p2,ps] be such that (pa,ps,ps,m) = —1,
where (-) denotes the cross ratio, as in (1). Let Ly = L[m,p1], let v1 € L; be in
the relative interior of [p1,m], and let L; = L[p;,v1], i = 2,3. Let vy € Ly be in
the relative interior of [pe,v1] and let Ly = L[ps,vs]. Let {v3} = Ls N L4 and let
Ls = L[ps,vs]. Finally, let Lg = L[ps, va].

We claim that Ly N Ly = Ly N Lg = {v4}, say. From this it would follow that the
points v;, i = 1,...,4, form the vertices of the required quadrilateral.
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Fic. 4.

To prove the claim, let {c} = L1 N Ly, let L1 N Ly = {v4}, and let Ly N Lg = {v}}.
The perspectivity with center vy, takes the points ve, vs, ps4, and ¢ on L4 onto the
points pa, p3, pa, and m in L, so we have (vq, v3,p4,c) = (p2,p3,p4,m) = —1. The
perspectivity with center p, takes the points vs, vs3, p4, and c on Ly onto the points vq,
vg, m, and ¢ on Ly, so (v1,v4, m,c) = (va,v3,p4,¢) = —1. Finally, the perspectivity
with center ps takes the points v, v3, ps, and ¢ on Ly onto the points v}, v1, m, and ¢
on Ly, so (v, v}, m,c) = 1/(v),v1,m,c) = 1/(va,v3,pg,¢) = —1. Thus (v, v}, m,c) =
(v1,v4,m,c) = —1, which gives v4 = v}, as required.

Now suppose that P = {p1,p2,p3,pa} is a set of four points in Z?, no three of
which are collinear. Suppose that the points are labeled so that L[py, ps]N[pe, p3] = 0.
If L = L[p2, p3], then either p; and py lie on the same side of L, or they lie on opposite
sides of L. The former case is illustrated in Figure 4 (right); the latter case corresponds
to the situation in which the point p4 in Figure 4 (right) lies in Ly below L. Let m be
in the relative interior of [ps, p3], and suppose n € L is such that (pa, p3,n,m) = —1.
Let Ly = L|m, p1] and Ly = L[n, ps]. We may assume that m and n are chosen so that
if {¢} = Ly N Ly, then c lies in the relative interior of [m,p1]. Let v; € L; be in the
relative interior of [c, p1], and let L; = L[p;,v1], i = 2,3. Let {v;} = L; N Ly, i = 2,3.
Then v; lies in the relative interior of [p;, v1], i = 2,3, and py ¢ [ve, v3], since p4 is not
contained in the triangle with vertices p1, pa, and ps. Finally, let Ls = L[ps, v3] and
LG = L[pg,’()g].

We claim that L1 N Ly = L1 N Lg = {v4}, say. From this it would follow that the
points v;, i = 1,...,4, form the vertices of the required quadrilateral. To prove the
claim we can follow exactly the argument used in the previous case, on replacing py
with n. O

THEOREM 7.5. For every set P of four noncollinear points in Z2, there exists a
rational P-octagon Q such that PNQ = (). Hence there are sets P of four noncollinear
points in Z? such that there exists a lattice P-octagon Q such that PN Q = 0.

Proof. Let P = {p1, p2, p3,p4} be a set of noncollinear points in Z2. Suppose that
the points in P are labeled so that L[p1,p4] N [p2,p3] = 0. Let V be a quadrilateral
built as in Lemma 7.4. Note that in the proof of Lemma 7.4, we can interchange ps and
ps3, if necessary, so that the points ps and ps belong to the same half plane bounded
by L[p2,vs4]. Moreover, since P C Z2?, each line in the construction of Lemma 7.4
can be chosen so that it is represented by a linear equation with integer coefficients.
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Fic. 5. Construction of a P-octagon for four moncollinear points.

Thus, we can assume that the vertices of V' have rational coordinates.

We will construct a P-octagon with vertices on the lines containing the edges
of V. Let go be a point with rational coordinates in the relative interior of [pa, va],
and let ¢; be in the relative interior of [pe, v4] such that {¢1} = L[pz, va] N L[ps,qo]-
See Figure 5. Let {g2} = L[ps,v4] N L[ps,q1], and note that gy can be chosen so
that g9 is in the relative interior of [p3,v4]. Let {g3} = L[ps,vs] N L[p2, ¢2], and note
that g3 is in the relative interior of [ps,vs]. Finally, let {qa} = L[p2, vs] N L[p1, 3],
{as} = Llps, gl N L[p2, v1], {¢6} = Llpa, 5] N L[ps, v1], and {q7} = L[p2, g6] N L[p3, va].

We claim that the octagon @) with vertices ¢; (indicated by white circles in Fig-
ure 5), where the subscripts are understood to be integers mod8, is a P-polygon.
The construction ensures that the points p2, ¢;, and ¢5_; are collinear and that the
points ps, ¢;, and g1 _; are collinear. It remains to prove that @ is a P’-polygon, where
P’ = {p1,ps}. Note that for i = 1 and 5, the points p4, ¢;, and g3_; are collinear by
construction.

Consider the lines Ly = L|qq,qs5], L2 = L[gs,qs], and Ls = L[g2, ¢7] through ps3
and the lines L} = Llges,q7], Ly = Llqo,qs), and Ly = L[q1,qs] through ps. Then
LinLy = {¢s}, Lt N Ly = {q6}, L1 N Ly = {qu}, L) N Ly = {qr}, L2 N L5 =
{vs}, and L, N Ly = {va}, so by the dual of Pappus’s theorem ([6, section 4.3]), it
follows that the lines L[gs, gs], L[q4, ¢7], and L[va,v3] belong to the same pencil. Since
L{gs,q6] N Lva,v3] = {psa}, the points ps, g4, and ¢ are collinear, as required. In
the same way, by applying the dual of Pappus’s theorem to the lines Ly = L[qgs, gs],
Ly = L{qo, q1], and L3 = L[go, g7] through ps, and L} = Lqo, g5], L3 = L|g2, g3, and
L% = L|q,q4] through po, it follows that p4, qo, and g3 are collinear. Therefore py,
¢;, and q3_; are collinear for every 1.

Note that p1, g3, and ¢4 are collinear by construction. By applying the dual
of Pappus’s theorem to the lines L1 = L[q4,qs5], Lo = L|gs,qs], and Ls = L|ga, q7]
through ps, and the lines L] = L|qo, q3], L = L[q1,q4], and L5 = L|qo, ¢5] through
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P2, it follows that pi, g2, and ¢5 are collinear. Consider the triangle 7" with vertices
g1, g2, and vy, and the triangle 7" with vertices g5, gs, and v1. Let L1 = L|q1, ¢2],
Lo = L|ga,v4], and L3 = L[gy, v4] be the lines containing the edges of T', and let L] =
L{gs, 6], Ly = L{gs,v1], and Ly = L|gg, v1] be the corresponding lines containing the
edges of T". Since LiNL; = {ps}, LoNLj = {va}, and LgN L5 = {vs}, and the points
Pa, v2, and vz are collinear, the lines L[qa, 5], L[g1,¢s], and L[v1, v4] belong to the
same pencil. Also, L[ga, gs]NL[v1,v4] = {p1}, so the points p1, q1, and ¢ are collinear.
By applying the dual of Pappus’s theorem to the lines Ly = L[gs, ¢s], L2 = L|qo, ¢1],
and Ly = L[g2,q7] through ps, and the lines L| = Lq1,q4], Ly = Ligs, q7], and
L = L[qo, g5] through po, it follows that p1, o, and g7 are collinear. Therefore p;,
qi, and q7_; are collinear for every ¢, completing the proof that ) is a P-octagon.

Finally, note that since P C Z? and the vertices of @ all have rational coordinates,
there is an integer k such that if P’ = {kp1, kpa, kps, kps}, then kQ is a lattice P’-
octagon. 1]

The previous result stands in contrast to the situation for collinear sets P. It
follows from [12, Theorem 4.5] that there are sets U of four directions in R? with
rational slopes such that there do not exist any U-polygons (lattice, rational, or
otherwise). By Theorem 6.5(ii), there are sets P of four collinear points in the z-axis
such that there are no P-polygons, and, in particular, no rational P-polygons, disjoint
from the z-axis.

7.3. A P-dodecagon. Almost nothing seems to be known about P-polygons
beyond the material in the previous subsections. The following result is obtained by
a construction similar to that of Theorem 7.5, but starting with a certain special P-
hexagon instead of a quadrilateral. In view of the isolated nature of the construction,
we simply list the relevant points.

THEOREM 7.6. There is a set P of siz points in Z2, no four of which are collinear,
such that there exists a lattice P-dodecagon Q such that PN Q = (.

Proof. Let P' = {p1,pa,...,ps}, where p; = (0,—12), pa = (6,0), p3 = (—4,4),
ps = (—24,12), p5s = (12,12), and pg = (—6,12). Let @ be the dodecagon with
vertices qo = (16/5,—14/5), ¢1 = (84/29,-96/29), ¢2 = (12/107,—672/107), g3 =
(_1/97 _55/9)7 q4 = (_7/?” _1/3)’ s = (_48/197 6/19)7 d6 = (_336/1097 330/109)a
g7 = (—220/73,224/73), qs = (—4/15,32/15), g9 = (3/11,21/11), q10 = (165/41, 3/41),
and g1 = (112/27,—2/27). A computation of the slopes of the segments [g;, ¢;+1],
where the indices are taken modulo 12, shows that () is convex. A further computation
shows that for i = 0,...,5, the following triples of points are collinear: (p1,q:, q11—1i),
(P2, Qi q3—i)s (P35 4isq7—i)s (P4, disq5-i), (P5,%i,q1-i), and (pe, i, go—i), Where again
indices are taken modulo 12. This shows that @ is a P’-polygon. Since the vertices
of @ have rational coordinates, there is a k € N such that kQ is a lattice P-polygon,
where P = {kp1, kpa, ..., kps}. O

8. Discrete point X-rays at noncollinear points. Volé¢i¢ (see [17] or [11,
Chapter 5]) proved that planar convex bodies are determined by their continuous
point X-rays at any set of four points, no three of which are collinear. We show in
this section that the situation is somewhat different for discrete point X-rays.

By Corollary 7.2, there are sets P = {pi,p2,ps} of three noncollinear points in
72, such that there exists a lattice special P-hexagon. Moreover, it can be arranged
that the center c of the hexagon is also a lattice point, in which case the hexagon is
a lattice P’-polygon for the set P’ = {p1,p2,p3,c} of four noncollinear points. The
point ¢ may be in the interior of the triangle formed by the points in P, as in Figure 3,
or exterior to this triangle, as in the construction of Theorem 7.1. By Lemma 4.5,
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there are different convex lattice sets with equal discrete point X-rays at the points
in P’. These examples show that the results of Vol¢i¢ (see [17] or [11, Theorems 5.3.6
and 5.3.7]) do not hold in the discrete case.

The following direct consequence of Theorem 7.5 and Lemma 4.5 shows that
another result of Voléi¢ (see [17] or [11, Theorem 5.3.8]) also does not hold in the
discrete case.

THEOREM 8.1. There is a set P of four points in Z%, no three of which are
collinear, such that convex lattice sets not meeting any line joining two points in P
are not determined by discrete point X-rays at the points in P.

Finally, Theorem 7.6 and Lemma 4.5 immediately yield the following result.

THEOREM 8.2. There is a set P of siz points in Z2, no four of which are collinear,
such that convex lattice sets not meeting any line joining two points in P are not
determined by discrete point X-rays at the points in P.
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IMPROVED BOUNDS FOR THE CROSSING NUMBERS OF
Kpmn AND K, *
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Abstract. It has been long conjectured that the crossing number cr(Kpm,,n) of the complete
bipartite graph K, n equals the Zarankiewicz number Z(m,n) := LmTflJ L5 ] \_"glj [5]. Another
longstanding conjecture states that the crossing number cr(K,) of the complete graph K, equals
Z(n) = %L%J [%J ["772J L"ngj In this paper we show the following improved bounds on the
asymptotic ratios of these crossing numbers and their conjectured values:

(i) for each fixed m > 9, limp— oo cr(Km,n)/Z(m,n) > 0.83m/(m — 1);

(ii) limp—oo cr(Kn,n)/Z(n,n) > 0.83; and

(iii) limp—oo cr(Kn)/Z(n) > 0.83.
The previous best known lower bounds were 0.8m/(m—1),0.8, and 0.8, respectively. These improved
bounds are obtained as a consequence of the new bound cr(Kr,,) > 2.1796n2 — 4.5n. To obtain this
improved lower bound for cr(K7 ), we use some elementary topological facts on drawings of K2 7 to
set up a quadratic program on 6! variables whose minimum p satisfies cr(K7,,) > (p/2)n? —4.5n, and
then use state-of-the-art quadratic optimization techniques combined with a bit of invariant theory
of permutation groups to show that p > 4.3593.

Key words. crossing number, semidefinite programming, copositive cone, invariants and cen-
tralizer rings of permutation groups
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1. Introduction. In the earliest known instance of a crossing number question,
Turan raised the problem of calculating the crossing number of the complete bipartite
graphs K, ,. Turdn’s interesting account of the origin of this problem can be found
in [27].

We recall that in a drawing of a graph in the plane, different vertices are drawn
as different points, and each edge is drawn as a simple arc whose endpoints coincide
with the drawings of the endvertices of the edge. Furthermore, the interior of the
arc for an edge is disjoint from all the vertex points. We often make no distinction
between a graph object, such as a vertex, edge, or cycle, and the subset of the plane
that represents it in a drawing of the graph.

The crossing number cr(G) of a graph G is the minimum number of pairwise
intersections of edges (at a point other than a vertex) in a drawing of G in the plane.
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Fic. 1. A drawing of K4 5 with 8 crossings. A similar strategy can be used to construct drawings
of Km,n with exactly Z(m,n) crossings.

Exact crossing numbers of graphs are in general very difficult to compute.
Longstanding conjectures involve the crossing numbers of interesting families of graphs,
such as K,,, and K,. On a positive note, it was recently proved by Glebsky and
Salazar [9] that the crossing number of the Cartesian product C,,, x C,, of the cycles
of sizes m and n equals its long conjectured value, namely (m — 2)n, at least for
n > m(m + 1). For recent surveys of crossing number results, see [23] or [26].

Zarankiewicz published a paper [29] in which he claimed that cr(K,, ,,) = Z(m,n)
for all positive integers m, n, where

» o =" |5 e

However, several years later Ringel and Kainen independently found a hiatus in Zaran-
kiewicz’s argument. A comprehensive account of the history of the problem, including
a discussion of the gap in Zarankiewicz’s argument, is given by Guy [11].

Figure 1 shows a drawing of K45 with 8 crossings. As Zarankiewicz observed,
such a drawing strategy can be naturally generalized to construct, for any positive
integers m,n, drawings of K, , with exactly Z(m,n) crossings. This observation
implies the following well-known upper bound for cr(K,, ,):

cr(Kpn) < Z(m,n).

No one has yet exhibited a drawing of any K, , with fewer than Z(m,n) crossings.
In allusion to Zarankiewicz’s failed attempt to prove that this is the crossing num-
ber of K,, ,, the following is commonly known as Zarankiewicz’s crossing—number
conjecture:

cr(Kp ) < Z(m,n) for all positive integers m, n.

In 1973, Guy and Erdds [6] wrote, “Almost all questions that one can ask about
crossing numbers remain unsolved.” More than three decades later, despite some def-
inite progress in our understanding of this elusive parameter, most of the fundamental
and more important questions about crossing numbers remain open. Zarankiewicz’s
conjecture has been verified by Kleitman [13] for min{m,n} < 6 and by Woodall [28]
for the special cases 7<m < 8, 7 <n < 10.
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Since the crossing number of K, ,, is unknown for all other values of m and n, it is
natural to ask what are the best general lower bounds known for cr(K,, ,,). A standard
counting argument, together with the fact that cr(Ks,) is as conjectured, yields the
best general lower bound (2) known for cr(K,, ). It goes as follows: Suppose we know
a lower bound ¢, on cr(K, ) for 2 < r < m < n. Each crossing in the embedding of
K lies in (T:;) distinct K., C Ky, . As there are in total (7') distinct K, ,,’s,

one obtains
0 K> 2l
( r—2 )
A small improvement on the 0.8 factor (roughly to something around 0.8001) was
recently reported by Nahas [18].
Zarankiewicz’s conjecture for K7, states that
r(K )19 n—1fin| 2.25n2 — 4.5n +2.25, nodd, n>7,

T = 2 2| | 22512 —4.5n, n even, n > 8.

As we observed above, this has been verified only for n = 7,8,9, and 10. Using
cr(K710) = 180, a standard counting argument gives the best known lower bounds
for cr(K7,,) for 11 < n < 22. However, for n > 23, the best known lower bounds for
cr(K7 ) are obtained by the same counting argument, but using the known value of

cr(Ks,,) instead of cr(K710). Summarizing, previous to this paper, the best known
lower bounds for cr(7,n) were

for r = 5 one derives cr(Ky,,,) > 0.8 Z(m,n).

2n(n — 1), 11 <n <22,
(3) cr(Kr,) > < 21n% —4.2n+ 2.1, odd n > 23,
2.1n% — 4.2n, even n > 24.

In this paper we prove the following theorem.
THEOREM 1. For all integers n,

er(Ky ) > 2.1796n2 — 4.5n.

An elementary calculation shows that this is an improvement, for all n > 23, on
the bounds for cr(K7 ) given in (3).

The strategy of the proof can be briefly outlined as follows. Let (A, B) be the
bipartition of the vertex set of K7, where |A| = 7 and |B| = n > 2. Let b,b be
vertices in B. In any drawing D of K7 ,,, the number of crossings that involve an edge
incident with b and an edge incident with ' is bounded from below by a function
of the cyclic rotation schemes of b and . This elementary topological observation
on drawings of K7 naturally yields a standard quadratic (minimization) program
whose minimum p satisfies cr(K7,) > (p/2)n® — 4.5n (see Lemma 2). We then
use state-of-the-art quadratic programming techniques to show that p > 4.3593 (see
Proposition 3), thus implying Theorem 1.

The rest of this paper is organized as follows. In section 2, we review some
elementary topological observations about drawings of K5, and use these facts to
set up the quadratic program mentioned in the previous paragraph. The bound
for cr(K7,,) in terms of the minimum of this quadratic program is the content of
Lemma 2. In section 3 we prove Proposition 3, which gives a lower bound for the
quadratic program. As we observe at the end of section 3, Theorem 1 is an obvious
consequence of Lemma 2 and Proposition 3. In section 4 we discuss consequences of
Theorem 1: The improved bound for cr(K7 ) implies improved asymptotic bounds
for the crossing numbers of cr(K,, ) and cr(K,).
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F1G. 2. Here m = 7. Vertices b; and b; have cyclic orderings (0134526) and (0265341),
respectively (we write i for a; for the sake of brevity). It is easy to check that the minimum number
of interchanges among adjacent elements in (0134526) required to obtain (0265341)~1 (namely
(0143562)) is 2. Thus, Q((0134526),(0134526)) = 2. Therefore, there must be at least 2
crossings (as is indeed the case in the drawing above) that involve edges incident with b; and b;.

2. Quadratic optimization problem yielding a lower bound for cr (K, »)-
Our goal in this section is to establish Lemma 2, a statement that gives a lower bound
for cr(Kp, ) for m < n (and thus for cr(K>,)) in terms of the solution of a quadratic
minimization problem on (m — 1)! variables.

Let n > m be fixed. Let V denote the vertex set of K, ,, and let (A, B) denote
the bipartition of V' such that each vertex of A = {ag,a1,...,am—1} is adjacent to
each vertex of B = {bo,b1,...,b,—1}.

Consider a fixed drawing D of K,,,. To each vertex b; we associate a cyclic
ordering 7p(b;) of the elements in A, defined by the (clockwise) cyclic order in which
the edges incident with b; leave b; toward the vertices in A (see Figure 2). Let II
denote the set of all cyclic orderings of {ag, a1, ..., a,—1}. Note that |II| = m!/m =
(m— 1)L

Following Kleitman [13], let crp(b;, b;) denote the number of crossings in D that
involve an edge incident with b; and an edge incident with b;. Further, let p1, po € II
and Q(p1,p2) be the minimum number of interchanges of adjacent elements of py
required to produce pg 1 Then, for all b;, b; with b; # b,

(4) crp(bi, bj) > Q(mp(bi), mp(b))).

This inequality is stated in [13] and proved in [28]. This observation alone yields a
lower bound for cr(K, ), as follows. Fix any drawing D of K,, . For each p € II,
let

1
zp:= —|{bi € B | mp(bi) = p}|.

The matrix Q can be viewed as the matrix of quadratic form Q(-,-) on the space R,
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It follows from (4) that

a®)z Y Qe ag)aym) + 3 Qo) (')
p,p €l pell
p#p’

:g n Y Qp,p)wpwy — ELJ Vn;lJ ;

p,p' €11

using the (easily verifiable; see, e.g., [28]) fact that Q(p, p) = |m/2][(m —1)/2] for
every p € IL.
Since the drawing D was arbitrary, we have proved the following lemma.
LEMMA 2. Let @ be the (m — 1)! x (m — 1)! matriz of the form Q(-,-), and let e
denote the all ones vector. Then, for every integer n > m > 2,

_ —1

cr(Kr ) > g(n min{z"Qz | z € RY, eTe =1} —9).

Remark. In this paper we focus on the case m = 7. For obvious reasons (for
m =7, Q is a 720 x 720 matrix) we do not include in this paper the matrix @ in
table form. As we mentioned above, Q(p, p) = 9 for every p € II, and therefore all the
diagonal entries of @ are 9. It is not difficult to show that Q(p,p’) < 8if p # p/, so
every nondiagonal entry of @) is at most 8. The calculation of the entries of @, using
the definition of Q(-, ) and taking its symmetries into account (see section 3.2), takes
only a few seconds of computer time.

3. Finding a lower bound for the optimization problem. Our aim in this
section is to find a (reasonably good) lower bound for the quadratic programming
problem with m = 7 given in Lemma 2, in order to obtain a (reasonably good) lower
bound for cr(K7 ). The main result in this section is the following.

PROPOSITION 3. Let @ be the 6! x 6! matrixz of the quadratic form Q(-,-). Then

min{z"Qz | z € RY,elz =1} > 4.3593.

We devote this section to the proof of Proposition 3. It involves computer calcu-
lations; more details on this are given in section 3.8.

3.1. The standard quadratic programming problem. The problem we
have formulated is known as standard quadratic optimization problem. The standard
quadratic optimization problem (standard QP) is to find the global minimizers of a
quadratic form over the standard simplex; i.e., we consider the global optimization
problem

5 ‘=minz’

(5) p:=minz Q,

where @ is an arbitrary symmetric d x d matrix, e is the all ones vector, and A is the
standard simplex in R?,

A={reR::elx =1}
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We will now reformulate the standard QP as a convex optimization problem in
conic form. First, we will review the relevant convex cones as well as the duality
theory of conic optimization. We define the following convex cones:

e the d x d symmetric matrices:

Si={XeR"xRY X =Xx"T};

the d x d symmetric positive semidefinite matrices:

St ={XeS8s y"Xy>0 vy e R,

the d x d symmetric copositive matrices:

Ca={X €8s, y"Xy>0 VyeR% y >0}

the d x d symmetric completely positive matrices:

i=1

k
CéZ{X:ZyiyiT, yi €RY, yz*ZO(i:l’--w’f)};

the d x d symmetric nonnegative matrices:
Nd:{XGSd, Xij >0 (7;7j:1,...7d)}.

Recall that the completely positive cone is the dual of the copositive cone [12], and that
the nonnegative and semidefinite cones are self-dual for the inner product (X,Y) :=
Tr(XY'), where “Tr” denotes the trace operator.

For a given cone Kg4 and its dual cone K we define the primal and dual pair of
conic linear programs:

(P) p* = Xiglgd{Tr(CXﬂTr(AiX):bi (i=1,...,M)},

M
(D) d* := sup {bTy’Zy¢A¢+S C, Se IC:}}.

yeR™ i=1

IfK,; = Sj, we refer to semidefinite programming; if K4 = Ny, to linear programming;;
and if K4 = Cy4, to copositive programming.

The well-known conic duality theorem (see, e.g., Renegar [20]) gives the duality
relations between (P) and (D).

THEOREM 4 (conic duality theorem). If there exists an interior feasible solution
X0 € int(Ky) of (P) and a feasible solution of (D), then p* = d* and the supremum in
(D) is attained. Similarly, if there exist feasible y°,S° for (D), where S° € int(K3),
and a feasible solution of (P), then p* = d* and the infimum in (P) is attained.

Optimization over the cones S;r and Ay can be done in polynomial time (to
compute an e-optimal solution), but some NP-hard problems can be formulated as
copositive programs; see, e.g., de Klerk and Pasechnik [14].

3.1.1. Convex reformulation of the standard QP. We rewrite problem (5)
in the following way:

:= min T .
p = min r(Qrz”)
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Now we define the cone of matrices
IC:{XESd : X =aaxl, :cZO}.

Note that the requirement z € A corresponds to X € K with Tr(ee? X) = 1.
We arrive at the following reformulation of problem (5):

(6) p=min {Tr(QX) : Tr(ee’ X) =1, X € K}.

The last step is to replace the cone K by its convex hull, which is simply the cone of
completely positive matrices, i.e.,

k
conv (K) =C) = {X:Zyiy;f, yi € R, yi>0(i:1,...7k)}.

i=1

Replacing the feasible set by its convex hull does not change the optimal value of
problem (6), since its objective function is linear. Thus we obtain the well-known
convex reformulation

(7) p=min {Tr(QX) | Tr(ee" X) =1, X €C;}.

The dual problem takes the form

(8) p=max {t|Q —tee” €Ca},

where Cy is the cone of copositive matrices, as before. Note that both problems have

the same optimal value, in view of the conic duality theorem.

3.2. Exploiting group symmetries. We can reduce considerably the number
of variables in the optimization problems in (7), (8) by exploiting the invariance
properties of the quadratic function 7 Qz. This will also prove to be computationally
necessary for the problems we intend to solve.

Consider the situation where the matrix @ is invariant under the action of a group
G of order k = |G| of permutation matrices P € G, in the sense that

Q=PTQP VPedG.
Then we have
p=min {Tr(QX) | Tr(ee’ X) =1, X €C;}

= min {Tr(P"QPX) | Tr(Pee" PX) =1, X € C;} forany P € G
= min {Tr(QPTXP) | Tr(eeTPTXP) =1, X € C;} for any P € G

:min{’I‘r(Qi > P'XP ) Tr<eeT [; > P'XP ) =1, Xec;}.

Peq PG
We can therefore restrict the optimization to the subset of the feasible set obtained
by replacing each feasible X by the group average % Y pec PTXP, ie., replacing X
by its image under what is known in invariant theory as the Reynolds operator. Note
that if X € Cj, then so is its image under the group average.
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In particular, we wish to compute a basis for the so-called fized point subspace

1
A::{YeSd|Y:kZPTXP,X€Sd}.

PeG

Note that @ and ee” are elements of A (set X = @Q, respectively, X = ee’). Hence
Q — tee” € A for any t, and

p=max{t|Q —tee” €Cq} =max{t|Q —tee’ €CynA}.

The right-hand side here is the dual of the primal problem when it is restricted to A
as above.
The next step is to compute a basis for the subspace A.

3.3. Computing a basis for the fixed point subspace. We assume for sim-
plicity that G acts transitively as a permutation group on the standard basis vectors.
(This holds in our setting. A more general, and computationally less efficient, setting
can be found in Gatermann and Parrilo [8].) The theory here is well known and goes
back to Burnside, Schur, and Wielandt. See, e.g., Cameron [5] for details. Although
we need a basis of 4, the subspace of symmetric matrices fixed by G, it is more natural
to compute the basis X of the subspace B of all matrices fixed by G and then pass
on to A.

The dimension of B equals the number r of orbits of G on the Cartesian square
of the standard basis. The set of the latter orbits, also known as 2-orbits, naturally
corresponds to certain set X of d x d zero-one matrices. Namely, for each X € X one
has X;; = 1 if and only if Xp(;) p;y =1 forall Pe€ Gandall 1 <i < j < || As
G is transitive on the standard basis vectors, the identity matrix I belongs to X. We
also have Yy X = e’

As X is closed under the matrix transposition, i.e., X* € X for any X € X,

Xa={A,. . Ay} ={X|X=XTexju{X+XT|Xecx, X#Xx"}
is a basis of A. Each A € X4 is a symmetric zero-one matrix, and ZAGXA A =eel.
Moreover,

M
1
{YeSdY:ZyiAi}:AE{YESﬂY:kZPTXP,XeSd}.

i=1 PeG

Since Q € A, we will write Q = Zf\il b; A;.

It is worth mentioning that algebraically the vector space B behaves very nicely:
it is closed under multiplication. In other words, B is a matrix algebra of dimension
r, also known as the centralizer ring of the permutation group G.

We proceed to describe G and B in our case. For us G is isomorphic to the direct
product Sym(m) x Sym(2) of symmetric groups Sym(m) and Sym(2), where Sym(m)
acts (as a permutation group) by conjugation on the d = (m — 1)! elements of II, and
Sym(2) acts (as a permutation group) on II by switching = € II with 7—! € II.

Computing X is an elementary combinatorial procedure, which can be found in
one form or another in many computer algebra systems, so one does not have to
program this again. First, the permutations that generate Sym(m) x Sym(2) in its
action on IT are computed. The action of Sym(2) is already known, and is described
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by the permutation gg, say. In its usual action on m symbols, Sym(m) is generated
by h1 = (0,1,...,m—1) and hy = (0,1). These h; (for i = 1,2) act on II by mapping
each m € II to hﬂrh;l. Denote by g; (for i = 1,2) the permutations of II that realize
these actions.

Next, one computes the orbits of the permutation group Sym(m) x Sym(2) =
(90, 91, g2) on the Cartesian square IT x IT of II, by “spinning” (m;, 7;) € II x II: Begin
with S;; = {(m;, 7;)} and apply the generators g;, 0 < i < 2, in a loop until S;; stops
growing. Then one sets I := II — S;; and repeats until II is exhausted.

When m = 7, one has » = 78 and M = 56. Note that here the algebra B is not
commutative.

When m = 5, one has r = M = 6, and B is commutative.

3.4. Reformulation of the optimization problem. We can now reformulate
the dual problem by using the basis of A to obtain

pmax{t|QteeT€CdﬁA}maX{

M
Zb ftA Ecd}

We will now proceed to derive a lower bound on p by solving the dual problem
approximately.

3.5. Approximations of the copositive cone. The problem of determin-
ing whether a matrix is not copositive is NP-complete, as shown by Murty and
Kabadi [17]. We therefore wish to replace the copositive cone C4 by a conic sub-
set, in such a way that the resulting optimization problem becomes tractable. We can
represent the copositivity requirement for a d x d symmetric matrix S as

(9) P(z) := (zox)'S(xox) Z S’ijxfx? >0 VzeR%
1,j=1

where “o” indicates the componentwise (Hadamard) product. We therefore wish to
know whether the polynomial P(x) is nonnegative for all z € RY. Although one
apparently cannot answer this question in polynomial time in general, as it is an NP-
hard problem, one can decide using semidefinite programming whether P(x) can be
written as a sum of squares.

Parrilo [19] showed that P(z) in (9) allows a sum of squares decomposition if and
only if S € Sj + Ny, which is a well-known sufficient condition for copositivity. Set
K9 to be the convex cone K} = S + Nj.

Higher order sufficient conditions can be derived by considering the polynomial

14 d d L

(10) PO (x (Zm) = ZS’”mfxg (Zlmf> ;

ij=1

and asking whether P()(z)—which is a homogeneous polynomial of degree 2(¢+2)—
has a sum of squares decomposition, or whether it has only nonnegative coefficients.

For ¢ = 1, Parrilo [19] showed that a sum of squares decomposition exists if and
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only if! the following system of linear matrix inequalities has a solution:

(11) S-SV esr, i=1,...,d

(12) S =0, i=1,....4d,

(13) SWr2sP =0, i#j,

(14) S+ sP 15 >0, i<j<k,

where S (i =1,...,d) are symmetric matrices. Similar to the £ = 0 case, we define
K} as the (convex) cone of matrices S for which the above system has a solution.

We will consider the lower bounds we get by replacing the copositive cone by
either K9 or Kl:

(15) D 2 De —max{t|Q—tee EIC} ¢e{0,1}.
3.6. Approximations (relaxations) of the copositive cone. We will now

study the relaxation obtained by replacing the copositive cone by its proper subset
KY. In other words, we study the relaxation

M
max{ t)A; ECd}

> po = max{

M

> (i —t)A; eICO_S++Nd}
i=1

We rewrite Zf\il(bi —t)A; € KY as

M M M
Z(bi —t)A; = ZyiAi + Z zi A,
i=1 i=1 i=1

where Zf\il y;A; € S and Zf\il 2z A; € Ny.
Note that, since the A;’s are zero-one matrices that sum to ee’, it follows that
z; > 0. Moreover,

by —t=vy; + 2 implies by —t—y; > 0.
We obtain the relaxation
M
(16) o :max{t [bi—t—y >0 (i=1,...,M), >y esj}.
i=1

3.7. Block factorization. The next step in reducing the problem size is to per-
form a similarity transformation that simultaneously block-diagonalizes the matrices
Ay, ..., Apy. In particular, we want to find an orthogonal matrix V' such that the
matrices

A =VAVY i=1,...,M,

Mn fact, Parrilo [19] proved only the “if” part; the converse is proved in Bomze and de Klerk [4].
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all have the same block-diagonal structure, and the maximum block size is as small
as possible. Note that the conjugation preserves spectra, and orthogonality of V'
preserves symmetry.

This will further reduce the size of the relaxation (16) via

M
pozmax{tbi—t—inO(i:L...,M), ZyiAiES;}
i=1

M
_Inax{t ‘ bz —t—yi 2 0 (’L = 1,...,]\4)7 ZyiVAiV*1 ES;}
i=1
M
:max{t |bj—t—y; >0(i=1,...,M), Zyzflz ES;F}.
i=1

The necessity to restrict to orthogonal V’s lies in the fact that there is currently
no software (or algorithms) available that would be able to deal with nonsymmetric
/L’s.

Computing the finest possible block decomposition (this would mean finding ex-
plicitly the orthogonal bases for the irreducible submodules of the natural module of
G in its action by the matrices P) is computationally not easy, especially due to the
orthogonality requirement on V. We restricted ourselves to decomposing into two

d . d

blocks of equal size § x §. Namely, each row corresponds to a cyclic permutation

g € 11, and the natural pairing (g,¢g~!) can be used to construct V = ?V’ as follows:
e the first half of the rows of V' are characteristic vectors of the 2-subsets
{997}, g € 1L
e the second half of the rows of V' consists of “twisted” rows from the first half:
namely, one of the two 1’s is replaced by —1.
It is obvious that V'V’" = 2I and thus V is orthogonal.

Remark. It is worth mentioning that in [22] Schrijver essentially dealt, in a
different context, with a similar setup, except that in his case the elements of the
basis X of B were symmetric and (hence) the algebra B commutative. In such a
situation the elements of X’ can be simultaneously diagonalized, and the corresponding
optimization problem becomes a linear programming problem.

3.8. Computational results: Proof of Theorem 3. The combinatorial/
group theoretic part of the computations, namely of the A;’s, V', and Q = >, b; A;, was
performed using a computer algebra system GAP [7], version 4.3, and its shared pack-
age GRAPE by Soicher [24]. Semidefinite programs (SDPs) were solved by Sturm [25]
using SeDuMi, version 1.05 under MATLAB 6.5. The biggest SDP took about 10
minutes of CPU time of a Pentium 4 with 1 GB of RAM.

In addition, the results were verified using MAPLE. Namely, for ¢ = py and v,
the variables computed upon solving (16), we checked that the corresponding (matrix
and scalar) inequalities in (16) hold. As pg is a lower bound on p, we thus validated
the computed value of py independently of the SDP solver used.

For the test case of K5, we solved the relaxed problem (15) with ¢ = 1 to obtain

1
p1 ~ 1.9544, thatis, cr(Ks,) > 5(1.9544)712 = 0.9772n2,

asymptotically. The correct asymptotic value is known to be cr(Kjs ) = n?, which
shows the quality of the bound. In fact, we could show that p; &~ 1.9544 corresponds
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to the optimal value of the first optimization problem in Lemma 2 for m = 5. This
shows that the optimal value of this optimization problem is a strict lower bound of
the crossing number of K, ,,, even for m = 5.

The weaker bound for ¢ = 0 in (15) yields, still quite tight,

1
po~ 104721, thatis, er(Ks,) > (1.94721)n” = 0.973605n°.
For the case K7, we solved the relaxed problem (15) with £ = 0 to obtain
1
po ~ 4.3593, that is, cr(Kr,) > 5(4.3593)712 = 2.1796n2,

asymptotically.

Proof of Theorem 1. For the sake of completeness, we close this section with
the observation that Theorem 1 has been proved. It follows from Lemma 2 and
Proposition 3. O

4. Improved bounds for the crossing numbers of K, , and K,,. Perhaps
the most appealing consequence of our improved bound for cr(K7 ) is that it also
allows us to give improved lower bounds for the crossing numbers of K, , and K.
The quality of the new bounds is perhaps best appreciated in terms of the following
asymptotic parameters:

Cr(Km,n) % Cr(Kn,n)

9

A(m) := nh_)rrgo Z(m.n)

(see Richter and Thomassen [21]). These natural parameters give us a good idea of
our current standing with respect to Zarankiewicz’s conjecture. It is not difficult to
show that A(m) (for every integer m > 3) and B both exist [21].

Previous to the new bound we report in Theorem 1, the best known lower bounds
for A(m) and B were A(m) > 0.8-™5 and (consequently) B > 0.8. Both bounds
were obtained by using the known value of cr(K5 ,,) and applying a standard counting
argument.

By applying the same counting argument but instead using the bound given by
Theorem 1, we improve these asymptotic quotients to A(m) > 0.83 "+ and B > 0.83.

The improved lower bound for B has an additional, important application. It has
been long conjectured that cr(K,) = Z(n), where

1f{n||n=-1||n—-2||n—-3
Z(n) =~ | =
=15 ==
but this has been verified only for n < 10 (see, for instance, [6]). As we did with
Ky n, it is natural to inquire about the asymptotic parameter

C:= lim or(Kn)

noe Z(n)

In [21] it is proved that C' exists, and, moreover, that C' > B. In view of this, our
improved lower bound for B yields C' > 0.83.
We summarize these results in the following statement.
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THEOREM 5. With Z(m,n) and Z(n) as above,

lim or(Kom.n)

n—oo Z(m,n)

Kn n
> 083" qim EEnn) S a3
m—1" n—oo Z(n,n)

. cr(Ky)
1
noe 7 (n)

and > 0.83. 0

Recall that these results followed from an improved lower bound on cr(K7,)
obtained by solving the optimization problem (15) for m = 7. The results can be
further improved by solving (15) for larger values of m. After the first submission of
the present work, the optimization problem was successfully solved for m = 9 by de
Klerk, Pasechnik, and Schrijver [15], by using a more sophisticated way of exploiting
the algebraic symmetry. In particular, the constant 0.83 in Theorem 5 could thus be
improved to 0.859.

We close this section with a few words on some important recent developments
involving the rectilinear crossing number of K,.

The rectilinear crossing number ¢r(G) of a graph G is the minimum number of
pairwise intersections of edges in a drawing of G in the plane, with the additional
restriction that all edges of G must be drawn as straight segments.

It is known that ¢r(K,) and cr(K,) may be different (for instance, cr(Kg) = 19,
whereas cr(Kg) = 18; see [10]). While we have a (nonrectilinear) way of drawing K,
that shows cr(K,) < Z(n) (equality is conjectured to hold, as we observed above),
good upper bounds for ¢r(K,) are notoriously difficult to obtain. Currently, the
best upper bound known is ¢r(K,,) < 0.3807(’;) (see Aichholzer, Aurenhammer, and
Krasser [2]).

For many years the best lower bounds known for (K, ) were considerably smaller
(around 0.32(’})) than the best upper bounds available (currently around 0.3807(%)).
However, remarkably better lower bounds have been recently proved independently
by Abrego and Ferndndez—Merchant [1] and Lovész et al. [16], and refined by Balogh
and Salazar [3]. In [1], the technique of allowable sequences was used to show that
cr(K,) > 0.375(). Lovész et al. used similar methods to prove ¢r(K,,) > 0.37501(;)+
O(n®). Recently, Balogh and Salazar improved this to e¥(K,) > 0.37553(;) + O(n?)
[3]. The importance of establishing that ¢r(k,) is strictly greater than 0.375(7}) +
O(n?) is that it effectively shows that the ordinary and the rectilinear crossing num-
bers of K,, are different in the asymptotically relevant term, namely n*.

Acknowledgment. Etienne de Klerk would like to thank Pablo Parrilo for his
valuable comments.
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Abstract. We call two permutations of the first n naturals colliding if they map at least one
number to consecutive naturals. We give bounds for the exponential asymptotics of the largest
cardinality of any set of pairwise colliding permutations of [n]. We relate this problem to the deter-
mination of the Shannon capacity of an infinite graph and initiate the study of analogous problems
for infinite graphs with finite chromatic number.
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1. Introduction. Let n be an arbitrary natural number and let [n] be the set
of all natural numbers from 1 to n. We will say that two permutations of [n] are
colliding if they map at least one element of [n] into two consecutive numbers, i.e.,
into numbers differing by 1. It is then natural to ask for the determination of the
maximum cardinality p(n) of a set of pairwise colliding permutations of [n]. One
easily sees that this number grows exponentially with n and its asymptotic exponent
lies between log, # and 1. We will prove this and some better bounds later on.

Certain graphs having as vertex set the permutations of [n] have been introduced
before by Cameron and Ku [1] and Larose and Malvenuto [10], cf. also Ku and Leader
[9] for a generalization. These authors considered Kneser-type graphs in which they
studied the growth of stable sets describing sets of permutations that are “similar”
in some sense, whereas our definition of adjacency corresponds to being “different”
and distinguishable in some other, particular sense. In fact, the above Kneser-type
problems, unlike ours, have no immediate relation to capacity in the Shannon sense.

In this paper we will generalize our introductory problem in several ways. We will
consider arbitrary infinite graphs over the natural numbers and introduce various new
concepts of capacity. As always, graph capacity measures the exponential growth rate
of the largest cliques induced on the Cartesian powers of the vertex set of a graph.
In case of an infinite vertex set such as the naturals this is not always interesting, for
the graph in itself might have infinite cliques. Then it is reasonable to restrict our
attention to particular subsets of the power sets, e.g., those representing permutations.
We will present some simple bounds for the value of the so obtained new capacities.

2. Permutation capacity. Let G be an arbitrary graph with a countable set
of vertices. Without loss of generality we can suppose that the vertex set V(G) of G
is the set N of natural numbers. Further, let us denote by G[A] the subgraph of G
induced by an arbitrary subset A of the vertex set of G. As usual, we also consider, for
every natural n € N, the power graph G™ whose vertex set is N”, the set of n—length
sequences of natural numbers. Two such sequences x € N and y € N" are adjacent

*Received by the editors June 1, 2005; accepted for publication (in revised form) September 27,
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in G" if x = xyx9...2, and y = Y192 ...y, have at least one coordinate i € [n] for
which {z;,y;} € E(Q), i.e., if the vertices x; and y; are adjacent in G. (This concept
of power graph is rooted in information theory. If we interpret adjacency of vertices
of a graph as a relation of distinguishability, it is very intuitive to extend such a
notion to strings of vertices in the above way, with the meaning that two strings are
distinguishable if we can distinguish them in at least one of their coordinates.)

Throughout this paper we write (if ) for the family of all n—element subsets of X.
For an arbitrary set A € (3)) we write R(A) for the set of all the n-length sequences
without repetitions on the alphabet A. As usual, we can think of a sequence in
R(A) as a permutation of the set A. In particular, when A = [n], the sequence
X =27 ...2, € R([n]) represents the permutation of [n] which maps i into ;.

We denote by G(A) the subgraph of the power G™ induced by R(A) and by p(G, A)
its clique number. We set p(G,n) for the largest cardinality of a clique induced by
G™ on the sequences corresponding to the permutations of an n-set in V(G), i.e.,

p(Gn) = ,fel?ﬁi) p(G, A).

Finally, we define

p(G) = limsup E log, p(G, 1)
n—oo 1N
and call it the permutation capacity of the graph G.

In this paper we consider some infinite graphs and try to determine their permu-
tation capacity. Since our graphs have a countable set of vertices, the value of their
permutation capacity might well be infinite. The same is true for Shannon capacity.
In fact, to our knowledge Shannon capacity of infinite graphs has not been considered
so far, even though it makes perfect sense and will be discussed below.

The problem of the asymptotic growth of cliques of particular induced subgraphs
of G™ as n goes to infinity is a key ingredient in determining the Shannon capacity of
graph families in the sense of Cohen, Korner and Simonyi [2], where the sets inducing
the subgraphs are formed by all the sequences “of a given type,” in an information
theoretic sense (see Csiszar and Korner [3] for a definition and more on this). All the
sequences of a given “type” form a minimal set that is invariant under the action of
all the permutations of the coordinates of the sequences. Our present concepts are
natural extensions to the case of infinite graphs of Shannon capacity in a given type,
in the sense of [3].

3. Examples. Let us start with an atypical and even somewhat trivial example,
just to rephrase the already cited results of [1] and [10] in our present terms.

Consider the graph G, where V(G) = N and E(G) = {{z,z} : € N}, consisting
of loops on the natural numbers. When A = [n], its set R(A) is the set of permutations
of [n] and two permutations x = x; ...2, and y = y; ...y, are adjacent if and only if
there is a coordinate i € [n] such that x; = y;. We will denote by x ! the inverse of the
permutation represented by the sequence x. With this notation, x and y are adjacent
if the product xy ! is not a derangement. This is the complement of the graph of
permutations studied by Cameron-Ku [1] and Larose-Malvenuto [10], that is, the
Cayley graph of permutations with generators the derangements. It is obvious that
p(G,n) = p(G,[n]) = (n—1)! and thus the clique number (n—1)! is super-exponential
in n. In fact, the above authors show far more than this; they prove that the trivial
construction, consisting of the set of all permutations that map an arbitrary fixed
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natural [ into an arbitrary fixed natural m, is the unique way to achieve the clique
number. This graph is somewhat artificial in the present context. If in a graph the
only edges are loops, then adjacency corresponds to “being similar.” In graph capacity
problems one usually considers only graphs without loops and interprets adjacency
as some sort of distinguishability between vertices. From now on we will restrict
attention to these cases.

One of the simplest and perhaps most natural examples of our present problem is
furnished by the (semi-)infinite path L whose vertices z and y from N are adjacent if
they are consecutive in the natural order, that is [y—x| = 1. Clearly, w(L) = x(L) = 2
and thus the Shannon capacity loglim, .on Y/w(L™) equals 1 (cf. Shannon [13],
Lovész [11] and, in particular, Cohen, Kérner and Simonyi [2], where the problem is
reformulated, geared towards the subsequent generalizations [6] and[7], in the present
terms). We will show that

log, <pL) <L

1+6

2
For the infinite path L, denote simply by L(n) rather than L([n]) the subgraph in-
duced by the set A = [n] on the nth power of L. Its vertex set is the set of all the
permutations of the set [n] (the permutations of n elements) and two of such permu-
tations x =1 ...z, and y = y; ...y, are adjacent in L(n) if and only if the following
condition holds:

(1) Fien]: |y —x) =1

Note that, as observed in [5], every finite graph is an induced subgraph of L™ for some
value of n.

The two graphs above belong to a more general class of graphs G(D) depending
on a finite subset D of N of “allowed differences” as follows: its vertices are, as before,
the natural numbers N and {z,y} € G(D) if and only if |x — y| € D. When D = {0}
we have the all-loops graph described above; when D = {1} we have G(D) = L.

4. The infinite path. In this section we will study the behavior of the cliques in
the powers of the (semi-)infinite path L. In particular, we will derive some recursive
inequalities for the value of p(L,n).

Observation. For any n-element subset A of the naturals the graph induced on
it by L is isomorphic to a subgraph of the path of n vertices induced by L on the set
[n]. Hence by an obvious monotonicity

p(L,n) = jﬁ?ﬁ‘) p(L, A) = p(L, [n]).

In other words, p(L, n) is the maximum number of permutations of [n] such that for
any two of them, there is an element of [n] mapped into two consecutive integers from
[n]. Recall that this is the very same problem we introduced at the beginning of this
paper, where we wrote p(n) for p(L,n).

The following recursive inequality will play a key role in our attempt to determine
the permutation capacity of the infinite path.

PROPOSITION 4.1. The function p(L,n) is super-multiplicative:

p(L,n+m) > p(L,n) - p(L,m).
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Proof. Take a clique C in L(n) of maximal size p(L,n) and a clique D of maximal
size p(L,m) in L(m). Denote by D + n the set obtained from D by adding n to each
element of the sequences of D:

D+n={z1+n...em+n:z1...2m € D} CR{n+1,...,n+m}).

Clearly the size of the clique D +n in G({n+1,...,n 4+ m}) is the same as that of
D. Hence the product construction

Cx(D+n)={z1...Zpgm :21...Tn € C;Tpy1 ... Tntm € D +n} C R([n+m]),

obtained by concatenating sequences from C' to sequences from D + n, gives a clique
in G(n + m) of size p(L,n) - p(L, m). |

By the well-known elementary inequality called Fekete’s lemma (see [14]), the
last proposition implies that the limit lim, . ¥/p(L,n) exists, and its logarithm
coincides with the permutation capacity p(L).

It is immediately obvious that the capacity p(L) is upper bounded by the log-
arithm of the chromatic number of L, and thus is at most 1. The following non-
asymptotic refinement might be interesting.

PROPOSITION 4.2.
n
oz < (1):
15]

Proof. Call parity pattern of a permutation x = x5 ... x, the binary sequence of
length n obtained when substituting every entry in x by its congruence class modulo 2.
Now observe that if two permutations x and y are colliding, which means that there is
a coordinate 7 such that x; and y; are consecutive integers, then in the ith coordinate
of the corresponding parity patterns there is a difference in 0 and 1, implying that their
parity patterns are different. So in a clique of L(n) there is at most one permutation
for any given parity pattern. Finally, the parity pattern of a permutation of [n] has
5] 0’sand [§] 1’s. O

PROPOSITION 4.3.

p(L,n) > P(L;n - 1) + p(L,n - 2)

Proof. Take a clique C' of maximal size for L(n — 1) and a clique D of maxi-
mal size for L(n — 2). Now set C = {z1...¢p_1n: x1...2y—1 € C} and D =
{z1...2p_on(n—1): z1...xp_2 € D}. In this way any element from C will collide
with any element from D in the last coordinate because of the edge {n,n —1} so that
CUD is a clique in L(n) of size p(L,n —1) + p(L,n — 2). O

COROLLARY 4.4.
1
b@<'?£><mm<1

Proof. Although the present upper bound to the permutation capacity of the
infinite path is obvious as observed before, for the sake of completeness we deduce
from Proposition 4.2 that % log, p(L,n) < L log, (LZJ) <1.

2

For the lower bound, Proposition 4.3 shows, together with p(L,1) = 1 and
p(L,2) = 2, that the sequence p(L,n) grows at least as fast as the basic Fibonacci

sequence F'(n). Since lim, ., {/F(n) = 1+T‘/5, we get logz(l%‘/g) < p(L). O
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A nonrecursive way of constructing a clique of size F'(n) in L(n) follows. Consider
the set S of permutations obtained from the identical permutation by exchanging two
consecutive integers, i.e., S = {s; : ¢ = 1,...,n — 1}, where s; = (i,4 + 1) is the
adjacent transposition, in cyclic notation. For I = {i; < ... < it} C [n — 1], let
S1 = Siy -+ Siy, - Let

Cln)={J Cln—1]:Vi,j € J sis; = 55}

be the family of subsets of [n — 1] whose corresponding adjacent transpositions are
pairwise commuting. Since for ¢ # j one has s;s; = s;s; if and only if |i — j| > 2,
we can encode the elements of C(n) as zero-one sequences of length n — 1 with the
property that no consecutive 1’s appear in the sequence. Since the number of zero-one
sequences of length n without consecutive “1”’s is known to be F'(n), and since each of
these is in bijection with some element of C(n), we see that in C'(n) there are exactly
F(n) sequences. Furthermore for I, J € C(n) with I # J one has {s;,s;} € E(L(n)).
Let h = min IAJ, where A denotes the symmetric difference of sets, and suppose that
h € I; then clearly h ¢ J, h + 1 & I because of the condition on C(n) and h — 1 ¢ J
by the minimality of h. When we deduce that s;(h) = h + 1 and s;(h) = h, s; and
sy are adjacent.

For n = 4, the set of binary sequences {000, 100,010,001, 101} represents C(4)
and the corresponding set of permutations is {id; (12); (23); (34); (12)(34)} in cycle
notation, i.e.,

{1234; 2134; 1324; 1243; 2143}

However, we will see very soon that the lower bound in the last corollary can be
improved. The asymptotic improvement we obtain will be a direct consequence of the
following inequality that follows easily from Proposition 4.1.

PRrOPOSITION 4.5. For every n € N we have

p(L) > log i/ p(L,n).

Proof. By Proposition 4.1 we have "{/p(L,nk) > {/p(L,n). |
This justifies our interest in calculating p(L,n) for the first values of n. The
results are shown in the following table.

n [1]2]3]4]5]6]7
p(Lon) | 1|23]6]|10]20] 35

For n = 7 we built a clique of size 35 by putting together 7 cliques each of size
5, obtained as cyclic shifts of certain sequences of length 5. Before explaining this
construction in more detail, we prove a general result on cyclic shifts for any graph
G.

Let A C N with |A| = k. Let # = @y ... ay be an arrangement of A = {a1,...,a,}
on a cycle of length k; we say that = is a circular arrangement of A. We define the
circular distance Or(a;,a;) of a; and a; with respect to 7 as follows:

0 ifi=j
&r(ai,aj): min{jf’i,kﬁ’i*j} ifve<y
&r(aj,ai) if 4 > 7.
We say that a circular arrangement m = ay ... a is complete if for every d = 1,. .., ng

there exists an edge {a;,a;} € E(G) with 0, (a;,a;) = d.
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LEMMA 4.6. If m = ay...ay is a complete circular arrangement of A, then the
subset S(m) of R(A) consisting of all the cyclic shifts of , i.e.,
S(’]T) = {ﬂ'd = Qdad+1 - - - Ad4(k—1) * d= 1, ey k},
where
ar =as & r=s( mod k),
is a clique in G(A).

Proof. 1t is enough to show that for any ¢ = 2,...% one has {r, 7'} € E(G(4)).
First start with any ¢ such that ¢ < |%]. Since 7 is complete, there exists {a;,a;} €
E(QG) such that d,(a;,a;) =t; we can fix ¢ < j. If the circular distance ¢ is achieved
as j — i, then {m, 7'} € E(G(A)) since in coordinate ¢ one has {m;, 7t} = {a;,a;} €
E(G) and also {m, 7*~**1} € E(G(A)) since in coordinate j one has {m;, 75"} =
{aj,ai} € E(G); if the circular distance ¢ is achieved as k 44 — j, then {m;, 7t} =
{a;,a;} and {m;, ¥ """} = {a;,a;}. In any case both {m, '} and {m, 7% **1} are
edges of G(A); consequently {7, 7'} € E(G(A)) for t =2,...k. O

PROPOSITION 4.7.

p(L,7) = 35.
Proof. Let I' be the set consisting of the following sequences:
of = 23546
of = 32546
ab = 23547
alf = 54237
1 = 34651
7 = 65341
B = 14357.

Each sequence in I' is a complete circular arrangement of the corresponding set of its
entries. By Lemma 4.6 it follows that S(v) is a clique for any v € T.
First we show that 4; := S(a)) U S(af) is a clique in L({2,3,4,5,6}).

T

Observe that any sequence of the form xy546 is already a complete circular arrange-
ment of {z,y,4,5,6} (we are not using the edges {2,3} and {3,4} to achieve the
adjacencies). The same argument as in Lemma 4.6 makes clear that («})¢ is adjacent
to any element of S(af) of the form (af)! with ¢ # d, while when t = d, then (a})¢
and (o )? will be colliding in coordinate d, because (o/)? is obtained from ()¢ by
interchanging 2 and 3.
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Now we show that Ay := S(ab) U S(ad) is a clique in L({2,3,4,5,7}).

Notice that we have af = ¢ o o, with ¢ = (2,5) o (3,4), where (i,j) is the
transposition of ¢ and j. Clearly {ab, a4} € E(L({2,3,4,5,7})); they collide in the
second coordinate through the edge {3,4}. Observe that we can find two 2-sets {a, b}
(precisely {3,5} and {2,4}) at circular distance, respectively 1 and 2, in o4 such that
the corresponding 2-sets of the form {a, ¢(b)} (precisely {3,2} and {2,3}) are edges
of L. Hence the same reasoning as in Lemma 4.6 can be applied to establish that we
also have {a}, (a4)?} € E(L({2,3,4,5,7})) for 1 < d <5.

As for By := S(B]) U S(8Y), we notice that the bijection

b (28457
“\3 4 5 6 1
is an isomorphism of L({2,3,4,5,7}) into L({1,3,4,5,6}) such that 8] = ¢ o o} and
7 = ¢oal. So the argument used for the set Ay applies to By as well, showing that
the latter is a clique in L({1,3,4,5,6}).

Now let sX := {sx : x € X} (resp., Xs) be the set of sequences obtained from
those in X by prefixing (resp., postfixing) to each of them the symbol s and set

A=1A,7 U 1456,
B =2B,7 U 25(5,)6.

The sets A and B are both cliques in L(7) since the adjacency between elements of
1417 and 1456, or between those of 2B17 and 25(35)6, is guaranteed in the last
coordinate, where we use the edge {6,7}. Finally C' = AU B is a clique in L(7), since
the adjacency between elements of A and B is established in the first coordinate,
where we use the edge {1,2}. Obviously, C' has 35 elements. |

Conjecture. Encouraged by the previous clique of size 35 we are tempted to
formulate the following conjecture:

ALm) = (LnJ>

Unfortunately, we do not have more serious reasons to believe in it.

Now we are ready to improve the lower bound p(L) > logz(%) =0.6942... of
Corollary 4.4.

PROPOSITION 4.8.

p(L)>0.732... .

Proof. Combining Proposition 4.5 with that of Proposition 4.7 we immediately
see that p(L,n) > 357, and p(L) > 11og,35=0.732.... O

5. Surprise capacity. Let G be once again an arbitrary graph with countable
vertex set N and let G™ be the same power graph as before. We will say that the
set C' C N™ generates a surprise clique in G™ if C' generates a clique in G™ with the
property that for any {x,y} € (NQ) the ordered pairs of coordinates (x;,y;) are all
different. We shall denote by S(G,n) the maximum cardinality of a surprise clique in

G"™ and will call the limit

1
lim sup - log, S(G,n)

n—oo
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the surprise capacity of G. Clearly, this quantity is lower bounded by the permutation
capacity of the same graph. (At the end of the paper we will comment on the intuitive
meaning of this definition.)

PROPOSITION 5.1. The maximum cardinality of a surprise clique in L™ is 2",
where L is the infinite path.

Proof. We shall use the easy and well-known submultiplicativity of the chromatic
number, i.e., x(G™) < [x(G)]™. To verify this, let ¢ : V(G) — N be an optimal coloring
of G. Then the map ¢ : [V(G)]|" — N” defined by ¢"(x1...2,) = c(z1)...c(x,) is a
proper coloring of G™. The chromatic number of the infinite path L is 2. So for the
power graph L™ one has x (L") = 2™ and consequently w(L") < 2™. Tt follows that if
C'is a surprise clique in L™, then

|C] <27,

since any surprise clique is in particular a clique.
We now construct a clique of cardinality 2", showing that

S(L,n) >2".

Our construction will consist of appropriately chosen sequences of length n, with
entries from [2n], where lack of repetition will be ensured by strict monotonicity. For
any binary sequence x of length n, define

n
a(x) :=x1,x1 + 9, . . ., E zj,
i=1

that is,

(2) a(x); =Y _ ;.
j=1

Apply this to binary strings on the alphabet {1,2} and set
C :={a(x):x € {1,2}"} C [2n]".

By construction one has a(x) # a(x’) if and only if x # x’. Hence C has the
same cardinality as the set of all the binary sequences of length n. Now we show
that C' is a clique in the nth power of L. Take x,x’ € {1,2}" with x # x’ and
let s be the first coordinate in which the two binary sequences differ. Then for the
corresponding sequences in C' we have {a(x),a(x’)} € E(L"), since |a(x)s —a(x')s]| =
|3 512 — ;-1 2| = |vs — x| = 1. Finally the condition for C' to be a surprise
clique holds, since by the definition (2) its elements are strictly increasing sequences;
hence there are no repetitions of symbols. 1]

The above proposition shows that the surprise capacity of the infinite path is 1.

6. Unimodal permutations. Let us return to L(n), the graph induced in the
power graph L™ by the set of all permutations of [n]. In order to see the wealth of
relatively large cliques in L(n) it might be interesting to understand the density of
cliques in the relatively small set of unimodal permutations.

We say that a permutation a of [n] is unimodal if there is an index h € [n] such
that a1 < ag < --- < ap > apy1 > -+ > a,. We will introduce a new variant of our
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introductory problem of determining the number p(n) of the maximum cardinality of
a set of pairwise colliding permutations of n (recall that this concept was at the core
of our permutation capacity problem).
Let us denote by U(n) the maximum cardinality of a set of pairwise colliding
unimodal permutations of n.
THEOREM 6.1.
log, ! +2\/5 < limsup % log, U(n) < 1.

n—oo

Proof. The upper bound is an obvious consequence of Proposition 4.2, since
U(n) < p(L,n).

Fix ae € (0,1) and 8 € (0,1) in a way to be specified later. Write [,, = |an| and
kn = |Ban]. Now we shall adapt the construction in the proof of Proposition 5.1
to define our unimodal permutations. To this purpose consider the set B,, of all the
sequences in {1,2} in which the symbol 2 appears k,, times. Thus by the well-known
asymptotics of the binomial coefficients (Lemma 2.3, p. 30 of [4])

() s L guantkasin
3) 1B, = (k) > 1o ,
where h(t) = —tlogyt — (1 —t)log,(1 — t) is the binary entropy function.

To every x € B,, we shall associate as before the increasing sequence of natural
numbers a(x) whose ith element a;(x) is as in formula (2). Suffixing to the sequence
a(x) the naturals from [n] \ {a1(x),...qa;, (x)} in decreasing order we obtain the uni-
modal sequence X of integers from the set [l,, + k], where I,, + k,, = |an| + |Ban].
Then in order for X to be a permutation of [n], we must have a(1 + 8) <1, i.e.,

1

(4) a< 55
Clearly the relation between x and X is bijective and therefore we have obtained |B,,|
unimodal permutations. As in Proposition 5.1, we have that if x # x’, then a(x) and
a(x’) are colliding. So the corresponding sequences X and x’ will be colliding too.

We just saw that the set 1/3; = {X:x € B,,} has the same cardinality as B,, and
it is a clique of unimodal elements of L(n).

Recalling the definition of U(n) and (3), we deduce that

1
U > lnh(kn/ly)
(n) = n+1

when

1 ln
lim sup — log, U(n) > limsup —h(k,/l,,) = ah(3).
n

n—oo N n— 00
Choosing the largest o with respect to the constraint in (4), ie., @ = ﬁ, and
maximizing in # we obtain:
1 h(f) 14+V5
limsup —log, U(n) > max ———= =1lo .
nﬂoop n 082 (n) = ge(o,1) 1+ 82779

In order to see that our last entropy expression has as its maximum the logarithm of
the golden ratio, as claimed, the reader is referred to [8]. d

It is tempting to believe the lower bound to be tight, even though we have no
real reason to do so.
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7. Concluding remarks. In this paper we have introduced several closely re-
lated concepts of capacity for infinite graphs. It is not clear whether these can have the
same interpretation in terms of Shannon’s theory of information as do the concepts of
Shannon capacity [13] and Sperner capacity [6]. In particular, the Shannon capacity
of a finite simple graph is the highest rate at which one can transmit data over a dis-
crete memoryless (stationary) channel with zero probability of error. Recently Nayak
and Rose [12] showed that Sperner capacity is the key in determining the analogous
transmission rate for compound channels with an uninformed coder-decoder pair.

The common feature of our models is that for no codeword pairs can we transmit
the same symbol pair at different instants of time. This restriction might be of rele-
vance if one is to guarantee security of transmission; an intruder can never experience
the repetition of a symbol configuration and thereby learn how to adapt to a hitherto
unknown communication situation it creates.

Having a disposable symbol set does not necessarily mean that the channel has an
infinite input alphabet. In fact, note that in all our code constructions every symbol
has at most seven different “successors.”

Acknowledgments. We would like to thank Miki Simonovits for his friendly
interest.
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M-CONVEX FUNCTIONS ON JUMP SYSTEMS:
A GENERAL FRAMEWORK FOR
MINSQUARE GRAPH FACTOR PROBLEM*
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Abstract. The concept of M-convex functions is generalized for functions defined on constant-
parity jump systems. M-convex functions arise from minimum weight perfect b-matchings and from
a separable convex function (sum of univariate convex functions) on the degree sequences of an
undirected graph. As a generalization of a recent result of Apollonio and Sebd for the minsquare
factor problem, a local optimality criterion is given for minimization of an M-convex function subject
to a component sum constraint.

Key words. jump system, degree sequence, graph factor, discrete convex function, local opti-
mality
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1. Introduction. A recent paper of Apollonio and Sebd [2] has shown that the
minsquare factor problem on a graph can be solved in polynomial time. The problem
is, given an undirected graph possibly containing loops and parallel edges, to find a
subgraph with a specified number of edges that minimizes the sum of squares of the
degrees (= numbers of incident edges) of vertices. The key observation in [2] is that
global optimality is guaranteed by local optimality in the neighborhood of ¢;-distance
at most 4 in the space of degree sequences. It has also been observed in [2] that
this local optimality criterion remains valid when the objective function is generalized
to a separable convex function (= sum of univariate convex functions) of the degree
sequence.

The objective of this paper is to put the above results in a more general context
of discrete convex analysis [21] by introducing the concept of M-convex functions on
constant-parity jump systems. A separable convex function of the degree sequences
of a graph is an M-convex function in this sense.

A jump system [4] is a set of integer points with an exchange property (to be
described in section 2); see also [14], [16]. It is a generalization of a matroid [6], [15],
a delta-matroid [3], [5], [7], and a base polyhedron of an integral polymatroid (or a
submodular system) [11]. Minimization of a separable convex function over a jump
system has been studied in [1], where a local criterion for optimality as well as a
greedy algorithm is given.

Study of nonseparable nonlinear functions on matroidal structures was started
with valuated matroids [8], [9], which have come to be accepted as discrete concave
functions; see [18], [20]. This concept has been generalized to M-convex functions on
base polyhedra [19], which play a central role in discrete convex analysis [21]. Valuated
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delta-matroids [10] afford another generalization of valuated matroids; see also [10],
[17], [24], [25]. In all these generalizations global optimality is equivalent to local
optimality defined in an appropriate manner. In addition, discrete duality theorems
such as discrete separation and min-max formula hold for valuated matroids and M-
convex functions on base polyhedra, whereas they fail for valuated delta-matroids.
M-convex functions on constant-parity jump systems, to be introduced in this paper,
are a common generalization of valuated delta-matroids and M-convex functions on
base polyhedra.

In this paper, we investigate the problem of minimizing an M-convex function on
a constant-parity jump system. It is shown, in particular, that (i) global optimality
for unconstrained minimization is equivalent to local optimality in the neighborhood
of ¢;-distance 2 (Theorem 3.3), and (ii) global optimality for constrained minimization
on a hyperplane of constant component sum is equivalent to local optimality in the
neighborhood of ¢;-distance at most 4 (Theorem 4.1). The former generalizes the
optimality criterion in [1] for separable convex function minimization over a jump
system, and the latter generalizes the optimality criterion in [2] for the minsquare
factor problem. Theorem 4.3 reveals convexity of the optimal values with respect
to the component sum, on the basis of which algorithms are constructed for the
constrained minimization in section 5.

2. Exchange axioms. Let V be a finite set. For u € V' we denote by x, the
characteristic vector of u, with . (u) = 1 and x,(v) = 0 for v # u. For z = (z(v)),y =
(y(v)) € Z" define

z(V) = z(v),
veV
Izl =Y (),
veV
supp(z) = {v € V | z(v) # 0},
supp™ (z) = {v € V| z(v) > 0},
supp (z) = {v € V [ z(v) <0},

[z,9] = {z € Z | min(z(v), y(v)) < 2(v) < max(z(v),y(v)),Vv € V}.

A vector s € ZV is called an (x,y)-increment if s = x,, or s = —x,, for some u € V
and x+s € [z,y]. An (z,y)-increment pair will mean a pair of vectors (s, ¢) such that
s is an (z,y)-increment and ¢ is an (z + s, y)-increment.

A nonempty set J C ZV is said to be a jump system if it satisfies an exchange
axiom, called the 2-step aziom: For any z,y € J and for any (z,y)-increment s with
x+s ¢ J, there exists an (z+s, y)-increment ¢ such that z+s+t € J. Aset J C Z" is
a constant-sum system if ©(V') = y(V) for any =,y € J, and a constant-parity system
if (V) —y(V) is even for any x,y € J.

We introduce a stronger exchange axiom:

(J-EXC) For any z,y € J and for any (z,y)-increment s, there exists an (z + s, y)-
increment t such that xt + s+t€ Jand y—s—t € J.

This property characterizes a constant-parity jump system, a fact communicated to

the author by J. Geelen (see section 6.1 for a proof).

LEMMA 2.1 (see Geelen [12]). A nonempty set J is a constant-parity jump system
if and only if it satisfies (J-EXC).
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It turns out (see section 6.2 for a proof) that (J-EXC) can be replaced by a weaker
axiom:
(J-EXCy,) For any distinct =,y € J there exists an (z,y)-increment pair (s,t) such
that t+s+teJandy—s—teJ.
LEMMA 2.2. A set J satisfies (J-EXC) if and only if it satisfies (J-EXCy,).
We call f:J — R an M-convex function if it satisfies the following exchange
axiom:
(M-EXC) For any z,y € J and for any (z,y)-increment s, there exists an (z + s,y)-
increment ¢ such that x +s+te€ J,y—s—t € J, and

f@) +fy) = fle+s+0)+ fly—s—1)

We adopt the convention that f(x) = +oo for x & J.
It turns out that the exchange axiom (M-EXC) is equivalent to a local exchange
axiom:
(M-EXCiqoc) For any z,y € J with ||z — y[|; = 4 there exists an (z,y)-increment pair
(s,t) such that t + s+te J,y—s—t e J, and

f@)+fy) = flets+t)+ fly—s—1)

THEOREM 2.3. A function f:J — R defined on a constant-parity jump system
J satisfies (M-EXC) if and only if it satisfies (M-EXCloc).
Proof. The proof is technical and given in section 6.3. 0
This implies that (M-EXC) can be replaced by a weaker axiom:
(M-EXCy,) For any distinct z,y € J there exists an (z,y)-increment pair (s,t) such
that t+s+teJ,y—s—teJ, and

f@)+fy) = flets+t)+ fly—s—1).

THEOREM 2.4. A function f : J — R satisfies (M-EXC) if and only if it satisfies
(M-EXCy).

Proof. Tt suffices to prove the “if” part. (M-EXC,,) implies (J-EXC,,) for J,
and hence J is a constant-parity jump by Lemma 2.2. Then the claim follows from
Theorem 2.3. 0

Note that addition of a linear function preserves M-convexity. That is, for an
M-convex function f and a vector p = (p(v)) € RV, the function f[—p] defined by
F1=pl(z) = f(z) — (p, ) with (p,2) = 3,y p(v)(v) is M-convex.

Remark 2.1. Our definition of an M-convex function is consistent with the pre-
viously considered special cases where (i) J is a constant-sum jump system, and (ii)
J is a constant-parity jump system contained in {0,1}V. Case (i) is equivalent to
J being the set of integer points in the base polyhedron of an integral submodular
system [11], and then our M-convex function is the same as the M-convex function
investigated in [19], [21]. Case (ii) is equivalent to J being an even delta-matroid [24],
[25], and then f is M-convex in our sense if and only if — f is a valuated delta-matroid
in the sense of [10]. O

Examples of M-convex functions follow.

Ezxample 2.1. A separable convexr function on a constant-parity jump system
J, ie., a function f : J — R of the form f(z) = > .y @(2(v)) with univariate
(one-dimensional) convex functions ¢,, is M-convex. In particular, the sum of
squares f(z) = Y, cv(@(v))? is M-convex. Such functions have been investigated
in [1], [2]. 0
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Ezxample 2.2. Minimum weight factors in a graph yield an M-convex function.
Let G = (V, E) be an undirected graph that may contain loops and parallel edges. For
a subgraph H = (V, F), denote its degree sequence by degy = > {xu + xv | (u,v) €
F} € ZV. Tt is well known [4], [16] that

J ={degy | H is a subgraph of G}

forms a constant-parity jump system called the degree system of G. Given edge
weighting w : F — R, define a function f: J — R by

f(z) = min{w(F) | H = (V, F) is a subgraph of G with degy = x}

with notation w(F) = > .pw(e), where f(x) represents the minimum weight of a
subgraph with degree sequence x.

This f is an M-convex function. In fact, (M-EXC) can be verified by the alternat-
ing path argument as follows. For distinct =,y € J let F}, and F), be subsets of edges
such that f(z) = w(Fy) and f(y) = w(F,) with = > {xu + Xv | (u,v) € F,} and
Y= {xXu+ Xv | (u,v) € Fy}. Let s be an (z,y)-increment, and put u, = supp(s).
We may assume, without loss of generality, that s = x,,. Starting with an edge
in F \ F, incident to u, we construct an alternating path P by adding an edge in
F, \ F, and an edge in F, \ F, alternately. The path P consists of distinct edges
but may contain the same vertex more than once. We assume that P is maximal in
the sense that it cannot be extended further beyond the end vertex, say, v.. Then
there exists an (z + Xu, , y)-increment ¢ with supp(t) = v.; more specifically, t = x,,,
or —Y,, according to whether P consists of an odd or even number of edges. Denote
by F,AP the symmetric difference of F,, and P, and by F,AP that of F,, and P.
Since c +s+t=> {xu+xv | (v,v) € F;AP} andy—s—t—z{xu—kxv | (u,v) €
F,AP}, we have f(x + s+ t) < w(F,AP) and f(y —s —t) < w(F,AP), whereas
w(F$AP) +w(FyAP) = w(F,) +w(Fy,) = f(z) + f(y). Hence (M-EXC) holds. Note
that the alternating path argument above also serves as a proof of (J-EXC) for J.

Furthermore,

f(z) =min{w(F) | H= (V, F) is a subgraph of G with deg; = z} + Z oy (x(v))
veV

is an M-convex function on the degree system of G, where each ¢, is a univariate
convex function. ]

Example 2.3. As a variant of the construction from the degree system in Example
2.2, an M-convex function arises from minimum weight perfect b-matchings; see [13],
[23] for b-matchings. Let G = (V, E) be an undirected graph that may have loops but
no parallel edges, and let w : E — R be an edge weighting. Let J C Z" be the set
of vectors x € Z" such that a perfect z-matching exists in G, and define a function
f:J — R by setting f(z) to be the minimum weight of a perfect x-matching:

(2.1) f(x) = min {Z Ale)w(e)

ecE
> Ae v) (Yo € V);M\e) € Zy (VeeE)},
e€b(v)

where 6(v) denotes the set of edges incident to vertex v € V, and Zy the set of
nonnegative integers. This function is M-convex as in Example 2.2. |
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Ezample 2.4. Let A(t) be a skew-symmetric polynomial matrix in variable ¢.
The degree in ¢ of the principal minors of A(t) yields a valuated delta-matroid, as is
pointed out in [10], [24], and hence the negative of an M-convex function. O

Remark 2.2. Unlike in the previously studied special cases where J is a base
polyhedron or an even delta-matroid, an M-convex function on a jump system is
not always extensible to a convex function. Nevertheless, our results will provide
convincing evidence to indicate its discrete convexity. See also [22]. a

3. Unconstrained minimization. We consider minimization of an M-convex
function f: J — R defined on a constant-parity jump system J C Z".

First we note a property of an M-convex function that indicates its discrete con-
vexity. Given f:J — R and x,y € J, a sequence of points in J, say, g, 1, -, Tm,
is called a steepest-descent chain connecting = to y if ©g = =, x,, = y, and for
t=1,...,m we have x; = x;_1 + s; + t; for some (x;_1,y)-increment pair (s;,t;)
such that f(x;—1 +s; +t;) < f(x;—1 + s+ t) for every (x;_1,y)-increment pair (s, t);
we have m = ||z — y||1/2. An M-convex function turns out to be convex along a
steepest-descent chain, as follows.

ProposiTION 3.1. Let f : J — R be an M-convex function, and let xo, 1, ..., Tm
be a steepest-descent chain connecting x € J toy € J. Then

Proof. Put &; = x;-1 + s+t and x;41 = x; + s’ +t'. By (M-EXC) we have

f(xic1) + f(2iga)

>min(f(zi—1 +s+1t)+ flzio + 8 + 1),
J@ici+s+t)+ f(ricr+ 5 +1),
f@ici+s+8)+ fla+t+1)] > 2f(z;). O

As an immediate corollary we see that a nonoptimal point can be improved with
a suitable increment pair.

PROPOSITION 3.2.

(1) If x,y € J and f(z) > f(y), there exists an (x,y)-increment pair (s,t) such
that f(xz) > f(x +s+1).

(2) If z,y € J and f(x) > f(y), there exists an (x,y)-increment pair (s,t) such
that f(z) > f(xz +s+1).

This implies, in turn, that global optimality (minimality) of an M-convex function
is guaranteed by local optimality in the neighborhood of ¢;-distance 2.

THEOREM 3.3. Let f : J — R be an M-convex function on a constant-parity jump
system J, and let x € J. Then f(x) < f(y) for all y € J if and only if f(x) < f(y)
for all y € J with ||z — y||, < 2.

Proof. The “only if” part is obvious, and the “if” part follows from Proposition
3.2. O

The minimizers of an M-convex function form a constant-parity jump system, as
follows. We denote by arg min f[—p| the set of minimizers of function f[—p].

PROPOSITION 3.4. For any p € RY, argmin f[—p] is a constant-parity jump
system if it is nonempty.

Proof. Let 8 denote the minimum value of f[—p], and let z,y € argmin f[—p].
Then, in (M-EXC) we have 26 = f[—p|(z) + f[-p|(y) = f[-pl(z + s+ 1) + f[-pl(y —
s —t) > 283, which implies x + s + ¢,y — s — t € argmin f[—p). O
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Remark 3.1. The local optimality criterion for M-convex functions on jump sys-
tems in Theorem 3.3 contains a number of previous results as special cases. In the case
of constant-sum jump systems, case (i) in Remark 2.1, the present theorem reduces to
the optimality criterion for M-convex functions on base polyhedra established in [19]
(see Theorem 6.26 of [21]), and, moreover, Proposition 3.2(1) above coincides with
Proposition 6.23 of [21]. In the case of constant-parity jump systems contained in
{0,1}V, case (ii) in Remark 2.1, Theorem 3.3 reduces to the optimality criterion for
valuated delta-matroids established in [10]. Both of these are generalizations, in dif-
ferent directions, of the optimality criterion for valuated matroids given in [8], [9]. Tt
is noted that the optimality criterion for valuated matroids given in [8], [9] is the ori-
gin of such optimality criteria for nonseparable nonlinear objective functions, and the
two special cases above are generalizations in different directions thereof. Separable
convex functions on jump systems have been considered in [1]. 0

4. Minimization under sum constraint. In this section we investigate the
problem of minimizing an M-convex function f(x) when the sum of the components
of x is specified. Recalling the notation x(V') for the sum of components of a vector x,
we introduce some other notation concerning the feasible regions of our optimization
problem:

kmin = min{z(V) | z € J},

kmax = max{z(V) | z € J},
A ={k | kmin <k < kmax, k = kmin(mod 2)},
Jp={xeJ|z(V)=k} (k€ A),

where J, # 0 for each k € A by (J-EXC) and it may be that ki, = —oo and/or
kmax = +o0.

Our problem is to minimize f(x) subject to x € Ji, where k € A is a parameter.
Denote by fi and My the minimum value and the set of minimizers, respectively, i.e.,

fr =min{f(x) | x € Ji} (ked),
My ={z € Ji | fx) = fi} (k€A

where we assume that, for each k € A, f is finite and M}, is nonempty. By convention
we put fr = 4oo for k & A.

Global optimality (minimality) on Jj is guaranteed by local optimality in the
neighborhood of ¢;-distance at most 4. Compare this with the unconstrained opti-
mization treated in Theorem 3.3, which refers to the neighborhood of ¢;-distance 2. It
is emphasized that J is not necessarily a jump system, and accordingly, Theorem 3.3
does not apply to minimization of f over J.

THEOREM 4.1. Let f : J — R be an M-convex function on a constant-parity
Jjump system J, and let x € Ji, with k € A. Then f(x) < f(y) for all y € Jy if and
only if f(x) < f(y) for ally € J with ||z — y|l1 < 4.

Proof. The “only if” part is obvious. To prove the “if” part by contradiction,
assume that f(xz) > f(y) for some y € Ji and take such y with minimum ||y — z||;.
Since (V) = y(V) and z # y, both supp™ (y — z) and supp™ (y — ) are nonempty.

Claim 1. If u € supp™ (y — z) and v € supp™ (y — z), then

f(l')'i‘f(y)<f(x+Xu_Xv)+f(y_Xu+Xv)'
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Proof of Claim 1. We have f(z) < f(x+ x4 — Xv) by the assumed local optimality,
and f(z) < f(y — xu + Xv) since y — xu + Xo is closer to z than y. Adding these two
and f(y) < f(z) yields the desired inequality. d

By (M-EXC) for (z,y), together with Claim 1, there exist u; € supp™(y — z),
ug € supp™ (y — & — Xu, ), v1 € supp (y — ), and vy € supp~ (y — & — Xo, ) such that

4.1) f@)+ f(y) = f(x+ Xuy + Xuo) T FY = Xus = Xua)s
42) f($)+f(y) Zf(x—le —sz)“‘f(y‘Fle +XU2)'
)

o~ o~

By (M-EXC) for (& 4+ Xu; + Xuss T — Xovy — Xv,) and the local optimality, we obtain

(4.3 f(x"i'Xul +XUQ)+f(m_XU1 _sz)

> min[f(z + Xuy, = Xoi) + F(Z + Xuz = Xoz),
(@ + Xuy = Xos) + F(T+ Xy — Xor)s
(@) + (T + Xuy + Xuz = Xor — Xoa)]

> 2f(x).

)
Similarly, by (M-EXC) for (y — Xu; — Xus»r ¥ + Xvy + Xos), We obtain

(4.4) FU = Xur = Xuz) + F(Y + Xor + Xouo)
> min[f(y — Xuy + Xor) + FU = Xuz + Xon),
T = Xur + Xoo) + F(Y = Xuz + Xor)s
FW) + F(Y = Xur = Xuz + Xor + X))
> f(z) + f(y),

since f(y — Xu; + ij) > f(ﬂ?) and f(y = Xur — Xug +X’U1 + XUQ) > f(l') by the choice
of y. Adding (4.1), (4.2), (4.3), and (4.4) yields a contradiction. d

The ¢,-distance of 4 in Theorem 4.1 cannot be replaced by the ¢;-distance of 2,
as we see in the following example.

Ezample 4.1 (see [2]). Let J C Z° be the degree system (see Example 2.2) of an
undirected graph consisting of two vertex-disjoint triangles, and let f : J — R be an
M-convex function representing the sum of squares of the components (see Example
2.1). Let k =8 and =z = (2,2,2,1,1,0), for which f(x) = 14. For any point y € Jg
with ||y — z|l1 = 2 we have f(y) = 14, whereas for z* = (2,1,1,2,1,1) we have
f(z*) =12 and ||Jz* — z|; = 4. 0

Remark 4.1. Theorem 4.1 above is a generalization of Theorem 1 of [2], since
the degree system of a graph is a constant-parity jump system (Example 2.2) and
a separable convex function on a constant-parity jump system is an M-convex func-
tion (Example 2.1). In fact, the result of [2] was the primary motivation behind
Theorem 4.1. 0

The following theorem reveals a kind of monotonicity of the minimizers of f on
Jg.

THEOREM 4.2. For any xy, € My, with k € A there exists (x; € My |l € A\ {k})
such that vy < < xp_o <2 < Tpgpo < -+ < T, -

Proof. We show the existence of such zp_5. Then zx42 can be shown to exist in
a similar manner, and the other z; (I <k —4 or [ > k + 4) exist by induction.

Take y € My,_o with minimum ||y — zg||1. If y < 2k, we are done with z5_o = y.
Otherwise, take u € supp™ (y — zx) and apply (M-EXC) to obtain either

Jvesupp (y —zk) : fe—2+ fr = W+ Xu+ Xo) + (@ — Xu — Xo)
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or

Juesuppt (y —xk) : fo—z 4+ fr = U+ Xu — Xo) + F(@8 — Xu + Xo)-

In the first case the right-hand side is lower bounded by fr 4+ fx—2 and hence y + x,, +
Xo € My and zp — Xy — Xv € Mg_2; then we can take xx_o = T — Xu — Xo- The
second case cannot occur, since the right-hand side is lower bounded by fr_2 + fx,
from which follows y+ Xy —Xo € Mg_2, whereas ||(y+Xu — Xo) — k|1 = ||y — zk||1 — 2,
which is a contradiction to the choice of y. 1]

THEOREM 4.3. Minimum values fi form a conver sequence:

(45) fk:—2 + fk:-‘r? > 2fk (k S \ {kmina kmax})-

Proof. By Theorem 4.2 we can take zp_o € My_o and xp4o € Myyo with zp_o <
Tga2, and also u € supp™ (zg42 — Tx_2). By (M-EXC) there exists v € supp™ (zg42 —
Zg—2) such that

fo—2 + frao > f(@r—2 + Xu + Xo) + [(@r+2 — Xu — Xo) > 2f%- O

Convexity of the minimum values motivates us to consider the subgradient. For
a € R define f¢:J — R by

(4.6) (@) = f(z) — ax(V).
Then we have

(4.7) min £*(z) = min min f%(z) = min(f; — o).

By Theorem 4.3, the minimum of f; — al over [ € A is attained by | = k if

(4.8) (fe = fr=2)/2 < < (frogr2 — fr)/2.
Hence
(4.9) fr = ka+min{f*(z) | x € J}

for « in the range of (4.8). This shows that the optimal value fi can be computed by
solving an unconstrained minimization problem for another M-convex function f¢.

Let us note, however, that not every minimizer of f¢ belongs to Ji. A point
x € J minimizes f*(z) if and only if © € M}, for some k with k_(a) < k < ky(a),
where

(4.10) k_(o) = min{k | mlin(fl —al) = fr — ak},
(4.11) ki (a) = max{k | mlin(fl —al) = fr — ak}.

THEOREM 4.4. For each o € R, |J{My, | k—(a) < k < ky(a)} is a constant-
parity jump system. In particular, My is a base polyhedron if k = kyin, or k = kmax,
or fk,Q + fk+2 > ka with k € A \ {kmim kmax}'

Proof. The first statement follows from Proposition 3.4 since, as observed above,
U{M5, | k—(a) < k < ky(a)} coincides with argmin f*. For the second statement it
suffices to note that for such &k we can choose an o with k_(«) = k = k1 («) and that
a constant-sum jump system is a base polyhedron. 0

Remark 4.2. Theorems 4.2, 4.3, and 4.4 above are natural generalizations of the
similar results of [17] for valuated delta-matroids. O
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5. Algorithms. The local optimality criteria in Theorems 3.3 and 4.1 for uncon-
strained and constrained minimization, respectively, naturally suggest descent-type
algorithms. At each feasible nonoptimal point, an improved point can be found with
O(]V|?) function evaluations in unconstrained minimization and O(]V|*) function
evaluations in constrained minimization. Although we do not enter into further tech-
nical details (see [22]), the number of updates of the solution point may be bounded
by the ¢;i-distance from the initial point to the optimal point, or by the difference
of the objective function values at the initial point and at the optimal point if the
objective function is integer-valued.

Two other algorithms can be constructed for constrained minimization, to min-
imize f(x) subject to x € J, on the basis of Theorems 4.2 and 4.3. It is assumed
that an algorithm is available for unconstrained minimization. For the convenience of
descriptions it is also assumed that ki, and k.. are finite.

An increasing sequence of optimal solutions, the existence of which is guaranteed
by Theorem 4.2, can be generated by the following algorithm. Once a global minimizer
x* is found, the algorithm computes the whole set of fi (k € A) with O((kmax —
Emin)|V|?) evaluations of f. Note that the algorithm works even if ki, and/or kmax
are not known in advance.

ALGORITHM 1.

Compute z* € J that minimizes f;

Set k* := a*(V), xpr := a*, fir := f(xp+);

for k:=k*+2,k* +4, ..., kpnax do
Find {u,v} C V that minimizes f(zx—2 + Xu + Xv)
and put = Tp—2 + Xu + Xo and fi := f(xp);

for k:=Fk*—2,k* —4,...  knin do
Find {u,v} C V that minimizes f(zx+2 — Xu — Xv)
and put T 1= Tpy2 — Xu — Xo and fi := f(zg).

Convexity of the sequence f; makes it possible to convert the constrained min-
imization to an unconstrained minimization of f* with an appropriate value of «;
see (4.9). Here f is M-convex and, by our assumption, the minimum of f%(x) over
x € J can be computed efficiently. We assume that we can find k4 (o) and k_ () of
(4.11) and (4.10) by maximizing (resp., minimizing) x(V') among the minimizers of
f%(x) by means of some variant of an unconstrained minimization algorithm.

The following algorithm computes kmin, kmax, and fr (kK € A) by searching for
appropriate values of a. It requires O((kmax — kmin)|V'|?) evaluations of f.

ALGORITHM 1.
Let a be sufficiently large;
Minimize f¢ to find kuyin = k4 (o) = k_(«) and fi,, ;
Let a be sufficiently small
(v is a negative number with a large absolute value);
Minimize f* to find kpax = k4 () = k_(a) and fi
if kmax — kmin > 4 then search(kpyin, kmax)-
Here the procedure “search(ki, ks)” is defined when ky + 4 < ko as follows:
procedure search(ky, k)
o= (fr, = frr)/ (k2 — k1);
Minimize f¢ to find ky = ky(a), k- =k_(a), f1 = fr, and f_ = fr_;
for k:=Fk_+2,k_+4,...,kx —2do
Jri=((k = k) fy + (bt = k) f=)/ (kg — k- );
if k1 +4 < k_ then search(ky,k_);
if k4 + 4 < ko then search(k,, k2).

max 7
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The second algorithm, as it stands, computes the values of f; and not the optimal
solutions x. If zi’s are wanted, they can be computed easily in procedure “search”
by generating a sequence of points xy € Ji Nargmin f by applying (J-EXC) to the
pair of the optimal solutions x;_ and xy, .

6. Proofs.

6.1. Proof for (J-EXC). A proof of Lemma 2.1, different from that of Geelen
[12], is provided here. This proof can be extended to Theorem 2.3.

For a constant-parity system J, the 2-step axiom of a jump system is simplified
to:

(J-EXC,) For any z,y € J and for any (z,y)-increment s, there exists an (x + s, y)-
increment t such that z 4+ s+t € J.

It suffices to prove (J-EXC,) = (J-EXC), since (J-EXC) = (J-EXC.) is obvious and

(J-EXC) implies J being a constant-parity system.

We first note the following fact.

LEMMA 6.1. Assume (J-EXCL), let y € J, and let z be a point at {1-distance
4 from vy, represented as z = y — 51 — sg — s3 — 84 with s5; € ZV and ||s;||; = 1
fori =1,2,3,4. Ifz € J, theny—s;,—s; € J andy — s — s € J for some
i, kL e {1,2,3,4) with {i, .k, 1} = {1,2,3,4}.

Proof. Consider an undirected graph G with vertex-set {1,2,3,4} and edge-set
{(t,4) | y — si —s; € J}. Tt follows from (J-EXC,) for (y, z) with s = —s; that, for
each vertex i, there exists an edge incident to ¢. Similarly, it follows from (J-EXCy)
for (z,y) with s = s; that, for each vertex i, there exists an edge not incident to i.
Such a graph has a perfect matching consisting of two edges, say, (i, ) and (k,1) with
{i,7,k,1} ={1,2,3,4}. This means that y —s; —s; € Jand y — s — s, € J. ]

To prove (J-EXC,) = (J-EXC) by contradiction, we assume that there exists a
pair (z,y) for which (J-EXC) fails. That is, we assume that the set of such pairs,

D ={(z,y) | x,y € J, s, : (x,y)-increment such that
Vit : (x4 Si,y)-increment : x + s, +t € Jor y — s, —t € J},

is nonempty.

Take a pair (z,y) € D with minimum ||z—yl1, where ||[x—y|1 > 4, fix s, satisfying
the condition above, and put u. = supp(s.). Denoting the set of (z+s,, y)-increments
by I, we have

(6.1) T+s,+tgJ or y—s.—t&J (tel).

Put U = supp(y — x) and, for v € U, let t,, denote the (uniquely determined) (z,y)-
increment such that supp(¢,) = v; we have t, = o(v)x, using the notation ¢ defined
by o(v) =1 for v € supp™ (y — x) and o(v) = —1 for v € supp™ (y — x). Define a« € R
by

12 (svel,z+2s.¢J, y—2s.€J),
“T1o (otherwise),

and p € RV by

@ (v =uy),

—« (weU\{us},z+ 5. +1, €J),

—a+1 (veU\{u},z+s+t, €Jy—s.—1t, €J),
(

0 otherwise).

a(v)p(v) =
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Claim 1.

(6.2) (p,sx+1)=0 iftel, z+s.+ted,
(6.3) (p,s« +1) =1 iftel, y—s.,—teJ.

The equality (6.2) is easy to see, whereas (6.3) can be shown as follows. By (6.1) we
have = + s, +t € J, and hence

200 =1 iftZS*)

Next, let P denote the set of (z + s., y)-increment pairs.
Claim 2. There exists (sg,t9) € P such that y — sg — tg € J and

(6.4) (p,s0 +to) < (p,s+t) if(s,t)eP, y—s—tel

Since s, is an (x, y)-increment and J satisfies (J-EXC, ), there exists ¢, € I such that
T+ s, +ty € J, where t, may possibly be identical to s,. We see that x + s, + t.
is distinct from y since ||z — y|l1 > 4. By (J-EXC,) and the minimal choice of z,y
there exists an (x + $. + 4, y)-increment pair (s,t) such that y —s —¢ € J. This
shows the existence of (s,t) € P with y —s —t € J. Then (6.4) is satisfied by the
pair (s,t) = (so,tp) that minimizes (p, s + t) over (s,t) € P subject to the condition
y—s—ted.
Claim 3. (x,y') € D with ¢y =y — sp — to.

To show this, first note that s, is an (z,y’)-increment, and let ¢ be an (z + s.,y’)-
increment. We have t € I, (sg,t) € P, and (t,t) € P. Hence, by (6.4), we have

(6.5) (p, so + to) < {p,so+1) ify—so—ted,
(66) <p7 S0 +t0> < <p,t0+t> ify—tg—ted

We assume y' — s, —t € J and derive x + s, +t ¢ J. By Lemma 6.1 with z =
Yy — So — top — S« — t, at least one of the following three cases occurs: (i) y—sg—tg € J
andy—s,—teJ, (ii)y—so—te€ Jandy—s.—tg € J,and (ili) y —to —t € J and
Yy — S« — So € J. In any case we have

(6.7) (p, s« +1) > 1,
since, in case (ii), for example, we have
(p,s0+to+ s« +1) =(p,so+1t)+ (p, s« +to) = (p, 50 +t0) +1

by (6.3) and (6.5). By (6.7) and (6.2) we see x + s. +t ¢ J. Hence (z,y’) € D.
Finally, since ||z —v'||1 = ||z—y|l1 —2, Claim 3 contradicts our choice of (z,y) € D.
Therefore we conclude D = (), completing the proof of Lemma 2.1.

6.2. Proof for (J-EXC) < (J-EXCy). A proof of Lemma 2.2 is provided
here. By the argument in section 6.1, it suffices to show (J-EXC,,) = (J-EXC,),
which we prove by induction on ||z — y|[;. Take distinct z,y € J and an (z,y)-
increment s. By (J-EXCy,) there exists an (z,y)-increment pair (s1,¢1) such that
x+s1+ti1 € Jandy—s; —t; € J. If s € {s1,t1}, we are done. Otherwise, put
y =y —s1—t1. We have ||z —y'|l1 = ||z —y[l; — 2 and s is an (x,y’)-increment. By
the induction hypothesis, (J-EXC,) with (z,y’) and s implies  + s+t € J for some
(z,y’)-increment ¢, which is also an (z, y)-increment.
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6.3. Proof for (M-EXC) < (M-EXCjec). A proof of Theorem 2.3 is provided
here. It suffices to prove (M-EXCj,.) = (M-EXC). For z € J,d € ZV, and p € RV,
define f(z,d) = f(x+d) — f(z) and fp(z,d) = f(z+d) — f(x) — (p,d). We then have

(6.8) fo(@, d) + foy, —d) = f(x,d) + f(y,—d).

We use an abbreviation f, for f[—p].
LEMMA 6.2. Assume z,y € J, ||z —y|[y = 4, and p € RV. If (M-EXCy.) is
satisfied, then

(6.9) fo(y) — fp(z) > min(mig + T34, 713 + Tou, 14 + Ta3).

Here m;; = fyp(x,s; +s5) fori,j € {1,2,3,4}, where y = x + s1 + s + s3 + sa4 with
s; €ZY and ||si||y = 1 fori=1,2,3,4.

Proof. Note that x + s; +s; =y — s, — s if {4, 4, k, 1} ={1,2,3,4}. (M-EXCi,c)
for f is equivalent to that for f[—p], which implies

fo(y) = fp(z) = min[fy(z, 81+ s2) + fp(w, 53 + 84),
To(@, 81+ 83) + fp(w, 82 + 54),
fp(x781+84)+fp(33,32+S3)]. O

To prove by contradiction, we assume that there exists a pair (x,y) for which
(M-EXC) fails. That is, we assume that the set of such pairs,

D= {(z,y) | z,y € J, 3s. : (z,y)-increment such that
Vit . (z + S«,y)-increment : f(z, s, +t) + f(y, —s« —t) > 0},

is nonempty. Take a pair (z,y) € D with minimum ||z — y||1; we have ||z — y||; > 4
by (M-EXCjoc). Let s, be an (z, y)-increment satisfying the condition above, and put
U, = supp(sx). Denoting the set of (x + s.,y)-increments by I, we have

(6.10) flx,se +t)+ f(y,—s.—1) >0 (tel).

Put U = supp(y — z) and, for v € U, let ¢, denote the (uniquely determined)
(z,y)-increment such that supp(t,) = v; we have ¢, = o(v)x, using the notation o
defined by o(v) = 1 for v € supp™ (y — z) and o(v) = —1 for v € supp~ (y — z). Using
this convention, define o € R by

f(z,25,)/2 (sx €I, x+2s, €J),
a=1¢ (—fly,—2s.)+¢€)/2 (si€l,x+2s5.&J,y—2s.€J),
0 (otherwise),
and p € RV by
a (v =),
flz,sa+t,) —a (veU\{ust},z+ s+, €J),
oc)pw) =49 —fy,—s« —ty) —at+e (weU\{ut},x+s.+t, &J,
Y—8«— 1y € J),

0 (otherwise)

with some ¢ > 0.
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Claim 1.
(6.11) fplz, 84 +1) =0 iftel,z+s.+teJ,
(6.12) foly,—s.—t) >0  iftel.

The equality (6.11) follows from

fp(xvs* +t) = f(fL',S* + t) - <p78*> - <pat>

| f(z,25,) =200 =0 if t = sy,

T flmyse ) —a—[f(z,se+t)—al =0 it # s,
The inequality (6.12) can be shown as follows. We may assume y — s, — t € J, since
otherwise fp(y, —s« —t) = +oo0. If z+ s, +¢ € J, we have f,(z,s.+1t) =0 by (6.11)
and

fp(fvs* +t) +fp(y7 —Sx — t) = f(:c,s* +t) + f(y»_s* - t) >0

by (6.8) and (6.10). Otherwise (y — s, —t € J and x + s, +t € J), we have

fp(ya —Sx — t) = f(y7 —Sx — t) + <pa S*> + <pa t>
_f fly,=2s)+2a=¢ if t = s,,
S fly,—se—t) o+ [—fly,—s. —t) —a+el=¢ ift#s,.
Next, let P denote the set of (z + s., y)-increment pairs.
Claim 2. There exists (sg,tg) € P such that y — sg — tg € J and
(6.13) oy, —so —t0) < fp(y,—s—1) (V(s,t) € P).
Since s, is an (z, y)-increment and J satisfies (J-EXC), there exists ¢, € I such that
T + Sy« + t. € J, where t, may possibly be identical to s.. We see that = + s, + t.
is distinct from y since || — y||1 > 4. By (J-EXC) there exists an (z + s« + t«,y)-
increment pair (s,t) such that y — s —t € J. This shows the existence of (s,t) € P
with y —s —t € J. Then (6.13) is satisfied by the pair (s,t) = (s¢, o) that minimizes
foly, —s —t) over (s,t) € P.
Claim 3. (x,y’) € D with y/ =y — sg — to.
To show this, first note that s, is an (x,%’)-increment, and let ¢ be an (x + s.,y’)-
increment. We have t € I, (so,t) € P, and (to,t) € P. Hence, by (6.13), we have
(614) fp(y7 —S0 7t0) S fp(y7 —S50 7t)7 fp(yaiso 7t0) S fp(ya 7t0 7t)
Suppose that ¢ + s, +t € J and y — s, —t € J. From (6.8), (6.11), Lemma 6.2,
(6.12), and (6.14) we obtain
@, s +8) + f(y', =5, — 1)
— S5+ O+ Ly =5 — )
= fp(y/a —5x — 1)
= fp(y —s0 —to — s« —t) — fp(y — s0 — to)
> min[fp(y, —S0 — tO) + fp(y7 —Sx — t)a
fp(y7 —S0 — t) + fp(ya —Sx — tO)a
fp(ya _tO - t) + fp(y7 —Sx — SO)}

—fp(y, —s0 — to)
> min[fp(ya —S0 — t0)7 fp(y7 —S0 — t)a fp(y’ 7t0 - t)]
_fp(ya —S0 — tO)

=0.
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This shows (z,y’) € D.
Finally, since ||[z—y'||1 = ||[x—y|l1 —2, Claim 3 contradicts our choice of (x,y) € D.
Therefore we conclude D = (), completing the proof of Theorem 2.3.
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ON STABILITY, ERROR CORRECTION, AND NOISE
COMPENSATION IN DISCRETE TOMOGRAPHY"*

ANDREAS ALPERS' AND PETER GRITZMANNT

Abstract. The task of reconstructing binary images from the knowledge of their line sums
(discrete X-rays) in a given finite number m of directions is ill-posed. Even some small noise in the
physical measurements can lead to dramatically different yet still unique solutions.

The present paper addresses in particular the following problems. Does discrete tomography have
the power of error correction? Can noise be compensated by taking more X-ray images, and, if so,
what is the quantitative effect of taking one more X-ray? Our main theorem gives the first nontrivial
unconditioned (and best possible) stability result. In particular, we show that the Hamming distance
between any two different sets of m X-ray images of the same cardinality is at least 2(m — 1), and
this is best possible. As a consequence, this result implies a Rényi-type theorem for denoising and
shows that the noise compensating effect of X-rays is linear in their number.

Our theoretical results are complemented by determining the computational complexity of some
underlying algorithmic tasks. In particular, we show that while there always is a certain inherent
stability, the possibility of making (worst-case) efficient use of it is rather limited.

Key words. discrete tomography, stability, discrete inverse problems, computational complexity
AMS subject classifications. 90C31, 68R05, 11P05

DOI. 10.1137/040617443

1. Introduction. Discrete tomography deals with the reconstruction of finite
sets from knowledge about their interaction with certain query sets. The most promi-
nent example is that of the reconstruction of a finite subset F' of Z% from its X-rays
(i.e., line sums) in a small positive integer number m of directions. Applications of
discrete tomography include quality control in semiconductor industry, image pro-
cessing, graph theory, scheduling, statistical data security, game theory, etc. (see,
e.g., [6], [8], [9], [13], [14], [17], [19]). The reconstruction task is an ill-posed discrete
inverse problem, depicting (suitable variants of) all three Hadamard criteria [12] for
ill-posedness. In fact, for general data there need not exist a solution, if the data is
consistent, the solutions need not be uniquely determined, and even in the case of
uniqueness, the solution may change dramatically with small changes of the data.

The papers [1] and [2] show just how unstable the reconstruction task really is:
For arbitrarily large lattice sets even of the same cardinality, a total error of only
2(m — 1) in the measurements can lead to unique but disjoint solutions. Clearly, this
is an important issue for all practical applications where noise in the data cannot be
avoided, particularly if the data stems from physical measurements.

The main theorem of the present paper shows that this number 2(m — 1) is best
possible in an ultimate sense. In Theorem 2.1 we prove that two finite sets of the same
cardinality whose X-rays in a given set of m directions differ by a total of less than
2(m — 1) are “tomographically equivalent.” This means that either the X-rays differ
by at least 2(m — 1), or they do not differ at all. Note that the situation becomes
trivial if the assumption on the equal cardinality of the lattice sets is omitted. Indeed,
if the cardinalities of the two sets differ by k, then the total difference of the X-rays is
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at least km, and this is best possible (just delete k points of an arbitrary finite lattice
set of cardinality at least k to obtain the second set).

Theorem 2.1 enables us to derive stability versions of all known uniqueness theo-
rems, providing uniqueness even for somewhat noisy data. Complementing the theo-
retical results, we deal with the computational complexity of trying to take advantage
of the inherent stability. The precise statements of our results will be given in the
next section. Here we only summarize them qualitatively.

While it is clear that the total sum over all X-rays is a multiple of m and hence a
small enough error in this number can be corrected, the problem of determining how
the individual measurements should be corrected in order to provide consistency of
the data is NIP-complete whenever m > 3 but easy for m < 2. Also, finding a set
which best fits the data is NP-hard for m > 3 but can be solved in polynomial time
for m < 2.

The paper is organized as follows: After introducing some notation we state our
main stability theorem, some of its corollaries, and the related algorithmic results in
section 2. In sections 3 and 4 we give the proofs of our stability result and of the
algorithmic results, respectively.

2. Main results: A stability theorem and some of its relatives. Let
d,m € N, d > 2, and let F be a field with Z C F. Our underlying vector space will
always be F¢ but certain restrictions to the subring Z? of all lattice points will also be
relevant. Hence we will formulate some definitions and results in terms of K € {F,Z}.
In particular, set

FUK) = {F:F c K% A F is finite}

and F¢ = F4(Z). The elements of F¢ are called lattice sets. Let S? denote the set
of all 1-dimensional linear subspaces of F?, and let £? be the subset of S? of all such
subspaces that are spanned by vectors from Z¢. The elements of £? will be referred
to as lattice lines. Further, for S € 8% let Ax(S) = {v+ S : v € K?}.

Then, for F € F4(K) and S € 8%, the (discrete 1-dimensional) X-ray of F parallel
to S is the function

XsF : Ax(S) — No =NuU {0}
defined by

XsF(T)=|FNT| =) 1r(x)
xzeT

for each T € Ak(9).

Two sets F1, Fy € F™(F) are called tomographically equivalent with respect to
Si,...,8n e S ifXSiFl :XSiFQ fori=1,...,m.

Given m different lines Si, ..., S, € S, the basic questions in discrete tomogra-
phy are as follows. What kind of information about a finite (lattice) set F' € K can be
retrieved from its X-ray images Xg, F, ..., Xg  F? How difficult is the reconstruction
algorithmically? How sensitive is the task to data errors? Here the data is given in
terms of functions
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fi:.A]K(Si)HNo, i=1,...,m,

with finite support 7; C Ag(S;) represented by appropriately chosen data structures;
see [8]. Hence the difference of two data functions with respect to the same line S € S¢
is a function h : Ax(S) — Z; its size will be measured in terms of its ¢;-norm

hl="Y" WD)

TeAk(S)

For surveys on various aspects of discrete tomography see [10], [11], [13].

Our main stability result can now be formulated as follows.

THEOREM 2.1. Let Sy,...,S,, € 8¢ be different and Fy, F» € F4(K) with |Fy| =
|Fa|. If

m
ZHXSzFl _XS¢F2H1 < Q(m_ 1)v

i=1

then Fy and F5 are tomographically equivalent.

The proof will be given in section 3. Clearly, Theorem 2.1 is equivalent to the
following theorem.

THEOREM 2.2. Let Sq,...,Sm € S¢ be different. Then there do not exist Fy, Fy €
Fd(K) with |F1‘ = ‘F2| and 0 < Z;ﬂ;l HXSIFl — XSiF2||1 < 2(m — ].)

As corollaries to this stability result we may derive “noisy versions” of all known
uniqueness theorems. In the following we give two such examples.

Rényi’s well-known theorem [16] states that if we know the cardinality |F| of
a finite set F' we can guarantee uniqueness from X-rays taken in any m > |F|+ 1
different directions. Our first corollary shows that we can guarantee uniqueness, even
if the X-rays are not given precisely.

COROLLARY 2.3. Let Fy, Fy € F4K) with |Fy| = |F|, m € N with m > |Fy|+1,
and let Si,...,Sm € 8% be different. If Yo", [| X5, Fi — Xs, Foll1 < 2|Fi|, then
F =F,.

Proof. By Theorem 2.1, F} and F5 are tomographically equivalent; hence the
assertion follows from Rényi’s theorem [16]. a

Corollary 2.3 shows the potential power of error correction in the setting of Rényi’s
theorem: A total error smaller than 2n can be compensated without increasing the
number of X-rays taken if the cardinality n of the original set F' is known. But even
without knowing n precisely we can correct errors—at the expense, however, of taking
more X-rays.

COROLLARY 2.4. Let Fy,Fy € FUK) with |Fi| < |F2|, m € N with m > 2|Fy|,
and let Si,..., Sy, € 8% be different. Then Y i~ || Xs, Fi — Xs, Fo||1 < 2|F1| implies
F = Fs.

Proof. Clearly >0, || Xs, Fi — Xg, Fa|l1 > m(|F2| — |Fi|). Thus, >1", || X, F1 —
X, Fo|l1 < 2|Fy| implies |Fi| = |F3|, and the assertion follows from Corollary
2.3. d

Next we give a stable version of a theorem of Gardner and Gritzmann [7] for the
set C? of conver lattice sets, i.e., of sets F' € F¢ with F = conv(F N Z%).

COROLLARY 2.5. Let Fy, Fy € C¢ with |Fy| = |Fy|.

(i) There are sets {S1,S2,53,S,} C L4 of four lines such that

Z?:l ||XS,~,F1 — XSiF2||1 <6 z'mplies F = F;.
(i) For any set {S1,...,Sn} C L% of m > 7 coplanar lattice lines,
Yo Xs, Fr — X, Folli < 2(m — 1) implies Fy = Fs.
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Proof. By Theorem 2.1, F} and F, are tomographically equivalent in both
parts of the statement; hence the assertion follows from the uniqueness theorems of
[7]. d

Note that this theorem also holds for the somewhat more general class of Q-convex
lattice sets because they are uniquely determined by the same sets of lattice lines as
the convex lattice sets (see [5]).

Let us now turn to results on some algorithmic tasks related to stability and
instability in discrete tomography. We concentrate on the case of finite lattice sets
whose X-rays are taken in lattice directions. Thus, let Si,...,S,, € L. Proofs of the
following statements will be given in section 4.

We begin with two examples of algorithmic consequences of Theorem 2.1, “noisy
extensions” of known complexity results. It has been shown in [8] that the two
problems

CONSISTENCY 4 (S1, - - ., Sm,)
Input: For ¢ =1,...,m data functions f; : Az(S;) — Ng with finite support.
Question: Does there exist a finite lattice set F' € F¢ such that Xg, F = f;
fort=1,...,m?

and

UNIQUENESS £a(S1, .. ., Sm)
Input: A set Fy € F.
Question: Does there exist a set Fy € F¢ with F; # F, such that
Xg, F1 = Xg, Frfori=1,...,m?

can be solved in polynomial time for m < 2 but are NP-complete for m > 3.
With the aid of Theorem 2.1 these results can be extended as follows.
COROLLARY 2.6. Let Si,...,S,, € L? be different. The two problems

X-RAY-CORRECTION a4 (S1, ..., Sm)
Input: For every i =1,...,m a data function f; : Az(S;) — No with
finite support.
Question: Does there exist a finite lattice set F € F¢ with
S 1 X, F = filh <m —17

and

SIMILAR-SOLUTION £a (51, . . ., Sm)
Input: A finite lattice set Fy € F2.
Question: Does there exist a finite lattice set Fy € F¢ with |Fy| = |F| and
Fy # Fy such that Y " | || Xs, Fi — Xs, Foll1 <2m —37

are in P for m < 2 but are NP-complete for m > 3.

Note that X-RAY-CORRECTION z4(S1, . .., Sm) can also be formulated as the task
to decide, for given data functions f; : Az(S;) — Ny (i = 1,...,m) with finite support,
whether there exist “corrected” data functions g; : Az(S;) — Ng (¢ = 1,...,m) with
finite support that are consistent and do not differ from the given functions by more
than a total of m — 1. Corollary 2.6 shows that this form of measurement correction
is just as hard as checking consistency.

If the data is noisy it seems natural to try to find a finite lattice set that fits the
measurements best. This task is studied in the following theorem.
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THEOREM 2.7. Let Sy,...,S,, € L% be different. The problem

NEAREST-SOLUTION £4(S1, ..., Sm)
Input: For everyi=1,...,m, a data function f; : Az(S;) — No with
finite support.
Task: Determine a set F* € F® such that
S | Xs, F* = filli = minpera 3300 || X5, F — filla
is in P for m < 2 but is NP-hard for m > 3.

From the NP-hardness of CONSISTENCY£a(S1, . . ., Spm) the statement for m >3 fol-
lows easily. In fact, for a given instance (f1, ..., fi,) of CONSISTENCY£a(S1, .. ., Sm) let
F* denote a solution of NEAREST-SOLUTION£4(S1, . . ., Sy, for the input (f1,..., fin)-
Then (f1,..., fm) is a yes-instance of CONSISTENCY za(S1,...,Sy,) if and only if
Xg,F* = f; for all i =1,...,m. However, the proof of the polynomial-time solvabil-
ity in the case m = 2 is more involved and will be given in section 4.

3. Proof of the main stability result. Note first that it is enough to prove
Theorem 2.1 for K = F. The proof will be based on four lemmas. The first lemma is
a simple combinatorial observation.

LEMMA 3.1. Let S € 8% and let f,g : Ar(S) — Ng be data functions with finite
support. Further, set AT ={T € Ap(S) : f(T) — g(T) > 0} and A~ = {T € Ag(S) :
f(T)—g(T) <0}. Then

1f=glli=2 > (FT) = g(T)) = I £l + llglh-

TeAt

In particular, when ||f||1 = ||gll1 the number ||f — g||1 is even.
Proof. Since

Yo @ —gm)= Y fD— Y 9@ =fl gl

TeAR(S) TeAr(S) TeAR(S)
we have
If=glh="Y_ [f@)—gDI= > (FT)—gT@)— > (F(T)-g(T)
TeAg(S) TeA+ TeA~
= > (M —=gM) = > (FD)—gM)+ > (F(T)—g(T))
TeA+ TeA- TeAt
+ > (F(D) = g(T) = £l + llglh
TeA-
=23 (f(M) —9@) = fli+lgli- O
TeA+

In the present section we will apply Lemma 3.1 to the X-rays of sets [}, € F4(F),
ie,to f=XgF) and g = XgF5.

The next lemma is geometric in nature and will enable us to reduce the proof of
Theorem 2.1 to the planar case.

LEMMA 3.2. Letd >3, Sy,...,S, € 8¢ be different and Fy, Fy € F(F). Then
there exists a surjective linear map ¢ : F¢ — F? with the following properties.

(i) ©(S1),...,9(Sm) are different lines in S>.

(i) Ifi e {1,...,m} and a,b € F1UF, satisfy p(b) € p(a)+¢(S;), then b € a+S;.
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Proof. In order to satisfy the two properties the kernel ker(yp) will be chosen
complementary to any plane spanned by two of the m lines, and also complementary to
any plane spanned by one of the lines 51, . .., 5, and a line generated by the difference
of two of the vectors of F;UF5. Let us denote the set of these exceptional planes by P.
Each of the planes P € P can be described as the set of solutions of a homogeneous
(d — 2) x d system of linear equations; let Ap denote a corresponding coefficient
matrix. Now, let m,...,maq be different primes. Further, for € F let B(x) be the
2 x d matrix with row vectors (z™,x72,...,2™) and (z™+1, x™+2 .. x™4) and let
H(z) be the solution space of the corresponding homogeneous 2 x d system. Then for
each P € P the determinant of the matrix composed of Ap and B(z) is a nontrivial
polynomial in z. (In fact, the coefficients are (d —2) x (d — 2) subdeterminants of Ap,
and by the choice of the exponents of  in B(x) there is generically no cancellation.)
Hence for all sufficiently large integers x, H(x) is complementary to each plane P € P.
Now taking a fixed such vector x, we define ¢ by choosing an arbitrary basis of H(x),
extend it to a basis of F¢, and specify that ¢ maps the basis vectors of H(z) to 0 and
the remaining two to the standard basis vectors of F2. Then ker(¢) = H(z), whence
 has the desired properties. ]

Note that a linear mapping ¢ with the properties of Lemma 3.2 is necessarily
injective on Fy U F5.

The following two lemmas are more algebraic in nature. The next contains a
well-known result on the elementary part of the Prouhet—Tarry—Escott Problem on
solutions of a specific power system of polynomial equations. As a service to the
reader we still outline the proof. For a survey on the Prouhet—Tarry—Escott Problem
see [3] or [4].

LEMMA 3.3. Let x1,...,2Zq,Y1,...,Yq € F such that

a a
J_ J

§ €T = E Y;

i=1 i=1

for j=1,...,q. Then the multisets {x1,...,xq} and {y1,...,yq} coincide.

Proof. We show that x;,...,z,and y,. .., y, are the roots of the same polynomial
of degree gq.

Fori=1,...,qlet p;,s; € F[Xq,...,X,] be defined by

pi:Xf+X§+"'+Xéa Si = Z Ky - X,
1<k <--<ki<q

The polynomials p; and s; are the well-known power sums and elementary symmetric
functions of the indeterminates Xi,..., Xy, respectively. Clearly, for the indetermi-
nates Xi,..., Xy, Y we have

q
H(Y — Xl) =Y 81Yq71 + SQYq72 + -+ (71)qsq~
i=1
Using the Newton identities (see, e.g., [15]) it follows inductively that for i =1,...,q
s; € Flp1,...,pql.

Since by assumption

pi<x17"‘>xq):pi(ylu"'ﬂyq) fori:17"'7Qa
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this implies
si(x1,..,2q) = 8i(Y1,---,yq) fori=1,...,q.

Consequently,

q q q

H(Y — 1) = Z(fl)qufisi(xl, Cey ) = H(Y = Yi);

i=1 =0 i=1

i.e., the two polynomials [[{_, (Y —z;) and []{_, (Y —y;) in F[Y] are identical. Hence
Z1,...,%q is just a permutation of y1,..., ¥y, 0

LEMMA 3.4. Let k € N and 01,...,0k41,T1,---,Tkt1 € F such that S; =
lin {(O’Z‘,Ti)T} €82, i=1,...,k+1, are different. Then

(nX —o1Y)", . (41X — op1Y)F € FIX, Y]

form a basis of the F-vector space Vi, that is generated by the k + 1 binomials Y*,
Xlyk=t XF-lyl XF e F[X,Y].
Proof. Every polynomial (1, X — UiY)k can be expressed in terms of its coefficient

vector
(@t Gecar)

with respect to the binomial basis {Y* X'Y*=1 ... Xk=1yl X¥1  Thus, we have
to show only that these k + 1 vectors are linearly independent, i.e., that the matrix

C= (( K )(Ti)j—l(_ai)k—ﬁl) e Fk+1)x(k+1)
j—1 i,j=1,....k+1

is nonsingular.
Suppose first that o1 -+ o1 # 0. By setting p; = —0;1
Vandermonde matrix (pgfl)i,jzlw’kﬂ by C’, we obtain

der@) =aee) T (; ) o =TT T1 (, ) 1o

i=1 i>7 i=1

7;, and by denoting the

Thus, if det(C) = 0, then there exist indices g, jo in {1,...,k + 1} with ig # jo
but p;, = pj,- This means that 0;0171- - “Tj,, whence S;, = Sj,, contrary to the
assumption. Therefore det(C) # 0.

Now suppose that one of the o; is zero. Without loss of generality we may assume
that 01 = 0. Note that then o; # 0 for ¢ > 1. The first row of C' is now a nonzero
multiple of (0,...,0,1). By developing det(C) with respect to the first row, we see
that the same argument as in the first case applies again. 0

Now we are ready to prove our main stability result.

Proof of Theorem 2.1. Let Fy, Fy € F4(F) with |Fy| = |Fz|and 0 < >, || Xs, F1—
Xg,Fs]l1 < 2(m —1). By Lemma 3.1, this implies that m > 3.

Suppose first that the error involves more than one direction; i.e., Xg, F1 # Xg, F>
for at least two different indices i; and ip. By Lemma 3.1, || Xg, F1 — Xg, Fall1 > 2
for ¢ = iy,4s. Therefore, ignoring S;,, the sets F} and F» provide a counterexample
already for m — 1 directions. Hence we may in the following assume that Xg, F} =

0 :JJO
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Xg, Fs for i = 1,...,m — 1; ie., the error occurs only for S,,,. Similarly, we may
assume that the error is exactly 2(m — 2).

Next, we reduce the statement to the planar case. Let d > 3 and suppose that
Fi, Fy € fd(F) with |F1| = |F2| and 0 < Z?il ||X51F1 — XSiF2||1 < 2(m — 1). Let
¢ be a linear mapping according to Lemma 3.2, and set I} = (F}) for j = 1,2 and
S = (S;) for i = 1,...,m. Then F|,F} € F*(F), |F|| = |F3|, S},...,5, € S?
are different, and XS;F; = Xg, Fjfori=1,...,m and j = 1,2. Hence we obtain a
counterexample already in dimension 2.

Finally we turn to the planar case. So, in the following let d = 2. The n points of
Fy and F» will be denoted by (z1,41), ..., (zn,yn) and (27,41), ..., (z,,y),), respec-
tively.

Let o1,...,0m,71,...,Tm € F be such that S; = lin {(Ji7T¢)T} fori=1,...,m.
By Lemma 3.4 we know that for k=1,...,m — 2

(TlX - 0'1Y)k goe ey (Tk+1X - 0k+1Y)k

form a basis of the F-vector space V;, generated by the binomials Y* X1y*-1  xk-1yl
XF. Since, of course, (7, X — amY)k € V4, there are coefficients o g, ..., am—11 €F
such that

m—1
(TmX — O'mY)k = Z ai,k(TiX — (TZY)k
i=1

For every line T parallel to any of the lines Si,...,S,-1 we have |F; NT| =
|F> N'T|. Hence, as multisets the projections of F; and F; parallel to S; (on any line
complementary to S;) coincide for ¢ = 1,...,m — 1. Thus

{(rixr — o), - s (T — osyn) } = {(Tix) — oany), -, (e, — 0ayy,) }

fori=1,...,m — 1. As a consequence we have

Z ((mej - Umyj)k - (meg - Umy;‘)k)

foreach k=1,...,m—2.
Now we define the multiset differences

A={(TmT1 = om¥1)s-- > (TmTn — Om¥Yn)} \ {(mell - Umyi)v ) (me'ln - Umy;)}
and
B = {(mell - Umyll)a cee (meln - me;)} \NM(Tm1 = om¥1), -+ s (Tin®n — Tmyn) }-

Note that |A] and |B| count the positive excess of Fy over F» and of Fy over Fj,
respectively, on lines parallel to S,,. To be more precise, let AT = {T € Ap(Sy,) :
XSmFl(T)fXSmFQ(T) > 0} and A~ = {T S A[F(Sm) : XSmFl(T)*XSmFQ(T) < 0}
Then with the aid of Lemma 3.1

1
Al =) (Xs, Fi(T) — X5, Fa(T)) = 1 X F1 = X, Falls;
TeAt
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similarly,
1
Bl= Y (X5, F(T) - Xs,Fi(T)) = 51 X5, i = Xs, Folls.
TeA-
Hence
Al = |Bl = m — 2
and thus, particularly, A# B. Using the notation A={a,...,a,} and B={b1,...,bs}

with ¢ = m — 2, we have for each Kk =1,...,¢q

n

(s — o) — (1~ ) = S0 = 3tk =

1 j=1 j=1

J
a contradiction to Lemma 3.3. This completes the proof of Theorem 2.1. O

4. Proofs of the algorithmic results. In the following we give the proofs for
the algorithmic results stated in section 2. We begin with the membership of X-RaAy-
CORRECTION £4 (51, . - ., Sy ) and SIMILAR-SOLUTION £4(S1, . .., Sy,) in the class NP.
Given an instance (fi,..., fim) or Fi, respectively, one would, of course, like to use
as a certificate a corresponding set F' or Fy, respectively. If the set is available and
polynomial in the encoding length, the conditions can be checked efficiently. Let us
call a set F' support consistent if for each of the m directions the support of the X-ray
Xg, F is a subset of the support of the data function f;, i.e.,

{T € Az(S;) : Xg,F(T)#0} CT; fori=1,...,m,
where
T, ={T € Az(S;) : fi(T)#0} fori=1,...,m.

In fact, every support consistent solution is a subset of the grid

G:deﬁ Ur

i=1TeT;

and G contains only polynomially many points v1, ..., v of polynomially bounded
size.

Since, in general, errors are allowed we cannot restrict ourselves to support consis-
tent solutions. But then not every solution must consist of lattice points whose binary
size is bounded by a polynomial in the input. The next lemma shows, however, that
there always exist solutions of polynomial size.

LEMMA 4.1. Lety € N be a constant. Further, fori=1,...,m let f; : Az(S;) —
No be a data function with finite support, and let F € F¢ be such that

S IXs F = filli <) lIfilla-
=1 i=1

Then there exists a finite lattice set F* € Fe of binary size that is bounded by a
polynomial in the binary size of (f1,..., fm) with

m

m
[F[=[F*|  and Y [[Xs,F" = fili =) || Xs,F = filli fori=1,...,m.

i=1 i=1
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Proof. Without loss of generality we may assume that the grid G contains the
origin. Now, for v1,v3 € G and 4,5 = 1,...,m with i # j, the point of intersection
of the two lines v; +.5; and vp 4 S; has binary size that is bounded by a polynomial
in the binary size of (fi,..., fm). Hence there is a constant A of polynomial size
such that A\[—1,1]? contains all such intersections and such that for every v € G and
i=1,...,m the line v + S; contains at least two lattice points of A[-1,1]%. Let

T=G+{S,...,5.}, k=max {m)\,fyZHf,;h}

and
W= (1+k)A\[-1,1)%, C =W\ (A[-1,1]%).

Then each line v+ S; with v € G intersects the annulus C' in at least 2k lattice points.
Now, if ¢ € F'\ W, then there is at most one line in 7 that passes through q. We will
successively replace the points of F'\ W by points in C. Let us deal first with those
points of F'\ W which are met by one of the X-ray lines in 7. We replace such points
q one by one by the lattice point of C' closest to ¢ on that line with smallest ¢, norm
among all such points which have not previously been inserted. By the choice of k
there are always enough points of C' on each line.

After having handled all such points we replace all points ¢ € F'\ W that are
not met by any of the X-ray lines by a set of points of the same cardinality on the
boundary of W that is disjoint from any line in 7. An elementary lattice point count
shows that by the choice of k a set of appropriate cardinality always exists. This way
we obtain a finite lattice set F™* with |F'| = |F*|. By construction, the X-ray images
of F and F™* coincide on each line of 7. Also the total sums for F' and F* on all other
lines are the same. This proves the assertion. 0

It follows now directly from Lemma 4.1 that X-RAY-CORRECTION £a(S1, . .., Sm)
and SIMILAR-SOLUTION £a4(S1, ..., Sy) are indeed in NP.

For m = 2 the result of Lemma 4.1 can be sharpened. It is not just possible to
avoid points “too far out” but it suffices to consider only instances and solutions “with
no empty line in between.” To be precise, we call a data function f : Aza(S) — Ny
consecutive if for vy,vy,v3 € Z¢ it is true that f(vy + S) # 0 whenever f(v; +
S) # 0, flus +5) # 0, and v2 + S C conv(v; + S) U (v3 + 5). Further, an m-
tuple (f1,..., fm) of data functions with respect to Si, ..., Sy, is called consecutive if
fi,--., fm are consecutive. Similarly, a finite lattice set I is called consecutive if and
only if (Xg F,...,Xg, F) is consecutive. It is clear that for m = 2 we can always
replace a given instance of any of our problems by an equivalent consecutive one.

Now we can give the proof of Corollary 2.6.

Proof of Corollary 2.6. Let first m > 3 and let us begin with X-RAY-CORRECTION £4
(S1,---,Sm)-

Let (f1,. .., fm) be an instance of CONSISTENCY£a(S1, ..., Sm). Then (f1,..., fm)
is also an instance of X-RAY-CORRECTION£4(S1,. .., Sm). Suppose first that no set
F € F? exists with 1", [|Xs,F — fi]l1 < m — 1. Then, of course, (fi,...,fn) is a
no-instance of CONSISTENCY za(S1, ..., Sm).

Thus, suppose there is a set F € F¢ with 7" || Xg, F — fili < m — 1. Let
[lfill = -+ =|fm]]- In polynomial time we can construct a line T* € Az(S;) with

n|JTn | T=0 foralli#j

TET; TET;
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Now let f{(T) = fi(T) for T € Az(S1) \ {T*} and ff(T*) = m — L
Then, clearly, (f, fa,..., fm) is a yes-instance of X-RAY-CORRECTION£4(S1, - . ., Sim)
if and only if (f1,fo,...,fm) is a yes-instance of CONSISTENCYza(S1,...,Sm).
The result, therefore, is that CONSISTENCY £a (S, ..., Sy) reduces polynomially to
X-RAY-CORRECTION £a(S1, . ..,Sy). Since by [8] the former is NP-hard, so is the
latter.

Next, let F; be an instance of UNIQUENESS z4(S1, ..., Sm). Of course, F} is also
an instance of SIMILAR-SOLUTION za(S1,...,Sy). Let Fy € F?¢ with |Fy| = |Fy| and
S| Xs, Fr — X, Falli < 2(m — 1). Then by Theorem 2.1, F is tomographically
equivalent to Fj. Hence F) is a yes-instance of UNIQUENESSza(S1,...,Sn,) if and
only if Fj is a yes-instance of SIMILAR-SOLUTIONza(St,...,S,). Since UNIQUE-
NESSxa(S1,...,Sm) is NP-hard by [8] this concludes the proof for m > 3.

The case m=1 is trivial, so let m=2. The fact that SIMILAR-SOLUTION 4 (51, S2)
is in P follows in conjunction with Theorem 2.1 directly from the polynomial-time
solvability of UNIQUENESS 74 (51, S2).

Now let (f1, f2) be an instance of X-RAY-CORRECTION £« (S7,.52). Without loss
of generality let (f1, f2) be consecutive. Clearly, (f1,f2) is a yes-instance if and
only if there exist consecutive and consistent functions g; : Az(S;) — Ng i = 1,2
with 322 | |lgi — filli < 1. On the one hand, there are at most || fi1 + || falls + 1
many different choices of pairs (g1, g2) of such functions; hence all such pairs can
be enumerated in polynomial time. On the other hand, for each choice (g1, g2) it
can be checked in polynomial-time whether it is a yes-instance of CONSISTENCY za
(51, S2). 0

Finally we will show that NEAREST-SOLUTION £4 (S, S2) can be solved in poly-
nomial time. (Again, the case m = 1 is trivial.)

Proof of the polynomial-time solvability of NEAREST-SOLUTION za(S1,S2). Let
(f1, f2) be an instance of NEAREST-SOLUTION £4(S7,.S2). Without loss of generality
we may assume that (f1, f2) is consecutive. Also, since the empty set is a feasible
solution with error || f1|l1 + || f2]]1, we know that there is always a solution within the
grid G’ that is obtained from G by adding for ¢ = 1,2 to the support of f; the next
[ f1ll1 + [ f2]l1 lattice lines parallel to S; and taking all intersections of any two of the
extended two sets of parallel lines. Then G’ contains at most (2] f1 |1+ || f2ll1) (| f1ll1 +
2| f2ll1) lattice points which can all be determined in polynomial time. Let N = |G’|,
and let M denote the number of different lines parallel to Sy or Ss that meet G. The
points of G’ will be the candidate points among which we will choose a solution.

Further, an optimal solution has at most 2max{||f1|l1,||f2|l1} points. Therefore
it suffices to solve at most that many instances with the same data but the additional
constraint that the solution F' has cardinality ~.

Let F' € F¢ with |F| = 7. Then we have by Lemma 3.1

[ Xs, F' = filli + [| Xs, F = fall1
=2 Y (Xg, F(T)=A(T)) = |F|+fili +2 Y (X, F(T) = f2(T)) = |F|+]| fallx

TeAf TeAF

=2 Z (Xs, F(T) = f1(T)) + Z (X5, F(T) = f2(T)) | =2y + [lf1lls + [ 2l

TeA} TeAS

where A = {T € Az(S;) : X5, F(T) — fi(T) > 0} for i = 1,2.
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Hence it suffices to find a finite lattice set F' with |F| = 7 that minimizes the sum
of the excess of Xg, F(T) over f;(T).

Introducing one 0-1-variable for each candidate point of G’, taking the incidence
matrix A € {0, 1}*Y whose rows correspond to the X-ray lines and whose columns
correspond to the candidate points, collecting the X-ray data in a right-hand b € N}?,
and using the notation 1 for a vector of ones of appropriate size, we can formulate
this task as an integer linear programming problem.

17y — min
st. Ar<b+y
172 =~
z € {0,1}V,y e N}L.

Its linear programming relaxation can then be stated as the task to find a real vector
solving

17y — min

s.t. C(;)Sc,

(AT 1 -1 Iy Iy 0\ _ T
C_<—IM 0 0 0 0 _IM and C_(bv’}/)_v’oalao) ’

where

and where Iy and Iy denote the appropriately sized unit matrices.
We show that C' is totally unimodular. Clearly it suffices to show that the sub-

matrix
A
o= (i)

is totally unimodular. But this follows from the fact that each collection of rows from
B can be split into two parts such that the difference of the sums of the rows in the
first and in the second part is a vector with coefficients in {—1,0,1} (see [18]). This
is trivial if the collection does not involve the last row of B since the rows of A can be
partitioned into two sets that correspond to the two directions and each column of A
contains exactly two entries 1, one corresponding to S; and one corresponding to So.
If, on the other hand, the last row is involved, take it as one part of the partition.

One can now use any polynomial-time linear programming algorithm to solve the
task. a
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COLLECTIVE TREE SPANNERS OF GRAPHS*

FEODOR F. DRAGANT, CHENYU YANT, AND IRINA LOMONOSOV?

Abstract. In this paper we introduce a new notion of collective tree spanners. We say that a
graph G = (V, E) admits a system of p collective additive tree r-spanners if there is a system 7 (G) of
at most p spanning trees of G such that for any two vertices z,y of G a spanning tree T' € T (G) exists
such that dr(z,y) < dg(z,y) + r. Among other results, we show that any chordal graph, chordal
bipartite graph or cocomparability graph admits a system of at most log, n collective additive tree
2-spanners. These results are complemented by lower bounds, which say that any system of collective
additive tree 1-spanners must have (y/n) spanning trees for some chordal graphs and Q(n) spanning
trees for some chordal bipartite graphs and some cocomparability graphs. Furthermore, we show that
any c-chordal graph admits a system of at most log, n collective additive tree (2|c/2|)-spanners, any
circular-arc graph admits a system of two collective additive tree 2-spanners. Towards establishing
these results, we present a general property for graphs, called («, r)-decomposition, and show that any
(e, 7)-decomposable graph G with n vertices admits a system of at most logy /o 1 collective additive
tree 2r-spanners. We discuss also an application of the collective tree spanners to the problem of
designing compact and efficient routing schemes in graphs. For any graph on n vertices admitting a
system of at most u collective additive tree r-spanners, there is a routing scheme of deviation r with
addresses and routing tables of size O(u log? n/loglogn) bits per vertex. This leads, for example, to
a routing scheme of deviation (2|c/2]) with addresses and routing tables of size O(log® n/ loglogn)
bits per vertex on the class of c-chordal graphs.

Key words. sparse spanners, tree spanners, graph distance, balanced separator, graph decom-
position, chordal graphs, c-chordal graphs, message routing, efficient algorithms
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1. Introduction. Many combinatorial and algorithmic problems are concerned
with the distance d¢g on the vertices of a possibly weighted graph G = (V, E). Approx-
imating d¢ by a simpler distance (in particular, by tree-distance dr) is useful in many
areas such as communication networks, data analysis, motion planning, image process-
ing, network design, and phylogenetic analysis (see [1, 8, 11, 19, 22, 52, 58, 59, 64, 66]).
An arbitrary metric space (in particular a finite metric defined by a general graph)
might not have enough structure to exploit algorithmically; on trees, since they have
a simpler (acyclic) structure, many hard algorithmic problems have easy solutions.
So, the general goal is, for a given graph G, to find a simpler (well-structured, sparse,
etc.) graph H = (V, E’) with the same vertex-set such that the distance dg(u,v) in
H between two vertices u,v € V is reasonably close to the corresponding distance
dg(u,v) in the original graph G.

There are several ways to measure the quality of this approximation, two of them
leading to the notion of a spanner. For ¢ > 1, a spanning subgraph H of G is called
a multiplicative t-spanner of G [22, 59, 58] if dy(u,v) < ¢-dg(u,v) for all u,v € V. If
r > 0and dy(u,v) < dg(u,v)+r for all u,v € V, then H is called an additive r-spanner
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of G [52]. The parameters ¢ and r are called, respectively, the multiplicative and the
additive stretch factors. Clearly, every additive r-spanner of G is a multiplicative
(r + 1)-spanner of G (but not vice versa). Note that the graphs considered in this
paper are assumed to be unweighted (except in section 7 where we discuss how to
extend our results to weighted graphs).

Graph spanners have applications in various areas, especially in distributed sys-
tems and communication networks. In [59], close relationships were established be-
tween the quality of spanners (in terms of stretch factor and the number of spanner
edges |E'|), and the time and communication complexities of any synchronizer for the
network based on this spanner. Also, sparse spanners are very useful in message rout-
ing in communication networks; in order to maintain succinct routing tables, efficient
routing schemes can use only the edges of a sparse spanner [60]. Unfortunately, the
problem of determining, for a given graph G and two integers t > 2,m > 1, whether
G has a multiplicative t-spanner with m or fewer edges, is NP-complete (see [58]).

The sparsest spanners are tree spanners. Tree spanners occur in biology [5],
and as it was shown in [57], they can be used as models for broadcast operations
in communication networks. Tree spanners are favored also from the algorithmic
point of view—many algorithmic problems are easily solvable on trees. Multiplicative
tree t-spanners were studied in [19]. It was shown that, for a given graph G, the
problem to decide whether G has a multiplicative tree ¢-spanner (the multiplicative
tree t-spanner problem) is NP-complete for any fixed ¢ > 4 and is linearly solvable for
t = 1, 2. Recently, this NP-completeness result was improved—the multiplicative tree
t-spanner problem is NP-complete for any fixed ¢ > 4 even on some rather restricted
graph classes: planar graphs [12], chordal graphs [14] and chordal bipartite graphs
[15].

Nevertheless, some particular graph classes, such as cographs, complements of
bipartite graphs, split graphs, regular bipartite graphs, interval graphs, permutation
graphs, convex bipartite graphs, distance-hereditary graphs, directed path graphs,
cocomparability graphs, AT-free graphs, strongly chordal graphs, and dually chordal
graphs do admit additive tree r-spanners and/or multiplicative tree t-spanners for
sufficiently small » and ¢ (see [13, 18, 51, 55, 61, 62, 69]). We refer also to [1, 12, 14,
18, 19, 38, 52, 57, 58, 65] for more background information on tree and general sparse
spanners.

Many graph classes (including hypercubes, planar graphs, chordal graphs, chordal
bipartite graphs) do not admit any good tree spanner. For every fixed integer ¢ there
are planar chordal graphs and planar chordal bipartite graphs that do not admit tree
t-spanners (additive as well as multiplicative) [21, 62]. However, as it was shown
in [58], any chordal graph with n vertices admits a multiplicative 5-spanner with at
most 2n — 2 edges and a multiplicative 3-spanner with at most O(nlogn) edges (both
spanners are constructable in polynomial time). Recently, the results were further
improved. In [21], the authors show that every chordal graph admits an additive 4-
spanner with at most 2n — 2 edges and an additive 3-spanner with at most O(nlogn)
edges. An additive 4-spanner can be constructed in linear time while an additive
3-spanner is constructable in O(mlogn) time, where m is the number of edges of G.
Even more, the method designed for chordal graph is extended to all c-chordal graphs.
As a result, it was shown that any such graph admits an additive (c+ 1)-spanner with
at most 2n — 2 edges which is constructable in O(en + m) time. Recall that a graph
G is chordal if its largest induced (chordless) cycles are of length 3 and c-chordal
if its largest induced cycles are of length ¢. Note also that [59] gives a method for
constructing a multiplicative 3-spanner of the n-vertex hypercube with fewer than 7n
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edges and this construction was improved in [34] to give a multiplicative 3-spanner of
the n-vertex hypercube with fewer than 4n edges.

1.1. Our results. In this paper we introduce a new notion of collective tree
spanners, a notion slightly weaker than the one of a tree spanner and slightly stronger
than the notion of a sparse spanner. We say that a graph G = (V, E) admits a system
of v collective additive tree r-spanners if there is a system 7 (G) of at most u spanning
trees of G such that for any two vertices x,y of G a spanning tree T € T (G) exists
such that dr(x,y) < dg(z,y)+r (a multiplicative variant of this notion can be defined
analogously). Clearly, if G admits a system of u collective additive tree r-spanners,
then G admits an additive r-spanner with at most pux (n—1) edges (take the union of all
those trees), and if g = 1 then G admits an additive tree r-spanner. Furthermore, any
result on collective additive tree spanners can be translated into a result on collective
multiplicative tree spanners since any graph, admitting a system of  collective additive
tree r-spanners, admits a system of p collective multiplicative tree (r 4+ 1)-spanners
(dr(z,y) < dg(z,y) + r implies dr(z,y)/dc(z,y) < 1+ r/da(z,y) < r+ 1 for an
unweighted graph G). Note also that any graph on n vertices admits a system of at
most n — 1 collective additive tree O-spanners (take n — 1 breadth-first-search—trees
rooted at different vertices of G).

The introduction of this new notion was inspired by the works [6, 7] of Bartal
and subsequent works [20, 37]. For example, motivated by Bartal’s work on prob-
abilistic approximation of general metrics with tree metrics, [20] gives a polynomial
time algorithm that given a finite n point metric G, constructs O(nlogn) trees and
a probability distribution ¢ on them such that the expected multiplicative stretch of
any edge of G in a tree chosen according to ¢ is at most O(lognloglogn). These
results led to approximation algorithms for a number of optimization problems in-
cluding the group Steiner tree problem, the metric labeling problem, the buy-at-bulk
network design problem and many others (see [6, 7, 20, 37] for more details).

In section 2 we define a large class of graphs, called (o, r)-decomposable, and show
that any («,r)-decomposable graph G with n vertices admits a system of at most
log; /o, n collective additive tree 2r-spanners. Then, in sections 3 and 4, we show that
chordal graphs, chordal bipartite graphs, and cocomparability graphs are all (1/2,1)-
decomposable graphs, implying that each graph from those families admits a system
of at most log, n collective additive tree 2-spanners. These results are complemented
by lower bounds, which say that any system of collective additive tree 1-spanners must
have Q(+/n) spanning trees for some chordal graphs and Q(n) spanning trees for some
chordal bipartite graphs and some cocomparability graphs. Furthermore, we show
that any c-chordal graph is (1/2, |¢/2])-decomposable, implying that each c-chordal
graph admits a system of at most log, n collective additive tree (2|c/2])-spanners.

Thus, as a byproduct, we get that chordal graphs, chordal bipartite graphs, and
cocomparability graphs admit additive 2-spanners with at most (n — 1)log, n edges
and c-chordal graphs admit additive (2|c/2])-spanners with at most (n — 1)log,n
edges. Our result for chordal graphs improves the known results from [58] and [21]
on 3-spanners and answers the question posed in [21] whether chordal graphs admit
additive 2-spanners with O(nlogn) edges.

In section 5, we show that each circular-arc graph admits a system of two collective
additive tree 2-spanners, and that for any constant r > 0 there is a circular-arc graph
without any (one) additive tree r-spanner.

In section 6 we discuss an application of the collective tree spanners to the prob-
lem of designing compact and efficient routing schemes in graphs. For any graph
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on n vertices admitting a system of at most u collective additive tree r-spanners,
there is a routing scheme of deviation r with addresses and routing tables of size
O(ulog® n/loglogn) bits per vertex (for details see section 6). This leads, for exam-
ple, to a routing scheme of deviation (2|c/2]) with addresses and routing tables of
size O(log® n/loglogn) bits per vertex on the class of c-chordal graphs. The latter
improves the recent result on routing on c-chordal graphs obtained in [33] (see also
[32] for the case of chordal graphs). We conclude the paper with section 7, where we
discuss how to extend our results to weighted graphs, and section 8, where we discuss
some further developments and future directions.

1.2. Basic notions and notations. All graphs occurring in this paper are
connected, finite, undirected, loopless and without multiple edges. In a graph G =
(V, E) the length of a path from a vertex v to a vertex u is the number of edges in the
path. The distance dg(u,v) between the vertices u and v is the length of a shortest
path connecting v and v.

For a subset S C V, let radg(S) and diamg(S) be the radius and the diameter,
respectively, of S in G, i.e., radg(S) = minyey{mazy,es{da(u,v)}}, diama(S) =
mazy ves{dc(u,v)}. A vertex v € V such that dg(u,v) < radg(S) for any v € S
is called a central vertex for S. The value radg (V) is called the radius of G. Let
also N(v) (N[v]) denote the open (closed) neighborhood of a vertex v in G, i.e.,
Nw)={u eV :uv e E(G)} and N[v] = N(v) U {v}.

2. (a,r)-decomposable graphs and their collective tree spanners. Dif-
ferent balanced separators in graphs were used by many authors in designing efficient
graph algorithms (see [26, 27, 43, 44, 46, 50, 53, 54]). For example, bounded size
balanced separators and bounded diameter balanced separators were recently em-
ployed in [43, 44, 50] for designing compact distance labeling schemes for different
so-called well-separated families of graphs. We extend those ideas and apply them to
our problem.

Let o be a positive real number smaller than 1 and r be a nonnegative integer.
We say that an n-vertex graph G = (V, E) is («, r)-decomposable if there is a separator
S C V such that the following three conditions hold:

balanced separator condition—the removal of S leaves no connected component
with more than an vertices;

bounded separator-radius condition—radg(S) < r, i.e., there exists a vertex c in
G (called a central vertezx for S) such that dg(v,c) < r for any v € S;

hereditary family condition—each connected component of the graph, obtained
from G by removing vertices of S, is also an («a, r)-decomposable graph.

Note that, by definition, any graph of radius at most r is («,r)-decomposable and
that the size of S does not matter.

2.1. Collective tree spanners of (a,r)-decomposable graphs. Using the
first and third conditions of the definition, one can construct for any («, r)-decompos-
able graph G a (rooted) balanced decomposition tree BT (G) as follows. If G is of radius
at most r, then BT (G) is a one-node tree. Otherwise, find a balanced separator S in
G, which exists according to the balanced separator condition. Let G1,Ga,...,G)p be
the connected components of the graph G — S obtained from G by removing vertices
of S. For each graph G; (i = 1,...,p), which is («, r)-decomposable by the hereditary
family condition, construct a balanced decomposition tree B7 (G;) recursively, and
build B7 (G) by taking S to be the root and connecting the root of each tree BT (G;)
as a child of S. See Figure 1 for an illustration. Clearly, the nodes of BT (G) represent
a partition of the vertex set V of G into clusters Si,Ss,...,S, of radius at most r
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Fic. 1. (a) A graph G, (b) its balanced decomposition tree BT (G), and (c) an induced subgraph
G(1X) of G.

each. For a node X of BT (G), denote by G(|X) the (connected) subgraph of G
induced by vertices [J{Y : Y is a descendent of X in BT (G)} (here we assume that
X is a descendent of itself).

It is easy to see that a balanced decomposition tree B7 (G) of a graph G with n
vertices and m edges has depth at most log; /, n, which is O(logan) if « is a constant.
Moreover, assuming that a balanced and bounded radius separator can be found in
polynomial, say p(n), time (for the special graph classes we consider later, p(n) will
be at most O(n?)), the tree BT (G) can be constructed in O((p(n) +m)log, /, n) total
time. Indeed, in each level of recursion we need to find balanced and bounded radius
separators in current disjoint subgraphs and to construct the corresponding subgraphs
of the next level. Also, since the graph sizes are reduced by a factor «, the recursion
depth is at most log; /, 1

Consider now two arbitrary vertices z and y of an («,r)-decomposable graph
G and let S(x) and S(y) be the nodes of BT (G) containing = and y, respectively.
Let also NCAg7 () (S(x),S(y)) be the nearest common ancestor of nodes S(z) and
S(y) in BT (G) and (Xo, X1,...,X;) be the path of BT (G) connecting the root Xy
of BT (G) with NCAgr ) (S(x),S(y)) = X¢ (in other words, Xo, X1,..., X; are the
common ancestors of S(x) and S(y)). The following lemmata are crucial to all our
subsequent results.

LEMMA 2.1. Any path PS s
from XoU X3 U---UX;.

Let S’Pfy be a shortest path of G connecting vertices x and y, and let X; be the
node of the path (Xo, X1,...,X;) with the smallest index such that SPfy NX; #0
in G. Then, the following lemma holds.

LEMMA 2.2. We have dg(z,y) = dg/(x,y), where G’ := G(1X;).

Proof. Tt is enough to show that the path SPIny consists of only vertices of
G'. Let us assume, by way of contradiction, that there is a vertex z of SPG that
does not belong to G'. Let SPG be a subpath of SPG between = and z. Clearly,
the node S(z) of BT (G), containing vertex z, is not a descendent of X;. There-
fore, the nearest common ancestor of S(z) and S(z) in BT (G) is a node X, from
{Xo,X1,..., X} with j < 4. But then, by Lemma 2.1, the path SPEZ (and hence
the path SPEU) must have a vertex in XoU X; U---U X}, contradicting the choice of
X;,i>j. O

For the graph G’ = G(|X;), consider its arbitrary breadth-first-search—tree (BFS-
tree) T’ rooted at a central vertex ¢ for Xj, i.e., a vertex ¢ such that dg/(v,c) < r
for any v € X;. Such a vertex exists in G’ since G’ is an («, r)-decomposable graph
and X; is its balanced and bounded radius separator. The tree T’ has the following
distance property with respect to those vertices x and y.

connecting vertices x and y in G, contains a vertex
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F1G. 2. (a) Local subtrees Tll, T21,T31 of graph G from Figure 1 and (b) a corresponding spanning
tree T' of G (dark solid edges are edges of local subtrees Tll,Tzl,Tgl, dashed edges are added to create
one spanning tree T1 on top of Tll,T217 T31)

LEMMA 2.3. We have dp (x,y) < dg(z,y) + 2r.

Proof. We know, by Lemma 2.2, that a shortest path SPSy,
not intersecting any X; (I < i), lies entirely in G’. Let ' be the vertex of SPfy nX;
closest to z and 3’ be the vertex of SPfy N X; closest to y. Since T" is a BFS-tree of

G’ rooted at vertex c, we have

intersecting X; and

dr/(z,c) = da(z,c¢) < dg/(z,2') + dg (2',¢) < dg/(z,2") +r = dg(x,2") + 7,
dr:(y, ¢) = de(y,¢) < der (y,y') +dar (v, ¢) < dar(y,y') + 1 =da(y,y) +r.

That is, dr (z,y) < dp(z,¢) + dr(y,¢) < dg(z,2') + da(y,y’) + 2r. Combin-
ing this with the fact that dg(z,y) > dg(x,2’') + da(y,y’), we obtain dr (z,y) <
da(z,y)+2r. O

Let now Bi,..., B}, be the nodes on depth i of the tree BT (G). For each subgraph
G; = G(lBJi-) of G(i=0,1,...,depth(BT (@), j =1,2,...,p;), denote by T; a BFS-
tree of graph G;- rooted at a central vertex cé- for B; (see Figure 2 for an illustration).
The trees T; (i =0,1,...,depth(BT (@), j = 1,2,...,p;) are called local subtrees of
G, and, given the balanced decomposition tree BT (G), they can be constructed in
O((t(n)+m)log, s, n) total time, where ¢(n) is the time needed to find a central vertex
¢} for B! (a trivial upper bound for t(n) is O(n?)). From Lemma 2.3 the following
general result can be deduced.

THEOREM 2.4. Let G be an (a,r)-decomposable graph, BT (G) be its balanced
decomposition tree and LT (G) = {TJZ 21 =0,1,...,depth(BT(G)), j = 1,2,...,p;}
be its local subtrees. Then, for any two vertices x and y of G, there exists a local
subtree T;/I in LT (GQ) such that

dTlll (587 y) < dG(xa y) + 2r.
J

This theorem implies two important results for the class of (a,r)-decomposable
graphs. Let G be an («, r)-decomposable graph with n vertices and m edges, BT (G)
be its balanced decomposition tree, and £7 (G) be the family of its local subtrees
(defined above). Consider a graph H obtained by taking the union of all local subtrees
of G (by putting all of them together), i.e.,

H:=| {1} : T} € LT(G)} = (V,W{E(T}) : T} € LT(G)}).

Clearly, H is a spanning subgraph of G, constructable in O((p(n)+t(n)+m)log, ,, n)
total time, and, for any two vertices  and y of G, dy (z,y) < dg(z,y)+2r holds. Also,
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since for every level i (i = 0,1,...,depth(BT(G))) of balanced decomposition tree
BT (G), the corresponding local subtrees 17, . .. >Tz§7: are pairwise vertex-disjoint, their
union has at most n — 1 edges. Therefore, H cannot have more than (n — 1)log; /, n
edges in total. Thus, we have proven the following result.

THEOREM 2.5. Any (o, r)-decomposable graph G with n vertices admits an addi-
tive 2r-spanner with at most (n —1)logy ,, n edges.

Instead of taking the union of all local subtrees of G, one can fix i (i € {0,1,...,
depth(BT (G))}) and consider separately the union of only local subtrees T7,..., T} ,
corresponding to the level i of the decomposition tree BT (G), and then extend in
linear O(m) time that forest to a spanning tree 7% of G' (using, for example, a variant
of the Kruskal’s spanning tree algorithm for the unweighted graphs). We call this tree
T' the spanning tree of G corresponding to the level i of the balanced decomposition
BT (G). In this way we can obtain at most log; /o T Spanning trees for G, one for each
level ¢ of BT (G). Denote the collection of those spanning trees by 7 (G). By Theorem
2.4, it is rather straightforward to show that for any two vertices x and y of G, there
exists a spanning tree 7% in 7 (G) such that d. (z,y) < dg(z,y) + 2r. Thus, we have
the following theorem.

THEOREM 2.6. Any (a,r)-decomposable graph G with n vertices admits a system
T(G) of at most log, ;0 collective additive tree 2r-spanners.

Note that such a system 7 (G) for an (a, r)-decomposable graph G with n vertices
and m edges can be constructed in O((p(n) + t(n) +m)log, ,, n) time, where p(n) is
the time needed to find a balanced and bounded radius separator S and ¢(n) is the
time needed to find a central vertex for S.

2.2. Extracting an appropriate tree from 7 (G). Now we will show that
one can assign O(log, ;, n x logn) bit labels to vertices of G such that, for any pair of

vertices z and y, a tree T% in T(G) with dp. (x,y) < da(x,y)+2r can be identified in
only O(log; . n) time by merely inspecting the labels of z and y, without using any
other information about the graph. This will be useful in an application of collective
tree spanners, discussed in section 6.

Associate with each vertex z of G a 2 x (depth(BT (G)) + 1) array A, such that,
for each level i of BT (G), A:[1,i] = j and A,[2,i] = dT; (z,¢5) if there exists a
local subtree T/ in L7 (G) containing vertex z, and A.[1,4] = nil and A,[2,i] = oo,
otherwise (i.e., the depth in BT (G) of node S(x) containing z is smaller than i).
Evidently, each label A, (z € V) can be encoded using O(log; ,, n x logn) bits and a
computation of all labels A,, x € V can be performed together with the construction
of system 7 (G).

Given labels A,, A, of vertices z and y, the following procedure will return in
O(logy /, n) time an index i € {0,1,...,depth(BT(G))} such that, for tree T €
T(G), dpv(z,y) < dg(z,y) + 2r holds.

set i’ := 0;
set minsum := A[2,0] + A,[2,0];
set 1 :=1;

while (Az[1,4] = Ay[1,i] # nil) and (i <log;,n) do
if A,[2,1] 4+ Ay[2,1] < minsum
then set ¢’ := 4 and minsum := A;[2,1] + A,[2,1];
1:=141;
enddo
return ¢’.
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This procedure simply finds, among all local subtrees containing both x and y, a
subtree T}, for which the sum dT;,/ (z,c) + dT;,/ (y, ¢js) is minimum, and then returns

its upper index ¢’.
To show that indeed d v (x,y) < dg(z,y) + 2r, we will need to recall the proof
of Lemma 2.3 (note that dy. (z,y) = dp (z,y) by construction of T%). Let again

S(x) and S(y) be the nodes of BT (G) containing vertices z and ¥, respectively, and
let (B°,Bj,,...,B},) be the path of BT (G) connecting the root B® of BT (G) with
NCAp7(e)(S(x),5(y)) = Bf,. In Lemma 2.3 we proved that there exists an index
1 €{0,1,...,t} such that any BFS-tree 7" of the graph G(lB;-i) rooted at a center
¢ for B}, (including local subtree T} rooted at c} ) satisfies dr(z,y) < dr(z,c) +
dr:(y,c) < dg(z,y)+2r (see inequalities (1) and (2) in that proof). Since, among local

./ .. ./ ./
subtrees 70, Tj11 e ,Tft, the subtree T;, has minimum sum dT?,’ (z, c;-,) + dT?,’ (y, c;-,),
J J

we conclude
dpv (z,y) = dT'_i/’ (z,y) < dT'_i,’ (z, C;") + dT'_L',’ (Y, Cj")
J J J

< dr: (z, )+ dr: (y, k) < dg(x,y) +2r.

3. Acyclic hypergraphs, chordal graphs and (a,r)-decomposition. Let
H = (V,€) be a hypergraph with the vertex set V' and the hyperedge set £, i.e., £ is a
set of nonempty subsets of V. For every vertex v € V, let £(v) = {e € £:v € e}. The
2-section graph 2SEC(H) of a hypergraph H has V as its vertex-set and two distinct
vertices are adjacent in 2SEC(H) if and only if they are contained in a common
hyperedge of H. A hypergraph H is called conformal if every clique (a set of pairwise
adjacent vertices) of 25 EC(H) is contained in a hyperedge e € £, and a hypergraph
H is called acyclic if there is a tree T with node set £ such that, for all vertices v € V,
E(v) induces a subtree T, of T. For these and other hypergraph notions see [10].
The following theorem represents two well-known characterizations of acyclic hy-
pergraphs. Let C(G) be the set of all maximal (by inclusion) cliques of a graph
G = (V,E). The hypergraph (V,C(G)) is called the clique-hypergraph of G. Recall
that a graph G is chordal if it does not contain any induced cycles of length greater
than 3.
THEOREM 3.1 (see [2, 9, 10, 17, 36, 67]). Let H = (V,&) be a hypergraph. Then
the following conditions are equivalent:
(i) H is an acyclic hypergraph;
(ii) H is conformal and 2SEC(H) of H is a chordal graph;
(iii) H is the clique hypergraph (V,C(G)) of some chordal graph G = (V, E).
Later we will need also the following known result. A vertex v of a graph G is
called simplicial if its neighborhood N (v) forms a clique in G.
THEOREM 3.2 (see [17, 25]). Let G = (V,E) be a graph. Then the following
conditions are equivalent:
(i) G is a chordal graph;
(ii) the clique hypergraph (V,C(G)) of G is acyclic (in other words, G is the
intersection graph of a family of subtrees of a tree);
(iii) G has a perfect elimination ordering. i.e., an ordering vy, va, ..., v, of vertices
of G such that, for any i, i € {1,2,...,n}, vertex v; is simplicial in graph
G(vi,y ..., 0,), the subgraph of G induced by vertices vj, . .., vy,.
Let now G = (V, E) be an arbitrary graph and r be a positive integer. We say
that G admits a radius r acyclic covering if there is a family S(G) = {S1,..., Sk} of
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subsets of V' such that

(1) Uiz Si=V;

(2) for any edge xy of G there is a subset S; (i € {1,...,k}) with z,y € S;;

(3) H = (V,S8(G)) is an acyclic hypergraph;

(4) radg(S;) <rforeachi=1,... k.

A class of graphs F is called heredztary if every induced subgraph of a graph G
belongs to F whenever G is in F. A class of graphs F is called (a, r)-decomposable if
every graph G from F is (o, r)-decomposable.

THEOREM 3.3. Let F be a hereditary class of graphs such that any G € F admits
a radius v acyclic covering. Then F is a (1/2,r)-decomposable class of graphs.

Proof. Consider a graph G € F and let S(G) = {51, ..., Sk} beits radius r acyclic
covering. Since H = (V,S(G)) is an acyclic hypergraph, 2SEC(H) is chordal and H
is conformal. It is well known [47], that every n-vertex chordal graph T' contains a
maximal clique C such that if the vertices in C are deleted from I', every connected
component in the graph induced by any remaining vertices is of size at most n/2.
Moreover, according to [47], for any chordal graph on n vertices and m edges, such a
separating clique C' can be found in O(n+m) time. Applying this result to an n-vertex
chordal graph 2SEC(H), we will get in at most O(n?) time a maximal clique S of
2SEC(H) such that any connected component of the graph 2SEC(H) — S (obtained
from 2SEC(H) by deleting vertices of S) has at most n/2 vertices. Since 2SEC(H) is
obtained from G by adding some new edges, removing vertices of S from the original
graph G will leave no connected component (in G — S) with more than n/2 vertices.
Furthermore, since F is a hereditary class of graphs, all connected components of
G — S induce graphs from F (and they can be assumed by induction to be (1/2,r)-
decomposable graphs). It remains to note that, from conformality of H, there must
exist a set S; in S(G) which contains S, that is, radg(S) < radg(S;) < r must
hold. |

Since for a chordal graph G = (V, E) the clique hypergraph (V,C(QG)) is acyclic
and chordal graphs form a hereditary class of graphs, from Theorem 3.3 and Theorems
2.5 and 2.6, we immediately conclude the following corollaries.

COROLLARY 3.4. Any chordal graph G with n vertices and m edges admits an
additive 2-spanner with at most (n — 1)logyn edges, and such a sparse spanner can
be constructed in O(mlogyn) time.

COROLLARY 3.5. Any chordal graph G with n vertices and m edges admits a
system T (G) of at most logyn collective additive tree 2-spanners, and such a system
of spanning trees can be constructed in O(mlogyn) time.

Note that, since any additive r-spanner is a multiplicative (r + 1)-spanner, Corol-
lary 3.4 improves a known result of Peleg and Schéffer on sparse spanners of chordal
graphs. In [58], they proved that any chordal graph with n vertices admits a mul-
tiplicative 3-spanner with at most O(nlogyn) edges and a multiplicative 5-spanner
with at most 2n — 2 edges. Both spanners can be constructed in polynomial time.
Note also that their result on multiplicative 5-spanners was earlier improved in [21],
where the authors showed that any chordal graph with n vertices admits an additive
4-spanner with at most 2n — 2 edges, constructable in linear time. Motivated by
this and Corollary 3.5, it is natural to ask whether a system of constant number of
collective additive tree 4-spanners exists for a chordal graph (or, generally, for which
r, a system of constant number of collective additive tree r-spanners exists for any
chordal graph). Recall that the problem whether a chordal graph admits a (one)
multiplicative tree t-spanner is NP-complete for any ¢ > 3 [14].
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Peleg and Schéffer showed also in [58] that there are n-vertex chordal graphs for
which any multiplicative 2-spanner will need to have at least Q(ng/ 2) edges. This re-
sult leads to the following observation on collective additive tree 1-spanners of chordal
graphs.

OBSERVATION 3.6. There are n-vertex chordal graphs for which any system of
collective additive tree 1-spanners will need to have at least Q(y/n) spanning trees.

Proof. Indeed, the existence of a system of o(y/n) collective additive tree 1-
spanners for a chordal graph will lead to the existence of an additive 1-spanner (and
hence, of a multiplicative 2-spanner) with o(n®/?) edges. |

4. Collective tree spanners in c-chordal graphs. A graph G is c-chordal
if it does not contain any induced cycles of length greater than c¢; c-chordal graphs
naturally generalize the class of chordal graphs. Chordal graphs are precisely the
3-chordal graphs.

THEOREM 4.1. The class of c-chordal graphs is (1/2,|c/2])-decomposable.

Proof. By Theorem 3.3 and since c-chordal graphs form a hereditary class of
graphs, we need only to show that any c-chordal graph G admits a radius [¢/2]
acyclic covering. The existence of a radius |¢/2] acyclic covering for G easily follows
from a famous result of [43], which states that any c-chordal graph G = (V, E') admits
a special kind of Robertson and Seymour tree-decomposition [63]. That is, a tree
DT (G), whose nodes are subsets of V, exists such that

(1) U{S: S is anode of DT(G)} = V;

(2") for any edge xy of G there is a node S of DT (G) with z,y € S;
(3") for any tree nodes X,Y,Z of DT(G), if Y is on the path from X to Z in
DT (G), then XNZ CY;

(4") diamg(S) < |¢/2] for each node S of DT (G).

The reader might notice a close similarity between these four properties and the
four properties from the definition of a radius r acyclic covering. In fact, they are
almost equivalent. Note that diamg(S) < |¢/2] implies radg(S) < |¢/2]. Let
S(G) ={S: S is a node of DT(G)} and consider a hypergraph H = (V,S(G)). We
claim that for a family S(G) of subsets of V, properties (1), (2) and (3) are equivalent
to properties (1’), (2') and (3'). Indeed, since, by property (3'), v € X N Z implies
v belongs to any Y on the path of D7 (G) from X to Z, for any vertex v € V the
elements of S(G) containing vertex v induce a subtree in D7 (G). Hence, by definition,
H = (V,5(G)) is an acyclic hypergraph. Conversely, let that for a graph G, a family
S(G) of subsets of V satisfies properties (1), (2) and (3). Then, the acyclicity of the
hypergraph H = (V,S(G)) implies the existence of a tree T' with node set S(G) such
that for any vertex v € V, the elements of S(G) containing v induce a subtree in 7.
Therefore, if two nodes X and Z of the tree T contain a vertex v then any node Y of
T between X and Z must contain v, too. 0

A balanced separator of radius at most |¢/2] of a c-chordal graph G on n vertices
and m edges can be found in O(n3) time as follows. Use an O(nm) time algorithm
from [33] to construct a Robertson-Seymour tree-decomposition D7 (G) of G (it will
have at most n nodes [33]). Then define the family S(G) = {S : Sis anode of DT (G)}
and consider the 2-section graph 2SEC(H) of an acyclic hypergraph H = (V,S(G)).
2SEC(H) can be constructed in at most O(n?) time. Using an algorithm from [47],
find a balanced separator C of a chordal graph 2SEC(H) in O(n?) time. We know
that C' is a maximal clique of 2SEC(H) and there must exist a set S € S(G) which
coincides with C' (by conformality of H). As we showed earlier (see the proof of
Theorem 3.3), C = S is a balanced separator of radius at most |¢/2] of G.
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Thus, from Theorems 2.5 and 2.6, we conclude the following corollaries.

COROLLARY 4.2. Any c-chordal graph G with n vertices admits an additive
(2|¢/2])-spanner with at most (n — 1)logyn edges, and such a sparse spanner can
be constructed in O(n>logyn) time.

COROLLARY 4.3. Any c-chordal graph G with n vertices admits a system T (G)
of at most logyn collective additive tree (2|c/2])-spanners, and such a system of
spanning trees can be constructed in O(n3logyn) time.

Note that there are c-chordal graphs which do not admit any radius r acyclic
covering with r < |¢/2]. Consider, for example, the complement Cg of an induced
cycle Cg = (a —b—c—d—e— f —a), which is a 4-chordal graph. A family S(Cs)
consisting of one set {a, b, c,d, e, f} gives a trivial radius 2 = |4/2] acyclic covering of
Cs, and a simple consideration shows that no radius 1 acyclic covering can exist for Cg
(it is impossible, by simply adding new edges to Cg, to get a chordal graph in which
each maximal clique induces a radius one subgraph of Cg). In the next subsection
we will show that yet an interesting subclass of 4-chordal graphs, namely, the class of
chordal bipartite graphs, does admit radius 1 acyclic coverings.

4.1. Collective tree spanners in chordal bipartite graphs. A bipartite
graph G = (X UY, E) is chordal bipartite if it does not contain any induced cycles of
length greater than 4 [48].

For a chordal bipartite graph G, consider a hypergraph H = (X UY,{NJy] : y €
Y}). In what follows we show that H is an acyclic hypergraph.

LEMMA 4.4. The 2-section graph 2SEC(H) of H is chordal.

Proof. First notice that any y € Y is simplicial in 2SEC(H) by construction of
H and definition of 2SEC(H). Assume now, by way of contradiction, that there is
an induced cycle C,, of length p, p > 4, in 2SEC(H). Necessarily, all vertices of C,
are from part X of G, since (), is induced and all vertices from Y are simplicial in
2SEC(H). Let Cp = (21,22,...,2p,x1). For any edge x;x;41 of Cp (including the
edge z,x1), since it is not an edge of G, there must exist a vertex y; in Y such that
both z; and x;4+1 are adjacent to y; in G. Also, since C), is induced in 25EC(H), y; is
not adjacent to any other vertex of C,,. Therefore, a cycle (x1, y1,Z2,¥2, - -, ZTp, Yp, T1)
of G must be induced. But, since its length is 2p > 8, a contradiction with G being
a chordal bipartite graph arises. |

LEMMA 4.5. The hypergraph H = (X UY,{N[y] : y € Y'}) is conformal.

Proof. Let C be a clique of 2S EC/(H) consisting of p vertices. First, note that, by
definitions of H and 2SEC/(H), the clique C' can contain at most one vertex from Y.
If C contains a vertex from Y (say y € CNY') then for all v € C'\ {y}, vy is an edge
of G, and therefore C' C N[y] must hold. Let now C NY = (). By induction on p we
will show that there exists a vertex y € Y such that C' C NJy|. Since G is connected,
any vertex z € C' C X has a neighbor in Y. Also, by definition of 2SEC(H), for
any edge uv of 2SEC(H) with w,v € X there must exist a vertex y in Y adjacent
to both v and v. Assume now, by induction, that each p — 1 vertice of C has a
common neighbor y in Y. Consider three different vertices a,b and ¢ in C' and three
corresponding vertices a/,b and ¢ in Y such that C'\ {a} C N[d'], C\ {b} C N[V
and C'\ {c} C N[¢]. Since graph G cannot have any induced cycles of length 6, the
cycle (a—b —c—a' —b— ¢ —a) of G cannot be induced. Without loss of generality,
assume that a is adjacent to a’ in G. But then, all p vertices of C' are contained in
Nla']. O

Since chordal bipartite graphs form a hereditary class of graphs and, for any
chordal bipartite graph G = (X UY, E), a family {Ny] : y € Y} of subsets of X UY
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satisfies all four conditions of radius 1 acyclic covering, by Theorem 3.3 we have the
following theorem.

THEOREM 4.6. The class of chordal bipartite graphs is (1/2,1)-decomposable.

Hence, by Theorems 2.5 and 2.6, we immediately conclude the following cor-
ollaries.

COROLLARY 4.7. Any chordal bipartite graph G with n vertices and m edges
admits an additive 2-spanner with at most (n — 1)logyn edges, and such a sparse
spanner can be constructed in O(nmlog,n) time.

COROLLARY 4.8. Any chordal bipartite graph G with n vertices and m edges
admits a system T (G) of at most logy n collective additive tree 2-spanners, and such
a system of spanning trees can be constructed in O(nmlogyn) time.

Recall that the problem whether a chordal bipartite graph admits a (one) multi-
plicative tree t-spanner is NP-complete for any ¢ > 3 [15]. Also, any chordal bipartite
graph G with n vertices admits an additive 4-spanner with at most 2n —2 edges which
is constructable in linear time [21]. Again, it is interesting to know whether a system
of constant number of collective additive tree 4-spanners exists for a chordal bipartite
graph. We have the following observation on collective additive tree 1-spanners for
chordal bipartite graphs.

OBSERVATION 4.9. There are chordal bipartite graphs on 2n vertices for which any
system of collective additive tree 1-spanners will need to have at least Q(n) spanning
trees.

Proof. Consider the complete bipartite graph G = K, ,, on 2n vertices (which is
clearly a chordal bipartite graph), and let 7 (G) be a system of u collective additive
tree 1-spanners of GG. Then, for any two adjacent vertices z and y of G there must
exist a spanning tree T in 7(G) such that dr(x,y) < 2. If dp(z,y) = 2, then a
common neighbor z of x and y in G would form a triangle with vertices x and y,
which is impossible for G = K, ,,. Hence, dy(z,y) = 1 must hold. Thus, any edge xy
of G is an edge of some tree T € 7 (G). Since there are n? graph edges to cover by
spanning trees from 7 (G), we conclude p > n?/(2n — 1) > n/2. O

4.2. Collective tree spanners in cocomparability graphs. We will use the
following definition of cocomparability graphs (see [16, 48, 56]). A graph G is a
cocomparability graph if it admits a vertex ordering o = [v1,va,...,v,], called a co-
comparability ordering, such that, for any i < j < k, if v; is adjacent to v, then v;
must be adjacent to v; or to vi. According to [56], such an ordering of a cocomparabil-
ity graph can be constructed in linear time. It is well known also that cocomparability
graphs are 4-chordal and they contain all interval graphs, all permutation graphs, and
all trapezoid graphs (see, e.g., [16, 48] for the definitions).

Since Cg is a cocomparability graph, cocomparability graphs generally do not
admit radius 1 acyclic coverings (although, we can show that both the class of per-
mutation graphs and the class of trapezoid graphs do admit radius 1 acyclic coverings
[28]). Here we will present a very simple direct proof for the statement that the class
of cocomparability graphs is (1/2,1)-decomposable.

THEOREM 4.10. The class of cocomparability graphs is (1/2,1)-decomposable.
Moreover, for a given cocomparability graph G with n vertices and m edges a decom-
position tree BT (G) can be constructed in O(mlogyn) time.

Proof. Let G be a cocomparability graph with a cocomparability ordering ¢ =
[v1,v2,...,v,]. Consider the closed neighborhood of the vertex vy, 27. We claim that
the graph G’ obtained from G by removing vertices of N[vf,/21] has no connected
components with more that n/2 vertices. Indeed, there are no more than n/2 vertices
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in G which are on the left (analogously, on the right) side of vy, 97 with respect
to 0. Also, if there is an edge connecting vertices v; and v; with ¢ < [n/2] < j,
then at least one of these vertices must belong to N[vr,/21] as o is a cocomparability
ordering. Therefore, each connected component G5 of G’ has at most n/2 vertices
since it consists of vertices which are only on one side of v, 27. It is clear also that
the ordering o projected to the vertices of G gives a cocomparability ordering of G.
Hence we can assume by induction that Gy is a (1/2, 1)-decomposable graph. d

Hence, we have the following corollaries.

COROLLARY 4.11. Any cocomparability graph G with n vertices and m edges
admits an additive 2-spanner with at most (n — 1)logyn edges, and such a sparse
spanner can be constructed in O(mlogyn) time.

COROLLARY 4.12. Any cocomparability graph G with n vertices and m edges
admits a system T (G) of at most logyn collective additive tree 2-spanners, and such
a system of spanning trees can be constructed in O(mlogyn) time.

It is known [62] that any cocomparability graph admits a (one) additive tree 3-
spanner. In a forthcoming paper [31], using different technique, we show that the
result stated in Corollary 4.12 can further be improved. One can show that any
cocomparability graph admits a system of two collective additive tree 2-spanners and
there are cocomparability graphs which do not have any (one) additive tree 2-spanners.
Since the complete bipartite graph K, , is a cocomparability graph, from the proof
of Observation 4.9, we also have the following observation.

OBSERVATION 4.13. There are cocomparability graphs on n vertices for which any
system of collective additive tree 1-spanners will need to have at least Q(n) spanning
trees.

5. Collective tree spanners in circular-arc graphs. In this section we de-
scribe another way of obtaining a system of few collective additive tree spanners. We
demonstrate it on the class of circular-arc graphs.

The intersection graph of a family of n sets is the graph where the vertices are the
sets, and the edges are the pairs of sets that intersect. Every graph is the intersection
graph of some family of sets. A graph G = (V, E) is an interval graph if it is the
intersection graph of a finite set of intervals (line segments) on a line. A graph G is a
circular-arc graph if it is the intersection graph of a finite set of arcs on a circle. An
interval graph is a special case of a circular-arc graph; it is a circular-arc graph that
can be represented with arcs that do not cover the entire circle. Hence, if we remove
from a circular-arc graph G = (V, E) a vertex v € V together with its neighbors, the
resulting graph will be interval [48] (see Figure 3 for an illustration).

It is well known that any interval graph admits an additive tree 2-spanner, and
such a tree spanner is computable in linear time [61]. On the other hand, for any
constant r > 0, there is a circular-arc graph without any additive tree r-spanner.
Indeed, consider an induced cycle C; on ¢ > 3 vertices. Clearly, it is a circular-arc
graph. Let P be an arbitrary spanning path of C; and x and y be the end vertices
of P. Then, trivially, dc,(z,y) = 1, dp(x,y) = q — 1, i.e., a circular-arc graph C,
does not admit any additive tree (¢ — 3)-spanner. In what follows we show that two
spanning trees are enough to collectively additively 2-span any circular-arc graph.

Let G = (V, E) be a circular-arc graph, u be its arbitrary vertex, and Ty, be a BFS-
tree of G rooted at u. Consider an interval graph G~ obtained from G by removing
vertices of N|[u]. For each connected component of G, compute its additive tree 2-
spanner using a linear time algorithm from [61]. Extend obtained forest to a spanning
tree T of the original graph G (see Figure 3 for an illustration).
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(c) (d)

Fi1G. 3. (a) A set S of circular-arcs (with arcs from Nle] in bold); (b) the set of intervals
corresponding to S\ Nle]; (c) the corresponding to S circular-arc graph G with a spanning tree Te
in bold; (d) a spanning tree T of G obtained from two local tree 2-spanners.

LEMMA 5.1. Spanning trees {T,T,} are collective additive tree 2-spanners of a
circular-arc graph G.

Proof. Let x and y be two arbitrary vertices of G. If there is a shortest path
in G connecting vertices x and y and avoiding the neighborhood N[u] of u, then
dg(x,y) = dg- (z,y) and, by construction of T, dr(z,y) < dg-(x,y)+2 = dg(x,y)+2
holds. Let now a shortest path P connecting z and y in G intersect N[u], and let v
be a vertex from N[u]N P. Since Ty, is a shortest-path tree of G rooted at u, we have
de(z,u) = dr, (z,u) and dg(u,y) = dr, (u, y). Hence, dg(z,y) = dg(z,v)+da(v,y) >
de(z,u) — 1+ dg(u,y) — 1 =dp, (x,u) + dr, (u,y) — 2 > dr, (z,y) — 2. 0

Hence, we conclude the following theorem and corollary.

THEOREM 5.2. Any circular-arc graph G admits a system of two collective addi-
tive tree 2-spanners, and such a system of spanning trees can be constructed in linear
time.

COROLLARY 5.3. Any circular-arc graph G with n vertices and m edges admits
an additive 2-spanner with at most 2n — 2 edges, and such a sparse spanner can be
constructed in O(m + n) time.

6. Collective tree spanners and routing labeling schemes. Routing is one
of the basic tasks that a distributed network of processors must be able to perform.
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A routing scheme is a mechanism that can deliver packets of information from any
vertex of the network to any other vertex. More specifically, a routing scheme is a
distributed algorithm. Each processor in the network has a routing daemon running
on it. This daemon receives packets of information and has to decide whether these
packets have already reached their destination, and if not, how to forward them
towards their destination. Each packet of information has a header attached to it.
This header contains the address of the destination of the packet, and in some cases,
some additional information that can be used to guide the routing of this message
towards its destination. Each routing daemon has a local routing table at its disposal.
It has to decide, based on this table and on the packet header only, whether to pass
the packet to its host, or whether to forward the packet to one of its neighbors in the
network.

The efficiency of a routing scheme is measured in terms of its multiplicative stretch,
called delay, (or additive stretch, called deviation), namely, the maximum ratio (or
surplus) between the length of a route, produced by the scheme for some pair of
vertices, and their distance.

A straightforward approach for achieving the goal of guaranteeing optimal routes
is to store a complete routing table in each vertex v in the network, specifying for each
destination u the first edge (or an identifier of that edge, indicating the output port)
along some shortest path from v to u. However, this approach may be too expensive
for large systems since it requires a total of O(n? log d) memory bits in an n-processor
network with maximum degree d [41]. Thus, an important problem in large-scale
communication networks is the design of routing schemes that produce efficient routes
and have relatively low memory requirements (see [3, 24, 35, 49, 57, 60, 68]).

This problem can be approached via localized techniques based on labeling
schemes [57]. Informally speaking, the routing problem can be presented as requiring
us to assign a label to every vertex of a graph. This label can contain the address of
the vertex as well as the local routing table. The labels are assigned in such a way
that at every source vertex v and given the address of any destination vertex u, one
can decide the output port of an outgoing edge of v that leads to u. The decision
must be taken locally in v, based solely on the label of v and the address of w.

Following [57], one can give the following formal definition. A family R of graphs
is said to have an l(n) routing labeling scheme if there is a function L labeling the
vertices of each n-vertex graph in £ with distinct labels of up to I(n) bits, and there
exists an efficient algorithm, called the routing decision, that given the label of a
source vertex v and the label of the destination vertex (the header of the packet),
decides in time polynomial in the length of the given labels and using only those two
labels, whether this packet has already reached its destination, and if not, to which
neighbor of v to forward the packet. Thus, the goal is, for a family of graphs, to find
routing labeling schemes with small stretch factor, relatively short labels, and fast
routing decision.

To obtain routing schemes for general graphs that use o(n)-bit label for each
vertex, one has to abandon the requirement that packets are always routed on shortest
paths, and settle instead for the requirement that packets are routed on paths with
relatively small stretch [3, 4, 24, 35, 60, 68]. A delay-3 scheme that uses labels of size
O(n?/3) was obtained in [24], and a delay-5 scheme that uses labels of size O(n'/?)
was obtained in [35].1 Recently, authors of [68] further improved these results. They
presented a routing scheme that uses only O(n'/?) bits of memory at each vertex of

1Here, O(f) means O(f polylog n).
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an n-vertex graph and has delay 3. Note that each routing decision takes constant
time in their scheme, and the space is optimal, up to logarithmic factors, in the sense
that every routing scheme with delay < 3 must use, on some graphs, routing tables
of total size 2(n?), and hence 2(n) at some vertex (see [39, 42, 45]).

There are many results on optimal (with delay 1) routing schemes for particular
graph classes, including complete graphs, grids (alias meshes), hypercubes, complete
bipartite graphs, unit interval and interval graphs, trees and 2-trees, rings, tori, unit
circular-arc graphs, outerplanar graphs, and squaregraphs. All those graph families
admit optimal routing schemes with O(dlogn) labels and O(logd) routing decision.
These results follow from the existence of special so-called interval routing schemes for
those graphs. We will not discuss details of this scheme here; for precise definitions
and an overview of this area, we refer the reader to [41].

Observe that in interval routing schemes the local memory requirement increases
with the degree of the vertex. Routing labeling schemes aim at overcoming the prob-
lem of large degree vertices. In [40], a shortest-path routing labeling scheme for trees
of arbitrary degree and diameter is described that assigns each vertex of an n-vertex
tree a O(log® n/ loglogn)-bit label. Given the label of a source vertex and the label
of a destination it is possible to compute, in constant time, the neighbor of the source
that heads in the direction of the destination. A similar result was independently
obtained also in [68]. This result for trees was recently used in [32, 33] to design inter-
esting low-deviation routing schemes for chordal graphs and general c-chordal graphs.
Reference [32] describes a routing labeling scheme of deviation 2 with labels of size
O(log® n/loglog n) bits per vertex and O(1) routing decision for chordal graphs. Ref-
erence [33] describes a routing labeling scheme of deviation 2|¢/2| with labels of size
O(log3 n) bits per vertex and O(loglogn) routing decision for the class of c-chordal
graphs.

Our collective additive tree spanners give much simpler and easier to understand
means of constructing compact and efficient routing labeling schemes for all («,r)-
decomposable graphs. We simply reduce the original problem to the problem on trees.

Let G be an (a,r)-decomposable graph and let 7(G) = {T1,T?,...,T+*} (1 <
O(logyn)) be a system of u collective additive tree 2r-spanners of G. We can prepro-
cess each tree T using the O(nlogyn) algorithm from [40] and assign to each vertex
v of G a tree label L'(v) of size O(log® n/loglogn) bits associated with the tree T7.
Then we can form a label L(v) of v of size O(log® n/loglogn) bits by concatenating
the  tree labels. We store in L(v) also the string 4, of length O(log® n) bits described
in subsection 2.2. Thus, L(v) :== A, o L'(v) o --- 0o L*(v).

Now assume that a vertex v wants to send a message to a vertex u. Given the
labels L(v) and L(u), v first uses their substrings A, and A, to find in log, n time
an index i such that for tree 7% € 7(G), dyi(v,u) < dg(v,u) + 2r holds. Then, v
extracts from L(u) the substring L?(u) and forms a header of the message H(u) :=
io L'(u). Now, the initiated message with the header H(u) = i o L*(u) is routed to
the destination using the tree T%: when the message arrives at an intermediate vertex
x, vertex x using own substring L*(x) and the string L(u) from the header makes a
constant time routing decision.

Thus, the following result is true.

THEOREM 6.1. FEach («,r)-decomposable graph with n vertices and m edges
admits a routing labeling scheme of deviation 2r with addresses and routing tables of
size O(log3 n/loglogn) bits per verter. Once computed by the sender in logyn time,
headers never change. Moreover, the scheme is computable in O((p(n) + t(n) +m +
nlogy, n)log, n) time, and the routing decision is made in constant time per vertex,
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TABLE 1
Routing labeling schemes obtained for special graph classes via collective additive tree spanners.

Graph Scheme Addresses and Message | Routing | Devia-
class construction routing tables initiation | decision tion
time (bits per vertex) time time
Chordal O(mlogyn O(log® n/loglogn) logo 1 0(1) 2
+nlog3n)
Chordal O(nmlogyn) | O(log®n/loglogn) logy 1 O(1) 2
bipartite
Cocompa- O(mlogyn O(log® n/loglogn) logy 1 0(1) 2
rability +n 10g§ n)
c-Chordal | O(n®logyn) | O(log®n/loglogn) logo 1 o(1) 2|c/2]
Circular- O(nloggn O(log? n) O(1) O(1) 2
arc +m)

where p(n) is the time needed to find a balanced and bounded radius separator S and
t(n) is the time needed to find a central vertex for S.

Projecting this theorem to the particular graph classes considered in this paper,
we obtain the following results summarized in Table 1. For circular-arc graphs, the
labels are of size O(log? n) bits per vertex since this size labels are needed to decide in
constant time which tree T" or T, is good for routing for given source x and destination
y. We will choose tree T7 € {T,T,} such that dp (z,y) = min{dr(z,y),dr, (z,y)}.
According to [57], in O(nlogy, n) total time the vertices of an n-vertex tree T’ can be
labeled with labels of up to O(log® n) bits such that, given two labels of two vertices
x,y of T, it is possible to compute in constant time the distance dr(z,y), by merely
inspecting the labels of x and y.

7. Extension to the weighted graphs. Although in our previous discussions
graph G is assumed (for simplicity) to be unweighted, the obtained results, in slightly
modified form, are true even for weighted graphs.

Let G = (V, E,w) be a weighted graph with the weight function w : E — R*. In a
weighted graph G, the length of a path is the sum of the weights of edges participating
in the path. The distance dg(x,y) between vertices x and y is the length of a shortest-
length path connecting vertices  and y.

It is easy to see that, if in sections 2—4 we consider shortest path trees instead
of BFS-trees, interpret r as an upper bound on the weighted radius of a balanced
separator S C V', and denote the maximum edge weight by w, then the following
corollaries from the previous results are true.

e Any weighted (v, r)-decomposable graph with n vertices, where r is an upper
bound on the weighted radius of a balanced separator, admits a system of at
most log, ,, n collective additive tree 2r-spanners.

e Any weighted c-chordal graph with n vertices admits a system of at most
log, n collective additive tree (2|c/2]w)-spanners.

e Any weighted chordal, chordal bipartite, or cocomparability graph with n
vertices admits a system of at most log, n collective additive tree 2w-spanners.

8. Conclusion and further developments. In this paper, we introduced a
new notion of collective tree spanners, and showed that any («, r)-decomposable graph
G with n vertices admits a system of at most log; ,, n collective additive tree 2r-
spanners. As a consequence, we got that any chordal graph, chordal bipartite graph
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or cocomparability graph admits a system of at most log, n collective additive tree
2-spanners. We complemented these results by lower bounds, which say that any
system of collective additive tree l-spanners must have Q(y/n) spanning trees for
some chordal graphs and (n) spanning trees for some chordal bipartite graphs and
some cocomparability graphs. We also showed that every c-chordal graph admits a
system of at most log, n collective additive tree (2|c/2])-spanners and every circular-
arc graph admits a system of two collective additive tree 2-spanners. Furthermore,
we discussed an application of the collective tree spanners to the problem of designing
compact and efficient routing schemes in graphs.

Collective tree spanners can find applications also in designing compact and ef-
ficient distance labeling schemes for graphs, defined in [57]. As shown in [57], the
vertices of any n-vertex tree T can be labeled with labels of up to O(log? n) bits such
that, given two labels of two vertices x,y of T, it is possible to compute in constant
time the distance dp(z,y) by merely inspecting the labels of z and y. Hence, any
n-vertex graph G, admitting a system of y collective additive tree r-spanners, admits
a labeling that assigns O(ulog?n) bit labels to vertices of G such that, given two
labels of two vertices =,y of G, it is possible to compute in O(u) time an additive
r-approximation to the distance dg(x,y) by merely inspecting the labels of = and y,
without using any other information about the graph.

In forthcoming papers [23, 29, 31], we investigate the collective tree spanners
problem in other special families of graphs such as homogeneously orderable graphs,
AT-free graphs, House-Hole-Domino-free graphs, graphs of bounded tree-width (in-
cluding series-parallel graphs, outerplanar graphs), graphs of bounded asteroidal num-
ber, and others. We show that

e any homogeneously orderable graph admits a system of at most log, n collec-
tive additive tree 2-spanners and (one) additive tree 3-spanner,

e any House-Hole-Domino-free graph admits a system of at most 2log, n col-
lective additive tree 2-spanners,

e any AT-free graph admits a system of two collective additive tree 2-spanners,

e any graph whose asteroidal number is bounded by a constant admits a system
of a constant number of collective additive tree 3-spanners,

e any graph whose tree-width is bounded by a constant admits a system of at
most O(log, n) collective additive tree 0-spanners,

e any graph whose clique-width is bounded by a constant admits a system of
at most O(log, n) collective additive tree 2-spanners.

We conclude this paper with a few open questions/problems:

1. What is the complexity of the problem, “Given a graph G and integers u,
r, decide whether G has a system of at most p collective additive tree r-
spanners” for different ¢ > 1, r > 0 on general graphs and on different
restricted families of graphs?

2. What is the best trade-off between the number of trees p and the additive
stretch factor r on planar graphs? (So far, we can state only that any planar
graph admits a system of O(y/n) collective additive tree 0-spanners.)

3. What would be some more applications where collective tree spanners could
be useful? The fact that collective tree spanners give a collection of (good)
trees might make it easy to adapt many tree algorithms for the graphs that
have collective tree r-spanners.

When this paper was already under review for this journal, we learned from A.
Gupta that they introduced in [49] a notion of tree covers of graphs which is identical to
our notion of collective multiplicative tree spanners. They additionally showed there
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that any planar graph admits a system of at most 2log, n collective multiplicative
tree 3-spanners. This result makes question 2 even more intriguing.
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Abstract. We consider the Steiner k-cut problem which generalizes both the k-cut problem and
the multiway cut problem. The Steiner k-cut problem is defined as follows. Given an edge-weighted
undirected graph G = (V, E), a subset of vertices X C V called terminals, and an integer k < | X]|,
the objective is to find a minimum weight set of edges whose removal results in k disconnected
components, each of which contains at least one terminal. We give two approximation algorithms
for the problem: a greedy (2 — %)—approximation based on Gomory-Hu trees, and a (2 — &—‘)—
approximation based on rounding a linear program. We use the insight from the rounding to develop
an exact bidirected formulation for the global minimum cut problem (the k-cut problem with k = 2).

Key words. multiway cut, k-cut, Steiner tree, minimum cut, linear program, approximation
algorithm
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1. Introduction. The k-cut problem and the multiway cut problem are funda-
mental graph partitioning problems. In both problems we are given an undirected
edge-weighted graph G = (V, E) with w(e) denoting the weight of edge e € E. In
the k-cut problem the goal is to find a minimum weight set of edges whose removal
separates the graph into k disconnected components. In the multiway cut problem we
are given a set of k£ terminals, X C V', and the goal is to find a minimum weight set
of edges whose removal separates the graph into components such that each terminal
is in a different connected component. In this paper we consider a generalization of
the two problems, namely, the Steiner k-cut problem. In this problem, we are given
an undirected weighted graph G, a set of terminals X C V| and an integer k < | X]|.
The goal is to find a minimum weight set of edges whose removal separates the graph
into k components with vertex sets V7, Vs, ..., Vi, such that V,N X # () for 1 <i < k.
If X =V, we obtain the k-cut problem. If |X| = k, we obtain the multiway cut
problem.

The k-cut problem can be solved in polynomial time for fixed k [5, 6], but it is
NP-complete when k is part of the input [5]. In contrast, the multiway cut problem is
NP-complete for all k > 3 and is also APX-hard for all kK > 3 [2]. It follows that the
Steiner k-cut problem is NP-complete and APX-hard for all £ > 3. For the multiway
cut problem Calinescu, Karloff, and Rabani [1] gave a 1.5 — 1/k approximation using
an interesting geometric relaxation. Karger et al. [7] improved the analysis of the
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integrality gap of this relaxation and obtained an approximation ratio of 1.3438 — ¢,
where ¢, — 0 as k — o0o. For the k-cut problem Saran and Vazirani [11] gave a 2 — %
approximation algorithm using a greedy algorithm. This result was improved by [13]
to 2 —% for odd k and to 2— i’;:: for even k. Recently, two different 2-approximations
for the k-cut problem were obtained. The algorithm of Naor and Rabani [9] is based on
rounding a linear programming (LP) formulation of the problem, and the algorithm
of Ravi and Sinha [10] is based on the notion of network strength and Lagrangian
relaxation.

The authors have learned of related independent work of Maeda, Nagamochi, and
Ibaraki [8] (in Japanese) and Zhao, Nagamochi, and Ibaraki [14]. The Steiner k-cut
was considered in [8], where it is shown that a greedy algorithm similar to the one
we describe in this paper has an approximation ratio of 2 — 2/k. In [14], the authors
define a generalization of the Steiner k-cut problem which they refer to as the multiway
partition problem (MPP). MPP is defined as follows. We are given a finite set V, a
set of terminals X C V, and an integer k such that |X| > k. We are also given a
submodular function f on V that assigns a real value f(S) to each subset S C V. The
function f is provided as an oracle. The goal is to partition V into k sets Vi, Vs, ..., Vi
such that V; N X # 0 for 1 < i < k and minimize f(V1) + f(Va) + -+ f(Vi). It
is shown in [14] that the greedy algorithm that iteratively increases the size of the
partition yields a (2 — %)—approximation for MPP. The Steiner k-cut problem can be
seen to be a special case of MPP: given an edge-weighted graph G = (V, E), we can
define a submodular function f where f(S) = 33 c5.(5) We-

1.1. Results. We provide two approximation algorithms for the Steiner k-cut
problem. The first algorithm we present is combinatorial and has an approximation
ratio of (2 — %) This algorithm is based on choosing cuts from the Gomory—Hu tree
of the given graph and is similar to approximation algorithms developed for the k-
cut problem and the multiway cut problem [12]. Maeda, Nagamochi, and Ibaraki [8]
obtained the same result earlier, but our proof is considerably simpler. Also, as we
mentioned earlier, Zhao, Nagamochi, and Ibaraki [14] show that the greedy algorithm
yields a (2 — %) approximation for MPP. Our main result is a 2-approximation algo-
rithm for the Steiner k-cut problem which is based on rounding a LP formulation.
Although our formulation is a straightforward generalization of the formulation in
[9] (for the k-cut problem), our rounding scheme differs substantially. The rounding
in [9] exploits the properties of optimal solutions to the LP relaxation. These prop-
erties do not hold for the relaxation of the Steiner k-cut problem. Instead, we rely
on the primal dual algorithm and the analysis of Goemans and Williamson [4] for
the Steiner tree problem. As a consequence, our rounding algorithm extends to any
feasible solution of the LP formulation. This interesting new connection might have
future applications.

We conclude with a bidirected formulation for the global minimum cut problem
and prove that the linear relaxation of this formulation is exact. The formulation and
analysis are inspired by our analysis for the Steiner k-cut problem. This formulation
and its integrality gap may have been known previously; however, we could not find
a published reference and hence include it here.

2. Combinatorial (2 — %)-approximation algorithm. We assume without
loss of generality that the given graph G is connected. A natural greedy algorithm for
the Steiner k-cut problem is the following iterative algorithm. In each iteration, find a
minimum weight cut that increases the number of distinct components that contain a
terminal. This algorithm has been shown to achieve a (2— %)—approximation algorithm
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for both the k-cut problem and the multiway cut problem (see, e.g., [12]) and for
MPP [14]. However, the analysis of this algorithm is nontrivial. As in [11, 12], we
consider an alternative algorithm that is based on the Gomory—Hu tree representation
of the minimum cuts in a graph. Recall that a Gomory—Hu tree for an edge-weighted
undirected graph G = (V,E) is an edge-weighted tree T = (V, Er) with weight
function ¢ that has the following property: for all u,v € V, the weight of a minimum
cut separating v and v in G is equal to the smallest edge weight on the unique
path between w and v in T. In particular, for (u,v) € Ep, c(u,v) is the weight of
the minimum cut separating v and v in G, and the partition of V' induced by the
removal of (u,v) from T induces such a minimum cut. We run the natural greedy
algorithm mentioned above on the tree T: [Iteratively, pick the smallest weight edge
in T separating a pair of terminals that are not already separated until k components,
each of which contains a terminal, are generated.

It is easy to see that we pick & — 1 edges in T. We take the union of the cuts
associated with these edges and this defines our solution for the Steiner k-cut problem
in G.

PRrROPOSITION 2.1. The algorithm produces a feasible solution to the Steiner k-cut
problem.

We need a simple proposition about Gomory—Hu trees.

PROPOSITION 2.2. Let T = (V, Er) be a Gomory—Hu tree for a connected graph
G = (V,E). For any pair of vertices (s,t) in G and an s —t cut (S,V — S) in G,
there is an edge (u,v) € Er such that w € S, v € V. — S, and (u,v) lies on the path
between s and t in T.

Now we argue about the cost of the solution produced by the Gomory—Hu tree
based algorithm. Owur analysis is similar to that of the analysis for the Gomory—
Hu tree based algorithm for the k-cut problem (see Theorem 4.8 in [12, page 42]).
However, the analysis is not a straightforward extension; in the Steiner k-cut problem,
the terminals constrain the choice of cuts, and we need to identify a mapping to the
optimal set of cuts in a careful manner.

LEMMA 2.3. The cost of the (k — 1) edges picked by the algorithm is at most
(2 — 2/k) times the cost of the optimal solution.

Proof. Fix an optimal solution A to the Steiner k-cut problem. Let Vi, V5, ..., Vi
be the partitioning of V' defined by A. Clearly, each set V; (i = 1,...,k) contains
at least one terminal from X. From each set V; we arbitrarily choose a terminal t;
contained in V;. Define cuts A; = (V;,V\'V;) for i = 1,...,k, and let w(A;) denote
the weight of cut A;. Assume without loss of generality that w(A4;) < w(A43) <

- < w(Ag). Observe that each edge in the optimum solution A participates in
exactly two of the cuts Ay,..., Ax; hence the weight of the optimal solution A is
w(A) = Zlew(Ai)/Q. Let By, Bs,...,Bi_1 denote the k — 1 cuts chosen by the
above Gomory—Hu tree based algorithm. We claim that

(1) w(B) <w(A), 1<i<k-1.
Assuming the claim, we have that

jzllw(Bi) < (1 - ;) iwmi) <2 (1 - i) w(A),

which proves the desired bound on the performance of the algorithm.
To prove (1), we identify a set of edges e, ea, ..., ex_1 of the Gomory—Hu tree T
with the following properties:
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1. w(A;) > c(e;), for 1 <i < k—1, and since w(A;) < w(Az) < -+ < w(Ag), it
follows that w(A;) > maxi<;<; c(e;).

2. The removal of e1,eq,...,e; creates i + 1 components in T, each containing
a terminal.

Assuming the existence of ey, es,...,ex_1 as above, let fi, fo,..., fr—_1 be the
edges of T picked by the algorithm. We claim that c(f;) < maxi<j<;c(e;); this
follows by observing that there is some edge in {ej,eq,...,e;} that when added to
{f1,..., fi—1} would yield a new component containing a terminal. If not, removing
the edges in { f1, fa,..., fi—1}U{e1,...,e;} would result in at most 4 components each

containing a terminal which contradicts the definition of the e;. Therefore,

w(B;) = c(fi) < max c(e;) < w(d).
1<j<qe

We obtain eq,...,ep_1 as follows. Let E/ C Er be the set of edges of T that cross
the partition of V' induced by the optimum solution Vi, Vs, ..., Vi. In other words,
(u,v) € E" if and only if (u,v) € Er, u € V;, v € V;, and i # j; root the tree at
ty. For each t;, 1 <i < k — 1, we let e; be first edge in the directed path from t; to
the root t; that is in E’; by Proposition 2.2, e; exists. Also, for ¢ # j, e; and e; are
distinct; otherwise, the path between ¢; and t; in T" would not have any edges in E’
and this contradicts Proposition 2.2. Further, since e; crosses the partition V;, from
the Gomory—Hu tree property, w(A;) > c(e;). We claim that removing e, es,...,€;
from T will disconnect the set {t1,t2,...,t;, ¢k} in T. Suppose that this is not the
case. Clearly, t; is separated from ¢1, ..., t;; therefore for some h,?¢ < i, t, and t, are
connected by a path P after removing ey, ..., e;. Let v be the least common ancestor
of t;, and t, in T rooted at t;. From our assumption e, and e, are both above v.
This implies that no edge in P is in E’, and therefore P connects ¢, and t, even after
e1,...,er_1 are removed, contradicting Proposition 2.2. |

Given a Gomory—Hu tree for the input graph, the iterative greedy algorithm
that we described can be easily implemented in O(n?) time. This potentially could be
improved, but we do not attempt it since the running time to build a Gomory—Hu tree
is currently €(n?) even for sparse graphs. We conclude with the following theorem.

THEOREM 2.4. There is a (2 — %)—appmximation algorithm for the Steiner k-
cut problem that runs in O(n? + 7) time, where T is the time required to build a
Gomory—Hu tree for the input graph.

3. LP formulation and a 2-approximation. We consider the following inte-
ger programming formulation for the Steiner k-cut problem. For each edge e we have
a binary variable d(e) which is 1 if the edge e belongs to the cut and 0 otherwise.
Let T be a Steiner tree on the terminal set X in G. In any feasible Steiner k-cut, at
least £ — 1 edges of T have to be cut. Based on this we obtain the following integer
program for the Steiner k-cut problem:

(K) min Z w(e) -d(e) subject to:

Z dle) > k—1 VT : T Steiner tree on X
ecT

d(e) € {0,1} VeckE.

A relaxation of this integer program is obtained by allowing the variables d(e) to
assume values in [0, 1]. The variables d(e) are to be interpreted as inducing a semimet-
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ric! on V. Our formulation above is a straightforward extension of the formulation of
Naor and Rabani [9] for the k-cut problem. In the k-cut problem X =V, and hence
[9] considers only spanning trees of G.

Unfortunately, we do not know how to solve the LP (K) in polynomial time.
Consider, for example, the separation oracle required for running the Ellipsoid algo-
rithm. Given edge weights d(e), the separation oracle has to check that the minimum
weight Steiner tree on X in G is of weight at least K — 1. However, this problem is
NP-hard. Note that for the k-cut problem, a polynomial time separation oracle is
available because the minimum spanning tree (MST) of a graph can be computed in
polynomial time.

We can use an approximate separation oracle based on the MST heuristic for the
Steiner tree problem. Given edge weights d(e), e € E, we define the metric completion.
For an unordered pair of vertices uv we let d(uv) denote the shortest path distance
from u to v in G with edge weights defined by d. Let Gx be the complete graph on
the terminal set X. The oracle computes the MST on G x where for each pair uv in
Gx the weight of the edge uv is d(uv). If the MST is of weight at least k — 1, the
oracle concludes that d is feasible. If the weight of the MST is less than k — 1, it is
easy to find a corresponding Steiner tree on X in G whose weight is less than & — 1.
In other words, we are solving the following relaxation:

(K") min Z w(uw) - d(uv)  subject to:

weE(G)
(2) Z dluv) > k-1 T spanning tree in G x
weE(T)
(3) d(uv) + d(vw) > d(uw) u,v,w eV
(4) d(uv) € [0,1] u,veV.

For an edge e € E(G) with e = uv, we use d(e) and d(uv) interchangeably. The
next lemma follows from the discussion.

LEMMA 3.1. The LP (K') is a valid relaxation for the Steiner k-cut problem and
it can be solved optimally in polynomial time.

For the multiway cut problem we note that the LP (K’) is equivalent to a LP
that constrains the terminals to be at a distance of at least 1 from each other. This
latter LP has been shown to have an integrality gap of 2(1 — 1/k) [2]. We will obtain
the same result as well for the Steiner k-cut problem. We now prove a property of
feasible solutions to (K’) that will be useful later.

LEMMA 3.2. In any feasible solution to (K') there is X' C X such that | X'| > k,
and for any two distinct vertices u and v in X', d(uv) > 0.

Proof. For any two, not necessarily distinct, vertices u and v in X, define a
relation R as follows: uRv if and only if d(uv) = 0. Since d is symmetric and satisfies
triangle inequality (hence the relation is transitive), R defines an equivalence relation
on X. We need to prove that the number of equivalence classes in R is at least k.
Suppose this is not the case. For any two vertices a and b in V, d,, < 1. Hence,
there is a spanning tree on X of cost at most £ — 1, where ¢ is the number of distinct
equivalence classes. If £ < k, we get a contradiction to the feasibility of the solution
to (K'). O

LA semimetric is a distance function that is symmetric and satisfies triangle inequality. It differs
from a metric in that it need not satisfy reflexivity, that is, distinct points can be at distance 0 from
each other.
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Note that the above proof is constructive and a set X’ satisfying the required
properties can be easily computed. In the rest of the paper it is convenient to assume
that X’ = X and that for each u,v € X, d(uv) > 0.

3.1. A strategy to round the LP. We show how to round a solution to (K')
to yield a 2-approximation to the Steiner k-cut problem. To this end, we use the
Goemans and Williamson primal-dual approximation algorithm for the Steiner tree
problem [4] (henceforth referred to as the GW algorithm) to find a family of cuts.

Let d be any feasible solution to the LP (K’). Then, d defines a weight function
on the edges of G. Let G denote the resulting edge-weighted graph. We run the
GW primal-dual algorithm on the graph G to create a Steiner tree on X. To find
a minimum Steiner tree on X in G g, the GW algorithm uses the following cut based
LP relaxation of the Steiner tree problem. Let x(e) be 1 if e is in the Steiner tree
and 0 otherwise: every cut that separates the terminal set has to be covered by at
least one edge. This yields the following LP where the variables are relaxed to be in
[0,1]. Note that the variables d(e) in the formulations below are treated as constants
obtained from a solution to (K').

Each subset of vertices S C V defines a cut which we denote by §(S):

(STP) min Zc?(e) -x(e) subject to:
(5) Z z(e) > 1 vV S : S separates X

(6) z(e) € [0,1] Ye.
The dual of this LP is the following:

(STD) max Zy(S’) subject to:
g

(7) > y(S) < dle) Ve

S:e€é(S)
(8) y(S) > 0 V S : S separates X.

The GW algorithm is a primal-dual algorithm that incrementally grows a dual
solution while maintaining feasibility and computes a corresponding feasible primal
Steiner tree such that the cost of the Steiner tree computed is at most twice the value
of the dual solution found. Let 3’ be the dual solution produced by the GW algorithm
upon termination and let T" be the tree returned by the algorithm. Then the following
properties hold for 3 and T [4].

1. y is a feasible solution to (ST'D).

2. T is a tree that spans the terminal set X.

3. Sets S (representing cuts) with ¢(S) > 0 form a laminar family. Let S denote
this family of sets.

4> cerdle) < 2(1 = 1/[X1) X gesy'(9)- _
5. Forany u € X, Y g.,c5¥'(S) < 3 - maxyex,vru d(uv) < 3.
6. For any u,v € X such that d(uv) > 0, there exists a cut S such that y'(S) > 0
and |S N{u,v} = 1.
With the above discussion in place, we are ready to describe our rounding proce-
dure. For a cut S, let w(S) = > c5(5) w(e) denote the weight of S in G; we observe

the following claim.
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CLAIM 3.3. Y ges ¥/ (S)w(S) < X, wle)d(e).
Proof. We have the following:

DY Sw(S) =Y y'(S) Y wle)

Ses Ses e€d(S)
=Y wle) Y Y9
e S:e€é(S)

The final inequality follows from constraint (7) since y’ is a feasible solution to
(STD). O
Cram 3.4. 2(1 = 1/|X|) > ges¥'(S) > (kK —1). B
Proof. The GW algorithm guarantees that 2(1 — 1/[X1) > 4 ¥'(S) > > d(e).
Since T'is a spanning tree on X, from the feasibility of d for (K'), > ., d(e) > k—1
by (2). The claim follows by combining the two equalities. d

3.2. Choosing the cuts. We describe how we choose the cuts from S. We
partition S into classes S1,Ss,...,Sp such that two cuts S and S’ are in the same
class §; if and only if SN X = S’ N X. Clearly, the number of classes is at least
|X| > k. For a class S;, let C; be a least weight cut in S;. Let C be the collection
of C;, 1 <1i < {. Without loss of generality assume that the classes are ordered such
that ’LU(Cl) S ’U)(Cg) S S w(Og).

A solution to the problem consists of a set of edges. Our algorithm outputs a
collection of cuts from C with the solution consisting of all edges that belong to one of
the chosen cuts; we therefore think of the cuts as defining the solution. The algorithm
considers classes in increasing order of their index and while considering class S;, adds
C; to the solution if adding the cut produces a new component containing a terminal
from X. The process stops when k — 1 cuts are chosen. This procedure is well defined
and yields a feasible solution for the following reason. From Lemma 3.2 and property 6
of the GW algorithm, if all the cuts Cy, Cs, ..., Cy are chosen, we obtain k (or more)
components, each containing a terminal from X. We now upper bound the value of
the solution output by the algorithm. Let 1 = i1 < is < --+ < ix_1 < £ denote the
indices of the k—1 classes chosen by the algorithm. We let y'(S;) denote > g5 v'(5).

DEFINITION 3.5. Given a collection of distinct cuts B, we say that a cut C € B
1s basic with respect to B if there is no cut C' € B such that C' C C.

From the laminarity of S and hence of B, the set of basic cuts in B is well defined
and disjoint. Let A; denote the set of cuts Cy,C, ..., C;.

LEMMA 3.6. Let g; be the number of basic cuts in A; and let p; be the number of
components created by the algorithm after the first j cuts have been considered. Then

* Xicn<; ¥ (Sh) <4;/2,
® p; > qj, and if pj = q;, then the components are induced by the basic cuts in
Aj and X Cc Uj_,Cj.

Proof. From the analysis of the GW algorithm we have that for any cut S5,
Yosog ¥ (87) < AJ2, where A is the diameter of G. In our case A = 1. Since every
cut in A; is a superset of some basic cut in A;, we have that >, ., -, y'(Sk) < ¢;/2.

Let rp <rg <+ <1y, be the indices of the basic cuts in A;. Note that the cuts
in § are laminar and hence these basic cuts are disjoint. We now argue that p; > g;.
Let X, = XNC,,, 1 <h<gj,andlet X' = X —wj’_ X;. We claim that for h < I/,
Xy and Xj,/ are in separate components; otherwise, the algorithm when processing
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Cy, would add it to the solution and separate Xj; and Xj; therefore p; > ¢;. By
the same argument, it follows that if X’ is not empty, X} and X' are in separate
components as well and in this case p; > ¢; + 1. Thus, if p; = ¢;, X’ = 0, and each
X}, is in a separate component. 0

Let & = 1/(1 — 1/|X]|). From the analysis of the GW algorithm we have that
Zi:l Y'(Sh) = > gy (S) > a(k—1)/2. The main tool in our analysis is the following
lemma.

LEMMA 3.7. For 1 <r <k—1, 3, y(S;) = alk —1)/2.

Proof. Let f =i, — 1, then py = r. We consider two cases based on g;.

If py > gy, we have that ¢y < r—1, and by Lemma 3.6, 21<h<f y'(Sp) < (r—1)/2.
Since >y << ¥’ (Sh) = a(k —1)/2 it follows that 37, .o, v'(Sj) > a(k —1r)/2.

Now we consider the case py = ¢q¢. From Lemma 3. 6, the components at this stage
are induced by the basic cuts in Ay. Let the basic cuts be Cj,,Cj,,...,Cj,.. Let X}
denote the terminals in Cj,. Recall that X = W, X}, and hence >3, ), o, [Xn| = [ X].
The tree T created by the GW algorithm is of cost £k — 1. We note that the part of
the tree that connects the components Cj,,Cj,,...,C;,. costs at most r — 1 since the
diameter of the graph is at most 1. For 1 < h < r, let Tj, be the minimal subtree of
T that connects Xj,. It follows that 3>, ). > cp, de>k—1—(r—1)>k—r. Let
Ly ={i| (C;NX) C X} be the indices of classes that contain a proper subset of
terminals from X}. From the analysis of the GW algorithm applied to tree T} and
terminals set X}, we obtain that

Zy/(s)_mzde,

1€Lp ecTh
therefore
1
/
v (Si) > e 2 o~ (k—1).
S IV = 3wy % 2wt
ShsTre h >

We now claim that if ¢ € WLy, then ¢ > f =4, — 1. For if ¢ € L, then Cj, would
not be basic in C1,C, ..., Cy; therefore

DY) = DY Y S

>y 1<h<ri€Ly

This finishes the proof of the lemma. 0
COROLLARY 3.8. Zr 1 Lw(C; ) <201 —-1/1X]) < Yoy (S)Hw(S).
Proof. For 1 < h < £let z;, = 3,5, y'(Sj). Recall that 1 = i1 <ip <. <
ip—1 < £ are the indices of the cuts chosen by the algorithm and that w(C7) < w(Cq) <
- < w(Cy); hence,

> Y (S)w(S)
S

H
M~

y
SESH

>
I
—

Y (Sh)w(Ch)

vV
-
x>
b

v

w(Cik—l)zik—l + w(cir)(zir - Zir+1)'

5
Il
—
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From Lemma 3.7 we have that z;,, > a(k — r)/2. The right-hand side of the last
inequality above is minimized when z; = a(k — r)/2 for 1 <r < k — 1. Therefore,

k—1
ady w(C;).
1

N |

> Y (S)w(S) >
S

r

This yields the desired inequality. |
From Corollary 3.8 and Claim 3.3 we obtain that

k-1

w(Ci,) < 2(1=1/|X) Yy (S)w(S) < 2(1-1/|X])) wed..
S e

r=1

Thus the integrality gap of (K’) is upper bounded by 2(1 — 1/|X]).

Lower bound on the integrality gap. The integrality gap of (K’) (and (K)) is no
better than 2(1 — 1/|X|) even when k = 2 and X = V (the global minimum cut
problem). Counsider the unit weight cycle on n vertices. Clearly, an integral solution
has to cut at least two edges to separate the cycle into two components. Consider
the following feasible solution to the relaxation. We set d(e) = 1/(n — 1) on each
edge of the cycle; for all other edges, d(e) is the shortest path distance induced by
the distances on the cycle edges. The value of this solution is n/(n — 1). Hence, the
integrality gap is 2(1 — 1/n).

THEOREM 3.9. The integrality gap of the LP (K') is 2(1 — 1/]|X]).

4. An exact formulation for the global minimum cut problem. In the
previous section we saw that LP (K’) has an integrality gap of 2(1 — 1/n) for the
2-cut problem, i.e., for the global minimum cut problem. Here we give a bidirected
formulation of the global minimum cut problem. Given an undirected weighted graph
G = (V,E), let G®* = (V, A) be the directed graph obtained by replacing each edge
e € E between u and v by two directed arcs (u,v) and (v,u). The weights of both
(u,v) and (v,u) in G are set to w(e). Let r be any vertex in V(G). An arborescence
in a directed graph rooted at a vertex r is a spanning out-tree from r (also known
as a branching). Our formulation is based on G°. For an arc a € A, let d(a) = 1 if
a is chosen to the cut, and let d(a) = 0 otherwise. The following is a valid integer
program for the global minimum cut problem:

(B) min Z w(a) - d(a) subject to:

Z d(a) > 1 T arborescence rooted at r in G?

d(a) € {0,1} a€ A

Although the above integer program is similar to integer program (K'), we remark
that for £ > 2 we do not obtain a valid formulation for the k-cut problem if we replace
the right-hand side of the constraint above by k& — 1.

We obtain a LP by relaxing each variable d(a) to be in [0,1]. We show that the
value of the LP is exactly equal to the global minimum cut of the graph G. The
separation oracle needed to solve (B) in polynomial time by the Ellipsoid algorithm is
the minimum cost arborescence problem in directed graphs. We can use the algorithm
of Edmonds [3] for this purpose. In fact, Edmonds [3] showed that the arborescence
polytope is integral and we use this to show that (B) is exact for the minimum cut
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problem. The proof is similar in outline to the one in section 3, but we use arbores-
cences in place of spanning trees, and the result of Edmonds [3] on the integrality of
the arborescence polytope in place of the GW algorithm. Let d be an optimal solution
to (B). Let Gg be the graph G® equipped with d as costs on the edges of G*. We find
a minimum cost arborescence in GY using the following formulation. For each arc a,
variable z(a) = 1 if a belongs to the arborescence and 0 otherwise:

(AP) min Z d(a) - x(a) subject to:
a€A
> x(a) > 1 VS:S#VandreS
a€é(S)

z(a) € [0,1] Y a.
The dual of the above LP is the following:
(AD) max Zy(S) subject to:
s

> y(S) < d(a) v a

S:a€é(S)
y(S) > 0 VS:S#VandresS.

Let z* and g* be optimal primal and dual solutions to (AP) and (AD) on the
graph GY. From the feasibility of d, it follows that > d(a)z*(a) > 1. From weak
duality we therefore also obtain that >~ y*(S) > 1. Let § = {5 | y*(S) > 0} be the
set of all cuts with strictly positive dual values. Let C' € S be a cut such that w(S) is
the cheapest cut. We pick C' as our solution. We now show that w(C) < > w(a)d(a),
which shows that the weight of the cut is at most the value of the optimal solution to

(B). We see that
Yy (Sw(S) =Yy () Y wla)
S s

a€d(S)

=Y wl@) Y y(5)

S:a€b(S)

<> w(a)d(a).

The last inequality follows from the feasibility of y*. We have that ) 4 y*(S)w(S) <
Yo w(a)d(a) and > 4 y*(S) > 1. Therefore, the weight of the cheapest cut is no more
than ) w(a)d(a).

THEOREM 4.1. The LP relazation of (B) can be solved in polynomial time and
is an exact formulation for the global minimum cut problem.

5. Conclusions. Our study of LP relaxations for the Steiner k-cut problem was
partly motivated by the goal of obtaining an approximation algorithm for the k-cut
problem with a ratio better than 2. This has been accomplished for the multiway
cut problem by a strengthened LP relaxation [1]. Our results show that the available
approximation techniques for the k-cut problem extend to the Steiner k-cut problem.
In the process we have shown an interesting connection between laminar cut families
obtained from the primal-dual algorithm of Goemans and Williamson [4] and their
use in analyzing the LP relaxation for the Steiner k-cut problem. Several interesting
questions are open.
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e Is the k-cut problem APX-hard?

e Is there an approximation algorithm for the k-cut problem with ratio better
than 27

e What is the integrality gap of the geometric relaxation in [1] for the multiway
cut problem?
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Abstract. Given 0 < p < 1, we prove that a pseudorandom graph G with edge density p and
sufficiently large order has the following property: Consider any red/blue-coloring of the edges of
G and let r denote the proportion of edges which have the color red. Then there is a Hamilton
cycle C so that the proportion of red edges of C is close to r. The analogue also holds for perfect
matchings instead of Hamilton cycles. We also prove a bipartite version which is used elsewhere to
give a minimum-degree condition for the existence of a Hamilton cycle in a 3-uniform hypergraph.
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1. Introduction.

1.1. Overview. It is well known that random graphs, pseudorandom graphs,
and e-superregular graphs have some strong Hamiltonicity properties in common. For
instance, a recent result of Frieze and Krivelevich [10] states that, for every constant
0 < p < 1, with high probability almost all edges of the random graph G,, , can be
packed into edge-disjoint Hamilton cycles. (They derive this from a similar result
about e-superregular graphs.)

Hamiltonicity has also been investigated from the viewpoint of (anti-)Ramsey
theory. For example, Albert, Frieze, and Reed [1] proved that there is a linear function
k = k(n) such that for every edge-coloring of the complete graph K, on n vertices
which uses each color at most k times there is a Hamilton cycle where each edge has
a different color. This improves bounds by previous authors. A related problem for
random graphs was also considered by Cooper and Frieze [6].

Here, we prove a related result about colorings of bipartite e-superregular graphs
(which will imply analogous statements for pseudorandom and random graphs).
Roughly speaking, we prove that given a k-coloring of a sufficiently large e-superregular
graph G (where ¢ is sufficiently small) there is a Hamilton cycle C' in G which is
strongly multicolored (or well balanced) in the following sense: for all colors i, the
proportion of edges in C' of color i is close to the proportion of edges in G which
have color i. We derive this from a related result about random perfect matchings
(Theorem 1.1) which is also a crucial tool in [12]; see section 1.3.

This paper is organized as follows. In sections 2 and 3.1 we collect some tools
which we will need in our proofs. In section 3.2 we then use these tools to deduce
some simple properties of random perfect matchings in e-superregular graphs. The
core result of this paper is Lemma 3.8 in section 3.3, which proves Theorem 1.1 for
special graphs H. In the final section, the remaining results in this paper are easily
deduced from Lemma 3.8 and the results in section 3.2.

*Received by the editors March 17, 2005; accepted for publication (in revised form) September
14, 2005; published electronically March 24, 2006.
http://www.siam.org/journals/sidma/20-2/62701.html
fSchool of Mathematics, Birmingham University, Edgbaston, Birmingham B15 2TT, UK (kuehn@
maths.bham.ac.uk, osthus@maths.bham.ac.uk).
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1.2. Statement of results. Given a bipartite graph G = (A, B) with vertex
classes A and B, we denote the edge set of G by E(A, B) and let e(G) = e(A, B) =
|E(A, B)|. The density of a bipartite graph G = (A, B) is defined to be

_ €(A, B)
A(A,B) i= et

Given 0 < e < 1and d € [0, 1], we say that G is (d, €)-regular if for all sets X C A and
Y C B with | X| > ¢|A| and |Y| > ¢|B| we have (1—¢)d < d(X,Y) < (1+¢)d. We say
that G is (d, e)-superregular if it is (d, e)-regular and, furthermore, if (1 — €)d|B| <
dg(a) < (14¢€)d|B| for all vertices a € A and (1 —¢)d|A| < dg(b) < (1+¢)d|A| for all
b € B. This is more or less equivalent to the traditional notions of e-regularity and
e-superregularity—see section 2.

THEOREM 1.1. For all positive constants d,vg,n < 1 there is a positive € =
e(d,vp,n) and an integer Nog = No(d, vo,n) such that the following holds for alln > Ny
and all v > vy. Let G = (A, B) be a (d,e)-superregular bipartite graph whose vertex
classes both have size n and let H be a subgraph of G with e(H) = ve(G). Choose a
perfect matching M uniformly at random in G. Then with probability at least 1 —e™ "
we have

(I—=nmvn < |MNEH)|<(1+nvn.

At first sight it may seem surprising that the only parameter of H that is relevant
here is the number of its edges. However, this is quite natural in view of the fact that
the assertion would be trivial if instead of a perfect matching one would choose n
edges independently and uniformly at random.

The case when H is a sufficiently large induced subgraph of G was proved earlier
by Rodl and Rucinski [13] as a tool in their alternative proof of the blow-up lemma
of Komlés, Sarkozy, and Szemerédi.

From Theorem 1.1 we will also deduce a (weaker) analogue for Hamilton cycles.

THEOREM 1.2. For all integers k and all positive constants d,v,n < 1 there is
a positive ¢ = e(d,v,n) and an integer Ny = Ni(k,d,v,n) such that the following
holds for alln > Ni. Let G = (A, B) be a (d,)-superreqular bipartite graph whose
vertex classes both have size n. For each 1 < ¢ < k let H; be a subgraph of G with
e(H;) = v;e(G), where v; > v. Then G contains a Hamilton cycle C such that for all
1< <k

(I=n)2vn < |CNE(H;)| <(14+n)2vn.

Theorems 1.1 and 1.2 can in turn be used to deduce analogues for nonbipartite
graphs (see the final section for details). For this, we need to modify the notion of
(d, e)-superregularity as follows. Given 0 < ¢ < 1 and d € [0, 1], we say that a graph G
with n vertices is (d, €)-regular if for all disjoint sets X, Y C V(G) with | X|,|Y] > en
we have (1 —¢e)d < d(X,Y) < (1 + €)d. We say that G is (d, €)-superreqular if it
is (d, e)-regular and, furthermore, if (1 — €)dn < dg(x) < (1 + €)dn for all vertices z
of G.

THEOREM 1.3. For all integers k and all positive constants d,v,n < 1 there is a
positive € = e(d,v,n) and an integer No = Ny(k,d,v,n) such that the following holds
for alln > No. Let G be a (d,e)-reqular graph with n vertices. For each 1 < i <k,
let H; be a subgraph of G with e(H) = v;e(G), where v; > v for all i > k. Then
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(i) G contains a Hamilton cycle C' such that for all i
(I—nuvn < |CNEH;)| <A+n)vn;

(ii) if n is even then G contains a perfect matching M such that for all i
(1—=nyn/2 <|MNEH)| <((1+nvmn/2.

Note that the assertion is not even trivial (but much easier to prove) in the
special case where G is the complete graph K,,. Moreover, let G, be a random
graph on n vertices obtained by connecting each pair of vertices with probability p
(independently of all the other pairs). For given 0 < p < 1 and n sufficiently large,
Gnp is (p,€)-superregular with high probability (in fact the probability that this is
not the case is easily seen to decrease exponentially in n). Thus the assertion of
Theorem 1.3 holds with high probability in this case. Also, if G is dn-regular and
the second eigenvalue of the adjacency matrix is at most Adn for sufficiently small )\,
then G is (d,e)-superregular (see, e.g., Chung [7, Theorem 5.1]) so the result applies
in this case, too (such graphs are often called pseudorandom graphs).

1.3. Application: Loose Hamilton cycles in 3-uniform hypergraphs. A
fundamental theorem of Dirac states that every graph on n vertices with minimum
degree at least n/2 contains a Hamilton cycle. In [12], we prove an analogue of this
for 3-uniform hypergraphs, which we describe below. All the results proved in this
paper except Theorems 1.2 and 1.3 and Lemma 3.8 are used as a tool in [12].

One way to extend the notion of the minimum degree of a graph to that of a
3-uniform hypergraph H is as follows. Given two distinct vertices « and y of H, the
neighborhood N(z,y) of (x,y) in H is the set of all those vertices z which form a
hyperedge together with © and y. The minimum degree 6(H) is defined to be the
minimum |N (z,y)| over all pairs of vertices of H.

We say that a 3-uniform hypergraph C is a cycle of order n if there exists a cyclic
ordering v1,...,v, of its vertices such that every consecutive pair v;v;41 lies in a
hyperedge of C and such that every hyperedge of C consists of 3 consecutive vertices.
A cycle is tight if every three consecutive vertices form a hyperedge. A cycle of order
n is loose if it has the minimum possible number of hyperedges among all cycles on
n vertices. A Hamilton cycle of a 3-uniform hypergraph H is a subhypergraph of H
which is a cycle containing all its vertices. The following result is proved in [12].

THEOREM 1.4. For each € > 0 there is an ng = no(e) such that every 3-uniform
hypergraph H with n > ng vertices and minimum degree at least n/4 4+ en contains a
loose Hamilton cycle.

The bound on the minimum degree is essentially best possible in the sense that
there are hypergraphs with minimum degree [n/4] —1 which do not even contain some
(not necessarily loose) Hamilton cycle. Recently, Rodl, Ruciriski, and Szemerédi [14]
proved that if the minimum degree is at least n/2+en and n is sufficiently large, then
one can even guarantee a tight Hamilton cycle. This is also best possible up to the
error term (they announced in [14] that the error term en can in fact be omitted).

2. Notation and a probabilistic estimate. Given a graph G, we write Ng(z)
for the neighborhood of a vertex z in G and let dg(z) := |Ng(z)|. Given € > 0, we
say that G is e-regular if for all sets X C A and Y C B with |X| > ¢|A] and
Y| > e|B| we have |d(A,B) — d(X,Y)| < e. This (more traditional) notion of
regularity is more or less equivalent to the one defined in the introduction. Indeed,
clearly every (d, €)-regular graph is also 2ed-regular (and thus 2e-regular). Conversely,
if d = d(A, B) > /€ then every e-regular bipartite graph (A, B) is (d, \/€)-regular.

Given a positive number ¢ and sets A,Q C T, we say that A is split e-fairly by
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Q if
ANQl 4]
Q1T

Thus, if € is small and A is split e-fairly by @, then the proportion of all those elements
of T which lie in A is almost equal to the proportion of all those elements of () which
lie in A. We will use the following version of the well-known fact that if @) is random
then it tends to split large sets e-fairly. It is an easy consequence of standard large
deviation bounds for the hypergeometric distribution; see, e.g., [12] for a proof.

PROPOSITION 2.1. For each 0 < € < 1 there exists an integer qo = qo(€) such
that the following holds. Given t > q > qo and a set T of size t, let QQ be a subset of
T which is obtained by successively selecting q elements uniformly at random without
repetitions. Let A be a family of at most q'° subsets of T such that |A| > et for each
A € A. Then with probability at least 1/2 every set in A is split e-fairly by Q.

3. Perfect matchings in superregular graphs. In this section, we collect
and prove several results about (random) perfect matchings in bipartite superregular
graphs G which will all be needed to prove Theorems 1.1 and 1.2. Moreover, Lem-
mas 3.6 and 3.7 will also be used in [12]. The main result of this section is Lemma 3.8.
Given a reasonably regular small subgraph H of G, it gives precise bounds on the likely
number of all those edges of H that are contained in a random perfect matching M of
G. This is proved in the third subsection. In the first subsection, we collect some tools
which we will need in the other two subsections. In the second subsection, we give
likely upper bounds on the number of all those edges of an arbitrary sparse subgraph
H of G that are contained in a random perfect matching and on the number of cycles
in the union of two random perfect matchings in G.

3.1. Known results on counting perfect matchings. We use the following
version of Stirling’s inequality (the bound is a weak form of a result of Robbins; see,
e.g., [4]).

PROPOSITION 3.1. For all integers n > 1 we have

» (o) <oava(2)’

We will frequently use the following immediate consequence of the lower bound
in Stirling’s inequality:

@ () =<(3)"

We will also use that
(3) l—2>e ™ foral 0<z <045

(see, e.g., [4, section 1.1]).

We also need the following result of Brégman [5] which settles a conjecture of Minc
on the permanent of a 0-1 matrix. (A short proof of it was given by Schrijver [15]; see
also [3].) We state this result in terms of an upper bound on the number of perfect
matchings of a bipartite graph.

THEOREM 3.2. The number of perfect matchings in a bipartite graph G = (A, B)
15 at most

[T (dotay/iec.

acA
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An application of Stirling’s inequality (Proposition 3.1) to Theorem 3.2 immedi-
ately yields the following.

COROLLARY 3.3. For all € > 0 there is an integer d = do(€) so that the following
holds: Let G = (A, B) be a bipartite graph with |A| = |B| = n and let m(G) denote
the number of perfect matchings in G. Then

m(G) < (1+e)r [ 22ddo(a)do}

e
acA

A very useful lower bound on the number of perfect matchings in a k-regular
bipartite graph is provided by the following result by Egorichev [8] and Falikman [9],
which was formerly known as the van der Waerden conjecture.

THEOREM 3.4. Let G be a k-reqular bipartite graph whose vertex classes have
size n. Then the number of perfect matchings in G is at least (k/n)™n!.

To bound the number of perfect matchings in superregular graphs, we will use the
following theorem of Alon, Rédl, and Rucinski [2]. (Actually, we will only apply the
lower bound, which is based on Theorem 3.4. The upper bound in Theorem 3.5 is an
easy consequence of Corollary 3.3.) Note that their result is stated slightly differently
in [2] as the definition of (d, £)-superregularity in [2] is slightly different.

THEOREM 3.5. For every 0 < € < 1/4 there exists an integer ny = nq(e) such
that whenever d > 0 and G is a (d, €)-superregular bipartite graph whose vertex classes
both have size n > ny, then the number m(G) of perfect matchings in G satisfies

(d(1 —4e))"n! <m(G) < (d(1+ 4¢e))"nl.

3.2. Simple properties of random perfect matchings. Based on the results
in section 3.1, we can easily deduce the next lemma, which implies that if we are given
a (super)regular graph G and a “bad” subgraph F' of G which is comparatively sparse,
then a random perfect matching of G will probably contain only a few bad edges. The
“moreover” part will only be used in [12]; the assertion about (d,e)-regular graphs
will be used in [12] and the proof of Theorem 1.1.

LEMMA 3.6. For all positive constants ¢ and d with d < 1 and e < 1/6 there exists
an integer ng = no(e,d) such that the following holds. Let G be a (d, e)-superregular
graph whose vertex classes A and B satisfy |A| = |B| =:n > ng. Let M be a perfect
matching chosen uniformly at random from the set of all perfect matchings of G. Let
F be a subgraph of G such that all but at most A'n vertices in F have degree most
A'dn, where 1/2 > A’ > 18e. Then the probability that M contains at least 9A'n
edges of I is at most e=2™. Moreover, the statement also holds if we assume that G
is dn-regular, where dn € N.

Proof. First suppose that F' has maximum degree at most A’dn. Let F' D F be
a subgraph of G such that dps(a) = A’dn for each vertex a € A. (Such an F’ exists
since dg(a) > (1 — €)dn > Aldn as G is (d, e)-superregular.) Given a set A’ C A, we
denote by F’, the bipartite graph with vertex classes A and B in which every vertex
a € A’ is joined to all the vertices b € Np/(a), while every vertex a € A\ A’ is joined
to all the vertices b € Ng(a) \ Ng/(a). For an integer ¢ > e?A’n, let m(q) denote the
number of perfect matchings in G which contain precisely ¢ edges from F’. Every
such matching M’ can be obtained by first fixing a g-element set A’ C A and then
choosing a perfect matching in the graph F,. (So the elements of A’ correspond to
the ¢ endvertices of the edges in M’ N E(F’).) If we apply Corollary 3.3 to F, we
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m(q) < (Z) (1+¢e)" (A’edn)‘l ((1 +ee)dn)"—q

(L) () @raser

q e

now obtain

Let m(G) denote the number of perfect matchings in G. Then the lower bound in
Theorem 3.5 implies that

m(G) 2 (1~ 49)"nt > (““dn>

Thus the probability m(q)/m(G) that M contains exactly ¢ edges from F’ is at most

AN
(CTLA ) (1 _|_56)3n < efq(l + 58)371 < e(l5€*A’)n < e~ 3en
q

(To see the first inequality, use that ¢ > e*A’n.) By summing this bound over all
g > e>A’n, we find that the probability that M contains at least e2A’n edges of F'
is at most ne 3" < 72", Since F C F’, this implies that with probability at most
e~ 2" the matching M contains at least e2A’n edges of F. If F is now allowed to have
up to A’n vertices whose degree is larger than A’dn, this can increase the number of
edges of ' in M by at most A’n, which implies the result.

The same proof also works in the case where G is dn-regular. We now use the
lower bound m(G) > d™n! > (dn/e)™ which follows from Theorem 3.4 and
inequality (1). O

In the following lemma we will use Theorems 3.4 and 3.5 to show that a randomly
chosen 2-factor in a (super)regular graph G will typically contain only a few cycles.
We will need this fact in the proof of Theorem 1.2 (and in [12] again, as mentioned
earlier). A similar observation was also used in Frieze and Krivelevich [10]. The
“moreover” part will only be used in [12].

LEMMA 3.7. For all positive constants € < 1/64 and d < 1 there exists an integer
ng = ng(e, d) such that the following holds. Let G be a (d, €)-superreqular graph whose
vertezr classes A and B satisfy |A| = |B] =:n > ng. Let My be any perfect matching
in G. Let My be a perfect matching chosen uniformly at random from the set of all
perfect matchings in G — M. Let R = My U My be the resulting 2-factor. Then the
probability that R contains more than n/(log n)Y/5 cycles is at most e=™. Moreover,
the statement also holds if we assume that G is dn-regular, where dn € N, and that
G and My are disjoint.

Proof. Let G' := G — M;. Let m(G’) denote the number of perfect matchings in
G’. Since the deletion of a perfect matching from G still leaves a (d, 2¢)-superregular
graph, Theorem 3.5 implies that

(1),(3) "
m(G) > ((1—8e)d)™n! % ¢=9en (i”) .

Let k :=n/(logn)'/? and ¢’ := (logn)'/*. Given an integer £ < ', let f; ; denote the
number of 2-factors of G which contain M; and have at least k cycles of length 2¢. We
will now find an upper bound on f; . For this, note that the number of possibilities
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for choosing a set Cj, ¢ of k disjoint cycles of length 2¢ in G’ where every second edge
is contained in M; is at most

1 1) k
Enek < (zné) = Ck -
(Indeed, each such cycle of length 2¢ is determined by an ordered choice of ¢ edges
in M;.) By Corollary 3.3, given some C}, ¢ as above, the number of matchings on the
remaining vertices of G — M; is at most

d n—kl d n—kl
(]. + 5)2n <en> < eQen (n> =: dk7g.

e

Hence we have that fr, < ciedie. Altogether, this implies that the probability

fr,e/m(G’) that a random 2-factor R (chosen as in the statement of the lemma)
contains at least k cycles of length 2¢ can be bounded as follows.

k
Jrye 1en (€ 0\F [ e M 11e ettt lleng.—k/2 -2
5 < n _ _ — n < n < n.
m(a) = ¢ (k”) (dn) ¢ pat ) S R se

To derive the third inequality, we used the fact that (e/d)? (and thus (e/d)*) is small
compared to k. For the final one, we used that klogk is large compared to n.

Hence the probability that there is an ¢ < ¢’ such that the random 2-factor R
contains at least k cycles of length 2¢ is at most #e~2" < e~™. Note that the number
of cycles of length at least 2¢ in R is at most 2n/(2¢). Thus with probability at least
1 —e~™ the number of cycles in R is at most k¢’ +n/¢ = 2n/(logn)'/*, which implies
the first part of the lemma.

The proof of the “moreover” part of Lemma 3.7 is almost the same, except that
we use the lower bound m(G) > (dn/e)”™ on the number of perfect matchings in G
which follows from Theorem 3.4 by an application of (1). d

3.3. Counting perfect matchings which contain a given number of edges
of an almost regular subgraph.

LEMMA 3.8. For each positive constant 3 # 1 there is a constant f(5) with
0 < f(B) <1 such that the following holds. Suppose that a,e,&, ¢, and d are positive
constants with ¢ < a,c,d <1 and o, < & < f(B) < 1. There exists an integer
ng = no(o, e, c,d) for which the following is true. Let G be a bipartite (d,¢)-
superregular graph whose vertex classes V. and W satisfy |V| = |[W| =i n > ng. Let
H be a subgraph of G with vertex classes C CV and D C W, where ¢'n < |C|=cn <
2c'n and

adn < dg(v) < (1+&)adn for all vertices v € C.

Let M be a perfect matching chosen uniformly at random from the set of all perfect
matchings in G. Then

(i) P(IM N E(H)| < Bacn) < e fBaen 43 <1,

(ii) P(|M N E(H)| > Bacn) < e~ fBacn jf 3> 1,

The intuition behind this result is the following (see also the remark after Theo-
rem 1.1): If the inclusion of the edges of G into the random perfect matching M would
be mutually independent and equally likely, then the probability that a given edge e is
contained in M would be close to |M|/e(G). Thus the expected value of |M N E(H)]
would be close to ne(H)/e(G) which in turn is close to n(adn)(en)/(dn?) = acn. The
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above result would thus immediately follow by an application of some large deviation
bound on the tail of the binomial distribution.

The basic strategy of the proof is similar to that of [13], where the authors assume
that H is a sufficiently large induced subgraph of G. The main difficulty of our proof
is due to the fact that H is assumed to be rather small compared to G.

Proof. Let m(G) denote the total number of perfect matchings in G. If we apply
Stirling’s formula (1) to the lower bound in Theorem 3.5, we obtain

(®) m(@) = (L20) 2 (L) o

e e

Given a < ¢n, let m(a) be the number of perfect matchings in G which meet E(H)
in precisely a edges. Our aim is to show that m(a) is much smaller than m(G) if a
is significantly smaller or larger than acn. Let ) ; denote the summation over all
matchings J in H of cardinality a. Given such a matching J, let m(J) denote the
number of perfect matchings M’ in G(J) := G — V(J) — E(H). Thus M’ together
with J forms a perfect matching of G which intersects H in exactly a edges and so
m(a) = > ;m(J). We claim that for all matchings J as above, we have

(5) m(J) < (d:> e—acn—aefa—&-Sen.

The first term is the roughly the bound we would get if we would use only the fact
that G(J) has maximum degree (1 4 €)dn. The second term is a small but crucial
improvement on this estimate. The third term is an insignificant error term.

We now prove (5). By Corollary 3.3, we have

H maX{dg(J)(U)7 dO (5)}

(6) m(J) < (14 !

)

veV\V (J)

where dy(¢) is the integer defined in Corollary 3.3. Thus we have reduced the problem
of bounding m(J) to that of finding accurate upper bounds on the degrees of the
vertices in G(J). Recall that the vertex classes of H are C' and D and that A(G) <
(1+ &)dn since G is (d, €)-superregular. For a vertex v € C'\ V(J) we have

dG(J) (v) <dn(l+e—a)=:qq.

We say that a vertex v € V \ V(H) is average for J if in the graph G it has at least
(1 — €)d(a — en) neighbors in W N V(J). Let V be the set of such vertices. For
v € V*® we have

day() <dn(l+e— (1 —¢)(a/n—¢)) =:q.

Since G is (d, €)-superregular, we have that |V >n—cn—enifa > en. If a <en,
then trivially every vertex in v € V '\ V(H) is average for J, so the above bound on
|[V??| holds in this case, too. Moreover, note that both gy > do(e) and g5 > dy(e)
since n is sufficiently large compared to €. Thus, inserting all these bounds into (6)
gives

m(J) < (1+2)"e" ™ (qm)| VDl (g) V(1 + 28)dn) eI VDIV
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Now note that g5 < (1 + 2¢)dn to deduce that the right-hand side is maximized if
|[V?| is minimized. Thus

m(J) < esnea—n(qH)cn—a(qJ)(l—c—e)n((l + 25)dn)en

<dn> exp Q,
e

where Q :=en+ Qy + Qs + 2¢(en) and

(7)

IN

Qu :=(e — a)(en — a),

Q=g - (1 =¢)(a/n—e)[(1 - c—e)n].

Note that, we made use of the fact that 1+ z < e” three times in order to obtain (7).
Now observe that

Qpy < —acn + aa + en,
Qs<en—a(l—c—¢e)(1—¢)+en < —a(l—2c)+ 2en.

Altogether, we thus have
Q<en—acn+aa+en—a+2ac+2en+en < —acn —a + €a + Sen,

which proves (5).

Let p, denote the probability that a perfect matching which is chosen uniformly
at random in the set of all perfect matchings in G contains exactly a edges of H. Thus
Pa = m(a)/m(G) = > ;m(J)/m(G). Let |>_ ;| denote the number of summands,
i.e., the number of matchings in H of cardinality a. Each matching of cardinality a
in H can be obtained by first choosing a subset of a vertices in C' and then choosing
one neighbor in H for each vertex in this subset. Thus, writing (/0)° := 1 for all
x > 0, it follows that

>

J

@) [el*acdn?\”
(5) (=)

< (7) @+ gaany <

a

Since the bound (5) on m(J) is independent of J, we can now combine (4) and (5) to
obtain

N R [CIE

8
(<) (eacn>a efacn62£a+106n
- a

Now define ' by a = #'acn and let g(3') := log{(e/3')? /e}. Then

ﬁ/ acn
pa < ((ﬂ) ) e26010m < oy faen(g(8) + 265 +€)}

Now set u := acn to obtain

pa < exp{u(g(B') + &1 +26'))}
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(Note that if £ = 0 and 8’ < 1, this would be exactly the standard Chernoff bound
on the probability that X < 3'u, where X has a binomial distribution with mean y;
see, e.g., Theorem A.12 in [3].) It is easy to check that g(3') < 0if 5’ # 1.

The assertion (i) (i.e. the case # < 1) of the lemma now follows with f(G) :=
—g(8)/4 by summing over all values of a between 1 and Bu. Indeed, as g(f’) is
negative and increasing for 3 < 1, we have

P(|M N E(H)| < Bacn) < Buexp{ug(B) + 3¢} < Buexp{ug(B)/2},

as required. To prove the assertion (ii) of the lemma, we first consider the case
1< B < B <e? As g(@) is negative and decreasing for 4’ > 1, it follows that

Pa < exp{u(g(B) +17€)} < exp{ug(B)/2}.

Next consider the case that 3’ > e?. It is easy to check that g(3') < —3’. Thus

pa < exp{u(—=F" +&(1+20"))} < exp{—nps'/2}.

Similarly to the case (i), the assertion of the lemma in case (ii) now follows by summing
the bounds on p, over all values of a between Sy and cn. |

4. Proof of Theorems 1.1-1.3. We will prove Theorem 1.1 by decomposing
H into small “almost regular” subgraphs H;; and a small remainder F'. We will apply
Lemma 3.8 to each of the H;; separately and then use Lemma 3.6 to show that a
random perfect matching contains only a negligible number of edges of F'.

Proof of Theorem 1.1. By adding all the vertices in V(G) \ V(H) to H, we may
assume that H is a spanning subgraph of G. Set 3 := 1+ /4, define f(5) as in the
statement of Lemma 3.8, and choose parameters «,¢,&, ¢ so that 0 < e < a,c,d <1
and ¢ < a < £ € v,1, f(B). Thus the restrictions in the statement of Lemma 3.8
are satisfied. Choose Ny to be sufficiently large compared to both 1/e and the integer
no(a,e,&, ¢, d) defined in Lemma 3.8. Finally, fix a constant ¢ such that en € N and
d <c<2c.

First, we prove the upper bound in Theorem 1.1. Let £ be the smallest integer so
that ef“/2a > 1 +¢. Thus

9) (< glog@/a) <1/ve.

Let Ag be the set of vertices in A with dg(a) < adn. For alli > 1, let a; := e8i=1)/2¢
Thus

(10) aip1 < (1+&a;
since e8/2 < 1+ € (see, e.g., [4, section 1.1]). Moreover,
(11) 14+e<ap <2

For all ¢ with 1 <1 < /¢, let A; be the set of vertices in a € A with a;dn < dg(a) <
ajt1dn. Since G is (d, e)-superregular and thus dy(a) < dg(a) < (1 + &)dn for each
a € A, it follows that the A; with 0 < ¢ < £ give a partition of A.

We now define a partition of the edge set of H into graphs H;;. Given 1 <14 </,
define ¢; by |A;| = gien and let ¢(i) := |g;]. We partition the vertices in A; into
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q(i) + 1 parts A;; with 0 < j < ¢(¢) as follows: the partition is arbitrary except that
we require that |A;;| = cn for all j > 1. Thus |A;] < ¢n and so

‘
(12) Z |Aso| < fen < Ven < an.

i=1

Let H;; be the subgraph of H induced by A;; and B. Then for all a € A;;, we have

(10)
(13) azdn < dpg,;(a) < ajprdn < (1 +&)aydn.

Let Hgp be the subgraph of H which is induced by Ay and B. Given 1 < i < ¢, let
H;o be the subgraph of H which is induced by A;q and B. Let F' denote the union of
all the H;o with 0 < ¢ < /¢. Then

(14)
¢ (11),(12)
e(F) < adn|Ap| + Z |Aio|aiprdn < adn® 4 2adn® < 4ae(G) < ne(H) /4.
i=1

Let M be a perfect matching chosen uniformly at random from the set of all perfect
matchings in G. Let X;; := |M N E(H,j;)| and p; = ascn. (Note that p; can be
thought of as roughly the expected value of X;;.) Then for all 4, j with 4,5 > 1 we can
apply Lemma 3.8(ii) to H;; to see that with probability at least 1 — e~ fBri we have
Xi; < Bu; (apply the lemma with ¢; taking on the role of the parameter « there).
Moreover, we can apply Lemma 3.6 to F' as follows: Let A’ := . Then (12) implies
that at most A’n vertices of F' have degree more than A’dn. Thus Lemma 3.6 implies
that with probability at least 1 — e~2°" we have

|M N E(F)| <9an < nvn/2.

But F' and the sets E(H;;) with ¢, > 1 form a partition of E(H), and so with
probability at least 1 —e=2e" — Zle q(i)e=fBHi > 1 — =" we have

£ 4
IMAOEH)| <nun/2+ 8 qi)m < nqvn/2+ 8 |Ailo.

=1 i=1

Now use the fact that Zle |A;|aidn < e(H) < (1+¢)vdn? to see that [MNE(H)| <
nn/2+ B(1 4+ e)vn < (1 + n)vn, as required.

The proof of the lower bound is almost exactly the same: in this case, we let
8 =1—n/4. The graphs H;; are defined as before. We now apply Lemma 3.8(i) to
H;; to see that with probability at least 1 — Y2¢_, q(i)e /1 > 1 — ¢=" we have
Xij > Bp; for all ¢, j with ¢ > 1. Thus with probability at least 1 — e™°", we have

‘ ¢ an A
|[MNE(H)| > ﬁZq(i)ui > BZ(\AJ —cn)a; > BZ |Aila; — 28Len
i=1 i=1 i=1

) 4 14
(15) > BZ|Ai|04i —4\/en > ﬂZ\Aﬂai — nudn/2.
i=1 i=1
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But

l ( ) Y/
S [ Adasdn > (1-26) S [Addnagis > (1 26)(e(H) — e(F))
=1 =1

(124) (1 —26)(1 —n/4)e(H) > (1 —n/2)vdn?,

which implies the result together with (15). 0

We can now easily deduce Theorem 1.2 from Theorem 1.1 and Lemma 3.7.

Proof of Theorem 1.2. Put ¢ := min{1/64,d/5,2(d,v,n/2)/2}, where £(d,v,n/2)
is as defined in Theorem 1.1. Let Ny be sufficiently large compared to 1/n, 1/v,
and k as well as larger than ng(e,d) and No(d,v,n/2) defined in Lemma 3.7 and
Theorem 1.1, respectively.

Choose a perfect matching M; uniformly at random in G and then choose a
perfect matching My uniformly at random in G — M;. Lemma 3.7 implies that with
probability at least 1 — e™™ the resulting 2-factor R = M; U M, contains at most
n/(logn)'/® cycles. Moreover, Theorem 1.1 implies that we may assume that

(16) (1= n/2)2vn < |[ROVE(H)| < (1+71/2)2vn

for all ¢ < k. Thus it suffices to prove that there is a Hamilton cycle C' in G which
has sufficiently many edges in common with R. This is achieved using a standard
argument based on expansion properties of G.

Let C’ be any cycle in R with the property that there are adjacent vertices
xz and y on C’ such that x has a neighbor z outside C’. (Using that G is (d,¢)-
superregular, it is easy to see that such a cycle always exists unless R is already a
Hamilton cycle. Indeed, since 6§(G) > (1 — €)dn, each cycle in R of length at most
(1 — €)dn will have a neighbor outside and thus can be taken to be C’. On the other
hand, |[Ng(X)| > (1 — e)n for any set X of size at least (1 — e)dn/2 > en which lies
in one of the vertex classes of G. This implies that if all the cycles in R have length
at least (1 — €)dn and R is not a Hamilton cycle, then we can take for C’ any cycle
of R.)

Let C” denote the cycle in R which contains z. Let P denote the path obtained
from C' U C"” by adding the edge xz and deleting xy as well as one of the edges on
C" adjacent to z. Note that the length of P is odd. If one of the endpoints of P has
a neighbor outside P, we can further enlarge P in a similar way. So suppose we can
no longer enlarge P in this way and view P as a directed path whose first vertex is
denoted by x and whose final vertex is denoted by y. Thus all the neighbors of x and
y lie on P. Moreover, since P is odd, x and y lie in different vertex classes of G.

We claim that there is a cycle C* which has the same vertex set as P. Let X3
be the set consisting of the first |dg(x)/2] neighbors of z on P and let X5 consist
of all other neighbors. Define Y7 and Y3 similarly. It is easily seen that either (i) all
vertices in Y7 come before all those in Xy or (ii) all vertices in X; come before those
in Y. Suppose first that (i) holds. Note that |X;|, |Y;| > 6(G)/4 > (1 —¢e)dn/4 > en
and so the (d, )-superregularity of G implies that there is an edge e € E(G) between
a predecessor p of some vertex y; € Y7 and a successor s of some vertex xo € Xo. We
thus obtain a cycle C* whose vertex set is V(P) by removing the edges py; and zas
from P and adding the three edges e, xx5, and yy;. The case (ii) is identical except
that we now consider the predecessors of the vertices in X; and the successors of the
vertices in Ys.
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Altogether, we have now constructed a 2-factor where the number of cycles has
decreased. Continuing in this way, we eventually arrive at a Hamilton cycle C. It
is easy to check that the symmetric difference of C' and R contains only at most
5n/(logn)/® < nun/2 edges. Together with (16) this shows that C' is as required in
the theorem. 0

It remains to deduce Theorem 1.3 from Theorems 1.1 and 1.2.

Proof of Theorem 1.3. First suppose that n is even. Set n’ := n/2. Consider
a random partition of the vertex set of G into two sets A and B of equal size. Let
G’ be the bipartite subgraph of G between A and B. Lemma 2.1 implies that we
may assume that the graph G’ is (d, 2¢)-superregular (in the bipartite sense) if n is
sufficiently large compared to €. Also, Lemma 2.1 implies that we may assume that
the density of the bipartite subgraph of H; between A and B is still close to v;d for
all ¢ < k. Thus we can apply Theorems 1.1 and 1.2 in this case.

Now suppose that n is odd and set n’ := |n/2]|. Delete any vertex z from the
vertex set of G. Again, Lemma 2.1 implies that we may assume that the bipartite
graph G’ = (A, B) constructed as above on the remaining 2n’ vertices is (d, 3¢)-
superregular if n is sufficiently large compared to €. Moreover, we may assume that
for all i < k the density of the bipartite subgraph of H; between A and B is still very
close to that of H;, i.e., close to v;d. Thus we may apply Theorem 1.2 to obtain a
Hamilton cycle C’ which satisfies

(1 —n/2)2v;n' <|C'NE(H; —z)| < (1+n/2)2v;n'.

Let P be a Hamilton path obtained from C’ by adding an edge between z and some
vertex y € C’ and deleting one of the two edges on C’ incident to y. As in the
proof of Theorem 1.2, one can easily show that one can transform P into a Hamilton
cycle C' by deleting two and adding three edges. Then C is as required in Theorem
1.3(i). d
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WITHOUT FIRST-STAGE FAN-OUT*
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Abstract. For the multicast rearrangeable 3-stage Clos networks where input crossbars do not
have fan-out capability, Kirkpatrick, Klawe, and Pippenger gave a sufficient condition and also a
necessary condition which differs from the sufficient condition by a factor of 2. In this paper, we
first tighten their conditions. Then we propose a new necessary condition based on the affine plane
such that the necessary condition matches the sufficient condition for an infinite class of 3-stage Clos
networks.
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1. Introduction. Consider a 3-stage Clos network C(ni,7r1,m,n2,72), where
the input stage consists of 1 n; X m crossbars, the middle stage m r; X ro crossbars,
the output stage ro m X ny crossbars, and where there exists one link between every
pair of crossbars between two adjacent stages (see Figure 1).

The inlets of the input crossbars are the inputs of the network, and the outlets of
the output crossbars are the outputs of the network. In the multicast traffic network,
an input can appear in a request more than once. If the appearance is restricted to at
most f times, the traffic is called an f-cast traffic. If there is no restriction, then it is
called the broadcast traffic. A network is rearrangeable if any set of disjoint pairs of
inputs and outputs can be simultaneously connected. If the calls come sequentially,
rearrangeability means we can disconnect all existing connections and reroute them
together with the new call simultaneously.

A crossbar is said to have the fan-out capability if the crossbar itself can route
multicast traffic without blocking, i.e., any inlet can be connected to any number of
idle outlets regardless of other connections. If the crossbars in a given stage perform
only point-to-point connections, then we say the stage has no fan-out capability. Four
models have been studied [3] on 3-stage Clos networks:

Model 0. no restriction on fan-out capability,
Model 1. input stage has no fan-out capability,
Model 2. middle stage has no fan-out capability,
Model 3. output stage has no fan-out capability.

Masson and Jordan [7] proved that C'(ny,r1,m, ng,r2) under model 2 is multicast re-
arrangeable if and only if m > max{min{n; f, No}, min{ns, N1}}. However, necessary
and sufficient conditions are not known under the other models. Under model 1, Kirk-
patrick, Klawe, and Pippenger [6] gave a sufficient condition for C(ny,r;,m,ng,rs)
to be multicast rearrangeable, and also a necessary condition which differs from the
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Fia. 1. C(3,4,5,3,4).

sufficient condition by a factor of 2. In this paper, we tighten their conditions, then
propose a new necessary condition which matches the sufficient condition for an infi-
nite class of networks.

2. Main results. Kirkpatrick, Klawe, and Pippenger proved the following the-
orem.

THEOREM 2.1. (i) C(ny,r1,m,n2,72) is broadcast rearrangeable under model 1 if
m > ny + (na(ng — 1)ro) /2, (ii) C(ny,r1, m,ng,r2) is broadcast rearrangeable under
n1+(n2(n271)7‘2)1/2

model 1 only if m > 3 .

In the following theorem we modify Theorem 2.1(i) by considering integrality of
the number of crossbars. We also improve Theorem 2.1(ii).

THEOREM 2.2. (i) C(ny,r1,m,n2,72) is broadcast rearrangeable under model 1 if
m > [(2222)1/2] (ng—1)+(n1—no+1)T, where 2+ = max{x, 0}, (ii) C(n1,r1,m, na, 2)

ng—l

is broadcast rearrangeable under model 1 only if m > max{ni, |ns/2]|(2r2)*/?|}.
Proof. (i) The set L of requests each asking to connect to at least [(2272)!/2]
no
outputs has size of at most

1/2
NaTa nare 1y1/2 nar2 _
i < (a7 = ara(ns ) 4(@_1) Mg .

Route each of these requests through a distinct middle crossbar. A request g other

than these can ask for connections to a set O, of at most ((%)1/21 — 1 output

crossbars. Such a request has to be routed through a middle crossbar not taken by
n272

any of the at most ([(2272)/2] — 1)(ny — 1) outputs on crossbars in O, nor by the

’n,2—1
n1 — 1 inputs on the same input crossbar as g. Therefore

(RTZQ?JUT - 1) (ne—1)+(n —1)+1 = R?;‘?fl)l/j (ng—1)+ny—ng+1

middle crossbars are sufficient to route g. However, if ny —ns + 1 < 0, the number of
middle crossbars still cannot be less than the number required to route L.

(i) Construct a complete graph K, with v = [(2r2)'/2] vertices and e = (3) < ry
edges. Label each edge by a distinct output crossbar. Take ¢ = |[ng/2| copies of
K, keeping the edge-labels intact, and label the ve vertices by the set {1,2, ..., vc}.
Identify each vertex u as a request (Ou1, - .., Oy(u—1)), Where Oy, ..., Oy(,—1) are the
labels of the v — 1 edges incident to u. Note that each output crossbar appears in
2¢ < ng requests.
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Since every pair of requests intersect in at least one output crossbar, each of the
ve requests must be routed through a distinct middle crossbar. 0
Our construction in (ii) improves over that of [6] by increasing the number of edges

/2 vertices, hence roughly 74 /2

in K,. The corresponding graph in [6] contains only 74
edges.

COROLLARY 2.3. Part (ii) is valid for f-cast traffic with f > |(2rs)"/?| — 1.

Next we give a stronger necessary condition which is based on the observation
that requests from the same input crossbar cannot use the same middle crossbar,
even if the requests do not intersect (in output crossbars). Then the request graph
we need to construct is no longer a complete graph, but a graph whose vertices can
be partitioned into r; subsets such that an edge exists between every pair of vertices
from different subsets. Such a graph corresponds to a resolvable block design.

A block design B(v,b,r, k,1) is a collection of b k-subsets (called blocks) of a v-set
S, k < v, such that each pair of elements of S appears together in exactly one block
and each element of S appears in exactly r blocks. B(v,b,r,k, 1) is resolvable if the
blocks can be partitioned into r orbits such that each element appears once in each
orbit. For example, the following 12 blocks form a resolvable B(9,12,4,3,1) which
can be grouped into 4 orbits, each of 3 blocks, so that the blocks in each orbit together
contain each element exactly once:

({1,2,3},{4,8,9},{5,6,7}),
({1,5,8},{3,4,6},{2,7,9}),
({1,4,7},{2,6,8},{3,5,9}),
({1,6,9},{2,4,5},{3,7,8}).

A block design B(n?,n? + n,n + 1,n,1) is called an affine plane of order n. It
is well known that every affine plane is resolvable and that an affine plane of order ¢
exists whenever ¢ is a prime power; see [1].

THEOREM 2.4. For every prime power q, and every M in the range 1 < M < r,
there ewist ny > q,m1 > M,ny > M, and o > q° such that C(ny,ry,m,ng,re) is
broadcast rearrangeable only if m > q(q+ 1).

Proof. For a prime power ¢ we know that there exists an affine plane of order ¢,
i.e., a resolvable block design B(q?,¢*> + ¢,q + 1,¢,1). Identify the elements as the
output crossbars, the orbits as the input crossbars, and the blocks as inputs, while
the elements in a block 7 represent the output crossbars input ¢ requests to connect.
Note that each output crossbar appears in M < ny requests. Hence the given set of
requests are legitimate.

By our construction, two requests from different input crossbars (orbits) intersect
in one output crossbar and hence must be routed through different middle crossbars.
Requests from the same input crossbar do not intersect in any output crossbar, but
still have to be routed through different middle crossbars since they share the input
crossbar. Therefore the total number of middle crossbars required is at least the
number of requests constructed above, which is g(q + 1). |

Introduction of the parameter M is just to broaden the applicability of Theorem
2.4, i.e., no does not have to be equal r, but can be less.

Now we show that the necessary condition of Theorem 2.4 matches the sufficient
condition in Theorem 2.2(i). Theorem 2.4 shows the necessary condition is m >

v

q(q+1). From Theorem 2.2(i), setting ny = £ = ¢,no =M =q+1,and rp = v = 7,
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the sufficient condition is

o\ 1/2
m> ( qq> ¢+ (g—(a+1)+ 1" =[((g+1a)"*lg=qlg +1),

same as the necessary condition.
COROLLARY 2.5. Theorem 2.4 holds for f-cast traffic with f > q.

3. Conclusions. The current necessary condition for broadcast rearrangeable 3-
stage Clos networks differs from the sufficient condition by a factor of 2. We tightened
these conditions such that they match for an infinite class of 3-stage Clos networks.
This shows that our tightened conditions cannot be further improved for general
parameters.

While the main results obtained for multicast rearrangeable 3-stage Clos networks
are for broadcast networks so far, our arguments for necessary conditions are valid
also for f-cast networks for some specific f as shown in the corollaries, thus starting
the study of f-cast rearrangeable 3-stage Clos networks, which has been a vacuum so
far.

The model-1 model can be interpreted in two ways. One is that the input crossbars
do not have the fan-out capability, and thus perhaps can be obtained with a cheaper
cost. The other is that they do have the fan-out capability, but our routing algorithm
chooses not to use it. This type of routing algorithm has been used in the mixed-
requirement model where all point-to-point requests meet the strictly nonblocking
requirement and all f-cast requests for f > 2 meet the rearrangeable requirement
[2, 4, 5].
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A DICHOTOMY THEOREM ON FIXED POINTS OF SEVERAL
NONEXPANSIVE MAPPINGS*

TOMAS FEDER/'

Abstract. The problem of finding a fixed point of a nonexpansive mapping on a hypercube
is that it has a polynomial time algorithm. In fact, it is known that one can find a 2-satisfiability
characterization of the set of all fixed points in polynomial time. This implies that the problem of
finding a vertex that is a common fixed point of several given nonexpansive mappings on a hypercube
is that it has a polynomial time algorithm.

We consider the problem of finding a vertex that is a common fixed point of several given non-
expansive mappings on a more general Cartesian product of graphs. For a single nonexpansive
mapping, a known polynomial time algorithm finds a fixed point and a 2-satisfiability-like character-
ization of all fixed points. We introduce graphs with a farthest point property (also called apiculate
graphs in [H. J. Bandelt and V. Chepoi, The Algebra of Metric Betweenness: Subdirect Represen-
tations, Retracts, and Aziomatics, manuscript]), and show that finding a common fixed point of
several nonexpansive mappings on Cartesian products of such graphs involves using a polynomial
time algorithm. We generalize this result to any family of graphs having a majority function.

By contrast, the smallest graph (in the sense of having the fewest vertices, and the fewest edges of
those having the fewest vertices) without the farthest point property is K2 3, and finding a vertex that
is a fixed point of two given nonexpansive mappings (retractions) on a Cartesian product of graphs
isomorphic to K2 3 is NP-complete. More generally, we exhibit an infinite family of graphs without
the farthest point property giving NP-completeness. We show that for any family of graphs not
having a majority function, the existence of a common fixed point of two nonexpansive mappings
on Cartesian products of such graphs is NP-complete. This proves a dichotomy for the problem
based on the existence of a majority function; a similar dichotomy is obtained for the special case of
nonexpansive mappings that are retractions. Finally we characterize the families of chordal graphs
corresponding to both dichotomies.

Key words. fixed points, nonexpansive mappings, product graphs, apiculate graphs, retractions
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1. Introduction. Many results in computational complexity take the form of
a dichotomy theorem, where every problem in a given class is shown to be either
polynomial time solvable or NP-complete. An early result is Schaefer’s dichotomy
of Boolean constraint satisfaction problems [7]. Beyond the Boolean domain, an
approach to general constraint satisfaction was proposed by Feder and Vardi [5].
Recently, Bulatov has classified 3-element and conservative constraint satisfaction
problems, with two dichotomy theorems [2, 3].

A similar dichotomy and classification project, for network stability problems,
was initiated by Mayr and Subramanian [6] and Subramanian [8, 9]. They showed
that every Boolean network stability problem is either monotone, linear, adjacency-
preserving, or NP-complete. They also showed that the monotone and linear cases
are polynomial, and that a family of adjacency-preserving problems, the scatter-free
case (containing stable matching as a special case), is polynomial as well. The general
adjacency-preserving case was studied as the problem of finding a fixed point of a
nonexpansive mapping on a hypercube, and was shown polynomial by Feder [4], also
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generalizing the nonexpansive case to other Cartesian products of graphs, and thus
extending the results beyond the Boolean domain.

The n-dimensional hypercube (or n-cube) is the graph G = (V, E), where V
consists of all n-bit vectors © = x1x9 - 2y, x; € {0,1}, and two vertices z,y in V
are joined by an edge in F if there exists a 1 <7 < n such that x; # y;, and z; = y;
for all j # i. The distance d(z,y) between two vertices x,y in the n-cube equals the
number of positions 1 < ¢ < n such that z; # y;.

A mapping f: V(G) — V(G) on the n-cube G is nonexpansive if d(f(x), f(y)) <
d(x,y) for all vertices z,y in G. A fixed point of a nonexpansive mapping f is a vertex
2 such that f(z) = x. Assuming that a nonexpansive f on the n-cube is given by
a black box that can be queried in polynomial time, we specify an input x to f and
the black box gives the image f(x). Feder [4] gave a polynomial time algorithm for
finding a fixed point x of a nonexpansive f on the n-cube, if one exists, and a second
polynomial time algorithm that finds a 2-satisfiability instance on the variables x;
whose set of solutions characterizes the set of fixed points x = xixzs---x, of the
nonexpansive mapping f.

Suppose we are given a collection of nonexpansive mappings f; : V(G) — V(G)
on the n-cube G, 1 <4 < m, and that we wish to find a common fixed point = with
fi(z) = z for all .. We may then combine the m corresponding 2-satisfiability instances
to obtain a single 2-satisfiability instance characterizing the set of all common fixed
points, which can be solved in polynomial time to find a common fixed point, if one
exists.

We study a generalization of the problem of finding common fixed points of a
collection of nonexpansive mappings to Cartesian products of graphs, which include
the hypercube as the simplest special case. Given n graphs Gi1,Ga,..., Gy, their
Cartesian product G = G10G.0---0G,, has vertices V(G) given by x = 129+,
with z; € V(G;), and two vertices z,y in V(G) are joined by an edge in E(G) if there
exists an 1 <14 < n such that (x;,y;) is an edge in E(G;), and z; = y; for all j # 1.
The distance function d on G satisfies d(x,y) = >, ,<, di(zi,y;), where d; is the
distance function on G;.

A mapping f : V(G) — V(G) on a Cartesian product G = G10G.0---0G,, is
nonezpansive if d(f(z), f(y)) < d(z,y) for all vertices z,y in V(G). A fized point of a
nonexpansive mapping f on G is a vertex x such that f(z) = x. Assuming again that
f is given by a black box that can be queried in polynomial time, Feder [4] showed
the following theorem.

THEOREM 1.1. There is a polynomial time algorithm (polynomial in the sum of
the sizes of the G;) that finds sets S;; C V(G;0G;) for all 1 < i < j < n such that,
given a partial assignment of values a; € V(G;) forie S C{1,2,...,n} with |S| > 2,
there exists a fixed point x of the nonexpansive mapping f such that x; = a; for all
i € S if and only if asa; € Sij for all 1 < i < j < n withi,j € S. The partial
assignment of values a; can thus be extended to a fixed point x in polynomial time by
considering the sets S;;.

Suppose now we are given a collection of nonexpansive mappings f; : V(G) —
V(G) on a Cartesian product G = G10G-0---0G,,, with 1 < i < m. We wish to
determine whether the question of the existence of a common fixed point x with
fi(x) =z for all 1 < i < m can be solved in polynomial time; we obtain both positive
and negative answers to this question.

Given vertices z;,y; in V(G;), the interval I(x;,y;) is the set of vertices ¢; in G;
such that d(z;,y;) = d(x;,t;) + d(t;,y;). We say that G; satisfies the farthest point



FIXED POINTS OF SEVERAL NONEXPANSIVE MAPPINGS 293

property if for all vertices x;, y;, z; there is a unique vertex ¢; in I(x;,y;)NI(x;, z;) that
maximizes d(x;,t;) over all ¢; in I(x;,y;) N I(x;, 2;). Note that, in particular, cliques
and cycles satisfy the farthest point property, and that the Cartesian products and
the retracts of graphs satisfying the farthest point property also satisfy the farthest
point property.

We give a polynomial time algorithm for finding a common fixed point x with
fi(z) = x for all 1 < ¢ < m in the Cartesian product G = G10G-0- - -0G,,, when all
G; satisfy the farthest point property. We generalize this result to any family G of
graphs G; having a majority function. The results are shown in a more general form
analogous to Theorem 1.1 involving a structural property that we show holds only for
families G of graphs G; having a majority function.

The smallest graph not satisfying the farthest point property is the complete
bipartite graph K3 3. We define a family of graphs H, ;. for integers a,b,c > 1
that do not satisfy the farthest point property; in particular a = b = ¢ = 1 gives
Hi 11 = Ka 3. We consider the Cartesian product G = G10G,0---0G,,, in the case
where all G; are isomorphic to a given Hgp .. We then define pairs of nonexpansive
mappings f1, fo : V(G) — V(G) that are retractions, i.e., these mappings satisfy
fi(fi(x)) = fi(x) for all vertices z in G. We show that for all choices of Hy,p . with
a,b,c > 1, the question of whether two such mappings have a common fixed point
fi(x) = fa(x) = x is NP-complete.

We show that if a family G of graphs G; does not have a majority function, then
the existence of a common fixed point of two nonexpansive mappings f; on Cartesian
products of graphs in G is NP-complete. This proves the dichotomy and classification
of the problem of finding common fixed points of several nonexpansive mappings
on Cartesian products of graphs in G as polynomial or NP-complete depending on
whether G has a majority function or not. A similar dichotomy holds for the special
case of retraction mappings.

Finally we characterize the families of chordal graphs that are polynomial or NP-
complete for the problems of fixed points of multiple nonexpansive mappings and of
fixed points of multiple retraction mappings.

2. Common fixed points with farthest point property and wi