
SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 1–10

GIRTH, PEBBLING, AND GRID THRESHOLDS∗

ANDRZEJ CZYGRINOW† AND GLENN HURLBERT†

Abstract. The pebbling number of a graph is the smallest number t such that from any
initial configuration of t pebbles one can move a pebble to any prescribed vertex by a sequence of
pebbling steps. It is known that graphs whose connectivity is high compared to their diameter have
a pebbling number as small as possible. We will use the above result to prove two related theorems.
First, answering a question of the second author, we show that there exist graphs of arbitrarily
high constant girth and least possible pebbling number. In the second application, we prove that
the product of two graphs of high minimum degree has a pebbling number equal to the number of
vertices of the product. This shows that Graham’s product conjecture is true in the case of high
minimum degree graphs. In addition, we consider a probabilistic variant of the pebbling problem and
establish a pebbling threshold result for products of paths. The last result shows that the sequence
of paths satisfies the probabilistic analogue of Graham’s product conjecture.

Key words. girth, pebbling, grids, threshold, connectivity

AMS subject classifications. 05D05, 05C35, 05A20

DOI. 10.1137/S0895480102416374

1. Introduction.

1.1. Pebbling. A pebbling configuration C on a graph G is a distribution of
pebbles on the vertices of G. Given a particular configuration, one is allowed to move
the pebbles about the graph according to this simple rule: if two or more vertices
sit at vertex v, then one of them can be moved to a neighbor provided another is
removed from v. Given a specific root vertex r, we say that C is r-solvable if one can
move a pebble to r after a finite number of pebbling steps, and that C is solvable if
it is r-solvable for every r. The pebbling number is the least number π = π(G) such
that every configuration of π pebbles on G is solvable.

The two most obvious pebbling facts are for complete graphs and paths. The
pigeonhole principle implies that π(Kn) = n, and π(Pn) = 2n−1 follows by induction
or a simple weight function method. In fact, π(G) ≥ min{n(G), 2diam(G)} for every
G. Results for trees (a formula based on the maximum path partition of a tree in [13];
see also [3]), d-dimensional cubes Qd (see [3]), and many other graphs with interesting
properties are known (see surveys [11, 12]).

A probabilistic version of pebbling was introduced in [6]. Let G = (Gi)
∞
i=1 be a

sequence of graphs with strictly increasing numbers of vertices N = n(Gi). For a func-
tion t = t(N) let Ct denote a configuration on Gi that is chosen uniformly at random
from all configurations of t pebbles. The sequence G has a pebbling threshold τ = τ(G)
if, for every ω � 1, (1) Pr[Ct is solvable]→0 for t = τ/ω and (2) Pr[Ct is solvable]→1
for t = ωτ .

It was proved in [4] that the sequence of cliques has threshold τ(K) = Θ(N1/2).
Bekmetjev et al. [1] showed recently that every graph sequence has a pebbling thresh-

∗Received by the editors October 22, 2002; accepted for publication (in revised form) June 3,
2005; published electronically February 15, 2006.

http://www.siam.org/journals/sidma/20-1/41637.html
†Department of Mathematics and Statistics, Arizona State University, Tempe, AZ 85287-1804

(andrzej@math.la.asu.edu, hurlbert@asu.edu). The work of the second author was partially sup-
ported by National Security Agency grant MDA9040210095.

1

2 ANDRZEJ CZYGRINOW AND GLENN HURLBERT

old. Bounds on the sequence of paths have undergone several improvements, the
results of which are summarized as follows.

Result 1. The pebbling threshold for the sequence of paths P = (Pn)∞n=1 satisfies

τ(P) ∈ Ω

(
N2c

√
lgN

)
∩O

(
N2c

′
√

lgN

)

for every c < 1/
√

2 and c′ > 1.

The lower bound is found in [1] and the upper bound is found in [9].

It is important to draw a distinction between this random pebbling model and the
one in which each of t pebbles independently chooses uniformly at random a vertex
on which to be placed. In the world of random graphs, the analogues of these two
models are asymptotically equivalent. However, in the pebbling world they are vastly
different. For example, in the independent model the pebbling threshold for paths is
at most N lgN since, with more than that many pebbles, almost always every vertex
already has a pebble on it.

1.2. Results. Pachter, Snevily, and Voxman [14] proved that every graph of
diameter two on N vertices has a pebbling number either N or N +1. Graphs G with
π(G) = n(G) are called Class 0, and in [5] a characterization of diameter two Class
0 graphs was found and used to prove that diameter two graphs with connectivity at
least 3 are Class 0. The authors also conjectured that every graph of fixed diameter
and high enough connectivity was Class 0. This conjecture was proved by Czygrinow
et al. [7] in the following result.

Result 2. Let d be a positive integer and set k = 22d+3. If G is a graph of
diameter at most d and connectivity at least k, then G is of Class 0.

In this note, we present two applications of this result. Our first application
concerns the following girth problem posed in [11].

Question 3. Does there exist a constant C such that if G is a connected graph
on n vertices with girth(G) > C, then π(G) > n?

We answer the above question in the negative. Let g0(n) denote the maximum
number g such that there exists a graph G on at most n vertices with finite girth(G) ≥
g and π(G) = n(G). That is, g0(n) is the highest girth, as a function of n, among all
Class 0 graphs. It is easy to see that

g0(n) ≤ 1 + 2 lg n

(because the cycle on k vertices has a pebbling number at least 2�k/2�—see [14]) and
we prove the following lower bound.

Theorem 4. For all n ≥ 3 we have

g0(n) ≥ 	
√

(lg n)/2 + 1/4 − 1/2
 .

We prove this theorem in section 2.1 using Result 2.

Our second application concerns the following conjecture of Graham (see [3]).

Conjecture 5. Every pair of graphs G and H satisfy π(G�H) ≤ π(G)π(H).

Here, the Cartesian product has vertices V (G�H) = V (G) × V (H) and edges
E(G�H) = {u×E(H)}u∈V (G)∪{E(G)×v}v∈V (H). A number of theorems have been
published in support of this conjecture, including the recent work of Herscovici [10]
which verifies the case for all pairs of cycles. We show the following.

GIRTH, PEBBLING, AND GRID THRESHOLDS 3

Theorem 6. Let G and H be connected graphs on n vertices with minimum
degrees δ(G), δ(H) and let δ = min{δ(G), δ(H)}. If δ ≥ 212n/δ+15, then G�H is of
Class 0.

In particular, there is a constant c such that if δ > c n
lgn , then G�H is of Class

0. We prove this in section 2.2, again using Result 2. As a corollary we obtain that
Graham’s conjecture is satisfied for graphs with minimum degree δ > c n

lgn .

Corollary 7. Let G and H be as in Theorem 6, with δ ≥ 212n/δ+15. Then
π(G�H) ≤ π(G)π(H).

Proof. We have π(G�H) = n(G�H) = n(G)n(H) ≤ π(G)π(H).
Finally, in this paper we also consider the following probabilistic analogue of

Graham’s Conjecture 5, which we consider a correction of one from [11].
Problem 8. Let G = (Gn)∞n=1 and H = (Hn)∞n=1 be two graph sequences. Define

the product sequence G�H = (Gn�Hn)∞n=1. Find τ(G�H).
Let N1 = N(Gn), N2 = N(Hn) denote the number of vertices of graphs Gn

and Hn from Problem 8. It would be interesting to determine for which sequences
G = (Gn)∞n=1 and H = (Hn)∞n=1 we have

f(N1N2) ∈ O

(
g(N1)h(N2)

)
,(1.1)

where f ∈ τ(G�H), g ∈ τ(G), and h ∈ τ(H). We call pairs of sequences which satisfy
(1.1) well behaved. One might conjecture that all pairs of sequences are well behaved,
but we believe counterexamples might exist.

We define the two-dimensional grid P 2
n = Pn�Pn, and in general the d-dimensional

grid P d
n = Pn�P d−1

n . It is easy to show that P d
n = Pα

n �P β
n for all α and β for which

α + β = d. If we denote Pd = (P d
n)∞n=1, then we have Pd = Pα�Pβ . Thus, for

example, in light of Result 1, the truth of (1.1) would imply that

τ(P2) ∈ O

((√
N2c

′
√

lg
√
N

)2
)

= O

(
N2c

′
√

2 lgN

)
.

Here we prove the following stronger theorem.
Theorem 9. Let Pd = (P d

n)∞n=1 be the sequence of d-dimensional grids, where
P d
n = (Pn)d is the Cartesian product of d paths on n vertices each, and let N = nd be

the number of vertices of Pd
n. Then

τ(Pd) ⊆ Ω

(
N2cd(lgN)1/(d+1)

)
∩O

(
N2c

′
d(lgN)1/(d+1)

)

for all cd < 2−d/(d+1) and c′d > d + 1.
This verifies (1.1) in the case of grids.
Corollary 10. Let α, β be any pair of positive integers; then for G = Pα and

H = Pβ, (1.1) holds.
Proof. Indeed, if g ∈ τ(G) and h ∈ τ(H), then Theorem 9 says that

g(Nα)h(Nβ) ∈ Ω

(
Nα2cα(lgNα)1/(α+1)

Nβ2cβ(lgNβ)1/(β+1)

)

⊆ Ω

(
N2c(lgN)1/(γ+1)

)

⊆ Ω

(
N2c(lgN)1/(d/2+1)

)
,

4 ANDRZEJ CZYGRINOW AND GLENN HURLBERT

for some c, where γ = min{α, β}, d = α + β, α = α/d, and β = β/d. On the other
hand, Theorem 9 also says that

τ(Pα+β) = τ(Pd) ∈ O

(
N2c

′
d(lgN)1/(d+1)

)
,

which is asymptotically smaller.
We prove Theorem 9 in section 2.3.

2. Proofs.

2.1. Proof of Theorem 4. We will make use of Mader’s theorem (see [8]) below.
Result 11. Every graph having average degree at least d̄ has a subgraph of

connectivity at least 	d̄/4
.
We will also make use of the following result from [2, Chapter III, Theorem 1.1].
Result 12. For any g ≥ 3 and δ ≥ 3 there exists some graph H with girth at

least g, minimal degree at least δ, and no more than (2δ)g vertices.
Proof of Theorem 4. Set δ = 22g+1 and n = 22g(g+1); then g = 	

√
(lg n)/2 + 1/4

−1/2
. Let H be a graph guaranteed to exist by Result 12. By Result 11, H has
some subgraph, F say, which is 22g−1-connected; clearly, F also has girth at least
g. Now let F̂ be an edge-maximal graph on the same vertices as F such that F is a
subgraph of F̂ and F̂ has girth at least g. F̂ can have diameter no more than g − 2,
for if there existed vertices x and y in F̂ such that the shortest path between x and
y had length g− 1 or more, adding the edge xy to F̂ would give a graph of girth g or
more, contradicting maximality. Therefore F̂ has diameter at most g−2 and is 22g−1-
connected, so by Result 2 it is of Class 0, and it has no more than (2δ)g = 22g(g+1)

vertices.

2.2. Proof of Theorem 6. Theorem 6 follows from the following two lemmas
and Result 2.

Lemma 13. Let G be a connected graph on n vertices with minimum degree δ.
Then the diameter of G is at most 3n

δ + 3.
Proof. Fix two vertices x, y in G and consider the shortest path x = x1, . . . , xk = y

between x and y. Let i = 	k−1
3
. Then x1, x4, x7, . . . , x3i+1 must have disjoint

neighborhoods, and thus i(δ+ 1) ≤ n, which yields k−3
3 ≤ 	k−1

3
 = i ≤ n
δ+1 such that

k < 3n
δ+1 + 3 ≤ 3n

δ + 3.
The next lemma was proved by Czygrinow and Kierstead. We reproduce the

proof here.
Lemma 14. For connected graphs G and H, the product G�H has connectivity

κ(G�H) ≥ min{δ(G), δ(H)}.
Proof. Set δ = min{δ(G), δ(H)}. Let v1 = (g, h1), v2 = (g, h2), . . . , vδ = (g, hδ),

w1 = (g1, h), w2 = (g2, h), . . . , wδ = (gδ, h) be distinct vertices (other than perhaps
v1 = w1) in G�H that satisfy

distG(gi, g) ≤ distG(gi+1, g)(2.1)

and

distH(hi, h) ≤ distH(hi+1, h)(2.2)

for i = 1, . . . , δ − 1. We shall construct vertex-disjoint paths P1, . . . , Pδ such that
Pi connects vi with wi. Construct P1 as follows: let g1ḡ(1) . . . ḡ(k)g be any shortest

GIRTH, PEBBLING, AND GRID THRESHOLDS 5

path in G connecting g1 with g and let hh̄(1) . . . h̄(l)h1 be any shortest path in H
connecting h with h1. Then P1 is the following path:

w1 = (g1, h)(g1, h̄(1)) . . . (g1, h1)(ḡ(1), h1) . . . (g, h1) = v1.

Delete v1 and w1 and construct P2, . . . , Pδ inductively. We claim that P2, . . . , Pδ are
vertex-disjoint with P1. Indeed, suppose that V (Pj)∩V (P1)
= ∅ for some j = 2, . . . , δ.
There are two similar cases to consider. First, suppose that (gj , f) ∈ V (Pj) ∩ V (P1).
Since gj
= g1, f = h1 and gj = ḡ(i) for some i = 1, . . . , k. Then, however,

distG(gj , g) < distG(g1, g),

contradicting (2.1). Similarly, if (f, hj) ∈ V (Pj) ∩ V (P1), then f = g1 and hj = h̄(i)
for some i = 1, . . . , l, which implies that

distH(hj , h) < distH(h1, h),

contradicting (2.2).
By induction, paths P1, . . . , Pδ are vertex-disjoint. Now, for any two distinct ver-

tices v = (g, h̃), w = (g̃, h) ∈ V (G�H), let v1 = (g, h1), v2 = (g, h2), . . . , vδ = (g, hδ)
be neighbors of v in the H-dimension, and let w1 = (g1, h), w2 = (g2, h), . . . , wδ =
(gδ, h) be neighbors of w in the G-dimension ordered according to (2.1) and (2.2). By
the previous argument we can find vertex-disjoint paths P1, . . . , Pδ connecting the vis
with the wjs. These paths now can be used to connect v with w by δ internally vertex-
disjoint paths. Indeed, if any of the paths contains v or w, then it yields a shorter
path between v and w which is disjoint with other paths. Therefore the connectivity
of G�H is at least δ.

Proof of Theorem 6. By Lemma 13, the diameter d of G�H is at most 6n
δ + 6,

and by Lemma 14, the connectivity k of G�H is at least δ. Since δ ≥ 212n/δ+15 the
assumptions of Result 2 are satisfied and so G�H is of Class 0.

2.3. Proof of Theorem 9. Throughout, we let N = nd. Also, we define
〈
a
b

〉
=(

a+b−1
b

)
. Note that

〈
a
b

〉
is the number of ways to place b unlabeled balls into a labeled

urns. For our purposes, it equals the number of configurations of b pebbles on a graph
of a vertices. We will also use the fact that

〈
a
b

〉
counts the number of points in Z

a

whose coordinates are nonnegative and sum to b.
We begin by proving that a configuration with relatively few pebbles almost

always has no vertices having a huge number of pebbles. For natural numbers a and
b, define ab = a!/(a−b)!. For a configuration C of pebbles on a graph let C(v) denote
the number of pebbles on vertex v.

Lemma 15. Let s � 1 and t = sN . Let C be a random configuration of t pebbles
on the vertices of P d

n , and let p = (1 + ε)s lnN for some ε > 0. Then

Pr[C(v) < p for all v]→1 as n→∞ .

Proof. Let q be the probability that the vertex v satisfies C(v) ≥ p. Then q is at
most 〈

N
t−p

〉
〈
N
t

〉 =
tp

(N + t− 1)p

6 ANDRZEJ CZYGRINOW AND GLENN HURLBERT

<

(
t

N + t− 1

)p

=

(
1 − 1 − 1/N

s + 1 − 1/N

)p

≤ e−p(1−1/N)/(s+1−1/N) .

Hence, the probability that some vertex v satisfies C(v) ≥ p is at most

Ne−p(1−1/N)/(s+1−1/N) = elnN(1−εs+[(1+ε)s−1]/N)/(s+1−1/N) → 0

as n→∞. Therefore the probability that every vertex v satisfies C(v) < p tends to 1
as n→∞.

Next we show that a configuration with relatively few pebbles almost always has
some large hole with no pebbles in it. For any set S of vertices, denote by C(S) the
number of pebbles on its vertices.

Lemma 16. Let N = nd, 0 < c < 2−d/(d+1), u = c(lgN)1/(d+1), s = 2u, and
t = 	sN
. Write c = ((1−ε)/(2+δ)d)1/(d+1) for some ε, δ > 0, and set m = 	(2+δ)u
,
M = md, and k = 	n/m
d. Let B1, . . . , Bk be a collection of k pairwise disjoint blocks
of vertices of P d

n , each having every side of length m. Let C be a random configuration
of t pebbles on the vertices of P d

n . Then

Pr[C(Bh) = 0 for some h]→1 as n→∞ .

Proof. The second moment method applies. Let Xh be the indicator variable
for the event that the block Bh contains no pebbles, and let X =

∑k
h=1 Xh. Then

Chebyshev’s inequality yields

Pr[X = 0] ≤ var[X]

E[X]2
,

and

var[X] = E[X2] − E[X]2

=
∑
h,j

E[XhXj] −
∑
h,j

E[Xh]E[Xj]

≤
∑
h

E[X2
h] ,

since E[XhXj] ≤ E[Xh]E[Xj] for h
= j. Hence,

var[X] ≤
∑
h

E[X2
h] =

∑
h

E[Xh] = E[X] .

Moreover, we have

E[X] = k

〈
N −M

t

〉/〈
N

t

〉

GIRTH, PEBBLING, AND GRID THRESHOLDS 7

=

⌊
n

m

⌋d
(N − 1)M

(N + t− 1)M

≥
(

n

m
− 1

)d(
N −M

N + t−M

)M

�
(
N

M

)(
N −M

(s + 1)N −M

)M

>

(
N

M(s + 1)M

)(
1 − M

N

)M

∼ N

M(s + 1)M

∼ N

mdsmd(1+o(1))

=
N

md2ud+1(2+δ)d(1+o(1))

=
N

mdN (1−ε)(1+o(1))

→∞ .

Hence Pr[X = 0] ≤ var[X]/E[X]2 ≤ 1/E[X]→0 as n→∞.
The following lemma records the structure of the d-dimensional grid in order to

keep track of the results of pebbling steps.
Lemma 17. For any intervals I1, . . . , Id in Z such that each Ij contains r

integers, let B = I1 × · · · × Id ⊆ Z
d, and for i > 0, let Si be the set of points in Z

d

having distance i from B, where distance between a pair of points in Z
d is defined by

the sum of the absolute values of the differences of their coordinates. Then

Ri := |Si| ≤
∑

1≤j≤d

(
d

j

)
2jrd−j

(
i− 1

j − 1

)
.

Proof. We partition Z
d according to the number j of coordinates in which a given

point differs from its nearest neighbor in B. Given a fixed j, there are
(
d
j

)
ways to pick

which j coordinates to change, each of the changed coordinates can be to either side
of B, giving 2j possibilities, and there are r ways to pick each unchanged coordinate,
giving rd−j possibilities. Given this information, we can specify an element of Si by
specifying a j-tuple of positive integers with sum i, which can be done in

〈
j

i−j

〉
=

(
i−1
j−1

)
ways.

Finally, our proof of Theorem 9 in the case of the lower bound will use this
technical lemma to bound the number of pebbles that can reach the empty hole.

Lemma 18.

∑nd
i=1

(
i−1
j−1

)
2−i < 1 .

Proof. It is straightforward to use generating functions or induction to prove∑
i≥1

(
i−1
j−1

)
2−i = 1 .

Turning to the case of the upper bound, we show that almost every configuration
with relatively many pebbles fills every reasonably large block with plenty of pebbles.

8 ANDRZEJ CZYGRINOW AND GLENN HURLBERT

Lemma 19. Let N = nd, c′ = d + 1 + ε for some ε > 0, u′ = c′(lgN)1/(d+1),
s′ = 2u

′
, t′ = �s′N�, m′ = �(d+1

c′)1/d(lgN)1/(d+1)�, M ′ = (m′)d, and k′ = �n/m′�d.
Let B′

1, . . . , B
′
k′ be a collection of k′ blocks, each having every side of length m′, that

cover the vertices of P d
n . Let C be a random configuration of t′ pebbles on the vertices

of P d
n . Then

Pr[C(B′
f) ≥ M ′2dm

′
for all f] →1 as n→∞ .

Proof. Define Zf to be the event that block B′
f contains fewer than M∗ = M ′2dm

′

pebbles and approximate the probability Pr[∪k′

f=1Zf] by

Pr[∪k′

f=1Zf] ≤ k′
M∗−1∑
f=0

〈
M ′

f

〉〈
N −M ′

t′ − f

〉/〈
N

t′

〉
.

Now use the estimate

〈
N −M ′

t′ − f

〉
≤

(
N

N + t′

)M ′〈
N

t′

〉

to obtain

Pr[∪Zf] ≤ k′

(
N

N + t′

)M ′
M∗−1∑
f=0

〈
M ′

f

〉
.

Then use the upper bound

M∗−1∑
f=0

〈
M ′

f

〉
=

M∗−1∑
f=0

〈
f + 1

M ′ − 1

〉
=

M∗∑
j=1

〈
j

M ′ − 1

〉
=

〈
M∗

M ′

〉
≤ M∗M ′

to obtain

Pr[∪Zf] ≤ k′

(
N

N + t′

)M ′

M∗M ′

� N

M ′

(
M ′2dm

′

s′

)M ′

=
1

M ′ 2
lgN−M ′(u′−lgM ′−dm′)

=
1

M ′ 2
lgN−(1+d) lgN+o(lgN)+d(1+d

c′)
d+1
d lgN

=
1

M ′Nd−d(1+d

c′)
d+1
d −o(1)

→ 0 .

Thus, almost surely, every f satisfies C(B′
f) ≥ M ′2dm

′
.

GIRTH, PEBBLING, AND GRID THRESHOLDS 9

Proof of Theorem 9. We begin with the lower bound. Given N = nd and 0 <
c < 2−d/(d+1), we write c = ((1 − ε)/(2 + δ)d)1/(d+1) for some ε, δ > 0, and set
u = c(lgN)1/(d+1), s = 2u, t = 	sN
, m = 	(2+δ)u
, M = md, and k = 	n/m
d. Let
B1, . . . , Bk be a collection of k pairwise disjoint blocks of vertices of P d

n , each having
every side of length m. Let C be a random configuration of t pebbles on the vertices
of P d

n . By Lemma 16 we know that, almost surely, some block Bh has no pebbles on
its vertices. By Lemma 15 we know that, almost surely, no vertex has more that p
pebbles on it, where p = (1 + ε)s lnN for some ε > 0.

Let Bh be the boundary of Bh. Any vertex v with C(v) pebbles on it can
contribute at most C(v)/2i pebbles to Bh, where i is the distance from v to Bh.
Also, the number of vertices of P d

n − Bh at distance i from Bh is at most Ri. Thus,
according to Lemmas 17 and 18, the number of pebbles that can be amassed on Bh

via pebbling steps almost surely is less than or equal to

nd∑
i=1

pRi/2
i ≤

nd∑
i=1

p

d∑
j=1

(
d

j

)
2jmd−j

(
i− 1

j − 1

)
2−i

≤ p

d∑
j=1

(
d

j

)
2jmd−j

nd∑
i=1

(
i− 1

j − 1

)
2−i

< p

d∑
j=1

(
d

j

)
2jmd−j

< p(m + 2)d

� 2m/2 .

The last line holds because the dominant term in p(m + 2)d is 2u, and we have
m = 	(2 + δ)u
. Therefore, almost surely, too few vertices are amassed on Bh to be
able to move a single pebble to the center of Bh. This shows that τ(Pd) ∈ Ω(sN), as
required.

Next we prove the upper bound. Given N = nd and c′ = d + 1 + ε for some
ε > 0, set u′ = c′(lgN)1/(d+1), s′ = 2u

′
, t′ = �s′N�, m′ = �(d+1

c′)1/d(lgN)1/(d+1)�,
M ′ = (m′)d, and k′ = �n/m′�d. Let B′

1, . . . , B
′
k′ be a collection of k′ blocks, each

having every side of length m′, that cover the vertices of P d
n . Let C be a random

configuration of t′ pebbles on the vertices of P d
n . Then Lemma 19 states that, almost

surely, every block B′
f has at least M ′2dm

′
pebbles. Since (see [6]) every graph G is

solvable by n(G)2diam(G) pebbles, any given vertex v in P d
n almost surely is solvable

by the pebbles in the block B′
f which contains v. This shows that τ(Pd) ∈ O(s′N),

as required.

3. Remarks. Let l = l(n) and d = d(n), and denote by Pd
l the sequence of

graphs (P
d(n)
l(n))∞n=1, where P d

l = (Pl)
d. For l(n) = 2, Pn

l = Q, which can be shown to

have a threshold asymptotically less than N .
We conjecture that the same result holds for all fixed l.
Conjecture 20. Let Pl denote the graph sequence (Pn

l)∞n=1. Then for fixed l
we have τ(Pl) ∈ o(N).

In contrast, we have proved that τ(Pd) ∈ ω(N) for fixed d. Thus we believe there

10 ANDRZEJ CZYGRINOW AND GLENN HURLBERT

should be some relationship between two functions l = l(n) and d = d(n), both of
which tend to infinity, for which the sequence Pd

l has threshold on the order of N .

Problem 21. Denote by Pd the graph sequence (P
d(n)
n)∞n=1. Find a function

d = d(n)→∞ for which τ(Pd) = Θ(N). In particular, how does d compare to n?

Acknowledgment. The authors thank one of the referees for extensive assis-
tance in simplifying the paper.

REFERENCES

[1] A. Bekmetjev, G. Brightwell, A. Czygrinow, and G. Hurlbert, Thresholds for families
of multisets, with an application to graph pebbling, Discrete Math., 269 (2003), pp. 21–34.

[2] B. Bollobas, Extremal Graph Theory, Academic Press, London, New York, 1978.
[3] F. R. K. Chung, Pebbling in hypercubes, SIAM J. Discrete Math., 2 (1989), pp. 467–472.
[4] T. Clarke, Pebbling on Graphs, Master’s thesis, Arizona State University, Tempe, AZ, 1996.
[5] T. Clarke, R. Hochberg, and G. H. Hurlbert, Pebbling in diameter two graphs and products

of paths, J. Graph Theory, 25 (1997), pp. 119–128.
[6] A. Czygrinow, N. Eaton, G. Hurlbert, and P. M. Kayll, On pebbling threshold functions

for graph sequences, Discrete Math., 247 (2002), pp. 93–105.
[7] A. Czygrinow, G. Hurlbert, H. Kierstead, and W. T. Trotter, A note on graph pebbling,

Graphs Combin., 18 (2002), pp. 219–225.
[8] R. Diestel, Graph Theory, Springer-Verlag, New York, 1997.
[9] A. Godbole, M. Jablonski, J. Salzman, and A. Wierman, An improved upper bound for

the pebbling threshold of the n-path, Discrete Math., 275 (2004), pp. 367–373.
[10] D. Herscovici, Graham’s pebbling conjecture on products of cycles, J. Graph Theory, 42 (2003),

pp. 141–154.
[11] G. Hurlbert, A survey of graph pebbling, Congr. Numer., 139 (1999), pp. 41–64.
[12] G. Hurlbert, Recent Progress in Graph Pebbling, Graph Theory Notes of New York, to appear.
[13] D. Moews, Pebbling graphs, J. Combin. Theory Ser. B, 55 (1992), pp. 244–252.
[14] L. Pachter, H. S. Snevily, and B. Voxman, On pebbling graphs, Congr. Numer., 107 (1995),

pp. 65–80.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 11–25

COMPUTING OPTIMAL MORSE MATCHINGS∗

MICHAEL JOSWIG† AND MARC E. PFETSCH‡

Abstract. Morse matchings capture the essential structural information of discrete Morse func-
tions. We show that computing optimal Morse matchings is NP-hard and give an integer program-
ming formulation for the problem. Then we present polyhedral results for the corresponding polytope
and report on computational results.

Key words. discrete Morse function, Morse matching

AMS subject classifications. Primary, 90C27; Secondary, 06A07, 52B99, 57Q05, 57R70

DOI. 10.1137/S0895480104445885

1. Introduction. Discrete Morse theory was developed by Forman [8, 10] as a
combinatorial analog to the classical smooth Morse theory. Applications to questions
in combinatorial topology and related fields are numerous: e.g., Babson et al. [3],
Forman [9], Shareshian [30], Batzies and Welker [4], and Jonsson [19].

It turns out that the topologically relevant information of a discrete Morse func-
tion f on a simplicial complex can be encoded as a (partial) matching in its Hasse
diagram (considered as a graph), the Morse matching of f . A matching in the Hasse
diagram is Morse if it satisfies a certain, entirely combinatorial acyclicity condition.
Unmatched k-dimensional faces are called critical ; they correspond to the critical
points of index k of a smooth Morse function. The total number of noncritical faces
equals twice the number of edges in the Morse matching. The purpose of this paper
is to study algorithms which compute maximum Morse matchings of a given finite
simplicial complex. This is equivalent to finding a Morse matching with as few critical
faces as possible.

A Morse matching M can be interpreted as a discrete flow on a simplicial com-
plex Δ. The flow indicates how Δ can be deformed into a more compact description
as a CW complex with one cell for each critical face of M . Naturally one is interested
in a most compact description, which leads to the combinatorial optimization prob-
lem described above. This way optimal (or even sufficiently good) Morse matchings
of Δ can help to recognize the topological type of a space given as a finite simplicial
complex. The latter problem is known to be undecidable even for highly structured
classes of topological spaces, such as smooth 4-manifolds. We have to admit, however,
that so far no new topological results have been obtained by our approach.

Optimization of discrete Morse matchings has been studied by Lewiner, Lopes,
and Tavares [23, 24]. Hersh [17] investigated heuristic approaches to the maximum
Morse matching problem with applications to combinatorics. Morse matchings can
also be interpreted as pivoting strategies for homology computations; see [20]. Fur-
thermore, the set of all Morse matchings of a given simplicial complex itself has the
structure of a simplicial complex; see [6].

∗Received by the editors August 23, 2004; accepted for publication (in revised form) July 29,
2005; published electronically February 15, 2006. The authors’ research was partially supported by
the DFG Research Center Matheon in Berlin.

http://www.siam.org/journals/sidma/20-1/44588.html
†Fachbereich Mathematik, AG 7, TU Darmstadt, 64289 Darmstadt, Germany (joswig@

mathematik.tu-darmstadt.de).
‡Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany (pfetsch@zib.de).

11

12 MICHAEL JOSWIG AND MARC E. PFETSCH

The paper is structured as follows. First we show that computing optimal Morse
matchings is NP-hard. This issue has been addressed previously by Lewiner, Lopes,
and Tavares [24], but their argument omits details which to us seem quite important
to address carefully. Then we give an integer programming (IP) formulation for the
problem. The formulation consists of two parts: one for the matching conditions and
one for the acyclicity constraints. This turns out to be related to the acyclic subgraph
problem studied by Grötschel, Jünger, and Reinelt [14]. We derive polyhedral results
for the corresponding polytope. In particular, we give two different polynomial time
algorithms for the separation of the acyclicity constraints. The paper closes with
computational results.

Like most of discrete Morse theory, also most of our results extend to arbitrary
finite regular CW-complexes. We stick to the simplicial setting, however, to simplify
the presentation.

2. Discrete Morse functions and Morse matchings. We will first intro-
duce discrete Morse functions as developed by Forman. The essential structure of
discrete Morse functions is captured by so-called Morse matchings; see Forman [8]
and Chari [5]. It turns out that this latter formulation directly leads to a combi-
natorial optimization problem in which one wants to maximize the size of a Morse
matching.

We first need some notation. Let Δ be a (finite abstract) simplicial complex, i.e.,
a set of subsets of a finite set V with the following property: if F ∈ Δ and G ⊆ F ,
then G ∈ Δ; in other words, Δ is an independence system with ground set V . In the
following we will ignore ∅ as a member of Δ. The elements in V are called vertices
and the sets in Δ are called faces. The dimension of a face F is dimF := |F | − 1.
Let d = max{dimF : F ∈ F} be the dimension of Δ. We often write i-faces for
i-dimensional faces. Let F be the set of faces of Δ and let fi = fi(Δ) be the number
of faces of dimension i ≥ 0. The maximal faces with respect to inclusion are called
facets and 1-faces are called edges. The complex Δ is pure, if all facets have the same
dimension. For F , G ∈ Δ, we write F ≺ G if F ⊂ G and dimF = dimG−1, i.e., “≺”
denotes the covering relation in the Boolean lattice. The graph of Δ is the (abstract)
graph on V in which two vertices are connected by an edge if there exists a 1-face
containing both vertices. Throughout this paper we assume that Δ is connected, i.e.,
its graph is connected. This is no loss of generality since the connected components
can be treated separately.

The size of Δ is defined as the coding length of its face lattice, i.e., if Δ has n
faces, then size Δ = O(n · d · log n). Statements about the complexity of algorithms
in the subsequent sections are always with respect to this notion of size.

A function f : Δ → R is a discrete Morse function if for every G ∈ Δ the sets

{F : F ≺ G, f(G) ≤ f(F)} and {H : G ≺ H, f(H) ≤ f(G)}(2.1)

both have cardinality at most 1. The first set includes the faces covered by face G
which are not assigned a lower value than G, while the second set includes the faces
covering G which are not assigned a higher value. The face G is critical if both sets
have cardinality 0. A simple example of a discrete Morse function can be obtained
by setting f(F) = dimF for every F ∈ Δ. With respect to this function every face is
critical.

Discrete Morse functions are interesting because they can be used to deform a
simplicial complex into a (smaller) CW-complex that has a cell for each critical face;
see section 3.

COMPUTING OPTIMAL MORSE MATCHINGS 13

Consider the Hasse diagram H = (F, A) of Δ, that is, a directed graph on the
faces of Δ with an arc (G,F) ∈ A if F ≺ G; note that the arcs lead from higher to
lower dimensional faces. Let M ⊂ A be a matching in H, i.e., each face is incident to
at most one arc in M . Let H(M) be the directed graph obtained from H by reversing
the direction of the arcs in M . Then M is a Morse matching of Δ if H(M) does not
contain directed cycles, i.e., is acyclic (in the directed sense). Morse matchings are
also often called acyclic matchings. Given M ⊂ A, one can decide in linear time (in
the size of Δ) whether it is a Morse matching: the matching conditions are trivial
and acyclicity of H(M) can be checked by depth first search in linear time (see, e.g.,
Korte and Vygen [22]).

There is the following relation between Morse functions and Morse matchings; see
Forman [8] and Chari [5]. Let f be a discrete Morse function and let M be the set
of arcs (G,F) ∈ A such that f(G) ≤ f(F), i.e., f is not decreasing on these arcs. A
simple proof shows that at most one of the sets in (2.1) can have cardinality one. This
shows that M is a matching. Since the order given by f can be refined to a linear
ordering of the faces of Δ, the directed graph H(M) is in fact acyclic and therefore
a Morse matching. To construct a discrete Morse function from a Morse matching,
compute a linear ordering extending H(M) (which is acyclic) and then number the
faces consecutively in the reverse order.

Although we lose the concrete numbers attached to the faces when going from a
discrete Morse function f to the corresponding Morse matching M , we do not lose the
information about critical faces: Critical faces of f are exactly the unmatched faces
of M . Hence, by maximizing |M | we minimize the number of critical faces of f . In
fact, the number of critical faces is |F| − 2 |M |. For 0 ≤ j ≤ d, let cj = cj(M) be the
number of critical faces of dimension j and let c(M) be the total number of critical
faces.

It seems helpful to briefly describe the case of Morse matchings for a one-dimen-
sional simplicial complex Δ. Then Δ represents the incidences of a graph G. A Morse
matching M of Δ matches edges with nodes of G. Let G̃ be the following oriented
subgraph of G: take all edges which are matched in M and orient them towards its
matched node. Since M is a matching, this construction is well defined and the in-
degree of each node is at most one. The acyclicity property shows that G̃ contains no
directed cycles and hence is a branching, i.e., the underlying graph is a forest and each
(weakly) connected component has a unique root. Therefore, the Morse matchings
on a graph G are in one-to-one correspondence with orientations of subgraphs of G
which are branchings.

Building on this idea, Lewiner, Lopes, and Tavares [23] computed maximum
Morse matchings, i.e., Morse matchings with maximal cardinality, for combinatorial
2-manifolds. In [24] they developed a heuristic for computing Morse matchings for ar-
bitrary simplicial complexes. In the general case, however, this problem is NP-hard,
as shown in section 4.

3. Properties of Morse matchings. In this section we briefly review some
important properties of Morse matchings which we need in what follows.

Let F be a facet of Δ and let G be a facet of F , which is not contained in any
other facet of Δ. The operation of transforming Δ to Δ \ {F,G} is called a simplicial
or elementary collapse. We will simply use collapse in the following.

Proposition 3.1 (see Forman [8]). Let Δ be a simplicial complex and Σ a
subcomplex of Δ. Then there exists a sequence of collapses from Δ to Σ if and only
if there exists a discrete Morse function such that Δ \ Σ contains no critical face.

14 MICHAEL JOSWIG AND MARC E. PFETSCH

Forman [8] also proved the following result, which describes one of the most
interesting features of Morse matchings:

Theorem 3.2. Let Δ be a simplicial complex and M be a Morse matching on Δ.
Then Δ is homotopy equivalent to a CW-complex containing a cell of dimension i for
each critical face of dimension i.

We refer to Munkres [27] for more information on CW-complexes. By Theorem 3.2
we can hope for a compact representation of the topology of Δ (up to homotopy) by
computing a Morse matching with few critical faces. This is the main motivation for
the combinatorial optimization problem studied in this paper.

Let K be a field and let βj = βj(K) be the Betti number for dimension j over K
for Δ; see again Munkres [27] for details. Forman [8] proved the following bounds on
the number of critical faces cj of a Morse matching M :

Theorem 3.3 (weak Morse inequalities). Let K be a field, Δ be a simplicial
complex, and M a Morse matching for Δ. We have

cj ≥ βj ∀ j = 0, . . . , d(3.1)

and

c0 − c1 + c2 − · · · + (−1)dcd = β0 − β1 + β2 − · · · + (−1)dβd.(3.2)

The Betti numbers over Q and finite fields can easily be obtained in polynomial
time (in the size of Δ), by computing the ranks of the boundary matrices for each
dimension. Although harder to compute (see Iliopoulos [18]), the homology over Z

can be used to choose among the finite fields or Q, in order to obtain the strongest
form of the Morse inequalities (3.1).

4. Hardness of optimal Morse matchings. In this section we prove NP-
hardness of the problem to compute a maximum Morse matching, i.e., to find a
Morse matching M with maximal cardinality. As we saw previously, this is equivalent
to minimizing the number of critical faces.

We want to reduce the following collapsibility problem, introduced by Eǧecioǧlu
and Gonzalez [7], to the problem of finding an optimal Morse matching: Given a
connected pure 2-dimensional simplicial complex Δ that is embeddable in R

3 and an
integer k, decide whether there exists a subset K of the facets of Δ with |K| ≤ k such
that there exists a sequence of collapses which transforms Δ \ K to a 1-dimensional
complex. Eǧecioǧlu and Gonzalez proved that this collapsibility problem is strongly
NP-complete. Using Proposition 3.1, this result reads as follows in terms of discrete
Morse theory.

Theorem 4.1. Given a connected pure 2-dimensional simplicial complex Δ that
is embeddable in R

3 and a nonnegative integer k, it is NP-complete in the strong sense
to decide whether there exists a Morse matching with at most k critical 2-faces.

When k is fixed, we can try all possible sets K of size at most k and then decide
whether the resulting complex is collapsible to a 1-dimensional complex in polynomial
time. Therefore we let k be part of the input.

We need the following construction. Consider a Morse matching M for a simplicial
complex Δ, with dim Δ ≥ 1. Let Γ(M) be the graph obtained from the graph of Δ
by removing all edges (1-faces) matched with 2-faces. Note that Γ(M) contains all
vertices of Δ.

Lemma 4.2. The graph Γ(M) is connected.

COMPUTING OPTIMAL MORSE MATCHINGS 15

N

e1

τ1 e2

τ2e3

τ3

e4

τ4

Fig. 1. Illustration of the proof of Lemma 4.2.

Proof. Without loss of generality we assume that dim Δ ≥ 2. Otherwise, Γ(M)
coincides with the graph of Δ, which is connected (recall that Δ is connected).

Suppose that Γ(M) is disconnected. Let N be its set of nodes in a connected
component of Γ(M), and let C be the set of cut edges, that is, edges of Δ with one
vertex in N and one vertex in its complement. Since Δ is connected, C is not empty.
By definition of Γ(M), each edge in C is matched to a unique 2-face.

Consider the directed subgraph D of the Hasse diagram consisting of the edges
in C and their matching 2-faces. The standard direction of arcs in the Hasse diagram
(from the higher to the lower dimensional faces) is reversed for each matching pair
of M , i.e., D is a subgraph of H(M).

We construct a directed path in D as follows; see Figure 1. Start with any node
of D corresponding to a cut edge e1. Go to the node of D determined by the unique
2-face τ1 to which e1 is matched to. Then τ1 contains at least one other cut edge e2,
otherwise e1 cannot be a cut edge. Now iteratively go to e2, then to its unique
matching 2-face τ2, choose another cut edge e3, and so on. We observe that we obtain
a directed path e1, τ1, e2, τ2, . . . in D, i.e., the arcs are directed in the correct direction.

Since we have a finite graph at some point the path must arrive at a node of D
which we have visited already. Hence, D (and therefore also H(M)) contains a di-
rected cycle, which is a contradiction since M is a Morse matching.

Now pick an arbitrary node r and any spanning tree of Γ(M) (which can be
computed in polynomial time; see Korte and Vygen [22]) and direct all edges away
from r. This yields a maximum Morse matching on Γ(M); see the end of section
2. It is easy to see that replacing the part of M on Γ(M) with this matching yields
a Morse matching. This Morse matching has only one critical vertex (the root r).
Note that every Morse matching contains at least one critical vertex; this can be seen
from the Morse inequalities (3.1) in Theorem 3.3. Furthermore, the total number of
critical faces can only decrease, since we computed an optimal Morse matching on
Γ(M). The number of critical i-faces for i ≥ 2 stays the same. We have thus proved
the following corollary, which is also implicit in Forman [8].

Corollary 4.3. Let M be a Morse matching on Δ. Then we can compute a
Morse matching M ′ in polynomial time which has exactly one critical vertex and the
same number of critical faces of dimension 2 or higher as M , such that c(M ′) ≤
c(M).

We can now prove the hardness result.
Theorem 4.4. Given a simplicial complex Δ and a nonnegative integer c, it is

strongly NP-complete to decide whether there exists a Morse matching with at most c

16 MICHAEL JOSWIG AND MARC E. PFETSCH

critical faces, even if Δ is connected, pure, 2-dimensional, and can be embedded in R
3.

Proof. Clearly this problem is in NP. So let (Δ, k) be an input for the collapsi-
bility problem. We claim that there exists a Morse matching with at most k critical
2-faces if and only if there exists a Morse matching with at most g(k) := 2(k+1)−χ(Δ)
critical faces altogether. Here, χ(Δ) = β0 − β1 + · · · + (−1)dβd is the Euler charac-
teristic, which can be computed in polynomial time; see section 3. Hence g is a
polynomial-time computable function. Using Theorem 4.1 then finishes the proof.

So assume that M is a Morse matching on Δ with at most k critical 2-faces. We
use Corollary 4.3 to compute a Morse matching M ′, in polynomial time, such that
c0(M

′) = 1, c2(M
′) = c2(M), and c(M ′) ≤ c(M). By (3.2) of Theorem 3.3, we have

c1(M
′) = c2(M

′)+1−χ(Δ). Since c(M ′) = c0(M
′)+ c1(M

′)+ c2(M
′) it follows that

c2(M) = c2(M
′) = 1

2 (c(M ′) + χ(Δ)) − 1.(4.1)

Solving for c(M ′), it follows that M ′ has at most 2(k + 1) − χ(Δ) critical faces
altogether.

Conversely, assume that there exists a Morse matching M with at most g(k)
critical faces. Computing M ′ as above, we obtain by (4.1), that

c2(M) = c2(M
′) ≤ 1

2 (g(k) + χ(Δ)) − 1 = k,

which completes the proof.
Lewiner, Lopes, and Tavares [24] showed that it is NP-hard to compute an opti-

mal Morse matching, but their proof omits an argument similar to Lemma 4.2 above.
We therefore provided a proof for it.

Since there exists a Morse matching with at most c critical faces if and only if
there exists a Morse matching of size at least 1

2 (|F| − c), we proved the following
corollary.

Corollary 4.5. Let Δ be as in Theorem 4.4 and m be a nonnegative integer.
Then it is NP-complete in the strong sense to decide whether there exists a Morse
matching of size at least m.

We do not know about the complexity status for this problem with m fixed.
Eǧecioǧlu and Gonzalez [7] additionally proved that the collapsibility problem is

as hard to approximate as the set covering problem. In particular, the collapsibility
problem cannot be approximated better than within a logarithmic factor in polyno-
mial time, unless P = NP. Using this, Lewiner, Lopes, and Tavares [24] claimed
that the problem to compute a Morse matching minimizing the number of critical
faces is hard to approximate. However, the function g used in the proof above is
not “approximation preserving” and we do not see how the nonapproximability result
carries over.

Similarly, the problem to approximate the size of a Morse matching seems to be
open.

5. An IP-formulation. In this section we introduce an integer programming
formulation for the problem to compute a Morse matching of maximal size. From now
on we assume that dim Δ ≥ 1, since the other cases are uninteresting in our context.

We use the following notation. We depict vectors in bold font. Let ei be the
ith unit vector and let 1l be the vector of all ones. For any vector x ∈ R

n and
I ⊆ {1, . . . , n} we define

x(I) :=
∑
i∈I

xi.

COMPUTING OPTIMAL MORSE MATCHINGS 17

Fig. 2. Example for a directed cycle of size 6; at least three arcs with reversed orientation
(pointing “up”) are necessary to close a 6-cycle in the Hasse diagram of a simplicial complex.

Furthermore, for S ⊆ {1, . . . , n}, I(S) ∈ R
n denotes the incidence vector of S.

For a node v in a directed graph, let δ(v) be the arcs incident to v, i.e., the arcs
having v as one of their endnodes. For a subset A′ ⊆ A, we denote by N(A′) the nodes
incident to at least one arc in A′. Throughout this article, all directed or undirected
cycles are assumed to be simple, i.e., without node repetitions.

For ease of notation, we consider the Hasse diagram H as directed or undirected
depending on the context; we will explicitly say directed when we refer to the directed
version.

We split H into d levels H0 = (F0, A0), . . . , Hd−1 = (Fd−1, Ad−1), where Hi

denotes the level of the Hasse diagram between faces of dimension i and i+1. Then A
is the disjoint union of A0, . . . , Ad−1 and Fi−1∩Fi consists of the faces of dimension i.
Recall that the arcs in the Hasse diagram are directed from the higher to the lower
dimensional faces.

Let M ⊂ A be a Morse matching of Δ. By definition, its incidence vector x =
I(M) ∈ {0, 1}A satisfies the matching inequalities

x(δ(F)) ≤ 1 ∀ F ∈ F.(5.1)

Now assume that for some M ⊆ A there exists a directed cycle D in H(M). Then
in D “up” and “down” arcs alternate; for an example, see Figure 2. In particular,
the size of D is always even. Hence, 1

2 |D| arcs are contained in M , i.e., are reversed
in H(M). We will use the following well-known observation.

Observation 1. Let M ⊂ A be a matching. If D is a directed cycle in H(M),
the edges in D can only belong to one level Hi (i ∈ {0, . . . , d − 1}), i.e., we have
{dimF : F ∈ N(D)} = {i, i + 1}.

Putting these arguments together we obtain: If M is acyclic, x = I(M) satisfies
the following cycle inequalities:

x(C) ≤ 1
2 |C| − 1 ∀ C ∈ Ci, i = 1, . . . , d− 1,(5.2)

where Ci are the cycles in Hi.

Conversely, it is easy to see that every x ∈ {0, 1}A which fulfills inequalities (5.1)
and (5.2) is the incidence vector of a Morse matching. Hence, we arrive at the following
IP formulation for the problem to find a maximum Morse matching:

(MaxMM) max 1lTx

s.t. x(δ(F)) ≤ 1 ∀ F ∈ F

x(C) ≤ 1
2 |C| − 1 ∀ C ∈ Ci, i = 1, . . . , d− 1

x ∈ {0, 1}A.

18 MICHAEL JOSWIG AND MARC E. PFETSCH

This formulation can easily be extended to arbitrary weights on the arcs, i.e., replac-
ing 1l in the objective function by an arbitrary nonnegative vector w.

A different view on this optimization problem is to find directed spanning trees
in the hypergraph defined by Hi and to patch them together (see Warme, Winter,
and Zachariasen [31] for spanning trees in hypergraphs).

We define the corresponding polytope as

PM = conv
{
x ∈ {0, 1}A : x satisfies (5.1) and (5.2)

}
.

Let M be a Morse matching and x = I(M) be its incidence vector. Then F ∈ F is
a critical face with respect to M if and only if it is unmatched by M , i.e., x(δ(F)) = 0.
Hence, the total number of critical faces is

c(M) =
∑
F∈F

(
1 −

∑
a∈δ(F)

xa

)
= |F| − 2

∑
a∈A

xa = |F| − 2 1lTx,(5.3)

since every arc is incident to exactly two nodes. Using this formula one can eas-
ily switch between the number of critical faces and the number of arcs in a Morse
matching.

The LP relaxation of MaxMM can be strengthened by using the weak Morse
inequalities (3.1) of Theorem 3.3. Applying (5.3), this yields the following Betti
inequality for dimension i:

∑
F :dimF=i

(
1 −

∑
a∈δ(F)

xa

)
≥ βi ⇔

∑
F :dimF=i

∑
a∈δ(F)

xa ≤ fi − βi.(5.4)

Observe that we can choose the field in Theorem 3.3 to employ the Morse inequalities
in their strongest form.

Example 1. This can be illustrated by the real projective plane RP2. The Betti
numbers with respect to Q and Z2 are β(Q) = (1, 0, 0) and β(Z2) = (1, 1, 1), respec-
tively. The resulting lower bounds are (1, 1, 1), i.e., we have at least three critical
faces in any Morse matching (this is, in fact, optimal).

Remark 1. The cycle inequalities (5.2) are similar to the cycle inequalities for
the acyclic subgraph problem (ASP); see Jünger [21], and Grötschel, Jünger, and
Reinelt [14]. The separation problem for (5.2), however, is more complicated than the
corresponding problem for ASP; see section 5.2.

Furthermore, there is a similarity to the relation between the ASP and the lin-
ear ordering problem (see Reinelt [28], and Grötschel, Jünger, and Reinelt [13]): an
alternative formulation for our problem can be obtained by modeling discrete Morse
functions as linear orders on the faces, subject to matching requirements. Since this
formulation is based on the relation between faces, it leads to quadratically many
variables in the number of faces; therefore we have opted for the above formulation,
at the cost of having to solve the separation problem for the cycle inequalities; see
section 5.2.

5.1. Facial structure of PM . It is easy to see that PM is a full dimensional
polytope and xa ≥ 0 defines a facet for every a ∈ A. Furthermore, PM is mono-
tone, since every subset of a Morse matching is a Morse matching. It is well known
that this implies that every facet defining inequality αTx ≤ β not equivalent to the
nonnegativity inequalities fulfills α ≥ 0, β > 0; see Hammer, Johnson, and Peled [16].

COMPUTING OPTIMAL MORSE MATCHINGS 19

Fig. 3. Example of a nonmonotone behavior of acyclic matchings. The directed graph on the
right, obtained from the left graph by reversing the dashed arcs, is acyclic. However, if the top arc is
set to its original orientation, the graph is not acyclic anymore. This shows that subsets of acyclic
matchings are not necessarily acyclic.

Interestingly, if we consider acyclic matchings as defined above for arbitrary
acyclic directed graphs, the collection of such acyclic matchings is not necessarily
monotone anymore; see the example in Figure 3. Therefore, the structure of the
generalized problem is likely to be more complicated.

We have the following two results.
Proposition 5.1. The matching inequalities x(δ(F)) ≤ 1 define facets of PM

for F ∈ F , except if |δ(F)| = 1, in which case F is a vertex.
Proof. Let F be a face with |δ(F)| > 1 (note that |δ(F)| = 0 does not occur since

dim Δ ≥ 1 and Δ is connected). We can assume that A = {a1, . . . , ak, ak+1, . . . , am},
where δ(F) = {a1, . . . , ak}. For i = k + 1, . . . ,m, observe that ai cannot be adjacent
to every arc in δ(F): since |δ(F)| > 1, ai would either be incident to at least two
nodes of the same dimension or to two nodes whose dimensions are two apart, which is
impossible. Therefore, choose p(i) ∈ {1, . . . , k} such that ai and ap(i) are not adjacent.
It follows that ei + ep(i) ∈ PM . Then

e1, . . . ,ek, ek+1 + ep(k+1), . . . ,em + ep(m)

are affinely independent and fulfill x(δ(F)) = 1.
It follows that the inequalities xa ≤ 1, a ∈ A, never define facets, since each arc

has a nonvertex endpoint.
Theorem 5.2. The cycle inequalities (5.2) define facets of PM .
Proof. We extend the corresponding proof by Jünger [21] for the ASP.
Let C be a cycle in H. Without loss of generality we can assume that A =

{a1, . . . , ak, ak+1, . . . , am}, where C = (a1, . . . , ak) and k is even. We will construct
affinely independent feasible vectors v1, . . . ,vk,vk+1, . . . ,vm satisfying the cycle in-
equality corresponding to C with equality.

Let C1 = {a1, a3, . . . , ak−1} and C2 = {a2, a4, . . . , ak}. Hence C1 and C2 are the
“up” and “down” arcs in C.

Define

vi =

{
I(C1 \ {ai}) if ai ∈ C1

I(C2 \ {ai}) if ai ∈ C2

for i = 1, . . . , k.

Hence, for i = 1, . . . , k we have vi(C) = k
2 − 1.

For i = k + 1, . . . ,m, consider ai = {u, v} /∈ C. We have four cases.

� u, v ∈ N(C): Let C̃ := C \
(
δ(u) ∪ δ(v)

)
. We have that |C̃| = k − 4 (since there

exist no odd cycles) and C̃ splits into two odd nonempty parts, C̃1 and C̃2, which
are both paths. Let k1 := |C̃1| and k2 := |C̃2|; k1 and k2 are odd, since u and v

20 MICHAEL JOSWIG AND MARC E. PFETSCH

P1

P2u

v
C̃1 C̃2

u

v

Fig. 4. Illustration of the first case in the proof of Theorem 5.2. The sets P1 and P2 are shown
by continuous lines. The edges in C1 are drawn gray and hence P1 ⊂ C1; edges in C2 are drawn
black. The dashed edges incident to u and v are not considered. The right-hand side shows the
graph embedded in the Hasse diagram.

are on opposite sides of the bipartition. We choose a subset P1 ⊂ C̃1 by taking
every second arc in order to get |P1| = k1+1

2 ; similarly we choose P2 ⊂ C̃2 with

|P2| = k2+1
2 . By construction either Pi ⊂ C1 or Pi ⊂ C2 and either Pi ∩ C2 = ∅

or Pi ∩C1 = ∅ for i = 1, 2. An easy calculation shows that |P1 ∪ P2| = k
2 − 1; see

Figure 4 for an illustration of this case. Then define vi := I(P1 ∪ P2 ∪ {ai}).
� u /∈ C, v ∈ C: Here we define vi := I(C1 \ δ(v) ∪ {ai}).
� u ∈ C, v /∈ C: Define vi := I(C1 \ δ(u) ∪ {ai}).
� u, v /∈ C: Choose any a ∈ C1 and define vi := I(C1 \ {a} ∪ {ai}).
It is easy to check in each case that vi ∈ PM and that vi(C) = k

2 − 1.
It can be shown that the m vectors v1, . . . ,vm are affinely independent, which

concludes the proof.
The separation problem for the cycle inequalities is discussed in the next section.

5.2. Separating the cycle inequalities. Of course, there are exponentially
many cycle inequalities (5.2). Hence we have to deal with the separation problem for
these inequalities.

We can assume that we are given x∗ ∈ [0, 1]A, which satisfies all matching in-
equalities (5.1). We consider the separation problem for each graph Hi in turn,
i = 0, . . . , d− 1. The problem is to find an undirected cycle C in Hi such that

x∗(C) > 1
2 |C| − 1

or conclude that no such cycle exists. In the next sections we describe two methods
to solve this problem in polynomial time.

5.2.1. Undirected shortest path with conservative weights. A well-known
trick to solve the above separation problem is to apply an affine transformation and
obtain a shortest cycle problem. The transformation suitable for our needs is x′ =
1
21l − x, which yields

x(C) ≤ 1
2 |C| − 1 ⇔ x′(C) ≥ 1.

The separation problem can now be solved as follows: compute a shortest cycle in Hi

with respect to the weights 1
21l − x∗. If its weight is at most 1, this cycle yields a

violated cycle inequality, otherwise no such cycle exists.
However, the weights can be negative and we have to rule out negative cycles

in order to apply polynomial time methods from the literature; that is, we want the
weights to be conservative.

COMPUTING OPTIMAL MORSE MATCHINGS 21

w1 w2 w3

u1 u2 u3 u4

({u1, u2}, w1)

({u2, u3}, w1)

({u1, u3}, w1)

({u2, u4}, w2)

({u3, u4}, w3)

Fig. 5. Example of the construction in section 5.2.2. Left: original graph G. Right: constructed
graph G′. The 6-cycle on the left corresponds to the 3-cycle on the right (both shown with dashed
lines).

Lemma 5.3. There exists no cycle of negative weight in Hi with respect to 1
21l−x∗,

for 0 ≤ i ≤ d− 1.
Proof. Let C = (a1, . . . , ak) be a cycle in Hi and let F1, . . . , Fk be the faces that

are visited by C. Recall that x∗ satisfies the matching inequalities. We obtain

k∑
j=1

∑
a∈δ(Fi)∩C

x∗
a = 2

∑
a∈C

x∗
a = 2 x∗(C),(5.5)

since each edge weight is counted twice in the first term. Applying the matching
inequalities (5.1) on the left-hand side yields that x∗(C) ≤ 1

2k = 1
2 |C|. Hence, the

weight of C with respect to 1
21l − x∗ can be bounded as follows:

∑
a∈C

(
1
2 − x∗

a

)
= 1

2 |C| − x∗(C) ≥ 0,

which proves the lemma.
We have now reduced the separation problem to finding a shortest cycle in a

weighted undirected graph G = (V,E) without negative cycles.
By using T -join techniques, one can compute a shortest path in an undirected

graph without negative cycles in O(ni(mi + ni log ni)) time, where in this formula
ni = |Fi| and mi = |Ai|; see Schrijver [29, Chapter 29]. It follows that a shortest
cycle can be computed in O(mini(mi + ni log ni)) time. Since |Ai| ≤ (i + 2)ni, this
leads to an O

(
(d + 1)2n3 + (d + 1)n3 log n

)
overall algorithm, where n := |F| is the

number of faces and d is the dimension of the complex.

5.2.2. Transforming the graph. Another method for the separation problem
of cycle inequalities, which is easier to implement, works as follows.

Let G = (U ∪̇W, E) be a bipartite graph, e.g., G = Hi (i ∈ {0, . . . , d − 1}), the
ith level of the Hasse diagram. Let � : E → R≥0 be a length function for the edges of
G. In the following we write �(u, v) = �(v, u) for the length �({u, v}).

We construct a graph G′ = (V ′, E′) and lengths �′ : E′ → R≥0 as follows; see
Figure 5 for an example. The set of nodes of G′ is{

({u, u′}, w) : u, u′ ∈ U, u
= u′, w ∈ W, {u,w} ∈ E, {u′, w} ∈ E
}
.

Hence, G′ has a node for each path with two edges in G. There is an edge between
two nodes ({u1, u

′
1}, w1) and ({u2, u

′
2}, w2) if

|{u1, u
′
1} ∩ {u2, u

′
2}| = 1 and w1
= w2.

22 MICHAEL JOSWIG AND MARC E. PFETSCH

The length of such an edge e′ is defined by

�′(e′) = 1
2

(
�(u1, w1) + �(u′

1, w1) + �(u2, w2) + �(u′
2, w2)

)
.

Hence, G′ contains an edge for each path with four edges in G and its length is the
length of this path divided by 2. We now consider the relation of cycles in G and G′.

Lemma 5.4. C = (u0, w0, u1, w1, . . . , wk−1, u1) is a cycle in G with k > 1 of
length �(C) if and only if

C ′ =
(
({u0, u1}, w0), ({u1, u2}, w1), . . . , ({uk−1, u1}, wk−1), ({u0, u1}, w0)

)
is a cycle in G′ with �′(C ′) = �(C).

We omit the straightforward proof.
The previous lemma does not cover cycles in G of length four. These do not

occur for the case of G = Hi, since Hi is a level in the Hasse diagram of a simplicial
complex. Moreover, cycles of length four can readily be detected in the construction
of G′ and handled accordingly (there is only a polynomial number of them).

To solve our separation problem, let G = Hi, i ∈ {0, . . . , d − 1}, and �(e) = x∗
e

for e ∈ G. Then we have �′(e′) ∈ [0, 1] for each e′ ∈ E′, because of the matching
inequalities. We now set �̃(e′) = 1 − �′(e′) for e′ ∈ G′ and hence �̃(e′) ∈ [0, 1]. Let C
be a cycle in G with at least six edges and C ′ be the corresponding cycle in G′. Note
that |C ′| = 1

2 |C|. We then have the following:

�̃(C ′) =
∑
e′∈C′

�̃(e′) =
∑
e′∈C′

(1 − �′(e′)) < 1

⇔
∑
e′∈C′

�′(e′) > |C ′| − 1

⇔ �′(C ′) > |C ′| − 1

⇔ �(C) > 1
2 |C| − 1 (by Lemma 5.4).

Hence, C violates the cycle inequality (5.2) if and only if �̃(C ′) < 1. Since �̃(e′) ≥ 0,
we can use the Floyd–Warshall algorithm to solve the separation problem in time
O
(
|V ′|3

)
; see Korte and Vygen [22].

If G = Hi and W is the part arising from the higher dimensional faces, we have
|V ′| =

(
i+2
2

)
|W | =

(
i+2
2

)
fi+1. This leads to an O

(
(d + 1)6n3

)
algorithm for separating

cycle inequalities, which is roughly as fast as the method discussed in section 5.2.1,
but much easier to implement.

6. Computational results. In this section we report on computational ex-
perience with a branch-and-cut algorithm along the lines of section 5. The C++
implementation uses the framework SCIP (Solving Constraint Integer Programs) by
Achterberg; see [1]. It furthermore builds on polymake; see [11, 12]. As an LP solver
we used CPLEX 9.0.

As the basis of our implementation we take the formulation of MaxMM in sec-
tion 5. Matching inequalities (5.1) and Betti inequalities (5.4) (together with variable
bounds) form the initial LP. The computation of the simplicial homology from which
the Betti numbers are computed is very fast, because the examples are small; its
running time is not included in the following. Cycle inequalities (5.2) are separated
as described in section 5.2.2. Additionally, Gomory cuts are added. As a branch-
ing rule we use reliability branching implemented in SCIP, a variable branching rule
introduced by Achterberg, Koch, and Martin [2].

COMPUTING OPTIMAL MORSE MATCHINGS 23

Table 1

Computational results of the branch-and-cut algorithm with separating cycle inequalities and
Gomory cuts.

name n m d nodes depth time β c
solid 2 torus 24 42 2 1 0 0.00 2 2
simon2 31 60 2 1 0 0.00 1 1
projective (RP2) 31 60 2 1 0 0.01 3 3
bjorner 32 63 2 1 0 0.05 2 2
nonextend 39 77 2 6 5 0.16 1 1
simon 41 82 2 1 0 0.18 1 1
dunce 49 99 2 385 10 2.62 1 3
c-ns3 63 128 2 349 10 3.47 1 3
c-ns 75 152 2 28 10 1.95 1 3
c-ns2 79 159 2 14 7 1.11 1 1
ziegler 119 310 3 1 0 0.01 1 1
gruenbaum 167 434 3 1 0 25.24 1 1
lockeberg 216 600 3 1 0 36.25 2 2
rudin 215 578 3 77 30 103.78 1 1
mani-walkup-D 392 1112 3 111 23 512.81 2 2
mani-walkup-C 464 1312 3 135 83 1658.02 2 2
MNSB 103 267 3 12 10 73.39 1 1
MNSS 250 698 3 292 110 750.36 2 2
CP2 255 864 4 230 80 558.14 3 3

We implemented the following primal heuristic. First a simple greedy algorithm
is run: We start with the empty matching M = ∅. We add arcs of the Hasse diagram
to M in the order of decreasing value of the current LP solution as long as M stays
an acyclic matching (which can easily be tested). Then the outcome is iteratively
improved by a method described in Forman [8]; one searches for a unique path between
two critical faces in H(M). Such a path is alternating with respect to M . Then M
can be augmented along the path (the new matching is the symmetric difference of M
and the path). As is easily seen, this generates an acyclic matching, because the path
is unique. This heuristic turns out to be extremely successful; see below.

We tested the implementation on a set of simplicial complexes collected by Hachi-
mori; see [15] for more details. This test set was also used by Lewiner, Lopes, and
Tavares [24]. Additionally, we considered the following complexes: CP2 (complex pro-
jective plane), CP2+CP2 (connected sum of CP2 with itself), MNSB (vertex minimal
nonshellable ball), and MNSS (nonshellable sphere with the fewest number of vertices
known). The last two examples are due to Lutz [25, 26].

All computational experiments were run on a 3 GHz Pentium machine running
Linux. In the tables of computational results, n denotes the number of faces, m the
number of arcs in the Hasse diagram (= number of variables), d the dimension, nodes
the number of nodes in the branch-and-bound tree, depth the maximal depth in the
tree, time the computation time in seconds, β the lower bound obtained by adding
all Betti inequalities (5.4), and c the number of critical faces in the optimal solution.

Our implementation could not solve the larger problems of Hachimori’s collection
in reasonable time: bing, knot, poincare, nonpl sphere, and nc sphere. In fact, for
poincare we ran our code in different settings, each for about a week, without success.
Table 1 shows the results of a computation where we separate cycle inequalities and
Gomory cuts and run the heuristic every 10th level. At most seven separation rounds
of cycle inequalities were performed at a node. We do not report results on the
problems by Moriyama and Takeuchi in Hachimori’s collection—they all could be
solved within a second. The version with cut separation could not solve CP2+CP2

within 90 minutes.

24 MICHAEL JOSWIG AND MARC E. PFETSCH

Table 2

Computational results of the branch-and-cut algorithm without separation.

name n m d nodes depth time β c
solid 2 torus 24 42 2 1 0 0.00 2 2
simon2 31 60 2 1 0 0.01 1 1
projective (RP2) 31 60 2 1 0 0.00 3 3
bjorner 32 63 2 1 0 0.01 2 2
nonextend 39 77 2 3 2 0.02 1 1
simon 41 82 2 4 3 0.02 1 1
dunce 49 99 2 168367 42 145.60 1 3
c-ns3 63 128 2 3665581 53 3940.40 1 3
c-ns 75 152 2 16625713 58 19359.69 1 3
c-ns2 79 159 2 4 3 0.03 1 1
ziegler 119 310 3 1 0 0.01 1 1
gruenbaum 167 434 3 21 20 0.68 1 1
lockeberg 216 600 3 1 0 0.05 2 2
rudin 215 578 3 81 80 3.18 1 1
mani-walkup-D 392 1112 3 107 100 2.00 2 2
mani-walkup-C 464 1312 3 1498 456 30.54 2 2
MNSB 103 267 3 1 0 0.01 1 1
MNSS 250 698 3 163 126 4.63 2 2
CP2 255 864 4 198 190 4.77 3 3
CP2+CP2 460 1592 4 5178 534 110.21 4 4

For most problems the bound obtained by adding Betti inequalities (5.4), as
indicated in column “β,” is tight. This means that the algorithm is done once an
optimal solution is found. This usually happens very fast and shows that the heuristic
is efficient. In fact, there are only three problems for which the bound is not tight and
could be solved by our algorithm (dunce, c-ns, and c-ns3). These three problems
are solved easily by the version with cut separation. In our problem set there exists
no hard but still solvable problem with a “Betti bound” which is not sharp. We
therefore cannot estimate the limits of our implementation for these cases (poincare
is the next larger problem of this kind with 1112 variables, but we could not solve it).

The tractability of problems with a tight “Betti bound” is supported by the results
obtained by running the implementation without any separation; see Table 2. Only
integer solutions are checked whether they are acyclic and the heuristic is run every
10th level. This essentially is a test of the performance of the primal heuristic. Indeed,
all problems with tight “Betti bound” were solved within a few seconds (CP2+CP2 and
mani-walkup-C being the exception, but could be solved within two minutes). The
results for the problems c-ns, c-ns3, and dunce show that the cycle inequalities and
Gomory cuts are very effective in reducing the number of nodes in the tree and the
computing time for problems where the “Betti bound” is not sharp.

Summarizing, we can say that our implementation can solve large instances with
up to about 1500 variables if the bounds from the Betti numbers are tight and small
instances with up to about 150 variables if the bounds are not tight. In all the
instances computed so far, the topology of the spaces involved was known. In the
future, we plan to apply our techniques to other cases.

Acknowledgments. We are indebted to Tobias Achterberg for his support of
the implementation. We also thank both referees for their helpful comments.

REFERENCES

[1] T. Achterberg, SCIP—A framework to integrate constraint and mixed integer programming,
ZIB-Report 04-19, Zuse Institute Berlin, Berlin, Germany, 2004.

COMPUTING OPTIMAL MORSE MATCHINGS 25

[2] T. Achterberg, T. Koch, and A. Martin, Branching rules revisited, Oper. Res. Lett., 33
(2005), pp. 42–54.

[3] E. Babson, A. Björner, S. Linusson, J. Shareshian, and V. Welker, Complexes of not
i-connected graphs, Topology, 38 (1999), pp. 271–299.

[4] E. Batzies and V. Welker, Discrete Morse theory for cellular resolutions, J. Reine Angew.
Math., 543 (2002), pp. 147–168.

[5] M. K. Chari, On discrete Morse functions and combinatorial decompositions, Discrete Math.,
217 (2000), pp. 101–113.

[6] M. K. Chari and M. Joswig, Complexes of discrete Morse functions, Discrete Math., 302
(2005), pp. 39–51.

[7] Ö. Eǧecioǧlu and T. F. Gonzalez, A computationally intractable problem on simplicial
complexes, Comput. Geom., 6 (1996), pp. 85–98.

[8] R. Forman, Morse theory for cell complexes, Adv. Math., 134 (1998), pp. 90–145.
[9] R. Forman, Morse theory and evasiveness, Combinatorica, 20 (2000), pp. 489–504.

[10] R. Forman, A user’s guide to discrete Morse theory, Sém. Lothar. Combin., 48 (2002), pp. Art.
B48c, 35 pp.

[11] E. Gawrilow and M. Joswig, polymake: a framework for analyzing convex polytopes, in
Polytopes—Combinatorics and Computation, G. Kalai and G. M. Ziegler, eds., DMV
Sem. 29, Birkhäuser, Basel, Switzerland, 2000, pp. 43–73.

[12] E. Gawrilow and M. Joswig, polymake: Version 2.1.0, http://www.math.tu-berlin.
de/polymake, 2004. With contributions by T. Schröder and N. Witte.

[13] M. Grötschel, M. Jünger, and G. Reinelt, A cutting plane algorithm for the linear ordering
problem, Oper. Res., 32 (1984), pp. 1195–1220.

[14] M. Grötschel, M. Jünger, and G. Reinelt, On the acyclic subgraph polytope, Math. Pro-
graming, 33 (1985), pp. 28–42.

[15] M. Hachimori, Simplicial complex library. Available online from http://infoshako.sk.
tsukuba.ac.jp/h̃achi/math/library/index eng.html, 2001.

[16] P. L. Hammer, E. L. Johnson, and U. N. Peled, Facets of regular 0-1 polytopes, Math.
Programing, 8 (1975), pp. 179–206.

[17] P. Hersh, On optimizing discrete Morse functions, Adv. in Appl. Math., 35 (2005), pp. 294–
322.

[18] C. S. Iliopoulos, Worst-case complexity bounds on algorithms for computing the canonical
structure of finite Abelian groups and the Hermite and Smith normal forms of an integer
matrix, SIAM J. Comput., 18 (1989), pp. 658–669.

[19] J. Jonsson, On the topology of simplicial complexes related to 3-connected and Hamiltonian
graphs, J. Combin. Theory Ser. A, 104 (2003), pp. 169–199.

[20] M. Joswig, Computing invariants of simplicial manifolds, preprint. Available online from
math.AT/0401176, 2004.

[21] M. Jünger, Polyhedral Combinatorics and the Acyclic Subdigraph Problem, Research and
Exposition in Mathematics, 7, Heldermann Verlag, Berlin, 1985.

[22] B. Korte and J. Vygen, Combinatorial optimization. Theory and algorithms, 2nd ed., Algo-
rithms and Combinatorics, 21, Springer-Verlag, Berlin, 2002.

[23] T. Lewiner, H. Lopes, and G. Tavares, Optimal discrete Morse functions for 2-manifolds,
Comput. Geom., 26 (2003), pp. 221–233.

[24] T. Lewiner, H. Lopes, and G. Tavares, Towards optimality in discrete Morse theory, Ex-
periment Math., 12 (2003), pp. 271–285.

[25] F. H. Lutz, Small examples of nonconstructible simplicial balls and spheres, SIAM J. Discrete
Math, 18 (2004), pp. 103–109.

[26] F. H. Lutz, A vertex-minimal nonshellable simplicial 3-ball with 9 vertices and 18 facets,
Electronic Geometry Models, (2004). Available online from www.eg-models.de.

[27] J. R. Munkres, Elements of Algebraic Topology, Addison-Wesley, Menlo Park, CA, 1984.
[28] G. Reinelt, The Linear Ordering Problem: Algorithms and Applications, Research and Ex-

position in Mathematics, 8, Heldermann Verlag, Berlin, 1985.
[29] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Algorithms and Com-

binatorics, 24, Springer-Verlag, Berlin, 2003.
[30] J. Shareshian, Discrete Morse theory for complexes of 2-connected graphs, Topology, 40

(2001), pp. 681–701.
[31] D. M. Warme, P. Winter, and M. Zachariasen, Exact solutions to large-scale plane steiner

tree problems, in Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete
Algorithms, SIAM, Philadelphia, 1999, pp. 979–980.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 26–41

RANDOMIZED PURSUIT-EVASION WITH LOCAL VISIBILITY∗

VOLKAN ISLER† , SAMPATH KANNAN‡ , AND SANJEEV KHANNA‡

Abstract. We study the following pursuit-evasion game: One or more hunters are seeking to
capture an evading rabbit on a graph. At each round, the rabbit tries to gather information about
the location of the hunters but it can see them only if they are located on adjacent nodes. We
show that two hunters suffice for catching rabbits with such local visibility with high probability.
We distinguish between reactive rabbits who move only when a hunter is visible and general rabbits
who can employ more sophisticated strategies. We present polynomial time algorithms that decide
whether a graph G is hunter-win, that is, if a single hunter can capture a rabbit of either kind on G.

Key words. pursuit-evasion games, local information, path planning, visibility

AMS subject classifications. 49N75, 91A43

DOI. 10.1137/S0895480104442169

1. Introduction. Pursuit-evasion games are problems of fundamental interest
in many diverse fields such as computer science, operations research, game theory, and
control theory. The goal of a pursuit-evasion game is to find a strategy for a pursuer
trying to catch an evader who, in turn, tries to avoid capture indefinitely. There are
many different variations of pursuit evasion games based on the following:

• Environment where the game is played : Examples include plane, grid, and
graph.

• Information available to the players: Do they know each others’ positions all
the time? Does the pursuer know the evader’s strategy?

• Controllability of the players’ motion: Is there a bound on their speed? Can
they turn with arbitrary angles?

• Meaning of capture: In some games, the pursuer captures the evader if the
distance between them is less than a threshold. In other games, the pursuers
must see or surround the evader in order to capture it.

Earlier studies of pursuit-evasion were motivated by control tasks such as in-
tercepting missiles [4]. The problem is addressed in the robotics community for its
applications in collision avoidance, search and rescue, and air-traffic control [10, 9].
In these models typically the motion of the evader is modeled by a stochastic process.
However, recently there has been increasing interest in modeling games where the
evader is more “intelligent” and has certain sensing capabilities [19]. Pursuit-evasion
games on graphs [18, 16, 13, 12, 6, 1] have been studied not only for their applica-
tions in network security and protocol design (e.g., [3, 11]) but also for their relations
to fundamental properties of graphs such as vertex separation [7]. A remark about

∗Received by the editors March 17, 2004; accepted for publication (in revised form) August 5,
2005; published electronically February 15, 2006. A preliminary version of this paper appeared in
Proceedings of the ACM–SIAM Symposium on Discrete Algorithms (SODA04).

http://www.siam.org/journals/sidma/20-1/44216.html
†Corresponding author. Department of Computer Science, Rensselaer Polytechnic Institute, 110

Eighth Street, Lally 205, Troy, NY 12180-3590 (isler@cs.rpi.edu). The work of this author was
supported in part by NSF-IIS-0083209, NSF-IIS-0121293, MURI DAAH-19-02-1-03-83, and a grant
from Rensselaer Polytechnic Institute.

‡Department of Computer and Information Science, University of Pennsylvania, Philadelphia,
PA 19104 (kannan@cis.upenn.edu, sanjeev@cis.upenn.edu). The work of the second author was
supported in part by NSF grant CCR0105337. The work of the third author was supported by an
Alfred P. Sloan Research Fellowship and by an NSF Career Award CCR-0093117.

26

RANDOMIZED PURSUIT-EVASION WITH LOCAL VISIBILITY 27

the terminology is in order. In the literature, the names pursuer-evader, cop-robber,
monster-princess, hunter-rabbit, and sheriff-thief have been used somewhat synony-
mously. We adopt the hunter-rabbit term for it emphasizes the discrete nature of the
game [5, 1].

In this paper, we address a different aspect of the problem that has not received
much attention so far. We study the relationship between the information available to
the rabbit and the conditions to capture it. The basic model of our game is as follows:
The players are located on the nodes of a graph. At every time step, they move to
nodes in their neighborhoods (which include the current node) simultaneously. We
say a rabbit is caught or captured if at the beginning of a time step it occupies the
same node as a hunter. We associate the information available to the rabbit with its
visibility. If the rabbit has complete information about the location of the hunter(s)
during the entire game, we say the rabbit has full visibility. On the contrary, if the
rabbit has no information about the hunters, then we say it has no visibility.

In our present work, we study the game when the rabbit has local visibility. That
is, it can only see the nodes that are adjacent to its current location. When the
hunter is located at an adjacent node, the rabbit has complete information about his
location. However, if the hunter is not visible, then the rabbit must infer the hunter’s
location based on the time and location of their last encounter. Note that this model
is different from the “visibility-based pursuit-evasion” work [9, 17], where the goal is
to eventually “see” an evader which has complete visibility and unbounded speed.

Recently, Adler et al. studied the game when the rabbit has no visibility [1]. They
showed that a single hunter can catch the rabbit on any (connected) graph. The full
visibility version has also been studied [16, 6]. It is known that under the full visibility
model, the class of graphs on which a single hunter suffices is the class of dismantlable
graphs. The number of hunters necessary to capture the rabbit on a graph G is known
as the cop (hunter) number of G. It is known that [2] the cop number of planar graphs
is at most 3 but the cop number of general graphs is still an open question [15, 8].

a b c

R
H

Fig. 1. On this graph, the hunter cannot capture the rabbit using a deterministic strategy.

An interesting aspect of our game is that on most graphs the rabbit cannot be
captured using a deterministic strategy. A simple example is illustrated in Figure 1.
Suppose that, on this graph, the hunter has a deterministic strategy of visiting the
labeled vertices in the order a, b, c. Then, we can design a rabbit strategy that waits
until the hunter arrives at b and escapes to a. Afterward, while the hunter is visiting c,
the rabbit escapes to b and it is easy to see that by repeating similar moves, the rabbit
can always avoid the hunter. However, on this graph there is a simple randomized
strategy for the hunter: Pick one of the leaves at random and visit that leaf!

Therefore, we will focus on randomized strategies. The previous body of work for
the full visibility case [16, 6, 15, 8, 2] derandomized the game by forcing the players to
take turns moving, rabbit followed by hunter at each step. However, when the players

28 VOLKAN ISLER, SAMPATH KANNAN, AND SANJEEV KHANNA

move simultaneously, the game is not well defined for deterministic strategies even if
the players have full visibility: Suppose the game is played on a complete graph. In
this case it is easy to see that a single hunter can catch the rabbit simply by guessing its
location in the next turn. However, if the hunter’s strategy is deterministic, knowing
it, the rabbit would never get caught. Similarly, the hunter could always catch the
rabbit in a single move if he knew its strategy.

Our results and techniques. Our main result is an algorithmic characteriza-
tion for the local visibility case. We show that two hunters always suffice on general
graphs and present a polynomial time procedure that decides whether a single hunter
is sufficient to capture the rabbit on an input graph G. In order to obtain an efficient
decision procedure, we establish that the uncertainty in the rabbit’s knowledge of the
hunter’s location satisfies an interesting monotonicity property. This monotonicity
property turns out to be crucial for obtaining a polynomial time characterization.

In the winning strategy for two hunters, a central component is to have one hunter
mainly focus on keeping the rabbit on the move. This motivated us to study a natural
class of reactive rabbit strategies, where the rabbit moves only when the hunter is in
its sight. We show that the class of hunter-win graphs (i.e., graphs on which a single
hunter suffices) against general rabbits is strictly smaller than the class of hunter-win
graphs against reactive rabbits. We present a characterization algorithm for reactive
rabbits as well.

The characterization algorithms mark pairs of vertices according to certain rules,
where the pairs correspond to players’ positions. To understand the corresponding
hunter strategies on hunter-win graphs, we first present a hunter strategy for the full
visibility case. Next, we show that omitting one of the rules from the characterization
algorithms yields an algorithm that recognizes graphs that are hunter-win against
rabbits with full visibility. Using these two results, we show how the hunter exploits
the local visibility if the game is played on a graph G such that on G, the hunter can
win against a rabbit with local visibility but not against a rabbit with full visibility.

We note that when the rabbit’s visibility is extended to distance 2, there exist
graphs for which Ω̃(

√
n) hunters are necessary.

Organization of the paper. The paper is organized as follows: In section 2,
we review necessary concepts that will be used throughout the paper. In section 3,
we present a winning strategy for two hunters on general graphs. Next, we study the
graphs on which a single hunter suffices, both for reactive (section 4.1) and general
(section 4.2) rabbits. Section 5 is dedicated to the study of hunter strategies on
hunter-win graphs. A gap example distinguishing the power of the two types of rabbit
strategies is also presented in section 5. We conclude the paper with a discussion on
extensions of our work.

2. Preliminaries. Throughout the paper, we use the following notation for the
neighborhood of vertex v: N(v) denotes the set of vertices that are adjacent to v
and we always assume that v ∈ N(v). N i(v) is defined as ∪u∈Ni−1(v)N(u). Unless
otherwise stated, n denotes the number of vertices.

The game we study is formally defined as follows: It is played in rounds. In the
beginning of a round, suppose a player (either a hunter or a rabbit) is located at
vertex v. First, the player checks N(v) and if there is another player located at a
vertex u ∈ N(v), this information is revealed to the player. In this case we say the
two players see each other. Next, all the players make a decision about where to move
and choose a vertex in their neighborhoods. At the end of the round, all players move
to their chosen vertex simultaneously. A hunter catches the rabbit if they are located

RANDOMIZED PURSUIT-EVASION WITH LOCAL VISIBILITY 29

on the same vertex.

A reactive rabbit strategy is a rabbit strategy where the rabbit is not allowed
to move from a vertex v unless the hunter is in N(v). A rabbit strategy is general
(sometimes called nonreactive) if it is not forced to be reactive. In other words, the
rabbit can move even if the hunter is not visible. A graph G is hunter-win against
reactive rabbits if there exists a hunter strategy that catches any reactive rabbit on
G with nonzero probability for all possible starting configurations. A graph that is
hunter-win against general rabbits is defined similarly.

Configuration versus state. For a single hunter game, a configuration refers
to an ordered pair (h, r) which corresponds to the locations of the hunter and the
rabbit, respectively. Note that this information may not be available to the rabbit
at all times due to its local visibility. A configuration (h, r) is adjacent if h ∈ N(r).
We use the notation 〈H, r〉 to denote the state of the game where r is the location of
the rabbit and H corresponds to the set of vertices where the hunter can possibly be
located (based on the information available to the rabbit). For the full visibility case,
if the current configuration is (h, r), the state is 〈{h}, r〉. For the zero visibility case,
the state is either 〈G− {r}, r〉 or 〈{r}, r〉. For the local visibility case that we study,
state has a more complex structure, and it evolves over time even when neither the
hunter nor the rabbit is in motion.

Suppose u and v are two nodes of a graph G such that N(u) ⊆ N(v). Then, the
operation of deleting u from G is called a folding of G and we say u folds onto v.
A graph is called dismantlable if there is a sequence of folds reducing it to a single
vertex. We say u eventually folds onto v if there is a sequence u0 = u, u1, . . . , uk = v
such that ui folds onto ui+1, 0 ≤ i < k. Let G be a dismantlable graph and ψ be
a folding sequence reducing G to a single vertex v. We can visualize ψ as a tree T
whose vertices are the vertices of G such that when rooted at v every vertex in T is
folded onto its parent.

If a graph G is not dismantlable, this means that after a sequence of foldings ψ it
reduces to a graph H which cannot be folded any further. We refer to the graph H as
the residual graph of G, or just the residual, if G can be inferred from the context. It is
known that the residual is unique up to isomorphism [6]. We can visualize the folding
process for nondismantlable graphs as a forest of trees Th hanging from each vertex
h ∈ H (see Figure 3). Th is composed of vertices that eventually fold onto h. We
define ψ(u) = w if and only if u ∈ Tw, w ∈ H. We note that the tree representation
depends on the folding sequence ψ and in general it is not unique.

3. A winning strategy with two hunters. In this section, we present a strat-
egy with two hunters that catches the rabbit on any graph. In general, a single hunter
cannot always capture the rabbit. This can be seen by considering a cycle of length at
least 4 as the input graph: The rabbit’s strategy is to wait until the hunter becomes
visible and move to its neighbor which does not contain the hunter. This strategy
guarantees that it will never get caught.

The strategy of the two hunters is divided into epochs that are comprised of two
phases. An epoch starts with the hunters located at a predetermined vertex. The
first phase starts at time t = 1.

In Phase One, two hunters move together and their goal is to see the rabbit.
To achieve this, the hunters generate a random vertex label v ∈ {1 . . . n} and move
together to v. Afterward, they wait at v until either (t mod n) = 0 or the rabbit
becomes visible. If the rabbit becomes visible at any time, the first phase is over and
the second phase starts. Otherwise, the hunters repeat the same process by generating

30 VOLKAN ISLER, SAMPATH KANNAN, AND SANJEEV KHANNA

a new label v.
We claim that the first phase lasts only n2 log n steps with high probability. To

see this, let r1, r2, . . . be the location of the rabbit at times n, 2n, 3n, Suppose
the hunters have not seen the rabbit until time i × n. At that time, the probability
that they generate a label in N(ri+1) is at least 1

n . Since they generate a label after
every n steps, the first phase will be over in n2 log n steps with high probability.

In Phase Two, the hunters try to catch the rabbit as follows: Suppose the second
phase starts at time t = t0 and let ti = t0 + i. At that time both hunters H1 and
H2 are at vertex h and the rabbit is at vertex r, with r ∈ N(h). For the rest of the
second phase, let ri denote the position of the rabbit at time t = ti and let us define
r0 = h.

The strategy of H1 is as follows: At time t = ti, he is located at ri−1. With
probability p1 = 1

n2 , he attacks the rabbit by generating a random neighbor of ri−1

and going there in the next step. With probability 1 − p1, he chases the rabbit by
going to ri in the next step. The second phase ends with failure if H1 attacks and
misses the rabbit.

The strategy of H2 is based on the following observation: If H1 chases the rabbit
for more than n steps, the rabbit must revisit a vertex by the pigeonhole principle.
Let u be the first vertex revisited and suppose that at time tr, the rabbit visits a
vertex v ∈ N(u) for the first time before revisiting u. The goal of H2 is to enter v at
the same time as the rabbit. To achieve this, first he guesses u, v, and tr. In order
to reach u, he chases H1 by moving to his location in the previous time step until
u. Afterward, H2 waits until time t = tr − 1 and goes to v from u. We say H2 is in
chasing mode if he is following H1 and he is in attacking mode after he arrives at u.
The second phase ends with failure if H2 misses the rabbit when it arrives at v. To
summarize, at time t = t0, the hunters are at r0 and the rabbit is at r1. When the
hunters are chasing, the locations of the rabbit H1 and H2 at time ti are ri, ri−1, ri−2,
respectively. The phase ends when either hunter attacks. If no hunter attacks within
n2 steps, they end the phase and move to the predetermined vertex to start a new
epoch.

Next, we state the crucial property of the strategy of the hunters.
Lemma 1. During Phase Two, the rabbit cannot distinguish between the modes

of hunter H2.
Proof. If the attacking mode starts at time t = t1, the location of H2 is the same

for both modes. If it starts afterward, we show that if the rabbit sees H2, it will get
caught with nonzero probability.

Suppose the rabbit sees H2 at time t = t2, which implies r2 ∈ N(r0). In this case,
with probability at least p1

n , H1 can decide to attack from r0 to r2 at time t = t1 and
catch the rabbit.

Next, suppose the rabbit sees H2 at time t > t2. If H2 was in chasing mode at
that time, the fact that the rabbit sees H2 implies ri ∈ N(ri−2). In this case as well,
H1 could decide to attack in the previous step and catch the rabbit with probability p1

n .
Therefore H2 must be invisible to the rabbit during the chasing mode. But, H2 will
also be invisible in the attacking mode because as soon as the rabbit enters a vertex
v where it can see H2, H2 can catch it by guessing v and the arrival time correctly.

Therefore in order to avoid getting caught, the rabbit must avoid seeing H2. But
then the information available to the rabbit will be the same, no matter which mode
H2 is in: H2 is out of its sight since the beginning of the second phase.

Lemma 2. During Phase Two, the hunters succeed with nonzero probability.

RANDOMIZED PURSUIT-EVASION WITH LOCAL VISIBILITY 31

Proof. As discussed previously, after the start of the second phase, the rabbit
must revisit a vertex u at time k ≤ n. If the rabbit does not see H2 until t = k,
H2 can catch it with probability 1

n3 at least by guessing tr, u, v ≤ n. Note that H1

will still be chasing the rabbit with probability at least 1− k
n2 ≥ 1− 1

n . On the other
hand, if the rabbit sees H2, it is caught with probability at least 1

n3 = min{p1

n , 1
n3 },

by Lemma 1.

The length of an epoch is O(n2 log n): Phase One lasts O(n2 log n) time with high
probability and Phase Two lasts Θ(n2) steps. We have established that in Phase Two,
the rabbit is caught with probability at least 1

n3 . Therefore after n3 log n epochs, each
of which last O(n2 log n) steps at most, the rabbit will be caught, yielding our main
result.

Theorem 3. Two hunters can catch a rabbit with local visibility on any graph
with high probability.

4. Hunter-win graphs. In this section, we start the study of graphs on which a
single hunter suffices. An interesting feature of the strategy of two hunters is that one
hunter makes the rabbit move constantly and therefore forces it into making mistakes.
This suggests that moving when a hunter is not visible may be a disadvantage for the
rabbit.

To study this phenomenon we introduce reactive strategies where the rabbit moves
only when the hunter is visible and ask the question of whether the class of hunter-win
graphs against reactive graphs is equivalent to the class of hunter-win graphs against
general rabbits. The answer turns out to be negative.

a b c d e f g h

x y z w

Fig. 2. This graph is hunter-win against reactive rabbits but not against general rabbits.

The graph in Figure 2 is hunter-win against reactive rabbits. The input graph
consists of a cycle and the gadget shown in the figure. The hunter’s strategy is to
drive the rabbit into the gadget, by chasing it along the cycle. Once the rabbit is in
the gadget, the hunter drives the rabbit to a vertex such that he can reach another
vertex (without being seen) whose neighborhood dominates the rabbit’s neighborhood.
Next, we present the details of the hunter’s strategy. In the following, without loss of
generality, we assume that the hunter knows the rabbit’s next move.

In order to capture the (reactive) rabbit, the hunter first chases it counter-
clockwise until the rabbit is at b and the hunter is at a. It can be easily verified
that the rabbit cannot avoid reaching b without being captured.

If the rabbit moves to x from b, the hunter travels clockwise, arrives at c via y, and
wins the game (note that the rabbit, being reactive, will not move in the meantime).
Otherwise, if the rabbit moves to c, the hunter moves to b. In the next move, if the
rabbit moves to y from c, the hunter travels clockwise, arrives at d through e, and
wins the game. If the rabbit moves to d from c, then the hunter moves to c.

From d (while the hunter is at c), the rabbit has two options (it will be captured
if it goes to y). If it moves to e from d, the hunter goes to y and then to z. The rabbit
must then move to w to avoid capture. In this case the hunter goes to f and wins the

32 VOLKAN ISLER, SAMPATH KANNAN, AND SANJEEV KHANNA

game. Otherwise, if the rabbit moves to z from d, the hunter travels clockwise again
and arrives at e through g and w. From z the rabbit can only go to y, in which case
the hunter moves to d from e and wins the game.

Therefore, no matter which strategy it chooses, the hunter can capture a reactive
rabbit. However, once it arrives at b, a general rabbit can keep moving in the opposite
direction of a until it leaves the gadget. If the length of the cycle is greater than 14, the
hunter cannot reach the other entrance of the gadget before the rabbit and therefore
a general rabbit is safe on this graph.

4.1. Characterization of hunter-win graphs against reactive rabbits.
In this section, we describe an algorithm that recognizes hunter-win graphs against
reactive rabbits. The algorithm marks configurations (h, r) according to the following
rules.

Algorithm Mark-Reactive:
Mark all configurations (v, v) for every vertex v. (Initialization)
Repeat

Mark (h, r) if for all r′ ∈ N(r) there exists a vertex h′ ∈ N(h) with (h′, r′) marked.
(Stride Rule)

For all (h′, r) that are marked, mark (h, r) for all h ∈ N(h′)\N(r). (Stealth Rule)
Until no further marking is possible.

Next, we prove the soundness (if all configurations are marked, then the graph is
hunter-win) and completeness (if the graph is hunter-win, then all configurations will
be marked) properties of the marking algorithm.

Soundness. The proof is by induction on the round k in which a configuration is
marked.

When k = 1 only the configurations (v, v) are marked and the hunter trivially
wins the game in these configurations.

Suppose the configurations marked in the first k rounds are sound and consider
the configuration (h, r) marked during step k + 1. If (h, r) was marked using the
Stride Rule, during the execution of the game, the hunter can force a configuration
marked during the kth step with nonzero probability. Hence these configurations
are sound. If, on the other hand, the configuration (h, r) is marked by the Stealth
Rule, we observe that the rabbit will remain at vertex r since the hunter is out of its
sight and hence the hunter can reach the configuration (h′, r) which has been marked
during the previous steps. Therefore the Stealth Rule is also sound by the inductive
hypothesis.

Completeness. Clearly, if the rabbit is captured the game ends at a marked
configuration. Otherwise, we show that the rabbit can always stay in an unmarked
configuration and hence never get caught. Suppose there is an unmarked configuration
(h, r) and the hunter and the rabbit are at vertices h and r, respectively. There are
two cases: If h ∈ N(r), the rabbit must have a move to a vertex r′ such that there
exists no h′ ∈ N(h) with (h′, r′) marked. Otherwise (h, r) would be marked by the
Stride Rule. On the other hand, if h /∈ N(r), no matter which vertex h′ the hunter
moves, (h′, r) is unmarked. Otherwise (h, r) would be marked by the Stealth Rule.

We can now state the result of this section which follows from the soundness and
completeness of the marking algorithm.

Theorem 4. A graph G is hunter-win against reactive rabbits if and only if the
algorithm Mark-Reactive marks all configurations.

RANDOMIZED PURSUIT-EVASION WITH LOCAL VISIBILITY 33

4.2. Characterization of hunter-win graphs against general rabbits. For
reactive rabbits, it is easy to see that on a hunter-win graph every rabbit walk can be
intercepted (i.e., the rabbit gets caught) by the hunter in O(n3) steps. However, it is
far from being clear that such a polynomial length intercepting walk (i.e., a witness)
exists for nonreactive rabbits. The difficulty is that at any point in time, the rabbit
can infer a subset H ⊆ V of possible hunter locations and plan its motion accordingly.
This suggests that the state of the game may require specifying arbitrary subsets of
vertices, potentially leading to exponential witnesses. Fortunately, we can establish a
monotonicity property to establish once again polynomial size witnesses.

Let 〈H, r〉 be the state of the game where H is the set of possible hunter locations
when the rabbit is at r. When the rabbit and the hunter are at adjacent vertices r and
h, respectively, the rabbit knows the hunter’s position with certainty and therefore
H = {h}. Now suppose the game starts at configuration (h, r).

Proposition 5. The hunter can reach an adjacent configuration from any start-
ing configuration (h, r).

The proof of Proposition 5 is implicit in the strategy presented in section 3.
During Phase One, the two hunters act as one and we showed that their strategy
ensures that the hunters and the rabbit will end up in adjacent vertices in n steps
with nonzero probability. This means that, no matter which path rabbit takes, there
exists a hunter path of length at most n that leads to an adjacent configuration.

Proposition 6. A graph G is hunter-win if and only if the hunter wins starting
from any adjacent configuration.

Proof. If the graph is hunter-win, the hunter must win from all starting con-
figurations including the adjacent ones. Conversely, if the hunter can win from any
adjacent configuration, then starting from any configuration he can reach an adjacent
configuration by Proposition 5 and win the game from here on.

Therefore, by Proposition 6, on a hunter-win graph, we can assume that the game
starts from an initial configuration where the players see each other. In addition,
without loss of generality, we assume that the rabbit moves so as to maximize the
time taken for capture and the hunter moves so as to minimize it.

We can view any hunter-win game as a sequence of rounds R1, . . . , Rp where each
round starts with the players located at adjacent vertices. Hence, the rabbit has full
knowledge of the hunter’s position. Clearly, there are at most n2 rounds and the
rounds do not repeat.

Lemma 7. For the optimal hunter strategy, the length of each round is O(n2).
Proof. Partition the round into segments of length n + 1 each. The rabbit must

revisit a vertex r within the same segment. Let 〈H1, r1〉 and 〈H2, r2〉 be the state
of the game during the first and second visits. First, we show that H1 ⊆ H2. This
is because, between r1 and r2, the rabbit cannot visit any vertex u with u ∈ N(h),
h ∈ H1. If the hunter is at h, the rabbit would be captured. Next, if H1 = H2, then
the part of the hunter strategy between r1 and r2 is redundant and hence the hunter
can shorten the game. Therefore as the rabbit keeps visiting the same vertex, its
uncertainty is monotonically increasing and after at most n revisits the state of the
game becomes 〈G−N(r), r〉. In this case, either the rabbit gets caught if it moves or
the hunter reveals himself, ending the round. Since the rabbit has to revisit a vertex
every n steps and there are at most n revisits, the lemma follows.

Since the length of a round is O(n2) and there are n2 rounds, we conclude that
the total length of a hunter-win game is O(n4).

Our characterization algorithm for general rabbits is based on the existence of
such a polynomial size witness. We will mark only adjacent configurations: if the

34 VOLKAN ISLER, SAMPATH KANNAN, AND SANJEEV KHANNA

adjacent configurations are all marked, by Proposition 6 the hunter wins from all
starting configurations. A general rabbit can move even if the hunter is not visible.
In order to capture this capability we need to generalize the stealth moves, described
next.

4.2.1. Stealth moves. A k-stealth move from configuration (h, r) with h ∈
N(r) to a marked configuration (h′, r′) is defined as follows: For every rabbit path
Pr = {r, r1, . . . , rk = r′} of length k, the hunter has a path Ph = {h, h1, . . . , hk = h′}
such that hi /∈ N(ri) for i = 1, . . . , k − 1, hk ∈ N(rk), and (hk, rk) is marked. We
refer to Ph as the stealth path corresponding to Pr. A configuration (h, r) is marked
by the Stealth Rule if for all r′ ∈ Nk(r), there exists a k-stealth move to a marked
configuration (h′, r′). Note that the Stealth Rule for k = 1 subsumes the Stride Rule.

Lemma 8. The markings corresponding to stealth moves are sound.
Proof. Suppose all previously marked adjacent configurations are sound and con-

sider the next adjacent configuration (h, r) marked by a stealth move of length k. At
time t = 0 the rabbit is located at r. Since we mark only the adjacent configurations,
the state of the game is 〈{h}, r〉. Take any rabbit path of length k, and suppose at
time t = i the rabbit is at vertex ri. Let r′1, . . . , r

′
p be the vertices accessible from ri

in the remaining k − i steps and P1, . . . Pp be the corresponding stealth paths such
that at the end of k steps, Pj ends at vertex h′

j and (h′
j , r

′
j) is marked. Let Ej be

the event that the hunter has chosen path Pj , j = 1, . . . , p, and let hj be the jth
vertex on Pj . The claim follows from the observation that no matter which path
Pj the hunter chooses, the information available to the rabbit is the same—namely,
the hunter was not visible for the last i steps. Therefore the state of the game is
〈H, r〉 where {hj |1 ≤ j ≤ p} ⊆ H. Since the rabbit cannot distinguish between the
events Ej , no matter which final destination r′j it chooses, the hunter can be at the
corresponding vertex hj and arrive at the already marked configuration (h′

j , r
′
j).

The stealth moves starting from configuration (h, r) and ending at configuration
(h′, r′) can be computed efficiently by dynamic programming.

We will need an intermediate look-up table T , with T [h, r, h′, r′, k] = TRUE if
and only if for any rabbit path {r, r1, . . . , rk = r′} of length k there is a stealth path
of length k that starts from h and ends at h′.

The entries of the table T are filled as follows:
(i) T [h, r, h′, r′, 0] = TRUE if and only if h = h′, r = r′, and h′ ∈ N(r′).
(ii) T [h, r, h′, r′, 1] = TRUE if and only if h′ ∈ N(h), r′ ∈ N(r), and h′ ∈ N(r′).
(iii) T [h, r, h′, r′, k + 1] = TRUE if and only if for all u ∈ N(r) there is a vertex

v ∈ N(h) \N(u) with T [v, u, S, h′, r′, k] = TRUE for 1 ≤ k ≤ n2.
We now present a marking algorithm that uses the look-up table T to compute

the stealth moves.

Algorithm Mark-General:
Mark all configurations (v, v) for every vertex v. (Initialization)
Repeat

For all configurations (h, r) with h ∈ N(r), mark (h, r) if there exists an index
k ≤ n2 such that for all r′ ∈ Nk(r) there exists a vertex h′ with T [h, r, h′, r′, k] =
TRUE and (h′, r′) is marked. (Stealth Rule)
Until no further marking is possible.

Lemma 9. If the graph is hunter-win, then the marking algorithm Mark-General
will mark all adjacent configurations.

RANDOMIZED PURSUIT-EVASION WITH LOCAL VISIBILITY 35

Proof. Let (h, r) be an adjacent configuration left unmarked after the execution
of algorithm Mark-General. We claim that the rabbit can get to an adjacent config-
uration (h′, r′) that is unmarked. Suppose not. This means that for any rabbit path
r, r1, r2, . . . , rk there is a hunter path h, h1, h2, . . . , hk with hk ∈ N(rk) and (hk, rk) is
marked. By Lemma 7, we have k ≤ n2. This implies that (h, r) would be marked by
the Stealth Rule, which gives us the desired contradiction.

Therefore, starting from any unmarked adjacent configuration (h, r), the rabbit
can reach another unmarked adjacent configuration. This means that the rabbit will
never get caught, since a capture implies that the game enters the configuration (v, v)
for some vertex v which is a marked adjacent configuration.

Theorem 10. A graph G is hunter-win against general rabbits if and only if the
algorithm Mark-General marks all adjacent configurations.

Proof. If all the configurations are marked, G is hunter-win due to the fact that the
Stealth Rule is sound (Lemma 8). Conversely, if there is an unmarked configuration,
the rabbit is never caught by Lemma 9.

5. Complete visibility and dismantlable graphs. When the rabbit has full
visibility, the Stealth Rule does not make sense. In fact, we will show that the Stride
Rule against reactive rabbits is sound and complete against rabbits with full visibility.

Algorithm Mark-FullVisibility:

Mark all configurations (v, v) for every vertex v.

Repeat

Mark (h, r) if for all r′ ∈ N(r) there exists a vertex h′ ∈ N(h) with (h′, r′) marked.
(Stride Rule)

Until no further marking is possible.

It turns out that the algorithm Mark-FullVisibility recognizes hunter-win graphs
against rabbits with full visibility.

u

v

w
x

u′

Tw

H

Fig. 3. Visualization of the folding procedure for a nondismantlable graph. The vertices w, v,
and x are in the residual H. Since there is no edge from w to x, the edges shown with dashed lines
cannot exist.

We will need the following property of nondismantlable graphs.

Proposition 11. Let G be a nondismantlable graph, ψ be a folding sequence,
and H be the residual. Let x and w be two distinct vertices in H and Tx and Tw be
the corresponding folding trees (see Figure 3). If there exists a vertex u ∈ Tw that is
adjacent to a vertex u′ ∈ Tx, then x ∈ N(w).

Proof. Without loss of generality, suppose u was folded before u′. This implies
that the parent of u must be adjacent to u′. We replace u with its parent and continue

36 VOLKAN ISLER, SAMPATH KANNAN, AND SANJEEV KHANNA

this process of propagating the edge between u and u′, which must eventually reach
the roots w and x of the corresponding trees.

Theorem 12. The algorithm Mark-FullVisibility marks all configurations if and
only if the input graph is dismantlable.

Proof. Suppose the input graph G is dismantlable. We can prove that all con-
figurations will be marked by induction on the order of G. Since G is dismantlable,
it must have two vertices u and v with N(u) ⊆ N(v). Let G′ = G − {u} and run
algorithm Mark-FullVisibility on G′. Suppose, inductively, that all configurations in
G′ are marked. Consider the marking algorithm for G which marks (u, u) first and
simulates the marking algorithm on G′ afterward. In addition, whenever (x, v) is
marked for a vertex x ∈ G′, we also mark (x, u). This is possible since that (x, v) is
marked implies that for all v′ ∈ N(v), there exists a vertex x′ ∈ N(x) with (x′, v′)
marked and N(u) ⊆ N(v). Next, we show that all the configurations (x, y) in G′ will
also get marked in G. Suppose there exists a configuration (x, y) that is marked in G′

but not in G. Consider the first such configuration that is discovered in the marking
of G. It must be that u ∈ N(y) and that for all x′ ∈ N(x), (x′, u) is not marked at
this point. Also, v ∈ N(y) since N(u) ⊆ N(v). Now using the fact that (x, y) gets
marked at this stage in G′, we know that there exists x′′ ∈ N(x) such that (x′′, v)
is already marked. But then (x′′, u) must also be marked at this point according to
the modified marking rule. A contradiction! Thus, any (x, y) marked in G′ will also
be marked in G. It follows that for any x such that (x, v) is marked in G′, we can
mark (x, u) in G. It is easy to see that for any x, the configuration (u, x) will also be
marked in G since u is adjacent to v and, by the argument above, for all x′ ∈ N(x),
(v, x′) is marked.

Now suppose the input graph is not dismantlable. Let ψ be a sequence of folds
reducing G to a residual graph H. For any two vertices u ∈ G and v ∈ H, we claim
that (u, v) is unmarked if ψ(u)
= v. Suppose this is not true and let (u, v) be the first
marked configuration such that ψ(u)
= v (Figure 3). Let w = ψ(u), w
= v. Note that
v must have a neighbor x such that x /∈ N(w); otherwise, v would fold onto w. When
(u, v) gets marked, there must be a vertex u′ ∈ N(u) such that (u′, x) is marked. If
ψ(u′) = x, this would imply x ∈ N(w) by Proposition 11. So it must be the case that
ψ(u′)
= x. But then, the fact that (u′, x) is marked contradicts the fact that (u, v)
is the first configuration marked with ψ(u)
= v. Therefore, we conclude that if the
graph is not dismantlable, the marking process will not mark all configurations.

As stated earlier, it has been shown that the class of graphs that are hunter-win
against rabbits with full visibility are precisely the class of dismantlable graphs [6].
Therefore we obtain the following corollary.

Corollary 13. A graph G is hunter-win against rabbits with full visibility if
and only if the algorithm Mark-FullVisibility marks all configurations.

We know that there are nondismantlable graphs that are hunter-win against rab-
bits with local visibility. An example is shown in Figure 4. The labels on the vertices
indicate their folding order: First, vertex 1 folds onto vertex 2; afterward, vertex 2
folds onto vertex 9, etc. After folding vertices 1 to 8, vertices 9 to 12 cannot be folded,
leaving a four-cycle as the residual. Therefore this graph is not dismantlable and con-
sequently it is not hunter-win against rabbits with full visibility. To see that the
hunter wins against rabbits with local visibility, let us define the mapping p : V → V ,
where V is the set of vertices. For v ∈ V with 1 ≤ v ≤ 8, p(v) is the vertex which v
folds onto. We define p(9) = 2, p(10) = 8, p(11) = 6, and p(12) = 4. The first obser-
vation is that the hunter wins the game if he can force the rabbit to go to vertex 1
while he is at vertex 2. Next, we observe that if the rabbit is at vertex v
= 1 and the

RANDOMIZED PURSUIT-EVASION WITH LOCAL VISIBILITY 37

1 7

2

3

4

5

6

8

9 10

1112

Fig. 4. This graph is hunter-win against rabbits with local visibility. However, a rabbit with
full visibility never gets caught.

hunter is at p(v), the rabbit must move to a lower numbered vertex. Now suppose the
rabbit is reactive. In this case, it can be verified that for any rabbit location r and
for any hunter location h /∈ N(r), the hunter has a path to p(r) that does not enter
N(r). Therefore, by visiting p(r) repeatedly the hunter can force a reactive rabbit to
eventually move to vertex 1 and win the game afterward.

Hence, the rabbit must have a nonreactive strategy, meaning that it must move
when the hunter is not visible. Consider the first time this happens: Suppose the
hunter and the rabbit are at vertices h and r with h ∈ N(r) and the rabbit takes
the path r → r′ → r′′ such that the hunter is not visible from r′. It can be shown,
by enumeration, that for any such vertices h, r, r′, and r′′, the hunter has a path
h → h′ → r′′ that captures the rabbit. Therefore the rabbit cannot have a nonreactive
strategy either and the graph is hunter-win against both types of rabbits.

We conclude this section with an interpretation of Theorem 12: If G is a graph
that is hunter-win against rabbits with local visibility but not against rabbits with
full visibility, the hunter captures the rabbit with local visibility using the stealth
moves.

5.1. Hunter strategy for dismantlable graphs. Given a folding tree T rooted
at vertex v, consider the vertex r where the rabbit is located. We say the hunter is an
ancestor of the rabbit if he is located on the path from r to v. Suppose the vertices
of T are ordered by their deletion times. The hunter strategy is based on the following
two lemmas.

Lemma 14. The hunter can always maintain ancestry.

Proof. Suppose the hunter is at vertex h and is an ancestor of the rabbit who
is located at vertex r. Let r′ be the rabbit’s location in the next round. If h is a
common ancestor of r and r′ on the folding tree T , then the lemma is trivially true.
Otherwise, since h is an ancestor of r and (r, r′) is an edge, using basic properties of
foldings it can be shown that h is adjacent to a vertex on the path that connects r′

to the root of T . We show that there is always such a vertex h′ with h′ ≥ r′ by a case
analysis on r′ (see Figure 5). Suppose for contradiction h′ < r′. We will show that h
must be adjacent to r′ thus allowing the hunter to catch the rabbit in one step.

Case (h > r′ > r). In this case all the ancestors of h′ deleted before h (including
r′) must have edges to h.

38 VOLKAN ISLER, SAMPATH KANNAN, AND SANJEEV KHANNA

’

’

’

’

’

’

’

h

h

h

h

hh

r

r

r

r

r

rr

h > r′ > r r′ > h r′ < r

Fig. 5. The hunter can always stay above the rabbit. The height of a vertex is proportional to
its label.

Case (r′ > h). All the ancestors of r deleted before r′ (including h) must have
an edge to r′.

Case (r′ < r). All the ancestors of h′ deleted before r (including r′) must have
an edge to h.

In fact, not only can the hunter maintain ancestry, but he can also reduce his
height in the tree gradually and therefore get closer and closer to the rabbit.

v

p(v) Cr

Cp

Ch

r

hp

Fig. 6. The hunter can make progress every time the rabbit revisits a vertex.

Lemma 15. Every time the rabbit revisits a vertex, the hunter can reduce its
height in the tree while maintaining ancestry.

Proof. Fix any rabbit cycle Cr and let v be the vertex with the lowest label on
this cycle and p(v) be its parent (see Figure 6). Since v was deleted first, p(v) must
have edges to the neighbors of v on the cycle, so we can make a new cycle by replacing
v with p(v). We continue this process until the cycle reaches h, the location of the
hunter (this must happen since the hunter is an ancestor at all times). Let us call this
cycle C. Let Cp be the cycle just before C which contains h’s child hp, instead of h.
Consider the path P = {h} ∪ (C ∩ Cp) ∪ {hp}. If the rabbit follows the cycle Cr, the
hunter can follow the path P and end up at hp which is lower than h.

We are now ready to present the hunter strategy on a dismantlable graph G.
First, the hunter builds the folding tree T for any folding sequence ψ. Afterward, he
simply guesses the vertex the rabbit will jump to and jumps to the lowest possible
ancestor of this vertex (see Figure 6). By Lemma 14 he can always remain an ancestor
of the rabbit. Further, he can reduce his height in T every time the rabbit revisits
a vertex (Lemma 15). Since the tree has a finite height, he can eventually catch the
rabbit.

RANDOMIZED PURSUIT-EVASION WITH LOCAL VISIBILITY 39

5.2. Extension to nondismantlable graphs. For nondismantlable graphs,
we can extend the notion of ancestry as follows. Suppose the rabbit is at r and the
hunter is at h. We say the hunter is an ancestor of the rabbit if there is a folding
of the vertices such that in the corresponding forest representation, h is located on
the path from r to the root of the tree that contains r. Once the hunter establishes
ancestry, it is easy to see that Lemmas 14 and 15 still hold—both for reactive and
general rabbits. Therefore the hunter can win the game afterward. Note that the
hunter can trivially establish ancestry on dismantlable graphs.

In addition, if we define each vertex as its trivial parent, it is clear that the rabbit
wins the game if the hunter can never become an ancestor. Therefore the class of
hunter-win graphs is precisely the class of graphs on which the hunter can become an
ancestor. One can view the stealth moves as giving the hunter the power to become
an ancestor on nondismantlable but hunter-win graphs such as the one in Figure 4.

6. Extending the rabbit’s visibility. Let us define rabbits with i-visibility as
the rabbits who can see all vertices within distance i. It is known that one hunter
always suffices to catch rabbits with 0-visibility [1]. In this paper, we studied rabbits
with 1-visibility and established that two hunters always suffice to catch such rabbits.
A natural question is how many hunters suffice when the rabbit has i-visibility.

Surprisingly, the number of hunters required for 2-visibility is unbounded: Con-
sider the random bipartite graph G = (U, V,E) with |U | = |V | = n and each edge
(u, v) is added with probability 1/

√
n.

For an arbitrary vertex u, let xi be the 0/1 random variable, which takes the
value 1 if and only if (u, i) ∈ E. The size of N(u) then becomes a random variable
X =

∑
i xi with the expected value of E[X] = n · 1√

n
=

√
n.

Using the Chernoff bound (see [14, p. 70]) with δ = 0.5,

Pr[X < (1 − δ)E[X]] < exp (−E[X]δ2/2) = exp (−
√
n/8).(1)

Let E1 be the event that a vertex has neighborhood of size less than
√
n/2. Using

the union bound and (1), the probability of E1 is at most n
exp (

√
n/8)

.

Let us also define the random variable yi which takes the value 1 if and only if
(u, i) ∈ E and (v, i) ∈ E. Here, v
= u is an arbitrary vertex. Let Y =

∑
i yi be the

size of the common neighborhood N(u) ∩N(v) with E[Y] = n · 1√
n
· 1√

n
= 1.

To bound the value of Y , we use the equation (see [14, p. 71])

Pr[Y > (1 + δ)E[Y]] < 2−(1+δ)E[Y] =
1

n3
,(2)

where δ is chosen such that (1 + δ) = 3 log(n).
Let E2 be the event that no two vertices have a common neighborhood of size

greater than 3 log(n). Summing (2) over all pairs of vertices and using the union
bound, we get that the probability of E2 is at most 1

n .
The probability that neither of the events, E1 and E2, happen is at least

p = 1 − n

e
√
n/8

− 1

n
.(3)

Since p becomes nonzero as n grows large, this means that for any (large) n, there

exists a graph G∗ where every vertex has at least
√
n

2 neighbors and the common
neighborhood of any two vertices has size at most 3 log n.

40 VOLKAN ISLER, SAMPATH KANNAN, AND SANJEEV KHANNA

Now suppose a rabbit with 2-visibility is evading G∗. Note that the rabbit can see
the hunters all the time. Without loss of generality, suppose the rabbit is located at a
vertex u ∈ U . We can also assume that all the hunters are located in U without any
decrease in their power. It easy to see that, on G∗, the number of hunters required is

at least (
√
n

2)/(3 log n) = Ω̃(
√
n). Otherwise the rabbit will always have a safe vertex

not accessible by the hunters.

7. Concluding remarks. In this paper, we have studied a pursuit-evasion game
where the players have only local visibility. We showed that two hunters can catch the
rabbit with high probability on any graph. In addition, we presented an algorithmic
characterization of graphs on which a single hunter suffices for capture. To the best
of our knowledge, this is the only pursuit-evasion game in the literature where the
pursuers’ strategy explicitly exploits the local visibility of the evader.

An important aspect of the game is the time required to catch the rabbit. For
0-visibility, one hunter succeeds in time O(n log n) [1]. For 1-visibility we showed that
two hunters succeed in Õ(n5) time. However, it is not clear whether a single hunter
can catch a rabbit on a hunter-win graph in polynomial time. We leave this as a
direction for future work.

Acknowledgment. The authors would like to thank Sudipto Guha for several
useful discussions.

REFERENCES

[1] M. Adler, H. Räcke, N. Sivadasan, C. Sohler, and B. Vöcking, Randomized pursuit-
evasion in graphs, in Proceedings of the International Colloquium on Automata, Languages
and Programming (ICALP), Málaga, Spain, 2002, pp. 901–912.

[2] M. Aigner and M. Fromme, A game of cops and robbers, Discrete Appl. Math., 8 (1984),
pp. 1–12.

[3] T. Basar and P. R. Kumar, On worst case design strategies, Comput. Math. Appl., 13 (1987),
pp. 239–245.

[4] T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory, 2nd ed., Classics Appl.
Math. 23, SIAM, Philadelphia, 1998.

[5] P. Bernhard, A.-L. Colomb, and G. P. Papavassilopoulos, Rabbit and hunter game: Two
discrete stochastic formulations, Comput. Math. Appl., 13 (1987), pp. 205–225.

[6] G. R. Brightwell and P. Winkler, Gibbs measures and dismantlable graphs, J. Combin.
Theory Ser. B, 78 (2000), pp. 141–166.

[7] J. A. Ellis, I. H. Sudborough, and J. S. Turner, The vertex separation and search number
of a graph, Inform. and Comput., 113 (1994), pp. 50–79.

[8] S. Fitzpatrick and R. Nowakowski, Copnumber of graphs with strong isometric dimension
two, Ars Combin., 59 (2001), pp. 65–73.

[9] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Motwani, A visibility-based
pursuit-evasion problem, Internat. J. Comput. Geom. Appl., 9 (1999), pp. 471–493.

[10] J. P. Hespanha, G. J. Pappas, and M. Prandini, Greedy control for hybrid pursuit-
evasion games, in Proceedings of the European Control Conference, Porto, Portugal, 2001,
pp. 2621–2626.

[11] I. Chatzigiannakis, S. Nikoletseas, and P. Spirakis, An efficient communication strategy
for ad-hoc mobile networks, in Proceedings of the 15th Symposium on Distributed Com-
puting (DISC’2001), University of Lisbon, Lisbon, Portugal, 2001, pp. 285–299.

[12] A. S. LaPaugh, Recontamination does not help to search a graph, J. ACM, 40 (1993), pp.
224–245.

[13] N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H. Papadimitriou, The
complexity of searching a graph, J. ACM, 35 (1988), pp. 18–44.

[14] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press, Cam-
bridge, UK, 1995.

[15] S. Neufeld and R. Nowakowski, A game of cops and robbers played on products of graphs,
Discrete Math., 186 (1998), pp. 253–268.

RANDOMIZED PURSUIT-EVASION WITH LOCAL VISIBILITY 41

[16] R. Nowakawski and P. Winkler, Vertex-to-vertex pursuit in a graph, Discrete Math., 43
(1983), pp. 235–239.

[17] S.-M. Park, J.-H. Lee, and K.-Y. Chwa, Visibility-based pursuit-evasion in a polygonal region
by a searcher, in Proceedings of the International Colloquium on Automata, Languages and
Programming (ICALP), Lecture Notes in Comput. Sci. 2076, Springer-Verlag, New York,
2001, pp. 456–468.

[18] T. D. Parsons, Pursuit evasion in a graph, in Theory and Application of Graphs, Y. Alavi
and D. R. Lick, eds., Springer-Verlag, New York, 1976, pp. 426–441.

[19] R. Vidal, O. Shakernia, J. Kim, D. Shim, and S. Sastry, Probabilistic pursuit-evasion games:
Theory, implementation and experimental evaluation, IEEE Trans. Robotics and Automa-
tion, 18 (2002), pp. 662–669.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 42–48

ODD HOLE RECOGNITION IN GRAPHS OF BOUNDED
CLIQUE SIZE∗

MICHELE CONFORTI† , GÉRARD CORNUÉJOLS‡ , XINMING LIU§ , KRISTINA

VUŠKOVIĆ¶, AND GIACOMO ZAMBELLI‖

Abstract. In a graph G, an odd hole is an induced odd cycle of length at least 5. A clique
of G is a set of pairwise adjacent vertices. In this paper we consider the class Ck of graphs whose
cliques have a size bounded by a constant k. Given a graph G in Ck, we show how to recognize in
polynomial time whether G contains an odd hole.

Key words. odd hole, recognition algorithm, cleaning, decomposition

AMS subject classification. 05C17

DOI. 10.1137/S089548010444540X

1. Introduction. A hole is a graph induced by a cycle of length at least 4. A
hole is odd if it contains an odd number of vertices. Otherwise, it is even. Graph
G contains graph H if H is isomorphic to an induced subgraph of G. Chudnovsky,
Cornuéjols, Liu, Seymour, and Vušković recently proved that it is polynomial to test
whether a graph contains an odd hole or its complement [2]. However, it is still an
open problem to test whether a graph contains an odd hole. Bienstock [1] proved that
it is NP -complete to test whether a graph contains an odd hole passing through a
specific vertex. A clique is a set of pairwise adjacent vertices. The clique number of a
graph is the size of its largest clique. In this paper, we show that it is polynomial to
test whether a graph of bounded clique number contains an odd hole.

We use the same general strategy as in [2]. Let H be an odd hole in a graph G.
We say that u ∈ V (G)\V (H) is H-minor if its neighbors in H lie in some 2-edge path
of H. In particular, u is H-minor if u has no neighbor in H. A vertex u ∈ V (G)\V (H)
is H-major if it is not H-minor. We say that H is clean if G contains no H-major
vertex. A graph G is clean if either it is odd-hole-free or it contains a clean shortest
odd hole. As in [2] our approach for testing whether a graph G of bounded clique
number contains an odd hole consists of two steps:

(i) constructing in polynomial time a clean graph G′ that contains an odd hole
if and only if G does, or in some cases identifying an odd hole of G, and

(ii) checking whether the clean graph G′ contains an odd hole.

∗Received by the editors August 1, 2004; accepted for publication (in revised form) August 26,
2005; published electronically February 15, 2006.

http://www.siam.org/journals/sidma/20-1/44540.html
†Dipartimento di Matematica Pura ed Applicata, Università di Padova, Via Belzoni 7, 35131

Padova, Italy (conforti@math.unipd.it).
‡Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213 and LIF, Faculté

des Sciences de Luminy, 13288 Marseille, France (gc0v@andrew.cmu.edu). The work of this author
was supported by NSF grant DMI-0352885 and ONR grant N00014-03-1-0133.

§Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213 (xinming.liu@
gmail.com).

¶School of Computing, University of Leeds, Leeds LS2 9JT, UK (vuskovi@comp.leeds.ac.uk). The
work of this author was supported by EPSRC grant GR/R35629/01.

‖Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario N2L
3G1, Canada (gzambell@math.uwaterloo.ca).

42

ODD HOLE RECOGNITION 43

For step (ii), we can use the polynomial algorithms in [2]. The main result of this
paper is a polynomial algorithm for step (i). Step (i) is called cleaning the graph G.

1.1. Notation. For a graph G and a set B of vertices of G, we denote by G(B)
the subgraph of G induced by the vertex set B. For a vertex v, N(v) denotes the set
of vertices adjacent to v.

A pyramid Π(xyz;u) is a graph induced by three paths P1 = x, . . . , u, P2 =
y, . . . , u, and P3 = z, . . . , u having no common or adjacent intermediate vertices, such
that at most one of the paths is of length 1 and the vertex set {x, y, z} induces a
clique of size 3. Note that every two of the paths P1, P2, P3 induce a hole. Since two
of the three paths must have the same parity, one of these holes is odd. Therefore,
every pyramid contains an odd hole.

A wheel, denoted by (H,x), is a graph induced by a hole H and a vertex x /∈ V (H)
having at least three neighbors in H, say, x1, . . . , xn. Vertex x is the center of the
wheel. A subpath of H connecting xi and xj is a sector if it contains no intermediate
vertex xl, l ∈ {1, . . . , n}. A short sector is a sector of length 1, and a long sector is
a sector of length at least 2. A wheel is odd if it contains an odd number of short
sectors and even otherwise. Each of the long sectors together with vertex x induces a
hole. If each of these holes is even and the wheel (H, v) is odd, then H is an odd hole,
since the wheel (H,x) contains an odd number of short sectors. Therefore, every odd
wheel contains an odd hole.

In a graph G, a jewel is a sequence v1, . . . , v5, P such that v1, . . . , v5 are distinct
vertices, v1v2, v2v3, v3v4, v4v5, v5v1 are edges, v1v3, v2v4, v1v4 are nonedges, and P is
a path of G between v1 and v4 such that v2, v3, v5 have no neighbors in V (P)\{v1, v4}.
Clearly a jewel contains either an odd wheel or a 5-hole, so if there is a jewel in a
graph G, then there is an odd hole in G.

Chudnovsky and Seymour found an O(|V (G)|9) algorithm to test whether a graph
G contains a pyramid and an O(|V (G)|6) algorithm to test whether a graph G contains
a jewel (see [2]).

2. Cleaning. In this section, we show how to clean a graph G of bounded clique
number. That is, we perform step (i) above. The cleaning algorithm produces a
polynomial family of induced subgraphs of G such that if G contains a shortest odd
hole H∗, then one of the graphs produced by the cleaning algorithm, say, G′, contains
H∗ and H∗ is clean in G′.

Roughly speaking, this is accomplished by showing that there exists a set X of
vertices of H∗, whose size depends only on the clique number, such that every major
vertex for H∗ has a neighbor in X. Since the set Y of vertices of H∗ with neighbors
in X has at most 2|X| elements, we may enumerate all possible choices for X and Y ,
and for each choice of X and Y add to the family the graph obtained by removing
the vertices of V (G) \ Y that have a neighbor in X.

2.1. Vertices with at most three neighbors in H∗.
Lemma 1. Let H∗ be a shortest odd hole in G. Suppose that G does not contain

a pyramid. If a vertex u /∈ V (H∗) has a neighbor but no more than three neighbors in
H∗, then u is H∗-minor.

Proof. If u has one neighbor in H∗, then u is H∗-minor. Now suppose that u has
two neighbors in H∗, say, u1 and u2. Let P1 and P2 be the two u1u2-subpaths of H∗.
Since H∗ is odd, P1 and P2 have different parity; say, P1 is odd. If P1 is of length
1, then u is H∗-minor. Otherwise, V (P1) ∪ {u} induces an odd hole. Since this hole
cannot be shorter than H∗, P2 is of length 2, and hence u is H∗-minor.

44 CONFORTI, CORNUÉJOLS, LIU, VUŠKOVIĆ, AND ZAMBELLI

Now assume that u has three neighbors in H∗, and let P1, P2, and P3 be the three
sectors of the wheel (H∗, u). If exactly one of the sectors is short, then V (H∗) ∪ {u}
induces a pyramid. If two of the sectors are short, then u is H∗-minor. Finally
suppose that all three sectors are long. Since H∗ is odd, at least one of the sectors,
say, P1, is odd. Then V (P1) ∪ {u} induces an odd hole shorter than H∗, which is a
contradiction.

2.2. Vertices with more than three neighbors in H∗. Let H∗ be a shortest
odd hole in G. Let S(H∗) be the set of H∗-major vertices that have four or more
neighbors in H∗. Note that, for any u ∈ S(H∗), every long sector of the wheel (H∗, u)
is of even length since H∗ is a shortest odd hole of G; hence, (H∗, u) contains an odd
number of short sectors.

Let S ⊆ V (G). We say that vertex x ∈ V (G) \ S is S-complete if x is adjacent to
every vertex in S. We say that an edge xy is S-complete if both vertices x and y are
S-complete.

Lemma 2. Let H∗ be a shortest odd hole in G. Suppose that G does not contain
a jewel. If u, v ∈ S(H∗) are not adjacent, then an odd number of edges of H∗ are
{u, v}-complete.

Proof. Let u and v be nonadjacent vertices of S(H∗). Suppose that an even
number of edges of H∗ are {u, v}-complete. Then some long sector P of the wheel
(H∗, u) contains an odd number of short sectors of (H∗, v). Let u1 and u2 be the
endvertices of P . P has even length. Let P ′ be the subpath of H∗ induced by
(V (H∗) \ V (P)) ∪ {u1, u2}. P ′ has odd length. Note that P ′ must be of length at
least 4, since otherwise (H∗, u) is a jewel, which is a contradiction. If P contains three
or more neighbors of v, then the vertex set V (P) ∪ {u, v} induces an odd wheel with
center v, and hence contains an odd hole shorter than H∗, contradicting our choice
of H∗. Otherwise, let v1 and v2 be the two neighbors of v in P . Vertex v cannot
have exactly four neighbors in H∗, say, v1, v2, v3, v4, such that both v3u1 and v4u2 are
edges, because otherwise the vertex set (V (H∗) \ V (P)) ∪ {v} induces a shorter odd
hole than H∗, since P is even and P ′ is of length at least 4. Therefore, there exist
vertices u3, v3 ∈ V (H∗)\V (P), the neighbors of u and v, respectively, such that u and
v have no other neighbors on u3v3-subpath of H∗ (call it Q) and vertices u3 and v3

are not adjacent to u1 or u2. But now the vertex set V (Q) ∪ V (P) ∪ {u, v} induces a
pyramid Π(v1v2v;u), and hence contains an odd hole shorter than H∗, contradicting
our choice of H∗.

The following, which is an easy consequence of Lemma 2, will be used in several
places.

Lemma 3. Let H∗ be a shortest odd hole in G, P be a subpath of H∗ such that
|V (H∗) \ V (P)| ≥ 3, and x, y be two nonadjacent vertices in S(H∗). Assume that no
ends of P are {x, y}-complete and there is no {x, y}-complete edge in P . Then there
exists an {x, y}-complete vertex in H∗ with no neighbor in P .

Proof. By Lemma 2, there exists an {x, y}-complete edge e in H∗. One of the
two endvertices of e has the desired property.

Lemma 4. Suppose that G does not contain a jewel. If A ⊆ S(H∗) is a stable
set, then an odd number of edges of H∗ are A-complete.

Proof. Let A ⊆ S(H∗) be a stable set and suppose that an even number of edges
of H∗ are A-complete. Let A′ be a smallest subset of A with the property that an
even number of edges of H∗ are A′-complete. Note that by Lemma 2, |A′| ≥ 3. Let
s1, . . . , sm be the vertices of H∗ adjacent to at least one vertex in A′, encountered in
that order when traversing H∗ clockwise. For i ∈ [m], let Si be the sisi+1-subpath

ODD HOLE RECOGNITION 45

of H∗ (indices taken modulo m) that does not contain any intermediate vertex sj ,
j ∈ [m].

Claim. For every i ∈ [m], either Si is an edge whose endvertices are both adjacent
to some vertex x ∈ A, or Si has even length.

Proof of claim. If there is a vertex x ∈ A′ adjacent to both si and si+1, then Si is
a sector of the wheel (H∗, x) and hence the result holds. Otherwise, let x1 and x2 be
vertices of A′ such that x1 is adjacent to si and x2 is adjacent to si+1. By Lemma 3
there exists an {x1, x2}-complete vertex u in H∗ with no neighbor in Si. Then the
vertex set V (Si) ∪ {x1, x2, u} induces a hole. Since both x1 and x2 have at least four
neighbors in H∗, this hole is shorter than H∗, so it must be even; hence Si is of even
length. This completes the proof of the claim.

For C ⊆ A′, let δC denote the number of edges of H∗ that are C-complete. Let
δ be the number of paths in S1, . . . , Sm of length 1. Then

δ =

|A′|∑
i=1

(−1)i+1
∑

C⊆A′,|C|=i

δC .

By the choice of A′, for every C ⊆ A′ such that C �= A′, δC is odd. Hence the parity
of δ is equal to the parity of

|A′|−1∑
i=1

(
|A′|
i

)
+ δA′ ,

which is itself equal to the parity of δA′ since

|A′|−1∑
i=1

(
|A′|
i

)
= 2|A

′| − 2.

By the claim and because H∗ is odd, δ is odd. Hence δA′ must be odd as well,
contradicting the choice of A′.

Theorem 5. Suppose that G does not contain a jewel. Let A be a stable set of
S(H∗) and let x1x2 be an edge of H∗ such that every vertex of A is adjacent to both
x1 and x2 (such an edge exists by Lemma 4). Let B be the set of vertices of S(H∗)
that have no neighbor in {x1, x2} and have both a neighbor and a nonneighbor in A.
Then there exists an edge y1y2 of H∗ such that y1 is A-complete and every vertex of
B has a neighbor in {y1, y2}.

Proof. If B = ∅ then the result is trivially true, so we may assume that B �= ∅.
Since every vertex of B is major, this implies that H∗ is of length greater than 5.

Claim 1. For every u ∈ B, an edge of H∗ is (A ∪ {u})-complete.
Proof of Claim 1. Let A1 be the neighbors of u in A and A2 = A\A1. By Lemma

4, there is an edge u1u2 of H∗ such that every vertex of A2 ∪ {u} is adjacent to both
u1 and u2. Since u has no neighbor in {x1, x2}, every vertex of A1 must be adjacent
to both u1 and u2, or else there is a 5-hole. This completes the proof of Claim 1.

Claim 2. If X is a stable set of B, then there exists an edge z1z2 of H∗ such
that z1 is A-complete and every vertex of X has a neighbor in {z1, z2}.

Proof of Claim 2. We consider the following two cases.
Case 1. There is a vertex in A that is not adjacent to any vertex in X.
Let A1 ⊆ A be such that A1∪X is a maximal stable set. By Lemma 4, an edge of

H∗ is (A1∪X)-complete—say, u1u2. Let w ∈ A\A1. Note that w is adjacent to some

46 CONFORTI, CORNUÉJOLS, LIU, VUŠKOVIĆ, AND ZAMBELLI

x ∈ X. If w is not adjacent to u1 or u2, then there is a 5-hole in the graph induced by
{x, y, w, u1, u2, x1, x2}, where y ∈ A1. So every vertex of A \ A1 is adjacent to both
u1 and u2.

Case 2. Every vertex of A is adjacent to some vertex in X.

By Claim 1 and Case 1, we may assume w.l.o.g. that |X| > 1 and for every proper
subset of X the result holds. Let w ∈ A be such that |N(w) ∩X| is minimum. Let
Z = N(w)∩X. Since every vertex of X has a nonneighbor in A and |Z| is minimum,
|Z| < |X|. By our assumption, there exists an edge y1y2 of H∗ such that y1 is A-
complete and every vertex of X \ Z has a neighbor in {y1, y2}. By Lemma 4 an edge
of H∗ is X-complete—say, edge y3y4.

We may assume that vertices y1, y2, y3, y4 are all distinct and y1y3 and y1y4 are
not edges, since otherwise the result trivially holds. Also w.l.o.g. y2y4 is not an edge.

Suppose that wy4 is not an edge. We may assume that some z ∈ Z is not adjacent
to y1, since otherwise the edge y1y2 satisfies the claim. If some v ∈ X \Z is adjacent
to y1, then {y1, v, w, z, y4} induces a 5-hole. So for every v ∈ X \ Z, vy1 is not an
edge, and hence vy2 is an edge. If w is adjacent to y2, then {y2, w, v, z, y4} induces a
5-hole. So w is not adjacent to y2. By Lemma 3, there is a vertex u of H∗ adjacent
to both v and w, but with no neighbor in {y1, y2}. Then {y1, y2, u, v, w} induces a
5-hole.

Therefore wy4 is an edge. We now show that y4 is A-complete. Let w′ ∈ A and
assume w′y4 is not an edge. By the choice of w and by the above argument, there is a
vertex v ∈ X \ Z adjacent to w′. But then the graph induced by {w,w′, x1, x2, v, y4}
contains a 5-hole. This completes the proof of Claim 2.

Claim 3. For every edge v1v2 in G(B), there exists v ∈ A that is adjacent to
neither v1 nor v2.

Proof of Claim 3. Let A1 be the set of neighbors of v1 in A, and A2 = A \ A1.
Suppose the claim does not hold. Then v2 is universal for A2. Let w1 be a vertex of
A1 that v2 is not adjacent to. Then v1, v2, w2, x2, w1, v1, where w2 ∈ A2, is a 5-hole.
This completes the proof of Claim 3.

By Claim 1, we may assume that for every proper subset B′ of B, the statement
holds. By Claim 2 we may assume that B is not a stable set. Let v1v2 be an edge
of G(B). By Claim 3, let v be a vertex of A that is adjacent to neither v1 nor v2.
Let y1y2 be an edge of H∗ such that y1 is A-complete and all vertices of B \ v2 have
a neighbor in {y1, y2}. Let y3y4 be an edge of H∗ such that y3 is A-complete and
all vertices of B \ v1 have a neighbor in {y3, y4}. Then the theorem follows from the
following claim.

Claim 4. v1 has a neighbor in {y3, y4}, or v2 has a neighbor in {y1, y2}.
Proof of Claim 4. Suppose the claim does not hold. v1 has no neighbor in {y3, y4}

and v2 has no neighbor in {y1, y2}.
If a vertex of {y1, y2} coincides with a vertex of {y3, y4}, then {y1, y2, y3, y4, v1, v2}

induces a 5-hole. Therefore, vertices y1, y2, y3, y4 are all distinct.

We now show that v and v1 must have a common neighbor in {y1, y2}. Assume
not. Then vy1 and v1y2 are edges, and vy2 and v1y1 are not. By Lemma 3, there
is a vertex u of H∗ that is {v, v1}-complete but has no neighbor in {y1, y2}. Then
{y1, y2, v, v1, u} induces a 5-hole. Therefore, v and v1 have a common neighbor y in
{y1, y2}, and similarly v and v2 have a common neighbor y′ in {y3, y4}. If yy′ is not
an edge, then {y, y′, v, v1, v2} induces a 5-hole. Therefore, yy′ is an edge.

Let a, y, y′, b be the subpath of H∗ induced by {y1, y2, y3, y4}. Then vy, vy′, v1y, v2y
′

are edges and v2a, v2y, v1y
′, v1b are not.

ODD HOLE RECOGNITION 47

Let z2 be the neighbor of v2 in H∗ that is closest to a in H∗ \ {y, y′}. Note that
z2 �= b since v2 is a major vertex. Let P2 be the az2-subpath of H∗ that does not
contain y.

Suppose v does not have a neighbor in P2. By Lemma 3, some vertex u of H∗ is
{v, v2}-complete and has no neighbor in P2. Note that u �= b since b is not {v, v2}-
complete. But then P2 ∪ {y, y′, v, v2, u} induces a pyramid Π(vyy′, v2), and hence
there is an odd hole shorter than H∗, which is a contradiction. Therefore v must have
a neighbor in P2.

We now show that a is the unique neighbor of v in P2. Let v′ be the neighbor of
v in P2 that is closest to z2. Assume that v′ �= a. Let P ′ be the v′z2-subpath of P2.
If v1 has no neighbor in P ′, then the graph induced by S = P ′ ∪ {y, y′, v, v1, v2} is a
pyramid Π(vyy′, v2); hence there is an odd hole shorter than H∗. If v1 has a neighbor
in P ′ \ z2, then the graph induced by S contains a pyramid Π(vyy′, v1); hence there
is an odd hole shorter than H∗. So v1 is adjacent to z2. If the graph induced by
P2 ∪ {y, y′, v1, v2} is an odd wheel with center v1, there is an odd hole shorter than
H∗. Hence v1 must have a neighbor in P2 \ P ′. If v1 has a neighbor z in P2 that lies
strictly between a and v′, then there is a path Q from v to v1 with interior in z, P2, v

′.
But then Q ∪ {y, y′, v2} induces a pyramid Π(vyy′, v1), which contains an odd hole
shorter than H∗. Therefore a and z2 are the only neighbors of v1 in P2. Then v is
not adjacent to a for otherwise a, v, y′, v2, v1, a is an odd hole. Let v′′ be the neighbor
of v closest to a in P2. Note that v′′ �= z2 since otherwise P2 ∪{y, y′, v2, v} induces an
odd wheel with center v; hence there is an odd hole shorter than H∗. Let P ′′ denote
the av′′-subpath of P2. By Lemma 3, some vertex u of H∗ is {v, v1}-complete and
has no neighbor in P ′′. But then the graph induced by P ′′ ∪{y, v, v1, u} is a pyramid
Π(ayv1, v); hence there is an odd hole shorter than H∗. Therefore a is the unique
neighbor of v in P2.

Then v1 is not adjacent to a for otherwise a, v, y′, v2, v1, a is an odd hole. Suppose
v1 has a neighbor in P2. By Lemma 3, there exists a vertex u of H∗ adjacent to both
v and v1, but with no neighbor in P2. Then the graph induced by P2 ∪ {y, v, v1, u}
contains a pyramid Π(ayv, v1); hence there is an odd hole shorter than H∗. Therefore,
v1 has no neighbor in P2.

Let z1 be the neighbor of v1 in H∗ that is closest to b in H∗ \ {y, y′}. Let P1

be the bz1-subpath of H∗ that does not contain y. By symmetry, b is the unique
neighbor of v in P1 and v2 has no neighbor in P1. Since P2, a, y, y

′ is a sector of
wheel (H∗, v2), P2 must be even, and similarly P1 is even. Note that z1z2 is not an
edge since H∗ and the path a, y, y′, b have odd length and P1, P2 have even length.
But then P1 ∪ P2 ∪ {v, v1, v2} induces an odd hole shorter than H∗, which is a con-
tradiction.

2.3. Cleaning algorithm. In this section, we present our cleaning algorithm
for the class of graphs of bounded clique number. The running time depends on the
clique number.

Input: A graph G of bounded clique number k.
Output: Either an odd hole or a family F of induced subgraphs of G that satisfies

the following properties:
(1) G contains an odd hole if and only if some graph of F contains a clean

shortest odd hole.
(2) |F| is O(|V (G)|8k).

Step 1. Check whether G contains a jewel or a pyramid (by algorithms in [2]). If it
does, output an odd hole and stop. Otherwise, set F1 = {G} and F2 = ∅.

48 CONFORTI, CORNUÉJOLS, LIU, VUŠKOVIĆ, AND ZAMBELLI

Step 2. Repeat the following k times. For each graph F ∈ F1 and every (P1, P2)
where P1 = x0, x1, x2, x3 and P2 = y0, y1, y2, y3 are two induced paths of F ,
add to F2 the graph obtained from F by removing the vertex set (N(x1) ∪
N(x2) ∪N(y1) ∪N(y2)) \ (V (P1) ∪ V (P2)). Set F1 = F2 and F2 = ∅.

Step 3. Set F = F1.
Theorem 6. This algorithm produces the desired output, and its running time is

O(|V (G)|8k).
Proof. Suppose that the algorithm does not output an odd hole. Suppose G

contains a shortest odd hole H∗. By Step 1 G contains no jewel and no pyramid.
Now we show how Step 2 generates a graph in F1 that contains H∗ and H∗ is clean
in it.

By Lemma 1, S(H∗) is the set of all H∗-major vertices. Let A be a maximal
stable set of S(H∗). We follow the notation in Theorem 5. Let P1 = x0, x1, x2, x3 and
P2 = y0, y1, y2, y3 such that x1x2 and y1y2 satisfy the conditions stated in Theorem
5. Let S′(H∗) denote the set of vertices of S(H∗) that have no neighbor in {x1, x2}
and are A-complete. Let G′ be the graph obtained from G by removing (N(x1) ∪
N(x2)∪N(y1)∪N(y2))\ (V (P1)∪V (P2)). Then G′ contains H∗ and the set of major
vertices for H∗ in G′ is contained in S′(H∗). The clique number of the graph induced
by S′(H∗) is one less than the clique number of the graph induced by S(H∗). Hence,
by the fact that the clique number of G is bounded by k, Theorem 5 implies that,
when the k iterations of Step 2 are completed, some graph F ∈ F1 contains H∗ and
H∗ is clean in F . Hence (1) holds.

O(|V (G)|8k) graphs are created in Step 2. Hence, (2) holds. The running time of
Step 1 is O(|V (G)|9) as discussed in [2]. The running time of Step 2 is O(|V (G)|8k).
Therefore, the overall running time is O(|V (G)|8k).

In [2] a polynomial time algorithm with following specification is obtained.
Input: A clean graph G.
Output: ODD-HOLE-FREE when G is odd-hole-free, and NOT ODD-HOLE-FREE

otherwise.
The above two algorithms imply that it is polynomial to test whether a graph of

bounded clique number contains an odd hole.

REFERENCES

[1] D. Bienstock, On complexity of testing for odd holes and induced odd paths, Discrete Math.,
90 (1991), pp. 85–92.

[2] M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour, and K. Vušković, Recognizing Berge
graphs, Combinatorica, 25 (2005), pp. 143–186.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 49–54

AVOIDING PATTERNS IN MATRICES VIA A SMALL
NUMBER OF CHANGES∗

MARIA AXENOVICH† AND RYAN MARTIN†

Abstract. Let A = {A1, . . . , Ar} be a partition of a set {1, . . . ,m}×{1, . . . , n} into r nonempty
subsets, and let A = (aij) be an m × n matrix. We say that A has a pattern A provided that
aij = ai′j′ if and only if (i, j), (i′, j′) ∈ At for some t ∈ {1, . . . , r}. In this note we study the
following function f defined on the set of all m × n matrices M with s distinct entries: f(M ;A) is
the smallest number of positions where the entries of M need to be changed such that the resulting
matrix does not have any submatrix with pattern A. We give an asymptotically tight value for

f(m,n; s,A) = max{f(M ;A) : M is an m× n matrix with at most s distinct entries}.

Key words. forbidden patterns, editing, graph editing, editing distance, coloring

AMS subject classifications. 15A99, 05C15, 05B20, 05C50, 05C80

DOI. 10.1137/S0895480104445150

1. Introduction. The problem of studying the properties of matrices that avoid
certain submatrices or patterns is a classical and well-studied problem in combina-
torics. It is investigated from a matrix point of view as well as in an equivalent
formulation of forbidden subgraphs of bipartite graphs; see [1], [7], [4], [12]. Most of
the previous research is devoted to extremal and structural problems of matrices with
no forbidden submatrices. There are only a few results studying efficient modifications
of matrices or graphs such that the resulting structure satisfies certain properties—for
example, [5] and [6]. In this paper, we apply powerful graph theoretic techniques to
study the distance properties between certain classes of matrices. Our main goal is
to investigate the number of positions where the entry-changes need to be performed
on a given matrix such that the resulting matrix does not have a fixed subpattern.
Although this problem is of independent theoretical interest, it has multiple applica-
tions in computational biology such as in the compatibility of evolutionary trees and
in studying metabolic networks; see [3], [13].

For positive integers m,n, s, with s ≤ mn, let M(m,n; s) denote the set of all

m×n matrices with a fixed number, s, of distinct entries. Let [m]
def
= {1, . . . ,m}. Let

A = {A1, . . . , Ar} be a partition of pairs from [m] × [n] into r nonempty classes. An
m×n matrix A = (aij) is said to have a pattern A provided that aij = ai′j′ if and only
if (i, j), (i′, j′) ∈ At for some t ∈ {1, . . . , r}. It follows, in particular, that two m× n
matrices A and B with sets of distinct entries S(A) and S(B), respectively, have the
same pattern if there is a bijection g : S(A) → S(B) such that B(i, j) = g(A(i, j)) for
all 1 ≤ i ≤ m and all 1 ≤ j ≤ n.

Example 1. Matrices A and B have the same pattern with a corresponding bi-
jection g; matrices A and B′ have different patterns:

A =

(
1 4 3
1 1 4

)
, B =

(
5 1 2
5 5 1

)
, B′ =

(
5 1 2
0 5 1

)
.

∗Received by the editors July 14, 2004; accepted for publication (in revised form) August 13,
2005; published electronically February 15, 2006.

http://www.siam.org/journals/sidma/20-1/44515.html
†Department of Mathematics, Iowa State University, Ames, IA 50011 (axenovic@math.iastate.

edu, rymartin@iastate.edu).

49

50 MARIA AXENOVICH AND RYAN MARTIN

In this case, g(1) = 5, g(4) = 1, g(3) = 2.
A k×� matrix B is a submatrix of an m×n matrix A if there are nonempty subsets

{i1, . . . , ik} and {j1, . . . , j�} of distinct indices with {i1, . . . , ik} ⊆ [m], {j1, . . . , j�} ⊆
[n] such that B(α, β) = A(iα, jβ), 1 ≤ α ≤ k, 1 ≤ β ≤ l. If, for a matrix M ′, there is
a submatrix M with pattern A, then we say that M ′ has a subpattern A.

Definition 1. For a pattern A and positive integers m,n, s, we define Forb(m,n;
s,A) to be the set of all m × n matrices with at most s distinct entries and not
containing subpattern A.

Example 2. Let A = {{(1, 1), (1, 2), (2, 1)}, {(2, 2)}}. The set Forb(m,n; 2,A)
consists of all m× n matrices which have at most two distinct entries and contain no
submatrix of the form (xx

x
y), (yx

x
x), (xy

x
x), (xx

y
x), x �= y. In particular, Forb(m,n; 2,A)

consists of m × n matrices with all entries equal and all m × n matrices with two
distinct entries such that each row has all equal entries.

Next we define the distance between two matrices and between classes of matrices.
For two matrices A and B of the same dimensions, we say that Dist(A,B) is the
number of positions in which A and B differ; i.e., it is the matrix Hamming distance.
For a class of matrices F and a matrix A, all of the same dimensions, we denote
Dist(A,F) = min{Dist(A,F) : F ∈ F}. Finally,

f(m,n; s,A) = max{Dist(A,F) : A ∈ M(m,n; s),F = Forb(m,n; s,A)}.

This function corresponds to the minimum number of positions on which the entries
need to be changed in any m × n matrix with at most s distinct entries in order to
eliminate all subpatterns A. This problem is also called an editing distance problem,
since we consider the minimum number of editing operations on a matrix, where each
editing operation is a change of an entry in some position.

Note that Forb(m,n; s,A) might be an empty set of matrices for some patterns
A. For example, let s be fixed, and let A be a pattern having exactly one set, i.e., a
pattern corresponding to matrices with all entries being equal. We call such a pattern
a trivial pattern. If m and n are large, then there is no m × n matrix with a fixed
number of distinct entries avoiding pattern A. This follows from the finiteness of the
bipartite Ramsey number; see [8]. On the other hand, when a pattern A has at least
two distinct entries, then the class Forb(m,n; s,A) is nonempty since it contains all
m× n matrices with a trivial pattern. Our main result is the following.

Theorem 1.1. Let s, r be positive integers, s ≥ r. Let b1, b2 be positive constants
such that b1 ≤ m/n ≤ b2. Let A be a nontrivial pattern with r distinct entries; then

f(m,n; s,A) = (1 + o(1))

(
s− r + 1

s

)
mn.

We shall prove these results using graph-theoretic formulations. A graph H =
(V,E) is bipartite if its vertex set can be partitioned such that V = X∪Y , X∩Y = ∅,
and its edge set E is a subset of X×Y . If m = |X|, n = |Y |, and E = X×Y , then this
graph is denoted Km,n and called a complete bipartite graph. Now, we can introduce
a pattern on the edges of a complete bipartite graph as a partition of the edges in
exactly the same manner as above. Let A = {A1, . . . , Ar} such that E = A1∪· · ·∪Ar

and Ai’s are nonempty and pairwise disjoint. Then A is called a pattern on E. Now,
let c be a coloring of edges of Km,n. We say that c has a pattern A if it satisfies
the property that c(e) = c(e′) if and only if e, e′ ∈ Ai for some i = 1, . . . , r. If c
is an edge-coloring of a graph G, we say that a coloring c′ of a graph G′ occurs in
G under coloring c if there is a subgraph H of G isomorphic to G′ such that the

AVOIDING PATTERNS IN MATRICES 51

coloring c restricted to H coincides with the coloring c′ of G′. Similar to the case
with matrices, for a color pattern A defined on the edges of a graph G′, we say that
G has a subpattern A if there is an occurrence of a subgraph H in G such that H is
isomorphic to G′ and the coloring c restricted to H has a pattern A.

For two edge-colorings c and c′ of a graph G, we say that the edit distance between
c and c′ on G is the smallest number of edge-recolorings in G colored under c needed
to obtain c′. For a given pattern A on edges of a complete bipartite graph, and an
edge-colored Km,n with coloring c, let F (m,n; c,A) be the smallest number of edge-
recolorings of Km,n colored by c such that the resulting coloring does not contain a
subpattern A. Define

F (m,n; s,A) := max{F (m,n; c,A) : c uses s colors}.

Observation. There is a bijection g between all m × n matrices with s distinct
entries and all edge-colorings of Km,n using s colors. Indeed, this bijection can be
defined as g(M(i, j)) = c({i, j}), i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, where c({i, j}) is
the color of an edge {i, j} and M(i, j) is the (i, j)th entry of the matrix. Moreover, a
matrix M does not have subpattern A if and only if a coloring g(M) does not have a
subpattern A.

For all other graph-theoretic terminology, we refer the reader to [14]. Our main
theorem is proven in terms of graph colorings.

Theorem 1.2. Let ε, 0 < ε < 1, be fixed, and let m′, n′, s, r, s ≥ r, be fixed as
well. Let m + n be sufficiently large and let A be a pattern on Km′,n′ with r colors.
Then,(

1 − ε

(
5s + 2 + (s + 1)

(
m

n
+

n

m

)))(
s− r + 1

s

)
mn ≤ F (m,n; s,A)

≤
(
s− r + 1

s

)
mn.

Observe that now Theorem 1.1 is an immediate corollary of Theorem 1.2 which
we prove in section 3. Section 2 describes the techniques that we use in the proof.

2. Main tools. For two disjoint sets of vertices X and Y , we shall refer to a
pair (X,Y) as a complete bipartite graph with partite sets X and Y . We denote its
edges by E(X,Y). Let c : E(X,Y) → {1, . . . , s} be an edge-coloring of a pair (X,Y).
For each color ν ∈ {1, . . . , s} and any two subsets X ′ ⊆ X, Y ′ ⊆ Y , we denote by
Eν(X

′, Y ′) the set of edges of color ν in a pair (X ′, Y ′). Then dν(X
′, Y ′) is the density

of a color ν in the subgraph induced by X ′ and Y ′, defined as follows:

dν(X
′, Y ′) =

|Eν(X
′, Y ′)|

|X ′||Y ′| .

For x ∈ X ∪ Y , we define Nν(x) to be the set of all vertices joined to x by edges of
color ν. We say that a pair (X,Y) is ε-regular in color ν if for every X ′ ⊆ X and
Y ′ ⊆ Y with sizes |X ′| ≥ ε|X|, |Y ′| ≥ ε|Y |, we have

|dν(X,Y) − dν(X
′, Y ′)| < ε.(2.1)

Lemma 2.1 is based on the so-called many-color regularity lemma of Szemerédi
(see [10]) and is an implication of the refinement argument, i.e., Theorem 8.4 in [11].

52 MARIA AXENOVICH AND RYAN MARTIN

Lemma 2.1 (bipartite many-color regularity lemma [11]). For any ε > 0 and
integers s,m0 there exists M , a positive integer, such that if the edges of a pair
(X,Y) are colored with 1, . . . , s, then the vertex set X ∪Y can be partitioned into sets
V0, V1, . . . , Vk for some k, m0 ≤ k ≤ M , so that |V0| < ε(|X| + |Y |), and |Vi| = |Vj |
for i, j ∈ {1, . . . , k}, and all but at most εk2 pairs (Vi, Vj) are ε-regular in color ν for
each ν = 1, . . . , s, and either Vi ⊆ X or Vi ⊆ Y for i = 1, . . . , k.

In addition, we need to prove a multicolor version of the so-called intersection
property, which is stated in [11] and revised in [2].

Fact 2.2 (many-color intersection property). Let ε > 0 and δ > 0 be fixed
and r and � be positive integers. Let (A,B) be a pair with edges colored such that
color ν is ε-regular with density dν , dν ≥ δ for ν = 1, . . . , r. Let Y ⊂ B. Assume
that (δ − ε)�−1|Y | > ε|B|. Let kν for ν = 1, . . . , r be a positive integer such that∑r

ν=1 kν = � and let any vector a ∈ A� be indexed such that

a =
(
a[1,1], . . . , a[1,k1], a[2,1], . . . , a[r−1,kr−1], a[r,1], . . . , a[r,kr]

)
.

Then,

#

{
a ∈ A� :

∣∣∣∣∣Y ∩
r⋂

ν=1

kν⋂
i=1

Nν(a[ν,i])

∣∣∣∣∣ <
r∏

ν=1

(dν − ε)
kν |Y |

}
≤ �ε|A|�.(2.2)

The proof of Fact 2.2 is a standard argument which follows by induction on �.
Corollary 2.3. Let ε > 0 and δ > 0 be fixed and r and � be positive integers.

Let c be an edge-coloring of a pair (A,B) with at least r colors from {1, . . . , r, . . . }
such that color ν is ε-regular with density dν , dν ≥ δ, for ν = 1, . . . , r. Let us be given
that (δ − ε)�−1 > ε, 2r��ε < 1, and (δ − ε)�|B| ≥ �. Then any edge-coloring of K�,�

with colors from {1, . . . , r} will occur as a subcoloring of c.

3. Proof of Theorem 1.2.

3.1. Upper bound. We shall show that for any s-edge-coloring of a complete
bipartite graph with vertex class of sizes m and n, there are at most

(
s−r+1

s

)
mn

editing operations sufficient to destroy a fixed color pattern with r colors.
Let A be a color pattern with r sets defined on a complete bipartite graph G and

let c be an edge-coloring of Km,n with s colors. Without loss of generality, let 1 be
the color of the largest color class in c. We shall recolor the s − r + 1 smallest color
classes of c so that their new color is 1. The resulting coloring will use only r − 1
colors and thus will not contain a forbidden pattern. The s − r + 1 smallest color
classes account for at most (1 − (r − 1)/s)mn edges. Thus,

F (n,m; s,A) ≤
(
s− r + 1

s

)
mn.

3.2. Lower bound. To establish the lower bound, we show that there is a col-
oring of the given complete bipartite graph requiring many edit-operations to destroy
a forbidden pattern. We begin with a claim that gives us a coloring which is highly
regular.

Claim 1. Let s be a positive integer, and 0 < ε < 1/2. There is an integer M
such that if |X| ≥ M and |Y | ≥ M , then there is an edge-coloring c of a complete
bipartite graph G = X × Y , with colors 1, 2, . . . , s, satisfying the following property:
If X ′ ⊆ X and Y ′ ⊆ Y , such that |X ′|, |Y ′| > (|X|+ |Y |)(1− ε)/M , then dν(X

′, Y ′) ∈
(1/s− ε, 1/s + ε), ν = 1, . . . , s.

AVOIDING PATTERNS IN MATRICES 53

Claim 1 follows from standard applications of the Chernoff bound (see [9, Chapter
2]).

Fix ε > 0, let c′ be a coloring of the pair (X,Y) |X| = m, |Y | = n, of minimum
edit distance from c with the property that c′ contains no subpattern A. Apply
Lemma 2.1 with parameters ε, s, and m0 = 1 to the coloring c′. Let M be the
constant given by Lemma 2.1 and the partition having all the nonleftover sets being
enumerated as X1, . . . , Xp, Y1, . . . , Yq with |Xi| = |Yj | = Q and Xi ⊆ X, Yj ⊆ Y for
1 ≤ i ≤ p, 1 ≤ j ≤ q. We call a pair (Xi, Yj) a good pair if it is ε-regular in each color
ν ∈ {1, 2, . . . , s} in coloring c′. We have that there are at most sε(p+ q)2 pairs which
are not good. Moreover, for each good pair (Xi, Yj) there are at most r − 1 colors
such that the density of those classes in coloring c′ is at least δ = 2ε. Otherwise,
Corollary 2.3 would imply that pattern A appears in c′, which is a contradiction.
Therefore, for a good pair (Xi, Yj), there are at least (s − r + 1)

(
1
s − 3ε

)
Q2 edit-

operations needed to obtain coloring c′ from the coloring c. The regularity lemma
gives that m ≥ pQ ≥ m− ε(m+ n) and n ≥ qQ ≥ n− ε(m+ n). Therefore, the total
number of recolored edges is at least

(s− r + 1)

(
1

s
− 3ε

)
Q2

(
pq − sε(p + q)2

)
≥

(
s− r + 1

s

)
(1 − 3sε)

(
pQqQ− sε(pQ + qQ)2

)
≥

(
s− r + 1

s

)
(1 − 3sε)

(
(m− ε(m + n)) (n− ε(m + n)) − sε(m + n)2

)
≥

(
s− r + 1

s

)
mn

(
1 − ε

(
5s + 2 + (s + 1)

(
m

n
+

n

m

)))
.

Remark. It should be noted that, although we prove theorems for submatrices,
our results easily follow for other patterns. Suppose we wish to forbid patterns of
the form (1

1
2
∗), where the ∗ represents any entry, either a repeated 1 or 2 or a new

entry 3. Our result depends only on the number of distinct entries in the pattern,
so the (asymptotic) number of changes necessary and sufficient to forbid this pattern
is the same as the number of changes needed to forbid (1

1
2
1) or (1

1
2
2) (that is, (1 +

o(1))
(
s−1
s

)
mn) but fewer than to forbid (1

1
2
3) (that is, (1 + o(1))

(
s−2
s

)
mn).

Acknowledgment. We are indebted to anonymous referees whose careful read-
ing and friendly suggestions helped to significantly improve the presentation of the
results.

REFERENCES

[1] R. Anstee, General forbidden configuration theorems, J. Combin. Theory Ser. A, 40 (1985),
pp. 108–124.

[2] M. Axenovich, A. Kézdy, and R. Martin, On editing distance in graphs, J. Graph Theory,
submitted.

[3] D. Chen, O. Eulenstein, D. Fernández-Baca, and M. Sanderson, Flipping: A supertree
construction method, in Bioconsensus, DIMACS Ser. Discrete Math. Theoret. Comput.
Sci. 61, AMS, Providence, RI, 2003, pp. 135–160.

[4] V. Dĕıneko, R. Rudolf, and G. J. Woeginger, A general approach to avoiding two by two
submatrices, Computing, 52 (1994), pp. 371–388.

[5] P. Erdős, A. Gyárfás, and M. Ruszinkó, How to decrease the diameter of triangle-free
graphs, Combinatorica, 18 (1998), pp. 493–501.

54 MARIA AXENOVICH AND RYAN MARTIN

[6] P. Erdős, E. Győri, and M. Simonovits, How many edges should be deleted to make a
triangle-free graph bipartite? in Sets, Graphs and Numbers (Budapest, 1991), Colloq.
Math. Soc. János Bolyai 60, North–Holland, Amsterdam, 1992, pp. 239–263.

[7] Z. Füredi, Turán type problems, in Surveys in Combinatorics, London Math. Soc. Lecture
Note Ser. 166, Cambridge University Press, Cambridge, UK, 1991, pp. 253–300.

[8] R. L. Graham, B. L. Rothschild, and J. H. Spencer, Ramsey Theory, 2nd ed., Wiley-
Interscience Series in Discrete Mathematics and Optimization, John Wiley and Sons, Inc.,
New York, 1990.

[9] S. Janson, T. �Luczak, and A. Ruciński, Random Graphs, Wiley-Interscience Series in Dis-
crete Mathematics and Optimization. Wiley-Interscience, New York, 2000.

[10] J. Komlós, A. Shokoufandeh, M. Simonovits, and E. Szemerédi, The regularity lemma
and its applications in graph theory, in Theoretical Aspects of Computer Science (Tehran,
2000), Lecture Notes in Comput. Sci. 2292, Springer-Verlag, Berlin, 2002, pp. 84–112.

[11] J. Komlós and M. Simonovits, Szemerédi’s regularity lemma and its applications in graph
theory, in Combinatorics, Paul Erdős is Eighty, Vol. 2 (Keszthely, 1993), Bolyai Soc. Math.
Stud. 2, János Bolyai Math. Soc., Budapest, 1996, pp. 295–352.

[12] H. Prömel and A. Steger, Excluding induced subgraphs. II. Extremal graphs, Discrete Appl.
Math., 44 (1993), pp. 283–294.

[13] G. Stephanopoulos, A. Aristidou, and J. Nielsen, Metabolic Engineering: Principles and
Methodologies, Academic Press, San Diego, 1998.

[14] D. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, Upper Saddle River, NJ, 2001.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 55–61

A THEOREM ABOUT A CONTRACTIBLE AND LIGHT EDGE∗

ZDENĚK DVOŘÁK† AND RISTE ŠKREKOVSKI‡

Abstract. In 1955 Kotzig [A. Kotzig, Math. Slovaca, 5 (1955), pp. 111–113] proved that every
planar 3-connected graph contains an edge such that the sum of degrees of its end-vertices is at
most 13. Moreover, if the graph does not contain 3-vertices, then this sum is at most 11. Such an
edge is called light. The well-known result of Steinitz [E. Steinitz, Enzykl. Math. Wiss., 3 (1922),
pp. 1–139] that the 3-connected planar graphs are precisely the skeletons of 3-polytopes gives an
additional trump to Kotzig’s theorem. On the other hand, in 1961, Tutte [W. T. Tutte, Indag.
Math., 23 (1961), pp. 441–455] proved that every 3-connected graph, distinct from K4, contains a
contractible edge. In this paper, we strengthen Kotzig’s theorem by showing that every 3-connected
planar graph distinct from K4 contains an edge that is both light and contractible. A consequence
is that every 3-polytope can be constructed from tetrahedron by a sequence of splittings of vertices
of degree at most 11.

Key words. light graph theory, contractible edges, planar graphs

AMS subject classifications. 05C10, 05C40

DOI. 10.1137/05062189X

1. Light edges. Throughout this paper, we consider 3-connected planar graphs
without loops and multiple edges. The weight of an edge is the sum of the degrees of
its end-vertices. It is well known that every planar graph contains a vertex of degree
at most 5. Kotzig [5] proved a similar result on edges.

Theorem 1 (Kotzig). Every 3-connected planar graph G contains an edge of
weight at most 13. Moreover, if G has minimum degree at least 4, then G contains
an edge of weight at most 11.

An edge of a 3-connected planar graph is called light if it satisfies the requirements
of the above theorem. In particular, if the graph has minimum degree at least 4, then
an edge is light only if it is of weight at most 11.

The bounds of 13 and 11 from Kotzig’s theorem are the best possible in the sense
that there exists a planar 3-connected graph G1 such that each edge of G1 has weight
at least 13, and that there exists a planar 3-connected graph G2 of minimum degree
4 such that each edge of G2 has weight at least 11. As for G1, consider a copy of
icosahedron and insert into each face a vertex and connect it with the three vertices
of the face. As for G2, consider any fulleren where no two vertices of degree 5 are
adjacent.

The well-known theorem of Steinitz [9, 10] states that the 3-connected planar
graphs are precisely the skeletons of the 3-dimensional polytopes. This gives an ad-
ditional importance to Theorem 1.

Kotzig’s Theorem has been generalized in many directions. It served as a starting
point for looking for other subgraphs of small weight in plane graphs. This subject

∗Received by the editors January 3, 2005; accepted for publication (in revised form) October 4,
2005; published electronically February 15, 2006.

http://www.siam.org/journals/sidma/20-1/62189.html
†Institute for Theoretical Computer Science (ITI), Charles University, Malostranské náměst́ı 25,

Praha, Czech Republic (rakdver@kam.mff.cuni.cz). The work of this author was supported in part
by project LN00A056 of the Czech Ministry of Education.

‡Department of Mathematics, University of Ljubljana, Jadranska 19, 1111 Ljubljana, Slovenia
(skreko@fmf.uni-lj.si). The work of this author was supported in part by Ministry of Science and
Technology of Slovenia, research project Z1-3129.

55

56 ZDENĚK DVOŘÁK AND RISTE ŠKREKOVSKI

Fig. 1. A double wheel.

later developed into light graph theory: let H be a family of graphs, and let H
be a connected graph such that infinitely many members of H contain a subgraph
isomorphic to H. Let HH be the subfamily of graphs in H that contain H as a
subgraph. We say that H is a light graph in the family H if there exists a constant c
such that each graph G ∈ HH contains a subgraph K ∼= H with dG(v) ≤ c for every
vertex v ∈ K. Let us mention a few results from light graph theory: Fabrici and
Jendrol’ [2] proved that only the paths are light in the family of all 3-connected plane
graphs; the same holds also for the family of all 3-connected plane graphs of minimum
degree 4 (see [3]). A survey on light graphs in various families of plane, projective
plane and general graphs can be found in the paper by Jendrol’ and Voss [4].

1.1. Light edge avoiding prescribed triangle. In this section, we prove the
existence of a light edge which avoids vertices of a prescribed triangular face.

Lemma 1. Let G �= K4 be a plane 3-connected graph with the outer-face O =
x1x2x3 of length 3. Let δ′ be the minimum degree of the vertices of G that are distinct
from x1, x2 and x3. Let d be 13 if δ′ = 3, and 11 otherwise. The graph G then
contains an edge of weight at most d which is not incident with x1, x2 and x3.

Proof. Suppose that the statement of the lemma is false and G is a counterexample
on n vertices. Obviously, n ≥ 5. In addition, we assume that G has maximum number
of edges among all such graphs.

We claim that every face incident with x1, x2, or x3 is a triangle. Otherwise, we
may assume that x1 lies on a face f ′ of length ≥ 4. Hence, we can insert an edge
between x1 and a vertex of f ′ which is not adjacent to x1. This is always possible
since G is 3-connected. Let G′ be the resulting graph. Notice that if G is a graph
of minimum degree ≥ 4, then G′ also has minimum degree ≥ 4. Hence, G′ is a
counterexample to the lemma with the same number of vertices but it has more edges
than G, a contradiction.

By the above-mentioned claim, it easily follows that at most one of x1, x2 and x3

is a vertex of degree 3. Thus, we may assume that d(x1) ≥ 4 and d(x2) ≥ 4. Notice
that d(x3) ≥ 3 since G is 3-connected.

Next, consider the double wheel W of order 8 as depicted in Figure 1. Let w1

and w2 be the two 6-vertices of W . We construct a planar graph WG by gluing a
copy of G in each face of W in such a way that the vertex x3 of the copy is identified
with either w1 or w2. It follows from the assumption on the degrees of vertices x1,
x2 and x3 in G that each vertex of W has degree ≥ 12 in WG. It is easy to see that
if two 3-cycles of two 3-connected graphs are identified, the resulting graph is also
3-connected. This implies that WG is 3-connected.

By Kotzig’s Theorem, the graph WG contains a light edge ew. This edge is not
incident with any vertex of the copy of W , since all these vertices are of degree ≥ 12.

A THEOREM ABOUT A CONTRACTIBLE AND LIGHT EDGE 57

Hence, ew corresponds to an edge e of G which is not incident with x1, x2 and x3.
Notice that if δ′ ≥ 4, then WG has minimum degree ≥ 4 and thus the weight of ew is at
most 11. This implies that the weight of e satisfies requirements of the lemma.

2. Contractible edges. A subset S of vertices of a connected graph G is a cut,
if the graph G− S is disconnected and S is a minimal set with this property. If S is
of size k, then it is called a k-cut. A graph G is k-connected if it has at least k + 1
vertices and it has no cuts of size < k.

Let e = ab be an edge of a 3-connected graph G, and let G/e be the graph
obtained by identifying the vertices a and b into a new vertex w, and by removing the
arising loop and multiple edges (in order to obtain a simple graph). We say that G/e
is obtained from G by contracting the edge e. Similarly, we say that G is obtained
from G/e by splitting w. If G/e is a 3-connected graph, then we say that the edge e
is contractible. If e is not contractible, we say it is noncontractible. It is easy to see
that e is noncontractible if and only if G has a 3-cut S such that {a, b} ⊆ S.

Tutte [11] proved that every 3-connected graph, that is distinct from K4, contains
a contractible edge, and as a consequence, Theorem 2 follows.

Theorem 2 (Tutte). A graph G is 3-connected if and only if there exists a
sequence G0, . . . , Gn of graphs with the following properties:

(a) G0 = K4, Gn = G, and
(b) Gi+1 has an edge xy with d(x), d(y) ≥ 3 and Gi = Gi+1/xy, for every i < n.

In fact, every 3-connected graph on ≥ 5 vertices has more than just one con-
tractible edge. See the survey of Kriesell [6] for more results of this kind.

Notice that if G is a 3-connected planar graph and S is a 3-cut, then G − S
comprises of precisely two components: there cannot be more than two, otherwise we
obtain a subdivision of K3,3 in G. Let these two components be denoted by G1(S)
and G2(S). Let G∗

i (S) be the subgraph of G induced by V (Gi(S))∪S. In particular,
Gi(S) = G∗

i (S) − S for i ∈ {1, 2}. Observe that if x, y ∈ S are nonadjacent, then
there exists precisely one face incident with both of them. When the graph G is clear
from the context, its face which contains the vertices x and y is denoted by fx,y.

A triangle v1v2v3 of a graph is called separating if {v1, v2, v3} is a cut. If v1v2v3 is
a separating triangle of G, then each of the edges v1v2, v1v3 and v2v3 is obviously non-
contractible. On the other hand, it is not necessarily true that every noncontractible
edge of G belongs to a separating triangle. However, in this section we show that
unless G contains a light contractible edge, we may extend G to a supergraph that
satisfies this condition by adding new noncontractible edges and without creating any
new contractible edges; see Lemma 8.

The proofs of the following three folklore lemmas can be found in [1, 7, 8]:
Lemma 2. Let G be a 3-connected graph of order at least five. Suppose x is

a 3-vertex of G whose neighbors are a, b and c. If ab is an edge of G, then xc is
contractible.

If H is a subgraph of G, then we denote by G/H the graph constructed from G
by contracting all edges of H.

Lemma 3. Let x be a 3-vertex of a 3-connected graph G �= K4. If xa and xb
are two noncontractible edges of G, then a and b are adjacent vertices of degree 3.
Moreover, G∗ = G/axb is 3-connected.

Lemma 4. Let G be a 3-connected graph and let C = x1x2x3 be a 3-cycle of
G with all vertices of degree 3. An edge e of G/C is contractible if and only if its
corresponding edge e in G is contractible.

58 ZDENĚK DVOŘÁK AND RISTE ŠKREKOVSKI

We are now ready to prove the following lemma on minimal 3-connected graphs
without a light contractible edge.

Lemma 5. If G �= K4 is a 3-connected planar graph with the smallest possible
number n ≥ 5 of vertices such that every light edge of G is noncontractible, then G
does not contain a 3-cycle whose vertices are all of degree 3.

Proof. First, suppose that n < 7. Hence, the degree of each vertex of G is at
most 5, and thus each edge of G is light. Since every 3-connected graph of order at
least 5 contains a contractible edge, the graph G contains a light contractible edge.

Let us now assume that n ≥ 7. Suppose that C = x1x2x3 is a 3-cycle of G such
that all vertices of C are of degree 3. Let yi be the neighbor of xi that does not
belong to C. Note that the vertices y1, y2 and y3 are mutually distinct, since G is
3-connected and G �= K4. Let G∗ = G/C and let w be the vertex of G∗ into which
C is contracted. By Lemma 3, the graph G∗ is 3-connected. Hence, w is a 3-vertex
whose neighbors are y1, y2 and y3. Also notice that each edge e∗ of G∗ has the same
weight as the corresponding edge e of G. Lemma 4 claims that e∗ is contractible
in G∗ if and only if e is contractible in G. This implies that every light edge of G∗

is noncontractible. Since G∗ has at least five vertices, it contradicts the minimality
of G.

The following two lemmas describe the structure of a graph containing a non-
contractible edge xy that becomes contractible after a new edge bc is inserted in the
graph.

Lemma 6. Let G be a planar 3-connected graph, xy a noncontractible edge of G,
and b and c two nonadjacent vertices of G that lie on a common face. Suppose that
xy is contractible in G ∪ {bc}. If a vertex z is contained in a 3-cut S = {x, y, z} of
G, then the following four claims hold:

(i) b and c are distinct from x, y and z, and they belong to distinct components
of G− S,

(ii) z belongs to fb,c, and precisely one of x and y belongs to fb,c (let this vertex
be denoted by w),

(iii) fb,c = w · · · b · · · z · · · c · · ·w, and
(iv) w and z are nonadjacent.
Proof. Since xy is contractible in G ∪ {bc} but not in G, it follows that b and c

belong to distinct components of G − S. Therefore, the vertices b and c are distinct
from x, y and z.

Since S is a cut and the edge bc connects the two components of G−S, it follows
that b, c and z belong to a common face. Moreover, one of x and y lies on the same
face as well (but not both since no face may contain all three vertices of a 3-cut of
G). The order of the vertices w, z, b and c that appear around the face must be as
described in the claim, because b and c belong to distinct components of G−S. Since
G is 3-connected, it follows that w and z are nonadjacent.

Lemma 7. Let ab and xy be two noncontractible edges and let S1 = {a, b, c} and
S2 = {x, y, z} be two 3-cuts of G. If the edge xy is contractible in G ∪ {bc}, then the
following two claims hold:

(i) If a �∈ {x, y}, then c is a 3-vertex with N(c) = {z, x, y} and cxy is a 3-face.
(ii) If a = x, then y is a 3-vertex with N(y) = {a, b, c} and aby is a 3-face.
Proof. First notice that G ∪ {bc} is a planar graph, since the vertices b and c lie

on a common face in G. Also notice that b and c are nonadjacent in G. By Lemma 6,
the vertices b and c belong to different components of G − S2, and they are distinct
from x, y and z. By the same lemma, without loss of generality, we may assume
that y and z are nonadjacent and that they lie on the same face with b and c (i.e.,

A THEOREM ABOUT A CONTRACTIBLE AND LIGHT EDGE 59

Fig. 2. Configurations in Lemma 7.

fb,c = fy,z) and fy,z = y · · · c · · · z · · · b · · · y. We may also assume that z is a vertex of
G∗

1 = G∗
1(S1) and x, y are vertices of G∗

2 = G∗
2(S1). Consider now the claims of this

lemma separately and see Figure 2 for illustration:
(i) Observe that z is a cut-vertex in G∗

1 which separates a and b from c; otherwise
we can infer that S2 is not a cut of G. Since G is 3-connected it follows that
c is adjacent only to z in G∗

1.
Similarly one can show that {x, y} is a cut in G∗

2 which also separates a and b
from c. To show the minimality of {x, y} observe that if x or y is a vertex-cut
in G∗

2, then {x, z} or {y, z} is a 2-cut in G, respectively.
If there is a vertex adjacent to c in G∗

2 which is distinct from x and y, then
{c, x, y} is a 3-cut in G∪ {bc} but this contradicts the assumption that xy is
a contractible edge in G∪ {bc}. Since {x, y} is a cut in G∗

2, both x and y are
adjacent to c. Thus, x, y are the only neighbors of c in G∗

2. This implies that
cxy is a 3-face and N(c) = {z, x, y}.

(ii) Since {x, y, b} is not a 3-cut in G∪{bc}, we infer that aby is a 3-face. Similarly,
since {x, y, c} is not a 3-cut in G ∪ {bc}, it follows that cy is an edge of G,
and hence N(y) = {a, b, c}.

We are now ready to show that in a maximal graph which does not contain a
light contractible edge, every noncontractible edge belongs to a separating 3-cycle.

Lemma 8. Suppose that there exists a planar graph on n ≥ 5 vertices such
that each of its light edges is noncontractible. If G is such a graph with n vertices
with maximum number of edges, then every noncontractible edge of G belongs to a
separating 3-cycle.

Proof. Suppose that the claim is false and G is a counterexample with minimum
number of vertices n ≥ 5. Let ab be a noncontractible edge which does not belong to
a separating 3-cycle and let S = {a, b, c} be a 3-cut of G. Without loss of generality,
we may assume that b and c are nonadjacent.

Consider the graph G ∪ {bc}. By the maximality of |E(G)|, the graph G ∪ {bc}
contains a light contractible edge xy. Obviously the edge xy is distinct from bc, since bc
is noncontractible. The edge xy is light in G as well, thus it must be noncontractible
in G. Let {x, y, z} be a 3-cut of G. We may assume that x, y ∈ V (G∗

2(S)) and
z ∈ V (G∗

1(S)). By Lemma 6, we may assume that b, y, c and z belong to a common
face. Consider now the following two cases and see Figure 3 for illustration:

Case 1: a �∈ {x, y}. By Lemma 7(i), we may assume that c is a 3-vertex with
neighbors x, y and z. The maximality of G implies that the graph G ∪ {yz} must
contain a light contractible edge e = a′b′. Notice that this edge is noncontractible

60 ZDENĚK DVOŘÁK AND RISTE ŠKREKOVSKI

Fig. 3. Configurations in Lemma 8.

in G. By Lemma 6 one of the end-vertices of e must be incident with fy,z, say b′.
Observe that the only 3-cut that shows noncontractibility of e is {a′, b′, c}. If e belongs
to G∗

2(S), then {a′, b′, z} is a cut of G∪{yz} which separates a or b from y, x or c, and
a′b′ would be noncontractible in G ∪ {yz}. Therefore, we may assume that e belongs
to G∗

1(S). See the left graph of Figure 3. In particular, the edges a′b′ and xy are not
incident. Hence, by Lemma 7(i), z is a 3-vertex and za′b′ is a 3-face of G. Finally,
Lemma 2 implies that zc is a contractible edge of weight 6.

Case 2: a ∈ {x, y}, say a = x. We assume that no choice of x, y, z, a, b and c may
satisfy Case 1. By Lemma 7(ii), y is a 3-vertex with neighbors a, b, c and aby is a
face. By the maximality of G, the graph G ∪ {yz} contains a light contractible edge
a′b′. The edge a′b′ must be noncontractible in G and distinct from ay. Excluding
Case 1, the edge a′b′ must be incident with the edge ay. However, adding the edge
yz does not affect contractibility of any edge incident with y or z; therefore, the edge
a′b′ must be incident with a. We may assume that a = a′. Notice that b′ is a vertex
of G∗

1(S) and by Lemma 7(ii), we conclude that ayb′ is a 3-face and that degree of b′

is 3. Hence b′ = b or b′ = c. If b′ = c, then the edge cy has weight 6 and by Lemma 2
it is contractible in G.

Now consider the case b = b′ and see the right graph of Figure 3. The degree of b
is 3 and the edge by has weight 6. If by is a noncontractible edge, then b is a 3-vertex
incident with two noncontractible edges ab and by. Lemma 3 implies that the degree
of a is also 3. Hence, G contains a 3-cycle with each vertex of degree 3, but Lemma 5
excludes such a subgraph in G. We conclude that by is a contractible light edge in G.
This finishes the proof.

3. Contractible light edge. If C is a cycle of a plane graph G, then Int(C)
denotes the subgraph of G induced by the vertices and edges of G which lie on C or
in its interior. We are now ready to prove the theorem.

Theorem 3. Every 3-connected planar graph, distinct from K4, contains a light
and contractible edge.

Before we proceed with the proof of the theorem, let us emphasize that this
result strengthens Theorem 1, i.e., we show precisely the same bounds on the weight
of contractible edges.

Proof. Suppose that the theorem is false and G is a counterexample with the
minimum number of vertices n ≥ 5. In particular, every light edge of G is noncon-
tractible. We may also assume that G has the maximum number of edges among all
such graphs of order n.

A THEOREM ABOUT A CONTRACTIBLE AND LIGHT EDGE 61

By Lemma 8, every noncontractible edge of G belongs to a separating 3-cycle.
Since G is 3-connected, it follows that every vertex that belongs to a separating 3-
cycle is of degree ≥ 4. Therefore, every 3-vertex is incident only to contractible edges.
This implies that every 3-vertex of G is adjacent only to vertices of degree ≥ 11. In
order to complete the proof, consider the following two possibilities:

First, suppose that every separating 3-cycle C of G satisfies Int(C) = K4. By
Theorem 1, the graph G contains a light edge e = uv. This edge e does not lie on a
separating 3-cycle; otherwise u and v are adjacent with a 3-vertex, and each of them
is of degree ≥ 11 by the argument in the above paragraph. We conclude that e is a
contractible light edge.

Now suppose that G has a separating 3-cycle C such that Int(C) �= K4. We
may additionally assume that C = x1x2x3 is chosen so that G′ := Int(C) has the
smallest possible number of vertices. The graph G′ has at least five vertices. By the
choice of C, each separating 3-cycle C ′ of G′ satisfies Int(C ′) = K4. By Lemma 1, G′

contains an edge e′ that is not incident with x1, x2 and x3 such that e′ is light in G.
Applying a similar argument as in the previous paragraph, one can observe that e′ is
also contractible. This establishes the theorem.

Theorems 2 and 3 imply the following result:
Corollary 1. Every 3-polytope G can be constructed from tetrahedron by se-

quential splittings of vertices of degree at most 11.

Acknowledgments. We would like to thank Daniel Král’ for careful reading
and valuable suggestions regarding the presentation of the results.

REFERENCES

[1] K. Ando, H. Enomoto, and A. Saito, Contractible edges in 3-connected graphs, J. Combin.
Theory Ser. B, 42 (1987), pp. 87–93.

[2] I. Fabrici and S. Jendrol’, Subgraphs with restricted degrees of their vertices in planar 3-
connected graphs, Graphs Combin., 13 (1997), pp. 245–250.

[3] I. Fabrici, E. Hexel, S. Jendrol’, and H. Walther, On vertex-degree restricted paths in
polyhedral graphs, Discrete Math., 212 (2000), pp. 61–73.

[4] S. Jendrol’ and H.-J. Voss, Light subgraphs of graphs embedded in the plane and in the
projective plane – a survey, MATH-AL-02-2001, Technical University of Dresden, Dresden,
Germany.

[5] A. Kotzig, Contribution to the theory of Eulerian polyhedra, Math. Slovaca, 5 (1955), pp. 111–
113.

[6] M. Kriesell, A survey on contractible edges in graphs of a prescribed vertex connectivity,
Graphs Combin., 18 (2002), pp. 1–30.

[7] K. Ota, The number of contractible edges in 3-connected graphs, Graphs Combin., 4 (1988),
pp. 333–354.

[8] W. McCuaig, Edge contractions in 3-connected graphs, Ars Combin., 29 (1990), pp. 299–308.
[9] E. Steinitz, Polyeder und Raumeinteilungen, Enzykl. Math. Wiss., Vol. 3 (Geometrie), Part

3AB12 (1922), pp. 1–139.
[10] E. Steinitz and H. Rademacher, Vorlesungen ber die Theorie der Polyeder unter Ein-

schluss der Elemente der Topologie. Reprint der 1934 Auflage. Grundlehren Math. Wiss.
41, Springer-Verlag, New York, 1976.

[11] W. T. Tutte, A theory of 3-connected graphs, Indag. Math., 23 (1961), pp. 441–455.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 62–78

IMPROVED BOUNDS FOR TOPOLOGICAL CLIQUES IN GRAPHS
OF LARGE GIRTH∗

DANIELA KÜHN† AND DERYK OSTHUS†

Abstract. We prove that every graph of minimum degree at least r and girth at least 27
contains a subdivision of Kr+1. This implies that the conjecture of Hajós, that every graph of
chromatic number at least r contains a subdivision of Kr, is true for graphs of girth at least 27. This
conjecture is known to be false in general.

Key words. subdivisions, topological minors, girth, Hajós conjecture

AMS subject classifications. 05C83, 05C35, 05C15

DOI. 10.1137/040617765

1. Introduction. It is well known that the existence of a subdivision of the
complete graph Kr is forced by large but constant minimum degree: let d(r) be the
smallest number such that every graph G of minimum degree at least d(r) contains a
subdivided Kr. The existence of d(r) was proved by Mader (see, e.g., [1]). Bollobás
and Thomason [2, 3] as well as Komlós and Szemerédi [8] independently proved that
d(r) is quadratic in r. As observed by Jung [7] earlier on, complete bipartite graphs
show that d(r) is at least quadratic in r.

On the other hand, Mader [15] proved that the situation is rather different for
graphs which have large girth, i.e., which do not contain short cycles: he showed that
there is a function g(r) so that every graph of minimum degree at least r and girth at
least g(r) contains a subdivided Kr+1. At first, this might seem rather surprising since
the condition on the minimum degree only ensures that every vertex has sufficiently
many neighbors to be a candidate for a branch vertex. Mader’s bound on the g(r)
was linear in r. He asked about the growth of g(r) and pointed out that it might
even be true that g(r) = 5 for r ≥ 4 (see [17]). The complete bipartite graph Kr,r

provides the lower bound g(r) ≥ 5 for r ≥ 4. In [9], we showed that g(r) ≤ 186 and
that g(r) ≤ 15 for all r ≥ 435. In this paper, we prove that g(r) ≤ 27.

Theorem 1. Let r ≥ 1 be a natural number. Every graph of minimum degree at
least r and girth at least 27 contains a subdivision of Kr+1.

In [12] we proved the related result that if we relax the condition of having girth
at least 27 to being C4-free, then at least we can find a subdivision of a complete
graph whose order is almost linear in the minimum degree of the host graph.

Theorem 1 has an immediate application to the well-known conjecture of Hajós
(see [6]), which states that every graph of chromatic number r contains a subdivision
of Kr. Catlin [4] found several counterexamples to this. A little later, Erdős and
Fajtlowicz [5] proved that the conjecture fails even for almost all graphs. On the
other hand, since every graph of chromatic number at least r has a subgraph of
minimum degree at least r− 1, Theorem 1 shows that the conjecture does hold for all
graphs whose girth is at least 27.

∗Received by the editors October 27, 2004; accepted for publication (in revised form) September
13, 2005; published electronically February 21, 2006.

http://www.siam.org/journals/sidma/20-1/61776.html
†School of Mathematics, Birmingham University, Edgbaston, Birmingham B15 2TT, UK (kuehn@

maths.bham.ac.uk, osthus@maths.bham.ac.uk).

62

TOPOLOGICAL CLIQUES IN GRAPHS OF LARGE GIRTH 63

Corollary 2. Let r ≥ 2 be a natural number. Every graph of chromatic num-
ber r and girth at least 27 contains a subdivision of Kr.

Thomassen [22] asked whether the conjecture of Hajós might even be true for all
triangle-free graphs. Note that there is a difference to the minimum degree condition
here: while it may be that Theorem 1 remains true if one replaces the condition
of “girth ≥ 27” by “girth ≥ 5,” one cannot replace it by “girth ≥ 4.” Also, no
counterexamples to the conjecture of Hajós are known for r = 5, 6.

Based on a result of Mader [18], in [11] we proved an analogue of Theorem 1 with
the minimum degree condition replaced by one on the average degree: for every ε > 0
there exists an integer f(ε) such that for all r ≥ 2 every graph G of average degree at
least r + ε and girth at least f(ε) contains a subdivision of Kr+2. (In [18], the same
result is proved with the difference that the function f also depends on r.)

Apart from the obvious question of whether the girth bound in Theorem 1 and
its relatives can be improved, one could also try to strengthen the above results
by asking for an induced subdivision. In particular, Shi [19] posed the following
question.

Problem 3. Is there a function h(r) such that every graph of minimum degree
at least r ≥ 3 and girth at least h(r) contains a subdivision of Kr+1 as an induced
subgraph?

This question was motivated by our earlier result [13] that for all integers s ≥ 2
and r ≥ 3 there exists an integer d such that every Ks,s-free graph of minimum
degree at least d contains an induced subdivision of Kr. (Clearly, the condition of
being Ks,s-free cannot be omitted here.) Thus the above problem has an affirmative
answer if we assume that the minimum degree is sufficiently large compared to r.

The assumption of large girth also makes a major difference if one asks for or-
dinary minors instead of subdivisions. The first result in this direction was proved
by Thomassen [21], who showed that there is a function q(r) so that every graph of
minimum degree at least 3 and girth at least q(r) contains a Kr minor. In [10], we
proved much more precise bounds on the existence of large complete minors in graphs
of given minimum degree and given girth. Also, in [14] we proved that one obtains
surprisingly large complete minors if one relaxes the condition of having large girth
to being Ks,s-free.

This paper is organized as follows. In the next section, we give a brief outline of
the proof of Theorem 1. In section 3 we then present the necessary definitions and
some tools which we will need later on. Section 4 is devoted to the proof itself and
is divided into two subsections: one for the easier case when we seek a subdivision of
Kr+1 for r ≥ 5 and one for the case where we seek a subdivision of K5. In the final
section, we then very briefly discuss possible approaches for further improvements and
the obstacles to these.

2. Outline of the proof. Suppose that we are given a graph G of minimum
degree r and girth at least 27. First we choose a maximal set X of vertices whose
pairwise distance is at least 7. We then extend these vertices into rooted induced
subtrees of G such that each tree sends many edges to different other trees. (The
vertices in X are the roots of these trees.) Then the minor G′ of G which is obtained
by contracting each of the trees into a single vertex has large minimum degree (at
least r(r − 1)3). One could then show that G′ contains an

(
r+1
2

)
-linked subgraph

G∗ (provided that r is not too small). Thus G∗, and therefore also G′, contains a
subdivision of a Kr+1. But unfortunately, this need not correspond to a subdivision
of a Kr+1 in our original graph G.

64 DANIELA KUHN AND DERYK OSTHUS

Thus we have to find a highly linked substructure G∗ of G′ which allows us more
control on what the subdivision of Kr+1 in G∗ (and in G′) looks like in order to
guarantee that this subdivision will correspond to one in G. Indeed, we find a set A
of vertices of G′ together with their neighbors B having the property that the graph
G∗ obtained from G′[A ∪ B] by contracting an independent set F of A–B edges is
highly connected (Lemma 5). At first it might not seem to be a good idea to consider
a highly connected minor of G′ instead of a highly connected subgraph. But the
advantage of this is that at least the vertices in A are now guaranteed to “keep” all
their neighbors in the connected substructure. In the case r ≥ 5 this property can be
used to find r + 1 disjoint r-stars in G′[A ∪B] (with centers in A) which correspond
both to disjoint r-stars in G∗ as well as subdivided r-stars in G. As G∗ is highly
connected and thus highly linked, we can link the leaves of the stars to obtain a
subdivision of Kr+1 in G∗. Since each star in G∗ corresponds to a subdivided star in
G, this subdivision of Kr+1 in G∗ will then correspond to one in G.

This strategy was first used by Mader [15] and subsequently also by us in [9]. The
improvements we obtain here are partly due to a more economical construction of the
stars in G′[A∪B]. In particular, in order to find stars with the desired properties, the
graph G′ was required to have a girth which was linear in r in [15] and to have a girth
of least 6 in [9], where the weaker bound of 186 on the girth of G was proved. Dropping
this requirement on G′ immediately leads to a significantly lower requirement on the
girth of G.

The strategy described above does not work when r = 4 since in this case we
cannot guarantee that the graph G∗ is sufficiently linked. So we have to work harder
here (see the beginning of section 4.2 for more details).

3. Notation and tools. We will now collect some definitions and results which
we will need later. We denote the minimum degree of a graph G by δ(G). The girth
g(G) of G is the length of the shortest cycle in G. A subdivision of a graph G is a
graph TG obtained from G by replacing the edges of G with internally disjoint paths.
The branch vertices of TG are all those vertices that correspond to the vertices of
G. An r-star is a star with r leaves. Given a set A of vertices of a graph G, we
write NG(A) for the set of all those neighbors of vertices in A that lie outside A.
Given � ∈ N, the �-ball around a vertex x of a graph G is the subgraph of G induced
by all its vertices of distance at most � from x (including x itself). We denote this
subgraph by B�

G(x). Given integers r ≥ 3 and � ≥ 1, we define an r-uniform tree
of radius � to be the rooted tree in which all leaves have distance � from the root
and all other vertices have degree r. Thus an r-uniform tree of radius � has precisely
r(r − 1)�−1 leaves. Given a tree T with root x and a vertex v ∈ T , we say that a
vertex u ∈ T lies above v if v lies on the subpath of T which joins x to u. The branch
above v is the subtree of T which is spanned by all the vertices lying above v.

Given k ∈ N, we say that a graph G is k-linked if |G| ≥ 2k and for every 2k
distinct vertices x1, . . . , xk and y1, . . . , yk of G there exist disjoint paths P1, . . . , Pk

such that Pi joins xi to yi. We will make essential use of the following recent result
of Thomas and Wollan [20].

Theorem 4. Let k ≥ 1 be a natural number. Every 2k-connected graph of average
degree at least 10k is k-linked.

The first linear bound on the necessary average degree was established by Bollobás
and Thomason [2], who obtained the same result but with the 10k replaced by 22k.

The following lemma is essentially due to Mader [15], who proved a slightly
stronger result for triangle-free graphs. A proof of the version below is contained in [9].

TOPOLOGICAL CLIQUES IN GRAPHS OF LARGE GIRTH 65

Lemma 5. Let c ≥ 1 be an integer and let G be a graph of minimum degree at
least 2c. Then there exist disjoint sets A,B ⊆ V (G) and a set F of |B| independent
A–B edges such that |A| > c > |B|, NG(A) ⊆ B and so that the graph G∗ obtained
from G[A ∪B] by contracting the edges in F is �c/3�-connected.

4. Proofs. Note that Theorem 1 is trivial for r ≤ 2. Moreover, it is easy to
check that every graph of minimum degree at least 3 contains a subdivision of K4.
(This was first observed by Dirac; see, e.g., [1, Ch. VII, Thm. 2.2].) Thus Theorem 1
also holds when r = 3 (even with no assumption on the girth). Pelikán showed
that every graph of minimum degree at least 4 contains a subdivision of the graph
obtained from K5 by deleting one edge (see, e.g., [1, Ch. VII, Thm. 2.5]). However,
as mentioned in the introduction, an additional assumption on the girth is needed to
guarantee a subdivision of K5. (Alternatively, instead of increasing the girth, one can
also guarantee a subdivided K5 by increasing the minimum degree to 6. This follows
from the result of Mader [16] that 3|G| − 5 edges force a TK5.) As the proof of the
K5-case of Theorem 1 needs some special arguments, it will be considered separately.
So let us first prove Theorem 1 for the case r ≥ 5.

4.1. Finding a subdivision of Kr+1 for r ≥ 5. Let G be a graph of minimum
degree r ≥ 5 and girth at least 27. Consider a maximal set X of vertices of G such
that every two vertices in X have distance at least 7 from each other. Since the girth
of G is at least 27, the 3-ball B3

G(x) around any vertex x ∈ X is a tree. Since the
vertices in X have distance at least 7 from each other, all these trees must be disjoint.
We now extend these trees to connected subgraphs Tx (x ∈ X) by adding first every
vertex of distance 4 from X to one of the trees to which it is adjacent, then adding
all vertices of distance 5 from X to one of the subgraphs constructed in the previous
step and then those of distance 6. By the maximality of X, every vertex in V (G) \X
has distance at most 6 from X and is thus contained in some Tx. Our assumption
that the girth of G is at least 27 now implies that the Tx (x ∈ X) satisfy the following
properties:

(i) Tx is an induced subtree of G. We will view x as the root of Tx.
(ii) Each leaf of Tx has in Tx distance at most 6 from the root x of Tx.
(iii) The 3-ball B3

G(x) = B3
Tx

(x) around x contains an r-uniform tree of radius
3. Thus Tx has at least r(r − 1)2 leaves and so there are at least r(r − 1)3

edges in G emanating from Tx. All these edges go to different other trees Ty,
i.e., between every pair Tx and Ty of trees there exists at most one edge in G.

We now consider the graph G′ obtained from G by contracting each Tx (x ∈ X) into
a single vertex. For each x ∈ X, we denote by x′ the vertex of G′ corresponding to
the (contracted) tree Tx. Note that (iii) implies that

δ(G′) ≥ r(r − 1)3.

Put

c := 6

(
r + 1

2

)
+ 3(r + 1).(1)

Using that r ≥ 5, it is easy to check that

δ(G′) ≥ 2c.(2)

Thus we can apply Lemma 5 to G′ to obtain sets A and B and a set F of |B|
independent A–B edges as described there. The edges of F are called F -edges.

66 DANIELA KUHN AND DERYK OSTHUS

Tx

x v

y
Ty

branch of Tx above v

Fig. 1. The neighbor y′ of x′ lies above v.

Si

y′1
y′2

Ty1

Ty2

Txi

xi

v1

x′
i

v2

y′r

Tyr

Fig. 2. The star Si corresponds to a subdivided star in G.

Given a vertex v ∈ Tx and a neighbor y′ of x′ in G′, we say that y′ lies above v if
v lies on the subpath of Tx which joins x to the unique Tx–Ty edge of G (Figure 1).
Our next aim is to find disjoint r-stars S1, . . . , Sr+1 in G′[A ∪ B] such that, writing
x′
i for the center of Si, they satisfy the following properties:

(a) No edge of Si belongs to F . No F -edge joins 2 leaves of Si.
(b) There are no F -edges joining two different Si.
(c) The leaves of Si lie above different neighbors of xi in Txi .

The vertices xi will be the branch vertices of our subdivided Kr+1. Property (c)
ensures that each Si corresponds to a subdivided r-star in G (Figure 2). The stars
S1, . . . , Sr+1 can be found greedily as follows. Suppose that we have already chosen
S1, . . . , Si−1 for some i ≤ r + 1. Let W be the set consisting of all those vertices in
G′[A∪B] which send an F -edge to some vertex in V (S1)∪· · ·∪V (Si−1) =: W ′. Since
the F -edges are independent, we have |W ∪W ′| ≤ 2|W ′| ≤ 2r(r + 1). Take x′

i to be
any vertex in A \ (W ∪W ′). To see that such a vertex exists, we have to check that
|A| > |W ∪ W ′|. But this holds since all the vertices in A have their neighbors in
A ∪B and thus

|A| ≥ δ(G′) − |B| > δ(G′) − c
(2)

≥ c ≥ 2r(r + 1) ≥ |W ∪W ′|,

as desired. Now we have found the center x′
i of Si. So next we will choose its leaves.

Let v1, . . . , vr be distinct neighbors of xi in the tree Txi
(Figure 2). (So the vj are

vertices of G.) Let Vj be the set of all those neighbors of x′
i in G′ which lie above vj .

Let Uj := Vj ∩ (W ∪W ′). We assume that the vj are ordered descendingly according
to the size of Uj , i.e., if k > j, then |Uk| ≤ |Uj |. For each vj in turn we have to choose
a neighbor y′j of x′

i in G′ such that (I) y′j ∈ Vj , (II) y′j /∈ Uj , (III) x′
iy

′
j /∈ F , (IV) no

TOPOLOGICAL CLIQUES IN GRAPHS OF LARGE GIRTH 67

F -edge joins y′j to any y′1, . . . , y
′
j−1 chosen previously for v1, . . . , vj−1 and such that

(V) y′j
= y′k for k < j. Then (a)–(c) are satisfied and y′1, . . . , y
′
r can be taken as leaves

of Si. We call every neighbor of x′
i in Vj which violates one of the properties (II)–(IV)

a forbidden neighbor. We will show that there exists one such neighbor y′j which is
not forbidden. For this, first note that Vj ∩ Vk = ∅ for j
= k. (Indeed, if y′ ∈ Vj ∩ Vk,
then G would contain at least two edges between Txi

and Ty, contradicting (iii). In
particular, this shows that (V) will automatically be satisfied.) Thus also Uj ∩Uk = ∅
for j
= k. By our assumption on the ordering of the vertices v1, . . . , vr, this implies
that |Uj | ≤ |W ∪W ′|/j. Since the number of neighbors which are forbidden by (III)
and (IV) is clearly at most j, this implies that the total number of forbidden neighbors
is at most

j + |Uj | ≤ j + 2r(r + 1)/j ≤ 1 + 2r(r + 1).

The final inequality is due to the fact that j + 2r(r + 1)/j is a decreasing function in
j for 1 ≤ j ≤ r.

On the other hand, property (iii) implies that the branch of Txi above vj has at
least (r− 1)2 leaves and thus sends out at least (r− 1)3 edges going to other trees Ty.
So there are at least (r − 1)3 neighbors of x′

i which lie above vj , i.e., |Vj | ≥ (r − 1)3,
which is greater than 1 + 2r(r + 1) for r ≥ 5. Thus there exists a neighbor y′j of x′

i

lying above vj which is not forbidden, as desired. This proves the existence of the
stars S1, . . . , Sr+1.

We now consider the graph G∗ obtained from G′[A ∪ B] by contracting every
edge in F . Conditions (a) and (b) ensure that the images of S1, . . . , Sr+1 in G∗ are
still disjoint r-stars. Our aim now is to delete the centers of these stars and then to
link the leaves of them by

(
r+1
2

)
disjoint paths in such a way that (after adding the

centers again) we obtain a subdivision of Kr+1 in G∗ whose branch vertices are the
centers. Since by condition (c) each Si corresponds to a subdivided r-star in G, it is
easy to see that this subdivision of Kr+1 in G∗ would then correspond to one in G
(with branch vertices x1, . . . , xr+1).

Thus it suffices to show that the graph obtained from G∗ by deleting the centers
of the images of S1, . . . , Sr+1 is

(
r+1
2

)
-linked. By Theorem 4 this is the case if the

minimum degree of this graph is at least 10
(
r+1
2

)
and if its connectivity is at least

2
(
r+1
2

)
. Thus is suffices to show that the minimum degree of G∗ is at least 10

(
r+1
2

)
+

r + 1 and its connectivity is at least 2
(
r+1
2

)
+ r + 1. The second condition is satisfied

since Lemma 5 implies that G∗ is �c/3�-connected and c/3 = 2
(
r+1
2

)
+r+1. Moreover,

when contracting F , each vertex a ∈ A looses one neighbor for each F -edge to which a
is either incident or which has the property that a is joined to both of its endvertices.
Thus

δ(G∗) ≥ δ(G′) − |B| > r(r − 1)3 − c ≥ 10

(
r + 1

2

)
+ r + 1,

as desired (use that r ≥ 5).This completes the proof of Theorem 1 for the case when
r ≥ 5.

4.2. Finding a subdivision of K5. Let G be a graph of minimum degree 4
and girth at least 27. Set

c := 51 = 3

(
2 ·

((
5

2

)
− 4

)
+ 5

)
.

68 DANIELA KUHN AND DERYK OSTHUS

Tx1 Tx2 Tx3 Tx4 Tx5

Fig. 3. The subgraph of G corresponding to graph H′ ⊆ G′ defined in condition (δ).

Thus c is a little smaller than the number obtained by substituting r = 4 in (1).
Proceed similarly as in the first part of section 4.1 to obtain trees Tx (x ∈ X), a graph
G′, vertex sets A,B ⊆ V (G′), and a set F of |B| independent A–B edges. Again,
denote by G∗ the graph obtained from G′[A ∪B] by contracting each edge in F . We
now would like to choose stars S1, . . . , S5 in G′[A∪B] and continue as in section 4.1.
However, c is now smaller and thus the graph obtained from G∗ by deleting any five
vertices (e.g., the star centers) will only be (

(
5
2

)
− 4)-linked in Case 1 below instead of(

5
2

)
-linked as in section 4.1, and in Case 2 it will only be (

(
5
2

)
− 5)-linked. So we have

to argue more carefully to ensure that when applying the linkedness we only have to
find 6 of the 10 subdivided edges of our TK5 in Case 1 and 5 subdivided edges in
Case 2. The reason why we choose c to be smaller now is that when passing from G′

to G∗, the minimum degree may decrease by |B| ≤ c− 1, and thus we can guarantee
a larger minimum degree of G∗ in this way.

The idea is to distinguish two cases according to the minimum degree of G∗.
Case 1. The minimum degree of G∗ is at least 65.
The strategy here is to choose the stars S1, . . . , S5 in such a way that their centers

form a path of length 5. Then we can use the edges of this path to find four of the
subdivided edges of our TK5 and thus we only need the linkedness of G∗ to find the
six remaining edges. More formally, we wish to find stars S1, . . . , S5 in G′ satisfying
the following properties:

(α) Both S1 and S5 are 3-stars and each of S2, S3, S4 is a 2-star. All the Si are
disjoint from each other. The centers x′

1 . . . x
′
5 of S1, . . . , S5 form a path in

G′[A].
(β) No edge of Si belongs to F . No F -edge joins 2 leaves of Si.
(γ) There are no F -edges joining two different Si. In particular, none of the edges

on the path x′
1 . . . x

′
5 lies in F .

(δ) Let H ′ denote the union of all the stars Si and the path x′
1 . . . x

′
5. (Thus

every x′
i has degree 4 in H ′.) The neighbors of x′

i in H ′ lie above different
neighbors of xi in Txi (Figure 3).

This can be achieved as follows. We first choose the path x′
1 . . . x

′
5. This can be done

greedily. Indeed, suppose that we have already found x′
1 . . . x

′
j for some 1 ≤ j < 5. For

x′
j+1 we can take any neighbor y′ of x′

j which lies in A\{x′
1, . . . , x

′
j}, does not send an

F -edge to any of x′
1, . . . , x

′
j , and is such that y′ and x′

j−1 lie above different neighbors of

xj in Txj
. But by (iii) there are at least 3 ·33 = 81 neighbors of x′

j satisfying the latter
property and at most |B|+ j ≤ c+ 4 = 55 of them lie in B ∪ {x′

1, . . . , x
′
j}. Moreover,

at most j ≤ 4 of the remaining neighbors send an F -edge to any of x′
1, . . . , x

′
j . Thus

we can find the path x′
1 . . . x

′
5 consisting of the centers of S1, . . . , S5.

TOPOLOGICAL CLIQUES IN GRAPHS OF LARGE GIRTH 69

We now have to choose the leaves of the Si. As before, this can be done greedily.
It is easy to check that one can find leaves for each of S1, . . . , S4 in turn. So let us now
choose the three leaves for S5. Let v1, v2, v3 be three neighbors of x5 in Tx5 such that
x′

4 does not lie above vi for each i = 1, 2, 3. Let W be the set consisting of all those
vertices in G′[A∪B] which send an F -edge to some vertex in V (S1)∪· · ·∪V (S4)∪{x′

5}.
Set W ′ := (V (S1) ∪ · · · ∪ V (S4)) \ {x′

4}. Given i ≤ 3, we say that a vertex y′ is a
candidate for the ith leaf of S5 if y′ lies above vi and if y′ /∈ W ∪W ′. We are looking
for three candidates, one for the first leaf, one for the second, and one for the third,
such that no F -edge joins two of them. (Then these candidates can be taken as
leaves of S5. Indeed, note that the candidates are automatically distinct from x′

4

since otherwise G would contain at least two Tx4–Tx5 edges.) There are at least 27
neighbors of x′

5 which lie above vi. Since at most |W ∪W ′| ≤ 26 of these neighbors lie
in W ∪W ′, there is at least one candidate for the ith leaf. Moreover, this argument
also shows that for at most one index i there are less than three candidates for the ith
leaf. (Indeed, suppose there are at most two candidates for the first leaf, say. Then at
most one of the vertices above v2 or v3 can be in W ∪W ′, as G′ contains no multiple
edges.) Thus there must be three candidates, one for each of the three leaves, such
that no F -edge joins two of them, as required.

Similarly as in section 4.1 we now consider the graph G∗ obtained from G′[A∪B]
by contracting each edge in F . Again, conditions (β) and (γ) ensure that the image
of H ′ in G∗ is still isomorphic to H ′, i.e., nothing in H ′ will be contracted. As in
section 4.1 we now delete the images of the centers x′

1, . . . , x
′
5 in G∗ and then wish

to link the images of the leaves of the Si to obtain a subdivision of K5 in G∗ whose
branch vertices are the centers. However, since the centers lie on a path of length 4
in G∗ we can link adjacent branch vertices via an edge of the path. Thus we now
only have to find the

(
5
2

)
− 4 = 6 remaining subdivided edges of our TK5 in G∗. For

this, it suffices that the graph obtained from G∗ by deleting the five branch vertices
is 6-linked. By Theorem 4 this is the case if the minimum degree this graph is at
least 60 and if its connectivity is at least 12. This in turn holds if the minimum
degree of G∗ is at least 65 and its connectivity is at least 17. The first requirement
holds by our assumption. The latter is satisfied since by Lemma 5 the graph G∗ is
�c/3�-connected and c/3 = 17. Condition (δ) now implies that our subdivision of K5

in G∗ corresponds to a subdivision of K5 in G whose branch vertices are x1, . . . , x5.
Case 2. The minimum degree of G∗ is at most 64.
Recall that, as in section 4.1, when contracting the edge set F to obtain G∗ from

G′[A ∪ B], each vertex x′ ∈ A loses one neighbor for each F -edge which is incident
with a or of which a sees both endvertices. Thus we obtain the lower bound

δ(G∗) ≥ δ(G′) − |B| > 4 · 33 − c = 57.(3)

This is too small for us to be able to proceed as in Case 1, since with this bound
we can now only guarantee that the graph obtained by deleting five vertices of G∗

is 5-linked instead of 6-linked as it was in Case 1. Our solution is to find in G′ a
suitable subgraph Q′ consisting of a triangle and a path attached to it. The branch
vertices and 5 of the 10 subdivided edges of our subdivision will be contained in the
subgraph of G which corresponds to Q′. The existence of some triangle in G′ is easy
to show: our assumption on the minimum degree of G∗ implies that there exists a
triangle x′y′z′ in G′[A ∪ B] which is formed by some vertex x′ ∈ A and an F -edge
y′z′. (In fact, some x′ ∈ A must form such a triangle with at least 108 − 64 − 1 = 43
of the F -edges, but we will not make use of this.)

70 DANIELA KUHN AND DERYK OSTHUS

a

t

v1

v2

Ta

Ty1

Tz1

Ty2

Tz2

C(abc)

Fig. 4. The trees corresponding to the docking points for v1 and v2.

Given a triangle u′v′w′ in G′, we denote by C(uvw) its corresponding cycle in G,
i.e., the unique cycle which consists of the Tu–Tv edge, the Tv–Tw edge, the Tu–Tw

edge as well as the unique paths in Tu, Tv and Tw joining endvertices of these edges.
The turning point of C(uvw) in Tu is that vertex in C(uvw) ∩ Tu whose distance to
u is minimal. The turning points in Tv and Tw are defined similarly. Consider all
triangles as described in the previous paragraph, i.e., all triangles in G′[A∪B] which
meet A in precisely two vertices and contain an F -edge. Among all these triangles
choose a′b′c′ such that the distance of a to the turning point t of C(abc) in Ta is
minimal, where a′, c′ ∈ A and b′ ∈ B. We have to distinguish two cases.

Case 2.1. The distance between a and t is at most 1.
Let us start with a definition. Given v ∈ Tx, we say that distinct neighbors

y′1, . . . , y
′
i of x′ in G′ form a v-join if all the subpaths of Tx which join v to the unique

Tx–Tyi edges meet in v and are otherwise disjoint from each other. This means that if
x′ is the center of an i-star S in G′ whose leaves form a v-join for some vertex v ∈ Tx,
then S corresponds to a subdivided i-star in G whose center is v. Moreover, note
that neighbors y′1, . . . , y

′
i of x′ form an x-join if and only if they lie above different

neighbors of x in Tx.
Now let v1 and v2 denote the neighbors of t on C(abc). The vertices t, v1, v2 will

be three branch vertices of our subdivision of K5. We will use the cycle C(abc) to
join these three branch vertices pairwise. Before this we will choose for each vi two
neighbors y′i and z′i of a′ in G′ which will serve as “docking points” when using the
linkedness of G∗ to join vi to the remaining two branch vertices of the subdivided K5

(Figure 4). (These “docking points” play the same role for vi as the leaves of Si do
for xi in both section 4.1 and Case 1.) The desired docking points y′i and z′i have to
satisfy the following properties:

• No F -edge joins a′ or c′ to any of the y′i or z′i.
• There is no F -edge between any of the four vertices y′i and z′i.
• The vertices y′i and z′i are neighbors of a′ in G′ − {b′, c′} which lie above vi.

Moreover, y′i, z
′
i, b

′, c′ form a vi-join.
Note that the third condition together with the fact that either b′a′ ∈ F or b′c′ ∈ F
implies that neither y′i nor z′i can be joined to b′ by an F -edge. Let us now show
that such docking points y′1, y′2, z′1, and z′2 exist. (For this, without mentioning it
explicitly, we will make frequent use of the fact that every vertex sends out at most
one F -edge and that G contains at most one edge between every pair Tx, Ty of trees.)

TOPOLOGICAL CLIQUES IN GRAPHS OF LARGE GIRTH 71

First fix two different neighbors vyi and vzi of vi in Ta which lie above vi and avoid
C(abc). Such neighbors exist since vi is not the turning point of C(abc) in Ta and
thus only one of the at least three neighbors of vi lying above vi in Ta lies on C(abc).
Since vi has distance at most 2 from the root a of Ta, the branches of Ta above vyi and
vzi both send out at least three edges. (Note that the definition of vyi and vzi implies
that none of these edges can go to Tb or Tc.) Thus there are at least three neighbors
of a′ in G′−{b′, c′} which lie above vyi and the same holds for vzi . This means that for
each of y′1, y

′
2, z

′
1, z

′
2 there are at least three candidates which satisfy the third of the

above properties. Without loss of generality we may assume that no F -edge joins a′

to a candidate for z′1, y
′
2 or z′2 (relabel if necessary to achieve this). Moreover, we will

consider only the case when no F -edge joins c′ to a candidate for z′1 or z′2. In this case
we will first choose y′1 and then y′2. The remaining cases are analogous. Since there
are at least three candidates for y′1, one of them sends no F -edge to a′ or c′. Denote
it by y′1. Similarly, for y′2 take any candidate which does not send an F -edge to y′1 or
c′. Note that a′y′2 /∈ F by our assumption. Next we have to choose z′1 and z′2. We will
consider only the case when there are at least two candidates for z′2 which are joined
to neither y′1 nor y′2 by an F -edge. (The case when this holds for z′1 instead of z′2 is
analogous.) Take z′1 to be any candidate which is joined to neither y′1 nor y′2 by an
F -edge. Finally, we can choose z′2 since by assumption there is at most one candidate
for it which is joined to y′1 or y′2 by an F -edge and at most one of the remaining ≥ 2
candidates sends an F -edge to z′1. (Recall that our earlier assumptions imply that
neither a′ nor c′ sends an F -edge to z′1 or z′2.)

Next we will choose one docking point for t. Let vyt and vzt be two neighbors
of t in Ta which are distinct from v1 and v2. If t
= a, we choose vzt to be a. Note
that the branch of Ta above vyt sends out at least nine edges and none of them goes
to Tb, Tc, Ty1

, Ty2
, Tz1 , or Tz2 . Thus there are at least nine neighbors of a′ in

G′ −{b′, c′, y′1, y′2, z′1, z′2} which lie above vyt . Let y′t be one such neighbor which sends
an F -edge to none of a′, c′, y′1, y

′
2, z

′
1, z

′
2.

For i = 1, 2 let Si denote the 2-star in G′[A ∪ B] whose center is a′ and whose
leaves are y′i and z′i. Let S3 be the 1-star with center a′ and leaf y′t. Thus the stars
S1, S2, and S3 meet in a′ and are disjoint otherwise. We will now choose a 2-star S4

and a 3-star S5 satisfying the following properties:
(α′) S4 and S5 are disjoint and avoid V (S1)∪V (S2)∪V (S3)∪{b′, c′}. The centers

x′
4 and x′

5 of S4 and S5 lie in A. Moreover, either a′x′
4x

′
5 forms a path or else

there is a vertex z′t ∈ B \ (V (S1 ∪ · · · ∪ S5) ∪ {b′, c′}) such that a′z′tx
′
4x

′
5 is a

path and z′tx
′
4 ∈ F .

(β′) No edge of S4 or S5 belongs to F . No F -edge joins two leaves of S4 or of S5.
(γ′) There is no F -edge joining S4 to a vertex in V (S1 ∪S2 ∪S3 ∪S5)∪{a′, b′, c′}.

The analogous condition holds for S5.
(δ′) Let P ′ denote the path a′x′

4x
′
5 or a′z′tx

′
4x

′
5 guaranteed in (α′). Let H ′ be the

union of P ′, S4, and S5. (Thus both x′
4 and x′

5 have degree 4 in H ′.) For each
i = 4, 5 the 4 neighbors of x′

i in H ′ form an xi-join. Moreover, the neighbor
of a′ on P ′ lies above vzt .

(The vertices x4 and x5 will be the two remaining branch vertices of our subdivision
of K5 in G.) We will only show that we can either find a path a′x′

4x
′
5 or a path

a′z′tx
′
4x

′
5 with the desired properties. The existence of the leaves of S4 and S5 then

follows by an argument analogous to the one in Case 1 (but with more room to spare
this time). So let us consider all those at least 27 neighbors of a′ that lie above vzt .
Clearly, none of them lies in V (S1 ∪ S2 ∪ S3) ∪ {b′, c′}. Moreover, at most eight of
them are joined by an F -edge to a vertex in V (S1 ∪ S2 ∪ S3) ∪ {b′, c′}. If one of the

72 DANIELA KUHN AND DERYK OSTHUS

remaining neighbors lies in A, we take it to be x′
4. Thus we may assume that each of

the at least 19 remaining neighbors lies in B. Take z′t to be any such neighbor which
has the property that the endvertex in A of the unique F -edge incident to z′t does not
lie in V (S1 ∪ S2 ∪ S3) ∪ {a′, b′, c′}. Take x′

4 to be this endvertex. The vertex x′
5 can

now be found in the same way as in Case 1.
Having chosen our stars S1, . . . , S5, we proceed similarly as in Case 1. Again, we

consider the graph G∗ obtained from G′[A ∪ B] by contracting each edge in F . The
stars S1, . . . , S5 have been chosen is such a way that in the subgraph of G′ induced by
all the stars Si, the path P ′ and the triangle a′b′c′ at most two edges are contracted,
namely, the F -edge lying on a′b′c′ and the F -edge z′tx

′
4 (if z′t exists). Otherwise

nothing changes in this subgraph when passing over to G∗.
We will now choose our subdivision of K5 in G. As indicated before, the branch

vertices will be t, v1, v2, x4, and x5. Five of the pairs of branch vertices can be linked
directly. Indeed, we can use the cycle C(abc) to link t, v1 and v2 pairwise. Moreover,
x4 will be linked to x5 by the path consisting of the unique Tx4

–Tx5
edge together

with the paths in Tx4
and Tx5

joining x4 and x5 to this edge. In the case when a′

and x′
4 are joined by an edge, we can link t to x′

4 in a similar way. If z′t exists, i.e., if
a′z′tx

′
4 is a path of length 2, then the path linking t to x4 will run through Tzt . We

now have to find paths joining the remaining five pairs of branch vertices. Similarly
as in Case 1, this will be done by using the linkedness of G∗ to connect the docking
points, i.e., the images of the leaves of the stars S1, . . . , S5. Each of the five paths
we are looking for has to avoid the star centers as well as the image of c′ in G∗.
Thus we delete these four vertices. We can now link the images of the star leaves if
the subgraph of G∗ thus obtained is 5-linked. So by Theorem 4 we are done if the
minimum degree this graph is at least 50 and if its connectivity is at least 10. This
in turn holds if the minimum degree of G∗ is at least 54 and its connectivity is at
least 14. Inequality (3) shows that the first condition holds. The latter condition is
satisfied since by Lemma 5 the graph G∗ is �c/3�-connected and c/3 = 17.

Case 2.2. The distance between a and t is at least 2.
Similarly as in Case 2.1, also in this case we will choose the branch vertices in

such a way that three of them lie on the cycle C(abc) and thus this cycle can be used
to link them pairwise. The two remaining branch vertices will also be chosen in an
analogous way, i.e., they will be attached to C(abc) by a path. However, this time
we cannot choose the first three branch vertices in Ta ∩ C(abc) as C(abc) stays too
far away from the center when passing through Ta. Instead, we will only choose two
vertices in Ta ∩ C(abc) and one in Tc ∩ C(abc).

Since by assumption the distance from a to the turning point of C(abc) in Ta is at
least 2 and since by the choice of a′b′c′ the analogue also holds for the turning point
of C(abc) in Tc, the cycle C(abc) meets both Ta and Tc in at most nine vertices (use
condition (ii) to see this). Since C(abc) meets Tb in at most 13 vertices and the girth
of G is at least 27, it follows that C(abc) has to meet each of Ta and Tc in at least five
vertices. Moreover, it follows that C(abc) meets at least one of Ta and Tb in at least
seven vertices. Thus without loss of generality we may assume that C(abc) meets Ta

in at least seven and at most nine vertices and that C(abc) meets Tc in at least five
and at most nine vertices (otherwise relabel a′ and c′).

Let us now prove that there exists a vertex c0 ∈ Tc and neighbors y′c and z′c of
c′ in G′ − {a′, b′} satisfying the following properties (the “moreover” part of the first
property will not be used until Case 2.2.2):

• The vertex c0 is either the first, the second, or the third vertex on C(abc) in Tc

when coming from Ta. Moreover, c0 is not the turning point of C(abc) in Tc.

TOPOLOGICAL CLIQUES IN GRAPHS OF LARGE GIRTH 73

Tc

ciC(abc)

v

Tzi
Tyi

/∈ F

Fig. 5. Choosing y′i and z′i in the case when ci has a neighbor v in Tc − C(abc).

• The vertices y′c, z
′
c, a

′, b′ form a c0-join.
• F does not contain y′cz

′
c.

• Neither y′c nor z′c sends an F -edge to any of a′, b′, c′.
The vertex c0 will be one of the branch vertices of our subdivision. Both y′c and z′c will
serve as docking points for c0. So let us now show that there exist such vertices c0, y

′
c,

and z′c. Choose any two vertices c1 and c2 such that they are among the first three
vertices on C(abc) in Tc when coming from Ta and such that none of them equals
the turning point. (These two vertices exist since C(abc) meets Tc in at least five
vertices.) Thus c1 and c2 are candidates for c0 in the sense that they satisfy the first
property above.

Before we continue, we need some more notation which generalizes the notion of
“lying above.” Given a subtree T ⊆ Tx and a neighbor z′ of x′ in G′, we say that z′

belongs to T if T contains an endvertex of the unique Tx–Tz edge. Thus if v ∈ Tx,
then z′ lies above v if and only if z′ belongs to the branch of Tx above v.

Next we show that for each i = 1, 2, one can find neighbors y′i and z′i of c′ in
G′ − {a′, b′} such that a′, b′, y′i, z

′
i form a ci-join and y′iz

′
i /∈ F . To do this, we first

consider the case that all neighbors of ci in Tc are contained in C(abc). This implies
that ci sends out at least two edges to vertices in G− (Ta ∪Tb ∪Tc), i.e., there are (at
least) two neighbors of c′ in G′ −{a′, b′} which form a ci-join together with a′ and b′.
Take y′i and z′i to be two such neighbors. Suppose that y′iz

′
i ∈ F . We may assume that

y′i ∈ A and z′i ∈ B (relabel if necessary). Since the triangle c′y′iz
′
i was a candidate for

the choice of a′b′c′, it follows that the turning point of C(cyizi) in Tyi
has distance at

least 2 from yi. Thus C(cyizi) meets Tyi in at most nine vertices. However, it meets
Tzi in at most 13 vertices and Tc in precisely one vertex. Thus the length of C(cyizi)
is at most 23, contradicting the fact that the girth of G is at least 27. So we may turn
to the case that ci has a neighbor v in Tc − C(abc). In the case when v is the only
such neighbor, ci has to send out an edge to G − (Ta ∪ Tb ∪ Tc). Take y′i to be the
vertex for which the corresponding tree Tyi

contains the endvertex of that edge. If ci
has another neighbor w in Tc − C(abc), take for y′i any neighbor of c′ which belongs
to the component of Tc − ci containing w. To find z′i, consider those at least three
neighbors of c′ which belong to the component of Tc − ci containing v (Figure 5). At
most one of them sends an F -edge to y′i. Take z′i to be any other such neighbor. Thus

74 DANIELA KUHN AND DERYK OSTHUS

a1

a2

aj

Tzj

Tz2

Tz1

C(abc)

Ty1

Ty2

Tyj

Ta

Fig. 6. The neighbors y′i and z′i chosen for ai.

in each case we have found vertices y′i and z′i as required. Note that the sets {y′1, z′1}
and {y′2, z′2} are disjoint. (Indeed, if, for example, y′1 = y′2, then G would contain at
least two Tc–Ty1 edges.)

Let us now show that for some i we have a′y′i, a
′z′i, c

′y′i, c
′z′i /∈ F . (Note that

b′y′i, b
′z′i /∈ F holds automatically since either a′b′ ∈ F or b′c′ ∈ F and F consists of

independent edges.) If this is not the case, then, for example, we have that a′y′1, c
′y′2 ∈

F . But this contradicts the fact that either a′ or c′ already sends an F -edge to b′.
The vertices ci, y

′
i, z

′
i for which a′y′i, a

′z′i, c
′y′i, c

′z′i /∈ F are a good choice for c0, y
′
c, z

′
c.

Having found one branch vertex c0 in C(abc)∩Tc, we will choose two other branch
vertices in C(abc)∩Ta. So let a1, a2, . . . , aj denote all those vertices on C(abc) which
lie in Ta in the order in which they appear when coming from Tc. Thus 7 ≤ j ≤ 9 by
our assumption. For each i = 1, . . . , j we choose neighbors y′i and z′i of a′ in G−{b′, c′}
which satisfy the following properties (Figure 6):

(A) The vertices y′i, z
′
i, b

′, c′ form an ai-join.
(B) F does not contain y′iz

′
i.

Such neighbors can be found in the same way as before. (Recall that the fact that
c0 was not a turning point was not used when showing the existence of yc and zc.)
Among all possible choices, we choose each pair y′i, z

′
i such that |{y′i, z′i} ∩ {y′c, z′c}| is

minimal. Thus we try to keep the pair y′i, z
′
i as disjoint as possible from y′c, z

′
c. Again,

the sets {y′i, z′i} are automatically disjoint for different indices i ≤ j.
Next we show that there exists an index i0 ≤ j for which we can take ai0 to be

the second branch vertex and both y′i0 and z′i0 to be docking points for ai0 . So i0 has
to satisfy the following properties:

(C) Neither y′i0 nor z′i0 sends an F -edge to any of a′, b′, c′, y′c, z
′
c.

(D) Neither y′i0 nor z′i0 lies in {y′c, z′c}.
Since either a′b′ ∈ F or b′c′ ∈ F , at most one of a′, b′, c′ sends an F -edge to a
vertex in G′ − {a′, b′, c′}. Thus altogether the vertices a′, b′, c′, y′c, z

′
c send out at

most three F -edges to vertices in G′ − {a′, b′, c′}. This implies that at most five of
the indices i ≤ 7 violate (C) or (D). Hence there exists an index i0 as required. Put
I := {1, . . . , j} \ {i0}.

Our next aim is to show that there is another ai which we can take as a branch
vertex (and such that y′i and z′i can serve as docking points for ai). Thus we have to
show that there exists an index i1 ∈ I which satisfies the following properties:

TOPOLOGICAL CLIQUES IN GRAPHS OF LARGE GIRTH 75

ak

u

Ta

Tzk

∈ F
Tv Tw = Tzc

Ty

c0
Tc

C(abc)

Fig. 7. The three neighbors of a′ lying above u.

(C ′) Neither y′i1 nor z′i1 sends an F -edge to any of a′, b′, c′, y′c, z
′
c, y

′
i0
, z′i0 .

(D′) Neither y′i1 nor z′i1 lies in {y′c, z′c, y′i0 , z
′
i0
}.

As before, it follows that at most five indices i ∈ I violate (C ′). Since {y′i0 , z
′
i0
} is

disjoint from {y′i, z′i} for each i ∈ I, at most two indices i ∈ I violate (D′). Hence
altogether at most seven of the indices i ∈ I are forbidden. Thus i1 exists if j = 9
(since then |I| = j − 1 = 8).

So we only need to consider the case when 7 ≤ j ≤ 8. Moreover, we may
assume that for some index k ∈ I either y′k or z′k lies in {y′c, z′c}. Let us assume that
y′k = y′c =: y′ (relabel if necessary to achieve this). Furthermore, if j = 8, we may
assume that there is some index � ∈ I \ {k} for which either y′� or z′� equals z′c. So let
us assume that y′� = z′c in the case when j = 8. To show the existence of the index
i1, we will now prove that these assumptions lead to a contradiction. To do this, we
distinguish the following two cases.

Case 2.2.1. The vertex ak is not an endvertex of the unique Ta–Ty edge.
Let u denote the neighbor of ak on the subpath of Ta joining ak to the endvertex of

the unique Ta–Ty edge (Figure 7). Thus there are at least three neighbors of a′ which
belong to the component of Ta − ak containing u. So each of these three neighbors
was a candidate for y′k when choosing the pair y′k, z

′
k. Since y′k, z

′
k was chosen to be as

disjoint as possible from y′c, z
′
c, this implies there are precisely three such neighbors:

one of which (namely, y′ = y′k) is equal to y′c, one of which, w′, say, is equal to z′c,
and the third one, v′, say, sends an F -edge to z′k. (Otherwise the pair consisting of
z′k together with one such neighbor would have been a better choice for y′k, z

′
k.) Since

there are precisely three such neighbors, u has to be an endvertex of all the three
edges joining Ta to each of Tv, Tw, and Ty. Moreover, the choice of y′k, z

′
k implies that

ak is an endvertex of the unique Ta–Tzk edge (Figure 7). Let us consider the cycle
C(avzk) corresponding to the triangle a′v′z′k. This cycle meets Ta in precisely two
vertices. Since the girth of G is at least 27, it meets both Tv and Tzk in at least
27 − 2 − 13 = 12 vertices. Thus the turning points of C(avzk) in Tv and Tzk have to
be v and zk. But this shows that the triangle a′v′z′k would have been a better choice
for a′b′c′, a contradiction.

Case 2.2.2. The vertex ak is an endvertex of the unique Ta–Ty edge.
This time consider the cycle C(acy) corresponding to the triangle a′c′y′. Let us

first estimate the number of vertices in C(acy) ∩ Tc. Note that the distance from

76 DANIELA KUHN AND DERYK OSTHUS

the root c of Tc to c0 is as least one larger than the distance from c0 to the turning
point of C(abc) in Tc (this holds since c0 is not this turning point). Since the latter
distance is at least 2, it follows that the segment of C(acy) ∩ Tc which joins c0 to
the endvertex of the Tc–Ty edge consists of at most four vertices. Since c0 was one
of the first three vertices on C(abc) in Tc when coming from Ta, it follows that the
segment of C(acy) ∩ Tc which joins c0 to the endvertex of the Ta–Tc edge consists
of at most three vertices. Thus C(acy) contains at most six vertices in Tc (we have
counted c0 twice). Since C(acy) contains at most 13 vertices in Ty and the girth of
G is at least 27, it follows that C(acy) meets Ta in at least 8 vertices. On the other
hand, since by assumption ak is an endvertex of the unique Ta–Ty edge, it follows
that C(acy) meets Ta precisely in the vertices a1, . . . , ak. Thus we may assume that
k = 8 and therefore j = 8. (Recall that we had previously ruled out all possibilities
for j except 7 and 8.) As shown before Case 2.2.1, this in turn implies that we may
assume that y′� = z′c =: z′ for some index � ∈ I \ {k}. Thus � ≤ 7. The case when
a� is not an endvertex of the unique Ta–Tz edge can be dealt with as in Case 2.2.1.
Thus we may assume that a� is an endvertex of the unique Ta–Tz edge. But just as
for C(acy), one can show that the cycle C(acz) corresponding to the triangle a′c′z′

has to meet Ta in at least eight vertices. But this is a contradiction since it meets
Ta precisely in a1, . . . , a� and � ≤ 7. This completes the proof of the existence of the
index i1.

So far, we have chosen three branch vertices c0, ai0 , and ai1 on C(abc) together
with two docking points for each of them. We will now find our subdivision of K5

similarly as in Case 2.1. As there, the remaining two branch vertices will be attached
to C(abc) by a path. So we have to find a suitable path in G′[A ∪ B] of length 2
or 3 which starts in either a′ or c′. As in Case 2.1, the last two vertices on this path
will be the centers of the stars S4 and S5. The remaining two branch vertices of our
subdivision will be the roots of the two trees corresponding to the centers of S4 and
S5. Again, S4 will be a 2-star and S5 a 3-star.

More precisely, we proceed as follows. First consider the case that one of the
docking points y′c, y

′
i0
, y′i1 , z

′
c, z

′
i0
, z′i1 lies in A. Suppose, for example, that z′i0 ∈ A.

(The other cases are analogous.) Then we take z′i0 to be the center x′
4 of S4. S1 will

be the 2-star in G′[A ∪ B] whose center is c′ and whose leaves are y′c and z′c. S2 will
be the 2-star in G′[A∪B] whose center is a′ and whose leaves are y′i1 and z′i1 . S3 will
be the 1-star in G′[A ∪B] whose center is a′ and whose leaf is y′i0 .

So let us now consider the case that all the six docking points lie in B. Then
at least one of them, z′i0 , say, sends an F -edge to a vertex outside {a′, c′}. Let x′

4

denote this vertex. Since x′
4 ∈ A, x′

4 is automatically distinct from b′ and from all the
docking points. Moreover, x′

4 sends neither an F -edge to any of a′, b′, c′ nor to any
docking point other than z′i0 . We take x′

4 to be the center of S4. The stars S1, S2, S3

are defined similarly as before.
In both cases, the center x′

5 of the star S5 as well as the two leaves of S4 and the
three leaves of S5 can now be found similarly as in Case 2.1. Having chosen S1, . . . , S5,
the subdivision of K5 can also be found as in Case 2.1. This completes the proof of
Case 2.2 and thus of the case when r = 4.

5. Further improvements: Approaches and obstacles. Below, we briefly
discuss three rather natural modifications to the proof strategy which one might try
out in order to improve the bound of 27 on the girth in Theorem 1.

Recall that throughout this paper, the trees which were contracted to yield the
auxiliary graph G′ have radius at least 3. It would of course be desirable if we could

TOPOLOGICAL CLIQUES IN GRAPHS OF LARGE GIRTH 77

adapt our strategy to work also for trees of radius at least 2. In this case a girth of at
least 19 would now suffice to ensure that the auxiliary graph G′ graph has no multiple
edges. However, the obvious drawback is that the minimum degree of G′ may now be
smaller. In particular, in the case r = 4 we can only guarantee δ(G′) ≥ 36 instead of
δ(G′) ≥ 108, so this does not seem feasible for small r.

Another approach is of course to work with trees of radius at least 3 as before but
now to relax the girth requirement a little. This leads to the possibility of multiple
edges between pairs of trees. One can show that this does not reduce the minimum
degree by more than a constant factor (e.g., by a factor of six if one assumes a girth of
at least 21 instead of a girth of 27; see Lemma 15 in [9] for the argument). However,
the resulting bound on the minimum degree is again too small for our techniques to
apply if r is small. (Moreover, multiple edges cause other problems, too.)

Thirdly, one might hope for an improvement on the bound of 10k on the necessary
average degree in order to ensure k-linkedness in Theorem 4. An example in [20] shows
that the best one can hope for is to replace the constant 10 by 4. But even with such
an optimal bound our proof would not give a better bound on the girth. However,
maybe combining this with the allowance of multiple edges and some new ideas would
work.

On the other hand, one might wonder how much of our improvement from a girth
of 186 in [9] to 27 here is due to the fact that we did not use Theorem [20] in [9] but
used the previous bound of Bollobás and Thomason [2], where the 10k is replaced by
22k: it is easy to check that our proofs would still work using the latter bound if one
requires the girth to be at least 35 (and considers trees which now have radius at least
4 instead of radius at least 3).

Finally, recall that there is a lot of room to spare in the estimates in section 4.1
when r is large. However, even if we assume r to be large, the arguments in section 4.1
no longer work for trees of radius at least 2 instead of radius at least 3. (Thus they
do not provide a short proof of the fact that the girth bound can be reduced to 19
instead of 27 for large r.) It is still an open question if the bound of 15 on the girth
for large r [9] can be reduced.

REFERENCES

[1] B. Bollobás, Extremal Graph Theory, Academic Press, New York, 1978.
[2] B. Bollobás and A. Thomason, Highly linked graphs, Combinatorica, 16 (1996), pp. 313–320.
[3] B. Bollobás and A. Thomason, Proof of a conjecture of Mader, Erdős and Hajnal on topo-

logical complete subgraphs, Eur. J. Comb., 19 (1998), pp. 883–887.
[4] P. Catlin, Hajós’ graph-coloring conjecture: Variations and counterexamples, J. Combin.

Theory Ser. B, 26 (1979), pp. 268–274.
[5] P. Erdős and S. Fajtlowicz, On the conjecture of Hajós, Combinatorica, 1 (1981), pp. 141–

143.
[6] T.R. Jensen and B. Toft, Graph Coloring Problems, Wiley-Interscience, New York, 1995.
[7] H. A. Jung, Eine Verallgemeinerung des n-fachen Zusammenhangs für Graphen, Math. Ann.,

187 (1970), pp. 95–103.
[8] J. Komlós and E. Szemerédi, Topological cliques in graphs II, Combin. Probab. Comput., 5

(1996), pp. 79–90.
[9] D. Kühn and D. Osthus, Topological minors in graphs of large girth, J. Combin. Theory B,

86 (2002), pp. 364–380.
[10] D. Kühn and D. Osthus, Minors in graphs of large girth, Random Structures Algorithms, 22

(2003), pp. 213–225.
[11] D. Kühn and D. Osthus, Subdivisions of Kr+2 in graphs of average degree at least r + ε and

large but constant girth, Combin. Probab. Comput., 13 (2004), pp. 361–371.
[12] D. Kühn and D. Osthus, Large topological cliques in graphs without a 4-cycle, Combin.

Probab. Comput., 13 (2004), pp. 93–102.

78 DANIELA KUHN AND DERYK OSTHUS

[13] D. Kühn and D. Osthus, Induced subdivisions in Ks,s-free graphs of large average degree,
Combinatorica, 24 (2004), pp. 287–304.

[14] D. Kühn and D. Osthus, Dense minors in Ks,s-free graphs, Combinatorica, 25 (2004), pp. 49–
64.

[15] W. Mader, Topological subgraphs in graphs of large girth, Combinatorica, 18 (1998), pp. 405–
412.

[16] W. Mader, 3n− 5 edges do force a subdivision of K5, Combinatorica, 18 (1998), pp. 569–595.
[17] W. Mader, An extremal problem for subdivisions of K−

5 , J. Graph Theory, 30 (1999), pp. 261–
276.

[18] W. Mader, Subdivisions of a graph of maximal degree n+ 1 in graphs of average degree n+ ε
and large girth, Combinatorica, 21 (2001), pp. 251–265.

[19] Shi, personal communication, Humboldt-Universität, Berlin, 2002.
[20] R. Thomas and P. Wollan, An improved linear edge bound for graph linkages, Eur. J. Comb.,

26 (2005), pp. 309–324.
[21] C. Thomassen, Girth in graphs, J. Combin. Theory B, 35 (1983), pp. 129–141.
[22] C. Thomassen, Chromatic numbers of triangle-free graphs and their complements, Report

1/2004 Combinatorics, Mathematisches Forschungsinstitut Oberwolfach, 2004.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 79–95

OPTIMUM SECRET SHARING SCHEME SECURE AGAINST
CHEATING∗

WAKAHA OGATA† , KAORU KUROSAWA‡ , AND DOUGLAS R. STINSON§

Abstract. Tompa and Woll introduced a problem of cheating in (k, n) threshold secret sharing
schemes. In this problem k− 1 malicious participants aim to cheat an honest one by opening forged
shares and causing the honest participant to reconstruct the wrong secret. We first derive a tight
lower bound on the size of shares |Vi| for secret sharing schemes that protect against this type of
attack: |Vi| ≥ (|S| − 1)/δ + 1, where Vi denotes the set of shares of participant Pi, S denotes the
set of secrets, and δ denotes the cheating probability. We next present an optimum scheme, which
meets the equality of our bound, by using “difference sets.” A partial converse and some extensions
are also shown.

Key words. cryptography, secret sharing schemes, cheaters, balanced incomplete block design,
difference sets

AMS subject classifications. 94A62, 94A60, 05B05

DOI. 10.1137/S0895480100378689

1. Introduction. (k, n) threshold secret sharing schemes [20, 2] have been stud-
ied extensively because of their wide applications in fields such as key management
and secure computation. In such a scheme, a dealer D distributes a secret s to n
participants P1, . . . , Pn in such a way that any k or more participants can recover the
secret s, but any k − 1 or fewer participants have no information on s. A piece of
information given to Pi is called a share and is denoted by vi. An important issue in
secret sharing schemes is the size of shares. Let Vi be the set of possible shares for
Pi. Let S be the set of possible secrets. Then it is well known that

|Vi| ≥ |S|(1)

in any (k, n) threshold scheme [13].
Tompa and Woll [23] considered the following scenario: Suppose that k−1 partic-

ipants, say P1, . . . , Pk−1, want to cheat a kth participant, Pk, by opening forged shares
v′1, . . . , v

′
k−1. They succeed if the secret s′ that is reconstructed from v′1, . . . , v

′
k−1 and

vk is different from the original secret s. Tompa and Woll showed that Shamir’s
scheme [20] is insecure against this attack in that even a single participant can, with
high probability, deceive k − 1 honest participants. They provided a scheme that is
secure against this attack, but |Vi| in their scheme is much larger than in (1):

|Vi| =

(
(|S| − 1)(k − 1)

ε
+ k

)2

,(2)

∗Received by the editors September 25, 2000; accepted for publication (in revised form) September
6, 2005; published electronically February 21, 2006. A preliminary version of this paper was presented
at EUROCRYPT ’96 and appeared in Lecture Notes in Computer Science 1070, 1996, pp. 200–211.

http://www.siam.org/journals/sidma/20-1/37868.html
†Graduate School of Innovation Management, Tokyo Institute of Technology, 2-12-1 O-okayama,

Meguro-ku, Tokyo 152-8552, Japan (wakaha@mot.titech.ac.jp).
‡Department of Computer and Information Sciences, Ibaraki University, 4-12-1 Nakanarusawa,

Hitachi, Ibaraki 316-8511, Japan (kurosawa@cis.ibaraki.ac.jp).
§School of Computer Science, University of Waterloo, Waterloo N2L 3G1, ON, Canada (dstinson

@uwaterloo.ca). This author’s research was supported by NSERC (Canada) grant 203114-02.

79

80 W. OGATA, K. KUROSAWA, AND D. R. STINSON

where ε denotes the cheating probability. Carpentieri, De Santis, and Vaccaro [5]
showed the following lower bound on |Vi| for this problem:

|Vi| ≥
|S|
ε
.(3)

There is a gap between the bounds of (2) and (3). In fact, both of them can be
improved. Furthermore, in the derivation of (3) it is assumed that k − 1 cheaters
P1, . . . , Pk−1 somehow know the secret s before they cheat Pk. (We call this assump-
tion the CDV assumption.)

In this paper, we define a (k, n, δ) secure secret sharing scheme without the CDV
assumption. Here, δ is the maximum probability that k−1 participants (cheaters) suc-
ceed in cheating another participant, without knowing s. (We use a different symbol,
δ rather than ε, to denote the cheating probability, in order to highlight the different
assumptions we make.) We stress here that the optimum cheating probability δ is
determined by the dealer’s secret sharing algorithm and the probability distribution
on the secret.

Next, we derive a tight lower bound on |Vi| by using basic probability arguments:

|Vi| ≥
|S| − 1

δ
+ 1.(4)

We then present an optimal scheme which meets the equality of our bound by
using “difference sets.” A planar difference set modulo N = �(�− 1) + 1 is a set of �
numbers B = {d0, d1, . . . , d�−1} ⊆ ZN with the property that the �(�− 1) differences
di − dj (di �= dj), when reduced modulo N , are exactly the nonzero elements in ZN

in some order [15, p. 397]. It is known that there exists a planar difference set if l is
a prime power [15, p. 398, Theorem 22]. Our optimal scheme is then characterized
as follows. If there exists a planar difference set modulo N = �(� − 1) + 1 such
that N is a prime, then there exists a (k, n) threshold secret sharing scheme with
|S| = �, δ = 1/�, and n < N which meets the equality of our bound (4).

Next, we prove a weak converse of the above characterization. It is known that a
difference set is equivalent to a certain symmetric balanced incomplete block design
(BIBD) having a certain automorphism. We prove that there exists a symmetric
BIBD if there exists a (k, n) threshold secret sharing scheme which meets the bound
(4). Therefore, we see that there is a tight connection between the optimal schemes
and difference sets (or symmetric BIBDs).

Our optimal scheme can be generalized as follows. Let (Γ,+) be an abelian group
of order N and let B = {d0, d1, . . . , d�−1} ⊆ Γ. Then B is called an (N, �, λ) difference
set [1, p. 261] if each nonzero element x of Γ appears exactly λ times as a difference
di−dj (di �= dj). Our generalized scheme is as follows: There exists a (k, n) threshold
secret sharing scheme which meets (4) such that |S| = �, δ = λ/�, and n < N if there
exists an (N, �, λ) difference set B in (FN ,+). It is known that there exists an (N, �, λ)
difference set B in (FN ,+) if N is a prime power, N = 4t−1, � = 2t−1, and λ = t−1
[1, p. 264].

Finally, for the model with CDV assumption, we show a lower bound on |Vi| that
improves (3) by using the same technique we use to derive (4). Our bound for the
model with CDV assumption is as follows. If S is uniformly distributed, then

|Vi| ≥
|S| − 1

ε2
+ 1.

Note that we can prove this bound only for uniformly distributed secrets. (Actually,
for nonuniformly distributed secrets, we show some counterexamples to this bound.)

OPTIMUM SECRET SHARING SECURE AGAINST CHEATING 81

1.1. Some historical remarks. Mainly, there are two concerns on secret shar-
ing schemes with malicious players. The first is that each participant should be able
to make sure that his/her share was obtained from a legitimate distribution procedure
even if a dealer is dishonest. The second one is that participants should be able to
make sure that the reconstructed secret is the correct one.

The problem we consider here focuses only on the second aspect. In particular, we
assume that the dealer is honest. Under this assumption, a slightly different problem
has been studied by other researchers. McEliece and Sarwate [16] showed that in
Shamir’s (k, n) threshold scheme, any group of k + 2e participants which includes at
most e cheaters can always correctly calculate the secret. For additional work on this
problem, see [19, 24].

The problem of identifying cheaters has also been studied; see [18, 3, 4, 14]. These
schemes, however, require |Vi| much bigger than the bound given in (4). On the other
hand, in this paper, we are interested only in detecting the fact of cheating.

Verifiable secret sharing schemes (VSSs) have been well studied [7, 11, 17, 6,
18, 22, 9, 10]. Although VSS can protect against both concerns mentioned above,
they generally require some computational assumption such as the discrete logarithm
assumption [11, 17] or they are complicated protocols involving many interactions to
distribute a secret [6, 18, 9, 11].

2. Preliminaries.

2.1. Definition of cheating. Throughout this paper, D denotes a probabilistic
Turing machine called a dealer, S denotes a random variable distributed over a finite
set S, and s ∈ S is called a secret. On input s ∈ S, D outputs (v1, . . . , vn) according to
some fixed probability distribution. For 1 ≤ i ≤ n, each participant Pi holds vi as his
share. Vi denotes the random variable induced by vi. Let Vi = {vi | Pr[Vi = vi] > 0}.
Vi is the set of possible shares held by Pi.

Definition 2.1. We say that D is a (k, n) threshold secret sharing scheme
for S if the following two requirements hold: For any {i1, . . . , ij} ⊆ {1, . . . , n} and
(vi1 , . . . , vij) such that Pr[Vi1 = vi1 , . . . , Vij = vij] > 0,

(A1) if j ≥ k, then there exists a unique s ∈ S such that

Pr[S = s | Vi1 = vi1 , . . . , Vij = vij] = 1;

(A2) if j < k for each s ∈ S, then

Pr[S = s | Vi1 = vi1 , . . . , Vij = vij] = Pr[S = s].

In the above, a secret sharing scheme is defined based on a given probability
distribution S. In contrast, most constructions of secret sharing schemes will be valid
for any probability distribution defined on S.

Definition 2.2. For vi1 ∈ Vi1 , . . . , vik ∈ Vik , define

Sec(vi1 , . . . , vik) =

{
s if ∃s ∈ S s.t. Pr[S = s | Vi1 = vi1 , . . . , Vik = vik] = 1,
⊥ otherwise.

That is, Sec(vi1 , . . . , vik) denotes the secret reconstructed from the k possible
shares (vi1 , . . . , vik) associated with (Pi1 , . . . , Pik), respectively. The symbol ⊥ is
used to indicate when no secret can be reconstructed from the k shares. We will often
aggregate the first k−1 arguments of Sec into a vector, by defining b = (vi1 , . . . , vik−1

)
and Sec(b, vik) = Sec(vi1 , . . . , vik).

82 W. OGATA, K. KUROSAWA, AND D. R. STINSON

Definition 2.3. Suppose that k − 1 cheaters Pi1 , . . . , Pik−1
possess the list of

shares b = (vi1 , . . . , vik−1
). Let b′ = (v′i1 , . . . , v

′
ik−1

) �= b be a list of k − 1 forged

shares. Then we say that Pik is cheated by b′ if

Sec(b′, vik) �∈ {Sec(b, vik),⊥},

where vik denotes the share of Pik .

3. New lower bound on |Vi|.
3.1. Definition of secure secret sharing. In this section we derive a tight

lower bound on |Vi| by using basic probability arguments. In deriving this bound we
do not use the CDV assumption. That is, we assume that, according to the definition
of a (k, n) threshold secret sharing scheme, k − 1 cheaters have no information on s.

To define a secure secret sharing scheme clearly, we consider the following game
called the “cheating game.”

1. k−1 cheaters and the target participant are fixed. That is, we fix i1, . . . , ik−1

and ik.
2. The dealer picks s ∈ S according to distribution S, and uses D to compute

shares v1, . . . , vn for the n participants. vi is given to Pi for i ∈ {1, . . . , n}.
3. Let b = (vi1 , . . . , vik−1

). The cheaters jointly use a probabilistic algorithm A
to compute forged shares b′ = (v′i1 , . . . , v

′
ik−1

) from b.

4. The cheaters open the forged shares b′. If Pik is cheated by b′ (as defined
above), then we say that the cheaters win the cheating game.

In order to analyze cheating probabilities, we define some useful notation. First,
define

γ(b,b′, x) =

{
1 if Sec(b′, x) �∈ {Sec(b, x),⊥},
0 otherwise

(5)

and

γ(b,b′) =
∑
x

(γ(b,b′, x) Pr[Vik = x | b]) .(6)

The value γ(b,b′) is the probability that the cheaters win if they change b to b′.
A cheating strategy C defines conditional probabilities Pr[b′ | b] for every b such

that Pr[b] > 0. The success of the cheating strategy C is computed to be

Succ(C) =
∑
b

(
Pr[b]

∑
b′

(Pr[b′ | b] γ(b,b′))

)
.(7)

Note that the probabilities Pr[b] are determined by the dealer’s secret sharing algo-
rithm, while the probabilities Pr[b′ | b] are chosen by the cheaters.

For future use, we record some equivalent formulations of Succ(C). These are
obtained by substituting (6) into (7) and interchanging the order of summation:

Succ(C) =
∑
b

(
Pr[b]

∑
b′

(
Pr[b′ | b]

∑
x

(Pr[x | b] γ(b,b′, x))

))
(8)

=
∑
b

(
Pr[b]

∑
x

(
Pr[x | b]

∑
b′

(Pr[b′ | b] γ(b,b′, x))

))
.(9)

OPTIMUM SECRET SHARING SECURE AGAINST CHEATING 83

We define the maximum average cheating probability to be the maximum value
of Succ(C) over all cheating strategies C. A (k, n) threshold secret sharing scheme
is called a (k, n, δ) secure secret sharing scheme if the maximum average cheating
probability is at most δ for any k − 1 cheaters Pi1 , . . . , Pik−1

and any target Pik .

3.2. New lower bound on |Vi|. As before, we fix k−1 cheaters Pi1 , . . . , Pik−1

and a target Pik . Here we consider a simple cheating strategy in order to prove a lower
bound on the number of possible shares. Let b = (vi1 , . . . , vik−1

) be the shares held by
the cheaters. We consider a strategy C0 where Pi1 opens a forged share v′i1 �= vi1 , and
the other cheaters Pi2 , . . . , Pik−1

open their shares vi2 , . . . , vik−1
honestly. Suppose

that Pi1 chooses v′i1 �= vi1 uniformly at random. More precisely,

Pr[b′ = (v′i1 , vi2 , . . . , vik−1
) | b] =

{ 1
|Vi1

|−1 if v′i1 �= vi1 ,

0 if v′i1 = vi1 .

Furthermore,

Pr[b′ = (v′i1 , v
′
i2 , . . . , v

′
ik−1

) | b] = 0 if (v′i2 , . . . , v
′
ik−1

) �= (vi2 , . . . , vik−1
).

Lemma 3.1. Suppose that Pr[b] > 0 and Pr[x | b] > 0. Then it holds that

∑
b′

(Pr[b′ | b] γ(b,b′, x)) ≥ |S| − 1

|Vi1 | − 1
.(10)

Proof. Let b = (vi1 , vi2 , . . . , vik−1
) and let s = Sec(b, x). Observe that s ∈ S

because (b, x) is a distribution of shares to k participants that occurs with positive
probability.

Now, for every s′ ∈ S, s′ �= s, there exists at least one possible share for Pi1 ,
namely vs′ ∈ Vi1 , such that Sec(vs′ , vi2 , . . . , vik−1

, x) = s′. This is because the k − 1
shares vi2 , . . . , vik−1

, x yield no information on the value of the secret.
Therefore the |S| − 1 vectors (vs′ , vi2 , . . . , vik−1

) (s′ ∈ S, s′ �= s) are such that

γ(b, (vs′ , vi2 , . . . , vik−1
), x) = 1.

There are |Vi1 | − 1 possible vectors b′ considered in the given strategy, each of which
is chosen with probability 1/(|Vi1 | − 1). Therefore the desired result follows.

Theorem 3.2. The cheating strategy C0 (described above) has

Succ(C0) ≥
|S| − 1

|Vi1 | − 1

for any i1.
Proof. We use (9) and Lemma 3.1:

Succ(C0) =
∑
b

(
Pr[b]

∑
x

(
Pr[x | b]

∑
b′

(Pr[b′ | b] γ(b,b′, x))

))

≥
∑
b

(
Pr[b]

∑
x

(
Pr[x | b] × |S| − 1

|Vi1 | − 1

))

=
|S| − 1

|Vi1 | − 1
.

84 W. OGATA, K. KUROSAWA, AND D. R. STINSON

Observe that the above bound holds for any distribution on S. Now our lower
bound on |Vi| is an immediate consequence of Theorem 3.2.

Corollary 3.3. In a (k, n, δ) secure secret sharing scheme,

|Vi| ≥
|S| − 1

δ
+ 1(11)

for any i.

3.3. Generalization. Our bound (11) holds for general secret sharing schemes
with monotone access structures. Let P = {P1, . . . , Pn}. Let Γ be a collection of
subsets of P that is monotone: A ∈ Γ, and B ⊆ A implies that B ∈ Γ. We say that
a secret sharing scheme has access structure Γ if A can determine the secret s for all
A ∈ Γ and A has no information on s for all A ⊆ P, A �∈ Γ. It is known that there
exists such a secret sharing scheme for any monotone access structure; see [12].

Our definition of (k, n, δ) secure secret sharing schemes can be naturally gener-
alized to secret sharing schemes with monotone access structures. We call such a
scheme a (Γ, δ) secret sharing scheme.

Now suppose that there exists a (Γ, δ) secret sharing scheme such that min{|A| :
A ∈ Γ} ≥ 2. It is easy to see that this implies that there exists a (2, 2, δ) secure secret
sharing scheme. Moreover, for any Pi ∈ P, there is a (2, 2, δ) secure secret sharing
scheme in which Pi is a participant. Hence (11) holds for any Pi ∈ P.

4. Optimum (k, n, δ) secure scheme. In this section, we show an optimum
scheme which meets the equality of Corollary 3.3 by using “difference sets.”

4.1. Difference set.

Definition 4.1 (see [15, p. 397]). A planar difference set modulo N = �(�−1)+1
is a set B = {d0, d1, . . . , d�−1} ⊆ ZN with the property that the �(� − 1) differences
di − dj (di �= dj), when reduced modulo N , are exactly the numbers 1, 2, . . . , N − 1 in
some order.

Example 4.1 (see [15, p. 398]). {d0 = 0, d1 = 1, d2 = 3} is a planar difference set
modulo 7 with � = 3. Indeed, the differences modulo 7 are

1 − 0 = 1, 3 − 0 = 3, 3 − 1 = 2, 0 − 1 = 6, 0 − 3 = 4, 1 − 3 = 5.

Proposition 4.1 (see [15, Theorem 22, p. 398]). Let Π be a projective plane
PG(2, q). A point in Π can be represented as (β1, β2, β3) ∈ (Fq)

3, or αi ∈ Fq3 for
some i, where α is a generator of Fq3 . If � = q+1 points αd0 , . . . , αd�−1 are the points
on a line in Π, then {d0, . . . , d�−1} is a planar difference set modulo q2 + q + 1.

Definition 4.1 is generalized as follows.

Definition 4.2 (see [1, p. 261]). Let (Γ,+) be an abelian group of order N . B
is called an (N, �, λ) difference set if it satisfies the following:

(i) B ⊂ Γ and |B| = �.
(ii) The list of differences d − d′ �= 0, where d, d′ ∈ B, contains each nonzero

element of Γ precisely λ times.

Proposition 4.2 (see [1, p. 264]). Suppose N ≡ 3 (mod4) is a prime power.
Then there exists an (N, �, λ) difference set B in (FN ,+) such that N = 4t − 1, � =
2t− 1, and λ = t− 1, where t is a positive integer.

Example 4.2 (see [1, p. 262]). B = {1, 3, 4, 5, 9} is an (11, 5, 2) difference set in
(F11,+).

OPTIMUM SECRET SHARING SECURE AGAINST CHEATING 85

4.2. Optimum scheme based on planar difference set. Corollary 3.3 proves
that we should take |Vi| much larger than |S| in order to have a secure scheme.
The simplest idea of constructing a secure scheme is to use Shamir’s scheme with a
random polynomial f(x) over Fq, where q ≥ (|S| − 1)/δ + 1. Suppose that the value
f(0) reconstructed in the reconstruction phase is accepted as a secret if and only if
f(0) ∈ {0, 1, . . . , |S| − 1} (then s = f(0)).

However, for this scheme, the probability of successful cheating can be larger than
δ = (|S| − 1)/(q − 1). For example, consider a Shamir (2, 2) threshold scheme with
a polynomial f(x) over Z7, and let S be a uniformly distributed secret over {0, 1, 2}.
Then (|S| − 1)/(q − 1) = 1/3.

Suppose that P2 opens v′2 = v2 + 1. Then P1 is cheated with probability 2/3,
since the secret s = f(0) is reconstructed using the formula s = 2v1 − v2 mod 7. In
fact, this cheating strategy is the optimal one for P1. Therefore, this scheme is only
a (2, 2, 2/3) secure secret sharing scheme.

This example suggests that we should not assign valid secret values to continuous
values in a larger domain, such as {0, 1, 2} in Z7.

In this subsection, we show that if there exists a planar difference set modulo
N = �(� − 1) + 1 such that N is a prime, then there exists a (k, n, δ) secure secret
sharing scheme with |S| = �, δ = 1/�, and n < N which meets the bound proven in
Corollary 3.3.

Let B = {d0, . . . , d�−1} be a planar difference set modulo N = �(� − 1) + 1
such that N is a prime. We construct a (k, n, δ) secure secret sharing scheme for S,
assuming a uniformly distributed secret over S = B. In what follows, we assume that
all operations are done over ZN .

Distribution phase. For a secret ds ∈ S (= B), the dealer D chooses a random
polynomial f(x) of degree at most k − 1 over ZN such that f(0) = ds. The share for
Pi is given as vi = f(i). Note that

|Vi| = N = �(�− 1) + 1(12)

for all i.
Reconstruction phase. Suppose that Pi1 , . . . , Pik open (correct or faulty) shares

v′i1 , . . . , v
′
ik

. Each participant can compute

d′s = Rec(v′i1 , . . . , v
′
ik

) =

k∑
j=1

cjv
′
ij ,

where

cj =
∏
l �=j

−il
ij − il

,

1 ≤ j ≤ k. If d′s ∈ B, then Sec(v′i1 , . . . , v
′
ik

) = d′s; otherwise, Sec(v′i1 , . . . , v
′
ik

) = ⊥.
Note that, for any k honest shares vi1 = f(i1), . . . , vik = f(ik), we have that

Rec(vi1 , . . . , vik) = Sec(vi1 , . . . , vik) =

k∑
j=1

cjvij ,(13)

which follows from the Lagrange interpolation formula (see [21, p. 331]).

86 W. OGATA, K. KUROSAWA, AND D. R. STINSON

Lemma 4.3. The proposed scheme is a (k, n, δ) secure secret sharing scheme for
a uniform distribution over S with |S| = �, δ = 1/�, and n < N .

Proof. First of all, it is obvious that the proposed scheme is a (k, n) threshold
secret sharing scheme, since it is basically Shamir’s scheme where the domain of the
secrets is not the entire field. It is also clear that |S| = � and n < N .

Next, we prove it is secure; that is, the success probability of k − 1 cheaters
is at most 1/� = 1/|S|. Suppose that cheaters Pi1 , . . . , Pik−1

have shares b =
(vi1 , . . . , vik−1

). Let the share of Pik be denoted by x. Then, from (13), we have

Rec(b, x) =

k−1∑
j=1

cjvij + ckx.(14)

Note that Rec(b, x) ∈ B. Now define

Tb = {x′ : Rec(b, x′) ∈ B}.

Then Tb is the set of all possible shares held by Pik , given that the k − 1 cheaters
hold the shares in b. Since the secret is chosen uniformly at random, it follows that

Pr[x′ | b] =
1

�

for all x′ ∈ Tb.
For any k − 1 tuple b′ = (v′i1 , . . . , v

′
ik−1

), define

C(b′) =

k−1∑
j=1

cjv
′
ij .

Now, consider the effect of changing b to b′. It is not hard to verify the following two
facts:

1. If C(b) = C(b′), then Rec(b, x) = Rec(b′, x). In this case, Pik is not cheated
if b′ is opened.

2. If C(b) �= C(b′), then Pik is cheated by opening b′ if and only if x ∈ Tb∩Tb′ .
Moreover, |Tb ∩ Tb′ | = 1 and

Pr[x ∈ (Tb ∩ Tb′) | b] =
1

�
.

In the case of fact 2, we have

∑
x

(Pr[x | b] γ(b,b′, x)) =
1

�
.

For every b with Pr[b] > 0, an optimal strategy is to choose a b′ such that
C(b) �= C(b′). The success of this strategy can be computed, using (8), to be 1/�.
Thus this scheme is a (k, n, δ) secure scheme such that δ = 1/�.

It is clear that |S| = |B| = �.
Now the following theorem is obtained from Lemma 4.3.
Theorem 4.4. If there exists a planar difference set modulo N = �(� − 1) + 1

such that N is a prime, then there exists a (k, n, δ) secure secret sharing scheme for a
uniformly distributed secret over S which meets the bound (11), such that |S| = �, δ =
1/�, and n < N .

OPTIMUM SECRET SHARING SECURE AGAINST CHEATING 87

Proof. Finally, from (12), |Vj | = N = (� − 1)� + 1 = (|S| − 1)/δ + 1 for all j.
Hence, this scheme meets the bound (11).

From Proposition 4.1, we obtain the following corollary.
Corollary 4.5. Let q be a prime power such that q2 + q + 1 is a prime. Then,

there exists a (k, n, δ) secure secret sharing scheme for a uniform distribution over S
which meets the bound (11) such that |S| = q + 1, δ = 1/(q + 1), and n < q2 + q + 1.

Remark 4.1. The above theorem holds only if the secret is uniformly distributed.
If S is not a uniform distribution, it is easier for cheaters to guess the share of an
honest participant and to succeed in cheating him. For example, consider the following
situation: S = {0, 1}, Pr[S = 0] = 2/3,Pr[S = 1] = 1/3, and k = 2. Since |S| = 2,
we can use a planar difference set B = {0, 1} modulo N = 3. Assume that P1 tries
to cheat P2. The best strategy of P1, given his share v1, is to find v′2 such that
Rec(v1, v

′
2) = 0 and to find v′1 such that Rec(v′1, v

′
2) = 1. If P2 has v′2 as her share, she

is cheated by v′1. Further, P2 has v′2 with probability 2/3. Therefore, this strategy
succeeds with probability 2/3.

Remark 4.2. Instead of publicizing a (q2 + q + 1, q + 1, 1) difference set B, it is
enough to publicize two points α0 and α1 of PG(2, |S|−1). According to Proposition
4.1, B can be obtained from (α0, α1).

4.3. Optimum scheme based on an (N, �, λ) difference set. Theorem 4.4
is generalized as follows.

Theorem 4.6. If there exists an (N, �, λ) difference set B in (FN ,+), then there
exists a (k, n, δ) secure secret sharing scheme which meets the equality of our bound
(11) such that |S| = �, δ = λ/�, and n < N .

Proof. We use the same argument as in the proof of Lemma 4.3. In this case,
however, |Tb ∩ Tb′ | = λ. Therefore we use δ = λ/� instead of 1/�. It is clear that
|Vi| = N = (�− 1)�/λ + 1 = (|S| − 1)/δ + 1.

The following corollary is obtained from Proposition 4.2.
Corollary 4.7. For a positive integer t such that 4t− 1 is a prime power, there

exists a (k, n, δ) secure secret sharing scheme which meets the equality of our bound
(11), such that |S| = 2t− 1, δ = (t− 1)/(2t− 1), and n < 4t− 1.

5. Symmetric BIBD and secret sharing secure against cheaters. Theo-
rem 4.4 shows that, if there exists a certain planar difference set, then there exists
an optimal (k, n, δ) secure scheme. In this section, we prove a weak converse which
shows that, if there exists an optimal (k, n, δ) secure scheme, then there exists a cer-
tain symmetric BIBD. (Note that a difference set is equivalent to a symmetric BIBD
having a certain automorphism—see Proposition 5.1.)

Definition 5.1 (see [8, p. 3]). A balanced incomplete block design (BIBD, for
short) is a pair (V,B) where V is an N -set and B is a collection of b �-subsets of V
(blocks) such that every 2-subset of V is contained in exactly λ blocks. If N = b, the
BIBD is called a symmetric BIBD.

Proposition 5.1 (see [8, p. 298]). The existence of an (N, �, λ) difference set
over an abelian group G is equivalent to the existence of a symmetric BIBD(N, �, λ)
admitting G as a point regular automorphism group; i.e., for any two points p and q,
there is a unique group element g which maps p to q.

We now proceed to develop the tools needed for our proof.
Lemma 5.2. Suppose that equality in (11) holds for any i. Then for any b =

(vi1 , . . . , vik−1
) where vi1 ∈ Vi1 , . . . , vik−1

∈ Vik−1
, such that Pr[b] > 0, it holds that

|{vik ∈ Vik : Sec(b, vik) ∈ S}| = |S|.

88 W. OGATA, K. KUROSAWA, AND D. R. STINSON

Proof. This easily follows from the proof of Lemma 3.1.
Theorem 5.3. Suppose that there exists a (k, n, δ) secure secret sharing scheme

such that equality holds in (11) for uniformly distributed secrets. Define

N = |Vi1 | =
|S| − 1

δ
+ 1

and

λ =
|S|(|S| − 1)

N − 1
.

Then there exists a symmetric BIBD(N, |S|, λ).
Proof. Let Vi1 = V = {1, 2, . . . , N} and let S = {1, . . . , �}. Fix k participants

Pi1 , . . . , Pik and choose any list of k−2 shares v′i2 , . . . , v
′
ik−1

such that Pr[(v′i2 , . . . , v
′
ik−1

)]
> 0. Now define an N ×N matrix D = (di,j) such that

di,j =

{
1 if Sec(i, v′i2 , . . . , v

′
ik−1

, j) ∈ S,
0 otherwise.

We will show that D is an incidence matrix of a symmetric BIBD(N, �, λ) (where
di,j = 1 if and only if the ith point is in the jth block). Note that the Hamming weight
of a column in D corresponds to the cardinality of a block, a row in D corresponds
to a point, and the inner product of two rows is the number of blocks that contain
the corresponding 2-subset. Thus we have to show that (a) any column of D has
Hamming weight equal to � and (b) any two rows of D have inner product equal to
λ.

From Lemma 5.2, it is easy to see that any row or column of D has Hamming
weight equal to 0 or �. If we delete the rows and columns having Hamming weight
0, then we obtain a submatrix of D, denoted D′, in which every row and column has
Hamming weight �.

Suppose that D′ has dimensions N ′ by N ′′. The total number of 1’s in D′ is
�N ′ = �N ′′, which implies that N ′ = N ′′. We will eventually show that N ′ = N and
hence D′ = D. Assume, by relabelling if necessary, that D′ consists of the first N ′

rows and columns of D and let d′i,j denote the entry of D′ in row i and column j for
all i and j.

We will now show that any two rows of D′ have a constant inner product equal
to λ. Pick a row r of D′. Let c1, . . . , c� be the columns such that

d′r,c1 = · · · = d′r,c� = 1.

Let Er be the (N ′ − 1)× � submatrix of D′ formed by deleting row r and deleting all
the columns except the columns c1, . . . , c�. Every column of Er has Hamming weight
�− 1, so the total number of 1’s in Er is �(�− 1). Let sr be the row of Er having the
largest Hamming weight, and denote the Hamming weight of this row by wr. Then

wr ≥ �(�− 1)

N ′ − 1
.

For each value of r (1 ≤ r ≤ N ′), we can define Er, sr, and wr as described above.
Now we define a certain cheating strategy C as follows:

1. Given a list of shares b = (r, v′remunerate, . . . , v
′
ik−1

) for Pi1 , . . . , Pik−1
, respec-

tively, open the list of shares (sr, v
′
i2
, . . . , v′ik−1

). That is, for each of these N ′ values
of r (where r is the share for Pi1), we change r to the false value sr.

OPTIMUM SECRET SHARING SECURE AGAINST CHEATING 89

2. Given a list of shares b = (vi1 , vi2 , . . . , vik−1
) other than the ones considered

in case 1 (i.e., a list of shares such that (vi2 , . . . , vik−1
) �= (v′i2 , . . . , v

′
ik−1

)), use the
strategy C0 described in section 3.2.

We refer to (8) and (9) to compute a bound on Succ(C). First, suppose we are in
case 1. Then C defines a unique b′ such that Pr[b′|b] = 1. For this b′ we have

|{x : γ(b,b′, x) = 1}| = wr.

Since the secrets are equiprobable, it follows that

∑
x

(Pr[x | b] γ(b,b′, x)) =
wr

�
≥ �− 1

N ′ − 1
.

Hence,

∑
b′

(
Pr[b′ | b]

∑
x

(Pr[x | b] γ(b,b′, x))

)
≥ �− 1

N ′ − 1
≥ �− 1

N − 1
.

In case 2, we apply Lemma 3.1, obtaining the following bound:

∑
x

(
Pr[x | b]

∑
b′

(Pr[b′ | b] γ(b,b′, x))

)
≥ �− 1

N − 1
.

Now, combining (8) and (9), we have

Succ(C) ≥
∑
b

(
Pr[b] × �− 1

N − 1

)
=

�− 1

N − 1
.

However, from Corollary 3.3, the optimal cheating strategy succeeds with probability
at most (� − 1)/(N − 1). Therefore, we can conclude that N ′ = N and wr = �(� −
1)/(N − 1). Hence, every row of Er has Hamming weight equal to

�(�− 1)

N − 1
= λ.

This means that the inner product of row r and any other row of D′ is equal to λ.
Since r is an arbitrary row of D′, any two distinct rows of D′ have inner product equal
to λ. This completes the proof.

6. Tighter bounds under the CDV assumption. In this section, we consider
a model where the CDV assumption holds (that is, k − 1 cheaters Pi1 , . . . , Pik−1

somehow know the value of the secret s). For this model, we show a lower bound on
|Vi| that is stronger than (3).

Before proving our new bound, we reformulate the cheating model under the CDV
assumption. We introduce the “CDV cheating game,” which is slightly different from
the cheating game presented in section 3.1. The boxed text indicates where the model
differs from the previous model.

1. k−1 cheaters and the target participant are fixed. That is, we fix i1, . . . , ik−1

and ik.
2. The dealer picks s ∈ S according to distribution S, and uses D to com-

pute shares v1, . . . , vn for the n participants. vi is given to Pi for i ∈ {1, . . . , n}.
Also, s is given to Pi1 , . . . , Pik−1

.

90 W. OGATA, K. KUROSAWA, AND D. R. STINSON

3. Let b = (vi1 , . . . , vik−1
). The cheaters use a probabilistic algorithm A to

compute forged shares b′ = (v′i1 , . . . , v
′
ik−1

) from b and s .

4. The cheaters open the forged shares b′. If Pik is cheated by b′, then we say
that the cheaters win the CDV cheating game.

We now modify our previously defined notation which we use to analyze cheating
probabilities. First, define

γcdv(b, s,b
′, x) =

{
1 if Sec(b, x) = s and Sec(b′, x) �∈ {s,⊥},
0 otherwise

(15)

and

γcdv(b, s,b
′) =

∑
x

(γcdv(b, s,b
′, x) Pr[Vik = x | b, s]) .(16)

The value γcdv(b, s,b
′) is the probability that the cheaters win if they change b to b′

when the secret is s.

A cheating strategy C defines conditional probabilities Pr[b′ | b, s] for every (b, s)
such that Pr[b, s] > 0. The success of the cheating strategy C is computed to be

Succcdv(C) =
∑
b,s

(
Pr[b, s]

∑
b′

(Pr[b′ | b, s] γcdv(b, s,b
′))

)
.(17)

The probabilities Pr[b, s] are determined by the dealer’s secret sharing algorithm,
while the probabilities Pr[b′ | b, s] are chosen by the cheaters.

Here are some equivalent formulations of Succcdv(C):

Succcdv(C) =
∑
b,s

(
Pr[b, s]

∑
b′

(
Pr[b′ | b, s]

∑
x

(Pr[x | b, s] γcdv(b, s,b
′, x))

))

=
∑
b,s

(
Pr[b, s]

∑
x

(
Pr[x | b, s]

∑
b′

(Pr[b′ | b, s] γcdv(b, s,b
′, x))

))
.(18)

Suppose we fix i1, . . . , ik−1, and b represents the vector of shares given to Pi1 , . . . ,
Pik−1

, as usual. For any pair (b, s), define

V̂ik(b, s) = {vik ∈ Vik : Sec(b, vik) = s}.(19)

Observe that V̂ik(b, s) denotes the set of possible shares held by Pik , given values for
s and the vector b as discussed above.

We first consider a certain cheaters’ strategy which we denote by Cguess. For any

(b, s), choose x̂ ∈ V̂ik(b, s) such that Pr[Vik = x̂ | b, s] is maximized. Then choose
any vector b′ such that Sec(b′, x̂) �∈ {s,⊥}. Then replace b by b′. Thus, for any
(b, s), the result of Cguess is to choose a certain b′ = b′(b, s) with probability equal
to 1 (i.e., b′ is a function of (b, s)).

It is obvious from (16) that the following equation holds for any (b, s):

γcdv(b, s,b
′(b, s)) ≥ 1

|V̂ik(b, s)|
.(20)

OPTIMUM SECRET SHARING SECURE AGAINST CHEATING 91

Hence, we can compute Succcdv(Cguess) using (17):

Succcdv(Cguess) ≥
∑
b,s

(
Pr[b, s] × 1

|V̂ik(b, s)|

)
.(21)

Using the fact that the function x �→ 1/x is convex, and applying Jensen’s in-
equality1, we have the following:

∑
b,s

(
Pr[b, s] × 1

|V̂ik(b, s)|

)
≥ 1∑

b,s

(
Pr[b, s] × |V̂ik(b, s)|

) .(22)

Now, Succcdv(Cguess) ≤ ε. Combining this fact with (21) and (22), the following
result is immediate.

Lemma 6.1. In a (k, n, ε) robust secret sharing scheme under the CDV assump-
tion,

∑
b,s

(
Pr[b, s] × |V̂ik(b, s)|

)
≥ 1

ε
.

We will actually apply Lemma 6.1 in an equivalent form, where we interchange
the roles of Pi1 and Pik . Suppose we define d to be the vector of shares given to
Pi2 , . . . , Pik . Then we have the following.

Lemma 6.2. In a (k, n, ε) robust secret sharing scheme under the CDV assump-
tion,

∑
d,s

(
Pr[d, s] × |V̂i1(d, s)|

)
≥ 1

ε
.

Now we recall the cheating strategy C0 which we considered in section 3.2:

Pr[b′ = (v′i1 , vi2 , . . . , vik−1
) | b] =

{ 1
|Vi1

|−1 if v′i1 �= vi1 ,

0 if v′i1 = vi1 .

Let x be the share held by Pik and define d to be the list of shares held by
Pi2 , . . . , Pik . That is,

d = (vi2 , . . . , vik−1
, x).

Then it is clear from Figure 1 that the following equation holds:

∑
b′

(Pr[b′ | b, s] γcdv(b, s,b
′, x)) =

∑
s′ �=s

|V̂i1(d, s
′)|

|Vi1 | − 1
.(23)

We now consider Succcdv(C0). From (18) and (23), this is computed to be

Succcdv(C0) =
∑
b,s,x

⎛
⎝Pr[b, s, x]

∑
s′ �=s

|V̂i1(d, s
′)|

|Vi1 | − 1

⎞
⎠ .(24)

1Jensen’s inequality is as follows. Suppose f is a continuous strictly convex function on the
interval I. Suppose further that

∑n

i=1
ai = 1 and ai > 0, 1 ≤ i ≤ n. Then

∑n

i=1
aif(xi) ≥

f
(∑n

i=1
aixi

)
, where xi ∈ I, 1 ≤ i ≤ n.

92 W. OGATA, K. KUROSAWA, AND D. R. STINSON

�

�

�

�
�
��

�
���

�
�

�
��

�

�

�

�
�
���

�
���

�
��

�
��

�

�

�

�
�
���

�
���

�
��

�
��

�

�

�

�
�
���

�
���

�
��

�
��

Vi1 = (vi1 , , , · · · · · · , ,)

S = (s = s0 , s1 , · · · · · · , s|S|−1) , ⊥

�
���
�
��

�	
|V̂i1(s1,d)| · · · · · ·

�	
|V̂i1(s|S|−1,d)|

�	
|Vi1 | − 1

Fig. 1. Success of strategy C0 (CDV setting).

If we denote y = vi1 , then (b, x) = (y,d), and (24) becomes

Succcdv(C0) =
∑
d,s,y

⎛
⎝Pr[d, s, y]

∑
s′ �=s

|V̂i1(d, s
′)|

|Vi1 | − 1

⎞
⎠ .(25)

The innermost sum of (25) is independent of y, so (25) can be rewritten as

Succcdv(C0) =
∑
d,s

⎛
⎝Pr[d, s]

∑
s′ �=s

|V̂i1(d, s
′)|

|Vi1 | − 1

⎞
⎠ .(26)

By the defining property of a (k, n) threshold scheme, d and s are independent,
so

Pr[d, s] = Pr[d] Pr[s].

Under the assumption that the secret is uniformly distributed, we have

Pr[s] =
1

|S|

for all s. Using these properties, we can recompute (26) as follows:

Succcdv(C0) =
∑
d,s

⎛
⎝Pr[d, s]

∑
s′ �=s

|V̂i1(d, s
′)|

|Vi1 | − 1

⎞
⎠

=
1

|S| ×
∑
d

⎛
⎝Pr[d] ×

∑
s

∑
s′ �=s

|V̂i1(d, s
′)|

|Vi1 | − 1

⎞
⎠

=
|S| − 1

|S| ×
∑
d

(
Pr[d] ×

∑
s

|V̂i1(d, s)|
|Vi1 | − 1

)

=
|S| − 1

|Vi1 | − 1
×
∑
d,s

(
Pr[d, s] × |V̂i1(d, s)|

)

≥ |S| − 1

(|Vi1 | − 1) ε
,

where the last inequality comes from Lemma 6.2.

OPTIMUM SECRET SHARING SECURE AGAINST CHEATING 93

Table 1

Reconstruction rule.

S V1

0 1 2 3

0 0 1 1 1
V2 1 1 1 1 0

2 1 1 0 1
3 1 0 1 1

Finally, using the fact that

Succcdv(C0) ≤ ε,

we obtain our main theorem.
Theorem 6.3. In a (k, n, ε) robust secret sharing scheme under the CDV as-

sumption, if S is uniformly distributed, then

|Vi| ≥ |S| − 1

ε2
+ 1(27)

for any i.
In Theorem 6.3, we cannot remove the condition that the secret is uniformly

distributed. We show examples below such that (27) does not hold for a nonuniformly
distributed secret.

Example 6.1. Consider a (2, 2) threshold secret sharing scheme constructed as
follows: |S| = 2 and |Vi| = 4. The dealer D chooses v1 ∈ {0, 1, 2, 3} randomly. If
S = 0, let v2 = −v1 mod 4. If S = 1, D chooses v2 such that v2 �= −v1 mod 4
randomly. Then D distributes v1, v2 to P1 and P2. In this scheme, reconstruction is
done by using Table 1.

Let the probability distribution of S be Pr[S = 0] = 1/4 and Pr[S = 1] = 3/4.
Suppose that P1 is a cheater. Let’s compute the cheating probability of this scheme.
We can assume that the cheating algorithm A satisfies that A(s, v1) �= v1. First,
suppose that s = 0. Then P2 is cheated with probability one:

Pr[P2 is cheated by A(0, v1) | P1 has v1, S = 0] = 1.

Next suppose that s = 1. From the table, we obtain

Pr[P2 is cheated by 1 | P1 has 0, S = 1] = Pr[V2 = 3 | P1 has 0, S = 1]

= 1/3.

Similarly, we obtain

Pr[P2 is cheated by v′1 | P1 has v1, S = 1] = 1/3

for any v1 ∈ V1 and v′1 �= v1. Therefore, for any v1,

Pr[P2 is cheated by A(1, v1) | P1 has v1, S = 1]

=
∑

v′
1 �=v1

(Pr[A(1, v1) = v′1] × Pr[P2 is cheated by v′1 | P1 has v1, S = 1])

=
∑

v′
1 �=v1

(
Pr
A

[A(1, v1) = v′1] × (1/3)
)

= 1/3.

94 W. OGATA, K. KUROSAWA, AND D. R. STINSON

Therefore, the cheating probability is

1/4 × 1 + 3/4 × 1/3 = 1/2.

This means that ε = 1/2 and therefore (27) does not hold.

Example 6.2. Consider a (2, 2) threshold secret sharing scheme constructed as
follows. |S| = 2 and |Vi| = 13. The dealer D chooses v1 ∈ Z13 randomly. If S = 0,
D chooses r ∈ {0, 1} randomly and lets v2 = r − v1 mod 13. If S = 1, D chooses
r ∈ {2, 4, 6, 8, 10, 12} randomly and lets v2 = r−v1 mod 13. Then D distributes v1, v2

to P1 and P2. We can prove that this scheme is ε = 1/4 robust when Pr[S = 0] = 1/4
and Pr[S = 1] = 3/4. However, (27) does not hold.

REFERENCES

[1] T. Beth, D. Jungnickel, and H. Lenz, Design Theory, Cambridge University Press, Cam-
bridge, UK, 1993.

[2] G. R. Blakely, Safeguarding cryptographic keys, in Proceedings of the AFIPS 1979 National
Computer Conference, 1979, pp. 313–317.

[3] E. F. Brickell and D. R. Stinson, The detection of cheaters in threshold schemes, SIAM J.
Discrete Math., 4 (1991), pp. 502–510.

[4] M. Carpentieri, A perfect threshold secret sharing scheme to identify cheaters, Des., Codes
Cryptogr., 5 (1995), pp. 183–187.

[5] M. Carpentieri, A. De Santis, and U. Vaccaro, Size of shares and probability of cheat-
ing in threshold schemes, in Advances in Cryptography—Eurocrypt ’93, Lecture Notes in
Comput. Sci. 765, Springer-Verlag, New York, 1994, pp. 118–125.

[6] D. Chaum, C. Crepeau, and I. Damgard, Multiparty unconditionally secure protocols, in
Proceedings of the 20th Annual ACM Symposium on the Theory of Computing, 1988,
pp. 11–19.

[7] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch, Verifiable secret sharing and achiev-
ing simultaneity in the presence of faults, in Proceedings of the 26th IEEE Annual Sym-
posium on the Foundations of Computer Science, 1985, pp. 383–395.

[8] C. J. Colbourn and J. H. Dinitz, eds., The CRC Handbook of Combinatorial Designs, CRC
Press, Boca Raton, FL, 1996.

[9] R. Cramer, I. Damg̊ard, and U. M. Maurer, General secure multi-party computation from
any linear secret-sharing scheme, in Advances in Cryptography—Eurocrypt ’00, Lecture
Notes in Comput. Sci. 1807, Springer-Verlag, New York, 2000, pp. 316–334.

[10] Y. Desmedt, K. Kurosawa, and T. V. Le, Error correcting and complexity aspects of linear
secret sharing schemes, in Information Security: 6th International Conference, ISC 2003,
Lecture Notes in Comput. Sci. 2851, Springer-Verlag, New York, 2003, pp. 396–407.

[11] P. Feldman, A practical scheme for non-interactive verifiable secret sharing, in Proceedings
of the 28th Annual IEEE Symposium on the Foundations of Computer Science, 1987,
pp. 427–437.

[12] M. Ito, A. Saito, and T. Nishizeki, Multiple assignment scheme for sharing secret, J. Cryp-
tology, 6 (1993), pp. 15–20.

[13] E. D. Karnin, J. W. Greene, and M. E. Hellman, On secret sharing systems, IEEE Trans.
Inform. Theory, 29 (1982), pp. 35–41.

[14] K. Kurosawa, S. Obana, and W. Ogata, t-cheater identifiable (k, n) threshold secret sharing
schemes, in Advances in Cryptography—Crypto ’95, Lecture Notes in Comput. Sci. 963,
Springer-Verlag, New York, 1995, pp. 410–423.

[15] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North–
Holland, Amsterdam, 1977.

[16] R. J. McEliece and D. V. Sarwate, On sharing secrets and Reed-Solomon codes, Comm.
ACM, 24 (1981), pp. 583–584.

[17] T. Pedersen, Non-interactive and information-theoretic secure verifiable secret sharing, in
Advances in Cryptography—Crypto ’91, Lecture Notes in Comput. Sci. 576, Springer-
Verlag, New York, 1991, pp. 129–149.

[18] T. Rabin and M. Ben-Or, Verifiable secret sharing and multiparty protocols with honest
majority, in Proceedings of the 21st Annual ACM Symposium on the Theory of Computing,
1989, pp. 73–85.

OPTIMUM SECRET SHARING SECURE AGAINST CHEATING 95

[19] R. Rees, D. R. Stinson, R. Wei, and G. H. J. van Rees, An application of covering designs:
Determining the maximum consistent set of shares in a threshold scheme, Ars Combin.,
53 (1999), pp. 225–237.

[20] A. Shamir, How to share a secret, Comm. ACM, 22 (1979), pp. 612–613.
[21] D. R. Stinson, Cryptography: Theory and Practice, CRC Press, Boca Raton, FL, 1995.
[22] D. R. Stinson and R. Wei, Unconditionally secure proactive secret sharing scheme with com-

binatorial structures, in Selected Areas in Cryptography: 6th Annual International Work-
shop, SAC’99, Lecture Notes in Comput. Sci. 1758, Springer-Verlag, New York, 2000,
pp. 200–214

[23] M. Tompa and H. Woll, How to share a secret with cheaters, J. Cryptology, 1 (1988), pp. 133–
138.

[24] R. Tso, Y. Miao, and E. Okamoto, A new algorithm for searching a consistent set of shares
in a threshold scheme with cheaters, in Information Security and Cryptology—ICISC 2003,
Lecture Notes in Comput. Sci. 2971, Springer-Verlag, New York, 2004, pp. 377–385.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 96–104

DIFFERENTIAL METHODS FOR FINDING INDEPENDENT SETS
IN HYPERGRAPHS∗

YUSHENG LI† AND WENAN ZANG‡

Abstract. It is shown by using differential methods that if H is a double linear, r-uniform
hypergraph with degree sequence {dv} such that any subhypergraph induced by a neighborhood has
maximum degree less than m, then its independence number is at least

∑
v
fr,m(dv), where fr,m(x)

is a convex function satisfying fr,m(x) ∼ (log x)/x if r = 2 and c/x1/(r−1) if r ≥ 3, as x → ∞,
and c = c(r,m) > 0 is a constant. The proof yields a polynomial-time algorithm for finding such an
independent set in H.

Key words. hypergraph, independent set, differential method, convex function, algorithm

AMS subject classifications. 05C65, 05C69, 05C85

DOI. 10.1137/S0895480104442571

1. Introduction. Hypergraphs are systems of sets which are conceived as natu-
ral extensions of graphs: elements correspond to vertices and sets correspond to edges
which are allowed to connect more than two vertices. Hypergraph theory is a part of
the general study of combinatorial properties of families of sets; for in-depth accounts
of the subject, see Berge [5] and Duchet [8]. The present paper concerns itself with
the independent set problem on hypergraphs.

A hypergraph H = (V, E) consists of a vertex set V and an edge set E such that
each edge is a nonempty subset of V . Throughout this paper we assume that each
edge contains at least two vertices. For each vertex v, the degree of v, denoted by dv,
is the number of edges containing v, and the neighborhood of v, denoted by N(v), is
the set of all neighbors of v, where a vertex u is a neighbor of (or is adjacent to) v if
u �= v and there is an edge that contains both u and v. Let U be a subset of V . Set
EU = {E ∈ E : E ⊆ U}. The hypergraph (U, EU) is called the subhypergraph of H
induced by U . We say that U is an independent set of H if it contains no edge. The
independence number of H, denoted by α(H), is the maximum number of vertices in
an independent set of H. The independent set problem is to find an independent set
with the largest size. As is well known, this NP-hard problem arises in a rich variety
of applications, so it has attracted tremendous research efforts.

Let G = (V,E) be a graph on N vertices with average degree d. A classical
theorem of Turán asserts that α(G) ≥ N

d+1 , which was strengthened independently by

Caro [6] and Wei [17] as α(G) ≥
∑

v∈V
1

dv+1 (this bound is better than the former
since function 1/(1 + x) is strictly convex); a nice probabilistic proof of this theorem
can be found in Alon and Spencer [4]. In case G is triangle-free, Turán’s lower bound
can be improved substantially. As shown by Ajtai et al. [1, 2] and Ajtai, Komlós, and
Szemerédi [3], α(G) ≥ cN log d

d , where (and throughout this paper) log x stands for the

∗Received by the editors March 27, 2004; accepted for publication (in revised form) November
11, 2005; published electronically February 21, 2006.

http://www.siam.org/journals/sidma/20-1/44257.html
†Department of Mathematics, Tongji University, Shanghai 200092, China (li yusheng@mail.

tongji.edu.cn). The work of this author was supported in part by the National Natural Science
Foundation of China.

‡Department of Mathematics, University of Hong Kong, Hong Kong, China (wzang@maths.hku.
hk). The work of this author was supported in part by the Research Grants Council of Hong Kong.

96

DIFFERENTIAL METHODS FOR FINDING INDEPENDENT SETS 97

natural logarithmic function, and constant c can be set equal to 1/2.4 (cf. Griggs [9]).
Shearer [15] confirmed a conjecture of Ajtai, Komlós, and Szemerédi [3] and managed
to improve c to 1 − o(1) by establishing that α(G) ≥ Ng(d), where

g(x) =
x log x− x + 1

(x− 1)2
;(1)

he [16] further improved the bound as α(G) ≥
∑

v ḡ(dv), where the function ḡ(x) is
asymptotically equal to g(x) as x → ∞. In his proofs, Shearer first introduced the
appealing differential methods, which are proved to be very powerful in applications.
Shearer’s results can be extended [11, 12, 13] as follows: if in a graph G with N
vertices and average degree d, any subgraph induced by a neighborhood has no vertex
of degree at least m, then α(G) ≥

∑
v gm(dv) ≥ Ngm(d), where

gm(x) =

∫ 1

0

(1 − t)1/m

m + (x−m)t
dt.(2)

(Notice that g1(x) is exactly Shearer’s function g(x) as specified in (1).) This result
has interesting applications in Ramsey theory [12, 14]; for instance, it yields R(m,n) ≤
(1 + o(1))nm−1/(log n)m−2, where Ramsey number R(m,n) is the smallest integer N
such that for any graph G of order N , either α(G) ≥ m or α(Ḡ) ≥ n holds. It is
worthwhile pointing out that since the order of magnitude of R(3, n) is n2/ log n (see
Kim [10]), the above-mentioned lower bound due to Ajtai, Komlós, and Szemerédi
[3] cannot be improved more than a constant factor; we believe Shearer’s bound is
asymptotically sharp on extremal graphs for R(3, n).

The independent set problem on hypergraphs is much more difficult and in-
tractable than that on graphs. So it is natural to restrict our attentions to some
special classes of hypergraphs. A hypergraph H is called r-uniform if each edge of
H contains exactly r vertices (so a 2-uniform hypergraph is a graph), and called
triangle-free if H contains no three distinct vertices v1, v2, v3 and three distinct edges
E1, E2, E3 such that {v1, v2, v3} − {vi} is a subset of Ei for i = 1, 2, 3. We say that
a hypergraph H is linear if any two edges of H have at most one vertex in com-
mon. A linear hypergraph H is said to be double linear if for any two nonadjacent
vertices u and v, each edge containing u contains at most one neighbor of v. Caro
and Tuza [7] proposed a problem on extending the lower bound of Ajtai, Komlós,
and Szemerédi [3] to triangle-free hypergraphs; as a solution to this problem, Zhou
and Li [18] proved that every r-uniform linear triangle-free hypergraph H satisfies
α(H) ≥ Nfr,1(d), where function fr,1(x) is much bigger than (log x)/x when r ≥ 3.
Observe that if a linear hypergraph H is triangle-free, then its subhypergraph induced
by any neighborhood has maximum degree zero. However, the converse need not hold
in general. In this paper we consider hypergraphs whose subhypergraphs induced by
neighborhoods may have edges.

Let us define some functions before presenting our main result. As usual, let

B(p, q) =
∫ 1

0
(1 − t)p−1tq−1dt denote the beta function with p, q > 0. For integers

r ≥ 2 and m ≥ 1, set constants

a =
1

(r − 1)2
, b =

r − 2

r − 1
,

and

B = B(a/m, 1 − b) =

∫ 1

0

(1 − t)a/m−1t−bdt.

98 YUSHENG LI AND WENAN ZANG

Clearly, 0 < a ≤ 1, 0 ≤ b < 1, and B > 0. For the above r, m and x ≥ 0, define

fr,m(x) =
m

B

∫ 1

0

(1 − t)a/m

tb[m + (x−m)t]
dt.

Since

(1 − t)a/m

tb[m + (x−m)t]
≤ (1 − t)a/m

tb[m(1 − t)]
=

1

m
(1 − t)a/m−1t−b,

we see that fr,m(x) is bounded above by 1 and thus is well defined.

Theorem. Let H = (V, E) be an r-uniform, double linear hypergraph with degree
sequence {dv}. If the maximum degree of any subhypergraph induced by a neighborhood
is less than m, then

α(H) ≥
∑
v∈V

fr,m(dv).

Note that if r = 2, then a = 1, b = 0, and B = m, so f2,m is the function gm(x)
defined in (2). And fr,1(x) is precisely the function involved in the above Zhou–Li
bound. Since any graph and any linear triangle-free hypergraph are double linear,
our theorem generalizes all the results cited above, including Turán’s theorem and
the Caro–Wei theorem as long as graphs in consideration satisfy the conditions.

For any fixed integers r ≥ 3 and M ≥ 1, it was shown in [18] that fr,1(x) ≥
(logM x)/x provided x is large enough. We shall verify that fr,m(x) is a convex
function for x ≥ 0 and that fr,m(x) ∼ (log x)/x if r = 2 and c/x1/(r−1) if r ≥ 3, as
x → ∞, where c = c(r,m) > 0 is a constant and ∼ means an asymptotic equality. By
convexity of fr,m(x), we have fr,m(d) ≤ 1

|V |
∑

v∈V fr,m(dv), where d = 1
|V |

∑
v∈V dv.

Thus the following is an immediate consequence of the above theorem.

Corollary. For fixed integers r ≥ 3 and m ≥ 1, let c = c(r,m) > 0 be the
constant as described above. Then for any ε > 0, there exists a constant D = D(r,m, ε)
such that if a hypergraph H = (V, E) is double linear, r-uniform, and the subhypergraph
induced by any neighborhood has maximum degree less than m, then

α(H) ≥ (1 − ε)
cN

d1/(r−1)
,

where N = |V | and d is the average degree of H with d ≥ D.

2. Properties of the function fr,m. The purpose of this section is to exhibit
some properties satisfied by the function fr,m defined in the preceding section.

Lemma 1. For fixed integers r ≥ 2 and m ≥ 1 and for x ≥ 0, the function
f(x) = fr,m(x) satisfies the differential equation

(r − 1)2x(x−m)f ′(x) + [(r − 1)x + 1]f(x) = 1.(3)

Moreover, f(x) is strictly and completely monotonic, that is, (−1)kf (k)(x) > 0 for all
x ≥ 0. In particular, f(x) is positive, strictly decreasing, and strictly convex.

Proof. By differentiating x under the integral and then integrating by parts,

DIFFERENTIAL METHODS FOR FINDING INDEPENDENT SETS 99

we have

x(x−m)f ′(x)

=
−mx(x−m)

B

∫ 1

0

(1 − t)a/mt1−b

[m + (x−m)t]2
dt

=
mx

B

∫ 1

0

(1 − t)a/mt1−b d

dt

(
1

m + (x−m)t

)
dt

=
−mx

B

∫ 1

0

1

m + (x−m)t

[
(1 − b)(1 − t)a/mt−b − a

m
(1 − t)a/m−1t1−b

]
dt

= −(1 − b)xf(x) +
ax

B

∫ 1

0

(1 − t)a/m−1t1−b

m + (x−m)t
dt

= −(1 − b)xf(x) +
am

B

∫ 1

0

(
1

m(1 − t)
− 1

m + (x−m)t

)
(1 − t)a/mt−bdt

= −(1 − b)xf(x) +
a

B

∫ 1

0

(1 − t)a/m−1t−bdt− af(x)

= −(1 − b)xf(x) + a− af(x)

= −
(

x

r − 1
+

1

(r − 1)2

)
f(x) +

1

(r − 1)2
,

so the desired differential equation follows. The strict and complete monotonicity of
f(x) can be seen by repeatedly differentiating x under the integral.

Let us now proceed to the asymptotic behavior of the function f2,m(x).
Lemma 2. For any fixed integer m ≥ 1 and for x > 1, we have

log(x/m) − 1

x
≤ f2,m(x) ≤ x log x− x + 1

(x− 1)2
.

Therefore f2,m(x) ∼ (log x)/x as x → ∞.
Proof. We first claim that for fixed x ≥ 1, function

f2,m(x) =

∫ 1

0

(1 − t)1/mdt

m + (x−m)t
=

∫ 1

0

t1/mdt

mt + x(1 − t)
dt

decreases as m ≥ 1 increases. To justify the claim, setting t = um gives

f2,m(x) =

∫ 1

0

mumdu

mum + x(1 − um)
.

So it suffices to show that if δ > 0 and 0 < u < 1, then

mum

mum + x(1 − um)
>

(m + δ)um+δ

(m + δ)um+δ + x(1 − um+δ)
.

Equivalently,

δum+δ + m− (m + δ)uδ > 0.

For this purpose, set h(u) = δum+δ + m − (m + δ)uδ. Then h(1) = 0 and h′(u) =
δ(m + δ)uδ−1(um − 1) < 0 for 0 < u < 1, and thus the claim follows.

100 YUSHENG LI AND WENAN ZANG

Since for x > 1, we have

f2,1(x) =

∫ 1

0

(1 − t)dt

1 + (x− 1)t
=

x log x− x + 1

(x− 1)2
,

by the above claim f2,m(x) ≤ f2,1(x), and so the upper bound is established.
To derive the lower bound, note that

f2,m(x) =

∫ 1

0

(1 − t)1/mdt

m + (x−m)t
>

∫ 1

0

(1 − t)dt

m + (x−m)t

=
x log(x/m) − x + m

(x−m)2
≥ log(x/m) − 1

x
,

where the last inequality amounts to (2x − m) log(x/m) ≥ x − m, or equivalently
(2t − 1) log t ≥ t − 1. Set φ(t) = (2t − 1) log t − t + 1. Then φ(1) = 0 and φ′(t) =
2 log t + (1 − 1/t), which is less than 0 if 0 < t < 1, equal to 0 if t = 1, and greater
than 0 if t > 1. Hence φ(t) ≥ 0 for t > 0, implying the lower bound.

Our next lemma concerns the case when r ≥ 3; it shows that the asymptotic
behavior of fr,m is dramatically different from that of f2,m.

Lemma 3. For fixed integers r ≥ 3 and m ≥ 1, function fr,m(x) ∼ c
x1/(r−1) as

x → ∞, where c = c(r,m) > 0 is defined to be

m

B(m + 1)a/m

∫ 1

0

(1 − t)a/m

tb(m + t)
dt + a

∫ ∞

m+1

dt

t1+a/m(t−m)b−a/m
.

Proof. Our proof relies heavily on the theorem that a linear first-order differential
equation

dy

dx
= p(x)y + q(x)

has a unique solution

y = eφ(x)

(
y0 +

∫ x

x0

q(t)e−φ(t)dt

)

satisfying y0 = y(x0), where φ(x) =
∫ x

x0
p(t)dt. Now let us transform the differential

equation (3) in Lemma 1 into the above standard form. Then we get

p(x) = −a((r − 1)x + 1)

x(x−m)
and q(x) =

a

x(x−m)
.

Set x0 = m + 1 and

y0 = fr,m(m + 1) =
m

B

∫ 1

0

(1 − t)a/m

tb(m + t)
dt.

It follows from the uniqueness of the solution that

fr,m(x) = eφ(x)

(
y0 +

∫ x

m+1

q(t)e−φ(t)dt

)
for x ≥ m + 1.

DIFFERENTIAL METHODS FOR FINDING INDEPENDENT SETS 101

Since

φ(x) = −
∫ x

m+1

a((r − 1)t + 1)

t(t−m)
dt

= −a log

((
m + 1

x

)1/m

(x−m)r−1+1/m

)
,

we obtain

eφ(x) =
xa/m

(m + 1)a/m(x−m)1/(r−1)+a/m
(4)

∼ 1

(m + 1)a/mx1/(r−1)
,(5)

and hence

e−φ(x) ∼ (m + 1)a/mx1/(r−1).

Thus there exists a constant M > 0 such that for all t ≥ m + 1,

0 ≤ q(t)e−φ(t) ≤ Mt1/(r−1)

t2
=

M

t1+b
.

Recall that b > 0 as r ≥ 3, so
∫∞
m+1

q(t)e−φ(t)dt < ∞ and

∫ x

m+1

q(t)e−φ(t)dt =

∫ ∞

m+1

q(t)e−φ(t)dt− o(1)

as x → ∞. It follows from (5) that

fr,m(x) = eφ(x)

(
y0 +

∫ ∞

m+1

q(t)e−φ(t)dt− o(1)

)

∼ c

x1/(r−1)
,

where c = 1
(m+1)a/m (y0 +

∫∞
m+1

q(t)e−φ(t)dt). Using (4) and plugging y0, we see that

c is as defined in the lemma.

3. Proof of the theorem. Let us introduce some notions before presenting the
proof. For each v ∈ V , let Hv be the subhypergraph of H induced by V −(N(v)∪{v}),
and let {d′u} denote the degree sequence of Hv. For simplicity, write fr,m(x) as f(x).
Set S(H) =

∑
u∈V (H) f(du) and S(Hv) =

∑
u∈V (Hv) f(d′u). The default value of

S(Hv) is zero if V − (N(v) ∪ {v}) = ∅.
The key step of our proof is to establish the following statement.
Lemma 4. There exists a vertex v in H such that 1 + S(Hv) ≥ S(H).
To show that H contains an independent set I with size at least

∑
v∈V f(dv), we

may apply the following algorithm: Initially set I = ∅. Let v be the vertex exhibited
in Lemma 4. Set I = I ∪ {v} and H = Hv. Repeat the process until H contains no
vertex.

So Lemma 4 serves as a criterion for selecting vertices in I. Let us now prove
that such an independent set I is indeed as desired.

102 YUSHENG LI AND WENAN ZANG

Proof of the Theorem (assuming Lemma 4). We apply induction on |V |, the
number of vertices in H. Since f(0) = 1 by (3), the assertion holds trivially for
|V | = 1. So we proceed to the induction step.

Note that α(H) ≥ 1+α(Hu) for any vertex u of H. Let v be a vertex as described
in Lemma 4. Then, by induction hypothesis, we have α(H) ≥ 1+α(Hv) ≥ 1+S(Hv) ≥
S(H), completing the proof.

It therefore remains to prove the above lemma.
Proof of Lemma 4. For each v ∈ V , set

N2(v) = {x ∈ V − (N(v) ∪ {v}) : N(x) ∩N(v) �= ∅}

and

Y (v) = 1 + S(Hv) − S(H)

= 1 +
∑

x∈V (Hv)

[f(d′x) − f(dx)] − f(dv) −
∑

u∈N(v)

f(du).

Besides, for each x ∈ N2(v), set nv,x = |N(v) ∩ N(x)|. Let us consider the terms in
Y (v). Since any vertex x ∈ V (Hv)−N2(v) satisfies d′x = dx and any vertex x ∈ N2(v)
satisfies d′x = dx − nv,x (for H is double linear),

Y (v) = 1 − f(dv) −
∑

u∈N(v)

f(du) +
∑

x∈N2(v)

[f(dx − nv,x) − f(dv)].

Clearly, (6) is equivalent to saying that Y (v) ≥ 0 for some vertex v of H. So to prove
the lemma it suffices to show that ∑

v∈V (H)

Y (v) ≥ 0.(6)

Since H is linear and r-uniform,∑
v∈V (H)

∑
u∈N(v)

f(du) = (r − 1)
∑

v∈V (H)

dvf(dv).

So ∑
v∈V (H)

Y (v)

=
∑

v∈V (H)

{1 − [(r − 1)dv + 1]f(dv)} +
∑

v∈V (H)

∑
x∈N2(v)

[f(dx − nv,x) − f(dx)].

Observe that x ∈ N2(v) if and only if v ∈ N2(x) and that nv,x = nx,v; exchanging the
variables in the sum gives∑

v∈V (H)

∑
x∈N2(v)

[f(dx − nv,x) − f(dx)] =
∑

v∈V (H)

∑
x∈N2(v)

[f(dv − nv,x) − f(dv)].

Let

Z(v) =
∑

x∈N2(v)

[f(dv − nv,x) − f(dv)].

DIFFERENTIAL METHODS FOR FINDING INDEPENDENT SETS 103

Then ∑
v∈V (H)

Y (v) =
∑

v∈V (H)

{1 − [(r − 1)dv + 1]f(dv)} +
∑

v∈V (H)

Z(v).(7)

Now comes the technical part of our proof, the analysis of the term
∑

v∈V (H) Z(v).

Since f(x) is convex, we have

f(x− 1) − f(x) ≥ f(y − 1) − f(y) whenever 1 ≤ x ≤ y.(8)

(To see this, write x = α(x − 1) + (1 − α)y and y − 1 = β(x − 1) + (1 − β)y, where
0 ≤ α, β ≤ 1. By convexity, f(x) ≤ αf(x−1)+(1−α)f(y) and f(y−1) ≤ βf(x−1)+
(1−β)f(y). Summing up these two inequalities yields f(x)+f(y−1) ≤ f(x−1)+f(y)
as α + β = 1.) From (8) we deduce that

f(dv − nv,x) − f(dv) =

nv,x∑
i=1

[f(dv − i) − f(dv − (i− 1))] ≥ [f(dv − 1) − f(dv)]nv,x,

and so

Z(v) ≥ [f(dv − 1) − f(dv)]
∑

x∈N2(v)

nv,x.

Note that H is double linear, r-uniform, and each vertex u ∈ N(v) is incident to at
most m−1 edges in N(v). Moreover, there is precisely one edge in H containing both
u and v. So ∑

x∈N2(v)

nv,x ≥ (r − 1)
∑

u∈N(v)

(du −m).

Write Av = f(dv − 1) − f(dv). Then∑
v∈V (H)

Z(v) ≥ (r − 1)
∑

v∈V (H)

∑
u∈N(v)

(du −m)Av

= (r − 1)
∑
E∈E

∑
u,v∈E

{(du −m)Av + (dv −m)Au}

= (r − 1)
∑
E∈E

∑
u,v∈E

{(dv −m)Av + (du −m)Au + (du − dv)(Av −Au)}.

By (8), we get (du − dv)(Av −Au) ≥ 0. Thus∑
v∈V (H)

Z(v) ≥ (r − 1)
∑
E∈E

∑
u,v∈E

{(dv −m)Av + (du −m)Au}

= (r − 1)
∑

v∈V (H)

∑
u∈N(v)

(dv −m)Av

= (r − 1)2
∑

v∈V (H)

dv(dv −m)Av.

From the convexity of f(x), it follows that f(y) ≥ f(x)+f ′(x)(y−x) for any x, y ≥ 0.
So Av = f(dv − 1) − f(dv) ≥ −f ′(dv) and hence∑

v∈V (H)

Z(v) ≥ −(r − 1)2
∑

v∈V (H)

dv(dv −m)f ′(dv).(9)

104 YUSHENG LI AND WENAN ZANG

Finally, combining (7) with (9) and using differential equation (3) in Lemma 1, we
obtain ∑

v∈V (H)

Y (v)

≥
∑

v∈V (H)

{1 − [(r − 1)dv + 1]f(dv) − (r − 1)2dv(dv −m)f ′(dv)}

= 0.

This completes the proof of (6) and hence the lemma.
It is easy to see that our proof yields a polynomial-time algorithm for finding an

independent set in H with at least
∑

v∈V fr,m(dv) vertices.

REFERENCES

[1] M. Ajtai, P. Erdős, J. Komlós, and E. Szemerédi, On Turán’s theorem for sparse graphs,
Combinatorica, 1 (1981), pp. 313–317.

[2] M. Ajtai, P. Erdős, J. Komlós, and E. Szemerédi, A dense infinite Sidon sequence, Euro-
pean J. Combin., 2 (1981), pp. 1–11.

[3] M. Ajtai, J. Komlós, and E. Szemerédi, A note on Ramsey numbers, J. Combin. Theory
Ser. A, 29 (1980), pp. 354–360.

[4] N. Alon and J. Spencer, The Probabilistic Method, Wiley-Interscience, New York, 1992.
[5] C. Berge, Hypergraphs, North-Holland, Amsterdam, 1989.
[6] Y. Caro, New Results on the Independence Number, Technical report, Tel-Aviv University,

Tel-Aviv, Israel, 1979.
[7] Y. Caro and Z. Tuza, Improved lower bounds on k-independence, J. Graph Theory, 15 (1991),

pp. 99–107.
[8] P. Duchet, Hypergraphs Handbook of Combinatorics, R. L. Graham, M. Grötschel, and L.

Lovász, eds., Elsevier, Amsterdam, 1995, pp. 381–432.
[9] J. R. Griggs, An upper bound on the Ramsey number R(3, k), J. Combin. Theory Ser. A, 35

(1983), pp. 145–153.
[10] J. Kim, The Ramsey number R(3, t) has order of magnitude t2/ log t, Random Structures

Algorithms, 7 (1995), pp. 174–207.
[11] Y. Li and C. Rousseau, On book-complete graph Ramsey numbers, J. Combin. Theory Ser.

B, 68 (1996), pp. 36–44.
[12] Y. Li, C. Rousseau, and W. Zang, Asymptotic upper bounds for Ramsey functions, Graphs

Combin., 17 (2001), pp. 123–128.
[13] Y. Li, C. Rousseau, and W. Zang, The lower bound on independence number, Sci. China Ser.

A, 45 (2002), pp. 64–69.
[14] Y. Li and W. Zang, Ramsey numbers involving large dense graphs and bipartite Turán num-

bers, J. Combin. Theory Ser. B, 87 (2003), pp. 280–288.
[15] J. Shearer, A note on the independence number of triangle-free graphs, Discrete Math., 46

(1983), pp. 83–87.
[16] J. Shearer, A note on the independence number of triangle-free graphs, II, J. Combin. Theory

Ser. B, 53 (1991), pp. 300–307.
[17] A. K. Wei, A Lower Bound on the Stability Number of a Simple Graph, Bell Laboratories

Technical Memorandum, No. 81-11217-9, Murray Hill, NJ, 1981.
[18] G. Zhou and Y. Li, Independence numbers of hypergraphs with sparse neighborhoods, European

J. Combin., 25 (2004), pp. 355–362.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 105–118

LINEAR ORDERINGS OF SUBFAMILIES OF AT-FREE GRAPHS∗

DEREK G. CORNEIL† , EKKEHARD KÖHLER‡ , STEPHAN OLARIU§ , AND

LORNA STEWART¶

Abstract. Asteroidal triple free (AT-free) graphs have been introduced as a generalization of
interval graphs, since interval graphs are exactly the chordal AT-free graphs. While for interval
graphs it is obvious that there is always a linear ordering of the vertices, such that for each triple of
independent vertices the middle one intercepts any path between the remaining vertices of the triple,
it is not clear that such an ordering exists for AT-free graphs in general.

In this paper we study graphs that are defined by enforcing such an ordering. In particular,
we introduce two subfamilies of AT-free graphs, namely, path orderable graphs and strong asteroid
free graphs. Path orderable graphs are defined by a linear ordering of the vertices that is a natural
generalization of the ordering that characterizes cocomparability graphs. On the other hand, moti-
vation for the definition of strong asteroid free graphs comes from the fundamental work of Gallai
on comparability graphs.

We show that cocomparability graphs ⊂ path orderable graphs ⊂ strong asteroid free graphs ⊂
AT-free graphs. In addition, we settle the recognition question for the two new classes by proving
that recognizing path orderable graphs is NP-complete, whereas the recognition problem for strong
asteroid free graphs can be solved in polynomial time.

Key words. graph algorithms, complexity, asteroidal triple free graphs, recognition algorithm,
linear ordering

AMS subject classifications. 05C75, 05C85, 68R10

DOI. 10.1137/S0895480104445307

1. Introduction. We say that a vertex in a graph G = (V,E) intercepts a path
in G if it is adjacent to at least one vertex of the path, and it misses the path otherwise.
An asteroidal triple (AT) is an independent set of three vertices such that, between
every pair, there is a path that is missed by the third. A graph is AT-free if it does
not contain an AT.

One of the most compelling motivations for the study of AT-free graphs is the
idea that these graphs exhibit a type of linear structure. Indeed, the linear structure
exhibited by AT-free graphs is explained, in part, in [1], where it is shown that every
connected AT-free graph contains a dominating pair (two vertices such that every
path connecting them is a dominating set) and a type of linear “shelling sequence”
called a spine.

The original motivation for the results of the present paper was the idea that
AT-free graphs might be characterized by the existence of a vertex ordering satisfying

∗Received by the editors July 26, 2004; accepted for publication (in revised form) August 12,
2005; published electronically March 3, 2006. An expanded abstract of this paper appeared as On
subfamilies of AT free graphs, in Graph-Theoretic Concepts in Computer Science (Boltenhagen,
2001), A. Brandstädt and V. B Le, eds., Lecture Notes in Comput. Sci. 2204, Springer-Verlag, New
York, 2001, pp. 241–253. With kind permission of Springer Science and Business Media.

http://www.siam.org/journals/sidma/20-1/44530.html
†Computer Science Department, University of Toronto, Toronto, ON M55 3G4, Canada (dgc@cs.

toronto.edu).
‡Institut für Mathematik, Technische Universität Berlin, 10623 Berlin, Germany (ekoehler@math.

TU-Berlin.DE).
§Department of Computer Science, Old Dominion University, Norfolk, VA 23529-0162 (olariu@

cs.odu.edu).
¶Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E8, Canada

(stewart@cs.ualberta.ca).

105

106 D. CORNEIL, E. KÖHLER, S. OLARIU, AND L. STEWART

certain conditions. Looking back at the introduction of AT-free graphs as general-
izations of interval graphs, there is an immediate candidate for such an ordering by
requiring that for any independent triple in this ordering the central vertex should
intercept every path between the remaining vertices of the triple. It is easy to see
that interval graphs and even cocomparability graphs have such an ordering of the
vertices (see below). However, it is not clear whether every AT-free graph possesses
such an ordering.

Vertex orderings have proven to be useful algorithmic tools for several families
of graphs. For example, chordal graphs (respectively, cocomparability graphs) are
characterized by the existence of vertex orderings that do not contain the forbidden
ordered configuration shown in Figure 1 (a) [2] (respectively, (b) [8]). A graph is
an interval graph if and only if it has a vertex ordering that contains neither of the
configurations of Figure 1 (see, for example, [11]). Such vertex orderings are referred to
as chordal orderings, cocomparability orderings, and interval orderings, respectively.

(a) (b)

Fig. 1. Forbidden ordered configurations.

In other words, in an interval ordering, for every path on two vertices (that is, for
every edge), the left endpoint of the path is adjacent to all vertices between the two
endpoints of the path. In a cocomparability ordering, each vertex between the two
endpoints of a P2 is adjacent to one or both endpoints of the P2. It is well known that
interval graphs are exactly those graphs that are both chordal and cocomparability [5]
or, equivalently, both chordal and AT-free [9]. Furthermore, cocomparability graphs
are a proper subclass of AT-free graphs [6].

An alternate characterization of the cocomparability ordering is given in Obser-
vation 1.1.

Observation 1.1. A vertex ordering v1, . . . , vn of graph G is a cocomparability
ordering if and only if for all vi, vj , vk with i < j < k, vertex vj intercepts each
vi, vk-path of G.

From this, one can easily see that a cocomparability graph must be AT-free since
any independent triple occurs in some order, say, x ≺ y ≺ z, in a cocomparability
ordering “≺,” and thus, there cannot exist an x, z-path missed by y. In an attempt
to generalize the cocomparability ordering while retaining the AT-free property, we
introduce the following definition.

Definition 1.2. A graph G = (V,E) is path orderable if there is an ordering
v1, . . . , vn of the vertices such that for each triple of vertices vi, vj , vk with i < j < k
and vivk /∈ E, vertex vj intercepts each vi, vk-path of G; such an ordering is called a
path ordering.

Observation 1.1 and Definition 1.2 imply that cocomparability graphs are path
orderable. C5, the chordless cycle on five vertices, is a path orderable graph which
is not a cocomparability graph. It is clear that path orderable graphs must be AT-
free. However, can Definition 1.2 be used for characterizing AT-free graphs? Figure 2
shows an AT-free graph together with an ordering that is not a path ordering. Hence,
the question here is whether it can be turned into a path ordering. Unfortunately, we
shall see later that path orderable graphs form a strict subset of AT-free graphs; in
particular, the graph in Figure 2 will be shown to be not path orderable.

LINEAR ORDERINGS OF SUBFAMILIES OF AT-FREE GRAPHS 107

12

3

45

6

7 8

9

12345 67 89

Fig. 2. AT-free graph G with ordering that is not a path ordering; in particular, path 6-7-8-9
is not intercepted by 3 (the edges of the path are dashed).

Nevertheless, since path orderable graphs are interesting in their own right, we
attempted to provide a structural characterization of this graph class by identifying
a type of forcing relation on nonadjacent pairs of vertices and the type of structure
that makes the vertex ordering of Definition 1.2 impossible.

These investigations follow in Gallai’s footsteps [3, 10] in that they involve ideas
similar to his forcing relation on the edges of a comparability graph (equivalently, the
nonedges of a cocomparability graph) and his definitions of wreaths and asteroids.
Specifically, we define strong asteroids and show that path orderable graphs are strong
asteroid free. However, it turns out that the strong asteroid concept does not provide
a characterization of path orderable graphs; we shall see that path orderable graphs
form a proper subclass of strong asteroid free graphs which, in turn, form a proper
subclass of AT-free graphs.

Thus, we will identify two distinct subclasses of AT-free graphs, both of which
contain cocomparability graphs:

cocomparability ⊂ path orderable ⊂ strong asteroid free ⊂ AT-free.

The interest lies, in part, in the natural vertex ordering, in one case, and the
relationship with Gallai’s work, in the other case. Furthermore, the identification of
these graph classes should allow us to narrow the gap between known polynomial
and known NP-complete behavior of problems in the domain of AT-free graphs. For
example, the complexity status for coloring, Hamiltonian path, and Hamiltonian cycle
is still unresolved for AT-free graphs but is in P for cocomparability graphs.

We conclude the paper with a proof that the recognition of path orderable graphs
is NP-complete, and with a polynomial time recognition algorithm for strong asteroid
free graphs. We note that the NP-completeness result settles an open problem stated
in [13].

Background. In his paper on comparability graphs [3, 10], Gallai studies the
forcing between the edges imposed by a transitive orientation (to avoid misunder-
standings, from now on we will refer to the transitive-forcing as t-forcing). Let G
be an arbitrary graph. Two edges which share a common endpoint and whose other
endpoints are nonadjacent t-force each other directly. That is, in any transitive ori-
entation, either both edges are directed away from the common endpoint or both are
directed toward it. The transitive closure of the direct t-forcing relation partitions
the edges of G into t-forcing classes. Either there are exactly two different transitive
orientations of the edges of a t-forcing class, or there is none. The latter case occurs
when some edge is t-forced in both directions, in which case G is not a comparability
graph. Edges xy and xz are said to be knotted if y and z are connected in G[N(x)],
the complement of the subgraph of G induced by N(x), where N(x), the neighborhood

108 D. CORNEIL, E. KÖHLER, S. OLARIU, AND L. STEWART

of x, is defined as N(x) = {u | ux ∈ E}.
To capture the t-forcing in a given graph G, Gallai uses the concept of a knotting

graph: For a graph G = (V,E) the corresponding knotting graph is given by K[G] =
(VK, EK), where VK and EK are defined as follows. For each vertex v of G there
are copies v1, v2, . . . , viv in VK, where iv is the number of connected components of
G[N(v)]. For each edge vw of E there is an edge viwj in EK, where w is contained
in the ith connected component of G[N(v)] and v is contained in the jth connected
component of G[N(w)]. Please refer to Figure 5 for an example of a graph together
with its knotting graph.

In this graph two edges are incident if and only if they are knotted. The edges of
the t-forcing classes of G are given by the connected components of K[G]. Using this
structure, Gallai shows that a graph G is a comparability graph if and only if K[G] is
bipartite.

The following definitions from [3] describe structures which lead to t-forcing
classes which cannot be transitively oriented and knotting graphs which are not bi-
partite.

Definition 1.3. An odd wreath of size k in a graph is a cycle of knotted edges,
specifically, a sequence of vertices v0, v1, v2, . . . , vk, where k is odd, v1, . . . , vk are
distinct, v0 = vk, and for all i, 0 ≤ i < k, edges vivi+1 and vi+1vi+2 exist in the graph
and are knotted (addition modulo k).

Definition 1.4. An odd asteroid of size k in a graph is a sequence of vertices
v0, v1, v2, . . . , vk where k is odd, v1, . . . , vk are distinct, v0 = vk, and for all i, 0 ≤ i <
k, there exists a vivi+1-path in G which is missed by v(i+ k+1

2) (addition modulo k).

Gallai points out that an odd asteroid is the complement of an odd wreath and
proves that a graph is a comparability graph if and only if it contains no odd wreath
or, equivalently, a graph is a cocomparability graph if and only if it contains no odd
asteroid. Note also that an AT corresponds to an odd asteroid of size three.

As an example of an odd asteroid, consider the graph G in Figure 2. Here, the
sequence of vertices 1, 3, 5, 7, 8, 1 forms an odd asteroid of size 5 in G. The sequence
1, 5, 8, 3, 7, 1 of vertices forms an odd wreath of size 5 in G.

2. Path orderable graphs and strong asteroid free graphs. As we have
seen, t-forcing is a fundamental concept for comparability graphs, and thus for co-
comparability graphs as well. Given the similarities of the linear ordering character-
izations of path orderable graphs and cocomparability graphs, one might expect a
similar forcing concept for path orderable graphs. In fact such is the case.

For a graph G and a vertex v of G let C1, . . . , Ck be the connected components
of G \ N[v] and let B1

i , . . . , B
�
i be the connected components of the graph induced by

the vertices of Ci in G (1 ≤ i ≤ k); the Bj
i are called the blobs of v in G. (Here

N[v] := N(v)∪{v} denotes the closed neighborhood of vertex v in G.) As an example,
consider the graph in Figure 3.

Lemma 2.1. Let G be a path orderable graph and let v1, . . . , vn be a path ordering
of G. For every vertex v of G and for every blob B of v, the vertices of B occur either
all before v in the path ordering or all after v in the path ordering.

Proof. Suppose there are a vertex v and a blob B of v with u,w ∈ B and
u ≺ v ≺ w in the path ordering “≺” of G (see Figure 4 for a sketch of this setting).
By the definition of blobs, u and w are in the same connected component C of G\N[v].
Since u and w are also in the same connected component B of C in G, there has to
be a path of nonedges in B between u and w. Thus, there is a pair of vertices u′, w′

LINEAR ORDERINGS OF SUBFAMILIES OF AT-FREE GRAPHS 109

v

01 2

34

5

67 8

910 11

1213

14 15

16

Fig. 3. The blobs of vertex v = 10 are given by the sets {0}, {1, 2, 3, 4}, {6}, {8},
{11, 12, 14, 15, 16}.

v1 vnvu′ u w′ w

C B

Fig. 4. Proof idea of Lemma 2.1.

in B with u′w′ /∈ E and u′ ≺ v ≺ w′. But u′, w′ ∈ C; therefore there is a u′, w′-path
in G \ N[v], contradicting the path ordering.

By Lemma 2.1, any path ordering has to fulfill the property that if one of the
vertices u of a blob B of v precedes v in the ordering, then all of the vertices of B
occur before v.

Consider now the graph G in Figure 2. Following the above definition of blobs, ver-
tex 3 has the three blobs {6, 7, 8, 9}, {5}, {1}; vertex 7 has the blobs {3, 1, 9}, {2}, {5};
vertex 8 has the blobs {3, 5, 6}, {4}, {1}; vertex 5 has only the blob {1, 2, 3, 6, 7, 8, 9};
and vertex 1 has only the blob {3, 4, 5, 6, 7, 8, 9}. Suppose there is a path ordering
of G. By Lemma 2.1 we can, without loss of generality, assume that 1 precedes all
vertices of its blob and thus 5 appears after all vertices of its blob in the path ordering;
in particular, vertices 3, 6, 7, 8, 9 are between 1 and 5. Since 7 and 8 are in the same
blob of 3, they appear either both before or both after 3 in the path ordering. How-
ever, if they both appear before 3, then, again by Lemma 2.1, we have a contradiction
because 3 and 1 are in the same blob of 7, but on different sides in the path ordering.
On the other hand, if both 7 and 8 appear after 3 in the path ordering we again have
a contradiction, since 3 and 5 are in the same blob of 8 but on different sides in the
path ordering. Hence there cannot be a path ordering for the graph in Figure 2.

Corollary 2.2. The class of path orderable graphs is strictly contained in the
class of AT-free graphs.

Lemma 2.3. If a graph G is path orderable then every induced subgraph of G is
path orderable.

Proof. This follows by the definition of path orderable and since any path in an
induced subgraph of graph G is also a path in G.

When interpreting the constraints of Lemma 2.1 as orientations of the edges of
G, in the sense that edges from the same blob of a vertex v to v in G have to have
the same orientation (i.e., representing before or after v in the path ordering), one
can define the following forcing on the edge set of G.

Let G be an arbitrary graph and let e1 = uv, e2 = vw be edges of G with a
common end-vertex v. Then one can define a relation ≈ by e1 ≈ e2 (e1 and e2 force
each other or are knotted at v) if and only if u and w are in the same blob of v
(possibly u = w) in G. The transitive closure of this relation defines a class partition

110 D. CORNEIL, E. KÖHLER, S. OLARIU, AND L. STEWART

of the edges of G, where two edges ea, eb are in the same class (forcing class) of G
if there is a sequence e1, e2, . . . , ek of edges such that ea = e1 ≈ e2 ≈ · · · ≈ ek = eb.
Observe that the forcing classes are refinements of the t-forcing classes.

An orientation of the edges of G is said to agree with the forcing if for any vertex
v and any blob B of v all edges between B and v are oriented in the same direction
(either toward v or away from v). For a graph G a linear ordering v1, . . . , vn of the
vertices of G is said to agree with the forcing if the corresponding implied orientation
of the edges of G (uv is oriented from u to v if u ≺ v in the linear ordering “≺”)
agrees with the forcing.

Note that when the orientation of one of the edges of a forcing class is fixed, then
the orientation of all the edges of its forcing class is determined; hence, either there
are exactly two different orientations of the edges of a forcing class that agree with
the forcing, or there is none. In the latter case, some edge is forced to be oriented in
both directions, meaning that there is no ordering consistent with the forcing.

Lemma 2.4. A graph G is path orderable if and only if there is a linear ordering
of the vertices of G agreeing with the forcing.

Proof. If G is path orderable, then, by Lemma 2.1, the path ordering has to agree
with the forcing relation.

Suppose there is a linear ordering “≺” of G that agrees with the forcing relation
and suppose there is a triple u ≺ v ≺ w of vertices that violates the path ordering
property, i.e., uw /∈ E, and there is a u,w-path in G \ N[v]. Hence, u and w are in
the same connected component C of G \N[v] and, since uw /∈ E, u and w are also in
the same blob B of v. But then this ordering does not agree with the forcing relation,
which is a contradiction.

Corollary 2.5. A graph G is path orderable if and only if there is an acyclic
orientation of G, agreeing with the forcing relation.

Proof. Determine a topological ordering, using the acyclic orientation of G; then
the corollary follows from Lemma 2.4.

One can define a graph, similar to Gallai’s knotting graph, representing the forcing
classes of G. For a graph G = (V,E) the altered knotting graph is given by K∗[G] =
(VK , EK), where VK and EK are defined as follows. For each vertex v of G there are
copies v1, . . . , viv in VK , where iv is the number of blobs of v in G. For each edge vw
of E there is an edge viwj in EK , where w is contained in the ith blob of v in G and
v is contained in the jth blob of w in G.

1

2 3 4 5

6 7

1

2

34

5

6 7

Fig. 5. A graph G together with its complement G, K[G], and K∗[G].

As Gallai did for the knotting graph, we draw the altered knotting graph K∗[G]
of a given graph G by putting different copies of the same vertex close together. See
Figure 5 for an example of a graph G, together with its complementary graph G, its
knotting graph K[G], and its altered knotting graph K∗[G]. The blobs of the vertices

LINEAR ORDERINGS OF SUBFAMILIES OF AT-FREE GRAPHS 111

of G are as follows: vertex 1: {2, 3}, {4, 5}; vertex 2: {1}, {3}, {6}; vertex 3: {1},
{2}, {6}; vertex 4: {1}, {5}, {7}; vertex 5: {1}, {4}, {7}; vertex 6: {2, 3}, {7}; vertex
7: {4, 5}, {6}.

Our next task is to examine configurations which cannot occur in path orderable
graphs. As a step toward this goal, we define restricted types of odd wreaths and
asteroids.

Definition 2.6. An odd strong wreath of size k in a graph G is a sequence of
vertices v0, v1, . . . , vk where k is odd, v1, . . . , vk are distinct, v0 = vk, and for all i,
0 ≤ i < k, edges vivi+1 and vi+1vi+2 exist in the graph and are knotted in the altered
sense; that is, vi and vi+2 are in the same blob of vi+1 in G (addition modulo k).

Definition 2.7. An odd strong asteroid of size k in a graph G is a sequence of
vertices v0, v1, . . . , vk where k is odd, v1, . . . , vk are distinct, v0 = vk, and for all i,
0 ≤ i < k, vi and vi+1 are in the same blob of v(i+ k+1

2) in G (addition modulo k).

The two notions are complementary; that is, a graph G has an odd strong wreath
if and only if G contains an odd strong asteroid. Furthermore, strong asteroids and
strong wreaths are restricted types of asteroids and wreaths. We also note that the
ATs correspond to the odd strong asteroids of size three. Figure 6 features a graph
containing an odd strong asteroid as well as its complement that contains an odd
strong wreath.

v1

v2

v3v4

v5

w1

w2

w3 w4

w5

Fig. 6. Graph of Figure 2, containing an odd strong asteroid and its complement, containing an
odd strong wreath (vertices of the asteroid and the wreath are marked by v1, . . . , v5 and w1, . . . , w5,
respectively; the edges of the wreath are dashed).

Definition 2.8. A graph G is strong asteroid free if it does not contain an odd
strong asteroid.

Similar to the t-forcing results, the following holds.
Lemma 2.9. The forcing classes of a graph G are precisely the connected compo-

nents of K∗[G].
The next two observations follow from the fact that an odd strong asteroid of size

k in G corresponds to an odd cycle of size k in K∗[G].
Observation 2.10. A graph G is strong asteroid free if and only if K∗[G] is

bipartite.
Observation 2.11. A graph G is AT-free if and only if K∗[G] is triangle-free.
Lemma 2.12. If a graph G is path orderable then K∗[G] is bipartite.
Proof. Let v1, . . . , vn be a path ordering of G. Now orient the edges of K∗[G] as

follows: vivj is oriented from vi to vj if i < j. Now, by Lemma 2.1, each vertex of
K∗[G] has either only incoming or only outgoing edges. Hence, it is bipartite.

Not only does the graph in Figure 2 show that path orderable graphs are strictly
contained in AT-free graphs, but it also establishes that strong asteroid free graphs

112 D. CORNEIL, E. KÖHLER, S. OLARIU, AND L. STEWART

are strictly contained in AT-free graphs, as shown in the next lemma.
Lemma 2.13. The class of strong asteroid free graphs is strictly contained in the

class of AT-free graphs.
Proof. Consider the graphs of Figures 2 and 6. It is easy to check that the vertices

named v1, . . . , v5 in Figure 6 form an odd strong asteroid in G, and that G is AT-
free.

Similar to Lemma 2.3 one can prove the following lemma.
Lemma 2.14. If a graph G is strong asteroid free then every induced subgraph of

G is strong asteroid free.
In the case of comparability graphs, Gallai not only showed that the knotting

graph K[G] of a comparability graph is bipartite but also proved that a bipartite
knotting graph K[G] is a sufficient condition for G being a comparability graph. The
major tool that he used for proving this result is a lemma which shows the following.
Given a bipartite knotting graph K[G] consider a triangle of G with the property that
at least two of the edges of the triangle are in the same t-forcing class; then in any
orientation of G that agrees with the t-forcing, the triangle is not oriented cyclically.

It turns out that a similar lemma holds for strong asteroid free graphs, too. Specif-
ically, for a graph G with a bipartite altered knotting graph K∗[G], any orientation of
G that agrees with the forcing relation does not contain a cyclically oriented triangle.
However, contrary to the t-forcing relation, this lemma is not enough to imply that
the orientation is acyclic and, indeed, we shall show that this is not necessarily the
case.

Observation 2.15. Given a vertex v in a graph H and vertices u,w ∈ N(v),
which are the endpoints of an induced P4 in N(v), then the edges uv and wv force
each other (see Figure 7).

v

u w

v

u w

Fig. 7. Vertex v with P4 in N(v) together with the corresponding altered knotting graph.

Remark 2.16. Using this observation one can create a forcing path, i.e., a path
P , where each consecutive pair of edges of P is knotted at the common end-vertex
by the help of an added P4 as described in Observation 2.15; see Figure 8 (in the
following, edges and vertices of the path P itself are called original edges/vertices,
and the added edges and vertices are denoted as auxiliary edges/vertices). By the
forcing, the orientation of any original edge of P forces the orientation of all other
original edges of P . Note that the knotting graph of a forcing path does not contain
a triangle or any odd cycle. Furthermore, if P has even length, then the end-edges of
P are either both oriented toward the inner vertices of P or both oriented outward
from the inner vertices of P . Similarly, if P has odd length, the end-edges of P have
opposite orientations with respect to the inner vertices of P .

Theorem 2.17. The class of path orderable graphs is strictly contained in the
class of strong asteroid free graphs.

Proof. Consider the left graph in Figure 9. This graph is the complement of a
strong asteroid free graph G. This is proved by constructing the altered knotting
graph K∗[G] (see the right graph in Figure 9). By Observation 2.15, the thick edges
force each other, as shown in the altered knotting graph; and, without having a

LINEAR ORDERINGS OF SUBFAMILIES OF AT-FREE GRAPHS 113

Fig. 8. A forcing path of length 4 (original edges and vertices are bold).

G

x1

x2

x3

x4

x5

x6

x7

xk

K∗[G]

x1

x2

x3

x4

x5

x6

xk

Fig. 9. Complement of a strong asteroid free graph, which is not path orderable (left), together
with its altered knotting graph (right). To ease understanding of its structure, in the knotting graph
the corresponding auxiliary P4 vertices are drawn in the figure for only one of the arms of the
example. One of the two possible forced orientations of the main forcing class is given in the right
picture.

strong asteroid in G, there is a forced oriented cycle on the vertices x1, . . . , xk in G.
Consequently, by Corollary 2.5, G is not path orderable. This construction holds for
any k ≥ 4.

3. Recognition of path orderable and strong asteroid free graphs. In
this section, we show that the recognition of path orderable graphs is NP-complete.
This result answers a question posed by Spinrad in [13]. In contrast, we describe how
to recognize strong asteroid free graphs in polynomial time.

First, observe that the recognition problem of path orderable graphs is obviously
in NP, since by Lemma 2.1 for a given ordering one can easily check in polynomial time
whether it is a path ordering. If there is only one forcing class for the edge set of G
one can also check in polynomial time whether G is path orderable: Compute K∗[G],
check whether it is bipartite, assign an orientation to K∗[G] by orienting all edges
from one of the bipartition classes to the other, and check whether this orientation is
acyclic on G.

Similarly one can check whether G is path orderable if the number of forcing
classes of G is bounded by a constant.

For comparability graphs, Gallai’s results for the general case, i.e., where no
assumption on the number of edge classes is made, lead to a polynomial time recogni-
tion algorithm. For this he introduced the (by now well-known) concept of modular
decomposition and proved that, using this decomposition scheme, the problem of

114 D. CORNEIL, E. KÖHLER, S. OLARIU, AND L. STEWART

recognizing comparability graphs reduces to the problem of recognizing prime compa-
rability graphs. But what about the recognition of path orderable graphs? Can one
extend the decomposition scheme to this problem?

NOT-ALL-EQUAL 3SAT. [4]
INSTANCE: Set U of variables, collection C of clauses over U such that each clause
c ∈ C has |c| = 3.
QUESTION: Is there a truth assignment A for U such that each clause in C has at
least one true literal and at least one false literal?

Remark 3.1. Without loss of generality one can assume that none of the clauses
contains more than one literal of a variable.

To prove the NP-hardness of the recognition problem of path orderable graphs, we
use a transformation from NOT-ALL-EQUAL 3SAT (NAE 3SAT). Given an instance
I of NAE 3SAT, a graph G is constructed, which is the complement of a path orderable
graph if and only if I is NAE 3SAT-satisfiable. In particular, it will be shown that I
is NAE 3SAT-satisfiable if and only if there is an acyclic orientation of G that agrees
with the forcing. By Corollary 2.5 this is equivalent with G being path orderable.

The basic construction of G is as follows. For every variable x of U an edge ex is
created (called a variable edge in the following) and the two possible orientations of
ex are associated with the two possible values true and false of x.

x

x

y

y

z

z
a

b

Fig. 10. Gadget for clause x ∨ y ∨ z.

For each clause C = x ∨ y ∨ z with literals x, y, z a gadget is constructed, mainly
consisting of two C4’s as shown in Figure 10. In each of the C4’s three of the edges (the
base-edges) correspond to the three literals x, y, z of C. As will be explained below,
a true literal of C will correspond to a clockwise orientation of the corresponding
base-edges in both of the C4’s, whereas a false literal will correspond to a counter-
clockwise orientation of the corresponding base-edges in both C4’s. Furthermore, in
each orientation that agrees with the forcing, the fourth edges of the two C4’s, which
will be called the bridge edges (edges a and b in Figure 10), will be guaranteed to have
opposite orientations in the two C4’s. This is realized by making these bridge edges
the end-edges of a forcing path of length 4. Consequently, with this construction, a
truth assignment of the variables of U that sets all three literals of C to true (false)
results in a clockwise (counterclockwise) orientation of all three base-edges in both
C4’s and, since the bridge edges have opposite orientations in the two C4’s, at least one
of the C4’s has a cyclic orientation. On the other hand, by the above correspondence
between the orientations of the base-edges and the truth-values of the corresponding
literals, each acyclic orientation of G that agrees with the forcing leaves at least one
literal of C true and one false.

Next, it has to be ensured that the value of a variable and the value of the literals
of this variable coincide; i.e., the orientation of the variable edge of x for value true has
to result in a counterclockwise orientation of the base-edges for x in all the gadgets

LINEAR ORDERINGS OF SUBFAMILIES OF AT-FREE GRAPHS 115

x1

x1

x1

x1

x1 x2 x3 x4

x2

x2

x2

x2

x3

x3

x3

x3

x3

x3

x4

x4

x4

x4

Fig. 11. General structure of K∗[G] for the instance I = (x1 ∨ x2 ∨ x3)∧ (x2 ∨ x3 ∨ x4)∧ (x1 ∨
x3 ∨ x4) (auxiliary vertices and edges are omitted).

for clauses containing literal x and in a clockwise orientation of the base-edges for
x in all the gadgets for clauses containing literal x. This is realized by connecting
each variable edge to all corresponding base-edges by the help of forcing paths that
are joined appropriately. In other words, for each variable a separate edge class is
created, containing the variable edge and all base-edges corresponding to literals of
this variable. The general structure of the connection between variable edges and base-
edges by forcing paths is shown in Figure 11; for easier understanding the auxiliary
edges and vertices of the forcing paths are omitted in this picture. For a variable
edge ex (see top of Figure 11) a downward orientation corresponds to assigning false
to variable x, whereas an upward orientation corresponds to assigning true to x. For
each literal x or x, there is a forcing path of length 4, having ex and the corresponding
base-edge as its end-edges; depending on whether the literal is x or x, either the start-
or the end-vertex of the base-edge (with respect to a clockwise ordering in the C4) is
made the end-vertex of the forcing path.

Now, by Remark 2.16, assigning an upward orientation to the variable edge ex
results in the desired clockwise orientation of the base-edges of the literals x and a
counterclockwise orientation of the base-edges of the literals x for any orientation
agreeing with the forcing.

In Figure 12 (left) the complete construction of G for a single clause C together
with the variable edges and the forcing paths is given, including all auxiliary edges
and vertices. In the right part of the figure the corresponding altered knotting graph
K∗[G] is shown.

We now study properties of orientations of G that agree with the forcing. For this
it is sufficient to consider K∗[G]. Observe first, that, by the construction, K∗[G] is
bipartite; indeed, K∗[G] is even a forest and for each of the variables there is exactly
one connected component in K∗[G] that contains both the variable edge and all base-
edges corresponding to this variable. Note furthermore that an oriented cycle in an
orientation of G can contain neither a source nor a sink vertex of that orientation.
Consequently, all the vertices of G, having only one copy in K∗[G], cannot be contained

116 D. CORNEIL, E. KÖHLER, S. OLARIU, AND L. STEWART

x1

x1

x1

x2

x2

x2x3

x3

x3

x1

x1

x1

x2

x2

x2x3

x3

x3

Fig. 12. Left: Complete construction for a gadget of the clause (x1 ∨x2 ∨x3) together with the
variable edges and the forcing paths. Right: The corresponding altered knotting graph.

in any such cycle, since they have to be sources or sinks in any orientation of G, which
agrees with the forcing. After deleting all those vertices from G, the only cycles of the
remaining graph are the two four-cycles per gadget and some triangles, each consisting
of auxiliary edges and at most one of the C4-edges (see Figure 13). Consider any of

x1

x1

x2

x2x3

x3

Fig. 13. A clause-gadget after removing all source and sink vertices.

those remaining triangles. By the construction, at least two of the three triangle-edges
are incident to the same vertex of K∗[G]. Consequently, in any orientation that agrees
with the forcing relation, these two edges prevent the triangle from being cyclically
oriented. Hence, when checking an orientation (that agrees with the forcing) of the
constructed graph G to be acyclic, it is sufficient to show that each of the two C4’s

LINEAR ORDERINGS OF SUBFAMILIES OF AT-FREE GRAPHS 117

per gadget is acyclically oriented.

Observation 3.2. Given an orientation of G that agrees with the forcing, this
orientation is acyclic if and only if it is acyclic on both C4’s of each of the clause
gadgets.

Now we are ready to show the following lemma.

Lemma 3.3. There is an acyclic orientation of G agreeing with the forcing relation
if and only if C has an NAE 3SAT satisfying assignment.

Proof. Suppose that there is an NAE 3SAT satisfying assignment A. An acyclic
orientation of G that agrees with the forcing can be constructed as follows. We assign
orientations to the variable edges (the edges on top of Figure 11) by orienting an
edge downward if the corresponding variable is set false in A and upward otherwise.
Consequently, all edges of the connected components of those edges in K∗[G] have a
forced orientation as well.

The only edges that have not been assigned an orientation in this way are the
forcing classes of the bridge edges of every C4 and the single edges of the auxiliary
P4’s (see connected components of the knotting graph in Figure 12, right). The single
edges can be assigned an arbitrary orientation and for each of the bridge edge classes
just one edge is oriented arbitrarily, forcing the orientation of all other edges of this
class. Obviously, this orientation agrees with the forcing.

By the forcing of the edges and the appropriate knotting of the forcing path from
the variable representing edges to the edges representing the literals, each true literal
in a clause C leads to a clockwise oriented edge, and analogously, each false literal
implies a counterclockwise oriented edge in the corresponding C4’s. Since every clause
has at least one true and one false literal, each of the C4’s has both an edge that is
oriented clockwise and one that is oriented counterclockwise. Hence, none of the C4’s
is cyclically oriented and, by Observation 3.2, the orientation is acyclic.

Suppose now that there is an acyclic orientation of G that agrees with the forcing
relation. We assign to a variable x of U the value true if the edge representing
variable x (edges on top of Figure 11) is oriented upward and false otherwise. Since
the orientation agrees with the forcing relation, all we have to show is that all of the
clauses have at least one true and one false literal. Suppose there is a clause C, which
has only true (false) literals. By the definition of G and the forcing relation, three
edges in each of the C4’s in C’s gadget are oriented counterclockwise (clockwise).
Since the bridge edges have opposite orientations in the two C4’s of C, exactly one of
the C4’s is oriented cyclically, contradicting that the orientation of G is acyclic.

Since it is easy to see that the construction of graph G is polynomial in the size
of the input U and C, Lemma 3.3 directly implies the following theorem.

Theorem 3.4. The problem of deciding whether a graph is path orderable is
NP-complete.

In contrast to Theorem 3.4, a polynomial time recognition algorithm for strong
asteroid free graphs follows from Observation 2.10. Given graph G, the altered knot-
ting graph of G, K∗[G], can be computed in polynomial time: for each vertex v of
G, the blobs of v in G can be computed in O(n2) time; each vertex has fewer than
n blobs. Thus, K∗[G] has O(n2) vertices and O(n2) edges (since each edge of G cor-
responds to exactly one edge of K∗[G]) and can be constructed in O(n3) time. To
test whether K∗[G] is bipartite can be done in O(n2) time. Overall, the recognition
algorithm requires O(n3) time.

Theorem 3.5. Strong asteroid free graphs can be recognized in time O(n3).

118 D. CORNEIL, E. KÖHLER, S. OLARIU, AND L. STEWART

4. Concluding remarks. We have defined two graph classes and shown that
cocomparability graphs ⊂ path orderable graphs ⊂ strong asteroid free graphs ⊂
AT-free graphs. Furthermore, we have shown that the recognition problem for path
orderable graphs is NP-complete, and the recognition of strong asteroid free graphs
can be solved in polynomial time. We note that AT-free graph recognition is also in
P [1, 7].

Although it is somewhat disappointing that no two of these families are equiva-
lent, these classes may give insight into some open problem complexities on AT-free
graphs. By adding graph classes in the hierarchy between cocomparability graphs
and AT-free graphs, we may be able to identify more precisely the boundary between
polynomial and NP-complete behavior of some of the problems which are known to
be polynomially solvable on cocomparability graphs but either NP-complete or unre-
solved on AT-free graphs. Examples of such problems include graph coloring, clique
cover, clique, and the Hamiltonian path and cycle problems. One step in this di-
rection is the observation that the clique problem is NP-complete for path orderable
graphs. This follows from the facts that the complements of triangle-free graphs are
contained in path orderable graphs, and the independent set problem is known to be
NP-complete on triangle-free graphs [12].

Acknowledgment. The authors wish to thank the Natural Science and Engi-
neering Research Council of Canada for financial support.

REFERENCES

[1] D. G. Corneil, S. Olariu, and L. Stewart, Asteroidal triple-free graphs, SIAM J. Discrete
Math., 10 (1997), pp. 399–430.

[2] R. R. Fulkerson and O. A. Gross, Incidence matrices and interval graphs, Pacific J. Math.,
15 (1965), pp. 835–855.

[3] T. Gallai, Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hungar., 18 (1967), pp. 25–
66.

[4] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W.H. Freeman, New York, 1979, ch. A9, p. 259.

[5] P. C. Gilmore and A. J. Hoffman, A characterization of comparability graphs and of interval
graphs, Canad. J. Math., 16 (1964), pp. 539–548.

[6] M. C. Golumbic, C. L. Monma, and W. T. Trotter, Tolerance graphs, Discrete Appl. Math.,
9 (1984), pp. 157–170.

[7] E. Köhler, Graphs without asteroidal triples, Ph.D. thesis, Technische Universität Berlin,
Berlin, Germany, 1999.

[8] D. Kratsch and L. Stewart, Domination on cocomparability graphs, SIAM J. Discrete Math.,
6 (1993), pp. 400–417.

[9] C. G. Lekkerkerker and J. C. Boland, Representation of a finite graph by a set of intervals
on the real line, Fund. Math., 51 (1962), pp. 45–64.

[10] F. Maffray and M. Preissmann, A translation of Tibor Gallai’s paper: Transitiv orientier-
bare Graphen, in Perfect Graphs, J. Ramirez-Alfonsin and B. Reed, eds., John Wiley, New
York, 2001, pp. 25–66.

[11] S. Olariu, An optimal greedy heuristic to color interval graphs, Inform. Process. Lett., 37
(1991), pp. 65–80.

[12] S. Poljak, A note on stable sets and colorings of graphs, Comment. Math. Univ. Carolin., 15
(1974), pp. 307–309.

[13] J. P. Spinrad, Efficient Graph Representations, Fields Inst. Monogr. 19, AMS, Providence,
RI, 2003.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 119–136

EMBEDDING k-OUTERPLANAR GRAPHS INTO �1
∗

CHANDRA CHEKURI† , ANUPAM GUPTA‡ , ILAN NEWMAN§ , YURI RABINOVICH§ ,

AND ALISTAIR SINCLAIR¶

Abstract. We show that the shortest-path metric of any k-outerplanar graph, for any fixed
k, can be approximated by a probability distribution over tree metrics with constant distortion and
hence also embedded into �1 with constant distortion. These graphs play a central role in polynomial
time approximation schemes for many NP-hard optimization problems on general planar graphs and
include the family of weighted k × n planar grids.

This result implies a constant upper bound on the ratio between the sparsest cut and the max-
imum concurrent flow in multicommodity networks for k-outerplanar graphs, thus extending a the-
orem of Okamura and Seymour [J. Combin. Theory Ser. B, 31 (1981), pp. 75–81] for outerplanar
graphs, and a result of Gupta et al. [Combinatorica, 24 (2004), pp. 233–269] for treewidth-2 graphs.
In addition, we obtain improved approximation ratios for k-outerplanar graphs on various problems
for which approximation algorithms are based on probabilistic tree embeddings. We conjecture that
these embeddings for k-outerplanar graphs may serve as building blocks for �1 embeddings of more
general metrics.

Key words. metric embeddings, k-outerplanar graphs, planar graphs, low-distortion embed-
dings, probabilistic approximation, metric spaces

AMS subject classifications. 05C12, 05C78, 51F99, 54C25, 54E70, 68R10

DOI. 10.1137/S0895480102417379

1. Introduction. Many optimization problems on graphs and related combina-
torial objects involve some finite metric associated with the object. In particular, the
shortest-path metric on the vertices of an undirected graph with nonnegative weights
on the edges frequently plays an important role. While for general metric spaces such
an optimization problem can be intractable, it is often possible to identify a subset
of “nice” metrics for which the problem is easy. Thus, a natural approach to such
problems—and one which has proved highly successful in many cases—is to embed the
original metric into a nice metric, solve the problem for the nice metric, and finally
translate the solution back to the original metric.

When the optimization problem is monotone and scalable in the associated metric
(as is usually the case), it is natural to restrict one’s attention to nice metrics which
dominate the original metric, i.e., in which no distances are decreased. The maximum
factor by which distances are stretched in the approximating metric is called the
distortion of the embedding. Typically, the distortion translates more or less directly
into the approximation factor that one has to pay in transforming the problem from

∗Received by the editors November 7, 2002; accepted for publication (in revised form) August 14,
2005; published electronically March 3, 2006. A preliminary version of this paper appeared in
Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, 2003.

http://www.siam.org/journals/sidma/20-1/41737.html
†Lucent Bell Labs, 600-700 Mountain Avenue, Murray Hill, NJ 07974 (chekuri@research.bell-labs.

com).
‡Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 (anupamg@

cs.cmu.edu). This work was done while the author was with Lucent Bell Labs, and was visiting the
University of California, Berkeley, supported by US-Israeli BSF grant 19999325.

§Computer Science Department, University of Haifa, Haifa 31905, Israel (ilan@cs.haifa.ac.il, yuri@
cs.haifa.ac.il). The work of these authors was supported in part by US-Israeli BSF grant 19999325.

¶Computer Science Division, University of California, Berkeley, CA 94720-1776 (sinclair@cs.
berkeley.edu). This author’s work was supported in part by NSF grants CCR-9820951 and CCR-
0121555 and by US-Israeli BSF grant 19999325.

119

120 CHEKURI, GUPTA, NEWMAN, RABINOVICH, AND SINCLAIR

one metric to the other, so obviously we seek an embedding with low distortion. The
number of applications of this paradigm has exploded in the past few years, and it
has become a versatile and standard part of the algorithm designer’s toolkit; see the
surveys [21, 22], or the book [25, Chapter 10] for more details. These applications
have also given impetus to the study of the underlying theory of finite metric spaces.

In this paper we will be concerned with embedding finite metric spaces into �1, i.e.,
real space endowed with the �1 (or Manhattan) metric. Low-distortion embeddings
into �1 have been recognized, along with embeddings into Euclidean space �2 and into
low-dimensional �∞, to be of fundamental importance in applications of the above
paradigm, as well as for the underlying theory. One of several compelling reasons
for studying �1 embeddings comes from their intimate connection with the maxflow-
mincut ratio in a multicommodity flow network. Namely, if every shortest-path metric
on a given graph with arbitrary edge lengths can be embedded into �1 with distortion
at most α, then the ratio between the sparsest cut and the maximum concurrent
flow for any set of capacities and demands on the graph is bounded by α [23, 4]. In
fact, the connection is even stronger: if there is a metric on a graph G that incurs
distortion α when optimally embedded into �1, then there is a setting of capacities
and demands on the graph G that achieves a cut-flow ratio of α [19]. For more details
on the sparsest cut problem, its relation to embeddings, and its application to the
design of a host of divide-and-conquer algorithms, see the survey by Shmoys [32].

A related and equally important tool in algorithmic applications is the notion
of approximating a finite metric by a probability distribution over dominating tree
metrics [7]. A metric M ′ dominates another metric M if, for every pair u, v ∈ M , the
distance between u and v in M ′ is no smaller than their distance in M . If a metric M
is approximated by a distribution over dominating metrics, then the distortion for pair
u, v is the ratio of the expected distance between them in the metric chosen according
to the distribution and their distance in M . The overall (expected) distortion is
defined to be the maximum distortion over all pairs of points in M . We can view
these probabilistic approximations as embeddings. We use the term embedding into
random trees to mean that we approximate a metric by a distribution over dominating
tree metrics. Since every tree metric can be embedded isometrically (i.e., exactly, or
with distortion 1) into �1, embedding into random trees with expected distortion α
immediately implies an embedding into �1 with distortion α. As has been recognized
in the work of Bartal and others [1, 7], embeddings into random trees have many
applications to online and approximation algorithms. Some of these applications are
not enjoyed by arbitrary �1 embeddings.

For general metrics the question of embeddability into �1 is essentially resolved:
Bourgain [11] showed that any n-point metric can be embedded into �1 with O(log n)
distortion, and this result was made algorithmic by Linial, London, and Rabinovich
[23] and Aumann and Rabani [4]. A matching lower bound of Ω(logn/p) distortion
into �p-spaces was established in [23, 24] for the shortest-path metric of unit-weighted
expander graphs. For the case of approximating distances by distributions over dom-
inating trees, a line of work [1, 7, 8, 12, 15] culminated in showing that any n-point
metric can be embedded into a distribution over dominating trees with distortion
O(log n) [15]; the lower bound for embeddings into �1 shows that this is tight.

However, tight bounds on the distortion incurred when embedding into �1 is
still not known for many important classes of graphs, including planar graphs and
graphs with bounded treewidth; many such restricted classes are conjectured to be
embeddable with constant distortion. Indeed, the general question of how the topology
of a graph affects its embeddability into �1, and into random trees, is one of the most

EMBEDDING k-OUTERPLANAR GRAPHS INTO �1 121

important open issues in the area of metric embeddings [21, 22]. In addition to its
inherent mathematical interest, this question impacts the design of approximation
algorithms for many problems on restricted families of graphs and networks.

Some limited but interesting progress has been made on embedding restricted1

metrics into �1. Rao [29] showed that the shortest-path metric of any graph that ex-
cludes Kr,r is embeddable into �1 with distortion O(r3

√
log n). This beats the Ω(log n)

lower bound for general graphs for any constant r, and also gives O(
√

log n) distortion
embeddings for the classes of planar and bounded-treewidth graphs. However, Rao’s
approach (of first embedding these graphs into �2 and then using isometric embed-
dings of �2 into �1) was shown to be tight by Newman and Rabinovich [26], where a
lower bound of Ω(

√
log n) distortion was shown for embedding even treewidth-2 (and

hence also planar) graphs into �2.
Approaching the question from the other direction, a celebrated theorem of Oka-

mura and Seymour [28] implies that any outerplanar metric can be embedded isomet-
rically into �1.

2 However, it has been shown that outerplanar graphs are essentially the
only graphs (with the exception of K4) that are isometrically embeddable into �1 [27].
More recently, Gupta et al. [19] showed a constant distortion embedding into �1 for
treewidth-2 graphs (which are essentially series-parallel graphs, and hence also pla-
nar). This was the first natural class of graphs shown to be embeddable with constant
distortion strictly larger than 1. (For example, the graph K2,n has treewidth 2 but is
not isometrically embeddable into �1; see [2] for a simple proof of this fact.)

Some but not all of the above results carry over to the more restrictive setting of
embedding into random trees. In [19] it is shown how to embed outerplanar graphs
into random trees with small constant distortion; note that the isometric embedding
of Okamura and Seymour is not an embedding into random trees. On the other hand,
also in [19], it is shown that even series-parallel graphs incur a distortion Ω(logn) when
embedded into random trees. Despite this limitation, it is worth pointing out that the
random tree embeddings of outerplanar graphs played a key role in the development
of constant distortion �1 embeddings of series-parallel graphs in [19]; the trick was to
combine the special structure of the tree embeddings with judicious use of random
cuts.

1.1. Results. In this paper, we extend the above line of research to a wider class
of planar graphs, namely, k-outerplanar graphs for arbitrary constant k. Informally,
a planar graph is k-outerplanar if it has an embedding with disjoint cycles properly
nested at most k deep. A formal definition is given in section 2, while Figure 4.1 shows
a simple example; a canonical example of a k-outerplanar family is the sequence of
k × n rectangular grids. k-outerplanar graphs play a central role in polynomial time
approximation schemes for many NP-hard optimization problems on general planar
graphs (see, e.g., the work of Baker [6]). Our main result is the following.

Theorem 1.1. There exists an absolute constant c > 1 such that any shortest-
path metric of a k-outerplanar graph can be embedded into random trees, and hence
into �1, with distortion ck. Moreover, such an embedding can be found in randomized
polynomial time.

1We emphasize here that our focus is on constraints imposed on metrics by the topological
properties of the graphs on which they are defined. Thus we exclude from our discussion the extensive
recent progress on embedding other types of restricted metrics, such as “negative type metrics,”
into �1, as in [3] and related papers.

2Their result deals more generally with the cut/flow ratio in planar networks where all terminals
lie on a single face; this and other results where restrictions are placed on both the supply graph and
the demand graph can be found in surveys by Frank [16] and Schrijver [31].

122 CHEKURI, GUPTA, NEWMAN, RABINOVICH, AND SINCLAIR

Thus, not only do such graphs embed well into �1, but they even embed well
into random trees. This is in contrast to the lower bound of Ω(logn) for treewidth-2
graphs [19] mentioned earlier.

Our result immediately implies a constant maxflow-mincut ratio for arbitrary
multicommodity flow problems on k-outerplanar graphs. Additionally, because our �1
embeddings are in fact random tree embeddings, we also obtain as a byproduct im-
proved approximation ratios for a number of algorithms for problems on k-outerplanar
graphs, including the buy-at-bulk problem [5] and the group Steiner problem [17]. For
any fixed k, the improvement in each case is by an Ω(log n) factor.

We should also note that since the maximum treewidth among k-outerplanar
graphs is Θ(k), our result is the first demonstration of �1 embeddings with con-
stant distortion for a natural family of graphs with arbitrarily large (but bounded)
treewidth. Indeed, k-outerplanar graphs are a natural parameterized family of planar
graphs having bounded treewidth. (Note that although all treewidth-2 graphs are
planar, treewidth-3 graphs include nonplanar examples such as K3,3.)

Finally, recall that constant distortion random tree embeddings of 1-outerplanar
graphs were a key ingredient in the construction of good �1 embeddings of series-
parallel graphs in [19]. We are therefore optimistic that, with the addition of suitably
chosen cuts, our new tree embeddings of k-outerplanar graphs may become a building
block for constant distortion �1 embeddings of wider classes of graphs, such as bounded
treewidth graphs or planar graphs.

1.2. Techniques. We start with the approach of trying to extend the random
tree embeddings of outerplanar graphs [19] to 2-outerplanar graphs. We do not know
a way to solve this problem directly. The first main idea in the paper is to identify a
subclass of 2-outerplanar graphs that are easier to embed, namely, Halin graphs [20].
Informally, a Halin graph is obtained by embedding a tree in the plane and attaching
a cycle around the leaves. (The formal definition can be found in section 2.) Halin
graphs are useful for the following reason. Given a 2-outerplanar graph, if we remove
the outer face we are left with a collection of outerplanar graphs. We can use the
embedding of [19] to embed each of these outerplanar graphs into random trees with
constant distortion. If we now add the outer face to this collection of trees, we obtain
(essentially) a collection of Halin graphs. Hence, if we can embed Halin graphs, we
can embed 2-outerplanar graphs. We are then able to extend this approach to embed
any k-outerplanar graph by peeling off the outer layer and recursively embedding the
inner layers.

The second main idea is a technique for embedding Halin graphs. We note that
even for this deceptively simple subclass of 2-outerplanar graphs, it is apparently non-
trivial to obtain constant distortion embeddings. To obtain an embedding, we resort
to a subtle modification of the algorithm of Gupta [18] which showed how to remove
Steiner vertices3 from a tree metric with only a constant factor distortion in distances
between the remaining vertices. Though seemingly unrelated to our problem (since
we have a priori no Steiner vertices), this algorithm can nonetheless be applied (with
suitable modifications) to the tree in the Halin graph, with the effect of reducing the
Halin graph to an outerplanar graph on its leaves. This we can once again embed
into random trees using [19].

3Given an induced metric defined on a subset of vertices of a graph, we call the vertices not
belonging to this subset the Steiner vertices. Although we are interested only in the metric space
induced on the non-Steiner vertices, the Steiner vertices might be necessary in order to define the
distances between the non-Steiner vertices.

EMBEDDING k-OUTERPLANAR GRAPHS INTO �1 123

The rest of the paper is organized as follows. We first fix notation and give
essential definitions in section 2. In section 3 we show how to embed Halin graphs
into random trees with constant distortion. This is extended to obtain constant
distortion embeddings for all k-outerplanar graphs in section 4. In the interest of
clarity of exposition, we make no attempt to optimize the constants that arise in the
various steps of our procedure.

2. Notation and preliminaries.

Metrics. For general background on finite metrics and embeddings, see [13] or
[25, Chapter 15]. Given two metric spaces, (V, ν) and (W,μ), and a map f : V → W ,
we define the quantities

‖f‖ = max
x,y∈V

μ(f(x), f(y))

ν(x, y)
;

‖f inv‖ = max
x,y∈V

ν(x, y)

μ(f(x), f(y))
.

We say that f has contraction ‖f inv‖, expansion ‖f‖, and distortion D(f) = ‖f‖ ·
‖f inv‖. The distortion between μ and ν is at most r if there exists f : V → W with
D(f) ≤ r. We often consider two metrics μ and ν over the same vertex set V ; in such
cases, we assume that f is the identity map. Metric μ is said to dominate ν if for all
x, y ∈ V , μ(x, y) ≥ ν(x, y).

Let G = (V,E) be an undirected graph. A metric (V, μ) is supported on (or
generated by) G if it is the shortest-path metric of G w.r.t. some nonnegative weighting
of the edges E. Given a graph G with edge weights w(·), dG denotes the shortest-
path metric of G, and we assume that the edge weights satisfy w(e) = dG(x, y) for
e = {x, y} ∈ E unless otherwise stated.

For S ⊆ V , the cut metric δS(x, y) is defined to be 1 if |S ∩ {x, y}| = 1, and
0 otherwise. It can be shown that a metric is isometrically embeddable into �1 iff it
can be written as a nonnegative linear combination of cut metrics [13].

A metric dG supported on a graph G is α-probabilistically approximated by a
distribution D over trees if the following conditions hold:

1. Each tree T in the distribution D has V (G) ⊆ V (T).
2. For each tree T in the distribution, the metric dT dominates the metric dG;

i.e., for all nodes x, y ∈ V (G), dG(x, y) ≤ dT (x, y).
3. For all x, y ∈ V (G), the expected distance ED[dT (x, y)] ≤ α · dG(x, y).

We shall also refer to this as an embedding of G with distortion α into random trees.
(The fact that the distortion is only in expectation will often not be mentioned.) It
is known that general graphs can be embedded into random trees with distortion
O(log n) [7, 15].

We state two simple propositions (whose proofs we omit) which we will use ex-
tensively in what follows. The first allows us to embed each block (maximal 2-vertex
connected subgraph) of a graph separately; the second says that we may always re-
place a subgraph by its tree embedding without further loss.

Proposition 2.1. Suppose G has a cut-edge whose removal results in a tree T
and a graph H. If H can be embedded into random trees with distortion α, then so
can G.

Proposition 2.2. Let H = (VH , EH) be a subgraph of G = (V,E). Let
H1, H2, . . . , Hs be graphs on VH such that dH(u, v) ≤ dHi(u, v) ≤ αi · dH(u, v) for
all u, v ∈ VH , 1 ≤ i ≤ s. Then in the graph Gi = (V, (E \ EH) ∪ EHi), we

124 CHEKURI, GUPTA, NEWMAN, RABINOVICH, AND SINCLAIR

Fig. 2.1. A Halin graph, with the tree T = (V,E) in solid lines and the cycle C = (U,EC) in
dashed lines.

have dG(u, v) ≤ dGi
(u, v) ≤ αi · dG(u, v) for all u, v ∈ V . Moreover, consider a

random variable X taking values in {1, 2, . . . , s}, where Pr [X = i] = μi, and let
α = E [αX] =

∑s
i=1 μiαi. Then, for any pair u, v ∈ V , the expected distance between

u and v in the random graph GX is at most αdG(u, v).
Graph-theoretic terms. A graph G′ is a minor of G if G′ is obtained from G

by a sequence of edge deletions and contractions. A class of graphs is closed under
taking minors if for every graph G in the class all its minors are also in the class. For
example, planar graphs are minor-closed.

For a formal definition of treewidth, the reader is referred to standard graph theory
texts such as [14, 34]. Informally, a graph has treewidth k if it can be decomposed
recursively by vertex separators where the size of the vertex separator at each stage
is at most k.

An embedding in the plane of a graph G is outerplanar (or 1-outerplanar) if it
is planar and all vertices lie on the unbounded face. An embedding of a graph G is
k-outerplanar if it is planar, and deleting all the vertices on the unbounded face leaves
a (k−1)-outerplanar embedding of the remaining graph. A graph is k-outerplanar if it
has a k-outerplanar embedding. It is known that a k-outerplanar graph has treewidth
at most 3k − 1 [10, 30]; other properties of these graphs and related concepts can
be found in [6, 10]. Given a planar graph, a k-outerplanar embedding for which k is
minimal can be found in polynomial time [9].

A Halin graph [20] is obtained by taking a planar embedding of a tree T = (V,E)
and attaching a cycle C = (U,Ec) around the leaves of the tree (in order). If the set
of leaves of T is denoted by L, then V ∩U = L; note that U \L may not be empty and
hence there may be vertices on the cycle C that are not leaves of T . (See Figure 2.1 for
an example.) It is known that any Halin graph G = (V ∪ U,E �Ec) is 2-outerplanar
and has treewidth 3. Many algorithmic problems can be solved efficiently on these
graphs (see, e.g., [33] and the references therein). We note that while Halin graphs (as
defined here) are not minor-closed, we will not need this property in our algorithms.

3. Embedding a Halin graph. The goal of this section is to prove the following
theorem.

Theorem 3.1. The shortest-path metric of a Halin graph can be embedded into
random trees with distortion at most 200.

Before embarking on the proof, we give a high-level sketch of our strategy. Given
a Halin graph consisting of a tree T and a cycle C, we first process the tree T to
obtain a random dominating tree T (1), which approximates distances in T to within a
constant factor (in expectation). Furthermore, the tree T (1) has a specific structure:

EMBEDDING k-OUTERPLANAR GRAPHS INTO �1 125

it consists of a tree T ′′ = (L,E′′) on just the leaves L of the original tree T , and the
rest of the vertices in V \ L lie in subtrees that are attached to vertices in T ′′. Since
we can ensure moreover that the tree T ′′ is a minor of T , attaching the cycle C back
to the vertices in T ′′ gives us an outerplanar graph. Finally, this outerplanar graph
is embedded into random trees with constant distortion using known techniques [19].

We will describe the tree processing procedure (which is the main content of the
section) in section 3.1, and in section 3.2 we will explain how to use this to reduce to
the outerplanar case.

3.1. Processing the tree. We assume that the tree T is rooted at a root vertex
r ∈ (V \ L). This imposes, in the usual manner, an ancestor-descendant relation
between the vertices in V . Each vertex v naturally defines a tree T (v), namely, the
subtree induced by the vertices that are descendents of v. We will use the following
parameters extensively in what follows.

Definition 3.2. For a vertex v ∈ V , let l(v) be a leaf in T (v) closest to v, and
let h(v) be the distance of v from l(v) in T .

Note that these functions h(v) and l(v) are fixed given the rooted tree T . Let
us first give a brief overview of the processing algorithm, which has two conceptual
parts.

• The first step of the algorithm, given in section 3.1.1, returns a tree T (1/2).
This tree consists of a tree T ′ defined on the vertices of L plus some extra (or
Steiner) vertices, and the vertices of V \ L hang off the vertices of T ′ in the
form of (possibly several) subtrees. This is done while incurring a constant
expected distortion.

• The second part of the processing, given in section 3.1.2, eliminates the Steiner
vertices of T ′ by contracting some of its edges to yield a tree T ′′ defined only
on the leaves L. As a result, T (1/2) is converted into a tree T (1) with the
properties claimed above. This part is shown to incur a further constant
factor distortion.

3.1.1. Processing I: Constructing the tree T (1/2). In this section, we will
show how to convert the tree T into the tree T (1/2) while incurring only a constant
distortion. The procedure Process-Tree to perform this processing cuts off a subtree
T̂0 of T which contains the root but none of the leaves, recursively acts on the subtrees
thus created, makes a new root vertex and adds edges from it to the roots of each
of the processed subtrees, and finally hangs T̂0 off this new root. (See Figures 3.3
and 3.4.)

Before we make Process-Tree concrete, we define the auxiliary procedure Cut-
Midway in Figure 3.1. This procedure takes as input a tree T which has root r and
a set L of leaf nodes. It then cuts a random set of edges to separate r from all
the leaves in L; in particular, it returns a special tree T̂0 containing the root r and
none of the nodes in L, and a set of subtrees Ti, 1 ≤ i ≤ t, each rooted at some
vertex ri, which between them contain the leaves L. We say that an edge e = {u, v}
is at distance d from a vertex r if e is in the cut defined by the set of vertices whose
distance from r is at most d, i.e., if B(r, d) ∩ {u, v} has exactly one vertex. (Here
B(r, d) = {x | dT (r, x) ≤ d} is the ball of radius d around the node r.) It should
be noted that, in each interation of Cut-Midway, the set L̄ decreases in size and the
parameter d increases by at least a factor of 2.

The procedure Process-Tree, which outputs a tree T (1/2), is given in Figure 3.2. In
this tree T (1/2), we denote by T ′ the portion formed by the new edges added between
r′ and r′i (for 1 ≤ i ≤ t) during the various recursive calls to Process-Tree. (Note that

126 CHEKURI, GUPTA, NEWMAN, RABINOVICH, AND SINCLAIR

1. while a path remains in T from the root r to a vertex in L
2. let L̄ ← vertices in L still reachable in T from r
3. let d ← distance in T to the closest vertex in L̄
4. let S(d) ← {x ∈ L̄ | dT (r, x) ∈ [d, 2d)}
5. let T (d) ← union of the paths from r to vertices in S(d)
6. choose D ∈R [d/2, 3d/4) uniformly at random
7. E(d) ← edges in T (d) at distance D from r
8. delete the edges in E(d) from T
9. end while

10. let T̂0 ← component of T containing root r but no leaves of T
11. let T1, T2, . . . , Tt ← other components of T
12. let di ← value of d when edge connecting r to Ti was cut

13. return (T̂0; 〈T1, d1〉, 〈T2, d2〉, . . . , 〈Tt, dt〉)

Fig. 3.1. Procedure Cut-Midway(T).

1. apply Cut-Midway(T) to get

(T̂0, 〈T1, d1〉, 〈T2, d2〉, . . . , 〈Tt, dt〉)
2. let r′ be a new vertex, called the “Steiner twin” of T ’s root r
3. attach r′ to r with an edge of length d0 = h(r)

4. for 1 ≤ i ≤ t // We do not have to work on T̂0

5. if Ti is just a single vertex x (hence x ∈ L) then

6. let T
(1/2)
i ← Ti

7. else

8. let T
(1/2)
i ← Process-Tree(Ti)

9. let r′i be the root of T
(1/2)
i

// r′i is the Steiner twin of ri, the root of Ti

10. add edge {r′, r′i} with length 3di
11. end for
12. return tree T (1/2) with r′ as its root

Fig. 3.2. Procedure Process-Tree(T).

this does not include the edges added between r′ and r, i.e., between the original roots
and their Steiner twins.) For an example see Figure 3.3, where Cut-Midway performed
three cuts, and Process-Tree resulted in the tree in Figure 3.4. The solid edges in the
latter tree belong to T , the dashed ones belong to T ′, and the edge {r, r′} is shown as
a faint line. We remark that T ′ includes all the leaves of T , plus all the Steiner twins
created during Process-Tree.

Let us call an edge a candidate to be cut at some step if it has a nonzero probability
of being cut at that step. We show the following bound on the expected distortion
incurred by Process-Tree in passing from T to T (1/2).

Theorem 3.3. The (expected) distortion introduced by procedure Process-Tree is
at most 25.

EMBEDDING k-OUTERPLANAR GRAPHS INTO �1 127

Cut 3

r

r1

T1

T2

Tt

T

Cut 1 Cut 2

Fig. 3.3. Cuts obtained by an invocation of Cut-Midway on a tree T .

T̂0

T ′
1

T ′
2

T ′
t

r′

r′1

T (1/2)

r

Fig. 3.4. The tree T (1/2) output by Process-Tree on the tree T from Figure 3.3. The dotted
lines indicate edges in T ′.

Proof. We first give a high-level sketch. The construction of the tree T (1/2)

ensures that distances are not contracted by Process-Tree; the algorithm explicitly
ensures this in Process-Tree by the distances it chooses to connect the root r′ to each
r′i. Hence it suffices to bound the expected expansion of distances. We do this via two
lemmas: first, Lemma 3.4 shows that an edge is a candidate to be cut on at most two
(consecutive) occasions. Lemma 3.5 then shows that, when an edge is a candidate to
be cut, it suffers only a constant expected expansion. Combining these two results
then gives us Theorem 3.3.

Lemma 3.4. No edge is a candidate to be cut more than twice during the entire
run of the procedure Process-Tree.

Proof. Let e = {u, v} be an edge with u being the parent of v. Consider the
first instant in time when the edge e is a candidate to be cut in a call to Cut-Midway.

128 CHEKURI, GUPTA, NEWMAN, RABINOVICH, AND SINCLAIR

r

u

v
e

r

u
ri = v

r′

h(r)
3di

r′i
h(ri)

Fig. 3.5. Illustration for proof of Lemma 3.5.

Let r be the root at this time, and d∗ be the value of the parameter d in the while
loop of this call to Cut-Midway. In this call of Cut-Midway, it is clear that e cannot
be a candidate again. Indeed, after the cut, e will not lie on any path from r to a
leaf. A fact that will be useful later is that the portion of e that lies in the distance
interval [d∗/2, 3d∗/4) from r is (min(dT (r, v), 3d∗/4) − max(dT (r, u), d∗/2)), and this
value multiplied by 4/d∗ is the probability that e is cut at this time.

The edge e will never be a candidate again if the cut fell “below” v, or if it passed
through e, so let us assume that the cut was above u and thus e lies in one of the
trees Ti with root ri. In this case the tree Ti will be passed on to Cut-Midway by
Process-Tree. Now e clearly lies on some path from ri to a leaf, and hence it may be
a candidate to be cut again. Let d∗∗ be the value of the parameter d in Cut-Midway
when this happens for the first time after Ti is formed.

We claim that the cut made at this point must fall below u; i.e., d∗∗/2 ≥ dT (ri, u).
Indeed, such a cut is made at a distance at least d∗∗/2 = h(ri)/2 from the root ri,
where h(ri) ≥ d∗ − dT (r, ri). Hence, taking distances from r, this cut is at distance
at least dT (r, ri) + h(ri)/2 ≥ 1

2 (dT (r, ri) + d∗) ≥ 3d∗/4. But this distance is greater
than dT (r, u), and hence u always lies above this next cut. Thus, when this next cut
is made, either e will be deleted (if v lies below this cut), or the cut will fall below v
and the edge e will never again be a candidate to be cut, proving the lemma.

Before we end, let us note that the portion of e that lies in distance interval
[d∗∗/2, 3d∗∗/4) is disjoint from the portion considered earlier and has a length of
at most max(dT (r, v) − 3d∗/4, 0). As before, multiplying this by 4/d∗∗ gives the
probability that e is cut if it is a candidate a second time.

Lemma 3.5. Let e = {u, v} be an edge in G of length �e. If e is cut by Cut-
Midway with parameter di, the expected distance between u and v in T (1/2) is at most
6di − �e.

Proof. Consider an edge e = {u, v} of length �e, with u the parent of v, which is
cut in some iteration of Cut-Midway, and let di be the value of the parameter d at this
time. Consider the distance dT (1/2)(u, v) between u and v in the resulting tree T (1/2).

The vertex u will be in T̂0 and the vertex v is the root ri of Ti for some i and
hence will be in T

(1/2)
i when Ti is processed. From the description of Process-Tree

we see that dT (1/2)(u, v) = dT (1/2)(u, ri) can be expressed as dT (u, r) + dT (1/2)(r, r′) +
dT (1/2)(r′, r′i) + dT (1/2)(r′i, ri) (see Figure 3.5). From our construction, dT (1/2)(r, r′) =
h(r), dT (1/2)(r′, r′i) = 3di, and dT (1/2)(r′i, ri) = h(ri). We observe that h(r) ≤ di for
all i, and that h(ri) ≤ 2di − dT (r, ri); the latter inequality holds because for e to
be cut, ri must lie on the path from r to a leaf in T of length at most 2di. Note
that this calculation also holds in the special case that v is a leaf (when 0 = h(ri) ≤

EMBEDDING k-OUTERPLANAR GRAPHS INTO �1 129

2di − dT (r, ri)).

Putting all these observations together we obtain

dT (1/2)(u, ri) = dT (u, r) + dT (1/2)(r, r′) + dT (1/2)(r′, r′i) + dT (1/2)(r′i, ri)

≤ dT (u, r) + h(r) + 3di + (2di − dT (r, ri))

≤ dT (u, r) + di + 3di + (2di − dT (r, ri))

≤ dT (u, r) − dT (r, ri) + 6di

= 6di − �e.

Now we complete the proof of Theorem 3.3. By Lemma 3.4, the edge e = {u, v}
is a candidate to be cut at most twice. From the proof of Lemma 3.4, the first time
it is a candidate it is cut with probability

p1 = (min(dT (r, v), 3d∗/4) − max(dT (r, u), d∗/2)) × 4/d∗;

and, by Lemma 3.5, if it is cut, the expected distance between u and v becomes at
most 6d∗ − �e. Similarly, the second time the chance of e being cut is

p2 = (max(dT (r, v) − 3d∗/4, 0)) × 4/d∗∗,

and the expected distance is 6d∗∗ − �e. Finally, the distance remains unchanged at �e
with the remaining probability (1− p1 − p2). Putting these together, we get that the
expected distance between u and v after procedure Process-Tree is at most

6d∗ p1 + 6d∗∗ p2 + (1 − 2p1 − 2p2)�e

≤ 6(d∗ p1 + d∗∗ p2) + �e

≤ 24
(
min(dT (r, v), 3d∗/4) − max(dT (r, u), d∗/2)

+ max(dT (r, v) − 3d∗/4, 0)
)

+ �e(3.1)

≤ 24
(
dT (r, v) − max(dT (r, u), d∗/2)

)
+ �e(3.2)

≤ 24
(
dT (r, v) − dT (r, u)

)
+ �e

≤ 24 �e + �e = 25 �e,

where we used the simplification min(x, y) + max(x − y, 0) = x to obtain (3.2) from
(3.1). Thus the expected distortion is at most 25, which proves the theorem.

Recall that the tree T (1/2) constructed by the procedure Process-Tree includes a
tree T ′ containing the leaves L of the original tree T ; we close this subsection with a
further observation about T ′.

Claim 3.6. The tree T ′ can be obtained from tree T by edge contractions.

Proof. In each call to Process-Tree, we progressively construct T ′ by removing the
tree T̂0 and replacing it with a star connecting r′ to the various ri (for 1 ≤ i ≤ t).
But this star could equivalently be obtained by contracting all the edges of the tree
T̂0. (Of course, we are placing new lengths on the remaining edges, but this does not
affect the topology.)

Since L is also the set of leaves of T ′, and the edge contractions can be performed
without changing the planar layout of the trees, adding the cycle C around the leaves
of T ′ also gives us a Halin graph.

130 CHEKURI, GUPTA, NEWMAN, RABINOVICH, AND SINCLAIR

3.1.2. Processing II: Removing the Steiner vertices. In this section, we
remove the Steiner vertices in the tree T ′ that were created during runs of Process-
Tree, giving us a tree T ′′. Since T (1/2) consists of T ′ with several subtrees attached
to it via cut-edges, attaching those subtrees to T ′′ will give us a new tree T (1). The
argument in this section is similar in spirit to that in [18]. The Steiner twin vertices
from T (1/2) are removed in the same order in which they were created. Consider r′,
the root of T ′; it was created as the Steiner twin of vertex r ∈ T . We now identify
all vertices on the path between r′ and l(r) with l(r). This process is performed on
each of the Steiner twin vertices in turn (in order of their creation), causing each of
them to be identified with some vertex in L ⊆ C. Call the resulting tree T (1). This
has vertex set V , since we removed all the Steiner vertices we created in the previous
section. The following lemma proves the main result of this section.

Lemma 3.7. The edge-contraction procedure described above ensures that the
distance between each pair of vertices of V in T (1) is no shorter than its distance
in T .

Proof. To show that there is no contraction, it suffices to check that no edge in
T (1) is shorter than the distance between its endpoints in T . There are just three
kinds of edges remaining in T (1): those which belong to the trees T̂0 in the various
invocations of Process-Tree, those between some r and l(r),4 and those between l(r)
and l(ri). Note that the edges of this last type are the only edges that exist between
l(ra) and l(rb), since such edges (without loss of generality) must be caused by ra
being the root at some invocation of Process-Tree and rb being one of the ri’s created
at this step, and ra later being identified with l(ra).

Clearly, the edges in the trees T̂0 are not changed at all. Now consider an edge
between a vertex l(r) and r. The length of this edge in T ′′ is just h(r), which is also
the distance between l(r) and r in T . Finally, for an edge between l(r) and l(ri) in
T (1), the length is just 6dT (r, ri). However, the distance between these points in T is
at most dT (r, l(r)) + dT (r, lTi(ri)), which we upper bound next. Let d∗ be the value
of d when ri was separated from r in the procedure Cut-Midway. Then it follows that
dT (r, l(r)) = h(r) = d∗; furthermore, the distance dT (r, lTi(ri)) ≤ 2d∗, since ri must
lie on a root-leaf path of length at most 2d∗. Hence the distance between l(r) and l(ri)
in T is at most 3d∗. However, dT (r, ri) ≥ d∗/2, so the distance is at most 6dT (r, ri)
as required.

3.2. Wrapping it all up. We now complete the proof of Theorem 3.1. Let G
be the given Halin graph, consisting of a tree T = (V,E) and a cycle C = (U,Ec)
around the leaves L = V ∩U of T . We have seen how to transform T into a tree T (1)

that consists of a tree T ′′ = (L,E′′) and a collection of trees T1, T2, . . . , Tj each of
which is connected by an edge to a vertex in L. Every vertex in V − L is contained
in exactly one of T1, T2, . . . , Tj . Moreover, the tree T ′′ is a minor of T . We have also
seen that T (1) dominates T and that the expected expansion for any pair in T is at
most 25. Now consider the graph G(1) obtained by adding the cycle C to the tree
T (1). Let G′ be the graph obtained by adding C to T ′′. (See Figure 3.6.) We claim
that G′ is an outerplanar graph. Assuming for the moment that this claim is true,
we show how we can embed G into trees with the claimed distortion.

First, from Proposition 2.2, it follows that G(1) dominates G and for every pair
u, v ∈ VG, the expected distance in G(1) is at most 25dG(u, v).

Next, note that G(1) consists of G′ with the trees T1, T2, . . . , Tj connected to G′

4These edges were added between r and r′, and the latter has been identified with l(r).

EMBEDDING k-OUTERPLANAR GRAPHS INTO �1 131

G G(1)

T1

T2 T3

G′ = T ′′ ∪ C

Fig. 3.6. G is a Halin graph; G′ is an outerplanar graph obtained from T ′′ ∪ C, and G(1) is
obtained by adding the trees Ti to G′.

u v v

Fig. 3.7. Contracting edge {u, v} and removing u. Obtaining contours for new edges.

by cut-edges. From Proposition 2.1 it follows that embedding G′ into random trees
with distortion α produces an embedding of G(1) into random trees with distortion α.
Since G′ is an outerplanar graph, we can invoke the procedure of [19, Theorem 5.2]
to get a random subtree of G′ which approximates distances in G′ (in expectation) to
within a factor of 8. Thus G(1) can be embedded into random trees with distortion 8.

Finally, from Proposition 2.2 we see that embedding G(1) into random trees with
distortion 8 implies that G can be embedded into random trees with distortion 8·25 =
200. This completes the proof of Theorem 3.1.

It remains to sketch the proof that G′ is outerplanar, as was claimed above. From
Claim 3.6, T ′ is a minor of T , and hence T ′′, which is obtained by contracting some
edges in T ′, is also a minor of T . Moreover, since no two vertices of L are merged in
obtaining T ′′, G′ is a minor of G. Thus we can obtain G′ from G by a sequence of
edge deletions and contractions. This allows us to obtain an outerplanar embedding
of G′ from the given planar embedding of G as follows. First, remove any edges
of G that are removed in obtaining G′. Then consider the first edge {u, v} that is
contracted in G. Vertices u and v cannot both be in L, so let u be the vertex outside
of L. Let u1, u2, . . . , uh be the neighbors of u that are not v. The edge {ui, u} is
a contour in the planar embedding of G. When {u, v} is contracted we remove u
and extend the edge {ui, u} to {ui, v}. By duplicating the contour of {u, v} h times
and shifting the resulting contours infinitesimally we can obtain new contours for the
edges {u1, v}, . . . , {uh, v}. (See Figure 3.7.) Thus we obtain a planar embedding of
the graph with the edge {u, v} contracted without changing the position of v. Thus
all the vertices remain in their original positions and any edge {x, y} that is not
contracted or deleted has its contour intact. We can continue this process and obtain
a planar embedding of G′ such that the vertices U ⊇ L and the contours of edges

132 CHEKURI, GUPTA, NEWMAN, RABINOVICH, AND SINCLAIR

A B

C

D

E

F

G

a b

c

d

eg

f

1
2

3

4

5 6

7
8

Fig. 4.1. A 3-outerplanar graph from [6]. The three layers A-G, a-g, and 1-8 are shown using
different shades of gray.

in Ec are unchanged from the planar embedding of G that we started with. Since
all the vertices of G′ are on the outer face C, it follows that we have an outerplanar
embedding of G′.

4. On to k-outerplanar graphs. In this section, we extend the construction of
the previous section to k-outerplanar graphs. Recall that these are graphs embeddable
in the plane which are dismantled by k repetitions of the process of removing the
vertices on the outermost face. (See Figure 4.1 for an example.)

The main result of this section, and of the paper, is the following.
Theorem 4.1. There is a universal constant c such that the shortest-path metric

of a k-outerplanar graph can be embedded into random trees with distortion ck.
Proof. We begin with a high-level sketch of the proof, which proceeds by induction

on k. Since G is k-outerplanar, removing the outer face of G decomposes it into a
set of (k − 1)-outerplanar subgraphs G1, . . . , G�. Each Gi resides inside a face Fi of
the graph induced by the vertices of the outer face of G. (See Figure 4.2.) By the
induction hypothesis, each Gi can be embedded into random trees with distortion
ck−1; moreover, this can be done leaving the vertices on the outer face of Gi in
their original positions. Replacing Gi by its corresponding tree Ti yields a Halin
graph whose outer cycle is the face Fi (plus possibly some trees attached to internal
nodes of Ti); see Figure 4.3. Now the procedure of section 3 can be used to embed
this Halin graph into an outerplanar graph on Fi (plus some attached trees) with
constant distortion c1. Finally, the union (over i) of all these outerplanar graphs
is again outerplanar and so by [19, Theorem 5.2] can be embedded into random
trees with constant distortion c2. The overall distortion incurred in this process is
ck−1 · c1 · c2 ≤ ck if we choose c = c1c2.

Remark. The reader may recall from section 3 that we can take c1 = 25 and
c2 = 8 in the above. Hence Theorem 4.1 holds with the constant c = 200.

We now proceed to spell out the details of the above argument. We begin with
the induction hypothesis, which needs to be slightly stronger than the statement of
the theorem. We assume G = (V,E) is given along with its k-outerplanar embedding,
and F0(G) is the set of vertices on the outer face of G. (In what follows, we will often
abuse notation and blur the distinction between a face and the vertices that lie on it.)

Induction hypothesis. Let G = (V,E) be a connected k-outer-
planar graph with F0(G) as the outer face in some k-outerplanar em-

EMBEDDING k-OUTERPLANAR GRAPHS INTO �1 133

bedding. Then the shortest-path metric of G can be probabilistically
approximated by a collection of trees on V with expected distortion
at most ck. Moreover, for each subtree T in this distribution, the
vertices of the outer face F0(G) induce a (connected) subtree that is
a minor of G.

The importance of the extra condition placed on the trees T is the following. Let
T ′ be the subtree induced by the vertices of F0(G); note that the vertices of V \ T ′

reside in subtrees hanging off T ′ by single edges. Since T ′ is a minor of G, we can
construct it by edge deletions and contractions while leaving the vertices of F0(G) in
their original positions, as explained in section 3.2. This allows us in the induction to
replace G by T ′ without disturbing the outer face F0(G).

The base case for the induction is k = 1, when G is an outerplanar graph. For
outerplanar graphs, [19, Theorem 5.2] shows an embedding of G into trees that are
subgraphs of G with constant distortion (at most 8). Being subgraphs these trees are
certainly minors, so the extra condition in the induction is satisfied.

G1

G2

G3

G4

G5
F1

F2

F3

F4

F5

F6

Fig. 4.2. Partitioning of a k-outerplanar graph G into (k − 1)-outerplanar graphs G1, . . . , G5.
The bold lines indicate GF , the graph induced by the outer face.

For the induction step, we may assume that G is 2-vertex connected; otherwise
we can work with each block of G separately. Let GF be the subgraph of G induced
by F0(G), the vertices on its outer face; clearly GF is an outerplanar graph. (See
Figure 4.2.) Let F1, F2, . . . , F� be the internal faces of GF , Vi the subset of V \F0(G)
lying inside the face Fi, and Gi the induced graph on Vi. We assume without loss
of generality that Gi is connected, since otherwise we can work with its connected
components separately. We make the following assumption for technical reasons: for
any vertex v ∈ Fi there is at most one vertex u ∈ Vi such that {u, v} ∈ E. This is
without loss of generality, since if it does not hold for a vertex v ∈ Fi, we can split v
into a path of vertices (with the edges between them of length 0) and connect each one
to a unique vertex of Vi without violating planarity. Note the following fact, which
allows us to use the induction hypothesis.

Fact 4.2. For 1 ≤ i ≤ �, Gi is a (k − 1)-outerplanar graph.
Thus, by the induction hypothesis, each Gi can be ck−1-probabilistically approxi-

mated by trees satisfying the extra condition. We now give a procedure to extend the
embeddings of the various Gi to an embedding of G. For 1 ≤ i ≤ �, we independently
pick a tree Ti from the distribution over tree metrics for Gi. Let G′ be the graph
obtained by adding the vertices of F0(G) and the edges incident to them (in G) to

134 CHEKURI, GUPTA, NEWMAN, RABINOVICH, AND SINCLAIR

a b

c

d

e

1
2

3

4

5 6

7
8

a b

c

d

e

1
2

3

4

5 6

7
8

F1 F1

V1

B1

F2

F3

F2

F3

f

g

f

g

Fig. 4.3. Returning from the induction: The bold lines denote GF . The lightly shaded region
on the left denotes the vertices V1 corresponding to the face F1 = (abde), and the darker shaded
region on the right denotes the set B1. Note that A1 = {2, 3, 5}, B1 \A1 = {4}, and V1 \B1 = {1}.

the trees T1, . . . , T�. Proposition 2.2 implies that the metric induced by G′ is within
expected distortion ck−1 of dG, and hence approximating G′ by tree metrics with an
expected distortion of c will prove the induction hypothesis for G.

Let T ′
i be the subtree of Ti that is induced by F0(Gi); the fact that it is a tree is

guaranteed by the extra condition in the induction hypothesis. Let Ai be the vertices
in Vi that have an edge to some vertex in Fi; since G is planar, Ai ⊆ F0(Gi). Let T ′′

i

be the minimal connected subtree of T ′
i that contains Ai. Let Bi the vertices in T ′′

i .
(Note that Bi may contain vertices not in Ai but by minimality of T ′′

i , any vertex in
Bi \Ai is an internal vertex of T ′′

i .) The remaining vertices, in Vi \Bi, induce a forest
in Ti that is connected via cut-edges to T ′′

i . (An example is given in Figure 4.3.)
Using Proposition 2.1, we can eliminate the vertices in Vi \ Bi (for 1 ≤ i ≤ �) from
G′. It now suffices to embed the resulting graph into trees with expected distortion
at most c.

The key claim that reduces this problem to the embedding of Halin graphs given
in the previous section is the following (see Figure 4.3).

Claim 4.3. Let G′
i be obtained by adding to the tree T ′′

i the vertices Fi and the
edges in G connecting Fi to Ai. Then G′

i is a Halin graph with cycle Fi.

Proof. By the induction hypothesis, the tree T ′
i is a minor of Gi. Since T ′′

i

is a subtree of T ′
i it is also a minor of Gi and hence, as in section 3.2, the planar

embedding of Gi induces a natural planar embedding of T ′′
i . Furthermore, by our

earlier assumption, each vertex of Fi has at most one edge to T ′′
i ; let Ei be the set of

these edges. It follows that T ′′
i along with these edges Ei still forms a tree. Since T ′′

i

was chosen to be minimal, the leaves in T ′′
i are a subset of Ai. Therefore the leaves

in the tree formed by adding Ei to T ′′
i are precisely the vertices of Fi incident to an

edge in Ei. The edges along the face Fi form a cycle around these leaves, yielding a
Halin graph.

Now we can apply the procedure of section 3 to G′
i (omitting the final step of

embedding the outerplanar graph into trees). The resulting graph, which we call G′′
i ,

will be an outerplanar graph on Fi, with the vertices of T ′′
i attached as subtrees; the

expected distortion will be at most 25. Using Proposition 2.1 again, we can remove
these hanging subtrees to obtain the graph core(G′′

i).

Note that the procedure in section 3 guarantees that core(G′′
i) is a minor of G′

i.
Furthermore, each core(G′′

i) is an outerplanar graph on the face Fi of the outerplanar
graph GF . These two facts together imply that H =

⋃
i core(G

′′
i) is also an outerplanar

graph. Thus we can use [19, Theorem 5.2] to embed H into random subtrees of H
with expected distortion at most 8. Choosing c = 25 · 8 = 200, we conclude that G′

can be embedded into random trees with expected distortion at most c, and hence

EMBEDDING k-OUTERPLANAR GRAPHS INTO �1 135

that G can be embeddded with expected distortion at most ck, as required.

To complete the inductive proof, it remains to verify that the random trees pro-
duced by the above procedure satisfy the extra property stated in the induction hy-
pothesis, namely, that the vertices of F0(G) form a subtree that is a minor of G. The
final step of the procedure constructs a subtree TH of the graph H whose vertex set
is exactly F0(G). Now observe that the procedure discards vertices only when they
induce a subtree attached to the rest of the graph (invoking Proposition 2.1 on each
occasion to ensure that this introduces no additional distortion). Thus the final tree
consists of TH with other subtrees hanging off it. To see that TH is a minor of G, it
suffices to show that H is a minor of G since TH is a subtree (and hence a minor)
of H. But H =

⋃
i core(G

′′
i), and we already observed above that each core(G′′

i) is
a minor of G′

i. Furthermore, G′
i is formed by replacing Gi by the tree T ′′

i inside the
face Fi, and T ′′

i is a subtree of T ′
i and hence a minor of T ′

i . And we know from the
induction hypothesis that T ′

i is a minor of Gi; hence G′
i is a minor of Gi. This implies

that core(G′′
i) is a minor of Gi, and hence that H is a minor of G, as required. This

completes the inductive proof of Theorem 4.1.

Acknowledgments. We thank Amit Chakrabarti and Amit Kumar for useful
discussions and the referees for their suggestions which improved the presentation of
the paper.

REFERENCES

[1] N. Alon, R. M. Karp, D. Peleg, and D. West, A graph-theoretic game and its application
to the k-server problem, SIAM J. Comput., 24 (1995), pp. 78–100.

[2] A. Andoni, M. M. Deza, A. Gupta, P. Indyk, and S. Raskhodnikova, Lower bounds for
embedding edit distance into normed spaces, in Proceedings of the 14th ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), ACM, New York, SIAM, Philadelphia, 2003,
pp. 523–526.

[3] S. Arora, S. Rao, and U. Vazirani, Expander flows, geometric embeddings, and graph parti-
tionings, in Proceedings of the 36th ACM Symposium on Theory of Computing (STOC),
ACM, New York, 2004, pp. 222–231.

[4] Y. Aumann and Y. Rabani, An O(log k) approximate min-cut max-flow theorem and approx-
imation algorithm, SIAM J. Comput., 27 (1998), pp. 291–301.

[5] B. Awerbuch and Y. Azar, Buy-at-bulk network design, in Proceedings of the 38th Symposium
on Foundations of Computer Science (FOCS), IEEE Computer Society, Los Alamitos, CA,
1997, pp. 542–547.

[6] B. S. Baker, Approximation algorithms for NP-complete problems on planar graphs, J. ACM,
41 (1994), pp. 153–180.

[7] Y. Bartal, Probabilistic approximations of metric spaces and its algorithmic applications, in
Proceedings of the 37th Symposium on Foundations of Computer Science (FOCS), IEEE
Computer Society, Los Alamitos, CA, 1996, pp. 184–193.

[8] Y. Bartal, On approximating arbitrary metrics by tree metrics, in Proceedings of the 30th
ACM Symposium on Theory of Computing (STOC), ACM, New York, 1998, pp. 161–168.

[9] D. Bienstock and C. L. Monma, On the complexity of embedding planar graphs to minimize
certain distance measures, Algorithmica, 5 (1990), pp. 93–109.

[10] H. L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoret. Comput.
Sci., 209 (1998), pp. 1–45.

[11] J. Bourgain, On Lipschitz embeddings of finite metric spaces in Hilbert space, Israel J. Math.,
52 (1985), pp. 46–52.

[12] M. Charikar, C. Chekuri, A. Goel, S. Guha, and S. A. Plotkin, Approximating a finite
metric by a small number of tree metrics, in Proceedings of the 39th Symposium on Foun-
dations of Computer Science (FOCS), IEEE Computer Society, Los Alamitos, CA, 1998,
pp. 379–388.

[13] M. M. Deza and M. Laurent, Geometry of Cuts and Metrics, Algorithms Combin. 15,
Springer-Verlag, Berlin, 1997.

136 CHEKURI, GUPTA, NEWMAN, RABINOVICH, AND SINCLAIR

[14] R. Diestel, Graph Theory, 2nd ed., Grad. Texts in Math. 173, Springer-Verlag, New York,
2000.

[15] J. Fakcharoenphol, S. Rao, and K. Talwar, A tight bound on approximating arbitrary
metrics by tree metrics, J. Comput. System Sci., 69 (2004), pp. 485–497.

[16] A. Frank, Packing paths, circuits, and cuts—a survey, in Paths, Flows and VLSI-Layout,
B. Korte, L. Lovász, H. J. Prömel, and A. Schrijver, eds., Springer-Verlag, New York,
1990, pp. 47–100.

[17] N. Garg, G. Konjevod, and R. Ravi, A polylogarithmic approximation algorithm for the
group Steiner tree problem, J. Algorithms, 37 (2000), pp. 66–84.

[18] A. Gupta, Steiner points in tree metrics don’t (really) help, in Proceedings of the 12th Annual
ACM-SIAM Symposium on Discrete Algorithms (Washington, DC, 2001), ACM, New York,
SIAM, Philadelphia, 2001, pp. 220–227.

[19] A. Gupta, I. Newman, Y. Rabinovich, and A. Sinclair, Cuts, trees and �1-embeddings of
graphs, Combinatorica, 24 (2004), pp. 233–269.

[20] R. Halin, Studies on minimally n-connected graphs, in Combinatorial Mathematics and Its
Applications, D. J. A. Welsh, ed., Academic Press, London, 1971, pp. 129–136.

[21] P. Indyk, Algorithmic aspects of geometric embeddings, in Proceedings of the 42nd Symposium
on Foundations of Computer Science (FOCS), IEEE Computer Society, Los Alamitos, CA,
2001, pp. 10–33.

[22] N. Linial, Finite metric-spaces—combinatorics, geometry and algorithms, in Proceedings of
the International Congress of Mathematicians (Beijing, 2002), Vol. III, Higher Ed. Press,
Beijing, 2002, pp. 573–586.

[23] N. Linial, E. London, and Y. Rabinovich, The geometry of graphs and some of its algorith-
mic applications, Combinatorica, 15 (1995), pp. 215–245.

[24] J. Matoušek, On embedding expanders into lp spaces, Israel J. Math., 102 (1997), pp. 189–197.
[25] J. Matoušek, Lectures on Discrete Geometry, Grad. Texts in Math. 212, Springer-Verlag, New

York, 2002.
[26] I. Newman and Y. Rabinovich, A lower bound on the distortion of embedding planar metrics

into Euclidean space, in Proceedings of the 18th Annual Symposium on Computational
Geometry, ACM, New York, 2002, pp. 94–96.

[27] I. Newman, Y. Rabinovich, and M. Saks, Excluded Minors for Embeddings, unpublished
notes.

[28] H. Okamura and P. D. Seymour, Multicommodity flows in planar graphs, J. Combin. Theory
Ser. B, 31 (1981), pp. 75–81.

[29] S. B. Rao, Small distortion and volume preserving embeddings for planar and Euclidean met-
rics, in Proceedings of the 15th Annual ACM Symposium on Computational Geometry,
ACM, New York, 1999, pp. 300–306.

[30] N. Robertson and P. D. Seymour, Graph minors. III. Planar tree-width, J. Combin. Theory
Ser. B, 36 (1984), pp. 49–64.

[31] A. Schrijver, Homotopic routing methods, in Paths, Flows and VLSI-Layout, B. Korte,
L. Lovász, H. J. Prömel, and A. Schrijver, eds., Springer-Verlag, New York, 1990, pp.
329–371.

[32] D. B. Shmoys, Cut problems and their application to divide-and-conquer, in Approximation
Algorithms for NP-Hard Problems, D. S. Hochbaum, ed., PWS Publishing, Boston, 1997,
pp. 192–235.

[33] M. M. Sys�lo and A. Proskurowski, On Halin graphs, in Graph Theory (�Lagów, 1981),
Springer-Verlag, Berlin, 1983, pp. 248–256.

[34] D. B. West, Introduction to Graph Theory, Prentice–Hall, Upper Saddle River, NJ, 1996.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 137–142

RANKING TOURNAMENTS∗

NOGA ALON†

Abstract. A tournament is an oriented complete graph. The feedback arc set problem for
tournaments is the optimization problem of determining the minimum possible number of edges of
a given input tournament T whose reversal makes T acyclic. Ailon, Charikar, and Newman showed
that this problem is NP-hard under randomized reductions. Here we show that it is in fact NP-hard.
This settles a conjecture of Bang-Jensen and Thomassen.

Key words. tournament, feedback arc set problem

AMS subject classifications. 05C20, 68R10

DOI. 10.1137/050623905

1. Introduction. A tournament is an oriented complete graph. A feedback arc
set in a digraph is a collection of edges whose reversal (or removal) makes the digraph
acyclic. The feedback arc set problem for tournaments is the optimization problem of
determining the minimum possible cardinality of a feedback arc set in a given tour-
nament. The problem for general digraphs is defined analogously. Bang-Jensen and
Thomassen conjectured in [7] that this problem is NP-hard, and Ailon, Charikar, and
Newman proved in [1] that it is NP-hard under randomized reductions. Here we show
how to derandomize a variant of the construction of [1] and prove that the problem is
indeed NP-hard. This is based on the known fact that the minimum feedback arc set
problem for general digraphs is NP-hard (see [8, p. 192]) and on certain pseudorandom
properties of the quadratic residue tournaments described in [5, pp. 134–137]. Similar
constructions can be given using any other family of antisymmetric matrices with
{−1, 1} entries whose rows are nearly orthogonal. We note that unlike the authors
of [1], we do not apply the known fact that the minimum feedback arc set problem is
APX-hard and need only the simpler fact that it is NP-hard, proved more than thirty
years ago. In fact, the proof in [1] can also be modified slightly so as to rely only on
this fact (to get hardness of approximation under randomized reductions).

2. Notation. For a digraph G = (V,E) and a permutation π of its vertices, an
oriented edge (u, v) ∈ E is consistent with π if u precedes v in π. Let FIT (G, π) denote
the number of edges whose orientation is consistent with π minus the number of edges
whose orientation is not consistent with π. Similarly, if the edges of G are weighted,
we let FIT (G, π) denote the total weight of the edges whose orientation is consistent
with π minus the total weight of the edges whose orientation is not consistent with π.
It is convenient to consider unweighted digraphs as weighted digraphs in which the
weight of each edge is 1, and the weight of each nonedge is 0. Most of the weighted
digraphs we use here have weights in {0, 1,−1}, but it is helpful to use weights that
can be added and subtracted in order to simplify notation.

∗Received by the editors May 14, 2004; accepted for publication September 6, 2005; published
electronically March 3, 2006. This research was supported in part by the Israel Science Foundation,
by the Hermann Minkowski Minerva Center for Geometry at Tel Aviv University, and by the Von
Neumann Fund.

http://www.siam.org/journals/sidma/20-1/62390.html
†Schools of Mathematics and Computer Science, Raymond and Beverly Sackler Faculty of Exact

Sciences, Tel Aviv University, Tel Aviv 69978, Israel and IAS, Princeton, NJ 08540 (nogaa@tau.ac.il).

137

138 NOGA ALON

Returning to unweighted digraphs, let FA(G) denote the minimum size of a feed-
back arc set of G = (V,E). It is easy to see that FA(G) = (|E|−maxπFIT (G, π))/2,
where the maximum is taken over all permutations π of V . This is because omitting
a feedback arc set leaves the remaining graph acyclic, ensuring that there is a permu-
tation π consistent with the orientation of all edges left, and similarly, for any π one
can omit all edges not consistent with π and get an acyclic digraph.

If G1 = (V,E1) and G2 = (V,E2) are two (weighted) digraphs on the same set
of vertices, the sum G1 + G2 is the digraph on V in which the weight of each edge
is the sum of its weights in G1 and in G2. The difference G1 − G2 is defined in
a similar manner. Note that for every permutation π on V , FIT (G1 + G2, π) =
FIT (G1, π) + FIT (G2, π) and FIT (G1 −G2, π) = FIT (G1, π) − FIT (G2, π).

If G is a digraph, and U ⊂ V , then G[U] denotes the induced subgraph of G on
U . We consider this subgraph, however, as a digraph whose vertex set is V , where
all vertices in V − U are isolated. If U and W are two disjoint subsets of V , then
G[U,W] denotes the subgraph of G consisting of all edges of G with an end in U and
an end in W . Here, too, the vertex set is the original set V . Let e(U,W) denote the
total number of edges of G that start at U and end at W . Thus, the total number of
edges of G[U,W] is e(U,W) + e(W,U).

3. The quadratic residue tournaments. Let p ≡ 3 mod 4 be a prime, and
let T = Tp be the tournament whose vertices are all elements of the finite field GF (p),
in which (i, j) is a directed edge iff i−j is a quadratic residue. In [5, pp. 134–137] it is
shown that for every permutation π of the vertices of Tp, FIT (T, π) ≤ O(p3/2 log p).
Here we need a stronger result, providing a similar bound for certain subgraphs of T .

We need the following known fact, proved, for example, in [2] (see also [5, Lemma
9.1.2]).

Lemma 3.1. Let T = Tp = (V,E) be the quadratic residue tournament defined
above. Then, for every two disjoint sets U1, U2 of T ,

e(U1, U2) − e(U2, U1) ≤ |U1|1/2|U2|1/2p1/2.

Therefore, if |U1| and |U2| are large, then the number of edges of G oriented from
U1 to U2 is roughly the number of edges oriented from U2 to U1, as the difference
between these two numbers is at most |U1|1/2|U2|1/2p1/2, whereas their sum is |U1||U2|.
We next observe that this property implies that for every large set of vertices U of T ,
and for every permutation π, FIT (T [U], π) is small.

Corollary 3.2. Let T = Tp = (V,E) be as above, let U ⊂ V be a set of
vertices of T , and let T [U] denote the induced subgraph of T on U . Then, for every
permutation π of V ,

|FIT (T [U], π)| ≤ |U |�log2 |U |�p1/2 ≤ |U | log2(2|U |)p1/2.

Proof. We prove that for every set U of a most 2r vertices, and for every permu-
tation π

FIT (T [U], π) ≤ r2r−1p1/2.(3.1)

Note that if π = π1, π2, . . . , πp and π = πp, πp−1, . . . , π1, then FIT (T [U], π) =
−FIT (T [U], π), and hence the validity of (3.1) implies the assertion of the corol-
lary (including the absolute value). We prove (3.1) by induction on r. The result is
trivial for r = 1. Assuming it holds for r − 1 we prove it for r. Suppose |U | ≤ 2r.

RANKING TOURNAMENTS 139

Given π, split U into two disjoint sets U1, U2, each of size at most 2r−1, so that all
the elements of U1 precede all those of U2 in the permutation π. Clearly

FIT (T [U], π) = e(U1, U2) − e(U2, U1) + FIT (T [U1], π) + FIT (T [U2], π).

By Lemma 3.1 and the induction hypothesis, the right-hand side is at most

2r−1p1/2 + 2(r − 1)2r−2p1/2 = r2r−1p1/2.

This completes the proof.

Corollary 3.3. Let T = Tp = (V,E) be as above, let U,W be two disjoint
subsets of vertices of T , and let T [U,W] denote the bipartite subgraph of T consisting
of all edges of T with an end in U and an end in W . Then, for every permutation π
of V ,

|FIT (T [U,W], π)| ≤ [(|U | + |W |)�log2(|U | + |W |)� + |U |�log2 |U |�
+ |W |�log2 |W |�]p1/2.

In particular, if |U | ≤ a and |W | ≤ a, then |FIT (T [U,W], π)| ≤ 4a log2(4a)p
1/2.

Proof. In the notation of section 2, T [U,W] = T [U∪W]−T [U]−T [W]. Therefore,
for every π,

|FIT (T [U,W], π)| = |FIT (T [U ∪W], π) − FIT (T [U], π) − FIT (T [W], π)|,

and the desired result follows from the triangle inequality and three applications of
the previous corollary.

The a-blow-up of a digraph H, which we denote by H(a), is the digraph obtained
by replacing each vertex v of H by an independent set I(v) of size a, and each
directed edge (u, v) of H by a complete bipartite digraph containing all a2 edges from
the members of I(u) to those of I(v). It is easy to check that the minimum size of a
feedback arc set of H(a) satisfies FA(H(a)) = a2FA(H). Indeed, this follows from
the fact that if π is a permutation of the vertices of the blow-up H(a) that maximizes
FIT (H(a), π), and if x, y are two vertices of H(a) that lie in the same I(v), then one
may always shift either x to lie right next to y in π or vice versa without decreasing
the number of consistent edges.

Our main technical lemma is the following.

Lemma 3.4. Let H = (U,F) be a digraph, let p ≡ 3 mod 4 be a prime, and
let T = Tp = (V,E) be the quadratic residue tournament described above. Let a be
an integer and suppose that a|U | ≤ p. For each u ∈ U , let I(u) be an arbitrary
subset of size a of V , where all |U | sets I(u) are pairwise disjoint, and let T ′ be the
tournament obtained from T as follows: for each edge (u, v) ∈ F of H, omit all edges
of T that connect members of I(u) with those of I(v), and replace them with all the
a2 directed edges that start at a member of I(u) and end at one of I(v). Then, for
every permutation π of V ,

|FIT (T ′, π) − FIT (H(a), π)| ≤ p3/2 log2(2p) + 4|F |a log2(4a)p
1/2.

Proof. Consider H(a) as a digraph on the sets of vertices I(u), u ∈ U . By
construction,

140 NOGA ALON

T ′ = T −
∑

(u,v)∈F

T [I(u), I(v)] + H(a).

Therefore, for every π,

FIT (T ′, π) = FIT (T, π) −
∑

(u,v)∈F

FIT (T [I(u), I(v)], π) + FIT (H(a), π).

It follows that

|FIT (T ′, π) − FIT (H(a), π)| ≤ |FIT (T, π)| +
∑

(u,v)∈F

|FIT (T [I(u), I(v)], π)|,

and the desired result follows from Corollary 3.2, which implies that |FIT (T, π)| ≤
p3/2 log2(2p), and from Corollary 3.3, which implies that for each fixed (u, v) ∈ F ,
|FIT (T [I(u), I(v)], π)| ≤ 4a log2(4a)p

1/2.

4. The main result.
Theorem 4.1. The minimum feedback arc set problem for tournaments is NP-

hard.
Proof. It is known (cf., e.g., [8, p. 192]) that the minimum feedback arc set

problem is NP-hard, even for digraphs H in which all outdegrees and indegrees are
at most 3 (this last point is not essential here, but we use it to make the computation
explicit). Given a digraph H = (U,F) as above, let a = |U |c, where c > 3 is a fixed
integer, and let p ≡ 3 mod 4 be a prime between |U |a and, say, 2|U |a. Such a prime
always exists, by the known results on primes in arithmetic progressions, and it is
easy to find such a prime in time polynomial in |U |, by exhaustive search. Let T ′

be the tournament constructed from Tp and the blow-up H(a) of H as described in
Lemma 3.4. Computing FA(T ′) is equivalent to computing maxπFIT (T ′, π), where
the maximum is taken over all permutations π of V . However, by Lemma 3.4 it follows
that the value of maxπFIT (T ′, π) provides an approximation up to an additive error
of p3/2 log2(2p) + |F |4a log2(4a)p

1/2 ≤ 13p3/2 log2(4p) for maxπFIT (H(a), π), where
here we used the fact that |F | ≤ 3|U | and the fact that |U |a ≤ p. Since, as explained
after the proof of Corollary 3.3, maxπFIT (H(a), π) = a2maxσFIT (H,π), where the
last maximum is taken over all permutations σ of the vertices of H, we conclude that if
a2 > 13p3/2 log2(4p), this approximation will enable us to determine maxσFIT (H,π)
(and hence also FA(H)) precisely. Since a = |U |c and p ≤ 2|U |a ≤ 2|U |c+1, this is
the case provided c ≥ 4, completing the proof.

5. Remarks and problems.
• By choosing c appropriately in the above proof it follows that for every fixed

ε > 0, it is NP-hard to approximate FA(T) for a tournament on n vertices
up to an additive error of n2−ε. Note that approximating it up to an additive
error of εn2 can be done in polynomial time using the algorithmic version of
the regularity lemma (for digraphs), or the methods of [6].

• It will be interesting to decide if the minimum feedback arc set problem
for tournaments is APX-hard. The authors of [1] describe a randomized
algorithm that provides a constant approximation of this quantity.

• The assertion of Lemma 3.1 here follows from the fact that the absolute value
of the sum of entries in any submatrix of the p by p matrix B in which Bij =
χ(i − j), where χ is the quadratic character, can be bounded as described
in the lemma. If G = (V,E) is a general directed graph, with weights on

RANKING TOURNAMENTS 141

its edges, let A = AG be a matrix whose rows and columns are indexed by
the vertices of G, in which for each u, v ∈ V , A(u, v) = w(u, v) − w(v, u) is
the difference between the weight of the directed edge from u to v and that
from v to u (0 if both these edges are missing). Thus, the matrix B above is
the matrix ATp , where Tp is the quadratic residue tournament described in
section 3.
The cutnorm ||A||C of a real matrix A is the maximum absolute value of
the sum of entries in a submatrix of A. Note that if A = AG, where G
is a weighted directed graph, then for two subsets U1, U2 ⊂ V , the sum∑

u1∈U1,u2∈U2
A(u1, u2) can be expressed as follows. Put U3 = U1 ∩ U2. For

two disjoint subsets X,Y of V let D(X,Y) denote the total weight of all edges
oriented from X to Y minus the total weight of all edges oriented from Y to
X. Then ∑

u1∈U1,u2∈U2

A(u1, u2) = D(U1 − U2, U2) + D(U3, U2 − U1).(5.1)

The authors of [3, 4] describe a polynomial time algorithm that finds, given
a matrix A, two subsets U1, U2 such that |

∑
u1∈U1,u2∈U2

A(u1, u2)| is at least
α||A||C for some absolute constant α > 0 (for randomized algorithms α >
0.56). As in our case the matrix A is antisymmetric, the algorithm provides
U1, U2 so that the above sum (with no absolute value) approximates the
maximum cutnorm. In view of the expression (5.1) this supplies an α/2
approximation for the maximum possible value of D(X,Y), as X and Y
range over all pairs of disjoint subsets of V .

• The bound in Corollary 3.2 can be slightly improved, using the expression
in (5.1) and the fact that for the matrix A = ATp of the quadratic residue
tournament, the absolute value of the sum of entries of any submatrix with s
rows and t columns is at most

√
stp. Indeed, plugging this fact into a simple

modified version of the proof of Corollary 3.2 one can prove the following: If
U is a set of vertices of Tp, and |U | ≤ 3r for some integer r, then for every
permutation π of the vertices of Tp, FIT (T [U], π) ≤ 2r3r−1p1/2.

• The basic approach of proving hardness results for dense instances of compu-
tational problems by reducing the task of solving precisely sparse instances
to dense ones, adding a pseudorandom collection of edges to a blow-up of a
sparse instance, can be applied to various additional similar problems. Sev-
eral far reaching applications of this approach, combined with some additional
ideas, will appear in subsequent joint work with Ailon and in another work
with Shapira and Sudakov.

REFERENCES

[1] N. Ailon, M. Charikar, and A. Newman, Aggregating inconsistent information: Ranking and
clustering, in Proceedings of the 37th ACM STOC, Baltimore, ACM, New York, 2005,
pp. 684–693.

[2] N. Alon, Eigenvalues, geometric expanders, sorting in rounds and Ramsey theory, Combina-
torica, 6 (1986), pp. 207–219.

[3] N. Alon and A. Naor, Approximating the cut-norm via Grothendieck’s inequality, in Proceed-
ings of the 36th ACM STOC, Chicago, ACM, New York, 2004, pp. 72–80.

[4] N. Alon and A. Naor, Approximating the cut-norm via Grothendieck’s inequality, SIAM J.
Comput., 35 (2006), pp. 787–803.

[5] N. Alon and J. H. Spencer, The Probabilistic Method, 2nd ed., Wiley, New York, 2000.

142 NOGA ALON

[6] S. Arora, D. Karger, and M. Karpinski, Polynomial time approximation schemes for dense
instances of NP-hard problems, in Proceedings of the 27th ACM STOC, ACM, New York,
1995, pp. 284–293.

[7] J. Bang-Jensen and C. Thomassen, A polynomial algorithm for the 2-path problem for semi-
complete digraphs, SIAM J. Discrete Math., 5 (1992), pp. 366–376.

[8] M. R. Garey and D. S. Johnson, Computers and Intractability, A Guide to the Theory of
NP-Completeness, W. H. Freeman and Company, New York, 1979.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 143–159

THE LINKING PROBABILITY OF DEEP SPIDER-WEB NETWORKS∗

NICHOLAS PIPPENGER†

Abstract. We consider crossbar switching networks with base b (that is, constructed from b× b
crossbar switches), scale k (that is, with bk inputs, bk outputs, and bk links between each consecutive
pair of stages), and depth l (that is, with l stages). We assume that the crossbars are interconnected
according to the spider-web pattern, whereby two diverging paths reconverge only after at least k
stages. We assume that each vertex is independently idle with probability q, the vacancy probability.
We assume that b ≥ 2 and the vacancy probability q are fixed, and that k and l = ck tend to infinity
with ratio a fixed constant c > 1. We consider the linking probability Q (the probability that there
exists at least one idle path between a given idle input and a given idle output). In a previous
paper [Discrete Appl.Math., 37/38 (1992), pp. 437–450] it was shown that if c ≤ 2, then the linking
probability Q tends to 0 if 0 < q < qc (where qc = 1/b(c−1)/c is the critical vacancy probability) and

tends to (1 − ξ)2 (where ξ is the unique solution of the equation
(
1 − q(1 − x)

)b
= x in the range

0 < x < 1) if qc < q < 1. In this paper we extend this result to all rational c > 1. This is done
by using generating functions and complex-variable techniques to estimate the second moments of
various random variables involved in the analysis of the networks.

Key words. communiation networks, crossbar switching networks, blocking probability

AMS subject classifications. 94C15, 60C05

DOI. 10.1137/050624376

1. Introduction. We deal in this paper with linking in crossbar switching net-
works, a phenomenon not dissimilar to that of percolation in lattices (as introduced
by Broadbent and Hammersley [B] and surveyed by Grimmett [G]). An important
difference, however, is that while percolation can be studied in finite subgraphs of a
single infinite graph modeling the lattice, there is no single graph that naturally hosts
the graph modeling crossbars switching networks in which we are interested. Our first
order of business will be to describe these graphs.

A crossbar graph is characterized by three parameters: its base, b ≥ 2, its scale,
k ≥ 0, and its depth, l ≥ 0. Its vertices are partitioned into l + 1 ranks, each
containing bk vertices, which are labeled with the strings of length k over the alphabet
{0, . . . , b− 1}. The vertices in rank 0 are called inputs, those in rank l are called
outputs, and those in all other ranks are called links. The edges of the graph are
partitioned into l stages, each containing bk+1 edges. For 1 ≤ m ≤ l, the edges of
stage m are directed out of vertices in rank m − 1 and into vertices in rank m. In a
spider-web crossbar graph, which is our main concern in this paper, there is an edge
of stage m from vertex v of rank m−1 to vertex w of rank m if and only if v and w are
labeled by strings that differ at most in position j, where j ≡ m (mod k). The edges
of each stage are thus partitioned into bk−1 b × b complete bipartite graphs (called
crossbars). The spider-web crossbar graph with base b, scale k, and depth l will be
denoted Gb,k,l. We shall see in section 2 that if l ≥ k, there are bl−k paths from a
given input to a given output; if l < k, there is at most one path from a given input to
a given output. Our main interest is in spider-web crossbar graphs with l ≥ k, since

∗Received by the editors February 14, 2005; accepted for publication (in revised form) Septem-
ber 15, 2005; published electronically March 3, 2006. This work was supported in part by NSF grant
CCF-0430656.

http://www.siam.org/journals/sidma/20-1/62437.html
†Department of Computer Science, Princeton University, 35 Olden Street, Princeton, NJ 08540

(njp@princeton.edu).

143

144 NICHOLAS PIPPENGER

in these graphs any input can be connected by a path to any output; in our analysis,
however, graphs with l < k will occur as subgraphs, so it will be necessary to allow
this case in some of our intermediate results.

We shall assume that each vertex in the graph Gb,k,l is independently assigned
the status idle, with probability q (called the vacancy probability), or busy, with
the complementary probability p = 1 − q (called the occupancy probability). This
random assignment of a status to each vertex in a graph will be called the state of
the graph. Given an input v and output w, let Qv,w (called the linking probability)
denote the probability that there exists a path consisting entirely of idle links from
v to w. (In this paper, “path” will always mean “directed path.” In general, the
linking probability is defined as the conditional probability that there exists an idle
path, given that v and w are themselves idle, but for the probabilistic model that we
are using, this condition is independent.) We shall see in section 2 that if l ≥ k, the
probability Qv,w does not depend on the choice of the input-output pair (v, w), so
we shall let Q denote the common value of these probabilities. The complementary
probability P = 1 − Q (called the blocking probability) is the probability that all
paths between a given input-output pair (v, w) are broken by a set of busy links.

In practice, the parameter p represents the amount of traffic being carried by a
crossbar network (which one would like to maximize), and the parameter P represents
the fraction of arriving traffic lost due to congestion within the network (which one
would like to minimize). In analysis, however, it is almost always more convenient to
work with the complementary parameters q and Q, so we shall work exclusively with
these parameters in what follows.

In practice, a graph Gb,k,l would be fixed, and the linking probability Q would
be studied as a function of the vacancy probability q. It is found that Q undergoes
a rapid transition from a value near zero to a significantly positive value as q passes
through a neighborhood of 1/b(l−k)/(l−1). This is easily understood in the following
way.

Let the random variable Xv,w denote the number of idle paths from v to w. We
shall see in section 2 that if l ≥ k, the distribution of Xv,w does not depend on the
choice of the input-output pair (v, w), so we shall let X denote a random variable
with this common distribution. Each of the bl−k paths from v to w contains l − 1
links, which are all idle with probability ql−1. Thus we have

Ex[X] = bl−k ql−1.(1.1)

Thus as q passes through 1/b(l−k)/(l−1), the expected number of idle paths from v
to w (called the specific transparency) goes from an exponentially decreasing to an
exponentially increasing function of k and l. This suggests that if k and l tend to
infinity in such a way that their ratio c = l/k > 1 remains fixed while b and q are also
held fixed, then Q will tend to a limit, and this limit will have a discontinuity as q
passes through the critical value

qc = 1/b(c−1)/c.

(We note that 1 < c < ∞ implies 1/b < qc < 1.) Our goals in this paper are to
confirm this conjecture and to determine the limiting value of Q.

Our first step toward these goals, taken in section 2, will be to derive the following
estimate for the second moment Ex[X2] of X.

LINKING PROBABILITY OF SPIDER-WEB NETWORKS 145

Theorem 1.1. Let both b ≥ 2 and 1/b < q < 1 be fixed. Then

Ex[X2] = Ex[X] ·
((

b− 1

bq − 1

)2

bl−k ql+1 + 1 + O(l bl−2k ql) + O(l qk)

)

as k, l → ∞ with l ≥ k and
(
log(l + 1)

)
/(k + 1) → 0. (The constants in the O-terms

may depend on b and q, but are independent of k and l.)
We observe that this estimate is enough to establish that the limiting value (if it

exists) of Q for k → ∞ and l = ck cannot be a continuous function of Q as q passes
through qc. Indeed, from Markov’s inequality and (1.1), we have

Q = Pr[X ≥ 1] ≤ Ex[X] = bl−k ql−1 → 0(1.2)

for q < qc. On the other hand, (1.1) and Theorem 1.1, together with the inequality

Pr[X ≥ 1] ≥ Ex[X]2

Ex[X2]
,(1.3)

imply

Q = Pr[X ≥ 1] ≥ Ex[X]2

Ex[X2]
=

(bq − 1)2

(b− 1)2q2 + (bq − 1)2q

(
1 + O

(
l

bk

)
+ O

(
l qk

))

→ (bq − 1)2

(b− 1)2q2 + (bq − 1)2q
> 0(1.4)

for q = qc. (To verify (1.3), we consider the distribution of X conditioned on the
event X ≥ 1. Since x2 is a convex function of x, we have

Ex[X2 | X ≥ 1] ≥ Ex[X | X ≥ 1]2.

Multiplying by Pr[X ≥ 1]2 yields

Ex[X2] Pr[X ≥ 1] = Ex[X2 | X ≥ 1] Pr[X ≥ 1]2

≥ Ex[X | X ≥ 1]2 Pr[X ≥ 1]2

= Ex[X]2,

which is equivalent to (1.3).) The inequalities in (1.2) and (1.4) show that the inferior
limit of Q for q = qc is strictly greater than the limiting value for q < qc, as claimed.

The argument of the preceding paragraph also sheds some light on the condition(
log(l+1)

)
/(k+1) → 0 in Theorem 1.1. (This condition involves k+1 and l+1 rather

than k and l simply to avoid dividing by or taking the logarithm of 0.) This condition
is not the weakest one sufficient to give an estimate of the form Ex[X2] = O

(
Ex[X]2

)
,

but it is clear that some upper bound on the growth of l must be imposed, for with

probability (1 − q)b
k

all the links in a given rank are busy, disconnecting all input-

output pairs. Thus if l · (1− q)b
k → ∞, we have Q → 0, contradicting the implication

of (1.3) when Ex[X2] = O
(
Ex[X]2

)
.

In section 3, we shall combine Theorem 1.1 with branching-process arguments
from Pippenger [P3] to establish the existence and determine the limiting value of Q
for q > qc.

146 NICHOLAS PIPPENGER

Theorem 1.2. Let b ≥ 2 and 0 < q < 1 be fixed, and let c > 1 be rational. Then
as k → ∞ with l = ck, we have

Q →

⎧⎪⎨
⎪⎩

0 if 0 < q < qc,

(1 − ξ)2 if qc < q < 1,

where ξ is the unique solution of the equation x =
(
1 − q(1 − x)

)b
in the range

0 < x < 1.
A comment is in order concerning the behavior of (1− ξ)2 as a function of q. The

function f(x) =
(
1 − q(1 − x)

)b
is a strictly convex function of x for 0 < q ≤ 1, since

f ′′(x) = b(b − 1)q2
(
1 − q(1 − x)

)b−2
> 0 in this range. Thus the graph of f(x) can

intersect the diagonal at most twice in this range. There is one intersection at x = 1,
and the conditions f(0) = (1 − q)b > 0 and f ′(1) = bq > 1 imply that there is at
least one intersection in the range 0 < x < 1 when 1/b < q < 1. Thus there is indeed

a unique solution of the equation x =
(
1 − q(1 − x)

)b
in the range 0 < x < 1 when

1/b < q < 1, and this latter condition is implied by qc < q < 1. The degree of this
equation can be reduced by 1 (because of the solution x = 1), and it is easy to see
that the resulting equation is irreducible over the field of rational functions of q; thus
ξ is an algebraic function of q of degree b− 1. Since (1 − ξ)2 is a polynomial in ξ, it
is also an algebraic function of q of degree b− 1. Straightforward analysis shows that
Q → 1 as q → 1 with 1−Q = 1− (1− ξ)2 ∼ 1− 2(1− q)b, which may be interpreted
as saying that the main obstacle to linking when q → 1 is complete occupation either
of the b links adjacent to the input in rank 1, or of the b links adjacent to the output

in rank l − 1. As q → 1/b from above, we have (1 − ξ)2 ∼ (bq − 1)2/
(
b
2

)2
.

Theorem 1.2 was proved, under the additional restriction c ≤ 2, by Pippenger [P3],
so the additional contribution of the current paper consists of lifting this restriction.
Nevertheless, the techniques used in the current paper go considerably beyond those
employed in the previous paper in that the proof of Theorem 1.1 starts with a detailed
combinatorial examination of the intersections between paths, then uses complex-
variable techniques to determine the asymptotics of the quantities involved.

Spider-web networks were introduced by Ikeno [I] (though the term spider-web
has sometimes been used to refer to a broader class of networks). They have several
optimality properties among networks constructed from the same type and number of
crossbars. Takagi [T] showed that they have the largest linking probability in a large
class of crossbar networks called “rhyming” networks. Chung and Hwang [C] showed
that, surprisingly, these networks are not optimal in the larger class of “balanced”
networks. But Pippenger [P3] showed that they are asymptotically optimal in this
class for 1 < c ≤ 2, and the current paper extends this result to all c > 1.

The probability distribution on states that we use was introduced by Lee [L1]
and Le Gall [L2, L3]. It is by far the easiest to use for analytical purposes, but it
suffers from the defect that the set of busy vertices does not form a set of coherent
paths from inputs to outputs. Models addressing this defect have been introduced by
Koverninskĭı [K] and Pippenger [P1], and the results in [P3] have been extended to
these models in [P2]. It seems likely that the results of the the present paper can be
similarly extended.

The current paper is self-contained, except for some estimates concerning branch-
ing processes taken from Pippenger [P3]. We have followed the notation of that paper,
except that the base, which was denoted d in that paper, is now denoted b (to free

LINKING PROBABILITY OF SPIDER-WEB NETWORKS 147

the symbol d for its traditional use in the calculus).

2. The second moment. Our goal in this section is to prove Theorem 1.1. We
begin with a combinatorial result concerning spider-web graphs.

Lemma 2.1. The automorphism group of Gb,k,l acts transitively on the paths
from inputs to outputs.

Proof. Since an automorphism must permute the vertices within each rank, an
automorphism ϑ may be regarded as a sequence ϑ = (ϑ0, . . . , ϑl) of permutations, one
for each rank. We shall focus on automorphisms in which each ϑm (for 0 ≤ m ≤ l) is
characterized by a string ϑm,1 · · ·ϑm,k of k digits from the alphabet {0, . . . , b−1} and
acts on the vertices of rank m by carrying the vertex labeled a1 · · · ak to the vertex
labeled a′1 · · · a′k, where a′j ≡ aj + ϑm,j (mod b) for 1 ≤ j ≤ k. If, for 1 ≤ m ≤ l, the
string ϑm−1 differs from the string ϑm in at most position j, where j ≡ m (mod k),
then the sequence ϑ = (ϑ0, . . . , ϑl) will constitute an automorphism.

To show that the automorphisms act transitively on the paths, it will suffice to
show, for some fixed path u∗, that for every path u, there is an automorphism that
carries u∗ to u (since then the inverse of such an automorphism can be used to carry
any other path u′ to u∗). A path u may be regarded as a sequence u = (u0, . . . , ul)
of vertex labels in which, for 1 ≤ m ≤ l, the string um−1 differs from the string um

in at most position j, where j ≡ m (mod k). We shall choose for u∗ the path u∗ =
(0k, . . . , 0k). Then clearly the automorphism ϑ = (ϑ0, . . . , ϑl) defined by ϑm = um

for 0 ≤ m ≤ l carries u∗ to u.
Corollary 2.2. If l ≥ k, the graph Gb,k,l contains bl−k paths from any given

input to any given output; if l < k, there is at most one path from any given input to
any given output.

Proof. If l ≥ k, every input-output pair is joined by at least one path, since every
position in the strings labeling vertices has an opportunity to change at least once.
Thus, by Lemma 2.1 every input is joined by the same number of paths. Since each
of the bk inputs is the origin of bl paths to outputs, there are a total of bl+k paths
joining inputs to outputs, and thus bl−k paths joining each of the b2k input-output
pairs. If l < k, there is a path from input v to output w only if the labels of v and
w agree in the last k − l positions. Thus Gb,k,l breaks into bk−l disjoint components,
each containing bl vertices in each rank; there is a unique path joining input v to
output w if they belong to the same component, but no path joining them if they
belong to different components.

Corollary 2.3. If l ≥ k, the automorphism group of Gb,k,l acts transitively on
the input-output pairs.

Proof. If k ≥ k, each input-output pair is joined by a path, so the corollary follows
from Lemma 2.1.

This corollary, together with the fact that the probability distribution on states of
the graph is invariant under automorphisms of the graph, justifies our earlier assertion
that the linking probability Qv,w and the distribution of the random variable Xv,w

are independent of the choice of the input-output pair (v, w) when l ≥ k. Henceforth
we shall focus our attention on the input-output pair (v∗, w∗) = (0k, 0k). If l ≥ k,
this entails no loss of generality. When l < k, we shall deal only with cases in which
the input and output of interest are joined by a path, and in these cases there is again
no loss of generality.

Fix b ≥ 2 and k ≥ 1. For l ≥ 0, let ϕl(y) denote the generating function for the
number of paths from the input v∗ = 0k to the output w∗ = 0k classified according to
the number of links that have labels different from 0k; that is, the coefficient of ym in

148 NICHOLAS PIPPENGER

ϕl(y) is the number of paths from v∗ to w∗ that have l− 1−m links in common with
the path u∗ = (0k, . . . , 0k). Clearly ϕl(y) = 1 for 0 ≤ l ≤ k, and ϕl(y) is a polynomial
in y of degree l − 1 if l ≥ k + 1.

We are interested in the polynomials ϕl(y) for various values of l ≥ 0, with b and
k fixed. To determine them, it will be convenient to work with a graph Gb,k that
contains as subgraphs all the graphs Gb,k,l for various values of l. For any m ≥ l ≥ 0,
Gb,k,l may be regarded as the subgraph comprising the vertices in ranks 0 through l
and the edges in stages 1 through l of Gb,k,m. Thus we may define the infinite graph

Gb,k =
⋃
l≥k

Gb,k,l

as the union (inductive limit) of all these graphs. The graph Gb,k has inputs in rank 0,
but all other vertices will be referred to as links.

For l ≥ 0, the polynomial ϕl(y) is the generating function for the number of
paths from the input v∗ = 0k to the link labeled 0k in rank l classified according to
the number of links that have labels different from 0k.

Let

ψ(y, z) =
∑
l≥0

ϕl(y) z
l

be the generating function for the polynomials ϕl(y). The key to our estimate for the
second moment of X is the following proposition.

Proposition 2.4. We have

ψ(y, z) =
1 − byz + (b− 1)(yz)k+1

(1 − z)(1 − byz) − (b− 1)z(1 − y)(yz)k
.

Proof. In this proof, we shall employ a concise alternative representation of a
path u = (u0, . . . , ul) of length l ≥ 0 as a string t = t1 · · · tk+l of length k + l over
the alphabet B = {0, . . . , b − 1}. The first k digits t1 · · · tk of t will be the k digits
of the label u0. For 1 ≤ m ≤ l, tk+m will be the digit in position j of um, where
j ≡ m (mod k) (the digit of um that might be different from that of um−1). Then for
0 ≤ m ≤ l, um is the string tm+1 · · · tm+k. In particular, the last k digits of t are the
k digits of the label ul of the link in rank l, and the paths from the input v∗ = 0k

to the link labeled 0k in rank l are in one-to-one correspondence with the strings of
length k + l over the alphabet B, whose first k digits and last k digits are 0’s.

Given a path t = 0ktk+1 · · · tl−k0
k, let us overline each digit tk+m (1 ≤ m ≤ l)

for which um−1 �= 0k. The result is a string over the alphabet B ∪ B, where B =
{0, . . . , b− 1} is the set of overlined digits. For l ≥ 0, let the language Kl ⊆ (B∪B)k+l

comprise the strings obtained in this way for all paths from the input v∗ = 0k to the
link labeled 0k in rank l, and define K ⊆ (B ∪B)∗ by

K =
⋃
l≥0

Kl.

Then ψ(y, z) is the power series in y and z in which the coefficient of yjzl is the
number of strings of length k + l in K in which j digits are overlined. Let

L = 0−k K = {t ∈ (B ∪B)∗ : 0k t ∈ K}

LINKING PROBABILITY OF SPIDER-WEB NETWORKS 149

be the language obtained from K by deleting the k initial 0’s from each string. Since
none of this initial 0’s are overlined, ψ(y, z) is the power series in y and z in which
the coefficient of yjzl is the number of strings of length l in L in which j digits are
overlined.

Our next step is to write a regular expression for the language L. Define the

alphabets B′ = {1, . . . , b − 1} and B
′
= {1, . . . , b− 1}. Then L is described by the

regular expression((
Λ +

(
B

′ (
Λ + 0 + · · · + 0

k−1
))∗

B
′
0
k−1

)
0
)∗

,(2.1)

where Λ denotes the empty string. To see this, we observe that a string in L can be
uniquely parsed into zero or more stretches, each of which ends with an unoverlined 0.
A stretch consists of an unoverlined 0 optionally preceded by an excursion. An ex-
cursion consists of a final segment preceded by zero or more preliminary segments.

A final segment consists of a digit from B
′

followed by exactly k − 1 overlined 0’s.

A preliminary segment consists of a digit from B
′

followed by at most k − 1 over-

lined 0’s. Clearly a final segment is described by the regular expression B
′
0
k−1

, and

a preliminary segment is described by the regular expression B
′(

Λ + 0 + · · ·+ 0
k−1)

.
Thus an excursion is described by the regular expression(

B
′ (

Λ + 0 + · · · + 0
k−1

))∗
B

′
0
k−1

,

and a stretch is described by the regular expression(
Λ +

(
B

′ (
Λ + 0 + · · · + 0

k−1
))∗

B
′
0
k−1

)
0.

Thus the strings in L are described by the regular expression (2.1).
We now observe that the regular expression (2.1) is unambiguous in the following

sense: A string described by a subexpression R + S is described by R or by S (but
not both); a string t described by a subexpression RS has a unique parsing t = rs
such that r is described by R and s is described by S; and a string t described by a
subexpression S∗ has a unique parsing s = s1 · · · sn with n ≥ 0 such that s1, . . . , sn
are described by S.

For an unambiguous regular expression, if ψR(y, z) and ψS(y, z) are the generating
functions counting the strings described by subexpressions R and S, respectively, then
ψR(y, z)+ψS(y, z), ψR(y, z)ψS(y, z), and 1/

(
1−ψS(y, z)

)
are the generating functions

counting the strings described by the subexpressions R+S, RS, and S∗, respectively.
Thus the final segments are counted by the generating function (b− 1)(yz)k and

the preliminary segments are counted by the generating function

(b− 1)yz
(
1 + yz + · · · + (yz)k−1

)
=

(b− 1)(yz − (yz)k+1)

1 − yz
.

The excursions are counted by

(b− 1)(yz)k

1 − (b−1)(yz−(yz)k+1)
1−yz

=
(b− 1)((yz)k − (yz)k+1)

1 − yz − (b− 1)(yz − (yz)k+1)
,

and the stretches are counted by(
1 +

(b− 1)((yz)k − (yz)k+1)

1 − yz − (b− 1)(yz − (yz)k+1)

)
z =

z − yz2 − (b− 1)z(yz − (yz)k)

1 − yz − (b− 1)(yz − (yz)k+1)
.

150 NICHOLAS PIPPENGER

Thus the strings in L are counted by

1

1 − z−yz2−(b−1)z(yz−(yz)k)
1−yz−(b−1)(yz−(yz)k+1)

=
1 − byz + (b− 1)(yz)k+1

(1 − z)(1 − byz) − (b− 1)z(1 − y)(yz)k
,

which completes the proof of the proposition.
Proposition 2.5. Let b ≥ 2 and 0 < q < 1 be fixed. Then as k → ∞, and as

l ≥ 0 behaves in such a way that
(
log(l + 1)

)
/(k + 1) → 0, we have

ϕl(q) =

(
b− 1

bq − 1

)2

bl−kql+1 + 1 + O(lbl−2kql) + O(lqk) + O(lql).

(The constants in the O-terms may depend on b and q, but are independent of k and l.)
Proof. Write A(z) = 1− bqz + (b− 1)(qz)k+1 and B(z) = (1− z)(1− bqz)− (b−

1)z(1 − q)(qz)k so that ψ(q, z) = A(z)/B(z). Then from Cauchy’s formula we have

ϕl(q) =
1

2πi

∮
Γ0

ψ(q, z) dz

zl+1

=
1

2πi

∮
Γ0

A(z)

B(z)

dz

zl+1
,(2.2)

where Γ0 is a contour taken counterclockwise around a circle |z| = ε centered at 0 and
having radius ε sufficiently small to exclude all other singularities of the integrand.

To make further progress, we must estimate the locations of these other singu-
larities, which are poles at the values of z for which the denominator B(z) vanishes.
One such singularity is at z = 1/q. Let

ζ1 =
1

q

(
1 − 1

l

)
,

and let Γ1 be a contour taken counterclockwise around the circle |z| = ζ1 centered
at 0 and having radius ζ1. As z traverses this contour, the magnitude of the first term
(1 − z)(1 − bqz) of B(z) satisfies the lower bound

|(1 − z)(1 − bqz)| = |1 − z| · |1 − bqz|

≥
(

1

q
− 1 − 1

ql

)(
b− 1 − b

l

)

≥
(

1

q
− 1

)
(b− 1) − bq − 1

ql
,

since the minimum occurs when z is real and positive. The magnitude of the second
term, (b− 1)z(1 − q)(qz)k, on the other hand, satisfies the upper bound

|(b− 1)z(1 − q)(qz)k| ≤ (b− 1)

(
1

q
− 1

)(
1 − 1

l

)k+1

≤ (b− 1)

(
1

q
− 1

)
e−k/l

≤ (b− 1)

(
1

q
− 1

)(
1 − (e− 1)k

el

)
.

LINKING PROBABILITY OF SPIDER-WEB NETWORKS 151

Here we have used the inequality 1−x ≤ e−x, which holds for all x because the graph of
the convex function e−x lies above that of 1−x, its tangent at x = 0, and the inequality
e−x ≤ 1 − (e − 1)x/e, which holds for 0 ≤ x ≤ 1 because the graph of the convex
function e−x lies below that of 1− (e− 1)x/e, its chord across the interval 0 ≤ x ≤ 1.
Thus for all sufficiently large k (specifically, for k > (bq − 1)e/(b− 1)(1 − q)(e− 1)),
we have the bound

|B(z)| = Ω

(
1

l

)

for z on the contour Γ1. Since we also have A(z) = O(1) for z on Γ1, we have the
estimate

1

2πi

∮
Γ1

A(z)

B(z)

dz

zl+1
= O(l ql).(2.3)

Furthermore, as z traverses the contour Γ1, the value of the first term, (1−z)(1−
bqz), in B(z) circles the origin twice, since it is a quadratic polynomial. Since the
second term, (b − 1)z(1 − q)(qz)k, has strictly smaller magnitude, the value of B(z)
also circles the origin twice. It follows that the denominator of B(z) has exactly two
zeros inside the contour Γ1. These are perturbations of the zeros of the first term:
the zero of the first term at z = 1 is perturbed to one at

z = ζ2 = 1 + O(qk),(2.4)

and the zero of the first term at z = 1/bq is perturbed to one at

z = ζ3 =
1

bq

(
1 − (b− 1)(1 − q)

(bq − 1) bk
+ O

(
k

b2k

))
.(2.5)

The condition
(
log(l + 1)

)
/(k + 1) → 0 ensures that the O-terms in (2.4) and (2.5)

have smaller orders of magnitude than the terms preceding them. We observe that
0 < ζ3 < ζ2 < ζ1, and thus 0, ζ3, and ζ2 lie inside Γ1 and lie in that order along the real
axis. Let Γ2 be a contour taken counterclockwise around a circle |z− ζ2| = ε centered
at ζ2 and having radius ε sufficiently small to exclude all other singularities of the
integrand, and let Γ3 be a contour taken counterclockwise around a circle |z− ζ3| = ε
centered at ζ3 and having radius ε sufficiently small to exclude all other singularities
of the integrand. Since the integral of an analytic function around a contour depends
only on the homology class of the contour in the domain of analyticity of the function,
and since Γ0 is homologous to Γ1 − Γ2 − Γ3 (indeed, Γ0 is homotopic to a contour
that joins a forward traversal of Γ1 with reverse traversals of Γ2 and Γ3 by canceling
traversals of segments [ζ3 + ε, ζ2 − ε] and [ζ2 + ε, ζ1] of the real axis), from (2.2) we
have

ϕl(q) =
1

2πi

∮
Γ1

A(z)

B(z)

dz

zl+1

− 1

2πi

∮
Γ2

A(z)

B(z)

dz

zl+1

− 1

2πi

∮
Γ3

A(z)

B(z)

dz

zl+1
.(2.6)

The first integral in (2.6) has already been estimated in (2.3). The remaining
integrals circle just one singularity of the integrand, and thus they can be evaluated

152 NICHOLAS PIPPENGER

by Cauchy’s formula. If ζ is a simple pole of the integrand, and if Γ is a contour taken
clockwise around just this singularity of the integrand, then we have

1

2πi

∮
Γ

A(z)

B(z)

dz

zl+1
= Res

z=ζ

A(z)

B(z)

1

zl+1

=
A(ζ)

B′(ζ)

1

ζl+1
.

For the integral around Γ2, we have A(ζ2) = −(bq − 1) + O(qk) and B′(ζ2) = (bq −
1) + O(k qk) so that

− 1

2πi

∮
Γ2

A(z)

B(z)

dz

zl+1
= 1 + O(l qk).(2.7)

For the integral around Γ3 we have A(ζ3) = (b − 1)2(bq − 1) bk+1 + O(k/b2k) and
B′(ζ3) = −(bq − 1) + O(k/bk) so that

− 1

2πi

∮
Γ3

A(z)

B(z)

dz

zl+1
=

(
b− 1

bq − 1

)2

bl−k ql+1 + O(l bl−2k ql).(2.8)

Substituting the estimates (2.3), (2.7), and (2.8) into (2.6) completes the proof of the
proposition.

We observe that by extending the asymptotic expansions in (2.4) and (2.5), it is
possible to extend the expansions in (2.7) and (2.8) and thus reduce their contributions
to the error terms in Proposition 2.4. The error term in (2.3), however, cannot be
improved without taking account of the zeros of B(z) outside the circle |z| = 1/q,
which will in general contribute oscillatory terms to the expansion of ϕl(q).

Proof of Theorem 1.1. By Corollary 2.3, we may take X to be the number of idle
paths from v∗ = 0k to w∗ = 0k. We then have

Ex[X2] =
∑

u′:v∗→w∗

∑
u:v∗→w∗

Pr[u idle, u′ idle]

=
∑

u′:v∗→w∗

Pr[u′ idle]
∑

u:v∗→w∗

Pr[u idle | u′ idle],(2.9)

where the sums are over all paths from v∗ to w∗. For each path u′, we can find by
Lemma 2.1 an automorphism ϑ that carries u′ to the path u∗ in which all links are
labeled 0∗. Applying this automorphism to both u and u′ gives Pr[u idle | u′ idle] =
Pr[ϑ(u) idle | u∗ idle], since the probability distribution on states of the graph is
invariant under automorphisms. Furthermore,∑

u:v∗→w∗

Pr[u idle | u′ idle] =
∑

u:v∗→w∗

Pr[ϑ(u) idle | u∗ idle]

=
∑

u:v∗→w∗

Pr[u idle | u∗ idle],

since both right-hand sides sum the same terms in different orders. Thus the inner
sum in (2.9) is independent of u′, and we have

Ex[X2] =
∑

u′:v∗→w∗

Pr[u′ idle]
∑

u:v∗→w∗

Pr[u idle | u∗ idle]

LINKING PROBABILITY OF SPIDER-WEB NETWORKS 153

so that Ex[X2] factors as the product of two sums. The first sum is just Ex[X]. To
evaluate the second sum, we observe that Pr[u idle | u∗ idle] is just qj , where j is the
number of links on u that are not labeled 0k. Thus the second sum is ϕl(q), and the
theorem follows from Proposition 2.5.

3. The linking probability. Our goal in this section is to prove Theorem 1.2.
Thus in this section we shall always assume that b ≥ 2 and 0 < q < 1 are fixed and
that k → ∞ and l = ck for some fixed rational c > 1. Thus the constants in O-terms
may depend on c as well as on b and q, but not on k or l. We shall also assume that
k is even; the case of odd k requires only that k/2 be replaced with �k/2
 and �k/2�
in appropriate ways.

Lemma 3.1. Let G∗
b,k,l be the graph obtained from Gb,k,l by reversing the direc-

tion of its edges and exchanging the roles of its inputs and outputs. Then G∗
b,k,l is

isomorphic to Gb,k,l.
Proof. The isomorphism takes the vertex with label a1 · · · ak in rank m of Gb,k,l

to the vertex with label a∗1 · · · a∗k in rank l − m of G∗
b,k,l, where a∗i = aj with j ≡

l + 1 − i (mod k) (and, conversely, as it is an involution).
Lemma 3.1 establishes a symmetry between Gb,k,l and G∗

b,k,l, which we shall
invoke by use of the term “dually.” (When l is even, Gb,k,l is in fact isomorphic
to a graph with manifest bilateral symmetry, as is shown in the appendix of Pip-
penger [P3].)

Lemma 3.2. Let 〈Gb,k,l〉m,n, with 0 ≤ m ≤ n ≤ l, be the subgraph of Gb,k,l

comprising the vertices in ranks m (now considered inputs) through n (now considered
outputs) and the edges in stages m + 1 through n. Then 〈Gb,k,l〉m,n is isomorphic to
Gb,k,n−m.

Proof. The isomorphism takes the vertex with label a1 · · · ak in rank h of Gb,k,n−m

to the vertex with label a′1 · · · a′k in rank m + h of 〈Gb,k,l〉m,n, where a′i = aj with
j ≡ i + m (mod k).

Corollary 3.3. Between any given input and any given output of 〈Gb,k,l〉m,n,
there are bn−m−k paths if n−m ≥ k, and there is either one path or none if n−m < k.

Proof. The proof is immediate from Lemma 3.2 and Corollary 2.2.
We begin with the upper bound to Q. For 0 < q < qc, where qc = 1/b(c−1)/c,

we have Q → 0 by (1.2). For qc < q < 1, we shall use the following lemma from
Pippenger [P3, Cor. 4.2].

Lemma 3.4. Let Tr be a complete balanced b-ary tree of depth r, and let each
vertex of Tr (except for the root) be considered idle with probability q independently.
Let the random variable Zr denote the number of leaves (vertices at depth r) for which
every vertex on the path from the root (exclusive) to the leaf (inclusive) is idle. Then
we have

Pr[Zr = 0] = ξ + O(ηr)

as r → ∞ with b ≥ 2 and 1/b < q < 1 fixed, where ξ is the unique solution of the

equation
(
1− q(1− ξ)

)b
= ξ in the range 0 < ξ < 1, and η = b

(
1− q(1− ξ)

)b−1
< 1.

Now set r = k/2 and s = l− k/2. The paths from an input v to links in rank r of
Gb,k,l form a tree isomorphic to Tr (if we ignore the directions of the edges), and the
paths from links in rank s to an output w form a disjoint tree isomorphic to Tr. Thus
the number of links u in rank r for which all the links on the path from v to u are idle
is a random variable U with the same distibution as Zr. Dually, the number of links
u in rank s for which all the links on the path from u to w are idle is an independent
random variable U ′ with the same distribution as Zr. If v and w are linked, then we

154 NICHOLAS PIPPENGER

must have U ≥ 1 and U ′ ≥ 1, so by Lemma 3.1 we have

Q ≤ Pr[U ≥ 1, U ′ ≥ 1] = (1 − ξ)2 + O(ηr).

This completes the upper bound for Theorem 1.2.
We now turn to the lower bound for Theorem 1.2. Since this result has been

proved for c ≤ 2 in Pippenger [P3], we shall assume that c > 2. (This assumption could
of course be avoided, but it would require a more complicated choice of parameters and
consideration of cases.) For 0 < q < qc, there is nothing to prove, since Q is certainly
nonnegative. For qc < q < 1, we shall use the following lemma from Pippenger [P3,
Lem. 8.1].

Lemma 3.5. With Zr as in Lemma 3.4 and 1 ≤ H ≤ (bq)r, we have

Pr[Zr ≤ H] ≤ ξ + O
((
H/(bq)r

)α)
as r → ∞ with b ≥ 2 and 1/b < q < 1 fixed, where α = log(1/η)

/
log(bq) and η is as

in Lemma 3.4.
Supposing that qc < q < 1, we shall define

q∗ = qc−1 q
1/(c−1)2 .

We observe that q < 1 implies q∗ < qc−1 and that qc < q implies q∗ < q.
Lemma 3.6. Let k → ∞ and l = ck, with b ≥ 2, qc < q < 1, and c > 2 all fixed.

Then for all sufficiently large k, we have

ψh(q∗) ≤ k

for all 0 ≤ h ≤ l − k.
Proof. From Proposition 2.4 we have

ϕh(q∗) =

(
b− 1

bq∗ − 1

)2

bh−kqh+1
∗ + 1 + O(hbh−2kqh∗) + O(hqk∗) + O(hqh∗).

Since q∗ < qc−1 and h ≤ l−k, each term is O(1), and thus at most k for all sufficiently
large k.

Let

H = �(bq∗)r�.

We observe that v and w will be linked if the following three events occur:
I. The input v is joined by paths containing only idle links to all the links in a

set V containing at least H idle links in rank r.
II. All the links in a set W containing at least H idle links in rank s are joined

by paths containing only idle links to the output w.
III. There is at least one path containing only idle links from some link in V to

some link in W .
By Lemma 3.5, we have

Pr[I] ≥ 1 − ξ + O
((
q∗/q

)r)
,

and since q∗ < q we have Pr[I] → 1 − ξ. Dually, we have by Lemma 3.5

Pr[II] ≥ 1 − ξ + O
((
q∗/q

)r)
,

LINKING PROBABILITY OF SPIDER-WEB NETWORKS 155

and thus also Pr[II] → 1 − ξ. Since events I and II are independent, we have
Pr[I, II] → (1− ξ)2. Thus to complete the proof of the lower bound for Theorem 1.2,
it will suffice to show that

Pr[III | I, II] → 1.

Event III depends on events I and II through the sets V and W . We can avoid having
to consider this dependence by showing that Pr[III] → 1 for any sets V and W each
containing at least H links. Thus it will suffice to prove the following propostion.

Proposition 3.7. Let V and W be any sets of links in ranks r and s, respectively,
each containing at least H links. Then

Pr[III] → 1

as k → ∞ with l = ck, and with b ≥ 2, c > 2, and qc < q < 1 all fixed.
Proof. Since Pr[III] can only increase if links are added to V or W , we may

assume that V and W each contain exactly H links. Also, since Pr[III] can only
increase if q is increased, it will suffice to estimate Pr[III], assuming the vacancy
probability to be q∗ < q rather than q.

Let the random variable Y be the number of paths containing only idle links
joining some link in V (exclusive) to some link in W (exclusive). Then event III is
equivalent to Y ≥ 1 and thus it will suffice to show that Pr[Y = 0] → 0. To do this,
we shall use Chebyshev’s inequality:

Pr[Y = 0] ≤ Var[Y]

Ex[Y]2
.

Each path from a link in rank r (exclusive) to a link in rank s (exclusive) contains
s − r − 1 = l − k − 1 links. Since each of these links is independently idle with
probability q∗, the probability that such a path contains only idle links is ql−k−1

∗ . By
Corollary 3.3, the number of such paths joining a given link in rank r with a given
link in rank s is bs−r−k = bl−2k. Since there are H links in each of V and W , we have

Ex[Y] = H2 bl−2k ql−k−1
∗ .

Next we must estimate Var[Y]. We have

Var[Y] =
∑

u′:V→W

∑
u:V→W

(
Pr[u, u′ idle] − Pr[u idle] Pr[u′ idle]

)
=

∑
u′:V→W

Pr[u′ idle]
∑

u:V→W

(
Pr[u idle | u′ idle] − Pr[u idle]

)
.

Here each sum is over all H2 paths joining a link in V to a link in W , so there are H4

terms in all. If u is a path from a link in rank r to a link in rank s, let �(u) denote the
link in rank r and σ(u) the link in rank s. By Lemma 2.1, we may assume (as in the
proof of Theorem 1.1) that u′ = u∗ is part of a path from v∗ = 0k through �(u′) = 0k

and σ(u′) = 0k to w∗ = 0k, in which all the links have label 0k. Thus we have

Var[Y] = H2 bl−2k ql−k−1
∗

∑
u:V→W

(
Pr[u idle | u∗ idle] − Pr[u idle]

)
.

The factor H2 bl−2k ql−k−1
∗ multiplying the sum is Ex[Y], so to show that

Var[Y]/Ex[Y]2 → 0,

156 NICHOLAS PIPPENGER

it will suffice to show that J/Ex[Y] → 0, where

J =
∑

u:V→W

(
Pr[u idle | u∗ idle] − Pr[u idle]

)
.

We now partition the paths u into four classes as follows:
i. those for which �(u) = σ(u) = 0k;
ii. those for which �(u) �= 0k but σ(u) = 0k;
iii. those for which �(u) = 0k but σ(u) �= 0k; and
iv. those for which �(u) �= 0k and σ(u) �= 0k.

We shall denote the contributions to J over these four classes by Ji, Jii, Jiii, and Jiv,
respectively, and estimate them in turn.

For Ji, we have

Ji ≤
∑

u:0k→0k

Pr[u idle | u∗ idle]

= ϕs−r(q∗)

≤ k

by Lemma 3.6. Thus we have

Ji

Ex[Y]
≤ k

H2 bl−2k ql−k−1
∗

≤ k

bl−k ql∗
→ 0,

since q∗ > qc.
For Jii, we have

Jii ≤
∑

V \{0k}→0k

Pr[u idle | u∗ idle].

To estimate Pr[u idle | u∗ idle], let i be the first rank for which a link in u has
label 0k. Since there are two distinct paths in 〈Gb,k,l〉0,i from v∗ through �(u∗) = 0k

and �(u) �= 0k to this link, we must have i ≥ k + 1 by Corollary 3.3. Thus we have

Jii ≤ (H − 1)

⎛
⎝ ∑

k+1≤i≤k+r

qi−r−1
∗ ϕs−i(q∗) +

∑
k+r+1≤i≤s

bi−r−kqi−r−1
∗ ϕs−i(q∗)

⎞
⎠

≤ (H − 1)k

⎛
⎝ ∑

k+1≤i≤k+r

qi−r−1
∗ +

∑
k+r+1≤i≤s

bi−r−kqi−r−1
∗

⎞
⎠,

where the factor of H − 1 accounts for the choice of �(u) ∈ V \ {0k}, the factors
preceding ϕs−i(q∗) in the sums account for the probability that all the links on u
between ranks r (exclusive) and i (exclusive) are idle, the factors of ϕs−i(q∗) account
for the probability that all the links of u between ranks i and s that are not labeled 0k

are idle, and we have bounded ϕs−i(q∗) using Lemma 3.6. Bounding the sums by the

LINKING PROBABILITY OF SPIDER-WEB NETWORKS 157

number of terms (at most s− r = l − k) times the largest term (the first for the first
sum, and the last for the second), we have

Jii ≤ (H − 1)k (l − k)(q
k/2
∗ + bl−2kql−k−1

∗).

Thus we have

Jii

Ex[Y]
≤ k(l − k)(q

k/2
∗ + bl−2kql−k−1

∗)

H bl−2k ql−k−1
∗

≤ k(l − k)

(
1

bl−3k/2 ql−k
∗

+
1

(bq∗)k/2

)
→ 0,

since bc−3/2qc−1
∗ > bc−3/2qc−1

c = b−1/2q−1
c > b−1/2q−1

2 = 1 (because q∗ > qc, b
c−1qcc =

1, qc < q2, and bq2
2 = 1) and bq∗ > 1 (because q∗ > q∞ = 1/b).

Dually, we have Jiii/Ex[Y] → 0.
Finally, for Jiv we have

Jiv =
∑

u:V \{0k}→W\{0k}

(
Pr[u idle | u∗ idle] − Pr[u idle]

)

=
∑

u:V \{0k}→W\{0k}
u∩u∗
=∅

(
Pr[u idle | u∗ idle] − Pr[u idle]

)

≤
∑

u:V \{0k}→W\{0k}
u∩u∗
=∅

Pr[u idle | u∗ idle],

since if u ∩ u∗ = ∅, the events “u idle” and “u∗ idle” are independent, and the sum-
mand Pr[u idle | u∗ idle] − Pr[u idle] vanishes. Given a path u with u ∩ u∗ �= ∅, let i
be the first rank in which u has a link with label 0k, and let j ≥ i be the last such
rank. As in case ii, we have k+1 ≤ i, and dually we have j ≤ l−k−1. Thus we have

Jiv ≤ (H − 1)2

⎛
⎜⎜⎝ ∑

k+1≤i≤k+r

∑
l−k−r≤j≤l−k−1

i≤j

qi−r−1
∗ ϕj−i(q∗)q

s−j−1
∗

+
∑

k+1≤i≤k+r

∑
r≤j≤l−k−r−1

i≤j

qi−r−1
∗ ϕj−i(q∗)b

s−j−kqs−j−1
∗

+
∑

k+r+1≤i≤s

∑
l−k−r≤j≤l−k−1

i≤j

bi−r−kqi−r−1
∗ ϕj−i(q∗)q

s−j−1
∗

+
∑

k+r+1≤i≤s

∑
r≤j≤l−k−r−1

i≤j

bi−r−kqi−r−1
∗ ϕj−i(q∗)b

s−j−kqs−j−1
∗

⎞
⎟⎟⎠ .

Here we have broken the sum into four parts, according to whether k + 1 ≤ i ≤ k + r
or k + r + 1 ≤ i ≤ s, and also according to whether l − k − r ≤ j ≤ l − k − 1 or
r ≤ j ≤ l−k−r−1. (We note that the second and third double sums will vanish unless

158 NICHOLAS PIPPENGER

c > 5/2, and the fourth double sum will vanish unless c > 3.) The factor of (H − 1)2

accounts for the choice of �(u) ∈ V \ {0k} and σ(u) ∈ W \ {0k}, the factors preceding
ϕj−i(q∗) in the summands account for the probability that the links of u in ranks less
than i are idle, the factors of ϕj−i(q∗) account for the probability that the links of
u between i and j and not labeled 0k are idle, and the factors following ϕj−i(q∗) in
the summands account for the probability that the links of u in ranks greater than j
are idle. Bounding the factors ϕj−i(q∗) using Lemma 3.6, and bounding each double
summation by the number of terms (at most (l − k)2) times the largest term (which
occurs for i = k + 1 and j = l− k− r in the first sum, and for i = j in the remaining
three sums), we obtain

Jiv ≤ (H − 1)2k(l − k)2
(
qk∗ + 2bl−5k/2−1ql−k−2

∗ + bl−3kql−k−2
∗

)
.

Thus we have

Jiv

Ex[Y]
≤ k(l − k)2

(
1

(bq∗)l−2k
+

2

q∗bk/2+1
+

1

q∗bk

)
→ 0,

since bq∗ > 1, c > 2, and b ≥ 2. This completes the proof of the proposition, and with
it the proof of Theorem 1.2.

4. Conclusion. We have determined the limiting value of the linking probability
in spider-web networks with scale k and depth l when l = ck with c > 1. The same
method could be used when l/k → ∞ but

(
log(l + 1)

)
/(k + 1) → 0. In this case,

the phase transition would be less abrupt: the limiting value of Q, and even its first
derivative with respect to q, would be continuous at the critical value q∞ = 1/b,
but the second derivative would be discontinuous. Little would be gained by such
networks, however, over those with a large fixed value of c: Their great cost would
decrease the critical vacancy probability through only a small interval [q∞, qc], and
would provide only a small linking probability in this interval.

Another extension of our results would be to consider, instead of the “indepen-
dent” probability distribution on states introduced by Lee [L1] and Le Gall [L2, L3],
the “coherent” distribution introduced by Pippenger [P1]. (The similar distribution
introduced by Koverninskĭı [K] does not have an obvious generalization for c > 2, and
in any case it does not seem likely that the additional independence in Koverninskĭı’s
model would have much effect on its tractability for c > 2.)

Yet another line of inquiry would be to consider the computational complexity of
path-search problems for spider-web networks with c > 2, using the link-probe model
introduced by Lin and Pippenger [L4]. Such results were obtained by Pippenger [P4]
for c = 2 (and these results are easily extended to the case 1 < c < 2), but even for
c = 2 the known results are far from definitive.

Acknowledgments. The results reported in this paper were obtained during the
fourth meeting of the Institute for Elementary Studies, the Focused Research Group
on Problems in Discrete Probability, held July 12–26, 2003, at the Banff International
Research Station in Banff, Alberta, Canada. The author is especially grateful to Yuval
Peres, one of the organizers of that meeting, for urging continued faith in the power
of the second-moment method.

LINKING PROBABILITY OF SPIDER-WEB NETWORKS 159

REFERENCES

[B] S. R. Broadbent and J. M. Hammersley, Percolation processes. I. Crystals and mazes, Proc.
Cambridge Philos. Soc., 53 (1957), pp. 629–641.

[C] F. R. K. Chung and F. K. Hwang, The connection patterns of two complete binary trees,
SIAM J. Alg. Disc. Meth., 1 (1980), pp. 322–335.

[G] G. Grimmett, Percolation, 2nd ed., Springer-Verlag, Berlin, 1999.
[I] N. Ikeno, A limit of crosspoint number, IEEE Trans. Circuit Theory, 6 (1959), pp. 187–196.
[K] I. V. Koverninskĭi, Estimation of the blocking probability for switching circuits by means of

probability graphs, Problems Inform. Transmission, 11 (1975), pp. 63–71.
[L1] C. Y. Lee, Analysis of switching networks, Bell System Tech. J., 34 (1955), pp. 1287–1315.

[L2] P. Le Gall, Étude du blocage dans les systèmes de commutation téléphoniques automatiques
utilisant des commutateurs électroniques du type crossbar, Ann. Télécommun., 11 (1956),
pp. 159–171; 180–194; 197.

[L3] P. Le Gall, Méthod de calcul de l’encombrement dans les systèmes téléphoniques automatiques
a marquage, Ann. Télécommun., 12 (1957), pp. 374–386.

[L4] G. Lin and N. Pippenger, Routing algorithms for switching networks with probabilistic traffic,
Networks, 28 (1996), pp. 21–29.

[P1] N. Pippenger, On crossbar switching networks, IEEE Trans. Comm., COM-23 (1975), pp.
646–659.

[P2] N. Pippenger, The blocking probability of spider-web networks, Random Structures Algo-
rithms, 2 (1991), pp. 121–149.

[P3] N. Pippenger, The asymptotic optimality of spider-web networks, Discrete Appl. Math., 37/38
(1992), pp. 437–450.

[P4] N. Pippenger, Upper and lower bounds for the average-case complexity of path-search, Net-
works, 33 (1999), pp. 249–259.

[T] K. Takagi, Design of multi-stage link systems by means of optimum channel graphs, Electron.
Commun. Japan, 51 (1968), pp. 37–46.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 160–170

FULL RANK TILINGS OF FINITE ABELIAN GROUPS∗

MICHAEL DINITZ†

Abstract. A tiling of a finite abelian group G is a pair (V,A) of subsets of G such that 0 is in
both V and A and every g ∈ G can be uniquely written as g = v + a with v ∈ V and a ∈ A. Tilings
are a special case of normed factorizations, a type of factorization by subsets that was introduced
by Hajós [Casopsis Pĕst Path. Rys., 74, (1949), pp. 157–162]. A tiling is said to be full rank if
both V and A generate G. Cohen, Litsyn, Vardy, and Zémor [SIAM J. Discrete Math., 9 (1996),
pp. 393–412] proved that any tiling of Z

n
2 can be decomposed into full rank and trivial tilings. We

generalize this decomposition from Z
n
2 to all finite abelian groups. We also show how to generate

larger full rank tilings from smaller ones, and give two sufficient conditions for a group to admit a
full rank tiling, showing that many groups do admit them. In particular, we prove that if p ≥ 5 is a
prime and n ≥ 4, then Z

n
p admits a full rank tiling. This bound on n is tight for 5 ≤ p ≤ 11, and is

conjectured to be tight for all primes p.

Key words. tiling, full rank, finite abelian group, factorization, direct sum, Hamming codes

AMS subject classifications. 05B45, 20K01

DOI. 10.1137/S0895480104445794

1. Introduction. Throughout this paper G is a finite abelian group. A fac-
torization of G is a collection (A1, . . . , Ak) of subsets such that every g ∈ G can be
uniquely represented as a1 + · · · + ak, where ai ∈ Ai. A factorization is normed if
every subset in the factorization contains 0. A tiling is a special case of a normed
factorization in which there are only two subsets (usually denoted V and A rather
than A1 and A2). Any subset V for which there exists a subset A such that (V,A) is
a tiling of G is called a tile of G. Cohen, Litsyn, Vardy, and Zémor first introduced
this definition of a tiling in 1996 for the special case of tilings of Z

n
2 in [2], but it

extends perfectly well to arbitrary finite abelian groups. Before then, there was no
separate term for a normed factorization into two subsets, despite the fact that they
had been studied by Hajós [7], Rédei [14], Sands [16], and others. The term “tiling”
was a natural choice since all of [2] is phrased in terms of F

n
2 rather than Z

n
2 and a

tiling of a vector space is a natural concept. In particular, tilings of the Euclidean
space R

n have been studied extensively (see [15, 18]). But since tilings do not depend
on multiplicative structure, F

n
2 is identical to Z

n
2 with respect to tilings, and hence it

suffices to look at finite abelian groups rather than vector spaces over finite fields.
The study of factorizations of finite abelian groups by subsets was introduced by

Hajós in 1941 [6] as a tool to prove a conjecture on homogenous linear forms posed by
Minkowski. Hajós then began to study a certain type of factorization which he called
periodic (see [7]). A subset A ⊆ G is periodic if there is some nonidentity element
g ∈ G such that g+A = A and a periodic factorization is a factorization in which one
of the subsets is periodic. Hajós asked for which groups G any factorization into two
subsets G = A+B necessarily has either A or B periodic. This question was eventually
solved by Sands [16] after major contributions from de Bruijn [3] and Rédei [14].

∗Received by the editors August 26, 2004; accepted for publication (in revised form) September 1,
2005; published electronically March 3, 2006. This research was done at the University of Minnesota-
Duluth and was supported by NSF grant DMS-0137611 and NSA grant H-98230-04-1-0050.

http://www.siam.org/journals/sidma/20-1/44579.html
†Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213 (mdinitz@cs.

cmu.edu).

160

FULL RANK TILINGS OF FINITE ABELIAN GROUPS 161

A group G possesses the Rédei property if in every tiling (V,A) of G either V or
A is contained in a proper subgroup of G. The question of which groups possess the
Rédei property has been investigated since 1979, when Rédei [14] conjectured that
Z

3
p has the Rédei property for all primes p. If G does not possess the Rédei property

then there is some tiling (V,A) of G in which 〈V 〉 = 〈A〉 = G, where 〈S〉 denotes
the subgroup generated by S for any S ⊆ G. These tilings are said to be full rank
[2]. Note that having the Rédei property is equivalent to not admitting a full rank
tiling. Sands [17] asked whether every group has the Rédei property, which was shown
not to be the case by Fraser and Gordon [5], who used results from coding theory to
construct a full rank tiling of Z

6
5 as a counterexample.

Until recently the only motivation for studying full rank tilings was to find out
which groups had the Rédei property. Then in 1996 Cohen, Litsyn, Vardy, and Zémor
[2] found that any tiling of Z

n
2 can be decomposed into full rank tilings and trivial

tilings (a tiling is trivial if one of V or A is Z
n
2 and the other is just the zero vector).

This provided extra motivation for studying which elementary 2-groups (groups of
the form Z

n
2) admit full rank tilings (or equivalently do not have the Rédei property).

Cohen, Litsyn, Vardy, and Zémor [2] showed that there do not exist full rank tilings
of Z

n
2 when n ≤ 7 and that there do exist full rank tilings of Z

n
2 when n ≥ 112.

Etzion and Vardy [4] then constructed full rank tilings for n ≥ 14 using techniques
that, together with unpublished work of LeVan and Phelps, were used to construct
full rank tilings when n ≥ 10. Trachtenberg and Vardy then proved that Z

8
2 does not

admit a full rank tiling [24], and the question of full rank tilings of Z
n
2 was resolved

when Östergard and Vardy [9] showed that Z
9
2 does not admit a full rank tiling.

All of the work done on full rank tilings of Z
n
2 was actually done in terms of F

n
2 ,

since the authors were approaching the problem from a coding theory perspective
and were apparently not aware of much of the work done on the Rédei property or
the connection of full rank tilings to it.

It is interesting to note that work on full rank tilings of F
n
2 and work on the

Rédei property have proceeded almost independently. In the paper which started
work on tilings of F

n
2 , Cohen, Litsyn, Vardy, and Zémor [2] reference the work of

Hajós on periodic factorizations but do not reference any of the work done on the
Rédei property, and neither do any of the papers mentioned above that extend the
work of [2]. The only exception to this is a paper by Szabó and Ward [21] in which
they reference work done on the Rédei property to prove the existence of full rank
tilings of F

n
2 for n ≥ 14.

We begin in section 2 by generalizing the decomposition of Cohen, Litsyn, Vardy,
and Zémor [2, section 6] from Z

n
2 to arbitrary finite abelian groups. Then in section 3

we generalize a construction of Etzion and Vardy [4, section 5] and Szabó and Ward
[21, Lemma 1] to create a full rank tiling of a group from a full rank tiling of one of
its direct factors. Using this we devise two sufficient conditions for a group to admit
a full rank tiling, showing that many groups admit them. The first condition states
a group admits a full rank tiling if it contains as a direct factor a subgroup of the
type Za × Zb × Zc with a, b, and c composite. This is based on work done by Szabó
in [19]. Then in section 4 we extend the work done for Z

n
2 by showing that any group

containing Z
n
p with p ≥ 5 prime and n = 4 as a direct factor admits a full rank tiling.

Thus, there exists a full rank tiling of Z
n
p if p ≥ 5 is prime and n ≥ 4. A conjecture of

Rédei [14] implies that this is tight for all primes. This conjecture has been verified
for primes less than or equal to 11 by Szabó and Ward [22], which completely solves
the question of whether there exist full rank tilings of Z

n
p when p is 5, 7, or 11. We

conclude by discussing some remaining open problems on tilings.

162 MICHAEL DINITZ

2. Decomposition of tilings. In this section we study how tilings of arbitrary
finite abelian groups can be recursively decomposed, generalizing some of the work
done in [2] for Z

n
2 . We first develop a certain characterization of tilings which will

prove particularly useful. The notation V − V denotes {v1 − v2 : v1, v2 ∈ V }.
Proposition 1. Let V,A ⊆ G with 0 ∈ V and 0 ∈ A. Then (V,A) is a tiling of

G if and only if (V − V) ∩ (A−A) = {0} and |V ||A| = |G|.
Proof. Suppose that (V − V) ∩ (A − A) = {0} and |V ||A| = |G|. Assume that

v1 + a1 = v2 + a2. Then v1 − v2 = a2 − a1 = 0, so v1 = v2 and a1 = a2, and thus the
representation of each element of V + A is unique. Since |V ||A| = |G|, we have that
V + A = G and thus (V,A) is a tiling of G.

Now let (V,A) be a tiling of G, and suppose that (V −V)∩ (A−A) 	= {0}. Then
there exist distinct elements v1 and v2 in V and a1 and a2 in A such that v1 − v2 =
a1−a2, and so v1+a2 = v2+a1. Thus (V,A) is not a tiling. If (V −V)∩(A−A) = {0}
and |V ||A| 	= |G|, then clearly |V ||A| < |G| so some element of G is not in V +A and
thus (V,A) is not a tiling.

Note that the |V ||A| = |G| condition can be replaced with the condition V +A = G
if needed. To motivate our discussion of full rank tilings, we give one reason why the
subgroup generated by a tile is of interest.

Proposition 2. A subset V ⊆ G is a tile of G if and only if it is a tile of 〈V 〉.
Proof. Suppose that V is a tile of 〈V 〉. Since 〈V 〉 is a subgroup of G it is clearly

a tile of G. Let (〈V 〉, A1) be a tiling of G and let (V,A0) be a tiling of 〈V 〉. Then
clearly (V,A0 + A1) is a tiling of G.

Suppose that (V,A) is a tiling of G. Let A0 = A ∩ 〈V 〉. Since A0 ⊆ A and
(V − V) ∩ (A − A) = {0}, we have that (V − V) ∩ (A0 − A0) = {0}. Clearly
V + A0 ⊆ 〈V 〉. Since 〈V 〉 ⊆ G = V + A, any w ∈ 〈V 〉 can be written as w = v + a
with v ∈ V and a ∈ A. Then a = w− v ∈ 〈V 〉 since 〈V 〉 is a subgroup, and so a ∈ A0.
Hence 〈V 〉 ⊆ V + A0, so V + A0 = 〈V 〉 and thus (V,A0) is a tiling of 〈V 〉.

Because of this proposition we are naturally interested in tilings (V,A) in which
〈V 〉 = G. Tilings with this property are called proper tilings, a term devised by Cohen,
Litsyn, Vardy, and Zémor [2] that was originally used only for tilings of Z

n
2 . The

following theorem is a generalization to arbitrary finite abelian groups of Theorem 6.2
in [2], the original decomposition showing that every tiling of Z

n
2 can be decomposed

into proper tilings of its subgroups. This generalization shows that the classification
of all tilings of G can be reduced to the study of all proper tilings of the subgroups
of G.

Theorem 3. Let V be a tile of G with 〈V 〉 	= G. Let z = |G|/|V |, and let
m = |G|/|〈V 〉|. The pair (V,A) is a tiling of G if and only if A has the following
form:

1. For i = 0, 1, . . . ,m− 1, let Ai ⊂ 〈V 〉 be such that (V,Ai) is a tiling of 〈V 〉.
2. Let c0 = 0, c1, . . . , cm−1 be a set of coset representatives for G/〈V 〉.

Then

A = A0 ∪ (c1 + A1) ∪ · · · ∪ (cm−1 + Am−1).(1)

Proof. Suppose that A is as in (1). Then |Ai| = z/m so |A| = z and |V ||A| = |G|.
So we just need to show that (V − V) ∩ (A − A) = {0}. Note that any element of
A−A has one of the following forms:

1. (ci + ai) − (ci + ai) = 0,
2. (ci + ai1) − (ci + ai2) = ai1 − ai2, or
3. (ci + ai) − (cj + aj), for i 	= j,

FULL RANK TILINGS OF FINITE ABELIAN GROUPS 163

where ai, ai1, ai2, aj ∈ A. Let U denote the set of elements of type 2, and let W denote
the set of elements of type 3. Clearly any element of U is also an element of some
Ai −Ai, so since (V −V)∩ (Ai −Ai) = {0} for all i we have that (V −V)∩U = {0}.
Since ci − cj 	∈ 〈V 〉 for all i 	= j and Ai ⊂ 〈V 〉 for all i, it follows that 〈V 〉 and W are
disjoint, so (V − V) ∩W = ∅ and hence (V,A) is a tiling of G.

Now let (V,A) be a tiling of G. Pick a set of representatives c0 = 0, c1, . . . , cm−1

of G/〈V 〉 and let Ai = −ci+(A∩(ci+〈V 〉)). We start by showing that we can always
pick representatives of G/〈V 〉 so that 0 ∈ Ai for all i. If 0 	∈ Ai for some i, then let
ai ∈ Ai and let c′i = ai + ci. Note that c′i represents the same coset of 〈V 〉 as ci since
ai ∈ Ai ⊂ 〈V 〉. If we let A′

i be the set we get by replacing ci with c′i in the definition
of Ai, then we get that A′

i = −ai − ci + (A ∩ (ai + ci + 〈V 〉)) = −ai + Ai. Together
with the fact that ai ∈ Ai, this gives us that 0 ∈ A′

i, so we could have simply started
with c′i instead of ci. Thus we can assume the 0 ∈ Ai for all i.

We have that ci + Ai = A ∩ (ci + 〈V 〉), so

m−1⋃
i=0

(ci + Ai) =

m−1⋃
i=0

(A ∩ (ci + 〈V 〉)) = A.(2)

Now we need to show that (V,Ai) is a tiling of 〈V 〉 for all i. Any element of Ai is
of the form −ci+a, so any element of Ai−Ai is of the form a1−a2. So Ai−Ai ⊆ A−A
and thus (Ai − Ai) ∩ (V − V) = {0}. Note that Ai ⊂ 〈V 〉, so V + Ai ⊆ 〈V 〉. Thus
to establish that (V,Ai) is a tiling of 〈V 〉, it remains to show that |Ai| = z/m. Since
(V − V) ∩ (Ai − Ai) = {0} and V + Ai ⊆ 〈V 〉, we obviously have that |Ai| ≤ z/m.

However, z = |A| ≤
∑m−1

i=0 |Ai| by (2), so |Ai| = z/m for all i.
Theorem 3 implies that if all of the proper tilings of the subgroups of G are

known, then we can construct all the tilings of G. However, proper tilings can be
decomposed further by simply switching the roles of V and A. Suppose that (V,A) is
a (proper) tiling of 〈V 〉, and consider the tiling (A, V). Unless 〈A〉 = 〈V 〉 this tiling
is not proper, so by the above theorem

V = V0 ∪ (c1 + V1) ∪ · · · ∪ (cm−1 + Vm−1),(3)

where (A, Vi) is a proper tiling of 〈A〉 for all i and the elements 0, c1, . . . , cm are
representatives of 〈V 〉/〈A〉. So by using (3), each of the tilings (V,Ai) of Theorem 3
can be decomposed into tilings of subgroups unless 〈V 〉 = 〈Ai〉. This process can be
iterated until the remaining tilings are either trivial or of full rank. So any tiling can
be decomposed into full rank and trivial tilings of its subgroups.

We can, however, decompose full rank tilings even further, into nonperiodic full
rank tilings. For any subset A ⊆ G, let A0 = {g ∈ G : g + A = A} denote the set of
periodic points of A. By definition A0 = {0} if and only if A is nonperiodic. In the
literature A0 is sometimes referred to as the kernel of A (see [1, 10, 12]), particularly
in regard to tilings derived from codes. Note that if 0 ∈ A, then A0 ⊆ A. The
following proposition is rather obvious, first appearing in terms of codes over GF(2)
[1], but can easily be generalized to finite abelian groups.

Proposition 4. If 0 ∈ A, then A0 is a subgroup of G contained in A and A is
the union of disjoint cosets of A0.

Proof. Let a1, a2 ∈ A0. Then (a1 + a2) + A = a1 + (a2 + A) = a1 + A = A, so
a1 + a2 ∈ A0. Since every a ∈ A0 has some finite order this implies that −a ∈ A0 and
thus A0 is a subgroup of G. Now let a ∈ A. Then a + A0 ∈ A by the definition of

164 MICHAEL DINITZ

A0, so A is the union of cosets of A0. These cosets are clearly disjoint since A0 is a
subgroup of G, proving the proposition.

If A′ ⊆ A is a set of representatives for A/A0, then it follows from this proposition
that A′ + A0 = A. Now we show how to reduce tilings by the kernel of one of the
subsets.

Theorem 5. Let (V,A) be a tiling of G, and let A0 be the kernel of A. Then
(V/A0, A/A0) is a tiling of G/A0.

Proof. Let ϕ : G → G/A0 be the natural homomorphism. Suppose that the
restriction of ϕ to V (which takes V to V/A0) is not one-to-one. Then there exist
distinct elements v1 and v2 in V such that ϕ(v1) = ϕ(v2) = v′ +A0. So ϕ(v1 − v2) =
ϕ(v1)− ϕ(v2) = (v′ +A0)− (v′ +A0) = A0, which implies that v1 − v2 ∈ A0. This is
a contradiction since A0 ⊆ A and (V −V)∩ (A−A) = {0}. Hence |V/A0| = |V |, and
thus |V/A0| · |A/A0| = |G/A0|.

Suppose that there exist distinct elements v′1 and v′2 in V/A0 and a′1 and a′2
in A/A0 such that v′1 − v′2 = a′1 − a′2. Then there exist v1, v2 ∈ V, v1 	= v2 and
a1, a2 ∈ A, a1 	= a2 such that (v1 − v2) + A0 = (a1 − a2) + A0. So there is some
a0 ∈ A0 such that v1 − v2 = a1 − a2 + a0, and since a0 ∈ A0 this implies that
there is some a3 ∈ A such that v1 − v2 = a1 − a3, which is a contradiction since
(V − V) ∩ (A−A) = {0}. Thus (V/A0, A/A0) is a tiling of G/A0.

Proposition 6. If (V,A) is a full rank tiling of G, then (V/A0, A/A0) is a full
rank tiling of G/A0.

Proof. We know from Theorem 5 that (V/A0, A/A0) is a tiling of G/A0, so we
just need to show that it is full rank. Let w + A0 ∈ G/A0. Since 〈V 〉 = G, there
are v1, . . . , vk ∈ V , not necessarily distinct, such that v1 + · · · + vk = w. Then
(v1 +A0)+ · · ·+(vk +A0) = w+A0. Hence 〈V/A0〉 = G/A0. By the same argument,
〈A/A0〉 = G/A0, so (V/A0, A/A0) is a full rank tiling of G/A0.

The following propositions concern the periodicity of the tiling resulting from this
decomposition.

Proposition 7. A/A0 is nonperiodic.
Proof. Let a be a periodic point of A/A0, and let A′ be a set of representatives for

A/A0 including 0. Let c + A0 represent a, where c ∈ A′. Then clearly c is a periodic
point of A and so is an element of A0. However, A′ ∩ A0 = {0}, and hence c = 0, so
a = 0.

Proposition 8. V/A0 is periodic if V is periodic.
Proof. Let v0 be a nonzero periodic point of V . Then since v0 + v ∈ V for any

v ∈ V , we have that ϕ(v0) +ϕ(v) ∈ ϕ(V), so ϕ(v0) is a periodic point of V/A0. From
the proof of Theorem 5 we know that |V | = |V/A0|, so ϕ(v0) 	= 0 and thus V/A0 is
periodic.

By Proposition 8, after an application of Theorem 5 we can switch V/A0 and
A/A0 and apply it again. Since at each iteration one of the subsets loses all of its
periodic points, this might seem to imply that this recursion never needs to be carried
out more than twice, but it turns out that the other subset can acquire new periodic
points. Cohen, Litsyn, Vardy, and Zémor [2, section 8] provide an example of this in
Z

7
2. The recursion will stop eventually, though, so we are interested not only in full

rank tilings but especially in nonperiodic full rank tilings. Note that Proposition 6
also gives us a way to construct smaller full rank tilings from larger ones, which is
helpful when trying to determine which groups admit full rank tilings.

3. Constructing full rank tilings of product groups. Etzion and Vardy [4,
Construction C] developed a construction to build a full rank tiling of Z

n+1
2 from a

FULL RANK TILINGS OF FINITE ABELIAN GROUPS 165

full rank tiling of Z
n
2 , and Szabó and Ward [21, Lemma 1] developed a similar but

more general construction to allow the direct product with arbitrary cyclic groups
rather than just Z2. We generalize both of these to a construction that gives a full
rank tiling of any finite abelian group having some direct factor with a full rank
tiling.

Theorem 9. If there is a full rank tiling (V,A) of G, then there is a full rank
tiling of G × H, where G is any nontrivial finite abelian group and H is any finite
abelian group.

Proof. Szabó and Ward [21, Lemma 1] proved this for the case when H = 〈k〉 is
cyclic and there is an element a ∈ A \ {0} such that 〈A \ {a}〉 = G. They did this by
letting V ′ = {(v, h) : v ∈ V, h ∈ H} and A′ = {(a′, 0) : a′ ∈ (A \ {a})} ∪ {(a, k)} and
proving that (V ′, A′) is a full rank tiling of G × H. Note that the element (0, k) is
not necessary for 〈V ′〉 to equal G×H since (v, k) and (v, k + k) are both elements of
V ′ and (v, k + k) − (v, k) = (0, k). So we can switch the roles of V and A and repeat
for another cyclic group by letting (0, k) play the role of a. Since any finite abelian
group can be decomposed into the direct product of cyclic groups, if there is initially
some a ∈ A \ {0} that is not necessary for A to generate G, then there is a full rank
tiling of G×H for any finite abelian group H.

The only case when there is not such an a is when both A \ {0} and V \ {0}
are minimal generating sets of G. Let m equal the sum of the multiplicities of the
prime divisors of |G|. We first show that any minimal generating set of G has at
most m elements. Let A = {a1, . . . , ak} be a minimal generating set of G. Let

Gi = 〈a1, . . . , ai〉, where G0 = {0}. Note that
∏k−1

i=0 |Gi+1|/|Gi| = |G|. We know that
Gi is a proper subgroup of Gi+1 since A is a minimal generating set, which means
that |Gi+1|/|Gi| > 1 for all i. Hence k ≤ m. So if (V,A) is a full rank tiling and
V \ {0} and A \ {0} are both minimal generating sets, then (m + 1)2 ≥ |G|. Clearly
m ≤ �log2 |G|�, so (�log2 |G|� + 1)2 ≥ |G|. This is true only if 1 ≤ |G| ≤ 36. Since
|G| = |V ||A|, it is only possible for both V and A to have at most m + 1 elements
when |G| is 2, 4, 6, 8, 9, 12, or 16, so we consider the finite abelian groups of those
orders. Clearly any tiling of Z2 is trivial. Rédei [13] proved that if both V and A
have prime order, then one of them is a subgroup of G, which implies that there are
no full rank tilings of Z2 × Z2, Z6, Z3 × Z3, Z4, or Z9.

For the |G| = 8, |G| = 12, and |G| = 16 cases we need a few results on the Hajós
property. We say that a finite abelian group G has the Hajós property if in any tiling
(V,A) of G at least one of V and A is periodic. Groups with the Hajós property have
been completely classified [16]. In particular, all finite abelian groups of order 8, 12,
or 16 have the Hajós property. Szabó [20, Lemma 1] has shown that if a finite abelian
group has the Hajós property, then it has no full rank tilings.

Szabó [19, section 4] has proven that there exists a full rank tiling of the direct
product of at least three cyclic groups of composite orders other than 4 or 6. We
remove the restriction that the orders not be 4 or 6 and combine it with Theorem 9
to get the following theorem.

Theorem 10. If G has Za×Zb×Zc as a direct factor, where a, b, c are composite,
then G has a full rank tiling.

Proof. Let G be the direct product of cyclic groups of orders m1,m2,m3 (all
composite) and generators g1, g2, g3 respectively. Let vi = mi/ui, where ui is the
smallest prime divisor of mi. Also let [g]m denote the set {0, g, 2g, . . . , (m− 1)g}. If
V = {(a, b, c) : a ∈ [g1]u1 , b ∈ [g2]u2

, c ∈ [g3]u3
} and A = {(a, b, c) : a ∈ [u1g1]v1

, b ∈
[u2g2]v2 , c ∈ [u3g3]v3}, then it is not hard to see that (V,A) is a tiling of G. Let π be
some cyclic permutation of {1, 2, 3}, and define the following two sets:

166 MICHAEL DINITZ

X =

3⋃
i=1

{(a1, a2, a3) : ai ∈ [uigi]vi and aπ(i) = uπ(i)gπ(i) and aπ−1(i) = 0}

Y =

3⋃
i=1

{(a1, a2, a3) : ai ∈ [uigi]vi + gi and aπ(i) = uπ(i)gπ(i) and aπ−1(i) = 0}.

Note that X ⊂ A. Szabó [19, section 2] proved that if A′ = A ∪ Y \X then (V,A′) is
a tiling of G, and the tiling is full rank if vi is at least 4 for all i. Note that if j = π(i)
and vj = 3 then 0, ujgj + gi, 2ujgj ∈ A′, so 2ujgj + (ujgj + gi) = gi ∈ 〈A′〉. If vj > 3
then 3ujgj ∈ A′, so 3ujgj−2ujgj = ujgj ∈ 〈A′〉 and thus ujgj +gi−ujgj = gi ∈ 〈A′〉.
So if every vi is at least 3 then (V,A′) is a full rank tiling of G.

If vi = 2 for all i then ui = 2, and G is the group Z4×Z4×Z4. It is easy to check
by hand that Szabó’s construction results in a full rank tiling. In the final case, there
is some vj > 2. Let i = π−1(j). Then by the above argument gi ∈ 〈A′〉. Let k = π(j).
Since π is cyclic, k = π−1(i). By definition uigi + gk ∈ A′, so since gi ∈ 〈A′〉 we have
that gk ∈ 〈A′〉. Also, ukgk + gj ∈ A′, so gj ∈ 〈A′〉. Thus 〈A′〉 = G, so (V,A′) is a full
rank tiling of G. Now by Theorem 9 any group containing G as a direct factor has a
full rank tiling, which proves the theorem.

4. Constructions using codes. In this section we get another sufficient condi-
tion for G to admit a full rank tiling by using codes. We will work in vector spaces over
finite fields in this section since we will on occasion use properties of the vector space.
However, as noted in the introduction a tiling of a vector space is also a tiling of the
additive group associated with that space, so at the end of the section we translate
our main result back to groups. Throughout this section p is a prime. The Hamming
distance of two n-tuples is the number of coordinates in which they differ. A perfect
code is a subset C ⊂ F

n
q such that (C, SR(0)) is a tiling of F

n
q , where SR(0) is the

Hamming ball of radius R centered on 0 [8]. Since a Hamming ball clearly generates
the entire space, this gives a full rank tiling if the code itself generates the entire
space. An important special case of perfect codes are the Hamming codes, which are
the linear perfect codes for R = 1 (see [8]). A Hamming code forms a proper subspace
of F

n
q , and so does not immediately result in a full rank tiling. However, we will see

how to slightly modify a Hamming code to get a full rank tiling.
Sands posed the question of whether every group has the Rédei property in [17].

Answering this question in the negative, Fraser and Gordon [5] constructed a full rank
tiling of F

6
5 by applying permutations of GF(5) to a Hamming code. They state that

their construction generalizes to provide an infinite number of counterexamples, but
they omit the details. We begin by generalizing their argument to show that there
exist full rank tilings of F

p+1
p , where p ≥ 5 is prime. We do this by starting out with

the same code they do, a Hamming code on F
p+1
p , and then permute the values in

the first two coordinates of the vectors in the code. Permuting only the first two
coordinates is a property that will prove important when computing the kernel. Let
p ≥ 7 be prime and let H be the following 2 × (p + 1) matrix:

H =

(
0 1 1 1 · · · 1
1 0 1 2 · · · p− 1

)
.

Let C = {u ∈ F
p+1
p : HuT = 0}. It is easy to show that C is a Hamming code,

which implies that (C, S1(0)) is a tiling of F
p+1
p . It is not a full rank tiling since C is a

proper subspace of F
p+1
p of dimension p− 1. Let ui = (p− i, p− 1, 0, . . . , 0, 1, 0 . . . , 0),

where the 1 is in the (i+2)nd coordinate. Note that {u1, u2, . . . , up−1} is a basis for C.

FULL RANK TILINGS OF FINITE ABELIAN GROUPS 167

Now let πi, for i = 1, . . . , p + 1, be permutations of the elements of GF(p). Then
the map

π : (x1, . . . , xp+1) �→ (π1(x1), . . . , πp+1(xp+1))

from F
p+1
p to itself clearly preserves the Hamming distance. Hence π(C) is still a

perfect code with R = 1 for any choice of the πi’s. We will use this fact to construct
full rank tilings from C.

Proposition 11. There exists a full rank tiling of F
p+1
p if p ≥ 5.

Proof. Let π1 = ((p − 3)(p − 4)) be the transposition interchanging p − 3 and
p − 4, let π2 = ((p − 2)(p − 3)) be the transposition interchanging p − 2 and p − 3,
and let every other πi be the identity permutation. We claim that (π(C), S1(0)) is a
full rank tiling of F

p+1
p for p ≥ 7. The basis we constructed of F

p+1
p gets mapped to

p− 1 linearly independent vectors since only the first two coordinates get permuted.
Also, π(u1 + u2) = (p− 4, p− 3, 1, 1, 0, . . . , 0) is another linearly independent vector,
since otherwise the 1’s in the third and fourth coordinates would force it to equal
π(u1) + π(u2), which it does not since π(u1) + π(u2) = (p− 3, p− 2, 1, 1, 0, . . . , 0).

Now consider the vector π(u5 +up−1) = (p−3, p−3, 0, . . . , 0, 1, 0, . . . , 0, 1), where
the 1’s are in the seventh and the p + 1st coordinates. Assume that this is a linear
combination of the previous p vectors. Because of the placement of the 1’s it is clear
that π(u5) and π(up−1) each have a coefficient of 1 in this linear combination, so
the remaining parts of the linear combination must sum to π(u5 + up−1) − π(u5) −
π(up−1) = (1, p − 1, 0, . . . , 0). Clearly the remaining π(ui)’s other than π(u1) and
π(u2) do not appear in the linear combination. The only way π(u1) and π(u2) can
contribute is if each has the negative coefficient of π(u1 + u2). If x is the coefficient
of π(u1 + u2), then we get the following two equations from the first and second
coordinate, respectively:

(p− 1)(−x) + (p− 2)(−x) + (p− 4)x = 1

(p− 1)(−x) + (p− 1)(−x) + (p− 3)x = p− 1

The left-hand side of each equation simplifies to (p−1)x, which is a contradiction
since (p−1)x cannot equal both 1 and p−1. Thus the coefficients of π(u1), π(u2), and
π(u1+u2) are zero, so π(u5+up−1) = π(u5)+π(up−1). However, this is a contradiction
since π(u5) + π(up−1) = (p − 4, p − 2, . . .). Hence {π(ui) : 1 ≤ i ≤ p − 1} ∪ {π(u1 +
u2)} ∪ {π(u5 + up−1)} is a linearly independent set of size p + 1, and therefore forms
a basis of F

p+1
p . Thus 〈π(C)〉 = F

p+1
p , so (π(C), S1(0)) is a full rank tiling of F

p+1
p .

Since we used u5 this only works when p ≥ 7, but the full rank tiling of F
6
5 given by

Fraser and Gordon starts with the same basis as our construction ({u1, u2, . . . , up−1})
and just uses different permutations (still only changing the elements in the first two
coordinates).

To get even smaller full rank tilings we find the kernel of π(C) and use Proposi-
tion 6.

Proposition 12. There exist full rank tilings of F
4
p when p ≥ 5.

Proof. Since C is a Hamming code, it is a subgroup of F
p+1
p , and so every element

of C is a periodic point. The map π used in Proposition 11 only changes the first
two coordinates of a vector, so any element of C that has 0’s in the first and second
coordinates is still a periodic point of π(C). We claim that these vectors form a
subspace of dimension at least p − 3. To see this, let ui = (0, 0, . . . , 0, 1, 0, . . . , 0, i −
1, p − i), where the 1 is in the ith coordinate, for 3 ≤ i ≤ p − 1. Note that 1 + (i −

168 MICHAEL DINITZ

1) + (p − i) = 0 and i − 2 + (i − 1)(p − 2) + (p − i)(p − 1) = 0, so HuT
i = 0 for all

i, and thus each of these p− 3 vectors is a periodic point of π(C). They are linearly
independent, which shows that the periodic points form a subspace of dimension at
least p− 3. Thus by Proposition 6 there is a full rank tiling of F

4
p.

Now we use Proposition 12 to obtain another sufficient condition for a finite
abelian group to admit a full rank tiling.

Theorem 13. If G has Z
4
p with p ≥ 5 as a direct factor, then G admits a full

rank tiling.
Proof. Proposition 12 proves that there exists a full rank tiling of F

4
p. Since tilings

depend only on the additive group structure, this is the same thing as saying that
there is a full rank tiling of Z

4
p. Combining this with Theorem 9 we get that any

group containing Z
4
p as a direct factor has a full rank tiling.

Rédei [14] conjectured that there do not exist full rank tilings of Z
3
p for any p.

This conjecture is still open, but it has been verified for p ≤ 11 (see [22]), so when p
is 5, 7, or 11 we know exactly for which values of n there is a full rank tiling of Z

n
p .

Unfortunately we could not get as strong a bound for the case when p = 3. The
construction that we have been using does not work when p = 3, so we need to use
something else. Phelps, Rifa, and Villanueva [11] have recently found full rank perfect
codes of F

n
p when n = (pm − 1)/(p − 1), where m ≥ 4, with a kernel of dimension

(p − 1)m−1. So when p = 3 this gives the existence of full rank tilings for Z
n
3 for

all n ≥ ((p4 − 1)/(p − 1)) − (p − 1)3 = 4p2 − 2p + 2 = 32. Thus there exists a full
rank tiling of Z

n
3 if n ≥ 32. This is not nearly as good a bound as we have for either

p = 2 or p ≥ 5, so it can almost definitely be improved. The only lower bound in the
literature says that there do not exist full rank tilings of Z

n
3 when n ≤ 4 [23], so it is

not known whether Z
n
3 admits a full rank tiling for 5 ≤ n ≤ 31.

5. Open problems. Probably the most tractable open problem remaining is
the one mentioned at the end of the last section, the existence of full rank tilings of
Z
n
3 for 5 ≤ n ≤ 31. Since p = 3 allows more freedom in the construction than p = 2

but less than p = 5, we conjecture that there is some k with 4 < k ≤ 10 for which Z
n
3

has a full rank tiling if and only if n ≥ k. As with other cases of Z
n
p , we suspect that

coding theory approaches will prove valuable, in particular finding full rank perfect
ternary codes.

A more difficult open question is what conditions on G are necessary for G to
admit a full rank tiling. We know that neither of our two sufficient conditions is
necessary on its own, and we suspect that it is not necessary for either of them to be
satisfied for G to have a full rank tiling. We have shown that many groups admit full
rank tilings, so our conditions are close to necessary, but there is no reason to think
that we have characterized all groups admitting full rank tilings. An easier subproblem
of this is Rédei’s conjecture, mentioned previously, that Z

3
p does not admit a full rank

tiling for any prime p. This conjecture is still wide open, with the only progress being
a computer check for p ≤ 11 by Szabó and Ward [22]. This conjecture immediately
implies that our bound of n ≥ 4 for the existence of full rank tilings of Z

n
p with p ≥ 5

is tight and so if proved would give a complete characterization of which elementary
p-groups (p ≥ 5) admit full rank tilings.

There are many generalizations of this problem that could also prove to be in-
teresting. Tilings can easily be defined for groups that are not finite or abelian, so
removing those constraints gives many questions. We could also extend the work done
for F

n
2 in a different direction by considering not more general groups but more gen-

eral transformations. We have pointed out that vector spaces are equivalent to groups

FULL RANK TILINGS OF FINITE ABELIAN GROUPS 169

with respect to tilings, but that is not true if we allow linear or affine transformations
other than translation. Define an affine factorization of F

n
q to be a pair (V,Φ) with V

a subset of F
n
q and Φ = {φi} a set of affine transformations satisfying F

n
q =

⋃
i φi(V)

and φi(V) ∩ φj(V) = ∅ for all i 	= j. Any tiling (V,A) of F
n
q automatically gives

an affine factorization (V ′,Φ) by letting V ′ = V and φi ∈ Φ be translation by the
ith element of A. However, tilings only give a small subset of affine factorizations.
Allowing arbitrary affine transformations seems to make the problem very difficult,
but perhaps adding some extra restrictions would make it tractable. In particular,
requiring that |φi(V)| = |V | for all i might be helpful.

6. Conclusions. We have generalized the notions of tilings and full rank tilings
from F

n
2 to general finite abelian groups and have generalized many existing theorems

to this new setting. We then combined and extended these results to prove that a
group admits a full rank tiling if any of its direct factors do, allowing us to take any
sufficient condition for a group to admit a full rank tiling and extend it by simply
requiring a group to have a direct factor for which the condition holds. This method
results in two such sufficient conditions: a group G admits a full rank tiling if it has
a direct factor of the form Za × Zb × Zc with a, b, and c composite, or if it has a
direct factor of the form Z

4
p with p ≥ 5 prime. Since any finite abelian group can be

decomposed into the direct product of finite abelian groups of prime power order, these
are obviously quite strong conditions when the size of the group is large, showing that
many groups admit a full rank tiling. We have also suggested some open problems in
the area that we feel are tractable and could lead to some interesting results.

Acknowledgments. We would like to thank Joe Gallian for his encouragement
and support, and Philip Matchett and Melanie Wood for many helpful discussions. We
would also like to thank Reid Barton and Geir Helleloid for their insightful comments.

REFERENCES

[1] H. Bauer, B. Ganter, and F. Hergert, Algebraic techniques for nonlinear codes, Combina-
torica, 3 (1983), pp. 21–33.

[2] G. Cohen, S. Litsyn, A. Vardy, and G. Zemor, Tilings of binary spaces, SIAM J. Discrete
Math., 9 (1996), pp. 393–412.

[3] N. de Bruijn, On the factorization of finite abelian groups, Indag. Math. (N.S.), 15 (1953),
pp. 258–264.

[4] T. Etzion and A. Vardy, On perfect codes and tilings: Problems and solutions, SIAM J.
Discrete Math., 11 (1998), pp. 205–223.

[5] O. Fraser and B. Gordon, Solution to a problem of A.D. Sands, Glasg. Math. J., 20 (1977),
pp. 115–117.

[6] G. Hajós, Uber einfache und mehrfache bedeckung des n-dimensionalen raumes mit einem
wurfelgitter, Mathematische Zeitschrift, 47 (1941), pp. 427–467.

[7] G. Hajós, Sur la factorisation des groupes abéliens, Časopis Pěst Path. Rys., 74 (1949),
pp. 157–162.

[8] F. MacWilliams and N. Sloane, The Theory of Error-Correcting Codes, North-Holland,
Amsterdam, 1977.

[9] P. R. J. Ostergard and A. Vardy, Resolving the existence of full-rank tilings of binary
hamming spaces. SIAM J. Discrete Math., 18 (2004), pp. 382–387.

[10] K. Phelps, Kernels of nonlinear Hamming codes, Des. Codes Cryptogr., 6 (1995), pp. 247–257.
[11] K. Phelps, J. Rifa, and M. Villanueva, Kernels and p-kernels of pr-ary 1-perfect codes.

Des. Codes Cryptogr., 37 (2005), pp. 243–261.
[12] K. Phelps and M. Villanueva, Ranks of q-ary 1-perfect codes, Des. Codes Cryptogr., 27

(2002), pp. 139–144.
[13] L. Rédei, Die neue theorie der endlichen abelschen gruppen und verallgemeinerung des haupt-

satzes von Hajós, Acta. Math. Acad. Sci. Hungar., 16 (1965), pp. 329–373.
[14] L. Rédei, Lacunary Polynomials Over Finite Fields, American Elsevier, New York, 1973.

170 MICHAEL DINITZ

[15] C. Rogers, Packing and Covering, Cambridge University Press, London, 1964.
[16] A. Sands, On the factorization of finite abelian groups II, Acta. Math. Acad. Sci. Hungar., 13

(1962), pp. 153–169.
[17] A. Sands, On a conjecture of G. Hajós, Glasg. Math. J., 15 (1974), pp. 88–89.
[18] S. Stein, Tiling space by congruent polyhedra, Bull. Amer. Math. Soc., 80 (1974), pp. 819–820.
[19] S. Szabó, A type of factorization of finite abelian groups, Discrete Math., 54 (1985), pp. 121–

124.
[20] S. Szabó, Groups with the Rédei property, Matematiche, 52 (1997), pp. 357–364.
[21] S. Szabó and C. Ward, Factoring abelian groups and tiling binary spaces, Pure Math. Appl.,

8 (1997), pp. 111–115.
[22] S. Szabó and C. Ward, Factoring elementary groups of prime cube order into subsets, Math.

Comp., 67 (1998), pp. 1199–1206.
[23] S. Szabó and C. Ward, Factoring groups having periodic maximal subgroups, Bol. Soc. Mat.

Mexicana (3), 5 (1999), pp. 327–333.
[24] A. Trachtenberg and A. Vardy, Full-rank tilings of F

8
2 do not exist, SIAM J. Discrete Math.,

16 (2003), pp. 390–392.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 171–188

DISCRETE POINT X-RAYS∗

PAOLO DULIO† , RICHARD J. GARDNER‡ , AND CARLA PERI§

Abstract. A discrete point X-ray of a finite subset F of R
n at a point p gives the number of

points in F lying on each line passing through p. A systematic study of discrete point X-rays is
initiated, with an emphasis on uniqueness results and subsets of the integer lattice.

Key words. convex lattice set, discrete tomography, geometric tomography, lattice, X-ray

AMS subject classifications. Primary: 05B50, 52C05, 52C07; Secondary: 52B20

DOI. 10.1137/040621375

1. Introduction. The (continuous) parallel X-ray of a convex body K in R
n

in a direction u ∈ Sn−1 gives the lengths of all the intersections of K with lines
parallel to u, and the (continuous) point X-ray of K at a point p ∈ R

n gives the
lengths of all the intersections of K with lines passing through p. (See section 2 for
all terminology.) In 1963, P. C. Hammer asked: How many parallel (or point) X-rays
are needed to determine any convex body among all convex bodies? Answers to these
questions are now known and are surveyed in [11, Chapters 1 and 5]. The topic of
determining convex bodies and more general sets by their X-rays forms part of a larger
area of inverse problems called geometric tomography, which concerns the retrieval
of information about a geometric object via measurements of its sections by lines or
planes or its projections on lines or planes. It is also clearly related to computerized
tomography, where sets are replaced by density functions, and lengths of intersections
with lines are replaced by line integrals.

Around 1994, Larry Shepp introduced the term “discrete tomography.” Here
the focus is on determining finite subsets of the integer lattice Z

n by means of their
discrete parallel X-rays. A discrete parallel X-ray of a finite subset F of Z

n in the
direction of a vector v ∈ Z

n gives the number of points in F lying on each line
parallel to v. The points in F can model the atoms in a crystal, and indeed there is
a genuine application of discrete tomography in high resolution transmission electron
microscopy (HRTEM); see, for example, [15]. New techniques in HRTEM effectively
allow the discrete parallel X-rays of a crystal to be measured, and the main goal of
discrete tomography is to use these X-rays to determine the position of the atoms,
with a view to applications in the material sciences.

By now there are many results available on continuous parallel or point X-rays
of sets and on discrete parallel X-rays of finite subsets of the integer lattice. It is
the purpose of this paper to initiate a study of the obvious remaining category of
X-rays, namely, discrete point X-rays. The definition is the natural one: A discrete
point X-ray of a finite subset F of R

n at a point p ∈ R
n gives the number of points

∗Received by the editors December 23, 2004; accepted for publication (in revised form) September
21, 2005; published electronically March 3, 2006.

http://www.siam.org/journals/sidma/20-1/62137.html
†Dipartimento di Matematica “F. Brioschi,” Politecnico di Milano, Piazza Leonardo da Vinci 32,

I-20133 Milano, Italy (paolo.dulio@polimi.it).
‡Department of Mathematics, Western Washington University, Bellingham, WA 98225-9063

(Richard.Gardner@wwu.edu). The work of this author was supported in part by U.S. National
Science Foundation grant DMS-0203527.

§Università Cattolica S.C., Largo Gemelli 1, I-20123 Milano, Italy (carla.peri@unicatt.it).

171

172 PAOLO DULIO, RICHARD J. GARDNER, AND CARLA PERI

Fig. 1. A U-hexagon (left) and two convex lattice sets with equal discrete parallel X-rays in the
directions in U (right).

in F lying on each line passing through p. Note that the above definition of discrete
parallel X-ray also extends readily to finite subsets of R

n, but as in that case, the
main interest here is with discrete point X-rays of finite subsets of Z

n at points in Z
n.

In order to describe our results, it is useful to briefly recall the corresponding
results for discrete parallel X-rays. Firstly, given any finite set U of lattice directions
in Z

2, there are two different finite subsets of Z
2 with equal discrete parallel X-rays

in the directions in U (see [11, Lemma 2.3.2] or [13, Theorem 4.3.1]). In view of this,
Gardner and Gritzmann [12] focused on convex lattice sets, employing the notion of a
U -polygon in R

2 for a given set U of directions. See section 2 for the formal definition;
an example for a set of three lattice directions is shown at the left of Figure 1.

When a lattice U -polygon exists, it is easy to construct two different convex
lattice sets with equal discrete parallel X-rays in the directions in U , as on the right
of Figure 1 (one set indicated by black dots, and the other by circles). In [12] it was
proved that in fact the nonexistence of a lattice U -polygon is necessary and sufficient
for the discrete parallel X-rays in the directions in U to determine convex lattice sets
(provided U has at least two nonparallel directions). It is easy to see that when
|U | = 3, lattice U -polygons always exist. With tools from p-adic number theory, it
was shown in [12] that they do not exist for certain sets of four lattice directions
and any set of at least seven lattice directions, but can exist for certain sets of six
lattice directions. Corresponding uniqueness results for discrete parallel X-rays follow
immediately.

Our investigation begins in section 3, where we prove that for discrete point X-
rays, there is also a general lack of uniqueness: Given any finite set P of points in
Z

2, there are two different finite subsets of Z
2 with equal discrete point X-rays at

the points in P . This is more involved than the corresponding result for discrete
parallel X-rays, requiring the solution of a system of linear congruences. Our proof
makes an unexpected use of the existence of arbitrarily long arithmetic progressions of
relatively prime numbers. Thereafter we focus on convex lattice sets in Z

2. Section 4
provides a rather complete analysis when discrete point X-rays are taken at two points;
in fact, no open problems remain, in contrast to the continuous case (compare [11,
Problems 5.1 and 5.2]). The discussion in section 4 also shows that it is hopeless to
obtain uniqueness results unless the class of convex lattice sets is restricted to those
not meeting any line through two of the points at which the X-rays are taken, a
condition that we shall assume for the remainder of this introduction.

As with parallel discrete X-rays, uniqueness results hinge on the nonexistence of
special lattice polygons we call lattice P -polygons, for finite subsets P of Z

2. (How-
ever, the connection is less clear than in the parallel case.) See section 2 for the formal
definition, and Figure 3 for an example. The construction of lattice P -polygons for
sets of three collinear lattice points again requires the solution of a system of lin-

DISCRETE POINT X-RAYS 173

ear congruences; see section 5. It follows that for uniqueness when the points in P
are collinear, P must contain at least four points. In section 6, the above results
on discrete parallel X-rays, combined with the use of a new measure and projective
transformations, lead to Corollary 6.6, which states that when the points in P are
collinear, uniqueness is obtained for certain sets of four points and any set of at least
seven points, while six points are generally not enough.

The final two sections concern noncollinear sets P . By appealing to classic the-
orems of projective geometry, we show in section 7 that, somewhat surprisingly, for
any set P of less than five noncollinear points in Z

2 there is a rational P -polygon.
It follows that there are sets P of four noncollinear points in Z

2 such that there is
a lattice P -polygon, and we also show that there is a set of six noncollinear points
in Z

2 such that there is a lattice P -polygon. Corresponding nonuniqueness results
are deduced in section 8, including Theorem 8.1, a result quite different from the
analogous one concerning continuous point X-rays.

While there is at present no known application of discrete point X-rays in HRTEM,
we feel that this study is warranted by their natural role in the general theory of X-
rays and by the increasing attention to convex lattice sets (see, for example, [3], [7],
[8], and [9]). Moreover, the central role of P -polygons highlights these intriguing
structures, which should be of independent interest in incidence geometry. They may
also have consequences for number theory, as the analogous U -polygons do. (See,
for example, [2], where U -polygons are used to make progress on the Prouhet-Tarry-
Escott problem concerning multigrades. The connection between multigrades and
discrete tomography was first noticed by Ron Graham.) Much remains to be done.
For example, it is open at present whether convex lattice sets in Z

2 are determined
by their discrete point X-rays at some set of three noncollinear lattice points or at
any set of seven lattice points (provided they do not meet any line joining two of the
points).

An extended abstract of this paper appeared in [10].

2. Definitions and preliminaries. As usual, Sn−1 denotes the unit sphere
and o the origin in Euclidean n-space R

n. If u ∈ R
n, we denote by u⊥ the (n − 1)-

dimensional subspace orthogonal to u. The standard orthonormal basis for R
n will

be {e1, . . . , en}. The line segment with endpoints x and y is denoted by [x, y], and we
write L[x, y] for the line through x and y.

If A is a set, we denote by |A|, ∂A, and convA the cardinality, boundary, and
convex hull of A, respectively. The notation for the usual orthogonal projection of A
on a subspace S is A|S. The symmetric difference of two sets A1 and A2 is A1�A2 =
(A1 \A2) ∪ (A2 \A1).

We denote n-dimensional projective space by P
n, and regard it as R

n∪H∞, where
H∞ is the hyperplane at infinity. Points in H∞ can be associated with a pair {u,−u}
of directions in Sn−1. If φ is a projective transformation from P

n onto P
m mapping a

point p in H∞ to a finite point φp in P
m (i.e., a point in R

m), then lines in R
n parallel

to a direction u associated with p map to lines passing through φp. If E ⊂ P
n is such

that φE ⊂ R
m (i.e., φE does not meet the hyperplane at infinity in P

m), then φ is
called permissible for E. Note that φ preserves the convexity of sets in R

n for which
it is permissible. See [11, pp. 2 and 7] for more details.

The cross ratio 〈p1, p2, p3, p4〉 of four points pi, i = 1, . . . , 4 in a line L is given by

〈p1, p2, p3, p4〉 =
(x3 − x1)(x4 − x2)

(x4 − x1)(x3 − x2)
,(1)

174 PAOLO DULIO, RICHARD J. GARDNER, AND CARLA PERI

where xi is the coordinate of pi, i = 1, . . . , 4 in some fixed Cartesian coordinate system
in L. See, for example, [4, section 6.2].

A convex polytope is the convex hull of a finite subset of R
n. We sometimes refer

to a finite subset of the n-dimensional integer lattice Z
n as a lattice set. A convex

lattice set is a finite subset F of Z
n such that F = (convF) ∩ Z

n. A lattice polygon
is a convex polygon with its vertices in Z

2. A polygon is called rational if its vertices
have rational coordinates. A lattice line is a line containing at least two points in Z

2.
Call a vector u ∈ Z

n primitive if the line segment [o, u] contains no lattice points
other than o and u.

Let F be a finite subset of R
n and let u ∈ R

n \ {o}. The discrete parallel X-ray
of F parallel to u is the function XuF defined by

XuF (v) = |F ∩ (L[o, u] + v)|,

for each v ∈ u⊥. The function XuF is in effect the projection, counted with multiplic-
ity, of F on u⊥. For an introduction to the many known results on discrete parallel
X-rays and their applications, see [5], [12], [13], and [15].

Let F be a finite subset of R
n and let p ∈ R

n. The discrete point X-ray of F at
p is the function XpF defined by

XpF (u) = |F ∩ (L[o, u] + p)|,

for each u ∈ R
n \ {o}.

Let U be a finite set of vectors in R
2. We call a nondegenerate convex polygon

Q a U -polygon if it has the following property: If v is a vertex of Q, and u ∈ U , then
the line v + L[o, u] meets a different vertex v′ of Q.

Let P be a finite set of points in R
2. A nondegenerate convex polygon Q is a

P -polygon if it satisfies the following property: If v is a vertex of Q, and p ∈ P , then
the line L[p, v] meets a different vertex v′ of Q.

Note that in view of these definitions, a lattice P -polygon is a convex subset of
R

2, while a convex lattice polygon is a finite subset of Z
2.

There is a convenient common generalization of the previous two definitions.
Consider P

2 = R
2 ∪ H∞ and let P be a finite set of points in P

2. A nondegenerate
convex polygon Q in R

2 is a P -polygon if it satisfies the following property: If v is a
vertex of Q, and p ∈ P , then the line L[p, v] in P

2 meets a different vertex v′ of Q.
Note that if P ⊂ H∞, then the P -polygon Q is also a U -polygon for the set U of unit
vectors associated with points in P .

Let F be a class of finite sets in R
n and P a finite set of points in R

n. We say
that F ∈ F is determined by the discrete point X-rays at the points in P if whenever
F ′ ∈ F and XpF = XpF

′ for all p ∈ P , we have F = F ′.
The greatest common divisor of integers m and n is denoted by gcd(m,n). We

need the following strong form of the Chinese Remainder Theorem (see, for example,
[1, pp. 46 and 56]).

Proposition 2.1. Let ai ∈ Z and ni ∈ N, i = 1, . . . , k. The system

x ≡ ai (modni), i = 1, . . . , k

has a solution x ∈ Z if and only if

gcd(ni, nj)|(ai − aj)(2)

for all 1 ≤ i �= j ≤ k. Moreover, if (2) holds, there are infinitely many solutions, each
pair of them congruent modulo n1n2 · · ·nk.

DISCRETE POINT X-RAYS 175

3. The general case. The purpose of this section is to prove the following
result.

Theorem 3.1. For each finite subset P of Z
2, there are two different finite

subsets of Z
2 with the same discrete point X-rays at the points in P .

Proof. Suppose that pj = (p1j , p2j), j = 1 . . . ,m are distinct points in Z
2. Let

C1 and C2 be the two disjoint sets of 2m−1 alternate vertices of the unit cube [0, 1]m

in R
m. Then C1 and C2 have the same discrete parallel X-rays in the m coordinate

directions in R
m. We aim to define a suitable projective transformation φ : P

m → P
2

that maps the jth coordinate direction in R
m to pj in such a way that φ(C1) and

φ(C2) are disjoint subsets of Z
2 with equal discrete point X-rays at each pj .

To this end, let a, b ∈ N and c1, c2 ∈ Z (all to be chosen later) and define φ :
P
m → P

2, using homogeneous coordinates in both P
m and P

2, by

φ(x1, . . . , xm, xm+1)

=

(
m∑
i=1

2i−1b p1ixi + c1xm+1,

m∑
i=1

2i−1b p2ixi + c2xm+1,

m∑
i=1

2i−1b xi + axm+1

)
.

Let ej be the jth vector in the standard orthonormal basis for R
m+1. Then

φ(ej) =
(
2j−1b p1j , 2

j−1b p2j , 2
j−1b

)
,

for j = 1, . . . ,m, and this shows that φ maps the jth coordinate direction in R
m to

pj , j = 1, . . . ,m.
As a map from R

m to R
2, φ is given by

φ(x1, . . . , xm) =

(∑m
i=1 2i−1b p1ixi + c1∑m

i=1 2i−1b xi + a
,

∑m
i=1 2i−1b p2ixi + c2∑m

i=1 2i−1b xi + a

)
.(3)

Denote an arbitrary vertex of the unit cube [0, 1]m in R
m by vI , I ⊂ {1, . . . ,m},

where the ith component of vI is 1 if i ∈ I and 0 otherwise. In view of (3), we have
φ(vI) ∈ Z

2 if and only if

ck ≡ −
∑
i∈I

2i−1b pki

(
mod

∑
i∈I

2i−1b + a

)
,(4)

for k = 1, 2. It is easy to check that{∑
i∈I

2i−1 : I ⊂ {1, . . . ,m}
}

= {0, 1, . . . , 2m − 1}.

Therefore the set of possible moduli in the congruences (4) is precisely the arithmetic
progression

{a, a + b, . . . , a + (2m − 1) b}.

Sierpiński [16] noted that if a = 1 and b = (2m − 1)!, each pair of this arithmetic
progression is relatively prime. It follows from the Chinese Remainder Theorem (see
Proposition 2.1) that for each k = 1, 2, the system (4), where I ⊂ {1, . . . ,m}, has a
solution ck ∈ Z. Then φ maps each vertex of [0, 1]m to a point in Z

2.
The basic properties of projective transformations guarantee that if C1 and C2

are the two disjoint sets of 2m−1 alternate vertices of [0, 1]m, then φ(C1) and φ(C2)

176 PAOLO DULIO, RICHARD J. GARDNER, AND CARLA PERI

have equal discrete point X-rays at each pi. We will also have φ(C1) �= φ(C2) if φ is
injective on the set of vertices of [0, 1]m. If this is not the case, then there are different
subsets I and J of {1, . . . ,m} such that φ(vI) = φ(vJ). By (3), this implies that

XI(YJ + c1) = XJ(YI + c1),(5)

where

XI =
∑
i∈I

2i−1b + a and YI =
∑
i∈I

2i−1bp1i,

and XJ and YJ are obtained by replacing I with J . Since I �= J , XI �= XJ and from
(5) we obtain

c1 ≤ |XIYJ −XJYI | ≤ 2 (a + (2m − 1) b) (2m − 1) b max
1≤i≤m

|p1i|.

By Proposition 2.1 we can choose a solution c1 to the system (4) so large that this
inequality is false, and the injectivity of φ on the set of vertices of [0, 1]m follows.

Note that since Sierpiński’s result is constructive, the previous proof is also. An
alternative approach is to apply instead the remarkable recent result of Green and Tao
[14], who establish the existence of arbitrarily long arithmetic progressions of primes;
however, this proof is not constructive.

4. Discrete point X-rays at two points. We begin this section with the
following simple observation.

Theorem 4.1. Let p1 and p2 be distinct points in Z
2. Then there are two different

convex lattice sets that meet L[p1, p2] and have equal discrete point X-rays at p1 and
p2.

Proof. Without loss of generality, let p1 = (0, 0) and p2 = (k, 0) for some k > 0.
Suppose that m ∈ N. Then the sets K1 = {(k + i, 0) : i = 1, . . . ,m} and K2 =
{(k + i, 0) : i = 2, . . . ,m + 1} have equal discrete point X-rays at p1 and p2. By
adjoining the point (k + m, 1) to both sets we can obtain two-dimensional examples
with the same property.

Note that the sets K1 and K2 in the previous theorem also have the same discrete
point X-rays at any lattice point on the x-axis.

Theorem 4.2. Let Ki, i = 1, 2 be convex lattice sets in Z
2 with equal discrete

point X-rays at distinct points p1, p2 ∈ Z
2. Suppose that

(i) L[p1, p2] ∩Ki = ∅, i = 1, 2, and
(ii) convK1 and convK2 either both meet [p1, p2] or both meet L[p1, p2] \ [p1, p2].

Then K1 = K2.
Proof. By (i) and the fact that Ki, i = 1, 2 are convex lattice sets, we have

pi �∈ convK1 ∪ convK2, i = 1, 2. Suppose that convK1 and convK2 both meet
L[p1, p2] \ [p1, p2]. If p1 and p2 lie between convK1 and convK2, these sets cannot
have equal supporting lines from p1 and p2, contradicting the equality of the discrete
point X-rays of K1 and K2 at p1 and p2. Then we may assume that p1, p2, and
L[p1, p2] ∩ convKi, i = 1, 2 are in that order on L[p1, p2]. Suppose that K1 �= K2.
Without loss of generality, we may assume that L[p1, p2] is the x-axis. Then by (i),
we can assume that (K1�K2) ∩ {y > 0} �= ∅. Let L1 be the line through p2 and
containing a point of K1�K2, with minimal positive angle with the x-axis. Since K1

and K2 have equal discrete point X-rays at p2, there are points v1 ∈ K1 \ K2 and
v2 ∈ K2 \K1 on L1, and we can assume that p2, v1, and v2 are in that order on L1.
Since K1 and K2 have equal discrete point X-rays at p1, the line L2 through p1 and

DISCRETE POINT X-RAYS 177

v1 must meet K2\K1 in a point v3. If p1, v1, and v3 are in that order on L2, then the
line through p2 and v3 has a smaller positive angle with the x-axis than L1. Therefore
v3 ∈ [p1, v1]. Assumptions (i) and (ii) imply that there is a point c ∈ K2 ∩ {y < 0},
but then v1 �∈ K2 lies in the interior of the triangle with vertices v2, v3, and c, all of
which lie in K2. This contradicts the fact that K2 is a convex lattice set, and proves
that K1 = K2.

The case when convK1 and convK2 both meet [p1, p2] is proved in similar
fashion.

The next result shows that the assumption (ii) in Theorem 4.2 is necessary.

Theorem 4.3. Let p1 and p2 be distinct points in Z
2. Then there are different

convex lattice sets K1 and K2 such that L[p1, p2]∩Ki = ∅ and L[p1, p2]∩convKi �= ∅,
i = 1, 2, and with equal discrete point X-rays at p1 and p2.

Proof. Let p1 = (0, 0), and let p2 = ku, where u ∈ Z
2 is primitive and k ∈ N.

Then there is a v ∈ Z
2 such that {u, v} is a basis in R

2. The unimodular affine
transformation mapping {u, v} to {e1, e2} is a bijection of Z

2 onto itself preserving
convexity and incidence. Therefore we may, without loss of generality, take p1 = (0, 0)
and p2 = (k, 0) for some k > 0.

Suppose that k = 1. Then the sets K1 = {(2, 3), (−1,−2)} and K2 = {(3, 6), (−2,
−3)} fulfill the requirements of the theorem.

Now suppose that k > 1. Let a = (k, k), b = (k, k+1), c = (−k(k−1), 1−k2), and
d = (−k(k2−1),−k(k2−1)). Let K1 = {a, c} and K2 = {b, d}. It is easy to check that
L[p1, p2]∩convKi �= ∅, i = 1, 2 and that the sets K1 and K2 have equal discrete point
X-rays at p1 and p2. It remains to show that K1 and K2 are convex lattice sets. To
this end, note that the line L[a, c] has slope (k2+k−1)/k2. Moreover, k2+k−1 and k2

are relatively prime; otherwise, if p > 1 is prime, p|(k2+k−1), and p|k2, then p|(k−1),
so p does not divide k, contradicting p|k2. It follows that K1 = (convK1) ∩ Z

2, as
required. The line L[b, d] has slope (k3+1)/k3, and since k3 and k3+1 are consecutive
integers, they are relatively prime. Consequently, K2 = (convK2)∩Z

2, and the proof
is complete.

The next two lemmas are rather general and will be useful also in subsequent
sections of the paper.

Lemma 4.4. If Q is a P -polygon such that |P | ≥ 2 and P ∩Q = ∅, then Q does
not meet any line through two points in P .

Proof. Let p1 and p2 be different points in P , and without loss of generality,
suppose that they lie on the x-axis and that Q is a P -polygon whose interior meets
the upper open half plane. Suppose that Q ∩ [p1, p2] �= ∅. Let L1 be the lattice line
through p1 with minimal positive angle with the x-axis such that L1 contains vertices
v1 and v2 of Q. Without loss of generality suppose that p1, v2, and v1 lie on L1 in that
order. Since Q meets [p1, p2], by convexity the line L2 through p2 and v2 contains a
vertex v3 of Q with p2, v3, and v2 in that order on L2. But then the line L3 through
p1 and v3 has a smaller positive angle with the x-axis than L1, a contradiction. A
similar argument applies to the case when Q meets the x-axis outside the segment
[p1, p2].

Lemma 4.5. Let P be a set of points in Z
2. If there is a lattice P -polygon Q,

then there are different convex lattice sets K1 and K2 with equal discrete point X-rays
at the points in P . Moreover, if P ∩Q = ∅, then in addition convK1 and convK2 do
not meet any line through two points of P .

Proof. Let Q be a lattice P -polygon. Partition the vertices of Q into two disjoint
sets V1 and V2, where the members of each set are alternate vertices in a clockwise

178 PAOLO DULIO, RICHARD J. GARDNER, AND CARLA PERI

ordering around ∂Q. Let

C = (Z2 ∩Q) \ (V1 ∪ V2),

and let Ki = C ∪ Vi, i = 1, 2. Then K1 and K2 are different convex lattice sets with
equal discrete point X-rays at the points in P .

If P ∩Q = ∅, then by Lemma 4.4, Q does not meet any line through two points
of P and the second statement follows immediately.

Theorem 4.6. Let p1 and p2 be distinct points in Z
2 and let P = {p1, p2}. Then

there is a lattice P -polygon Q with P ∩Q = ∅, and hence two different convex lattice
sets, with convex hulls disjoint from L[p1, p2] and with equal discrete point X-rays at
the points in P .

Proof. Without loss of generality, let p1 = (0, 0) and p2 = (k, 0) for some k > 0.
Then one can check that (2k, 2k), (3k, 3k), (3k, 4k), and (9k, 12k) are the vertices of a
lattice P -quadrilateral. The conclusion follows from Lemma 4.5.

5. Lattice P -hexagons for collinear sets P . This section is devoted to the
proof of the following result.

Theorem 5.1. If P is a set of three collinear points in Z
2, there exists a lattice

P -hexagon.
Proof. As in the proof of Theorem 4.3, we can assume, without loss of gen-

erality, that the points in P lie on the x-axis. More precisely, we may take P =
{(−a, 0), (0, 0), (b, 0)}, a, b ∈ N, where gcd(a, b) = 1 and b is odd, since the general
case then follows by applying a suitable dilatation and/or reflection in the y-axis, if
necessary. We suppose henceforth that a and b are fixed positive integers satisfying
these conditions.

Let r, s, t ∈ Z and consider the projective transformation φ of P
2 given in homo-

geneous coordinates (x, y, z) by

φ(x, y, z) = (abx− aby + rz, sz, ax + by).

Then φ(1, 1, 0) = (0, 0, a + b), φ(1, 0, 0) = (ab, 0, a), and φ(0, 1, 0) = (−ab, 0, b). It
follows that φ is a projective transformation that takes lines parallel to u1 = (1, 1)
(or parallel to u2 = (1, 0) or parallel to u3 = (0, 1)) to lines through (0, 0) (or through
(b, 0) or through (−a, 0), respectively). As a map from R

2 into itself, φ can be written
as

φ(x, y) =

(
abx− aby + r

ax + by
,

s

ax + by

)
.(6)

Let U = {u1, u2, u3}. If k, l ∈ Z are such that ak + bl > 0 and if m,n ∈ N, then
the points

(k, l), (k, l + m), (k + n, l), (k + n, l + m + n), (k + m + n, l + m), (k + m + n, l + m + n)
(7)

are the vertices of a U -hexagon Q such that φ is permissible for Q (i.e., Q does not
meet the line ax + by = 0). It follows that φQ is a P -hexagon, and remains to show
that k, l, r, s ∈ Z with ak + bl > 0 and m,n ∈ N can be chosen so that the vertices of
φQ have integer coordinates. Since obviously s can be chosen so that the y-coordinates
of these vertices are integers, we have only to consider the x-coordinates.

DISCRETE POINT X-RAYS 179

Let

c = ab(k − l) + r and d = ak + bl.(8)

Then, by (6), (7), and (8), the x-coordinates of the vertices of φQ are

c

d
,
c− abm

d + bm
,
c + abn

d + an
,

c− abm

d + (a + b)n + bm
,

c + abn

d + (a + b)m + an
, and

c

d + (a + b)(m + n)
.

Therefore we seek d,m, n ∈ N such that there is a solution c ∈ Z to the following
system of congruences (which we have rearranged for our convenience):

c ≡ 0 (mod d)(9)

c ≡ 0 (mod d + (a + b)(m + n))(10)

c ≡ abm (mod d + bm)(11)

c ≡ abm (mod d + (a + b)n + bm)(12)

c ≡ −abn (mod d + an)(13)

c ≡ −abn (mod d + (a + b)m + an).(14)

By the Chinese Remainder Theorem (see Proposition 2.1), we have at first sight to
consider the division criterion (2) for 15 pairs of the congruences (9)–(14). However,
the following pairs can be eliminated: (9) and (10) (obviously), (9) and (11) (since
if j|d and j|d + bm, then j|bm, so gcd(d, d + bm)|abm), (9) and (13) (by a similar
argument), (10) and (12) (since if j|d+ (a+ b)(m+ n) and j|d+ (a+ b)n+ bm, then
j|am, so gcd(y + (a+ b)(m+ n), y + (a+ b)n+ bm)|abm), (10) and (14) (by a similar
argument), (11) and (12) (obviously), and (13) and (14) (obviously). So only the
following eight pairs must in general be considered: (9) and (12), (9) and (14), (10)
and (11), (10) and (13), (11) and (13), (11) and (14), (12) and (13), and (12) and (14).

We claim that if d = ab, m = a + b, and n = a, there is a solution c ∈ Z to
the congruences (9)–(14). To see this, note first that since d = ab, we can obviously
eliminate the pairs of congruences (9) and (12), and (9) and (14). Consider the
division criterion (2) for the remaining six pairs of congruences, that is, (10) and (11),
(10) and (13), (11) and (13), (11) and (14), (12) and (13), and (12) and (14) in order:

gcd(2a2 + 4ab + b2, 2ab + b2) | ab(a + b)(15)

gcd(2a2 + 4ab + b2, a2 + ab) | a2b(16)

gcd(2ab + b2, a2 + ab) | ab(2a + b)(17)

gcd(2ab + b2, 2a2 + 3ab + b2) | ab(2a + b)(18)

gcd(a2 + 3ab + b2, a2 + ab) | ab(2a + b)(19)

gcd(a2 + 3ab + b2, 2a2 + 3ab + b2) | ab(2a + b).(20)

Observe that (15) holds since if j|2a2 +4ab+ b2 then since b is odd, j is also odd;
if also j|2ab+ b2, then j|2a2 + 2ab = 2a(a+ b). Now j odd and j|2a(a+ b) imply that
j|a(a + b) and hence j|ab(a + b).

For (16), suppose that j|2a2 + 4ab + b2 and j|a2 + ab = a(a + b). Then we can
write j = pq, where p|a and q|a + b, and it suffices to show that q|ab. Now q|a + b
implies q|a2 + 2ab + b2, which together with q|2a2 + 4ab + b2 gives q|a2 + 2ab. Since
also q|a2 + ab, we get q|ab as required.

180 PAOLO DULIO, RICHARD J. GARDNER, AND CARLA PERI

Conditions (17) and (18) hold since j|2ab+b2 = b(2a+b) implies that j|ab(2a+b),
and (19) holds since if j|a2 + 3ab + b2 and j|a2 + ab, then j|2ab + b2 = b(2a + b) and
hence j|ab(2a + b).

For (20), suppose that j|a2 + 3ab + b2 and j|2a2 + 3ab + b2 = (a + b)(2a + b).
Then we can write j = pq, where p|a + b and q|2a + b, and it suffices to show that
p|ab. Now p|a + b implies p|a2 + 2ab + b2, which together with p|a2 + 3ab + b2 gives
p|ab, as required. This proves the claim.

We still have to prove that for d = ab, m = a + b, n = a, and a corresponding
solution c ∈ Z to the congruences (9)–(14), there are k, l, r ∈ Z with ak + bl > 0 so
that (8) holds. To see this, use the condition gcd(a, b) = 1 to choose k′, l′ ∈ Z such
that ak′ + bl′ = 1 and then let k = dk′ and l = dl′. Then the second equation in (8) is
satisfied and ak + bl = d > 0. After this, we can find r ∈ Z so that the first equation
in (8) is satisfied for this k and l. This completes the proof.

As an example in which the computations can be done by hand, suppose that
P = {(−1, 0), (0, 0), (1, 0)}. Then a = b = 1, so we have d = 1, m = 2, and n = 1. It
is easy to see c = 77 is a solution of the congruences (9)–(14) and we can take k = 1,
l = 0, and r = 76 in order that (8) holds. Moreover, s = 210 is a suitable choice. This
leads to a P -hexagon with vertices (in counterclockwise order around the hexagon)
(11, 30), (13, 35), (39, 105), (77, 210), (25, 70), and (15, 42).

6. Discrete point X-rays at collinear points. As we have seen, a convex
lattice set is determined by its discrete point X-rays at two different points only in
the situation of Theorem 4.2. Thus to have more general uniqueness results we need
more than two points. Moreover, the following result is an immediate consequence of
Theorem 5.1 and Lemma 4.5.

Theorem 6.1. If P is a set of three collinear points in Z
2, then convex lattice

sets not meeting the line containing P are not determined by discrete point X-rays at
the points in P .

To make progress, we require the following technical lemmas.

Lemma 6.2. Let p ∈ Z
2 and let F1 and F2 be finite subsets of Z

2 such that
p /∈ F1 ∪ F2 and XpF1 = XpF2. Then |F1| = |F2|.

Proof. Since p /∈ F1 ∪ F2, we have for i = 1, 2,

|Fi| =
∑
u∈S1

|Fi ∩ (L[o, u] + p)| =
∑
u∈S1

XpFi(u).

Let L be a lattice line in R
2, and suppose that L is taken as the x-axis in a

Cartesian coordinate system. For each finite set F in Z
2, define

ν(F) =
∑

(x,y)∈F

1

|y| .(21)

Then ν is a measure in Z
2, and we call L the baseline of ν.

Lemma 6.3. Let ν be a measure defined by (21) with respect to the baseline L.
Suppose that F1 and F2 are finite subsets of Z

2 contained in one of the open half
planes bounded by L and with equal discrete point X-rays at p ∈ L ∩ Z

2. Then the
centroids of F1 and F2 with respect to ν lie on the same line through p.

Proof. Without loss of generality we may take L to be the x-axis, p = (0, 0), and
F1 and F2 finite subsets of Z

2 contained in the upper open half plane. Let ci = (xi, yi)

DISCRETE POINT X-RAYS 181

be the centroid of Fi, for i = 1, 2, with respect to the measure ν. Then

xi =
1

ν(Fi)

∑
(x,y)∈Fi

x

y

and

yi =
|Fi|
ν(Fi)

for i = 1, 2. Therefore

yi
xi

=
|Fi|∑

(x,y)∈Fi

(x/y)
=

|Fi|∑
u∈S1

(XpFi(u)) cot θ(u)
,

for i = 1, 2, where θ(u) denotes the angle between the x-axis and a line parallel to u.
Since XpF1 = XpF2 and p �∈ F1 ∪ F2, we have |F1| = |F2| by Lemma 6.2, and hence
y1/x1 = y2/x2, as required.

Theorem 6.4. Let P be a set of at least three points in Z
2 lying in a line L. If

there are different convex lattice sets not meeting L with equal discrete point X-rays
at the points in P , then there is a rational P -polygon disjoint from L.

Proof. Let K1 and K2 be different convex lattice sets not meeting L and with
equal discrete point X-rays at the points in P . If L ∩ convK1 �= ∅, then clearly
L∩convK2 �= ∅. Then either for some 1 ≤ i �= j ≤ 3, convK1 and convK2 both meet
[pi, pj], or for some 1 ≤ i �= j ≤ 3, convK1 and convK2 both meet L[pi, pj] \ [pi, pj],
contradicting Theorem 4.2.

Consequently L∩convK1 = ∅ and therefore L∩convK2 = ∅. Then we can follow
exactly the proof of [12, Theorem 5.5] for discrete parallel X-rays, on replacing lattice
lines parallel to directions in a set with lattice lines through points in P , replacing
ordinary centroids with centroids with respect to the measure ν defined by (21) with
baseline L, and using Lemma 6.3 instead of [12, Lemma 5.4]. Note that this argument
uses only cardinality and collinearity properties and the fact that the centroid of a
finite set of lattice points is a point with rational coordinates, a fact that still holds
when centroids are taken with respect to ν. Also, note that the observation that
|U | ≥ 4 in the second paragraph of the proof of [12, Theorem 5.5] is not needed. The
conclusion is that there is a rational P -polygon disjoint from L.

Theorem 6.5.

(i) Let U be a set of mutually nonparallel vectors in Z
2 such that there exists a

lattice U -polygon and let L be a lattice line. Then for some set P of |U | points in L,
there exists a lattice P -polygon disjoint from L.

(ii) Let P be a set of at least two points in Z
2 in a line L such that there exists a

rational P -polygon disjoint from L. Let φ be a projective transformation of P
2 taking

L to the line at infinity, and let U = φP . Then there exists a lattice U -polygon.
Proof.
(i) Let Q be a lattice U -polygon and suppose that L is a lattice line. Let φ

be a nonsingular projective transformation of P
2 such that φH∞ = L, where H∞ is

the line at infinity in P
2, so that L ∩ φQ = ∅. If p ∈ P

2 has rational coordinates
(rational slope if p ∈ H∞), then φp also has rational coordinates. By translating Q,
if necessary, we may assume that Q ∩ φ−1H∞ = ∅. Then (φQ) ∩ H∞ = ∅, so φ is
permissible for Q and hence φQ is a rational φU -polygon, where φU is a set of |U |

182 PAOLO DULIO, RICHARD J. GARDNER, AND CARLA PERI

points in L with rational coordinates. Choose an m ∈ N so that the |U | points in
mφU and the vertices of mφQ belong to Z

2. Then mφQ is a lattice mφU -polygon,
and mφU is a subset of the line mL. Let ψ be a translation taking mL onto L and
let P = ψ(mφU). Then ψ(mφQ) is the required lattice P -polygon.

(ii) Let Q be a rational P -polygon disjoint from L. Since the hypotheses ensure
that Q is permissible for φ and L is a lattice line, φQ is a rational U -polygon. Then
there is an m ∈ N such that mφQ is a lattice U -polygon.

Corollary 6.6. Let P be a set of points in Z
2 in a line L. Then convex lattice

sets in Z
2 not meeting L are determined by discrete point X-rays at the points in P

if either:
(i) |P | ≥ 7, or

(ii) |P | = 4 and there is no ordering of points in P such that their cross ratio is
2, 3, or 4.
On the other hand, it is possible that |P | = 6 and there exist different convex lattice
sets with convex hulls disjoint from L and equal discrete point X-rays at points in P .

Proof. Suppose that P is a set of points in Z
2 in a line L, such that convex

lattice sets in Z
2 not meeting L are not determined by discrete point X-rays at the

points in P . Then, by Theorem 6.4, there is a rational P -polygon disjoint from L.
Theorem 6.5(ii) implies that there is a set U of |P | mutually nonparallel vectors such
that there exists a lattice U -polygon. By [12, Theorem 4.5], we have |U | ≤ 6, so
|P | ≤ 6 and (i) is proved. Moreover, if |P | = |U | = 4, [12, Theorem 4.5] implies that
there is an ordering of the vectors in U such that their cross ratio is 2, 3, or 4. Since U
is obtained from P by a projective transformation, and such transformations preserve
cross ratio, the same is true for P . Therefore (ii) is established.

By [12, Example 4.3], there is a set U of six mutually nonparallel vectors such
that there exists a lattice U -polygon. It follows from Theorem 6.5(i) that there is a
set P of six points in L ∩ Z

2 such that there is a lattice P -polygon disjoint from L.
The proof is completed by an application of Lemma 4.5.

In particular it follows from the previous result that convex lattice sets not meet-
ing the x-axis are determined by their discrete point X-rays at points in the set
{(0, 0), (1, 0), (2, 0), (5, 0)}.

7. The structure of P -polygons. Lemma 4.5 indicates that further progress
hinges on a deeper understanding of the structure of lattice P -polygons. In view of
the results of section 6, we focus on the case when the points in P are not collinear.
This section provides some constructions of P -polygons Q such that P ∩Q = ∅. Note
that Lemma 4.4 then guarantees that Q does not meet any line joining two points
of P .

7.1. P -hexagons. We begin with the following construction.
Theorem 7.1. If P is a set of three points in R

2, there exists a P -hexagon Q
such that P ∩Q = ∅.

Proof. Let P = {p1, p2, p3}, and without loss of generality, suppose that the
points are labeled so that p2 and p3 lie on the x-axis and p1 is in the closed half
plane {y ≤ 0}. We may also assume that there is a line L1 through p1 meeting the
relative interior of [p2, p3]; see Figure 2. Let q1 ∈ L1 ∩ {y > 0}. Let q2 and q3 be in
the relative interior of [p3, q1] and [p2, q1], respectively, and let Li = L[pi, qi], i = 2, 3.
Let L4 = L[p1, q2], L5 = L[p1, q3], {q4} = L2 ∩ L5, and {q5} = L3 ∩ L4. Finally, let
L6 = L[p2, q5] and L7 = L[p3, q4].

We claim that L1 ∩L6 = L1 ∩L7 = {q6}, say. From this it would follow that the
points qi, i = 1, . . . , 6 form the vertices of the required P -hexagon Q. To prove the

DISCRETE POINT X-RAYS 183

p1

p3p2

q2

q6

q5

q4

q3

q1

L4

L6

L1

L5

L7

L3 L2

p1

p3p2

q2

q6

q5

q4

q3

q1

L4

L6

L1

L5

L7

L3

L2

c

Fig. 2. A P -hexagon (left) and a special P -hexagon (right) for three points.

(210,0)(0,0)

(0,210)

(42,84)

(30,60)

(35,35)
(60,30)

(84,42)

(70,70)

Fig. 3. A lattice special P -hexagon for three noncollinear points.

claim, consider the collinear triples (q1, q2, p3) and (q4, q3, p1). Note that L[q1, q3] and
L[q2, q4] intersect at p2, L1 ∩ L7 = [q1, p1] ∩ [p3, q4], and {q5} = [q2, p1] ∩ [q3, p3]. By
Pappus’ theorem (see, for example, [6, section 4.3]), it follows that p2, L1 ∩ L7, and
q5 are collinear. Since p2 and q5 lie on L6, L1 ∩ L7 also lies on L6 and the claim is
proved.

If in the construction of Theorem 7.1 the lines L2 and L3 are chosen so that
L1 ∩L2 = L1 ∩L3 = {c}, say, we call the P -hexagon a special P -hexagon with center
c. An example is shown in Figure 2.

Corollary 7.2. For every set P of three points in Z
2, there is a rational special

184 PAOLO DULIO, RICHARD J. GARDNER, AND CARLA PERI

P -hexagon Q such that P ∩Q = ∅. Hence there are sets P of three collinear points in
Z

2, or three noncollinear points in Z
2, such that there exists a lattice special P -hexagon

Q such that P ∩Q = ∅.
Proof. If the points in P = {p1, p2, p3} are lattice points, each line in the construc-

tion of Theorem 7.1 may be chosen so that it is represented by a linear equation with
integer coefficients. The first statement in the corollary follows immediately. If Q is
a rational special P -hexagon, there is an integer k such that if P ′ = {kp1, kp2, kp3},
then kQ is a lattice special P ′-hexagon.

Figure 3 depicts a particular lattice special P -hexagon, obtained from a variation
of the construction of Theorem 7.1 in which the hexagon is contained in the interior of
the triangle with vertices at the points in P . The center of the hexagon has coordinates
(105/2, 105/2), so on multiplying each coordinate by 2, we obtain an example where
the center of the hexagon is also a lattice point.

The following theorem shows that in the first statement of Corollary 7.2,
“rational” cannot be replaced with “lattice.” Note that for P = {(−1, 0), (0, 0), (1, 0)}
a specific example of a lattice P -hexagon was given immediately after Theorem 5.1.

Theorem 7.3. If P = {(−1, 0), (0, 0), (1, 0)}, there does not exist a lattice special
P -hexagon.

Proof. Suppose that Q is a lattice special P -hexagon, and without loss of gener-
ality, suppose that it is constructed and labeled as in Theorem 7.1 with p2 = (−1, 0),
p1 = (0, 0), and p3 = (1, 0). Let q6 = (a, b) ∈ Z

2, where b �= 0, so that c = (ma,mb)
for some m ∈ N, m > 1. Then we have

q4 =

(
2am−m + 1

m + 1
,

2bm

m + 1

)
and q5 =

(
2am + m− 1

m + 1
,

2bm

m + 1

)
.(22)

Subtracting the x-coordinates, we see that m + 1 divides 2(m− 1) and hence m = 3.
Substituting this value of m into (22), we see that a = 2k+1 must be odd and b = 2l
must be even, and then c = (6k + 3, 6l), q4 = (3k + 1, 3l), and q5 = (3k + 2, 3l).

Now repeat the whole argument, replacing c, q4, q5, and q6 by q1, q3, q2, and
c, respectively. Since c now plays the role of q6, the coordinates of q2 and q3 are
given by the formulas (22) for q5 and q4, respectively, with m = 3, a = 6k + 3, and
b = 6l. So q2 = (9k + 5, 9l) and q3 = (9k + 4, 9l). But then the line through q3 and
q4 is parallel to the line through q2 and q5, impossible since these lines should meet
at p1.

7.2. P -octagons. We start with the following lemma.

Lemma 7.4. For every set P of four noncollinear points in Z
2, there exists a

convex quadrilateral V with P ∩ V = ∅ such that lines containing opposite edges of V
intersect at points in P and the lines containing the diagonals of V each contain one
of the remaining points of P .

Proof. Suppose first that P = {p1, p2, p3, p4} is a set of four points in Z
2 such

that the points p2, p3, and p4 lie in a line L, and without loss of generality, suppose
p3 ∈ [p2, p4]. See Figure 4 (left). Let m ∈ [p2, p3] be such that 〈p2, p3, p4,m〉 = −1,
where 〈·〉 denotes the cross ratio, as in (1). Let L1 = L[m, p1], let v1 ∈ L1 be in
the relative interior of [p1,m], and let Li = L[pi, v1], i = 2, 3. Let v2 ∈ L2 be in
the relative interior of [p2, v1] and let L4 = L[p4, v2]. Let {v3} = L3 ∩ L4 and let
L5 = L[p2, v3]. Finally, let L6 = L[p3, v2].

We claim that L1 ∩L5 = L1 ∩L6 = {v4}, say. From this it would follow that the
points vi, i = 1, . . . , 4, form the vertices of the required quadrilateral.

DISCRETE POINT X-RAYS 185

m p4p2

v1

v2
c

v4

p3

p1

L4
L6

L1

L5

L3

L2 v3

m

p4

p2

v1

v2
c

v4

p3

p1

L4
L6

L1

L5

L3

L2 v3

nLL

Fig. 4.

To prove the claim, let {c} = L1 ∩L4, let L1 ∩L5 = {v4}, and let L1 ∩L6 = {v′4}.
The perspectivity with center v1 takes the points v2, v3, p4, and c on L4 onto the
points p2, p3, p4, and m in L, so we have 〈v2, v3, p4, c〉 = 〈p2, p3, p4,m〉 = −1. The
perspectivity with center p2 takes the points v2, v3, p4, and c on L4 onto the points v1,
v4, m, and c on L1, so 〈v1, v4,m, c〉 = 〈v2, v3, p4, c〉 = −1. Finally, the perspectivity
with center p3 takes the points v2, v3, p4, and c on L4 onto the points v′4, v1, m, and c
on L1, so 〈v1, v

′
4,m, c〉 = 1/〈v′4, v1,m, c〉 = 1/〈v2, v3, p4, c〉 = −1. Thus 〈v1, v

′
4,m, c〉 =

〈v1, v4,m, c〉 = −1, which gives v4 = v′4, as required.

Now suppose that P = {p1, p2, p3, p4} is a set of four points in Z
2, no three of

which are collinear. Suppose that the points are labeled so that L[p1, p4]∩ [p2, p3] = ∅.
If L = L[p2, p3], then either p1 and p4 lie on the same side of L, or they lie on opposite
sides of L. The former case is illustrated in Figure 4 (right); the latter case corresponds
to the situation in which the point p4 in Figure 4 (right) lies in L4 below L. Let m be
in the relative interior of [p2, p3], and suppose n ∈ L is such that 〈p2, p3, n,m〉 = −1.
Let L1 = L[m, p1] and L4 = L[n, p4]. We may assume that m and n are chosen so that
if {c} = L1 ∩ L4, then c lies in the relative interior of [m, p1]. Let v1 ∈ L1 be in the
relative interior of [c, p1], and let Li = L[pi, v1], i = 2, 3. Let {vi} = Li ∩ L4, i = 2, 3.
Then vi lies in the relative interior of [pi, v1], i = 2, 3, and p4 /∈ [v2, v3], since p4 is not
contained in the triangle with vertices p1, p2, and p3. Finally, let L5 = L[p2, v3] and
L6 = L[p3, v2].

We claim that L1 ∩L5 = L1 ∩L6 = {v4}, say. From this it would follow that the
points vi, i = 1, . . . , 4, form the vertices of the required quadrilateral. To prove the
claim we can follow exactly the argument used in the previous case, on replacing p4

with n.

Theorem 7.5. For every set P of four noncollinear points in Z
2, there exists a

rational P -octagon Q such that P ∩Q = ∅. Hence there are sets P of four noncollinear
points in Z

2 such that there exists a lattice P -octagon Q such that P ∩Q = ∅.
Proof. Let P = {p1, p2, p3, p4} be a set of noncollinear points in Z

2. Suppose that
the points in P are labeled so that L[p1, p4] ∩ [p2, p3] = ∅. Let V be a quadrilateral
built as in Lemma 7.4. Note that in the proof of Lemma 7.4, we can interchange p2 and
p3, if necessary, so that the points p3 and p4 belong to the same half plane bounded
by L[p2, v4]. Moreover, since P ⊂ Z

2, each line in the construction of Lemma 7.4
can be chosen so that it is represented by a linear equation with integer coefficients.

186 PAOLO DULIO, RICHARD J. GARDNER, AND CARLA PERI

p4

p2

v1

v2

v4

p3

p1

v3

q0 q1 q2
q3

q4

q5

q6

q7

Fig. 5. Construction of a P -octagon for four noncollinear points.

Thus, we can assume that the vertices of V have rational coordinates.

We will construct a P -octagon with vertices on the lines containing the edges
of V . Let q0 be a point with rational coordinates in the relative interior of [p2, v2],
and let q1 be in the relative interior of [p2, v4] such that {q1} = L[p2, v4] ∩ L[p3,q0].
See Figure 5. Let {q2} = L[p3, v4] ∩ L[p4, q1], and note that q0 can be chosen so
that q2 is in the relative interior of [p3, v4]. Let {q3} = L[p3, v3] ∩ L[p2, q2], and note
that q3 is in the relative interior of [p3, v3]. Finally, let {q4} = L[p2, v3] ∩ L[p1, q3],
{q5} = L[p3, q4]∩L[p2, v1], {q6} = L[p4, q5]∩L[p3, v1], and {q7} = L[p2, q6]∩L[p3, v2].

We claim that the octagon Q with vertices qi (indicated by white circles in Fig-
ure 5), where the subscripts are understood to be integers mod 8, is a P -polygon.
The construction ensures that the points p2, qi, and q5−i are collinear and that the
points p3, qi, and q1−i are collinear. It remains to prove that Q is a P ′-polygon, where
P ′ = {p1, p4}. Note that for i = 1 and 5, the points p4, qi, and q3−i are collinear by
construction.

Consider the lines L1 = L[q4, q5], L2 = L[q3, q6], and L3 = L[q2, q7] through p3

and the lines L′
1 = L[q6, q7], L′

2 = L[q0, q5], and L′
3 = L[q1, q4] through p2. Then

L1 ∩ L′
2 = {q5}, L′

1 ∩ L2 = {q6}, L1 ∩ L′
3 = {q4}, L′

1 ∩ L3 = {q7}, L2 ∩ L′
3 =

{v3}, and L′
2 ∩ L3 = {v2}, so by the dual of Pappus’s theorem ([6, section 4.3]), it

follows that the lines L[q5, q6], L[q4, q7], and L[v2, v3] belong to the same pencil. Since
L[q5, q6] ∩ L[v2, v3] = {p4}, the points p4, q4, and q7 are collinear, as required. In
the same way, by applying the dual of Pappus’s theorem to the lines L1 = L[q3, q6],
L2 = L[q0, q1], and L3 = L[q2, q7] through p3, and L′

1 = L[q0, q5], L
′
2 = L[q2, q3], and

L′
3 = L[q1, q4] through p2, it follows that p4, q0, and q3 are collinear. Therefore p4,

qi, and q3−i are collinear for every i.

Note that p1, q3, and q4 are collinear by construction. By applying the dual
of Pappus’s theorem to the lines L1 = L[q4, q5], L2 = L[q3, q6], and L3 = L[q2, q7]
through p3, and the lines L′

1 = L[q2, q3], L
′
2 = L[q1, q4], and L′

3 = L[q0, q5] through

DISCRETE POINT X-RAYS 187

p2, it follows that p1, q2, and q5 are collinear. Consider the triangle T with vertices
q1, q2, and v4, and the triangle T ′ with vertices q5, q6, and v1. Let L1 = L[q1, q2],
L2 = L[q2, v4], and L3 = L[q1, v4] be the lines containing the edges of T , and let L′

1 =
L[q5, q6], L

′
2 = L[q5, v1], and L′

3 = L[q6, v1] be the corresponding lines containing the
edges of T ′. Since L1∩L′

1 = {p4}, L2∩L′
2 = {v2}, and L3∩L′

3 = {v3}, and the points
p4, v2, and v3 are collinear, the lines L[q2, q5], L[q1, q6], and L[v1, v4] belong to the
same pencil. Also, L[q2, q5]∩L[v1, v4] = {p1}, so the points p1, q1, and q6 are collinear.
By applying the dual of Pappus’s theorem to the lines L1 = L[q3, q6], L2 = L[q0, q1],
and L3 = L[q2, q7] through p3, and the lines L′

1 = L[q1, q4], L′
2 = L[q6, q7], and

L′
3 = L[q0, q5] through p2, it follows that p1, q0, and q7 are collinear. Therefore p1,

qi, and q7−i are collinear for every i, completing the proof that Q is a P -octagon.
Finally, note that since P ⊂ Z

2 and the vertices of Q all have rational coordinates,
there is an integer k such that if P ′ = {kp1, kp2, kp3, kp4}, then kQ is a lattice P ′-
octagon.

The previous result stands in contrast to the situation for collinear sets P . It
follows from [12, Theorem 4.5] that there are sets U of four directions in R

2 with
rational slopes such that there do not exist any U -polygons (lattice, rational, or
otherwise). By Theorem 6.5(ii), there are sets P of four collinear points in the x-axis
such that there are no P -polygons, and, in particular, no rational P -polygons, disjoint
from the x-axis.

7.3. A P -dodecagon. Almost nothing seems to be known about P -polygons
beyond the material in the previous subsections. The following result is obtained by
a construction similar to that of Theorem 7.5, but starting with a certain special P -
hexagon instead of a quadrilateral. In view of the isolated nature of the construction,
we simply list the relevant points.

Theorem 7.6. There is a set P of six points in Z
2, no four of which are collinear,

such that there exists a lattice P -dodecagon Q such that P ∩Q = ∅.
Proof. Let P ′ = {p1, p2, . . . , p6}, where p1 = (0,−12), p2 = (6, 0), p3 = (−4, 4),

p4 = (−24, 12), p5 = (12, 12), and p6 = (−6, 12). Let Q be the dodecagon with
vertices q0 = (16/5,−14/5), q1 = (84/29,−96/29), q2 = (12/107,−672/107), q3 =
(−1/9,−55/9), q4 = (−7/3,−1/3), q5 = (−48/19, 6/19), q6 = (−336/109, 330/109),
q7 = (−220/73, 224/73), q8 = (−4/15, 32/15), q9 = (3/11, 21/11), q10 = (165/41, 3/41),
and q11 = (112/27,−2/27). A computation of the slopes of the segments [qi, qi+1],
where the indices are taken modulo 12, shows that Q is convex. A further computation
shows that for i = 0, . . . , 5, the following triples of points are collinear: (p1, qi, q11−i),
(p2, qi, q3−i), (p3, qi, q7−i), (p4, qi, q5−i), (p5, qi, q1−i), and (p6, qi, q9−i), where again
indices are taken modulo 12. This shows that Q is a P ′-polygon. Since the vertices
of Q have rational coordinates, there is a k ∈ N such that kQ is a lattice P -polygon,
where P = {kp1, kp2, . . . , kp6}.

8. Discrete point X-rays at noncollinear points. Volčič (see [17] or [11,
Chapter 5]) proved that planar convex bodies are determined by their continuous
point X-rays at any set of four points, no three of which are collinear. We show in
this section that the situation is somewhat different for discrete point X-rays.

By Corollary 7.2, there are sets P = {p1, p2, p3} of three noncollinear points in
Z

2, such that there exists a lattice special P -hexagon. Moreover, it can be arranged
that the center c of the hexagon is also a lattice point, in which case the hexagon is
a lattice P ′-polygon for the set P ′ = {p1, p2, p3, c} of four noncollinear points. The
point c may be in the interior of the triangle formed by the points in P , as in Figure 3,
or exterior to this triangle, as in the construction of Theorem 7.1. By Lemma 4.5,

188 PAOLO DULIO, RICHARD J. GARDNER, AND CARLA PERI

there are different convex lattice sets with equal discrete point X-rays at the points
in P ′. These examples show that the results of Volčič (see [17] or [11, Theorems 5.3.6
and 5.3.7]) do not hold in the discrete case.

The following direct consequence of Theorem 7.5 and Lemma 4.5 shows that
another result of Volčič (see [17] or [11, Theorem 5.3.8]) also does not hold in the
discrete case.

Theorem 8.1. There is a set P of four points in Z
2, no three of which are

collinear, such that convex lattice sets not meeting any line joining two points in P
are not determined by discrete point X-rays at the points in P .

Finally, Theorem 7.6 and Lemma 4.5 immediately yield the following result.
Theorem 8.2. There is a set P of six points in Z

2, no four of which are collinear,
such that convex lattice sets not meeting any line joining two points in P are not
determined by discrete point X-rays at the points in P .

REFERENCES

[1] A. Adler and J. E. Coury, The Theory of Numbers, Jones and Bartlett, Boston, 1995.
[2] A. Alpers and R. Tijdeman, The two-dimensional Prouhet-Tarry-Escott problem, J. Number

Theory, to appear.
[3] I. Bárány and J. Matoušek, A fractional Helly theorem for convex lattice sets, Adv. Math.,

174 (2003), pp. 227–235.
[4] M. Berger, Geometry, Springer, Berlin, 1987.
[5] S. Brunetti and A. Daurat, An algorithm reconstructing lattice convex sets, Theoret. Com-

put. Sci., 304 (2003), pp. 35–57.
[6] H. S. M. Coxeter, The Real Projective Plane, Cambridge University Press, Cambridge, 1961.
[7] V. I. Danilov and G. A. Koshevoy, Discrete convexity and unimodularity—I, Adv. Math.,

189 (2004), pp. 301–324.
[8] A. Daurat, Connexité et Convexité Directionelle Dans Z

2, in CNR’IUT2000, Vol. 1, Presses
Universitaires d’Orléans, Orléans, France, 2000, pp. 341–350.

[9] I. Debled-Rennesson, J.-L. Rémy, and J. Rouyer-Degli, Detection of the discrete convexity
of polyominoes, Discrete Appl. Math., 125 (2003), pp. 115–133.

[10] P. Dulio, R. J. Gardner, and C. Peri, Discrete point X-rays of convex lattice sets, Electron.
Notes Discrete Math., 20 (2005), pp. 1–13.

[11] R. J. Gardner, Geometric Tomography, Cambridge University Press, New York, 1995. Second
edition, 2006.

[12] R. J. Gardner and P. Gritzmann, Discrete tomography: Determination of finite sets by
X-rays, Trans. Amer. Math. Soc., 349 (1997), pp. 2271–2295.

[13] R. J. Gardner and P. Gritzmann, Uniqueness and complexity in discrete tomography, in Dis-
crete Tomography: Foundations, Algorithms and Application, G. T. Herman and A. Kuba,
eds., Birkhäuser, Boston, 1999, pp. 85–113.

[14] B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, Ann. of
Math., to appear.

[15] G. T. Herman and A. Kuba, Discrete Tomography: Foundations, Algorithms, and Applica-
tions, Birkhäuser, Boston, 1999.

[16] W. Sierpiński, Sur les suites d’entiers deux à deux premiers entre eux, Enseignement Math.,
10 (1964), pp. 229–235.

[17] A. Volčič, A three-point solution to Hammer’s X-ray problem, J. London Math. Soc., 34
(1986), pp. 349–359.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 189–202

IMPROVED BOUNDS FOR THE CROSSING NUMBERS OF
Km,n AND Kn

∗

E. DE KLERK† , J. MAHARRY‡ , D. V. PASECHNIK§ , R. B. RICHTER† , AND

G. SALAZAR¶

Abstract. It has been long conjectured that the crossing number cr(Km,n) of the complete
bipartite graph Km,n equals the Zarankiewicz number Z(m,n) := �m−1

2
��m

2
��n−1

2
��n

2
�. Another

longstanding conjecture states that the crossing number cr(Kn) of the complete graph Kn equals
Z(n) := 1

4

⌊
n
2

⌋⌊
n−1

2

⌋⌊
n−2

2

⌋⌊
n−3

2

⌋
. In this paper we show the following improved bounds on the

asymptotic ratios of these crossing numbers and their conjectured values:
(i) for each fixed m ≥ 9, limn→∞ cr(Km,n)/Z(m,n) ≥ 0.83m/(m− 1);
(ii) limn→∞ cr(Kn,n)/Z(n, n) ≥ 0.83; and
(iii) limn→∞ cr(Kn)/Z(n) ≥ 0.83.

The previous best known lower bounds were 0.8m/(m−1), 0.8, and 0.8, respectively. These improved
bounds are obtained as a consequence of the new bound cr(K7,n) ≥ 2.1796n2 − 4.5n. To obtain this
improved lower bound for cr(K7,n), we use some elementary topological facts on drawings of K2,7 to
set up a quadratic program on 6! variables whose minimum p satisfies cr(K7,n) ≥ (p/2)n2−4.5n, and
then use state-of-the-art quadratic optimization techniques combined with a bit of invariant theory
of permutation groups to show that p ≥ 4.3593.

Key words. crossing number, semidefinite programming, copositive cone, invariants and cen-
tralizer rings of permutation groups

AMS subject classifications. 05C10, 05C62, 90C22, 90C25, 57M15, 68R10

DOI. 10.1137/S0895480104442741

1. Introduction. In the earliest known instance of a crossing number question,
Turán raised the problem of calculating the crossing number of the complete bipartite
graphs Km,n. Turán’s interesting account of the origin of this problem can be found
in [27].

We recall that in a drawing of a graph in the plane, different vertices are drawn
as different points, and each edge is drawn as a simple arc whose endpoints coincide
with the drawings of the endvertices of the edge. Furthermore, the interior of the
arc for an edge is disjoint from all the vertex points. We often make no distinction
between a graph object, such as a vertex, edge, or cycle, and the subset of the plane
that represents it in a drawing of the graph.

The crossing number cr(G) of a graph G is the minimum number of pairwise
intersections of edges (at a point other than a vertex) in a drawing of G in the plane.

∗Received by the editors April 5, 2004; accepted for publication (in revised form) August 29, 2005;
published electronically March 3, 2006.

http://www.siam.org/journals/sidma/20-1/44274.html
†Department of Combinatorics and Optimization, Faculty of Mathematics, University of Water-

loo, Waterloo, ON N2L 3G1, Canada (e.deklerk@uvt.nl, brichter@math.uwaterloo.ca).
‡Department of Mathematics, The Ohio State University, Columbus, OH 43210 (maharry@math.

ohio-state.edu).
§Theoretische Informatik, FB20 Informatik, J.W. Goethe-Universität, Robert-Mayer Str. 11-15,

Postfach 11 19 32, 60054 Frankfurt(Main), Germany (Dima@ntu.edu.sg). This author’s work was
partially supported by DFG grant SCHN-503/2-1. Part of the research was completed while this
author was supported by the Mathematical Sciences Research Institute (MSRI) at Berkeley, CA.

¶Instituto de Fisica, Universidad Autonoma de San Luis Potosi, San Luis Potosi, SLP 78000,
Mexico (gsalazar@ifisica.uaslp.mx). This author’s work was supported by grants CONACYT J32168
and FAI-UASLP. Part of the research was completed during a sabbatical leave at The Ohio State
University, Columbus, OH.

189

190 DE KLERK, MAHARRY, PASECHNIK, RICHTER, AND SALAZAR

Fig. 1. A drawing of K4,5 with 8 crossings. A similar strategy can be used to construct drawings
of Km,n with exactly Z(m,n) crossings.

Exact crossing numbers of graphs are in general very difficult to compute.
Longstanding conjectures involve the crossing numbers of interesting families of graphs,
such as Km,n and Kn. On a positive note, it was recently proved by Glebsky and
Salazar [9] that the crossing number of the Cartesian product Cm × Cn of the cycles
of sizes m and n equals its long conjectured value, namely (m − 2)n, at least for
n ≥ m(m + 1). For recent surveys of crossing number results, see [23] or [26].

Zarankiewicz published a paper [29] in which he claimed that cr(Km,n) = Z(m,n)
for all positive integers m, n, where

Z(m,n) =

⌊
m− 1

2

⌋⌊
m

2

⌋⌊
n− 1

2

⌋⌊
n

2

⌋
.(1)

However, several years later Ringel and Kainen independently found a hiatus in Zaran-
kiewicz’s argument. A comprehensive account of the history of the problem, including
a discussion of the gap in Zarankiewicz’s argument, is given by Guy [11].

Figure 1 shows a drawing of K4,5 with 8 crossings. As Zarankiewicz observed,
such a drawing strategy can be naturally generalized to construct, for any positive
integers m,n, drawings of Km,n with exactly Z(m,n) crossings. This observation
implies the following well-known upper bound for cr(Km,n):

cr(Km,n) ≤ Z(m,n).

No one has yet exhibited a drawing of any Km,n with fewer than Z(m,n) crossings.
In allusion to Zarankiewicz’s failed attempt to prove that this is the crossing num-
ber of Km,n, the following is commonly known as Zarankiewicz’s crossing–number
conjecture:

cr(Km,n)
?
= Z(m,n) for all positive integers m,n.

In 1973, Guy and Erdős [6] wrote, “Almost all questions that one can ask about
crossing numbers remain unsolved.” More than three decades later, despite some def-
inite progress in our understanding of this elusive parameter, most of the fundamental
and more important questions about crossing numbers remain open. Zarankiewicz’s
conjecture has been verified by Kleitman [13] for min{m,n} ≤ 6 and by Woodall [28]
for the special cases 7 ≤ m ≤ 8, 7 ≤ n ≤ 10.

IMPROVED BOUNDS FOR CROSSING NUMBERS OF Km,n AND Kn 191

Since the crossing number of Km,n is unknown for all other values of m and n, it is
natural to ask what are the best general lower bounds known for cr(Km,n). A standard
counting argument, together with the fact that cr(K5,n) is as conjectured, yields the
best general lower bound (2) known for cr(Km,n). It goes as follows: Suppose we know
a lower bound cr on cr(Kr,n) for 2 < r < m ≤ n. Each crossing in the embedding of
Km,n lies in

(
m−2
r−2

)
distinct Kr,n ⊂ Km,n. As there are in total

(
m
r

)
distinct Kr,n’s,

one obtains

cr(Km,n) ≥
cr
(
m
r

)
(
m−2
r−2

) ; for r = 5 one derives cr(Km,n) ≥ 0.8Z(m,n).(2)

A small improvement on the 0.8 factor (roughly to something around 0.8001) was
recently reported by Nahas [18].

Zarankiewicz’s conjecture for K7,n states that

cr(K7,n)
?
= 9

⌊
n− 1

2

⌋⌊
n

2

⌋
=

{
2.25n2 − 4.5n + 2.25, n odd, n ≥ 7,
2.25n2 − 4.5n, n even, n ≥ 8.

As we observed above, this has been verified only for n = 7, 8, 9, and 10. Using
cr(K7,10) = 180, a standard counting argument gives the best known lower bounds
for cr(K7,n) for 11 ≤ n ≤ 22. However, for n ≥ 23, the best known lower bounds for
cr(K7,n) are obtained by the same counting argument, but using the known value of
cr(K5,n) instead of cr(K7,10). Summarizing, previous to this paper, the best known
lower bounds for cr(7, n) were

cr(K7,n) ≥

⎧⎨
⎩

2n(n− 1), 11 ≤ n ≤ 22,
2.1n2 − 4.2n + 2.1, odd n ≥ 23,
2.1n2 − 4.2n, even n ≥ 24.

(3)

In this paper we prove the following theorem.
Theorem 1. For all integers n,

cr(K7,n) > 2.1796n2 − 4.5n.

An elementary calculation shows that this is an improvement, for all n ≥ 23, on
the bounds for cr(K7,n) given in (3).

The strategy of the proof can be briefly outlined as follows. Let (A,B) be the
bipartition of the vertex set of K7,n, where |A| = 7 and |B| = n ≥ 2. Let b, b′ be
vertices in B. In any drawing D of K7,n, the number of crossings that involve an edge
incident with b and an edge incident with b′ is bounded from below by a function
of the cyclic rotation schemes of b and b′. This elementary topological observation
on drawings of K2,7 naturally yields a standard quadratic (minimization) program
whose minimum p satisfies cr(K7,n) ≥ (p/2)n2 − 4.5n (see Lemma 2). We then
use state-of-the-art quadratic programming techniques to show that p ≥ 4.3593 (see
Proposition 3), thus implying Theorem 1.

The rest of this paper is organized as follows. In section 2, we review some
elementary topological observations about drawings of K2,n and use these facts to
set up the quadratic program mentioned in the previous paragraph. The bound
for cr(K7,n) in terms of the minimum of this quadratic program is the content of
Lemma 2. In section 3 we prove Proposition 3, which gives a lower bound for the
quadratic program. As we observe at the end of section 3, Theorem 1 is an obvious
consequence of Lemma 2 and Proposition 3. In section 4 we discuss consequences of
Theorem 1: The improved bound for cr(K7,n) implies improved asymptotic bounds
for the crossing numbers of cr(Km,n) and cr(Kn).

192 DE KLERK, MAHARRY, PASECHNIK, RICHTER, AND SALAZAR

5

26

bj

4

bi

1 3

0

Fig. 2. Here m = 7. Vertices bi and bj have cyclic orderings (0 1 3 4 5 2 6) and (0 2 6 5 3 4 1),
respectively (we write i for ai for the sake of brevity). It is easy to check that the minimum number
of interchanges among adjacent elements in (0 1 3 4 5 2 6) required to obtain (0 2 6 5 3 4 1)−1 (namely
(0 1 4 3 5 6 2)) is 2. Thus, Q((0 1 3 4 5 2 6), (0 1 3 4 5 2 6)) = 2. Therefore, there must be at least 2
crossings (as is indeed the case in the drawing above) that involve edges incident with bi and bj .

2. Quadratic optimization problem yielding a lower bound for cr(Km,n).
Our goal in this section is to establish Lemma 2, a statement that gives a lower bound
for cr(Km,n) for m ≤ n (and thus for cr(K7,n)) in terms of the solution of a quadratic
minimization problem on (m− 1)! variables.

Let n ≥ m be fixed. Let V denote the vertex set of Km,n, and let (A,B) denote
the bipartition of V such that each vertex of A = {a0, a1, . . . , am−1} is adjacent to
each vertex of B = {b0, b1, . . . , bn−1}.

Consider a fixed drawing D of Km,n. To each vertex bi we associate a cyclic
ordering πD(bi) of the elements in A, defined by the (clockwise) cyclic order in which
the edges incident with bi leave bi toward the vertices in A (see Figure 2). Let Π
denote the set of all cyclic orderings of {a0, a1, . . . , am−1}. Note that |Π| = m!/m =
(m− 1)!.

Following Kleitman [13], let crD(bi, bj) denote the number of crossings in D that
involve an edge incident with bi and an edge incident with bj . Further, let ρ1, ρ2 ∈ Π
and Q(ρ1, ρ2) be the minimum number of interchanges of adjacent elements of ρ1

required to produce ρ−1
2 . Then, for all bi, bj with bi �= bj ,

crD(bi, bj) ≥ Q(πD(bi), πD(bj)).(4)

This inequality is stated in [13] and proved in [28]. This observation alone yields a
lower bound for cr(Km,n), as follows. Fix any drawing D of Km,n. For each ρ ∈ Π,
let

xρ :=
1

n
|{bi ∈ B | πD(bi) = ρ}|.

The matrix Q can be viewed as the matrix of quadratic form Q(·, ·) on the space R
|Π|.

IMPROVED BOUNDS FOR CROSSING NUMBERS OF Km,n AND Kn 193

It follows from (4) that

cr(D) ≥
∑

ρ,ρ′∈Π
ρ�=ρ′

Q(ρ, ρ′)(xρn)(xρ′n) +
∑
ρ∈Π

Q(ρ, ρ)

(
xρn

2

)

=
n

2

⎛
⎝n

∑
ρ,ρ′∈Π

Q(ρ, ρ′)xρxρ′ −
⌊
m

2

⌋⌊
m− 1

2

⌋⎞⎠ ,

using the (easily verifiable; see, e.g., [28]) fact that Q(ρ, ρ) = �m/2��(m− 1)/2� for
every ρ ∈ Π.

Since the drawing D was arbitrary, we have proved the following lemma.
Lemma 2. Let Q be the (m− 1)! × (m− 1)! matrix of the form Q(·, ·), and let e

denote the all ones vector. Then, for every integer n ≥ m ≥ 2,

cr(Km,n) ≥ n

2

(
nmin{xTQx | x ∈ R

(m−1)!
+ , eTx = 1} −

⌊
m

2

⌋⌊
m− 1

2

⌋)
,

cr(K7,n) ≥ n

2
(nmin{xTQx | x ∈ R

6!
+, e

Tx = 1} − 9).

Remark. In this paper we focus on the case m = 7. For obvious reasons (for
m = 7, Q is a 720 × 720 matrix) we do not include in this paper the matrix Q in
table form. As we mentioned above, Q(ρ, ρ) = 9 for every ρ ∈ Π, and therefore all the
diagonal entries of Q are 9. It is not difficult to show that Q(ρ, ρ′) ≤ 8 if ρ �= ρ′, so
every nondiagonal entry of Q is at most 8. The calculation of the entries of Q, using
the definition of Q(·, ·) and taking its symmetries into account (see section 3.2), takes
only a few seconds of computer time.

3. Finding a lower bound for the optimization problem. Our aim in this
section is to find a (reasonably good) lower bound for the quadratic programming
problem with m = 7 given in Lemma 2, in order to obtain a (reasonably good) lower
bound for cr(K7,n). The main result in this section is the following.

Proposition 3. Let Q be the 6! × 6! matrix of the quadratic form Q(·, ·). Then

min{xTQx | x ∈ R
6!
+, e

Tx = 1} ≥ 4.3593.

We devote this section to the proof of Proposition 3. It involves computer calcu-
lations; more details on this are given in section 3.8.

3.1. The standard quadratic programming problem. The problem we
have formulated is known as standard quadratic optimization problem. The standard
quadratic optimization problem (standard QP) is to find the global minimizers of a
quadratic form over the standard simplex; i.e., we consider the global optimization
problem

p := min
x∈Δ

xTQx,(5)

where Q is an arbitrary symmetric d× d matrix, e is the all ones vector, and Δ is the
standard simplex in R

d,

Δ = {x ∈ R
d
+ : eTx = 1}.

194 DE KLERK, MAHARRY, PASECHNIK, RICHTER, AND SALAZAR

We will now reformulate the standard QP as a convex optimization problem in
conic form. First, we will review the relevant convex cones as well as the duality
theory of conic optimization. We define the following convex cones:

• the d× d symmetric matrices:

Sd = {X ∈ R
d × R

d, X = XT };

• the d× d symmetric positive semidefinite matrices:

S+
d = {X ∈ Sd, y

TXy ≥ 0 ∀y ∈ R
d};

• the d× d symmetric copositive matrices:

Cd = {X ∈ Sd, y
TXy ≥ 0 ∀y ∈ R

d, y ≥ 0};

• the d× d symmetric completely positive matrices:

C∗
d =

{
X =

k∑
i=1

yiy
T
i , yi ∈ R

d, yi ≥ 0 (i = 1, . . . , k)

}
;

• the d× d symmetric nonnegative matrices:

Nd = {X ∈ Sd, Xij ≥ 0 (i, j = 1, . . . , d)}.

Recall that the completely positive cone is the dual of the copositive cone [12], and that
the nonnegative and semidefinite cones are self-dual for the inner product 〈X,Y 〉 :=
Tr(XY), where “Tr” denotes the trace operator.

For a given cone Kd and its dual cone K∗
d we define the primal and dual pair of

conic linear programs:

p∗ := inf
X∈Kd

{Tr(CX) |Tr(AiX) = bi (i = 1, . . . ,M)} ,(P)

d∗ := sup
y∈Rm

{
bT y

∣∣∣ M∑
i=1

yiAi + S = C, S ∈ K∗
d

}
.(D)

If Kd = S+
d , we refer to semidefinite programming; if Kd = Nd, to linear programming;

and if Kd = Cd, to copositive programming.
The well-known conic duality theorem (see, e.g., Renegar [20]) gives the duality

relations between (P) and (D).
Theorem 4 (conic duality theorem). If there exists an interior feasible solution

X0 ∈ int(Kd) of (P) and a feasible solution of (D), then p∗ = d∗ and the supremum in
(D) is attained. Similarly, if there exist feasible y0, S0 for (D), where S0 ∈ int(K∗

d),
and a feasible solution of (P), then p∗ = d∗ and the infimum in (P) is attained.

Optimization over the cones S+
d and Nd can be done in polynomial time (to

compute an ε-optimal solution), but some NP-hard problems can be formulated as
copositive programs; see, e.g., de Klerk and Pasechnik [14].

3.1.1. Convex reformulation of the standard QP. We rewrite problem (5)
in the following way:

p := min
x∈Δ

Tr(QxxT).

IMPROVED BOUNDS FOR CROSSING NUMBERS OF Km,n AND Kn 195

Now we define the cone of matrices

K =
{
X ∈ Sd : X = xxT , x ≥ 0

}
.

Note that the requirement x ∈ Δ corresponds to X ∈ K with Tr(eeTX) = 1.
We arrive at the following reformulation of problem (5):

p = min
{
Tr(QX) : Tr(eeTX) = 1, X ∈ K

}
.(6)

The last step is to replace the cone K by its convex hull, which is simply the cone of
completely positive matrices, i.e.,

conv (K) = C∗
d =

{
X =

k∑
i=1

yiy
T
i , yi ∈ R

n, yi ≥ 0 (i = 1, . . . , k)

}
.

Replacing the feasible set by its convex hull does not change the optimal value of
problem (6), since its objective function is linear. Thus we obtain the well-known
convex reformulation

p = min
{
Tr(QX) | Tr

(
eeTX

)
= 1, X ∈ C∗

d

}
.(7)

The dual problem takes the form

p = max
{
t | Q− teeT ∈ Cd

}
,(8)

where Cd is the cone of copositive matrices, as before. Note that both problems have
the same optimal value, in view of the conic duality theorem.

3.2. Exploiting group symmetries. We can reduce considerably the number
of variables in the optimization problems in (7), (8) by exploiting the invariance
properties of the quadratic function xTQx. This will also prove to be computationally
necessary for the problems we intend to solve.

Consider the situation where the matrix Q is invariant under the action of a group
G of order k = |G| of permutation matrices P ∈ G, in the sense that

Q = PTQP ∀ P ∈ G.

Then we have

p = min
{
Tr(QX) | Tr

(
eeTX

)
= 1, X ∈ C∗

d

}
= min

{
Tr

(
PTQPX

)
| Tr

(
PeeTPX

)
= 1, X ∈ C∗

d

}
for any P ∈ G

= min
{
Tr

(
QPTXP

)
| Tr

(
eeTPTXP

)
= 1, X ∈ C∗

d

}
for any P ∈ G

= min

{
Tr

(
Q

1

k

[∑
P∈G

PTXP

]) ∣∣∣∣Tr

(
eeT

[
1

k

∑
P∈G

PTXP

])
= 1, X ∈ C∗

d

}
.

We can therefore restrict the optimization to the subset of the feasible set obtained
by replacing each feasible X by the group average 1

k

∑
P∈G PTXP , i.e., replacing X

by its image under what is known in invariant theory as the Reynolds operator. Note
that if X ∈ C∗

d , then so is its image under the group average.

196 DE KLERK, MAHARRY, PASECHNIK, RICHTER, AND SALAZAR

In particular, we wish to compute a basis for the so-called fixed point subspace

A :=

{
Y ∈ Sd | Y =

1

k

∑
P∈G

PTXP, X ∈ Sd

}
.

Note that Q and eeT are elements of A (set X = Q, respectively, X = eeT). Hence
Q− teeT ∈ A for any t, and

p = max
{
t | Q− teeT ∈ Cd

}
= max

{
t | Q− teeT ∈ Cd ∩ A

}
.

The right-hand side here is the dual of the primal problem when it is restricted to A
as above.

The next step is to compute a basis for the subspace A.

3.3. Computing a basis for the fixed point subspace. We assume for sim-
plicity that G acts transitively as a permutation group on the standard basis vectors.
(This holds in our setting. A more general, and computationally less efficient, setting
can be found in Gatermann and Parrilo [8].) The theory here is well known and goes
back to Burnside, Schur, and Wielandt. See, e.g., Cameron [5] for details. Although
we need a basis of A, the subspace of symmetric matrices fixed by G, it is more natural
to compute the basis X of the subspace B of all matrices fixed by G and then pass
on to A.

The dimension of B equals the number r of orbits of G on the Cartesian square
of the standard basis. The set of the latter orbits, also known as 2-orbits, naturally
corresponds to certain set X of d× d zero-one matrices. Namely, for each X ∈ X one
has Xij = 1 if and only if XP (i),P (j) = 1 for all P ∈ G and all 1 ≤ i ≤ j ≤ |Π|. As
G is transitive on the standard basis vectors, the identity matrix I belongs to X . We
also have

∑
X∈X X = eeT .

As X is closed under the matrix transposition, i.e., XT ∈ X for any X ∈ X ,

XA = {A1, . . . , AM} = {X | X = XT ∈ X} ∪ {X + XT | X ∈ X , X �= XT }

is a basis of A. Each A ∈ XA is a symmetric zero-one matrix, and
∑

A∈XA
A = eeT .

Moreover,{
Y ∈ Sd | Y =

M∑
i=1

yiAi

}
= A ≡

{
Y ∈ Sd | Y =

1

k

∑
P∈G

PTXP, X ∈ Sd

}
.

Since Q ∈ A, we will write Q =
∑M

i=1 biAi.
It is worth mentioning that algebraically the vector space B behaves very nicely:

it is closed under multiplication. In other words, B is a matrix algebra of dimension
r, also known as the centralizer ring of the permutation group G.

We proceed to describe G and B in our case. For us G is isomorphic to the direct
product Sym(m)×Sym(2) of symmetric groups Sym(m) and Sym(2), where Sym(m)
acts (as a permutation group) by conjugation on the d = (m− 1)! elements of Π, and
Sym(2) acts (as a permutation group) on Π by switching π ∈ Π with π−1 ∈ Π.

Computing X is an elementary combinatorial procedure, which can be found in
one form or another in many computer algebra systems, so one does not have to
program this again. First, the permutations that generate Sym(m) × Sym(2) in its
action on Π are computed. The action of Sym(2) is already known, and is described

IMPROVED BOUNDS FOR CROSSING NUMBERS OF Km,n AND Kn 197

by the permutation g0, say. In its usual action on m symbols, Sym(m) is generated
by h1 = (0, 1, . . . ,m− 1) and h2 = (0, 1). These hi (for i = 1, 2) act on Π by mapping
each π ∈ Π to hiπh

−1
i . Denote by gi (for i = 1, 2) the permutations of Π that realize

these actions.

Next, one computes the orbits of the permutation group Sym(m) × Sym(2) =
〈g0, g1, g2〉 on the Cartesian square Π×Π of Π, by “spinning” (πi, πj) ∈ Π×Π: Begin
with Sij = {(πi, πj)} and apply the generators gi, 0 ≤ i ≤ 2, in a loop until Sij stops
growing. Then one sets Π := Π − Sij and repeats until Π is exhausted.

When m = 7, one has r = 78 and M = 56. Note that here the algebra B is not
commutative.

When m = 5, one has r = M = 6, and B is commutative.

3.4. Reformulation of the optimization problem. We can now reformulate
the dual problem by using the basis of A to obtain

p = max
{
t | Q− teeT ∈ Cd ∩ A

}
= max

{
t

∣∣∣∣∣
M∑
i=1

(bi − t)Ai ∈ Cd

}
.

We will now proceed to derive a lower bound on p by solving the dual problem
approximately.

3.5. Approximations of the copositive cone. The problem of determin-
ing whether a matrix is not copositive is NP-complete, as shown by Murty and
Kabadi [17]. We therefore wish to replace the copositive cone Cd by a conic sub-
set, in such a way that the resulting optimization problem becomes tractable. We can
represent the copositivity requirement for a d× d symmetric matrix S as

P (x) := (x ◦ x)TS(x ◦ x) =

d∑
i,j=1

Sijx
2
ix

2
j ≥ 0 ∀x ∈ R

d,(9)

where “◦” indicates the componentwise (Hadamard) product. We therefore wish to
know whether the polynomial P (x) is nonnegative for all x ∈ R

d. Although one
apparently cannot answer this question in polynomial time in general, as it is an NP-
hard problem, one can decide using semidefinite programming whether P (x) can be
written as a sum of squares.

Parrilo [19] showed that P (x) in (9) allows a sum of squares decomposition if and
only if S ∈ S+

d + Nd, which is a well-known sufficient condition for copositivity. Set
K0

d to be the convex cone K0
d = S+

d + Nd.

Higher order sufficient conditions can be derived by considering the polynomial

P (�)(x) = P (x)

(
d∑

i=1

x2
i

)�

=

⎛
⎝ d∑

i,j=1

Sijx
2
ix

2
j

⎞
⎠

(
d∑

i=1

x2
i

)�

,(10)

and asking whether P (�)(x)—which is a homogeneous polynomial of degree 2(�+2)—
has a sum of squares decomposition, or whether it has only nonnegative coefficients.

For � = 1, Parrilo [19] showed that a sum of squares decomposition exists if and

198 DE KLERK, MAHARRY, PASECHNIK, RICHTER, AND SALAZAR

only if1 the following system of linear matrix inequalities has a solution:

S − S(i) ∈ S+
d , i = 1, . . . , d,(11)

S
(i)
ii = 0, i = 1, . . . , d,(12)

S
(i)
jj + 2S

(j)
ij = 0, i �= j,(13)

S
(i)
jk + S

(j)
ik + S

(k)
ij ≥ 0, i < j < k,(14)

where S(i) (i = 1, . . . , d) are symmetric matrices. Similar to the � = 0 case, we define
K1

d as the (convex) cone of matrices S for which the above system has a solution.
We will consider the lower bounds we get by replacing the copositive cone by

either K0
d or K1

d:

p ≥ p� := max
{
t | Q− teeT ∈ K�

d

}
, � ∈ {0, 1}.(15)

3.6. Approximations (relaxations) of the copositive cone. We will now
study the relaxation obtained by replacing the copositive cone by its proper subset
K0

d. In other words, we study the relaxation

p = max

{
t

∣∣∣∣∣
M∑
i=1

(bi − t)Ai ∈ Cd

}

≥ p0 := max

{
t

∣∣∣∣∣
M∑
i=1

(bi − t)Ai ∈ K0
d = S+

d + Nd

}
.

We rewrite
∑M

i=1(bi − t)Ai ∈ K0
d as

M∑
i=1

(bi − t)Ai =

M∑
i=1

yiAi +

M∑
i=1

ziAi,

where
∑M

i=1 yiAi ∈ S+
d and

∑M
i=1 ziAi ∈ Nd.

Note that, since the Ai’s are zero-one matrices that sum to eeT , it follows that
zi ≥ 0. Moreover,

bi − t = yi + zi implies bi − t− yi ≥ 0.

We obtain the relaxation

p0 = max

{
t | bi − t− yi ≥ 0 (i = 1, . . . ,M),

M∑
i=1

yiAi ∈ S+
d

}
.(16)

3.7. Block factorization. The next step in reducing the problem size is to per-
form a similarity transformation that simultaneously block-diagonalizes the matrices
A1, . . . , AM . In particular, we want to find an orthogonal matrix V such that the
matrices

Ãi := V AiV
−1, i = 1, . . . ,M,

1In fact, Parrilo [19] proved only the “if” part; the converse is proved in Bomze and de Klerk [4].

IMPROVED BOUNDS FOR CROSSING NUMBERS OF Km,n AND Kn 199

all have the same block-diagonal structure, and the maximum block size is as small
as possible. Note that the conjugation preserves spectra, and orthogonality of V
preserves symmetry.

This will further reduce the size of the relaxation (16) via

p0 = max

{
t | bi − t− yi ≥ 0 (i = 1, . . . ,M),

M∑
i=1

yiAi ∈ S+
d

}

= max

{
t | bi − t− yi ≥ 0 (i = 1, . . . ,M),

M∑
i=1

yiV AiV
−1 ∈ S+

d

}

= max

{
t | bi − t− yi ≥ 0 (i = 1, . . . ,M),

M∑
i=1

yiÃi ∈ S+
d

}
.

The necessity to restrict to orthogonal V ’s lies in the fact that there is currently
no software (or algorithms) available that would be able to deal with nonsymmetric
Ãi’s.

Computing the finest possible block decomposition (this would mean finding ex-
plicitly the orthogonal bases for the irreducible submodules of the natural module of
G in its action by the matrices P) is computationally not easy, especially due to the
orthogonality requirement on V . We restricted ourselves to decomposing into two
blocks of equal size d

2 × d
2 . Namely, each row corresponds to a cyclic permutation

g ∈ Π, and the natural pairing (g, g−1) can be used to construct V =
√

2
2 V ′ as follows:

• the first half of the rows of V ′ are characteristic vectors of the 2-subsets
{g, g−1}, g ∈ Π;

• the second half of the rows of V ′ consists of “twisted” rows from the first half:
namely, one of the two 1’s is replaced by −1.

It is obvious that V ′V ′T = 2I and thus V is orthogonal.
Remark. It is worth mentioning that in [22] Schrijver essentially dealt, in a

different context, with a similar setup, except that in his case the elements of the
basis X of B were symmetric and (hence) the algebra B commutative. In such a
situation the elements of X can be simultaneously diagonalized, and the corresponding
optimization problem becomes a linear programming problem.

3.8. Computational results: Proof of Theorem 3. The combinatorial/
group theoretic part of the computations, namely of the Ai’s, V , and Q =

∑
i biAi, was

performed using a computer algebra system GAP [7], version 4.3, and its shared pack-
age GRAPE by Soicher [24]. Semidefinite programs (SDPs) were solved by Sturm [25]
using SeDuMi, version 1.05 under MATLAB 6.5. The biggest SDP took about 10
minutes of CPU time of a Pentium 4 with 1 GB of RAM.

In addition, the results were verified using MAPLE. Namely, for t = p0 and y,
the variables computed upon solving (16), we checked that the corresponding (matrix
and scalar) inequalities in (16) hold. As p0 is a lower bound on p, we thus validated
the computed value of p0 independently of the SDP solver used.

For the test case of K5,n we solved the relaxed problem (15) with � = 1 to obtain

p1 ≈ 1.9544, that is, cr(K5,n) ≥ 1

2
(1.9544)n2 = 0.9772n2,

asymptotically. The correct asymptotic value is known to be cr(K5,n) = n2, which
shows the quality of the bound. In fact, we could show that p1 ≈ 1.9544 corresponds

200 DE KLERK, MAHARRY, PASECHNIK, RICHTER, AND SALAZAR

to the optimal value of the first optimization problem in Lemma 2 for m = 5. This
shows that the optimal value of this optimization problem is a strict lower bound of
the crossing number of Km,n, even for m = 5.

The weaker bound for � = 0 in (15) yields, still quite tight,

p0 ≈ 1.94721, that is, cr(K5,n) ≥ 1

2
(1.94721)n2 = 0.973605n2.

For the case K7,n we solved the relaxed problem (15) with � = 0 to obtain

p0 ≈ 4.3593, that is, cr(K7,n) ≥ 1

2
(4.3593)n2 = 2.1796n2,

asymptotically.

Proof of Theorem 1. For the sake of completeness, we close this section with
the observation that Theorem 1 has been proved. It follows from Lemma 2 and
Proposition 3.

4. Improved bounds for the crossing numbers of Km,n and Kn. Perhaps
the most appealing consequence of our improved bound for cr(K7,n) is that it also
allows us to give improved lower bounds for the crossing numbers of Km,n and Kn.
The quality of the new bounds is perhaps best appreciated in terms of the following
asymptotic parameters:

A(m) := lim
n→∞

cr(Km,n)

Z(m,n)
, B := lim

n→∞

cr(Kn,n)

Z(n, n)
,

(see Richter and Thomassen [21]). These natural parameters give us a good idea of
our current standing with respect to Zarankiewicz’s conjecture. It is not difficult to
show that A(m) (for every integer m ≥ 3) and B both exist [21].

Previous to the new bound we report in Theorem 1, the best known lower bounds
for A(m) and B were A(m) ≥ 0.8 m

m−1 and (consequently) B ≥ 0.8. Both bounds
were obtained by using the known value of cr(K5,n) and applying a standard counting
argument.

By applying the same counting argument but instead using the bound given by
Theorem 1, we improve these asymptotic quotients to A(m) > 0.83 m

m−1 and B > 0.83.

The improved lower bound for B has an additional, important application. It has
been long conjectured that cr(Kn) = Z(n), where

Z(n) =
1

4

⌊
n

2

⌋⌊
n− 1

2

⌋⌊
n− 2

2

⌋⌊
n− 3

2

⌋
,

but this has been verified only for n ≤ 10 (see, for instance, [6]). As we did with
Km,n, it is natural to inquire about the asymptotic parameter

C := lim
n→∞

cr(Kn)

Z(n)
.

In [21] it is proved that C exists, and, moreover, that C ≥ B. In view of this, our
improved lower bound for B yields C > 0.83.

We summarize these results in the following statement.

IMPROVED BOUNDS FOR CROSSING NUMBERS OF Km,n AND Kn 201

Theorem 5. With Z(m,n) and Z(n) as above,

lim
n→∞

cr(Km,n)

Z(m,n)
≥ 0.83

m

m− 1
, lim

n→∞

cr(Kn,n)

Z(n, n)
≥ 0.83,

and lim
n→∞

cr(Kn)

Z(n)
≥ 0.83.

Recall that these results followed from an improved lower bound on cr(K7,n)
obtained by solving the optimization problem (15) for m = 7. The results can be
further improved by solving (15) for larger values of m. After the first submission of
the present work, the optimization problem was successfully solved for m = 9 by de
Klerk, Pasechnik, and Schrijver [15], by using a more sophisticated way of exploiting
the algebraic symmetry. In particular, the constant 0.83 in Theorem 5 could thus be
improved to 0.859.

We close this section with a few words on some important recent developments
involving the rectilinear crossing number of Kn.

The rectilinear crossing number cr(G) of a graph G is the minimum number of
pairwise intersections of edges in a drawing of G in the plane, with the additional
restriction that all edges of G must be drawn as straight segments.

It is known that cr(Kn) and cr(Kn) may be different (for instance, cr(K8) = 19,
whereas cr(K8) = 18; see [10]). While we have a (nonrectilinear) way of drawing Kn

that shows cr(Kn) ≤ Z(n) (equality is conjectured to hold, as we observed above),
good upper bounds for cr(Kn) are notoriously difficult to obtain. Currently, the
best upper bound known is cr(Kn) ≤ 0.3807

(
n
4

)
(see Aichholzer, Aurenhammer, and

Krasser [2]).
For many years the best lower bounds known for cr(Kn) were considerably smaller

(around 0.32
(
n
4

)
) than the best upper bounds available (currently around 0.3807

(
n
4

)
).

However, remarkably better lower bounds have been recently proved independently
by Ábrego and Fernández–Merchant [1] and Lovász et al. [16], and refined by Balogh
and Salazar [3]. In [1], the technique of allowable sequences was used to show that
cr(Kn) ≥ 0.375

(
n
4

)
. Lovász et al. used similar methods to prove cr(Kn) > 0.37501

(
n
4

)
+

O(n3). Recently, Balogh and Salazar improved this to cr(Kn) > 0.37553
(
n
4

)
+ O(n3)

[3]. The importance of establishing that cr(Kn) is strictly greater than 0.375
(
n
4

)
+

O(n3) is that it effectively shows that the ordinary and the rectilinear crossing num-
bers of Kn are different in the asymptotically relevant term, namely n4.

Acknowledgment. Etienne de Klerk would like to thank Pablo Parrilo for his
valuable comments.

REFERENCES

[1] B. M. Ábrego and S. Fernández-Merchant, A lower bound for the rectilinear crossing
number, Graphs Combin., 21 (2005), pp. 293–300.

[2] O. Aichholzer, F. Aurenhammer, and H. Krasser, On the crossing number of complete
graphs, Computing, 76 (2006), pp. 165–176.

[3] J. Balogh and G. Salazar, On k-sets, convex quadrilaterals, and the rectilinear crossing
number of Kn, Discrete Comput. Geom., to appear.

[4] I. M. Bomze and E. de Klerk, Solving standard quadratic optimization problems via linear,
semidefinite and copositive programming, J. Global Optim., 24 (2002), pp. 163–185.

[5] P. J. Cameron, Permutation Groups, Cambridge University Press, Cambridge, UK, 1999.
[6] P. Erdős and R. K. Guy, Crossing number problems, Amer. Math. Monthly, 80 (1973),

pp. 52–58.
[7] The GAP Group, GAP—Groups, Algorithms, and Programming, Version 4.3, http://www.

gap-system.org (2002).

202 DE KLERK, MAHARRY, PASECHNIK, RICHTER, AND SALAZAR

[8] K. Gatermann and P. A. Parrilo, Symmetry groups, semidefinite programs, and sums of
squares, J. Pure Appl. Algebra, 192 (2004), pp. 95–128.

[9] L. Glebsky and G. Salazar, The crossing number of Cm × Cn is as conjectured for n ≥
m(m + 1), J. Graph Theory, 47 (2005), pp. 53–72.

[10] R. K. Guy, Latest results on crossing numbers, in Recent Trends in Graph Theory, Springer,
New York, 1971, pp. 143–146.

[11] R. K. Guy, The decline and fall of Zarankiewicz’s theorem, in Proof Techniques in Graph
Theory (Ann Arbor, MI, 1968), Academic Press, New York, 1969, pp. 63–69.

[12] M. Hall, Jr., and M. Newman, Copositive and completely positive quadratic forms, Proc.
Cambridge Philos. Soc., 59 (1963), pp. 329–339.

[13] D. J. Kleitman, The crossing number of K5,n, J. Combin. Theory, 9 (1970), pp. 315–323.
[14] E. de Klerk and D. V. Pasechnik, Approximation of the stability number of a graph via

copositive programming, SIAM J. Optim., 12 (2002), pp. 875–892.
[15] E. de Klerk, D. V. Pasechnik, and A. Schrijver, Reduction of symmetric semidefinite

programs using the regular *-representation, Math. Program., to appear.
[16] L. Lovász, K. Vesztergombi, U. Wagner, and E. Welzl, Convex quadrilaterals and k–

sets, in Towards a Theory of Geometric Graphs, Contemp. Math. 342, János Pach, ed.,
American Mathematical Society, Providence, RI, 2004, pp. 139–148.

[17] K. G. Murty and S. N. Kabadi, Some NP-complete problems in quadratic and linear pro-
gramming, Math. Programming, 39 (1987), pp. 117–129.

[18] N. Nahas, On the crossing number of Km,n, Electron. J. Combin., 10 (2003), Note 8.
[19] P. A. Parrilo, Structured Semidefinite Programs and Semi-Algebraic Geometry Methods in

Robustness and Optimization, Ph.D thesis, California Institute of Technology, Pasadena,
CA, 2000.

[20] J. Renegar, A Mathematical View of Interior-Point Methods in Convex Optimization,
MPS/SIAM Ser. Optim. 3, SIAM, Philadelphia, 2001.

[21] R. B. Richter and C. Thomassen, Relations between crossing numbers of complete and
complete bipartite graphs, Amer. Math. Monthly, 104 (1997), pp. 131–137.

[22] A. Schrijver, A comparison of the Delsarte and Lovász bounds, IEEE Trans. Inform. Theory,
25 (1979), pp. 425–429.

[23] F. Shahrokhi, O. Sýkora, L. A. Székely, and I. Vrťo, Crossing numbers: Bounds and
applications, in Intuitive Geometry, Bolyai Soc. Math. Stud. 6, János Bolyai Math. Soc.,
Budapest, 1997, pp. 179–206.

[24] L. H. Soicher, GRAPE: A system for computing with graphs and groups, in Groups and Com-
putation, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 11, L. Finkelstein and W. M.
Kantor, eds., 1991, pp. 287–291; also available online from http://www.gap-system.org/
Packages/grape.html.

[25] J. F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
cones, Optim. Methods Softw., 11/12 (1999), pp. 625–653; also available online from
http://sedumi.mcmaster.ca.

[26] L. A. Székely, A successful concept for measuring non-planarity of graphs: The crossing
number, Discrete Math., 276 (2004), pp. 331–352.

[27] P. Turán, A note of welcome, J. Graph Theory, 1 (1977), pp. 7–9.
[28] D. R. Woodall, Cyclic-order graphs and Zarankiewicz’s crossing-number conjecture, J. Graph

Theory, 17 (1993), pp. 657–671.
[29] K. Zarankiewicz, On a problem of P. Turán concerning graphs, Fund. Math., 41 (1954),

pp. 137–145.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 203–212

PAIRWISE COLLIDING PERMUTATIONS AND THE CAPACITY OF
INFINITE GRAPHS∗

JÁNOS KÖRNER† AND CLAUDIA MALVENUTO†

Abstract. We call two permutations of the first n naturals colliding if they map at least one
number to consecutive naturals. We give bounds for the exponential asymptotics of the largest
cardinality of any set of pairwise colliding permutations of [n]. We relate this problem to the deter-
mination of the Shannon capacity of an infinite graph and initiate the study of analogous problems
for infinite graphs with finite chromatic number.

Key words. extremal combinatorics, Shannon capacity of graphs, permutations, infinite graphs

AMS subject classifications. 05D05, 05C69, 05A15, 94A24

DOI. 10.1137/050632877

1. Introduction. Let n be an arbitrary natural number and let [n] be the set
of all natural numbers from 1 to n. We will say that two permutations of [n] are
colliding if they map at least one element of [n] into two consecutive numbers, i.e.,
into numbers differing by 1. It is then natural to ask for the determination of the
maximum cardinality ρ(n) of a set of pairwise colliding permutations of [n]. One
easily sees that this number grows exponentially with n and its asymptotic exponent

lies between log2
1+

√
5

2 and 1. We will prove this and some better bounds later on.
Certain graphs having as vertex set the permutations of [n] have been introduced

before by Cameron and Ku [1] and Larose and Malvenuto [10], cf. also Ku and Leader
[9] for a generalization. These authors considered Kneser-type graphs in which they
studied the growth of stable sets describing sets of permutations that are “similar”
in some sense, whereas our definition of adjacency corresponds to being “different”
and distinguishable in some other, particular sense. In fact, the above Kneser-type
problems, unlike ours, have no immediate relation to capacity in the Shannon sense.

In this paper we will generalize our introductory problem in several ways. We will
consider arbitrary infinite graphs over the natural numbers and introduce various new
concepts of capacity. As always, graph capacity measures the exponential growth rate
of the largest cliques induced on the Cartesian powers of the vertex set of a graph.
In case of an infinite vertex set such as the naturals this is not always interesting, for
the graph in itself might have infinite cliques. Then it is reasonable to restrict our
attention to particular subsets of the power sets, e.g., those representing permutations.
We will present some simple bounds for the value of the so obtained new capacities.

2. Permutation capacity. Let G be an arbitrary graph with a countable set
of vertices. Without loss of generality we can suppose that the vertex set V (G) of G
is the set N of natural numbers. Further, let us denote by G[A] the subgraph of G
induced by an arbitrary subset A of the vertex set of G. As usual, we also consider, for
every natural n ∈ N, the power graph Gn whose vertex set is N

n, the set of n–length
sequences of natural numbers. Two such sequences x ∈ N

n and y ∈ N
n are adjacent

∗Received by the editors June 1, 2005; accepted for publication (in revised form) September 27,
2005; published electronically March 3, 2006.

http://www.siam.org/journals/sidma/20-1/63287.html
†Dipartimento di Informatica, Università di Roma “La Sapienza”, Via Salaria 113 - 00198 Rome,

Italy (korner@di.uniroma1.it, claudia@di.uniroma1.it).

203

204 JÁNOS KÖRNER AND CLAUDIA MALVENUTO

in Gn if x = x1x2 . . . xn and y = y1y2 . . . yn have at least one coordinate i ∈ [n] for
which {xi, yi} ∈ E(G), i.e., if the vertices xi and yi are adjacent in G. (This concept
of power graph is rooted in information theory. If we interpret adjacency of vertices
of a graph as a relation of distinguishability, it is very intuitive to extend such a
notion to strings of vertices in the above way, with the meaning that two strings are
distinguishable if we can distinguish them in at least one of their coordinates.)

Throughout this paper we write
(
X
n

)
for the family of all n–element subsets of X.

For an arbitrary set A ∈
(

N

n

)
we write R(A) for the set of all the n-length sequences

without repetitions on the alphabet A. As usual, we can think of a sequence in
R(A) as a permutation of the set A. In particular, when A = [n], the sequence
x = x1 . . . xn ∈ R([n]) represents the permutation of [n] which maps i into xi.

We denote by G(A) the subgraph of the power Gn induced by R(A) and by ρ(G,A)
its clique number. We set ρ(G,n) for the largest cardinality of a clique induced by
Gn on the sequences corresponding to the permutations of an n-set in V (G), i.e.,

ρ(G,n) = max
A∈(N

n)
ρ(G,A).

Finally, we define

ρ(G) = lim sup
n→∞

1

n
log2 ρ(G,n)

and call it the permutation capacity of the graph G.
In this paper we consider some infinite graphs and try to determine their permu-

tation capacity. Since our graphs have a countable set of vertices, the value of their
permutation capacity might well be infinite. The same is true for Shannon capacity.
In fact, to our knowledge Shannon capacity of infinite graphs has not been considered
so far, even though it makes perfect sense and will be discussed below.

The problem of the asymptotic growth of cliques of particular induced subgraphs
of Gn as n goes to infinity is a key ingredient in determining the Shannon capacity of
graph families in the sense of Cohen, Körner and Simonyi [2], where the sets inducing
the subgraphs are formed by all the sequences “of a given type,” in an information
theoretic sense (see Csiszár and Körner [3] for a definition and more on this). All the
sequences of a given “type” form a minimal set that is invariant under the action of
all the permutations of the coordinates of the sequences. Our present concepts are
natural extensions to the case of infinite graphs of Shannon capacity in a given type,
in the sense of [3].

3. Examples. Let us start with an atypical and even somewhat trivial example,
just to rephrase the already cited results of [1] and [10] in our present terms.

Consider the graph G, where V (G) = N and E(G) = {{x, x} : x ∈ N}, consisting
of loops on the natural numbers. When A = [n], its set R(A) is the set of permutations
of [n] and two permutations x = x1 . . . xn and y = y1 . . . yn are adjacent if and only if
there is a coordinate i ∈ [n] such that xi = yi. We will denote by x−1 the inverse of the
permutation represented by the sequence x. With this notation, x and y are adjacent
if the product xy−1 is not a derangement. This is the complement of the graph of
permutations studied by Cameron–Ku [1] and Larose–Malvenuto [10], that is, the
Cayley graph of permutations with generators the derangements. It is obvious that
ρ(G,n) = ρ(G, [n]) = (n−1)! and thus the clique number (n−1)! is super-exponential
in n. In fact, the above authors show far more than this; they prove that the trivial
construction, consisting of the set of all permutations that map an arbitrary fixed

PAIRWISE COLLIDING PERMUTATIONS 205

natural l into an arbitrary fixed natural m, is the unique way to achieve the clique
number. This graph is somewhat artificial in the present context. If in a graph the
only edges are loops, then adjacency corresponds to “being similar.” In graph capacity
problems one usually considers only graphs without loops and interprets adjacency
as some sort of distinguishability between vertices. From now on we will restrict
attention to these cases.

One of the simplest and perhaps most natural examples of our present problem is
furnished by the (semi-)infinite path L whose vertices x and y from N are adjacent if
they are consecutive in the natural order, that is |y−x| = 1. Clearly, ω(L) = χ(L) = 2
and thus the Shannon capacity log limn→∞n

n
√
ω(Ln) equals 1 (cf. Shannon [13],

Lovász [11] and, in particular, Cohen, Körner and Simonyi [2], where the problem is
reformulated, geared towards the subsequent generalizations [6] and[7], in the present
terms). We will show that

log2

1 +
√

5

2
≤ ρ(L) ≤ 1.

For the infinite path L, denote simply by L(n) rather than L([n]) the subgraph in-
duced by the set A = [n] on the nth power of L. Its vertex set is the set of all the
permutations of the set [n] (the permutations of n elements) and two of such permu-
tations x = x1 . . . xn and y = y1 . . . yn are adjacent in L(n) if and only if the following
condition holds:

∃i ∈ [n] : |yi − xi| = 1.(1)

Note that, as observed in [5], every finite graph is an induced subgraph of Ln for some
value of n.

The two graphs above belong to a more general class of graphs G(D) depending
on a finite subset D of N of “allowed differences” as follows: its vertices are, as before,
the natural numbers N and {x, y} ∈ G(D) if and only if |x− y| ∈ D. When D = {0}
we have the all-loops graph described above; when D = {1} we have G(D) = L.

4. The infinite path. In this section we will study the behavior of the cliques in
the powers of the (semi-)infinite path L. In particular, we will derive some recursive
inequalities for the value of ρ(L, n).

Observation. For any n-element subset A of the naturals the graph induced on
it by L is isomorphic to a subgraph of the path of n vertices induced by L on the set
[n]. Hence by an obvious monotonicity

ρ(L, n) = max
A∈(N

n)
ρ(L,A) = ρ(L, [n]).

In other words, ρ(L, n) is the maximum number of permutations of [n] such that for
any two of them, there is an element of [n] mapped into two consecutive integers from
[n]. Recall that this is the very same problem we introduced at the beginning of this
paper, where we wrote ρ(n) for ρ(L, n).

The following recursive inequality will play a key role in our attempt to determine
the permutation capacity of the infinite path.

Proposition 4.1. The function ρ(L, n) is super-multiplicative:

ρ(L, n + m) ≥ ρ(L, n) · ρ(L,m).

206 JÁNOS KÖRNER AND CLAUDIA MALVENUTO

Proof. Take a clique C in L(n) of maximal size ρ(L, n) and a clique D of maximal
size ρ(L,m) in L(m). Denote by D + n the set obtained from D by adding n to each
element of the sequences of D:

D + n = {x1 + n . . . xm + n : x1 . . . xm ∈ D} ⊆ R({n + 1, . . . , n + m}).

Clearly the size of the clique D + n in G({n + 1, . . . , n + m}) is the same as that of
D. Hence the product construction

C × (D + n) = {x1 . . . xn+m : x1 . . . xn ∈ C;xn+1 . . . xn+m ∈ D + n} ⊆ R([n + m]),

obtained by concatenating sequences from C to sequences from D + n, gives a clique
in G(n + m) of size ρ(L, n) · ρ(L,m).

By the well-known elementary inequality called Fekete’s lemma (see [14]), the
last proposition implies that the limit limn→∞

n
√
ρ(L, n) exists, and its logarithm

coincides with the permutation capacity ρ(L).
It is immediately obvious that the capacity ρ(L) is upper bounded by the log-

arithm of the chromatic number of L, and thus is at most 1. The following non-
asymptotic refinement might be interesting.

Proposition 4.2.

ρ(L, n) ≤
(

n

�n
2 	

)
.

Proof. Call parity pattern of a permutation x = x1x2 . . . xn the binary sequence of
length n obtained when substituting every entry in x by its congruence class modulo 2.
Now observe that if two permutations x and y are colliding, which means that there is
a coordinate i such that xi and yi are consecutive integers, then in the ith coordinate
of the corresponding parity patterns there is a difference in 0 and 1, implying that their
parity patterns are different. So in a clique of L(n) there is at most one permutation
for any given parity pattern. Finally, the parity pattern of a permutation of [n] has
�n

2 	 0’s and
n
2 � 1’s.

Proposition 4.3.

ρ(L, n) ≥ ρ(L, n− 1) + ρ(L, n− 2).

Proof. Take a clique C of maximal size for L(n − 1) and a clique D of maxi-
mal size for L(n − 2). Now set Ĉ := {x1 . . . xn−1n : x1 . . . xn−1 ∈ C} and D̂ :=
{x1 . . . xn−2n(n− 1) : x1 . . . xn−2 ∈ D}. In this way any element from Ĉ will collide
with any element from D̂ in the last coordinate because of the edge {n, n− 1} so that
Ĉ ∪ D̂ is a clique in L(n) of size ρ(L, n− 1) + ρ(L, n− 2).

Corollary 4.4.

log2

(
1 +

√
5

2

)
≤ ρ(L) ≤ 1.

Proof. Although the present upper bound to the permutation capacity of the
infinite path is obvious as observed before, for the sake of completeness we deduce
from Proposition 4.2 that 1

n log2 ρ(L, n) ≤ 1
n log2

(
n

�n
2 	
)
≤ 1.

For the lower bound, Proposition 4.3 shows, together with ρ(L, 1) = 1 and
ρ(L, 2) = 2, that the sequence ρ(L, n) grows at least as fast as the basic Fibonacci

sequence F (n). Since limn→∞
n
√
F (n) = 1+

√
5

2 , we get log2(
1+

√
5

2) ≤ ρ(L).

PAIRWISE COLLIDING PERMUTATIONS 207

A nonrecursive way of constructing a clique of size F (n) in L(n) follows. Consider
the set S of permutations obtained from the identical permutation by exchanging two
consecutive integers, i.e., S = {si : i = 1, . . . , n − 1}, where si = (i, i + 1) is the
adjacent transposition, in cyclic notation. For I = {i1 < . . . < ik} ⊆ [n − 1], let
sI = si1 . . . sik . Let

C(n) = {J ⊆ [n− 1] : ∀i, j ∈ J sisj = sjsi}

be the family of subsets of [n − 1] whose corresponding adjacent transpositions are
pairwise commuting. Since for i �= j one has sisj = sjsi if and only if |i − j| ≥ 2,
we can encode the elements of C(n) as zero-one sequences of length n − 1 with the
property that no consecutive 1’s appear in the sequence. Since the number of zero-one
sequences of length n without consecutive “1”’s is known to be F (n), and since each of
these is in bijection with some element of C(n), we see that in C(n) there are exactly
F (n) sequences. Furthermore for I, J ∈ C(n) with I �= J one has {sI , sJ} ∈ E(L(n)).
Let h = min IΔJ , where Δ denotes the symmetric difference of sets, and suppose that
h ∈ I; then clearly h �∈ J , h + 1 �∈ I because of the condition on C(n) and h− 1 �∈ J
by the minimality of h. When we deduce that sI(h) = h + 1 and sJ(h) = h, sI and
sJ are adjacent.

For n = 4, the set of binary sequences {000, 100, 010, 001, 101} represents C(4)
and the corresponding set of permutations is {id; (12); (23); (34); (12)(34)} in cycle
notation, i.e.,

{1234; 2134; 1324; 1243; 2143}.

However, we will see very soon that the lower bound in the last corollary can be
improved. The asymptotic improvement we obtain will be a direct consequence of the
following inequality that follows easily from Proposition 4.1.

Proposition 4.5. For every n ∈ N we have

ρ(L) ≥ log n
√
ρ(L, n).

Proof. By Proposition 4.1 we have nk
√
ρ(L, nk) ≥ n

√
ρ(L, n).

This justifies our interest in calculating ρ(L, n) for the first values of n. The
results are shown in the following table.

n 1 2 3 4 5 6 7
ρ(L, n) 1 2 3 6 10 20 35

For n = 7 we built a clique of size 35 by putting together 7 cliques each of size
5, obtained as cyclic shifts of certain sequences of length 5. Before explaining this
construction in more detail, we prove a general result on cyclic shifts for any graph
G.

Let A ⊆ N with |A| = k. Let π = a1 . . . ak be an arrangement of A = {a1, . . . , ak}
on a cycle of length k; we say that π is a circular arrangement of A. We define the
circular distance ∂π(ai, aj) of ai and aj with respect to π as follows:

∂π(ai, aj) =

⎧⎨
⎩

0 if i = j
min{j − i, k + i− j} if i < j

∂π(aj , ai) if i > j.

We say that a circular arrangement π = a1 . . . ak is complete if for every d = 1, . . . , �k
2 	

there exists an edge {ai, aj} ∈ E(G) with ∂π(ai, aj) = d.

208 JÁNOS KÖRNER AND CLAUDIA MALVENUTO

Lemma 4.6. If π = a1 . . . ak is a complete circular arrangement of A, then the
subset S(π) of R(A) consisting of all the cyclic shifts of π, i.e.,

S(π) = {πd = adad+1 . . . ad+(k−1) : d = 1, . . . , k},
where

ar = as ⇔ r ≡ s(mod k),

is a clique in G(A).
Proof. It is enough to show that for any t = 2, . . . k one has {π, πt} ∈ E(G(A)).

First start with any t such that t ≤ �k
2 	. Since π is complete, there exists {ai, aj} ∈

E(G) such that ∂π(ai, aj) = t; we can fix i < j. If the circular distance t is achieved
as j − i, then {π, πt} ∈ E(G(A)) since in coordinate i one has {πi, π

t
i} = {ai, aj} ∈

E(G) and also {π, πk−t+1} ∈ E(G(A)) since in coordinate j one has {πj , π
k−t+1
j } =

{aj , ai} ∈ E(G); if the circular distance t is achieved as k + i − j, then {πj , π
t
j} =

{aj , ai} and {πi, π
k−t+1
i } = {ai, aj}. In any case both {π, πt} and {π, πk−t+1} are

edges of G(A); consequently {π, πt} ∈ E(G(A)) for t = 2, . . . k.
Proposition 4.7.

ρ(L, 7) = 35.

Proof. Let Γ be the set consisting of the following sequences:

α′
1 = 23546

α′′
1 = 32546

α′
2 = 23547

α′′
2 = 54237

β′
1 = 34651

β′′
1 = 65341

β2 = 14357.

Each sequence in Γ is a complete circular arrangement of the corresponding set of its
entries. By Lemma 4.6 it follows that S(γ) is a clique for any γ ∈ Γ.

First we show that A1 := S(α′
1) ∪ S(α′′

1) is a clique in L({2, 3, 4, 5, 6}).

�

�

��

�

x

y6

54

α1

Observe that any sequence of the form xy546 is already a complete circular arrange-
ment of {x, y, 4, 5, 6} (we are not using the edges {2, 3} and {3, 4} to achieve the
adjacencies). The same argument as in Lemma 4.6 makes clear that (α′

1)
d is adjacent

to any element of S(α′′
1) of the form (α′′

1)t with t �= d, while when t = d, then (α′
1)

d

and (α′′
1)d will be colliding in coordinate d, because (α′′

1)d is obtained from (α′
1)

d by
interchanging 2 and 3.

PAIRWISE COLLIDING PERMUTATIONS 209

Now we show that A2 := S(α′
2) ∪ S(α′′

2) is a clique in L({2, 3, 4, 5, 7}).
Notice that we have α′′

2 = φ ◦ α′
2, with φ = (2, 5) ◦ (3, 4), where (i, j) is the

transposition of i and j. Clearly {α′
2, α

′′
2} ∈ E(L({2, 3, 4, 5, 7})); they collide in the

second coordinate through the edge {3, 4}. Observe that we can find two 2-sets {a, b}
(precisely {3, 5} and {2, 4}) at circular distance, respectively 1 and 2, in α′

2 such that
the corresponding 2-sets of the form {a, φ(b)} (precisely {3, 2} and {2, 3}) are edges
of L. Hence the same reasoning as in Lemma 4.6 can be applied to establish that we
also have {α′

2, (α
′′
2)d} ∈ E(L({2, 3, 4, 5, 7})) for 1 < d ≤ 5.

As for B1 := S(β′
1) ∪ S(β′′

1), we notice that the bijection

φ =

(
2 3 4 5 7
3 4 5 6 1

)

is an isomorphism of L({2, 3, 4, 5, 7}) into L({1, 3, 4, 5, 6}) such that β′
1 = φ ◦ α′

2 and
β′′

1 = φ ◦α′′
2 . So the argument used for the set A2 applies to B1 as well, showing that

the latter is a clique in L({1, 3, 4, 5, 6}).
Now let sX := {sx : x ∈ X} (resp., Xs) be the set of sequences obtained from

those in X by prefixing (resp., postfixing) to each of them the symbol s and set

A = 1A17 ∪ 1A26,

B = 2B17 ∪ 2S(β2)6.

The sets A and B are both cliques in L(7) since the adjacency between elements of
1A17 and 1A26, or between those of 2B17 and 2S(β2)6, is guaranteed in the last
coordinate, where we use the edge {6, 7}. Finally C = A∪B is a clique in L(7), since
the adjacency between elements of A and B is established in the first coordinate,
where we use the edge {1, 2}. Obviously, C has 35 elements.

Conjecture. Encouraged by the previous clique of size 35 we are tempted to
formulate the following conjecture:

ρ(L, n) =

(
n

�n
2 	

)
.

Unfortunately, we do not have more serious reasons to believe in it.

Now we are ready to improve the lower bound ρ(L) ≥ log2(
1+

√
5

2) = 0.6942 . . . of
Corollary 4.4.

Proposition 4.8.

ρ(L) ≥ 0.732

Proof. Combining Proposition 4.5 with that of Proposition 4.7 we immediately
see that ρ(L, n) ≥ 35

n
7 , and ρ(L) ≥ 1

7 log2 35 = 0.732

5. Surprise capacity. Let G be once again an arbitrary graph with countable
vertex set N and let Gn be the same power graph as before. We will say that the
set C ⊆ N

n generates a surprise clique in Gn if C generates a clique in Gn with the
property that for any {x,y} ∈

(
N

n

2

)
the ordered pairs of coordinates (xi, yi) are all

different. We shall denote by S(G,n) the maximum cardinality of a surprise clique in
Gn and will call the limit

lim sup
n→∞

1

n
log2 S(G,n)

210 JÁNOS KÖRNER AND CLAUDIA MALVENUTO

the surprise capacity of G. Clearly, this quantity is lower bounded by the permutation
capacity of the same graph. (At the end of the paper we will comment on the intuitive
meaning of this definition.)

Proposition 5.1. The maximum cardinality of a surprise clique in Ln is 2n,
where L is the infinite path.

Proof. We shall use the easy and well-known submultiplicativity of the chromatic
number, i.e., χ(Gn) ≤ [χ(G)]n. To verify this, let c : V (G) → N be an optimal coloring
of G. Then the map cn : [V (G)]n → N

n defined by cn(x1 . . . xn) = c(x1) . . . c(xn) is a
proper coloring of Gn. The chromatic number of the infinite path L is 2. So for the
power graph Ln one has χ(Ln) = 2n and consequently ω(Ln) ≤ 2n. It follows that if
C is a surprise clique in Ln, then

|C| ≤ 2n,

since any surprise clique is in particular a clique.
We now construct a clique of cardinality 2n, showing that

S(L, n) ≥ 2n.

Our construction will consist of appropriately chosen sequences of length n, with
entries from [2n], where lack of repetition will be ensured by strict monotonicity. For
any binary sequence x of length n, define

a(x) := x1, x1 + x2, . . . ,

n∑
j=1

xj ,

that is,

a(x)i :=

i∑
j=1

xj .(2)

Apply this to binary strings on the alphabet {1, 2} and set

C := {a(x) : x ∈ {1, 2}n} ⊆ [2n]n.

By construction one has a(x) �= a(x′) if and only if x �= x′. Hence C has the
same cardinality as the set of all the binary sequences of length n. Now we show
that C is a clique in the nth power of L. Take x,x′ ∈ {1, 2}n with x �= x′ and
let s be the first coordinate in which the two binary sequences differ. Then for the
corresponding sequences in C we have {a(x), a(x′)} ∈ E(Ln), since |a(x)s−a(x′)s| =
|
∑s

j=1 xj −
∑s

j=1 x
′
j | = |xs − x′

s| = 1. Finally the condition for C to be a surprise
clique holds, since by the definition (2) its elements are strictly increasing sequences;
hence there are no repetitions of symbols.

The above proposition shows that the surprise capacity of the infinite path is 1.

6. Unimodal permutations. Let us return to L(n), the graph induced in the
power graph Ln by the set of all permutations of [n]. In order to see the wealth of
relatively large cliques in L(n) it might be interesting to understand the density of
cliques in the relatively small set of unimodal permutations.

We say that a permutation a of [n] is unimodal if there is an index h ∈ [n] such
that a1 < a2 < · · · < ah > ah+1 > · · · > an. We will introduce a new variant of our

PAIRWISE COLLIDING PERMUTATIONS 211

introductory problem of determining the number ρ(n) of the maximum cardinality of
a set of pairwise colliding permutations of n (recall that this concept was at the core
of our permutation capacity problem).

Let us denote by U(n) the maximum cardinality of a set of pairwise colliding
unimodal permutations of n.

Theorem 6.1.

log2

1 +
√

5

2
≤ lim sup

n→∞

1

n
log2 U(n) ≤ 1.

Proof. The upper bound is an obvious consequence of Proposition 4.2, since
U(n) ≤ ρ(L, n).

Fix α ∈ (0, 1) and β ∈ (0, 1) in a way to be specified later. Write ln = �αn	 and
kn = �βαn	. Now we shall adapt the construction in the proof of Proposition 5.1
to define our unimodal permutations. To this purpose consider the set Bn of all the
sequences in {1, 2}ln in which the symbol 2 appears kn times. Thus by the well-known
asymptotics of the binomial coefficients (Lemma 2.3, p. 30 of [4])

|Bn| =

(
ln
kn

)
≥ 1

n + 1
2lnh(kn/ln),(3)

where h(t) = −t log2 t− (1 − t) log2(1 − t) is the binary entropy function.
To every x ∈ Bn we shall associate as before the increasing sequence of natural

numbers a(x) whose ith element ai(x) is as in formula (2). Suffixing to the sequence
a(x) the naturals from [n] \ {a1(x), . . . aln(x)} in decreasing order we obtain the uni-
modal sequence x̂ of integers from the set [ln + kn], where ln + kn = �αn	 + �βαn	.
Then in order for x̂ to be a permutation of [n], we must have α(1 + β) ≤ 1, i.e.,

α ≤ 1

1 + β
.(4)

Clearly the relation between x and x̂ is bijective and therefore we have obtained |Bn|
unimodal permutations. As in Proposition 5.1, we have that if x �= x′, then a(x) and

a(x′) are colliding. So the corresponding sequences x̂ and x̂′ will be colliding too.

We just saw that the set B̂n = {x̂ : x ∈ Bn} has the same cardinality as Bn and
it is a clique of unimodal elements of L(n).

Recalling the definition of U(n) and (3), we deduce that

U(n) ≥ 1

n + 1
2lnh(kn/ln)

when

lim sup
n→∞

1

n
log2 U(n) ≥ lim sup

n→∞

ln
n
h
(
kn/ln

)
= αh(β).

Choosing the largest α with respect to the constraint in (4), i.e., α = 1
1+β , and

maximizing in β we obtain:

lim sup
n→∞

1

n
log2 U(n) ≥ max

β∈(0,1)

h(β)

1 + β
= log2

1 +
√

5

2
.

In order to see that our last entropy expression has as its maximum the logarithm of
the golden ratio, as claimed, the reader is referred to [8].

It is tempting to believe the lower bound to be tight, even though we have no
real reason to do so.

212 JÁNOS KÖRNER AND CLAUDIA MALVENUTO

7. Concluding remarks. In this paper we have introduced several closely re-
lated concepts of capacity for infinite graphs. It is not clear whether these can have the
same interpretation in terms of Shannon’s theory of information as do the concepts of
Shannon capacity [13] and Sperner capacity [6]. In particular, the Shannon capacity
of a finite simple graph is the highest rate at which one can transmit data over a dis-
crete memoryless (stationary) channel with zero probability of error. Recently Nayak
and Rose [12] showed that Sperner capacity is the key in determining the analogous
transmission rate for compound channels with an uninformed coder-decoder pair.

The common feature of our models is that for no codeword pairs can we transmit
the same symbol pair at different instants of time. This restriction might be of rele-
vance if one is to guarantee security of transmission; an intruder can never experience
the repetition of a symbol configuration and thereby learn how to adapt to a hitherto
unknown communication situation it creates.

Having a disposable symbol set does not necessarily mean that the channel has an
infinite input alphabet. In fact, note that in all our code constructions every symbol
has at most seven different “successors.”

Acknowledgments. We would like to thank Miki Simonovits for his friendly
interest.

REFERENCES

[1] P. J. Cameron and C. Y. Ku, Intersecting families of permutations, European J. Combin., 2
(2003), pp. 881–890.

[2] G. Cohen, J. Körner, and G. Simonyi, Zero-error capacities and very different sequences,
in Sequences, Combinatorics, Compression, Security and Transmission, R. Capocelli, ed.,
Springer-Verlag, New York, 1990, pp. 87–101.

[3] I. Csiszár and J. Körner, On the capacity of the arbitrarily varying channel for maximum
probability error, Z. Wahrscheinlichkeittheorie verw. Geb., 57 (1981), pp. 87–101.

[4] I. Csiszár and J. Körner, Information Theory: Coding Theorems for Discrete Memoryless
Systems, Academic Press, New York, 1982 and Akadémiai Kiadó, Budapest, Hungary,
1981.

[5] A. Galluccio, L. Gargano, J. Körner, and G. Simonyi, Different capacities of digraphs,
Graphs Combin., 10 (1994), pp. 105–121.

[6] L. Gargano, J. Körner, and U. Vaccaro, Sperner capacities, Graphs Combin., 9 (1993),
pp. 31–46.

[7] L. Gargano, J. Körner, and U. Vaccaro, Capacities: From information theory to extremal
set theory, J. Combin. Theory Ser. A, 68 (1994), pp. 296–316.

[8] J. Körner and G. Simonyi, A Sperner–type theorem and qualitative independence, J. Combin.
Theory Ser. A, 59 (1992), pp. 90–103.

[9] C. Y. Ku and I. Leader, An Erdős–Ko–Rado theorem for partial permutations, Discrete
Math., 306 (2006), pp. 74–86.

[10] B. Larose and C. Malvenuto, Stable sets of maximal size in Kneser-type graphs, European
J. Combin., 25 (2004), pp. 657–673.

[11] L. Lovász, On the Shannon capacity of a graph, IEEE Trans. Inform. Theory, 25 (1979),
pp. 1–7.

[12] J. Nayak and K. Rose, Graph capacities and zero-error transmission over compound channels,
IEEE Trans. Inform. Theory, to appear.

[13] C. E. Shannon, The zero-error capacity of a noisy channel, IEEE Trans. Inform. Theory, 2
(1956), pp. 8–19.

[14] J. H. Van Lint and R. M. Wilson, A Course in Combinatorics, Cambridge University Press,
Cambridge, 1992.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 213–226

M-CONVEX FUNCTIONS ON JUMP SYSTEMS:
A GENERAL FRAMEWORK FOR

MINSQUARE GRAPH FACTOR PROBLEM∗

KAZUO MUROTA†

Abstract. The concept of M-convex functions is generalized for functions defined on constant-
parity jump systems. M-convex functions arise from minimum weight perfect b-matchings and from
a separable convex function (sum of univariate convex functions) on the degree sequences of an
undirected graph. As a generalization of a recent result of Apollonio and Sebő for the minsquare
factor problem, a local optimality criterion is given for minimization of an M-convex function subject
to a component sum constraint.

Key words. jump system, degree sequence, graph factor, discrete convex function, local opti-
mality

AMS subject classifications. 90C10, 90C25, 90C35, 90C27

DOI. 10.1137/040618710

1. Introduction. A recent paper of Apollonio and Sebő [2] has shown that the
minsquare factor problem on a graph can be solved in polynomial time. The problem
is, given an undirected graph possibly containing loops and parallel edges, to find a
subgraph with a specified number of edges that minimizes the sum of squares of the
degrees (= numbers of incident edges) of vertices. The key observation in [2] is that
global optimality is guaranteed by local optimality in the neighborhood of �1-distance
at most 4 in the space of degree sequences. It has also been observed in [2] that
this local optimality criterion remains valid when the objective function is generalized
to a separable convex function (= sum of univariate convex functions) of the degree
sequence.

The objective of this paper is to put the above results in a more general context
of discrete convex analysis [21] by introducing the concept of M-convex functions on
constant-parity jump systems. A separable convex function of the degree sequences
of a graph is an M-convex function in this sense.

A jump system [4] is a set of integer points with an exchange property (to be
described in section 2); see also [14], [16]. It is a generalization of a matroid [6], [15],
a delta-matroid [3], [5], [7], and a base polyhedron of an integral polymatroid (or a
submodular system) [11]. Minimization of a separable convex function over a jump
system has been studied in [1], where a local criterion for optimality as well as a
greedy algorithm is given.

Study of nonseparable nonlinear functions on matroidal structures was started
with valuated matroids [8], [9], which have come to be accepted as discrete concave
functions; see [18], [20]. This concept has been generalized to M-convex functions on
base polyhedra [19], which play a central role in discrete convex analysis [21]. Valuated

∗Received by the editors November 10, 2004; accepted for publication (in revised form) November
9, 2005; published electronically March 3, 2006.

http://www.siam.org/journals/sidma/20-1/61871.html
†Graduate School of Information Science and Technology, University of Tokyo, and PRESTO,

JST, Tokyo 113-8656, Japan (murota@mist.i.u-tokyo.ac.jp). This work was supported by the 21st
Century COE Program on Information Science and Technology Strategic Core and by a Grant-in-Aid
for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of
Japan.

213

214 KAZUO MUROTA

delta-matroids [10] afford another generalization of valuated matroids; see also [10],
[17], [24], [25]. In all these generalizations global optimality is equivalent to local
optimality defined in an appropriate manner. In addition, discrete duality theorems
such as discrete separation and min-max formula hold for valuated matroids and M-
convex functions on base polyhedra, whereas they fail for valuated delta-matroids.
M-convex functions on constant-parity jump systems, to be introduced in this paper,
are a common generalization of valuated delta-matroids and M-convex functions on
base polyhedra.

In this paper, we investigate the problem of minimizing an M-convex function on
a constant-parity jump system. It is shown, in particular, that (i) global optimality
for unconstrained minimization is equivalent to local optimality in the neighborhood
of �1-distance 2 (Theorem 3.3), and (ii) global optimality for constrained minimization
on a hyperplane of constant component sum is equivalent to local optimality in the
neighborhood of �1-distance at most 4 (Theorem 4.1). The former generalizes the
optimality criterion in [1] for separable convex function minimization over a jump
system, and the latter generalizes the optimality criterion in [2] for the minsquare
factor problem. Theorem 4.3 reveals convexity of the optimal values with respect
to the component sum, on the basis of which algorithms are constructed for the
constrained minimization in section 5.

2. Exchange axioms. Let V be a finite set. For u ∈ V we denote by χu the
characteristic vector of u, with χu(u) = 1 and χu(v) = 0 for v �= u. For x = (x(v)), y =
(y(v)) ∈ ZV define

x(V) =
∑
v∈V

x(v),

‖x‖1 =
∑
v∈V

|x(v)|,

supp(x) = {v ∈ V | x(v) �= 0},
supp+(x) = {v ∈ V | x(v) > 0},
supp−(x) = {v ∈ V | x(v) < 0},

[x, y] = {z ∈ ZV | min(x(v), y(v)) ≤ z(v) ≤ max(x(v), y(v)),∀v ∈ V }.

A vector s ∈ ZV is called an (x, y)-increment if s = χu or s = −χu for some u ∈ V
and x+s ∈ [x, y]. An (x, y)-increment pair will mean a pair of vectors (s, t) such that
s is an (x, y)-increment and t is an (x + s, y)-increment.

A nonempty set J ⊆ ZV is said to be a jump system if it satisfies an exchange
axiom, called the 2-step axiom: For any x, y ∈ J and for any (x, y)-increment s with
x+s �∈ J , there exists an (x+s, y)-increment t such that x+s+t ∈ J . A set J ⊆ ZV is
a constant-sum system if x(V) = y(V) for any x, y ∈ J , and a constant-parity system
if x(V) − y(V) is even for any x, y ∈ J .

We introduce a stronger exchange axiom:
(J-EXC) For any x, y ∈ J and for any (x, y)-increment s, there exists an (x + s, y)-

increment t such that x + s + t ∈ J and y − s− t ∈ J .
This property characterizes a constant-parity jump system, a fact communicated to
the author by J. Geelen (see section 6.1 for a proof).

Lemma 2.1 (see Geelen [12]). A nonempty set J is a constant-parity jump system
if and only if it satisfies (J-EXC).

M-CONVEX FUNCTIONS ON JUMP SYSTEMS 215

It turns out (see section 6.2 for a proof) that (J-EXC) can be replaced by a weaker
axiom:
(J-EXCw) For any distinct x, y ∈ J there exists an (x, y)-increment pair (s, t) such

that x + s + t ∈ J and y − s− t ∈ J .
Lemma 2.2. A set J satisfies (J-EXC) if and only if it satisfies (J-EXCw).
We call f : J → R an M-convex function if it satisfies the following exchange

axiom:
(M-EXC) For any x, y ∈ J and for any (x, y)-increment s, there exists an (x + s, y)-

increment t such that x + s + t ∈ J , y − s− t ∈ J , and

f(x) + f(y) ≥ f(x + s + t) + f(y − s− t).

We adopt the convention that f(x) = +∞ for x �∈ J .
It turns out that the exchange axiom (M-EXC) is equivalent to a local exchange

axiom:
(M-EXCloc) For any x, y ∈ J with ‖x− y‖1 = 4 there exists an (x, y)-increment pair

(s, t) such that x + s + t ∈ J , y − s− t ∈ J , and

f(x) + f(y) ≥ f(x + s + t) + f(y − s− t).

Theorem 2.3. A function f : J → R defined on a constant-parity jump system
J satisfies (M-EXC) if and only if it satisfies (M-EXCloc).

Proof. The proof is technical and given in section 6.3.
This implies that (M-EXC) can be replaced by a weaker axiom:

(M-EXCw) For any distinct x, y ∈ J there exists an (x, y)-increment pair (s, t) such
that x + s + t ∈ J , y − s− t ∈ J , and

f(x) + f(y) ≥ f(x + s + t) + f(y − s− t).

Theorem 2.4. A function f : J → R satisfies (M-EXC) if and only if it satisfies
(M-EXCw).

Proof. It suffices to prove the “if” part. (M-EXCw) implies (J-EXCw) for J ,
and hence J is a constant-parity jump by Lemma 2.2. Then the claim follows from
Theorem 2.3.

Note that addition of a linear function preserves M-convexity. That is, for an
M-convex function f and a vector p = (p(v)) ∈ RV , the function f [−p] defined by
f [−p](x) = f(x) − 〈p, x〉 with 〈p, x〉 =

∑
v∈V p(v)x(v) is M-convex.

Remark 2.1. Our definition of an M-convex function is consistent with the pre-
viously considered special cases where (i) J is a constant-sum jump system, and (ii)
J is a constant-parity jump system contained in {0, 1}V . Case (i) is equivalent to
J being the set of integer points in the base polyhedron of an integral submodular
system [11], and then our M-convex function is the same as the M-convex function
investigated in [19], [21]. Case (ii) is equivalent to J being an even delta-matroid [24],
[25], and then f is M-convex in our sense if and only if −f is a valuated delta-matroid
in the sense of [10].

Examples of M-convex functions follow.
Example 2.1. A separable convex function on a constant-parity jump system

J , i.e., a function f : J → R of the form f(x) =
∑

v∈V ϕv(x(v)) with univariate
(one-dimensional) convex functions ϕv, is M-convex. In particular, the sum of
squares f(x) =

∑
v∈V (x(v))2 is M-convex. Such functions have been investigated

in [1], [2].

216 KAZUO MUROTA

Example 2.2. Minimum weight factors in a graph yield an M-convex function.
Let G = (V,E) be an undirected graph that may contain loops and parallel edges. For
a subgraph H = (V, F), denote its degree sequence by degH =

∑
{χu + χv | (u, v) ∈

F} ∈ ZV . It is well known [4], [16] that

J = {degH | H is a subgraph of G}

forms a constant-parity jump system called the degree system of G. Given edge
weighting w : E → R, define a function f : J → R by

f(x) = min{w(F) | H = (V, F) is a subgraph of G with degH = x}

with notation w(F) =
∑

e∈F w(e), where f(x) represents the minimum weight of a
subgraph with degree sequence x.

This f is an M-convex function. In fact, (M-EXC) can be verified by the alternat-
ing path argument as follows. For distinct x, y ∈ J let Fx and Fy be subsets of edges
such that f(x) = w(Fx) and f(y) = w(Fy) with x =

∑
{χu + χv | (u, v) ∈ Fx} and

y =
∑

{χu + χv | (u, v) ∈ Fy}. Let s be an (x, y)-increment, and put u∗ = supp(s).
We may assume, without loss of generality, that s = χu∗ . Starting with an edge
in Fy \ Fx incident to u∗ we construct an alternating path P by adding an edge in
Fx \ Fy and an edge in Fy \ Fx alternately. The path P consists of distinct edges
but may contain the same vertex more than once. We assume that P is maximal in
the sense that it cannot be extended further beyond the end vertex, say, v∗. Then
there exists an (x + χu∗ , y)-increment t with supp(t) = v∗; more specifically, t = χv∗

or −χv∗ according to whether P consists of an odd or even number of edges. Denote
by FxΔP the symmetric difference of Fx and P , and by FyΔP that of Fy and P .
Since x + s + t =

∑
{χu + χv | (u, v) ∈ FxΔP} and y − s− t =

∑
{χu + χv | (u, v) ∈

FyΔP}, we have f(x + s + t) ≤ w(FxΔP) and f(y − s − t) ≤ w(FyΔP), whereas
w(FxΔP) +w(FyΔP) = w(Fx) +w(Fy) = f(x) + f(y). Hence (M-EXC) holds. Note
that the alternating path argument above also serves as a proof of (J-EXC) for J .

Furthermore,

f(x) = min{w(F) | H = (V, F) is a subgraph of G with degH = x} +
∑
v∈V

ϕv(x(v))

is an M-convex function on the degree system of G, where each ϕv is a univariate
convex function.

Example 2.3. As a variant of the construction from the degree system in Example
2.2, an M-convex function arises from minimum weight perfect b-matchings; see [13],
[23] for b-matchings. Let G = (V,E) be an undirected graph that may have loops but
no parallel edges, and let w : E → R be an edge weighting. Let J ⊆ ZV be the set
of vectors x ∈ ZV such that a perfect x-matching exists in G, and define a function
f : J → R by setting f(x) to be the minimum weight of a perfect x-matching:

f(x) = min

{∑
e∈E

λ(e)w(e) |(2.1)

∑
e∈δ(v)

λ(e) = x(v) (∀v ∈ V);λ(e) ∈ Z+ (∀e ∈ E)

}
,

where δ(v) denotes the set of edges incident to vertex v ∈ V , and Z+ the set of
nonnegative integers. This function is M-convex as in Example 2.2.

M-CONVEX FUNCTIONS ON JUMP SYSTEMS 217

Example 2.4. Let A(t) be a skew-symmetric polynomial matrix in variable t.
The degree in t of the principal minors of A(t) yields a valuated delta-matroid, as is
pointed out in [10], [24], and hence the negative of an M-convex function.

Remark 2.2. Unlike in the previously studied special cases where J is a base
polyhedron or an even delta-matroid, an M-convex function on a jump system is
not always extensible to a convex function. Nevertheless, our results will provide
convincing evidence to indicate its discrete convexity. See also [22].

3. Unconstrained minimization. We consider minimization of an M-convex
function f : J → R defined on a constant-parity jump system J ⊆ ZV .

First we note a property of an M-convex function that indicates its discrete con-
vexity. Given f : J → R and x, y ∈ J , a sequence of points in J , say, x0, x1, . . . , xm,
is called a steepest-descent chain connecting x to y if x0 = x, xm = y, and for
i = 1, . . . ,m we have xi = xi−1 + si + ti for some (xi−1, y)-increment pair (si, ti)
such that f(xi−1 + si + ti) ≤ f(xi−1 + s + t) for every (xi−1, y)-increment pair (s, t);
we have m = ||x − y||1/2. An M-convex function turns out to be convex along a
steepest-descent chain, as follows.

Proposition 3.1. Let f : J → R be an M-convex function, and let x0, x1, . . . , xm

be a steepest-descent chain connecting x ∈ J to y ∈ J . Then

f(xi−1) + f(xi+1) ≥ 2f(xi) (i = 1, . . . ,m− 1).(3.1)

Proof. Put xi = xi−1 + s + t and xi+1 = xi + s′ + t′. By (M-EXC) we have

f(xi−1) + f(xi+1)

≥ min[f(xi−1 + s + t) + f(xi−1 + s′ + t′),

f(xi−1 + s + t′) + f(xi−1 + s′ + t),

f(xi−1 + s + s′) + f(xi−1 + t + t′)] ≥ 2f(xi).

As an immediate corollary we see that a nonoptimal point can be improved with
a suitable increment pair.

Proposition 3.2.

(1) If x, y ∈ J and f(x) > f(y), there exists an (x, y)-increment pair (s, t) such
that f(x) > f(x + s + t).

(2) If x, y ∈ J and f(x) ≥ f(y), there exists an (x, y)-increment pair (s, t) such
that f(x) ≥ f(x + s + t).

This implies, in turn, that global optimality (minimality) of an M-convex function
is guaranteed by local optimality in the neighborhood of �1-distance 2.

Theorem 3.3. Let f : J → R be an M-convex function on a constant-parity jump
system J , and let x ∈ J . Then f(x) ≤ f(y) for all y ∈ J if and only if f(x) ≤ f(y)
for all y ∈ J with ||x− y||1 ≤ 2.

Proof. The “only if” part is obvious, and the “if” part follows from Proposition
3.2.

The minimizers of an M-convex function form a constant-parity jump system, as
follows. We denote by arg min f [−p] the set of minimizers of function f [−p].

Proposition 3.4. For any p ∈ RV , arg min f [−p] is a constant-parity jump
system if it is nonempty.

Proof. Let β denote the minimum value of f [−p], and let x, y ∈ arg min f [−p].
Then, in (M-EXC) we have 2β = f [−p](x) + f [−p](y) ≥ f [−p](x+ s+ t) + f [−p](y−
s− t) ≥ 2β, which implies x + s + t, y − s− t ∈ arg min f [−p].

218 KAZUO MUROTA

Remark 3.1. The local optimality criterion for M-convex functions on jump sys-
tems in Theorem 3.3 contains a number of previous results as special cases. In the case
of constant-sum jump systems, case (i) in Remark 2.1, the present theorem reduces to
the optimality criterion for M-convex functions on base polyhedra established in [19]
(see Theorem 6.26 of [21]), and, moreover, Proposition 3.2(1) above coincides with
Proposition 6.23 of [21]. In the case of constant-parity jump systems contained in
{0, 1}V , case (ii) in Remark 2.1, Theorem 3.3 reduces to the optimality criterion for
valuated delta-matroids established in [10]. Both of these are generalizations, in dif-
ferent directions, of the optimality criterion for valuated matroids given in [8], [9]. It
is noted that the optimality criterion for valuated matroids given in [8], [9] is the ori-
gin of such optimality criteria for nonseparable nonlinear objective functions, and the
two special cases above are generalizations in different directions thereof. Separable
convex functions on jump systems have been considered in [1].

4. Minimization under sum constraint. In this section we investigate the
problem of minimizing an M-convex function f(x) when the sum of the components
of x is specified. Recalling the notation x(V) for the sum of components of a vector x,
we introduce some other notation concerning the feasible regions of our optimization
problem:

kmin = min{x(V) | x ∈ J},
kmax = max{x(V) | x ∈ J},

Λ = {k | kmin ≤ k ≤ kmax, k ≡ kmin(mod 2)},
Jk = {x ∈ J | x(V) = k} (k ∈ Λ),

where Jk �= ∅ for each k ∈ Λ by (J-EXC) and it may be that kmin = −∞ and/or
kmax = +∞.

Our problem is to minimize f(x) subject to x ∈ Jk, where k ∈ Λ is a parameter.
Denote by fk and Mk the minimum value and the set of minimizers, respectively, i.e.,

fk = min{f(x) | x ∈ Jk} (k ∈ Λ),

Mk = {x ∈ Jk | f(x) = fk} (k ∈ Λ),

where we assume that, for each k ∈ Λ, fk is finite and Mk is nonempty. By convention
we put fk = +∞ for k �∈ Λ.

Global optimality (minimality) on Jk is guaranteed by local optimality in the
neighborhood of �1-distance at most 4. Compare this with the unconstrained opti-
mization treated in Theorem 3.3, which refers to the neighborhood of �1-distance 2. It
is emphasized that Jk is not necessarily a jump system, and accordingly, Theorem 3.3
does not apply to minimization of f over Jk.

Theorem 4.1. Let f : J → R be an M-convex function on a constant-parity
jump system J , and let x ∈ Jk with k ∈ Λ. Then f(x) ≤ f(y) for all y ∈ Jk if and
only if f(x) ≤ f(y) for all y ∈ Jk with ‖x− y‖1 ≤ 4.

Proof. The “only if” part is obvious. To prove the “if” part by contradiction,
assume that f(x) > f(y) for some y ∈ Jk and take such y with minimum ||y − x||1.
Since x(V) = y(V) and x �= y, both supp+(y − x) and supp−(y − x) are nonempty.

Claim 1. If u ∈ supp+(y − x) and v ∈ supp−(y − x), then

f(x) + f(y) < f(x + χu − χv) + f(y − χu + χv).

M-CONVEX FUNCTIONS ON JUMP SYSTEMS 219

Proof of Claim 1. We have f(x) ≤ f(x+χu−χv) by the assumed local optimality,
and f(x) ≤ f(y − χu + χv) since y − χu + χv is closer to x than y. Adding these two
and f(y) < f(x) yields the desired inequality.

By (M-EXC) for (x, y), together with Claim 1, there exist u1 ∈ supp+(y − x),
u2 ∈ supp+(y − x− χu1), v1 ∈ supp−(y − x), and v2 ∈ supp−(y − x− χv1) such that

f(x) + f(y) ≥ f(x + χu1 + χu2) + f(y − χu1 − χu2),(4.1)

f(x) + f(y) ≥ f(x− χv1 − χv2) + f(y + χv1 + χv2).(4.2)

By (M-EXC) for (x + χu1
+ χu2 , x− χv1

− χv2
) and the local optimality, we obtain

f(x + χu1
+ χu2) + f(x− χv1 − χv2)(4.3)

≥ min[f(x + χu1 − χv1) + f(x + χu2 − χv2),

f(x + χu1
− χv2

) + f(x + χu2
− χv1

),

f(x) + f(x + χu1 + χu2 − χv1 − χv2)]

≥ 2f(x).

Similarly, by (M-EXC) for (y − χu1
− χu2

, y + χv1
+ χv2

), we obtain

f(y − χu1 − χu2) + f(y + χv1
+ χv2)(4.4)

≥ min[f(y − χu1 + χv1) + f(y − χu2 + χv2),

f(y − χu1
+ χv2

) + f(y − χu2
+ χv1

),

f(y) + f(y − χu1
− χu2 + χv1 + χv2)]

≥ f(x) + f(y),

since f(y− χui + χvj) ≥ f(x) and f(y− χu1 − χu2 + χv1 + χv2
) ≥ f(x) by the choice

of y. Adding (4.1), (4.2), (4.3), and (4.4) yields a contradiction.
The �1-distance of 4 in Theorem 4.1 cannot be replaced by the �1-distance of 2,

as we see in the following example.
Example 4.1 (see [2]). Let J ⊆ Z6 be the degree system (see Example 2.2) of an

undirected graph consisting of two vertex-disjoint triangles, and let f : J → R be an
M-convex function representing the sum of squares of the components (see Example
2.1). Let k = 8 and x = (2, 2, 2, 1, 1, 0), for which f(x) = 14. For any point y ∈ J8

with ‖y − x‖1 = 2 we have f(y) = 14, whereas for x∗ = (2, 1, 1, 2, 1, 1) we have
f(x∗) = 12 and ‖x∗ − x‖1 = 4.

Remark 4.1. Theorem 4.1 above is a generalization of Theorem 1 of [2], since
the degree system of a graph is a constant-parity jump system (Example 2.2) and
a separable convex function on a constant-parity jump system is an M-convex func-
tion (Example 2.1). In fact, the result of [2] was the primary motivation behind
Theorem 4.1.

The following theorem reveals a kind of monotonicity of the minimizers of f on
Jk.

Theorem 4.2. For any xk ∈ Mk with k ∈ Λ there exists (xl ∈ Ml | l ∈ Λ \ {k})
such that xkmin ≤ · · · ≤ xk−2 ≤ xk ≤ xk+2 ≤ · · · ≤ xkmax .

Proof. We show the existence of such xk−2. Then xk+2 can be shown to exist in
a similar manner, and the other xl (l ≤ k − 4 or l ≥ k + 4) exist by induction.

Take y ∈ Mk−2 with minimum ‖y − xk‖1. If y ≤ xk, we are done with xk−2 = y.
Otherwise, take u ∈ supp−(y − xk) and apply (M-EXC) to obtain either

∃v ∈ supp−(y − xk) : fk−2 + fk ≥ f(y + χu + χv) + f(xk − χu − χv)

220 KAZUO MUROTA

or

∃v ∈ supp+(y − xk) : fk−2 + fk ≥ f(y + χu − χv) + f(xk − χu + χv).

In the first case the right-hand side is lower bounded by fk +fk−2 and hence y+χu +
χv ∈ Mk and xk − χu − χv ∈ Mk−2; then we can take xk−2 = xk − χu − χv. The
second case cannot occur, since the right-hand side is lower bounded by fk−2 + fk,
from which follows y+χu−χv ∈ Mk−2, whereas ‖(y+χu−χv)−xk‖1 = ‖y−xk‖1−2,
which is a contradiction to the choice of y.

Theorem 4.3. Minimum values fk form a convex sequence:

fk−2 + fk+2 ≥ 2fk (k ∈ Λ \ {kmin, kmax}).(4.5)

Proof. By Theorem 4.2 we can take xk−2 ∈ Mk−2 and xk+2 ∈ Mk+2 with xk−2 ≤
xk+2, and also u ∈ supp+(xk+2 − xk−2). By (M-EXC) there exists v ∈ supp+(xk+2 −
xk−2) such that

fk−2 + fk+2 ≥ f(xk−2 + χu + χv) + f(xk+2 − χu − χv) ≥ 2fk.

Convexity of the minimum values motivates us to consider the subgradient. For
α ∈ R define fα : J → R by

fα(x) = f(x) − αx(V).(4.6)

Then we have

min
x∈J

fα(x) = min
l∈Λ

min
x∈Jl

fα(x) = min
l∈Λ

(fl − αl).(4.7)

By Theorem 4.3, the minimum of fl − αl over l ∈ Λ is attained by l = k if

(fk − fk−2)/2 ≤ α ≤ (fk+2 − fk)/2.(4.8)

Hence

fk = kα + min{fα(x) | x ∈ J}(4.9)

for α in the range of (4.8). This shows that the optimal value fk can be computed by
solving an unconstrained minimization problem for another M-convex function fα.

Let us note, however, that not every minimizer of fα belongs to Jk. A point
x ∈ J minimizes fα(x) if and only if x ∈ Mk for some k with k−(α) ≤ k ≤ k+(α),
where

k−(α) = min{k | min
l

(fl − αl) = fk − αk},(4.10)

k+(α) = max{k | min
l

(fl − αl) = fk − αk}.(4.11)

Theorem 4.4. For each α ∈ R,
⋃
{Mk | k−(α) ≤ k ≤ k+(α)} is a constant-

parity jump system. In particular, Mk is a base polyhedron if k = kmin, or k = kmax,
or fk−2 + fk+2 > 2fk with k ∈ Λ \ {kmin, kmax}.

Proof. The first statement follows from Proposition 3.4 since, as observed above,⋃
{Mk | k−(α) ≤ k ≤ k+(α)} coincides with arg min fα. For the second statement it

suffices to note that for such k we can choose an α with k−(α) = k = k+(α) and that
a constant-sum jump system is a base polyhedron.

Remark 4.2. Theorems 4.2, 4.3, and 4.4 above are natural generalizations of the
similar results of [17] for valuated delta-matroids.

M-CONVEX FUNCTIONS ON JUMP SYSTEMS 221

5. Algorithms. The local optimality criteria in Theorems 3.3 and 4.1 for uncon-
strained and constrained minimization, respectively, naturally suggest descent-type
algorithms. At each feasible nonoptimal point, an improved point can be found with
O(|V |2) function evaluations in unconstrained minimization and O(|V |4) function
evaluations in constrained minimization. Although we do not enter into further tech-
nical details (see [22]), the number of updates of the solution point may be bounded
by the �1-distance from the initial point to the optimal point, or by the difference
of the objective function values at the initial point and at the optimal point if the
objective function is integer-valued.

Two other algorithms can be constructed for constrained minimization, to min-
imize f(x) subject to x ∈ Jk, on the basis of Theorems 4.2 and 4.3. It is assumed
that an algorithm is available for unconstrained minimization. For the convenience of
descriptions it is also assumed that kmin and kmax are finite.

An increasing sequence of optimal solutions, the existence of which is guaranteed
by Theorem 4.2, can be generated by the following algorithm. Once a global minimizer
x∗ is found, the algorithm computes the whole set of fk (k ∈ Λ) with O((kmax −
kmin)|V |2) evaluations of f . Note that the algorithm works even if kmin and/or kmax

are not known in advance.

Algorithm I.

Compute x∗ ∈ J that minimizes f ;
Set k∗ := x∗(V), xk∗ := x∗, fk∗ := f(xk∗);
for k := k∗ + 2, k∗ + 4, . . . , kmax do

Find {u, v} ⊆ V that minimizes f(xk−2 + χu + χv)
and put xk := xk−2 + χu + χv and fk := f(xk);

for k := k∗ − 2, k∗ − 4, . . . , kmin do
Find {u, v} ⊆ V that minimizes f(xk+2 − χu − χv)
and put xk := xk+2 − χu − χv and fk := f(xk).

Convexity of the sequence fk makes it possible to convert the constrained min-
imization to an unconstrained minimization of fα with an appropriate value of α;
see (4.9). Here fα is M-convex and, by our assumption, the minimum of fα(x) over
x ∈ J can be computed efficiently. We assume that we can find k+(α) and k−(α) of
(4.11) and (4.10) by maximizing (resp., minimizing) x(V) among the minimizers of
fα(x) by means of some variant of an unconstrained minimization algorithm.

The following algorithm computes kmin, kmax, and fk (k ∈ Λ) by searching for
appropriate values of α. It requires O((kmax − kmin)|V |2) evaluations of f .

Algorithm II.

Let α be sufficiently large;
Minimize fα to find kmin = k+(α) = k−(α) and fkmin

;
Let α be sufficiently small

(α is a negative number with a large absolute value);
Minimize fα to find kmax = k+(α) = k−(α) and fkmax ;
if kmax − kmin ≥ 4 then search(kmin, kmax).

Here the procedure “search(k1, k2)” is defined when k1 + 4 ≤ k2 as follows:

procedure search(k1, k2)
α := (fk2 − fk1)/(k2 − k1);
Minimize fα to find k+ = k+(α), k− = k−(α), f+ = fk+ and f− = fk− ;
for k := k− + 2, k− + 4, . . . , k+ − 2 do

fk := ((k − k−)f+ + (k+ − k)f−)/(k+ − k−);
if k1 + 4 ≤ k− then search(k1, k−);
if k+ + 4 ≤ k2 then search(k+, k2).

222 KAZUO MUROTA

The second algorithm, as it stands, computes the values of fk and not the optimal
solutions xk. If xk’s are wanted, they can be computed easily in procedure “search”
by generating a sequence of points xk ∈ Jk ∩ arg min fα by applying (J-EXC) to the
pair of the optimal solutions xk− and xk+ .

6. Proofs.

6.1. Proof for (J-EXC). A proof of Lemma 2.1, different from that of Geelen
[12], is provided here. This proof can be extended to Theorem 2.3.

For a constant-parity system J , the 2-step axiom of a jump system is simplified
to:
(J-EXC+) For any x, y ∈ J and for any (x, y)-increment s, there exists an (x + s, y)-

increment t such that x + s + t ∈ J .
It suffices to prove (J-EXC+) ⇒ (J-EXC), since (J-EXC) ⇒ (J-EXC+) is obvious and
(J-EXC) implies J being a constant-parity system.

We first note the following fact.
Lemma 6.1. Assume (J-EXC+), let y ∈ J , and let z be a point at �1-distance

4 from y, represented as z = y − s1 − s2 − s3 − s4 with si ∈ ZV and ||si||1 = 1
for i = 1, 2, 3, 4. If z ∈ J , then y − si − sj ∈ J and y − sk − sl ∈ J for some
i, j, k, l ∈ {1, 2, 3, 4} with {i, j, k, l} = {1, 2, 3, 4}.

Proof. Consider an undirected graph G with vertex-set {1, 2, 3, 4} and edge-set
{(i, j) | y − si − sj ∈ J}. It follows from (J-EXC+) for (y, z) with s = −si that, for
each vertex i, there exists an edge incident to i. Similarly, it follows from (J-EXC+)
for (z, y) with s = si that, for each vertex i, there exists an edge not incident to i.
Such a graph has a perfect matching consisting of two edges, say, (i, j) and (k, l) with
{i, j, k, l} = {1, 2, 3, 4}. This means that y − si − sj ∈ J and y − sk − sl ∈ J .

To prove (J-EXC+) ⇒ (J-EXC) by contradiction, we assume that there exists a
pair (x, y) for which (J-EXC) fails. That is, we assume that the set of such pairs,

D = {(x, y) | x, y ∈ J, ∃s∗ : (x, y)-increment such that

∀t : (x + s∗, y)-increment : x + s∗ + t �∈ J or y − s∗ − t �∈ J},

is nonempty.
Take a pair (x, y) ∈ D with minimum ‖x−y‖1, where ‖x−y‖1 ≥ 4, fix s∗ satisfying

the condition above, and put u∗ = supp(s∗). Denoting the set of (x+s∗, y)-increments
by I, we have

x + s∗ + t �∈ J or y − s∗ − t �∈ J (t ∈ I).(6.1)

Put U = supp(y − x) and, for v ∈ U , let tv denote the (uniquely determined) (x, y)-
increment such that supp(tv) = v; we have tv = σ(v)χv using the notation σ defined
by σ(v) = 1 for v ∈ supp+(y− x) and σ(v) = −1 for v ∈ supp−(y− x). Define α ∈ R
by

α =

{
1/2 (s∗ ∈ I, x + 2s∗ �∈ J , y − 2s∗ ∈ J),
0 (otherwise),

and p ∈ RV by

σ(v)p(v) =

⎧⎪⎪⎨
⎪⎪⎩

α (v = u∗),
−α (v ∈ U \ {u∗}, x + s∗ + tv ∈ J),
−α + 1 (v ∈ U \ {u∗}, x + s∗ + tv �∈ J, y − s∗ − tv ∈ J),
0 (otherwise).

M-CONVEX FUNCTIONS ON JUMP SYSTEMS 223

Claim 1.

〈p, s∗ + t〉 = 0 if t ∈ I, x + s∗ + t ∈ J,(6.2)

〈p, s∗ + t〉 = 1 if t ∈ I, y − s∗ − t ∈ J.(6.3)

The equality (6.2) is easy to see, whereas (6.3) can be shown as follows. By (6.1) we
have x + s∗ + t �∈ J , and hence

〈p, s∗ + t〉 =

{
2α = 1 if t = s∗,
α + (−α + 1) = 1 if t �= s∗.

Next, let P denote the set of (x + s∗, y)-increment pairs.
Claim 2. There exists (s0, t0) ∈ P such that y − s0 − t0 ∈ J and

〈p, s0 + t0〉 ≤ 〈p, s + t〉 if (s, t) ∈ P, y − s− t ∈ J.(6.4)

Since s∗ is an (x, y)-increment and J satisfies (J-EXC+), there exists t∗ ∈ I such that
x + s∗ + t∗ ∈ J , where t∗ may possibly be identical to s∗. We see that x + s∗ + t∗
is distinct from y since ‖x − y‖1 ≥ 4. By (J-EXC+) and the minimal choice of x, y
there exists an (x + s∗ + t∗, y)-increment pair (s, t) such that y − s − t ∈ J . This
shows the existence of (s, t) ∈ P with y − s − t ∈ J . Then (6.4) is satisfied by the
pair (s, t) = (s0, t0) that minimizes 〈p, s + t〉 over (s, t) ∈ P subject to the condition
y − s− t ∈ J .

Claim 3. (x, y′) ∈ D with y′ = y − s0 − t0.
To show this, first note that s∗ is an (x, y′)-increment, and let t be an (x + s∗, y

′)-
increment. We have t ∈ I, (s0, t) ∈ P , and (t0, t) ∈ P . Hence, by (6.4), we have

〈p, s0 + t0〉 ≤ 〈p, s0 + t〉 if y − s0 − t ∈ J,(6.5)

〈p, s0 + t0〉 ≤ 〈p, t0 + t〉 if y − t0 − t ∈ J.(6.6)

We assume y′ − s∗ − t ∈ J and derive x + s∗ + t �∈ J . By Lemma 6.1 with z =
y− s0 − t0 − s∗ − t, at least one of the following three cases occurs: (i) y− s0 − t0 ∈ J
and y− s∗ − t ∈ J , (ii) y− s0 − t ∈ J and y− s∗ − t0 ∈ J , and (iii) y− t0 − t ∈ J and
y − s∗ − s0 ∈ J . In any case we have

〈p, s∗ + t〉 ≥ 1,(6.7)

since, in case (ii), for example, we have

〈p, s0 + t0 + s∗ + t〉 = 〈p, s0 + t〉 + 〈p, s∗ + t0〉 ≥ 〈p, s0 + t0〉 + 1

by (6.3) and (6.5). By (6.7) and (6.2) we see x + s∗ + t �∈ J . Hence (x, y′) ∈ D.
Finally, since ‖x−y′‖1 = ‖x−y‖1−2, Claim 3 contradicts our choice of (x, y) ∈ D.

Therefore we conclude D = ∅, completing the proof of Lemma 2.1.

6.2. Proof for (J-EXC) ⇔ (J-EXCw). A proof of Lemma 2.2 is provided
here. By the argument in section 6.1, it suffices to show (J-EXCw) ⇒ (J-EXC+),
which we prove by induction on ‖x − y‖1. Take distinct x, y ∈ J and an (x, y)-
increment s. By (J-EXCw) there exists an (x, y)-increment pair (s1, t1) such that
x + s1 + t1 ∈ J and y − s1 − t1 ∈ J . If s ∈ {s1, t1}, we are done. Otherwise, put
y′ = y − s1 − t1. We have ‖x− y′‖1 = ‖x− y‖1 − 2 and s is an (x, y′)-increment. By
the induction hypothesis, (J-EXC+) with (x, y′) and s implies x+ s+ t ∈ J for some
(x, y′)-increment t, which is also an (x, y)-increment.

224 KAZUO MUROTA

6.3. Proof for (M-EXC) ⇔ (M-EXCloc). A proof of Theorem 2.3 is provided
here. It suffices to prove (M-EXCloc) ⇒ (M-EXC). For x ∈ J , d ∈ ZV , and p ∈ RV ,
define f(x, d) = f(x+d)− f(x) and fp(x, d) = f(x+d)− f(x)−〈p, d〉. We then have

fp(x, d) + fp(y,−d) = f(x, d) + f(y,−d).(6.8)

We use an abbreviation fp for f [−p].
Lemma 6.2. Assume x, y ∈ J , ‖x − y‖1 = 4, and p ∈ RV . If (M-EXCloc) is

satisfied, then

fp(y) − fp(x) ≥ min(π12 + π34, π13 + π24, π14 + π23).(6.9)

Here πij = fp(x, si + sj) for i, j ∈ {1, 2, 3, 4}, where y = x + s1 + s2 + s3 + s4 with
si ∈ ZV and ‖si‖1 = 1 for i = 1, 2, 3, 4.

Proof. Note that x + si + sj = y − sk − sl if {i, j, k, l} = {1, 2, 3, 4}. (M-EXCloc)
for f is equivalent to that for f [−p], which implies

fp(y) − fp(x) ≥ min[fp(x, s1 + s2) + fp(x, s3 + s4),

fp(x, s1 + s3) + fp(x, s2 + s4),

fp(x, s1 + s4) + fp(x, s2 + s3)].

To prove by contradiction, we assume that there exists a pair (x, y) for which
(M-EXC) fails. That is, we assume that the set of such pairs,

D = {(x, y) | x, y ∈ J, ∃s∗ : (x, y)-increment such that

∀t : (x + s∗, y)-increment : f(x, s∗ + t) + f(y,−s∗ − t) > 0},

is nonempty. Take a pair (x, y) ∈ D with minimum ‖x − y‖1; we have ‖x − y‖1 > 4
by (M-EXCloc). Let s∗ be an (x, y)-increment satisfying the condition above, and put
u∗ = supp(s∗). Denoting the set of (x + s∗, y)-increments by I, we have

f(x, s∗ + t) + f(y,−s∗ − t) > 0 (t ∈ I).(6.10)

Put U = supp(y − x) and, for v ∈ U , let tv denote the (uniquely determined)
(x, y)-increment such that supp(tv) = v; we have tv = σ(v)χv using the notation σ
defined by σ(v) = 1 for v ∈ supp+(y− x) and σ(v) = −1 for v ∈ supp−(y− x). Using
this convention, define α ∈ R by

α =

⎧⎨
⎩

f(x, 2s∗)/2 (s∗ ∈ I, x + 2s∗ ∈ J),
(−f(y,−2s∗) + ε)/2 (s∗ ∈ I, x + 2s∗ �∈ J , y − 2s∗ ∈ J),
0 (otherwise),

and p ∈ RV by

σ(v)p(v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α (v = u∗),
f(x, s∗ + tv) − α (v ∈ U \ {u∗}, x + s∗ + tv ∈ J),
−f(y,−s∗ − tv) − α + ε (v ∈ U \ {u∗}, x + s∗ + tv �∈ J,

y − s∗ − tv ∈ J),
0 (otherwise)

with some ε > 0.

M-CONVEX FUNCTIONS ON JUMP SYSTEMS 225

Claim 1.

fp(x, s∗ + t) = 0 if t ∈ I, x + s∗ + t ∈ J,(6.11)

fp(y,−s∗ − t) > 0 if t ∈ I.(6.12)

The equality (6.11) follows from

fp(x, s∗ + t) = f(x, s∗ + t) − 〈p, s∗〉 − 〈p, t〉

=

{
f(x, 2s∗) − 2α = 0 if t = s∗,
f(x, s∗ + t) − α− [f(x, s∗ + t) − α] = 0 if t �= s∗.

The inequality (6.12) can be shown as follows. We may assume y − s∗ − t ∈ J , since
otherwise fp(y,−s∗ − t) = +∞. If x+ s∗ + t ∈ J , we have fp(x, s∗ + t) = 0 by (6.11)
and

fp(x, s∗ + t) + fp(y,−s∗ − t) = f(x, s∗ + t) + f(y,−s∗ − t) > 0

by (6.8) and (6.10). Otherwise (y − s∗ − t ∈ J and x + s∗ + t �∈ J), we have

fp(y,−s∗ − t) = f(y,−s∗ − t) + 〈p, s∗〉 + 〈p, t〉

=

{
f(y,−2s∗) + 2α = ε if t = s∗,
f(y,−s∗ − t) + α + [−f(y,−s∗ − t) − α + ε] = ε if t �= s∗.

Next, let P denote the set of (x + s∗, y)-increment pairs.
Claim 2. There exists (s0, t0) ∈ P such that y − s0 − t0 ∈ J and

fp(y,−s0 − t0) ≤ fp(y,−s− t) (∀(s, t) ∈ P).(6.13)

Since s∗ is an (x, y)-increment and J satisfies (J-EXC), there exists t∗ ∈ I such that
x + s∗ + t∗ ∈ J , where t∗ may possibly be identical to s∗. We see that x + s∗ + t∗
is distinct from y since ‖x − y‖1 > 4. By (J-EXC) there exists an (x + s∗ + t∗, y)-
increment pair (s, t) such that y − s − t ∈ J . This shows the existence of (s, t) ∈ P
with y− s− t ∈ J . Then (6.13) is satisfied by the pair (s, t) = (s0, t0) that minimizes
fp(y,−s− t) over (s, t) ∈ P .

Claim 3. (x, y′) ∈ D with y′ = y − s0 − t0.
To show this, first note that s∗ is an (x, y′)-increment, and let t be an (x + s∗, y

′)-
increment. We have t ∈ I, (s0, t) ∈ P , and (t0, t) ∈ P . Hence, by (6.13), we have

fp(y,−s0 − t0) ≤ fp(y,−s0 − t), fp(y,−s0 − t0) ≤ fp(y,−t0 − t).(6.14)

Suppose that x + s∗ + t ∈ J and y′ − s∗ − t ∈ J . From (6.8), (6.11), Lemma 6.2,
(6.12), and (6.14) we obtain

f(x, s∗ + t) + f(y′,−s∗ − t)

= fp(x, s∗ + t) + fp(y
′,−s∗ − t)

= fp(y
′,−s∗ − t)

= fp(y − s0 − t0 − s∗ − t) − fp(y − s0 − t0)

≥ min[fp(y,−s0 − t0) + fp(y,−s∗ − t),

fp(y,−s0 − t) + fp(y,−s∗ − t0),

fp(y,−t0 − t) + fp(y,−s∗ − s0)]

−fp(y,−s0 − t0)

> min[fp(y,−s0 − t0), fp(y,−s0 − t), fp(y,−t0 − t)]

−fp(y,−s0 − t0)

= 0.

226 KAZUO MUROTA

This shows (x, y′) ∈ D.
Finally, since ‖x−y′‖1 = ‖x−y‖1−2, Claim 3 contradicts our choice of (x, y) ∈ D.

Therefore we conclude D = ∅, completing the proof of Theorem 2.3.

Acknowledgments. The author thanks Jim Geelen and Satoru Iwata for dis-
cussions when we were at RIMS, Kyoto University, in April and May 1996. He is also
grateful to András Sebő for a stimulating comment that led to Proposition 3.1, and
to Akihisa Tamura and Ken’ichiro Tanaka for checking the proofs.

REFERENCES

[1] K. Ando, S. Fujishige, and T. Naitoh, A greedy algorithm for minimizing a separable convex
function over a finite jump system, J. Oper. Res. Soc. Japan, 38 (1995), pp. 362–375.

[2] N. Apollonio and A. Sebő, Minsquare factors and maxfix covers of graphs, in Integer Pro-
gramming and Combinatorial Optimization, Lecture Notes in Comput. Sci. 3064, D. Bien-
stock and G. Nemhauser, eds., Springer-Verlag, Berlin, 2004, pp. 388–400.

[3] A. Bouchet, Greedy algorithm and symmetric matroids, Math. Programming, 38 (1987),
pp. 147–159.

[4] A. Bouchet and W. H. Cunningham, Delta-matroids, jump systems, and bisubmodular poly-
hedra, SIAM J. Discrete Math., 8 (1995), pp. 17–32.

[5] R. Chandrasekaran and S. N. Kabadi, Pseudomatroids, Discrete Math., 71 (1988), pp. 205–
217.

[6] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver, Combinatorial
Optimization, John Wiley and Sons, New York, 1998.

[7] A. W. M. Dress and T. Havel, Some combinatorial properties of discriminants in metric
vector spaces, Adv. Math., 62 (1986), pp. 285–312.

[8] A. W. M. Dress and W. Wenzel, Valuated matroid: A new look at the greedy algorithm,
Appl. Math. Lett., 3 (1990), pp. 33–35.

[9] A. W. M. Dress and W. Wenzel, Valuated matroids, Adv. Math., 93 (1992), pp. 214–250.
[10] A. W. M. Dress and W. Wenzel, A greedy-algorithm characterization of valuated Δ-matroids,

Appl. Math. Lett., 4 (1991), pp. 55–58.
[11] S. Fujishige, Submodular Functions and Optimization, 2nd ed., Ann. Discrete Math. 58, El-

sevier, Amsterdam, 2005.
[12] J. F. Geelen, private communication, 1996.
[13] A. M. H. Gerards, Matching, in Network Models, Handbooks Oper. Res. Management Sci. 7,

M. O. Ball, T. L. Magnanti, C. L. Monma, and G. L. Nemhauser, eds., North–Holland,
Amsterdam, 1995, pp. 135–224.

[14] S. N. Kabadi and R. Sridhar, Δ-matroid and jump system, J. Appl. Math. Decis. Sci., 9
(2005), pp. 95–106.

[15] E. L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Win-
ston, New York, 1976; Dover, Mineola, NY, 2001.

[16] L. Lovász, The membership problem in jump systems, J. Combin. Theory Ser. B, 70 (1997),
pp. 45–66.

[17] K. Murota, Two algorithms for valuated delta-matroids, Appl. Math. Lett., 9 (1996), pp. 67–
71.

[18] K. Murota, Valuated matroid intersection I: Optimality criteria, SIAM J. Discrete Math., 9
(1996), pp. 545–561.

[19] K. Murota, Convexity and Steinitz’s exchange property, Adv. Math., 124 (1996), pp. 272–311.
[20] K. Murota, Matrices and Matroids for Systems Analysis, Springer-Verlag, Berlin, 2000.
[21] K. Murota, Discrete Convex Analysis, Monogr. Discrete Math. Appl. 10, SIAM, Philadelphia,

2003.
[22] K. Murota and K. Tanaka, A steepest descent algorithm for M-convex functions on jump

systems, IEICE Trans. Fundamentals of Electr., Commun., Comput. Sci., E89-A (2006),
to appear.

[23] W. R. Pulleyblank, Matchings and extensions, in Handbook of Combinatorics, Vol. 1, D.
Graham, M. Grötschel, and L. Lovász, eds., Elsevier, Amsterdam, 1995, pp. 179–232.

[24] W. Wenzel, Pfaffian forms and Δ-matroids, Discrete Math., 115 (1993), pp. 253–266.
[25] W. Wenzel, Δ-matroids with the strong exchange conditions, Appl. Math. Lett., 6 (1993),

pp. 67–70.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 227–239

ON STABILITY, ERROR CORRECTION, AND NOISE
COMPENSATION IN DISCRETE TOMOGRAPHY∗

ANDREAS ALPERS† AND PETER GRITZMANN†

Abstract. The task of reconstructing binary images from the knowledge of their line sums
(discrete X-rays) in a given finite number m of directions is ill-posed. Even some small noise in the
physical measurements can lead to dramatically different yet still unique solutions.

The present paper addresses in particular the following problems. Does discrete tomography have
the power of error correction? Can noise be compensated by taking more X-ray images, and, if so,
what is the quantitative effect of taking one more X-ray? Our main theorem gives the first nontrivial
unconditioned (and best possible) stability result. In particular, we show that the Hamming distance
between any two different sets of m X-ray images of the same cardinality is at least 2(m − 1), and
this is best possible. As a consequence, this result implies a Rényi-type theorem for denoising and
shows that the noise compensating effect of X-rays is linear in their number.

Our theoretical results are complemented by determining the computational complexity of some
underlying algorithmic tasks. In particular, we show that while there always is a certain inherent
stability, the possibility of making (worst-case) efficient use of it is rather limited.

Key words. discrete tomography, stability, discrete inverse problems, computational complexity

AMS subject classifications. 90C31, 68R05, 11P05

DOI. 10.1137/040617443

1. Introduction. Discrete tomography deals with the reconstruction of finite
sets from knowledge about their interaction with certain query sets. The most promi-
nent example is that of the reconstruction of a finite subset F of Z

d from its X-rays
(i.e., line sums) in a small positive integer number m of directions. Applications of
discrete tomography include quality control in semiconductor industry, image pro-
cessing, graph theory, scheduling, statistical data security, game theory, etc. (see,
e.g., [6], [8], [9], [13], [14], [17], [19]). The reconstruction task is an ill-posed discrete
inverse problem, depicting (suitable variants of) all three Hadamard criteria [12] for
ill-posedness. In fact, for general data there need not exist a solution, if the data is
consistent, the solutions need not be uniquely determined, and even in the case of
uniqueness, the solution may change dramatically with small changes of the data.

The papers [1] and [2] show just how unstable the reconstruction task really is:
For arbitrarily large lattice sets even of the same cardinality, a total error of only
2(m− 1) in the measurements can lead to unique but disjoint solutions. Clearly, this
is an important issue for all practical applications where noise in the data cannot be
avoided, particularly if the data stems from physical measurements.

The main theorem of the present paper shows that this number 2(m− 1) is best
possible in an ultimate sense. In Theorem 2.1 we prove that two finite sets of the same
cardinality whose X-rays in a given set of m directions differ by a total of less than
2(m− 1) are “tomographically equivalent.” This means that either the X-rays differ
by at least 2(m − 1), or they do not differ at all. Note that the situation becomes
trivial if the assumption on the equal cardinality of the lattice sets is omitted. Indeed,
if the cardinalities of the two sets differ by k, then the total difference of the X-rays is

∗Received by the editors October 21, 2004; accepted for publication (in revised form) August 8,
2005; published electronically March 15, 2006.

http://www.siam.org/journals/sidma/20-1/61744.html
†Zentrum Mathematik, Technische Universität München, Boltzmannstr. 3, D-85747 Garching bei

München, Germany (alpers@ma.tum.de, gritzman@ma.tum.de).

227

228 ANDREAS ALPERS AND PETER GRITZMANN

at least km, and this is best possible (just delete k points of an arbitrary finite lattice
set of cardinality at least k to obtain the second set).

Theorem 2.1 enables us to derive stability versions of all known uniqueness theo-
rems, providing uniqueness even for somewhat noisy data. Complementing the theo-
retical results, we deal with the computational complexity of trying to take advantage
of the inherent stability. The precise statements of our results will be given in the
next section. Here we only summarize them qualitatively.

While it is clear that the total sum over all X-rays is a multiple of m and hence a
small enough error in this number can be corrected, the problem of determining how
the individual measurements should be corrected in order to provide consistency of
the data is NP-complete whenever m ≥ 3 but easy for m ≤ 2. Also, finding a set
which best fits the data is NP-hard for m ≥ 3 but can be solved in polynomial time
for m ≤ 2.

The paper is organized as follows: After introducing some notation we state our
main stability theorem, some of its corollaries, and the related algorithmic results in
section 2. In sections 3 and 4 we give the proofs of our stability result and of the
algorithmic results, respectively.

2. Main results: A stability theorem and some of its relatives. Let
d,m ∈ N, d ≥ 2, and let F be a field with Z ⊆ F. Our underlying vector space will
always be F

d but certain restrictions to the subring Z
d of all lattice points will also be

relevant. Hence we will formulate some definitions and results in terms of K ∈ {F,Z}.
In particular, set

Fd(K) = {F : F ⊂ K
d ∧ F is finite}

and Fd = Fd(Z). The elements of Fd are called lattice sets. Let Sd denote the set
of all 1-dimensional linear subspaces of F

d, and let Ld be the subset of Sd of all such
subspaces that are spanned by vectors from Z

d. The elements of Ld will be referred
to as lattice lines. Further, for S ∈ Sd let AK(S) = {v + S : v ∈ K

d}.
Then, for F ∈ Fd(K) and S ∈ Sd, the (discrete 1-dimensional) X-ray of F parallel

to S is the function

XSF : AK(S) → N0 = N ∪ {0}

defined by

XSF (T) = |F ∩ T | =
∑
x∈T

11F (x)

for each T ∈ AK(S).

Two sets F1, F2 ∈ Fn(F) are called tomographically equivalent with respect to
S1, . . . , Sm ∈ Sd if XSiF1 = XSiF2 for i = 1, . . . ,m.

Given m different lines S1, . . . , Sm ∈ Sd, the basic questions in discrete tomogra-
phy are as follows. What kind of information about a finite (lattice) set F ∈ K

d can be
retrieved from its X-ray images XS1F, . . . ,XSmF? How difficult is the reconstruction
algorithmically? How sensitive is the task to data errors? Here the data is given in
terms of functions

ON STABILITY IN DISCRETE TOMOGRAPHY 229

fi : AK(Si) → N0, i = 1, . . . ,m,

with finite support Ti ⊆ AK(Si) represented by appropriately chosen data structures;
see [8]. Hence the difference of two data functions with respect to the same line S ∈ Sd

is a function h : AK(S) → Z; its size will be measured in terms of its �1-norm

‖h‖1 =
∑

T∈AK(S)

|h(T)|.

For surveys on various aspects of discrete tomography see [10], [11], [13].
Our main stability result can now be formulated as follows.
Theorem 2.1. Let S1, . . . , Sm ∈ Sd be different and F1, F2 ∈ Fd(K) with |F1| =

|F2|. If

m∑
i=1

||XSiF1 −XSi
F2||1 < 2(m− 1),

then F1 and F2 are tomographically equivalent.
The proof will be given in section 3. Clearly, Theorem 2.1 is equivalent to the

following theorem.
Theorem 2.2. Let S1, . . . , Sm ∈ Sd be different. Then there do not exist F1, F2 ∈

Fd(K) with |F1| = |F2| and 0 <
∑m

i=1 ||XSi
F1 −XSi

F2||1 < 2(m− 1).
As corollaries to this stability result we may derive “noisy versions” of all known

uniqueness theorems. In the following we give two such examples.
Rényi’s well-known theorem [16] states that if we know the cardinality |F | of

a finite set F we can guarantee uniqueness from X-rays taken in any m ≥ |F | + 1
different directions. Our first corollary shows that we can guarantee uniqueness, even
if the X-rays are not given precisely.

Corollary 2.3. Let F1, F2 ∈ Fd(K) with |F1| = |F2|, m ∈ N with m ≥ |F1|+ 1,
and let S1, . . . , Sm ∈ Sd be different. If

∑m
i=1 ||XSi

F1 − XSi
F2||1 < 2|F1|, then

F1 = F2.
Proof. By Theorem 2.1, F1 and F2 are tomographically equivalent; hence the

assertion follows from Rényi’s theorem [16].
Corollary 2.3 shows the potential power of error correction in the setting of Rényi’s

theorem: A total error smaller than 2n can be compensated without increasing the
number of X-rays taken if the cardinality n of the original set F is known. But even
without knowing n precisely we can correct errors—at the expense, however, of taking
more X-rays.

Corollary 2.4. Let F1, F2 ∈ Fd(K) with |F1| ≤ |F2|, m ∈ N with m ≥ 2|F1|,
and let S1, . . . , Sm ∈ Sd be different. Then

∑m
i=1 ||XSi

F1 −XSi
F2||1 < 2|F1| implies

F1 = F2.
Proof. Clearly

∑m
i=1 ||XSiF1 −XSiF2||1 ≥ m(|F2| − |F1|). Thus,

∑m
i=1 ||XSiF1 −

XSiF2||1 < 2|F1| implies |F1| = |F2|, and the assertion follows from Corollary
2.3.

Next we give a stable version of a theorem of Gardner and Gritzmann [7] for the
set Cd of convex lattice sets, i.e., of sets F ∈ Fd with F = conv(F ∩ Z

d).
Corollary 2.5. Let F1, F2 ∈ Cd with |F1| = |F2|.
(i) There are sets {S1, S2, S3, S4} ⊆ Ld of four lines such that∑4

i=1 ||XSiF1 −XSiF2||1 < 6 implies F1 = F2.
(ii) For any set {S1, . . . , Sm} ⊆ Ld of m ≥ 7 coplanar lattice lines,∑m

i=1 ||XSi
F1 −XSi

F2||1 < 2(m− 1) implies F1 = F2.

230 ANDREAS ALPERS AND PETER GRITZMANN

Proof. By Theorem 2.1, F1 and F2 are tomographically equivalent in both
parts of the statement; hence the assertion follows from the uniqueness theorems of
[7].

Note that this theorem also holds for the somewhat more general class of Q-convex
lattice sets because they are uniquely determined by the same sets of lattice lines as
the convex lattice sets (see [5]).

Let us now turn to results on some algorithmic tasks related to stability and
instability in discrete tomography. We concentrate on the case of finite lattice sets
whose X-rays are taken in lattice directions. Thus, let S1, . . . , Sm ∈ Ld. Proofs of the
following statements will be given in section 4.

We begin with two examples of algorithmic consequences of Theorem 2.1, “noisy
extensions” of known complexity results. It has been shown in [8] that the two
problems

ConsistencyFd(S1, . . . , Sm)
Input: For i = 1, . . . ,m data functions fi : AZ(Si) → N0 with finite support.
Question: Does there exist a finite lattice set F ∈ Fd such that XSiF = fi

for i = 1, . . . ,m?

and

UniquenessFd(S1, . . . , Sm)
Input: A set F1 ∈ Fd.
Question: Does there exist a set F2 ∈ Fd with F1 �= F2 such that

XSiF1 = XSiF2 for i = 1, . . . ,m?

can be solved in polynomial time for m ≤ 2 but are NP-complete for m ≥ 3.

With the aid of Theorem 2.1 these results can be extended as follows.

Corollary 2.6. Let S1, . . . , Sm ∈ Ld be different. The two problems

X-Ray-CorrectionFd(S1, . . . , Sm)
Input: For every i = 1, . . . ,m a data function fi : AZ(Si) → N0 with

finite support.
Question: Does there exist a finite lattice set F ∈ Fd with∑m

i=1 ||XSiF − fi||1 ≤ m− 1?

and

Similar-SolutionFd(S1, . . . , Sm)
Input: A finite lattice set F1 ∈ Fd.
Question: Does there exist a finite lattice set F2 ∈ Fd with |F1| = |F2| and

F1 �= F2 such that
∑m

i=1 ||XSiF1 −XSiF2||1 ≤ 2m− 3?

are in P for m ≤ 2 but are NP-complete for m ≥ 3.

Note that X-Ray-CorrectionFd(S1, . . . , Sm) can also be formulated as the task
to decide, for given data functions fi : AZ(Si) → N0 (i = 1, . . . ,m) with finite support,
whether there exist “corrected” data functions gi : AZ(Si) → N0 (i = 1, . . . ,m) with
finite support that are consistent and do not differ from the given functions by more
than a total of m− 1. Corollary 2.6 shows that this form of measurement correction
is just as hard as checking consistency.

If the data is noisy it seems natural to try to find a finite lattice set that fits the
measurements best. This task is studied in the following theorem.

ON STABILITY IN DISCRETE TOMOGRAPHY 231

Theorem 2.7. Let S1, . . . , Sm ∈ Ld be different. The problem

Nearest-SolutionFd(S1, . . . , Sm)
Input: For every i = 1, . . . ,m, a data function fi : AZ(Si) → N0 with

finite support.
Task: Determine a set F ∗ ∈ Fd such that∑m

i=1 ||XSiF
∗ − fi||1 = minF∈Fd

∑m
i=1 ||XSiF − fi||1

is in P for m ≤ 2 but is NP-hard for m ≥ 3.
From the NP-hardness of ConsistencyFd(S1, . . . , Sm) the statement for m≥3 fol-

lows easily. In fact, for a given instance (f1, . . . , fm) of ConsistencyFd(S1, . . . , Sm) let
F ∗ denote a solution of Nearest-SolutionFd(S1, . . . , Sm) for the input (f1, . . . , fm).
Then (f1, . . . , fm) is a yes-instance of ConsistencyFd(S1, . . . , Sm) if and only if
XSiF

∗ = fi for all i = 1, . . . ,m. However, the proof of the polynomial-time solvabil-
ity in the case m = 2 is more involved and will be given in section 4.

3. Proof of the main stability result. Note first that it is enough to prove
Theorem 2.1 for K = F. The proof will be based on four lemmas. The first lemma is
a simple combinatorial observation.

Lemma 3.1. Let S ∈ Sd and let f, g : AF(S) → N0 be data functions with finite
support. Further, set A+ = {T ∈ AF(S) : f(T) − g(T) > 0} and A− = {T ∈ AF(S) :
f(T) − g(T) < 0}. Then

||f − g||1 = 2
∑

T∈A+

(
f(T) − g(T)

)
− ‖f‖1 + ‖g‖1.

In particular, when ‖f‖1 = ‖g‖1 the number ||f − g||1 is even.
Proof. Since∑

T∈AF(S)

(f(T) − g(T)) =
∑

T∈AF(S)

f(T) −
∑

T∈AF(S)

g(T) = ‖f‖1 − ‖g‖1,

we have

||f − g||1 =
∑

T∈AF(S)

|f(T) − g(T)| =
∑

T∈A+

(f(T) − g(T)) −
∑

T∈A−

(f(T) − g(T))

=
∑

T∈A+

(f(T) − g(T)) −
∑

T∈A−

(f(T) − g(T)) +
∑

T∈A+

(f(T) − g(T))

+
∑

T∈A−

(f(T) − g(T)) − ‖f‖1 + ‖g‖1

= 2
∑

T∈A+

(f(T) − g(T)) − ‖f‖1 + ‖g‖1.

In the present section we will apply Lemma 3.1 to the X-rays of sets F1,F2∈Fd(F),
i.e., to f = XSF1 and g = XSF2.

The next lemma is geometric in nature and will enable us to reduce the proof of
Theorem 2.1 to the planar case.

Lemma 3.2. Let d ≥ 3, S1, . . . , Sm ∈ Sd be different and F1, F2 ∈ Fd(F). Then
there exists a surjective linear map ϕ : F

d → F
2 with the following properties.

(i) ϕ(S1), . . . , ϕ(Sm) are different lines in S2.
(ii) If i ∈ {1, . . . ,m} and a, b ∈ F1∪F2 satisfy ϕ(b) ∈ ϕ(a)+ϕ(Si), then b ∈ a+Si.

232 ANDREAS ALPERS AND PETER GRITZMANN

Proof. In order to satisfy the two properties the kernel ker(ϕ) will be chosen
complementary to any plane spanned by two of the m lines, and also complementary to
any plane spanned by one of the lines S1, . . . , Sm and a line generated by the difference
of two of the vectors of F1∪F2. Let us denote the set of these exceptional planes by P.
Each of the planes P ∈ P can be described as the set of solutions of a homogeneous
(d − 2) × d system of linear equations; let AP denote a corresponding coefficient
matrix. Now, let π1, . . . , π2d be different primes. Further, for x ∈ F let B(x) be the
2× d matrix with row vectors (xπ1 , xπ2 , . . . , xπd) and (xπd+1 , xπd+2 , . . . , xπ2d), and let
H(x) be the solution space of the corresponding homogeneous 2×d system. Then for
each P ∈ P the determinant of the matrix composed of AP and B(x) is a nontrivial
polynomial in x. (In fact, the coefficients are (d−2)× (d−2) subdeterminants of AP ,
and by the choice of the exponents of x in B(x) there is generically no cancellation.)
Hence for all sufficiently large integers x, H(x) is complementary to each plane P ∈ P.
Now taking a fixed such vector x, we define ϕ by choosing an arbitrary basis of H(x),
extend it to a basis of F

d, and specify that ϕ maps the basis vectors of H(x) to 0 and
the remaining two to the standard basis vectors of F

2. Then ker(ϕ) = H(x), whence
ϕ has the desired properties.

Note that a linear mapping ϕ with the properties of Lemma 3.2 is necessarily
injective on F1 ∪ F2.

The following two lemmas are more algebraic in nature. The next contains a
well-known result on the elementary part of the Prouhet–Tarry–Escott Problem on
solutions of a specific power system of polynomial equations. As a service to the
reader we still outline the proof. For a survey on the Prouhet–Tarry–Escott Problem
see [3] or [4].

Lemma 3.3. Let x1, . . . , xq, y1, . . . , yq ∈ F such that

q∑
i=1

xj
i =

q∑
i=1

yji

for j = 1, . . . , q. Then the multisets {x1, . . . , xq} and {y1, . . . , yq} coincide.
Proof. We show that x1, . . . , xq and y1, . . . , yq are the roots of the same polynomial

of degree q.
For i = 1, . . . , q let pi, si ∈ F[X1, . . . , Xq] be defined by

pi = Xi
1 + Xi

2 + · · · + Xi
q, si =

∑
1≤k1<···<ki≤q

Xk1
· · ·Xki

.

The polynomials pi and si are the well-known power sums and elementary symmetric
functions of the indeterminates X1, . . . , Xq, respectively. Clearly, for the indetermi-
nates X1, . . . , Xq, Y we have

q∏
i=1

(Y −Xi) = Y q − s1Y
q−1 + s2Y

q−2 + · · · + (−1)qsq.

Using the Newton identities (see, e.g., [15]) it follows inductively that for i = 1, . . . , q

si ∈ F[p1, . . . , pq].

Since by assumption

pi(x1, . . . , xq) = pi(y1, . . . , yq) for i = 1, . . . , q,

ON STABILITY IN DISCRETE TOMOGRAPHY 233

this implies

si(x1, . . . , xq) = si(y1, . . . , yq) for i = 1, . . . , q.

Consequently,

q∏
i=1

(Y − xi) =

q∑
i=0

(−1)iY q−isi(x1, . . . , xq) =

q∏
i=1

(Y − yi);

i.e., the two polynomials
∏q

i=1(Y −xi) and
∏q

i=1(Y −yi) in F[Y] are identical. Hence
x1, . . . , xq is just a permutation of y1, . . . , yq.

Lemma 3.4. Let k ∈ N and σ1, . . . , σk+1, τ1, . . . , τk+1 ∈ F such that Si =
lin

{
(σi, τi)

T
}
∈ S2, i = 1, . . . , k + 1, are different. Then

(τ1X − σ1Y)
k
, . . . , (τk+1X − σk+1Y)k ∈ F[X,Y]

form a basis of the F-vector space Vk that is generated by the k + 1 binomials Y k,
X1Y k−1, . . . , Xk−1Y 1, Xk ∈ F[X,Y].

Proof. Every polynomial (τiX − σiY)
k

can be expressed in terms of its coefficient
vector ((

k

0

)
τ0
i (−σi)

k, . . . ,

(
k

k

)
τki (−σi)

0

)

with respect to the binomial basis {Y k, X1Y k−1, . . . , Xk−1Y 1, Xk}. Thus, we have
to show only that these k + 1 vectors are linearly independent, i.e., that the matrix

C =

((
k

j − 1

)
(τi)

j−1(−σi)
k−j+1

)
i,j=1,...,k+1

∈ F
(k+1)×(k+1)

is nonsingular.
Suppose first that σ1 · · ·σk+1 �= 0. By setting ρi = −σ−1

i τi, and by denoting the

Vandermonde matrix (ρj−1
i)i,j=1,...,k+1 by C ′, we obtain

det(C) = det(C ′) ·
k+1∏
i=1

(
k

i− 1

)
(−σi)

k =
∏
i>j

(ρi − ρj) ·
k+1∏
i=1

(
k

i− 1

)
(−σi)

k.

Thus, if det(C) = 0, then there exist indices i0, j0 in {1, . . . , k + 1} with i0 �= j0
but ρi0 = ρj0 . This means that σ−1

i0
τi0 = σ−1

j0
τj0 , whence Si0 = Sj0 , contrary to the

assumption. Therefore det(C) �= 0.
Now suppose that one of the σi is zero. Without loss of generality we may assume

that σ1 = 0. Note that then σi �= 0 for i > 1. The first row of C is now a nonzero
multiple of (0, . . . , 0, 1). By developing det(C) with respect to the first row, we see
that the same argument as in the first case applies again.

Now we are ready to prove our main stability result.
Proof of Theorem 2.1. Let F1, F2 ∈ Fd(F) with |F1| = |F2| and 0 <

∑m
i=1 ||XSi

F1−
XSi

F2||1 < 2(m− 1). By Lemma 3.1, this implies that m ≥ 3.
Suppose first that the error involves more than one direction; i.e., XSiF1 �= XSiF2

for at least two different indices i1 and i2. By Lemma 3.1, ‖XSiF1 − XSiF2‖1 ≥ 2
for i = i1, i2. Therefore, ignoring Si1 , the sets F1 and F2 provide a counterexample
already for m − 1 directions. Hence we may in the following assume that XSiF1 =

234 ANDREAS ALPERS AND PETER GRITZMANN

XSi
F2 for i = 1, . . . ,m − 1; i.e., the error occurs only for Sm. Similarly, we may

assume that the error is exactly 2(m− 2).
Next, we reduce the statement to the planar case. Let d ≥ 3 and suppose that

F1, F2 ∈ Fd(F) with |F1| = |F2| and 0 <
∑m

i=1 ||XSiF1 −XSiF2||1 < 2(m − 1). Let
ϕ be a linear mapping according to Lemma 3.2, and set F ′

j = ϕ(Fj) for j = 1, 2 and

S′
i = ϕ(Si) for i = 1, . . . ,m. Then F ′

1, F
′
2 ∈ F2(F), |F ′

1| = |F ′
2|, S′

1, . . . , S
′
m ∈ S2

are different, and XS′
i
F ′
j = XSiFj for i = 1, . . . ,m and j = 1, 2. Hence we obtain a

counterexample already in dimension 2.
Finally we turn to the planar case. So, in the following let d = 2. The n points of

F1 and F2 will be denoted by (x1, y1), . . . , (xn, yn) and (x′
1, y

′
1), . . . , (x

′
n, y

′
n), respec-

tively.
Let σ1, . . . , σm, τ1, . . . , τm ∈ F be such that Si = lin

{
(σi, τi)

T
}

for i = 1, . . . ,m.
By Lemma 3.4 we know that for k = 1, . . . ,m− 2

(τ1X − σ1Y)
k
, . . . , (τk+1X − σk+1Y)k

form a basis of the F-vector space Vk generated by the binomials Y k, X1Y k−1,. . .,Xk−1Y 1,
Xk. Since, of course, (τmX − σmY)

k ∈ Vk, there are coefficients α1,k, . . . , αm−1,k ∈ F

such that

(τmX − σmY)k =

m−1∑
i=1

αi,k(τiX − σiY)k.

For every line T parallel to any of the lines S1, . . . , Sm−1 we have |F1 ∩ T | =
|F2 ∩ T |. Hence, as multisets the projections of F1 and F2 parallel to Si (on any line
complementary to Si) coincide for i = 1, . . . ,m− 1. Thus

{(τix1 − σiy1), . . . , (τixn − σiyn)} = {(τix′
1 − σiy

′
1), . . . , (τix

′
n − σiy

′
n)}

for i = 1, . . . ,m− 1. As a consequence we have

n∑
j=1

(
(τmxj − σmyj)

k − (τmx′
j − σmy′j)

k
)

=

n∑
j=1

m−1∑
i=1

αi,k

(
(τixj − σiyj)

k − (τix
′
j − σiy

′
j)

k
)

= 0

for each k = 1, . . . ,m− 2.
Now we define the multiset differences

A = {(τmx1 − σmy1), . . . , (τmxn − σmyn)} \ {(τmx′
1 − σmy′1), . . . , (τmx′

n − σmy′n)}

and

B = {(τmx′
1 − σmy′1), . . . , (τmx′

n − σmy′n)} \ {(τmx1 − σmy1), . . . , (τmxn − σmyn)}.

Note that |A| and |B| count the positive excess of F1 over F2 and of F2 over F1,
respectively, on lines parallel to Sm. To be more precise, let A+ = {T ∈ AF(Sm) :
XSmF1(T)−XSmF2(T) > 0} and A− = {T ∈ AF(Sm) : XSmF1(T)−XSmF2(T) < 0}.
Then with the aid of Lemma 3.1

|A| =
∑

T∈A+

(
XSmF1(T) −XSmF2(T)

)
=

1

2
||XSmF1 −XSmF2||1;

ON STABILITY IN DISCRETE TOMOGRAPHY 235

similarly,

|B| =
∑

T∈A−

(
XSmF2(T) −XSmF1(T)

)
=

1

2
||XSmF1 −XSmF2||1.

Hence

|A| = |B| = m− 2

and thus, particularly, A �=B. Using the notation A={a1, . . . , aq} and B={b1, . . . , bq}
with q = m− 2, we have for each k = 1, . . . , q

n∑
j=1

(
(τmxj − σmyj)

k − (τmx′
j − σmy′j)

k
)

=

q∑
j=1

akj −
q∑

j=1

bkj = 0,

a contradiction to Lemma 3.3. This completes the proof of Theorem 2.1.

4. Proofs of the algorithmic results. In the following we give the proofs for
the algorithmic results stated in section 2. We begin with the membership of X-Ray-

CorrectionFd(S1, . . . , Sm) and Similar-SolutionFd(S1, . . . , Sm) in the class NP.
Given an instance (f1, . . . , fm) or F1, respectively, one would, of course, like to use
as a certificate a corresponding set F or F2, respectively. If the set is available and
polynomial in the encoding length, the conditions can be checked efficiently. Let us
call a set F support consistent if for each of the m directions the support of the X-ray
XSi

F is a subset of the support of the data function fi, i.e.,

{T ∈ AZ(Si) : XSi
F (T) �= 0} ⊂ Ti for i = 1, . . . ,m,

where

Ti = {T ∈ AZ(Si) : fi(T) �= 0} for i = 1, . . . ,m.

In fact, every support consistent solution is a subset of the grid

G = Z
d ∩

m⋂
i=1

⋃
T∈Ti

T,

and G contains only polynomially many points v1, . . . , vk of polynomially bounded
size.

Since, in general, errors are allowed we cannot restrict ourselves to support consis-
tent solutions. But then not every solution must consist of lattice points whose binary
size is bounded by a polynomial in the input. The next lemma shows, however, that
there always exist solutions of polynomial size.

Lemma 4.1. Let γ ∈ N be a constant. Further, for i = 1, . . . ,m let fi : AZ(Si) →
N0 be a data function with finite support, and let F ∈ Fd be such that

m∑
i=1

||XSi
F − fi||1 ≤ γ

m∑
i=1

||fi||1.

Then there exists a finite lattice set F ∗ ∈ Fd of binary size that is bounded by a
polynomial in the binary size of (f1, . . . , fm) with

|F | = |F ∗| and

m∑
i=1

||XSiF
∗ − fi||1 =

m∑
i=1

||XSiF − fi||1 for i = 1, . . . ,m.

236 ANDREAS ALPERS AND PETER GRITZMANN

Proof. Without loss of generality we may assume that the grid G contains the
origin. Now, for v1, v2 ∈ G and i, j = 1, . . . ,m with i �= j, the point of intersection
of the two lines v1 + Si and v2 + Sj has binary size that is bounded by a polynomial
in the binary size of (f1, . . . , fm). Hence there is a constant λ of polynomial size
such that λ[−1, 1]d contains all such intersections and such that for every v ∈ G and
i = 1, . . . ,m the line v + Si contains at least two lattice points of λ[−1, 1]d. Let

T = G + {S1, . . . , Sm}, k = max

{
mλ, γ

m∑
i=1

||fi||1

}

and

W = (1 + k)λ[−1, 1]d, C = W \
(
λ[−1, 1]d

)
.

Then each line v+Si with v ∈ G intersects the annulus C in at least 2k lattice points.
Now, if q ∈ F \W , then there is at most one line in T that passes through q. We will
successively replace the points of F \W by points in C. Let us deal first with those
points of F \W which are met by one of the X-ray lines in T . We replace such points
q one by one by the lattice point of C closest to q on that line with smallest �∞ norm
among all such points which have not previously been inserted. By the choice of k
there are always enough points of C on each line.

After having handled all such points we replace all points q ∈ F \ W that are
not met by any of the X-ray lines by a set of points of the same cardinality on the
boundary of W that is disjoint from any line in T . An elementary lattice point count
shows that by the choice of k a set of appropriate cardinality always exists. This way
we obtain a finite lattice set F ∗ with |F | = |F ∗|. By construction, the X-ray images
of F and F ∗ coincide on each line of T . Also the total sums for F and F ∗ on all other
lines are the same. This proves the assertion.

It follows now directly from Lemma 4.1 that X-Ray-CorrectionFd(S1, . . . , Sm)
and Similar-SolutionFd(S1, . . . , Sm) are indeed in NP.

For m = 2 the result of Lemma 4.1 can be sharpened. It is not just possible to
avoid points “too far out” but it suffices to consider only instances and solutions “with
no empty line in between.” To be precise, we call a data function f : AZd(S) → N0

consecutive if for v1, v2, v3 ∈ Z
d it is true that f(v2 + S) �= 0 whenever f(v1 +

S) �= 0, f(v3 + S) �= 0, and v2 + S ⊂ conv(v1 + S) ∪ (v3 + S). Further, an m-
tuple (f1, . . . , fm) of data functions with respect to S1, . . . , Sm is called consecutive if
f1, . . . , fm are consecutive. Similarly, a finite lattice set F is called consecutive if and
only if (XS1

F, . . . ,XSm
F) is consecutive. It is clear that for m = 2 we can always

replace a given instance of any of our problems by an equivalent consecutive one.
Now we can give the proof of Corollary 2.6.
Proof of Corollary 2.6. Let first m ≥ 3 and let us begin with X-Ray-CorrectionFd

(S1, . . . , Sm).
Let (f1, . . . , fm) be an instance of ConsistencyFd(S1, . . . , Sm). Then (f1, . . . , fm)

is also an instance of X-Ray-CorrectionFd(S1, . . . , Sm). Suppose first that no set
F ∈ Fd exists with

∑m
i=1 ||XSiF − fi||1 ≤ m − 1. Then, of course, (f1, . . . , fm) is a

no-instance of ConsistencyFd(S1, . . . , Sm).
Thus, suppose there is a set F ∈ Fd with

∑m
i=1 ||XSi

F − fi||1 ≤ m − 1. Let
||f1|| = · · · = ||fm||. In polynomial time we can construct a line T ∗ ∈ AZ(S1) with

T ∗ ∩
⋃

T∈Ti

T ∩
⋃

T∈Tj

T = ∅ for all i �= j.

ON STABILITY IN DISCRETE TOMOGRAPHY 237

Now let f∗
1 (T) = f1(T) for T ∈ AZ(S1) \ {T ∗} and f∗

1 (T ∗) = m − 1.
Then, clearly, (f∗

1 , f2, . . . , fm) is a yes-instance of X-Ray-CorrectionFd(S1, . . . , Sm)
if and only if (f1, f2, . . . , fm) is a yes-instance of ConsistencyFd(S1, . . . , Sm).
The result, therefore, is that ConsistencyFd(S1, . . . , Sm) reduces polynomially to
X-Ray-CorrectionFd(S1, . . . , Sm). Since by [8] the former is NP-hard, so is the
latter.

Next, let F1 be an instance of UniquenessFd(S1, . . . , Sm). Of course, F1 is also
an instance of Similar-SolutionFd(S1, . . . , Sm). Let F2 ∈ Fd with |F1| = |F2| and∑m

i=1 ||XSi
F1 − XSiF2||1 < 2(m − 1). Then by Theorem 2.1, F2 is tomographically

equivalent to F1. Hence F1 is a yes-instance of UniquenessFd(S1, . . . , Sm) if and
only if F1 is a yes-instance of Similar-SolutionFd(S1, . . . , Sm). Since Unique-

nessFd(S1, . . . , Sm) is NP-hard by [8] this concludes the proof for m ≥ 3.
The case m=1 is trivial, so let m=2. The fact that Similar-SolutionFd(S1, S2)

is in P follows in conjunction with Theorem 2.1 directly from the polynomial-time
solvability of UniquenessFd(S1, S2).

Now let (f1, f2) be an instance of X-Ray-CorrectionFd(S1, S2). Without loss
of generality let (f1, f2) be consecutive. Clearly, (f1, f2) is a yes-instance if and
only if there exist consecutive and consistent functions gi : AZ(Si) → N0 i = 1, 2

with
∑2

i=1 ||gi − fi||1 ≤ 1. On the one hand, there are at most ‖f1‖1 + ‖f2‖1 + 1
many different choices of pairs (g1, g2) of such functions; hence all such pairs can
be enumerated in polynomial time. On the other hand, for each choice (g1, g2) it
can be checked in polynomial-time whether it is a yes-instance of ConsistencyFd

(S1, S2).
Finally we will show that Nearest-SolutionFd(S1, S2) can be solved in poly-

nomial time. (Again, the case m = 1 is trivial.)
Proof of the polynomial-time solvability of Nearest-SolutionFd(S1, S2). Let

(f1, f2) be an instance of Nearest-SolutionFd(S1, S2). Without loss of generality
we may assume that (f1, f2) is consecutive. Also, since the empty set is a feasible
solution with error ‖f1‖1 + ‖f2‖1, we know that there is always a solution within the
grid G′ that is obtained from G by adding for i = 1, 2 to the support of fi the next
‖f1‖1 + ‖f2‖1 lattice lines parallel to Si and taking all intersections of any two of the
extended two sets of parallel lines. Then G′ contains at most (2‖f1‖1+‖f2‖1)(‖f1‖1+
2‖f2‖1) lattice points which can all be determined in polynomial time. Let N = |G′|,
and let M denote the number of different lines parallel to S1 or S2 that meet G. The
points of G′ will be the candidate points among which we will choose a solution.

Further, an optimal solution has at most 2 max{‖f1‖1, ‖f2‖1} points. Therefore
it suffices to solve at most that many instances with the same data but the additional
constraint that the solution F has cardinality γ.

Let F ∈ Fd with |F | = γ. Then we have by Lemma 3.1

||XS1F − f1||1 + ||XS2F − f2||1
= 2

∑
T∈A+

1

(
XS1F (T)−f1(T)

)
− |F |+‖f1‖1 + 2

∑
T∈A+

2

(
XS2F (T)−f2(T)

)
− |F |+‖f2‖1

= 2

⎛
⎝ ∑

T∈A+
1

(
XS1F (T) − f1(T)

)
+

∑
T∈A+

2

(
XS2F (T) − f2(T)

)⎞⎠− 2γ + ‖f1‖1 + ‖f2‖1,

where A+
i = {T ∈ AZ(Si) : XSiF (T) − fi(T) > 0} for i = 1, 2.

238 ANDREAS ALPERS AND PETER GRITZMANN

Hence it suffices to find a finite lattice set F with |F | = γ that minimizes the sum
of the excess of XSiF (T) over fi(T).

Introducing one 0-1-variable for each candidate point of G′, taking the incidence
matrix A ∈ {0, 1}M×N whose rows correspond to the X-ray lines and whose columns
correspond to the candidate points, collecting the X-ray data in a right-hand b ∈ N

M
0 ,

and using the notation 11 for a vector of ones of appropriate size, we can formulate
this task as an integer linear programming problem.

11T y → min
s.t. Ax ≤ b + y

11Tx = γ
x ∈ {0, 1}N , y ∈ N

M
0 .

Its linear programming relaxation can then be stated as the task to find a real vector
solving

11T y → min

s.t. C

(
x
y

)
≤ c,

where

C =

(
AT 11 −11 −IN IN 0
−IM 0 0 0 0 −IM

)T

and c = (b, γ,−γ, 0, 11, 0)T ,

and where IM and IN denote the appropriately sized unit matrices.
We show that C is totally unimodular. Clearly it suffices to show that the sub-

matrix

B =

(
A
11T

)

is totally unimodular. But this follows from the fact that each collection of rows from
B can be split into two parts such that the difference of the sums of the rows in the
first and in the second part is a vector with coefficients in {−1, 0, 1} (see [18]). This
is trivial if the collection does not involve the last row of B since the rows of A can be
partitioned into two sets that correspond to the two directions and each column of A
contains exactly two entries 1, one corresponding to S1 and one corresponding to S2.
If, on the other hand, the last row is involved, take it as one part of the partition.

One can now use any polynomial-time linear programming algorithm to solve the
task.

REFERENCES

[1] A. Alpers and P. Gritzmann, On the Degree of Ill-Posedness in Discrete Tomography,
preprint, 2004.

[2] A. Alpers, P. Gritzmann, and L. Thorens, Stability and instability in discrete tomography,
in Digital and Image Geometry, Lecture Notes in Comput. Sci. 2243, Springer-Verlag,
Berlin, 2001, pp. 175–186.

[3] P. Borwein, Computational Excursions in Analysis and Number Theory, Springer-Verlag, New
York, 2002.

[4] P. Borwein and C. Ingalls, The Prouhet-Tarry-Escott problem revisited, Enseign. Math., 40
(1994), pp. 3–27.

ON STABILITY IN DISCRETE TOMOGRAPHY 239

[5] A. Daurat, Determination of Q-convex sets by X-rays, Theoret. Comput. Sci., 332 (2005),
pp. 19–45.

[6] P.C. Fishburn, J.C. Lagarias, J.A. Reeds, and L.A. Shepp, Sets uniquely determined by
projections on axes II: Discrete case, Discrete Math., 91 (1991), pp. 149–159.

[7] R.J. Gardner and P. Gritzmann, Discrete tomography: Determination of finite sets by X-
rays, Trans. Amer. Math. Soc., 349 (1997), pp. 2271–2295.

[8] R.J. Gardner, P. Gritzmann, and D. Prangenberg, On the computational complexity of
reconstructing lattice sets from their X-rays, Discrete Math., 202 (1999), pp. 45–71.

[9] R.J. Gardner, P. Gritzmann, and D. Prangenberg, On the computational complexity of
determining polyatomic structures by X-rays, Theoret. Comput. Sci., 233 (2000), pp. 91–
106.

[10] P. Gritzmann, On the reconstruction of finite lattice sets from their X-rays, in Discrete Ge-
ometry for Computer Imagery, E. Ahronovitz and C. Fiorio, eds., Springer-Verlag, Berlin,
1997, pp. 19–32.

[11] P. Gritzmann and S. de Vries, Reconstructing crystalline structures from few images under
high resolution transmission electron microscopy, in Mathematics: Key Technology for the
Future, W. Jäger, ed., Springer-Verlag, Berlin, 2003, pp. 441–459.

[12] J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equations, Yale
University Press, New Haven, CT, 1923.

[13] G.T. Herman and A. Kuba, eds., Discrete Tomography: Foundations, Algorithms, and Ap-
plications, Birkhäuser Boston, Cambridge, MA, 1999.

[14] R.W. Irving and M.R. Jerrum, Three-dimensional statistical data security problems, SIAM
J. Comput., 23 (1994), pp. 170–184.

[15] M. Mignotte and D. Ştefănescu, Polynomials: An Algorithmic Approach, Springer-Verlag,
Singapore, 1999.

[16] A. Rényi, On projections of probability distributions, Acta Math. Sci. Hungar., 3 (1952),
pp. 131–142.

[17] H.J. Ryser, Matrices of zeros and ones, in Combinatorial Mathematics, Mathematical Asso-
ciation of America and Quinn & Boden, Rahway, NJ, 1963, pp. 61–78.

[18] A. Schrijver, Theory of Linear and Integer Programming, Wiley, Chichester, UK, 1986.
[19] C.H. Slump and J.J. Gerbrands, A network flow approach to reconstruction of the left ven-

tricle from two projections, Comput. Graphics Image Processing, 18 (1982), pp. 18–36.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 240–260

COLLECTIVE TREE SPANNERS OF GRAPHS∗

FEODOR F. DRAGAN† , CHENYU YAN† , AND IRINA LOMONOSOV‡

Abstract. In this paper we introduce a new notion of collective tree spanners. We say that a
graph G = (V,E) admits a system of μ collective additive tree r-spanners if there is a system T (G) of
at most μ spanning trees of G such that for any two vertices x, y of G a spanning tree T ∈ T (G) exists
such that dT (x, y) ≤ dG(x, y) + r. Among other results, we show that any chordal graph, chordal
bipartite graph or cocomparability graph admits a system of at most log2 n collective additive tree
2-spanners. These results are complemented by lower bounds, which say that any system of collective
additive tree 1-spanners must have Ω(

√
n) spanning trees for some chordal graphs and Ω(n) spanning

trees for some chordal bipartite graphs and some cocomparability graphs. Furthermore, we show that
any c-chordal graph admits a system of at most log2 n collective additive tree (2�c/2�)-spanners, any
circular-arc graph admits a system of two collective additive tree 2-spanners. Towards establishing
these results, we present a general property for graphs, called (α, r)-decomposition, and show that any
(α, r)-decomposable graph G with n vertices admits a system of at most log1/α n collective additive
tree 2r-spanners. We discuss also an application of the collective tree spanners to the problem of
designing compact and efficient routing schemes in graphs. For any graph on n vertices admitting a
system of at most μ collective additive tree r-spanners, there is a routing scheme of deviation r with
addresses and routing tables of size O(μ log2 n/ log logn) bits per vertex. This leads, for example, to
a routing scheme of deviation (2�c/2�) with addresses and routing tables of size O(log3 n/ log logn)
bits per vertex on the class of c-chordal graphs.

Key words. sparse spanners, tree spanners, graph distance, balanced separator, graph decom-
position, chordal graphs, c-chordal graphs, message routing, efficient algorithms

AMS subject classifications. 05C05, 05C10, 05C12, 05C78, 05C85, 94C15, 68R10, 68Q25,
68W25

DOI. 10.1137/S089548010444167X

1. Introduction. Many combinatorial and algorithmic problems are concerned
with the distance dG on the vertices of a possibly weighted graph G = (V,E). Approx-
imating dG by a simpler distance (in particular, by tree-distance dT) is useful in many
areas such as communication networks, data analysis, motion planning, image process-
ing, network design, and phylogenetic analysis (see [1, 8, 11, 19, 22, 52, 58, 59, 64, 66]).
An arbitrary metric space (in particular a finite metric defined by a general graph)
might not have enough structure to exploit algorithmically; on trees, since they have
a simpler (acyclic) structure, many hard algorithmic problems have easy solutions.
So, the general goal is, for a given graph G, to find a simpler (well-structured, sparse,
etc.) graph H = (V,E′) with the same vertex-set such that the distance dH(u, v) in
H between two vertices u, v ∈ V is reasonably close to the corresponding distance
dG(u, v) in the original graph G.

There are several ways to measure the quality of this approximation, two of them
leading to the notion of a spanner. For t ≥ 1, a spanning subgraph H of G is called
a multiplicative t-spanner of G [22, 59, 58] if dH(u, v) ≤ t · dG(u, v) for all u, v ∈ V. If
r ≥ 0 and dH(u, v) ≤ dG(u, v)+r for all u, v ∈ V, then H is called an additive r-spanner

∗Received by the editors March 5, 2004; accepted for publication (in revised form) November 1,
2005; published electronically March 15, 2006. Results of this paper were partially presented at the
SWAT ’04 conference [30].

http://www.siam.org/journals/sidma/20-1/44167.html
†Department of Computer Science, Kent State University, Kent, OH 44242 (dragan@cs.kent.edu,

cyan@cs.kent.edu).
‡Department of Computer Science, Hiram College, Hiram, OH 44234 (lomonosovi@hiram.edu).

240

COLLECTIVE TREE SPANNERS OF GRAPHS 241

of G [52]. The parameters t and r are called, respectively, the multiplicative and the
additive stretch factors. Clearly, every additive r-spanner of G is a multiplicative
(r + 1)-spanner of G (but not vice versa). Note that the graphs considered in this
paper are assumed to be unweighted (except in section 7 where we discuss how to
extend our results to weighted graphs).

Graph spanners have applications in various areas, especially in distributed sys-
tems and communication networks. In [59], close relationships were established be-
tween the quality of spanners (in terms of stretch factor and the number of spanner
edges |E′|), and the time and communication complexities of any synchronizer for the
network based on this spanner. Also, sparse spanners are very useful in message rout-
ing in communication networks; in order to maintain succinct routing tables, efficient
routing schemes can use only the edges of a sparse spanner [60]. Unfortunately, the
problem of determining, for a given graph G and two integers t ≥ 2,m ≥ 1, whether
G has a multiplicative t-spanner with m or fewer edges, is NP-complete (see [58]).

The sparsest spanners are tree spanners. Tree spanners occur in biology [5],
and as it was shown in [57], they can be used as models for broadcast operations
in communication networks. Tree spanners are favored also from the algorithmic
point of view—many algorithmic problems are easily solvable on trees. Multiplicative
tree t-spanners were studied in [19]. It was shown that, for a given graph G, the
problem to decide whether G has a multiplicative tree t-spanner (the multiplicative
tree t-spanner problem) is NP-complete for any fixed t ≥ 4 and is linearly solvable for
t = 1, 2. Recently, this NP-completeness result was improved—the multiplicative tree
t-spanner problem is NP-complete for any fixed t ≥ 4 even on some rather restricted
graph classes: planar graphs [12], chordal graphs [14] and chordal bipartite graphs
[15].

Nevertheless, some particular graph classes, such as cographs, complements of
bipartite graphs, split graphs, regular bipartite graphs, interval graphs, permutation
graphs, convex bipartite graphs, distance-hereditary graphs, directed path graphs,
cocomparability graphs, AT-free graphs, strongly chordal graphs, and dually chordal
graphs do admit additive tree r-spanners and/or multiplicative tree t-spanners for
sufficiently small r and t (see [13, 18, 51, 55, 61, 62, 69]). We refer also to [1, 12, 14,
18, 19, 38, 52, 57, 58, 65] for more background information on tree and general sparse
spanners.

Many graph classes (including hypercubes, planar graphs, chordal graphs, chordal
bipartite graphs) do not admit any good tree spanner. For every fixed integer t there
are planar chordal graphs and planar chordal bipartite graphs that do not admit tree
t-spanners (additive as well as multiplicative) [21, 62]. However, as it was shown
in [58], any chordal graph with n vertices admits a multiplicative 5-spanner with at
most 2n−2 edges and a multiplicative 3-spanner with at most O(n log n) edges (both
spanners are constructable in polynomial time). Recently, the results were further
improved. In [21], the authors show that every chordal graph admits an additive 4-
spanner with at most 2n− 2 edges and an additive 3-spanner with at most O(n log n)
edges. An additive 4-spanner can be constructed in linear time while an additive
3-spanner is constructable in O(m log n) time, where m is the number of edges of G.
Even more, the method designed for chordal graph is extended to all c-chordal graphs.
As a result, it was shown that any such graph admits an additive (c+1)-spanner with
at most 2n− 2 edges which is constructable in O(cn + m) time. Recall that a graph
G is chordal if its largest induced (chordless) cycles are of length 3 and c-chordal
if its largest induced cycles are of length c. Note also that [59] gives a method for
constructing a multiplicative 3-spanner of the n-vertex hypercube with fewer than 7n

242 FEODOR F. DRAGAN, CHENYU YAN, AND IRINA LOMONOSOV

edges and this construction was improved in [34] to give a multiplicative 3-spanner of
the n-vertex hypercube with fewer than 4n edges.

1.1. Our results. In this paper we introduce a new notion of collective tree
spanners, a notion slightly weaker than the one of a tree spanner and slightly stronger
than the notion of a sparse spanner. We say that a graph G = (V,E) admits a system
of μ collective additive tree r-spanners if there is a system T (G) of at most μ spanning
trees of G such that for any two vertices x, y of G a spanning tree T ∈ T (G) exists
such that dT (x, y) ≤ dG(x, y)+r (a multiplicative variant of this notion can be defined
analogously). Clearly, if G admits a system of μ collective additive tree r-spanners,
then G admits an additive r-spanner with at most μ×(n−1) edges (take the union of all
those trees), and if μ = 1 then G admits an additive tree r-spanner. Furthermore, any
result on collective additive tree spanners can be translated into a result on collective
multiplicative tree spanners since any graph, admitting a system of μ collective additive
tree r-spanners, admits a system of μ collective multiplicative tree (r + 1)-spanners
(dT (x, y) ≤ dG(x, y) + r implies dT (x, y)/dG(x, y) ≤ 1 + r/dG(x, y) ≤ r + 1 for an
unweighted graph G). Note also that any graph on n vertices admits a system of at
most n − 1 collective additive tree 0-spanners (take n − 1 breadth-first-search–trees
rooted at different vertices of G).

The introduction of this new notion was inspired by the works [6, 7] of Bartal
and subsequent works [20, 37]. For example, motivated by Bartal’s work on prob-
abilistic approximation of general metrics with tree metrics, [20] gives a polynomial
time algorithm that given a finite n point metric G, constructs O(n log n) trees and
a probability distribution ψ on them such that the expected multiplicative stretch of
any edge of G in a tree chosen according to ψ is at most O(log n log log n). These
results led to approximation algorithms for a number of optimization problems in-
cluding the group Steiner tree problem, the metric labeling problem, the buy-at-bulk
network design problem and many others (see [6, 7, 20, 37] for more details).

In section 2 we define a large class of graphs, called (α, r)-decomposable, and show
that any (α, r)-decomposable graph G with n vertices admits a system of at most
log1/α n collective additive tree 2r-spanners. Then, in sections 3 and 4, we show that
chordal graphs, chordal bipartite graphs, and cocomparability graphs are all (1/2, 1)-
decomposable graphs, implying that each graph from those families admits a system
of at most log2 n collective additive tree 2-spanners. These results are complemented
by lower bounds, which say that any system of collective additive tree 1-spanners must
have Ω(

√
n) spanning trees for some chordal graphs and Ω(n) spanning trees for some

chordal bipartite graphs and some cocomparability graphs. Furthermore, we show
that any c-chordal graph is (1/2, �c/2�)-decomposable, implying that each c-chordal
graph admits a system of at most log2 n collective additive tree (2�c/2�)-spanners.

Thus, as a byproduct, we get that chordal graphs, chordal bipartite graphs, and
cocomparability graphs admit additive 2-spanners with at most (n − 1) log2 n edges
and c-chordal graphs admit additive (2�c/2�)-spanners with at most (n − 1) log2 n
edges. Our result for chordal graphs improves the known results from [58] and [21]
on 3-spanners and answers the question posed in [21] whether chordal graphs admit
additive 2-spanners with O(n log n) edges.

In section 5, we show that each circular-arc graph admits a system of two collective
additive tree 2-spanners, and that for any constant r ≥ 0 there is a circular-arc graph
without any (one) additive tree r-spanner.

In section 6 we discuss an application of the collective tree spanners to the prob-
lem of designing compact and efficient routing schemes in graphs. For any graph

COLLECTIVE TREE SPANNERS OF GRAPHS 243

on n vertices admitting a system of at most μ collective additive tree r-spanners,
there is a routing scheme of deviation r with addresses and routing tables of size
O(μ log2 n/ log log n) bits per vertex (for details see section 6). This leads, for exam-
ple, to a routing scheme of deviation (2�c/2�) with addresses and routing tables of
size O(log3 n/ log log n) bits per vertex on the class of c-chordal graphs. The latter
improves the recent result on routing on c-chordal graphs obtained in [33] (see also
[32] for the case of chordal graphs). We conclude the paper with section 7, where we
discuss how to extend our results to weighted graphs, and section 8, where we discuss
some further developments and future directions.

1.2. Basic notions and notations. All graphs occurring in this paper are
connected, finite, undirected, loopless and without multiple edges. In a graph G =
(V,E) the length of a path from a vertex v to a vertex u is the number of edges in the
path. The distance dG(u, v) between the vertices u and v is the length of a shortest
path connecting u and v.

For a subset S ⊆ V , let radG(S) and diamG(S) be the radius and the diameter,
respectively, of S in G, i.e., radG(S) = minv∈V {maxu∈S{dG(u, v)}}, diamG(S) =
maxu,v∈S{dG(u, v)}. A vertex v ∈ V such that dG(u, v) ≤ radG(S) for any u ∈ S
is called a central vertex for S. The value radG(V) is called the radius of G. Let
also N(v) (N [v]) denote the open (closed) neighborhood of a vertex v in G, i.e.,
N(v) = {u ∈ V : uv ∈ E(G)} and N [v] = N(v) ∪ {v}.

2. (α, r)-decomposable graphs and their collective tree spanners. Dif-
ferent balanced separators in graphs were used by many authors in designing efficient
graph algorithms (see [26, 27, 43, 44, 46, 50, 53, 54]). For example, bounded size
balanced separators and bounded diameter balanced separators were recently em-
ployed in [43, 44, 50] for designing compact distance labeling schemes for different
so-called well-separated families of graphs. We extend those ideas and apply them to
our problem.

Let α be a positive real number smaller than 1 and r be a nonnegative integer.
We say that an n-vertex graph G = (V,E) is (α, r)-decomposable if there is a separator
S ⊆ V such that the following three conditions hold:

balanced separator condition—the removal of S leaves no connected component
with more than αn vertices;

bounded separator-radius condition—radG(S) ≤ r, i.e., there exists a vertex c in
G (called a central vertex for S) such that dG(v, c) ≤ r for any v ∈ S;

hereditary family condition—each connected component of the graph, obtained
from G by removing vertices of S, is also an (α, r)-decomposable graph.
Note that, by definition, any graph of radius at most r is (α, r)-decomposable and
that the size of S does not matter.

2.1. Collective tree spanners of (α, r)-decomposable graphs. Using the
first and third conditions of the definition, one can construct for any (α, r)-decompos-
able graph G a (rooted) balanced decomposition tree BT (G) as follows. If G is of radius
at most r, then BT (G) is a one-node tree. Otherwise, find a balanced separator S in
G, which exists according to the balanced separator condition. Let G1, G2, . . . , Gp be
the connected components of the graph G− S obtained from G by removing vertices
of S. For each graph Gi (i = 1, . . . , p), which is (α, r)-decomposable by the hereditary
family condition, construct a balanced decomposition tree BT (Gi) recursively, and
build BT (G) by taking S to be the root and connecting the root of each tree BT (Gi)
as a child of S. See Figure 1 for an illustration. Clearly, the nodes of BT (G) represent
a partition of the vertex set V of G into clusters S1, S2, . . . , Sq of radius at most r

244 FEODOR F. DRAGAN, CHENYU YAN, AND IRINA LOMONOSOV

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

1

2

56

7 8

9

10 11

12

4 13

3 14 15

16 17

18

19
1, 2, 3, 4

7 9

5, 6, 8

18, 1916, 17

10, 11, 12 13, 14, 15

(a) (b)

X

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

13

14 15

16 17

18

19

(c)

Fig. 1. (a) A graph G, (b) its balanced decomposition tree BT (G), and (c) an induced subgraph
G(↓X) of G.

each. For a node X of BT (G), denote by G(↓X) the (connected) subgraph of G
induced by vertices

⋃
{Y : Y is a descendent of X in BT (G)} (here we assume that

X is a descendent of itself).
It is easy to see that a balanced decomposition tree BT (G) of a graph G with n

vertices and m edges has depth at most log1/α n, which is O(log2n) if α is a constant.
Moreover, assuming that a balanced and bounded radius separator can be found in
polynomial, say p(n), time (for the special graph classes we consider later, p(n) will
be at most O(n3)), the tree BT (G) can be constructed in O((p(n)+m) log1/α n) total
time. Indeed, in each level of recursion we need to find balanced and bounded radius
separators in current disjoint subgraphs and to construct the corresponding subgraphs
of the next level. Also, since the graph sizes are reduced by a factor α, the recursion
depth is at most log1/α n.

Consider now two arbitrary vertices x and y of an (α, r)-decomposable graph
G and let S(x) and S(y) be the nodes of BT (G) containing x and y, respectively.
Let also NCABT (G)(S(x), S(y)) be the nearest common ancestor of nodes S(x) and
S(y) in BT (G) and (X0, X1, . . . , Xt) be the path of BT (G) connecting the root X0

of BT (G) with NCABT (G)(S(x), S(y)) = Xt (in other words, X0, X1, . . . , Xt are the
common ancestors of S(x) and S(y)). The following lemmata are crucial to all our
subsequent results.

Lemma 2.1. Any path PG
x,y, connecting vertices x and y in G, contains a vertex

from X0 ∪X1 ∪ · · · ∪Xt.
Let SPG

x,y be a shortest path of G connecting vertices x and y, and let Xi be the

node of the path (X0, X1, . . . , Xt) with the smallest index such that SPG
x,y

⋂
Xi �= ∅

in G. Then, the following lemma holds.
Lemma 2.2. We have dG(x, y) = dG′(x, y), where G′ := G(↓Xi).
Proof. It is enough to show that the path SPG

x,y consists of only vertices of

G′. Let us assume, by way of contradiction, that there is a vertex z of SPG
x,y that

does not belong to G′. Let SPG
x,z be a subpath of SPG

x,y between x and z. Clearly,
the node S(z) of BT (G), containing vertex z, is not a descendent of Xi. There-
fore, the nearest common ancestor of S(x) and S(z) in BT (G) is a node Xj from
{X0, X1, . . . , Xt} with j < i. But then, by Lemma 2.1, the path SPG

x,z (and hence

the path SPG
x,y) must have a vertex in X0 ∪X1 ∪ · · · ∪Xj , contradicting the choice of

Xi, i > j.
For the graph G′ = G(↓Xi), consider its arbitrary breadth-first-search–tree (BFS-

tree) T ′ rooted at a central vertex c for Xi, i.e., a vertex c such that dG′(v, c) ≤ r
for any v ∈ Xi. Such a vertex exists in G′ since G′ is an (α, r)-decomposable graph
and Xi is its balanced and bounded radius separator. The tree T ′ has the following
distance property with respect to those vertices x and y.

COLLECTIVE TREE SPANNERS OF GRAPHS 245

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�
��
��
��
��

��
��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�
�
��
��
��
��

(a) (b)

T 1
2

T

T

1
1

1
3

T 1

Fig. 2. (a) Local subtrees T 1
1 , T

1
2 , T

1
3 of graph G from Figure 1 and (b) a corresponding spanning

tree T 1 of G (dark solid edges are edges of local subtrees T 1
1 , T

1
2 , T

1
3 , dashed edges are added to create

one spanning tree T 1 on top of T 1
1 , T

1
2 , T

1
3).

Lemma 2.3. We have dT ′(x, y) ≤ dG(x, y) + 2r.
Proof. We know, by Lemma 2.2, that a shortest path SPG

x,y, intersecting Xi and

not intersecting any Xl (l < i), lies entirely in G′. Let x′ be the vertex of SPG
x,y ∩Xi

closest to x and y′ be the vertex of SPG
x,y ∩Xi closest to y. Since T ′ is a BFS-tree of

G′ rooted at vertex c, we have

dT ′(x, c) = dG′(x, c) ≤ dG′(x, x′) + dG′(x′, c) ≤ dG′(x, x′) + r = dG(x, x′) + r,

dT ′(y, c) = dG′(y, c) ≤ dG′(y, y′) + dG′(y′, c) ≤ dG′(y, y′) + r = dG(y, y′) + r.

That is, dT ′(x, y) ≤ dT ′(x, c) + dT ′(y, c) ≤ dG(x, x′) + dG(y, y′) + 2r. Combin-
ing this with the fact that dG(x, y) ≥ dG(x, x′) + dG(y, y′), we obtain dT ′(x, y) ≤
dG(x, y) + 2r.

Let now Bi
1, . . . , B

i
pi

be the nodes on depth i of the tree BT (G). For each subgraph

Gi
j := G(↓Bi

j) of G (i = 0, 1, . . . , depth(BT (G)), j = 1, 2, . . . , pi), denote by T i
j a BFS-

tree of graph Gi
j rooted at a central vertex cij for Bi

j (see Figure 2 for an illustration).

The trees T i
j (i = 0, 1, . . . , depth(BT (G)), j = 1, 2, . . . , pi) are called local subtrees of

G, and, given the balanced decomposition tree BT (G), they can be constructed in
O((t(n)+m) log1/α n) total time, where t(n) is the time needed to find a central vertex

cij for Bi
j (a trivial upper bound for t(n) is O(n3)). From Lemma 2.3 the following

general result can be deduced.
Theorem 2.4. Let G be an (α, r)-decomposable graph, BT (G) be its balanced

decomposition tree and LT (G) = {T i
j : i = 0, 1, . . . , depth(BT (G)), j = 1, 2, . . . , pi}

be its local subtrees. Then, for any two vertices x and y of G, there exists a local
subtree T i′

j′ in LT (G) such that

dT i′
j′

(x, y) ≤ dG(x, y) + 2r.

This theorem implies two important results for the class of (α, r)-decomposable
graphs. Let G be an (α, r)-decomposable graph with n vertices and m edges, BT (G)
be its balanced decomposition tree, and LT (G) be the family of its local subtrees
(defined above). Consider a graph H obtained by taking the union of all local subtrees
of G (by putting all of them together), i.e.,

H :=
⋃

{T i
j : T i

j ∈ LT (G)} = (V,∪{E(T i
j) : T i

j ∈ LT (G)}).

Clearly, H is a spanning subgraph of G, constructable in O((p(n)+t(n)+m) log1/α n)
total time, and, for any two vertices x and y of G, dH(x, y) ≤ dG(x, y)+2r holds. Also,

246 FEODOR F. DRAGAN, CHENYU YAN, AND IRINA LOMONOSOV

since for every level i (i = 0, 1, . . . , depth(BT (G))) of balanced decomposition tree
BT (G), the corresponding local subtrees T i

1, . . . , T
i
pi

are pairwise vertex-disjoint, their
union has at most n− 1 edges. Therefore, H cannot have more than (n− 1) log1/α n
edges in total. Thus, we have proven the following result.

Theorem 2.5. Any (α, r)-decomposable graph G with n vertices admits an addi-
tive 2r-spanner with at most (n− 1) log1/α n edges.

Instead of taking the union of all local subtrees of G, one can fix i (i ∈ {0, 1, . . . ,
depth(BT (G))}) and consider separately the union of only local subtrees T i

1, . . . , T
i
pi

,
corresponding to the level i of the decomposition tree BT (G), and then extend in
linear O(m) time that forest to a spanning tree T i of G (using, for example, a variant
of the Kruskal’s spanning tree algorithm for the unweighted graphs). We call this tree
T i the spanning tree of G corresponding to the level i of the balanced decomposition
BT (G). In this way we can obtain at most log1/α n spanning trees for G, one for each
level i of BT (G). Denote the collection of those spanning trees by T (G). By Theorem
2.4, it is rather straightforward to show that for any two vertices x and y of G, there
exists a spanning tree T i′ in T (G) such that dT i′ (x, y) ≤ dG(x, y)+2r. Thus, we have
the following theorem.

Theorem 2.6. Any (α, r)-decomposable graph G with n vertices admits a system
T (G) of at most log1/α n collective additive tree 2r-spanners.

Note that such a system T (G) for an (α, r)-decomposable graph G with n vertices
and m edges can be constructed in O((p(n) + t(n) + m) log1/α n) time, where p(n) is
the time needed to find a balanced and bounded radius separator S and t(n) is the
time needed to find a central vertex for S.

2.2. Extracting an appropriate tree from T (G). Now we will show that
one can assign O(log1/α n× log n) bit labels to vertices of G such that, for any pair of

vertices x and y, a tree T i′ in T (G) with dT i′ (x, y) ≤ dG(x, y)+2r can be identified in
only O(log1/α n) time by merely inspecting the labels of x and y, without using any
other information about the graph. This will be useful in an application of collective
tree spanners, discussed in section 6.

Associate with each vertex x of G a 2× (depth(BT (G)) + 1) array Ax such that,
for each level i of BT (G), Ax[1, i] = j and Ax[2, i] = dT i

j
(x, cij) if there exists a

local subtree T i
j in LT (G) containing vertex x, and Ax[1, i] = nil and Ax[2, i] = ∞,

otherwise (i.e., the depth in BT (G) of node S(x) containing x is smaller than i).
Evidently, each label Ax (x ∈ V) can be encoded using O(log1/α n× log n) bits and a
computation of all labels Ax, x ∈ V can be performed together with the construction
of system T (G).

Given labels Ax, Ay of vertices x and y, the following procedure will return in

O(log1/α n) time an index i′ ∈ {0, 1, . . . , depth(BT (G))} such that, for tree T i′ ∈
T (G), dT i′ (x, y) ≤ dG(x, y) + 2r holds.

set i′ := 0;
set minsum := Ax[2, 0] + Ay[2, 0];
set i := 1;
while (Ax[1, i] = Ay[1, i] �= nil) and (i ≤ log1/α n) do

if Ax[2, i] + Ay[2, i] < minsum
then set i′ := i and minsum := Ax[2, i] + Ay[2, i];

i := i + 1;
enddo
return i′.

COLLECTIVE TREE SPANNERS OF GRAPHS 247

This procedure simply finds, among all local subtrees containing both x and y, a
subtree T i′

j′ for which the sum dT i′
j′

(x, ci
′

j′) + dT i′
j′

(y, ci
′

j′) is minimum, and then returns

its upper index i′.
To show that indeed dT i′ (x, y) ≤ dG(x, y) + 2r, we will need to recall the proof

of Lemma 2.3 (note that dT i′ (x, y) = dT i′
j′

(x, y) by construction of T i′). Let again

S(x) and S(y) be the nodes of BT (G) containing vertices x and y, respectively, and
let (B0, B1

j1
, . . . , Bt

jt
) be the path of BT (G) connecting the root B0 of BT (G) with

NCABT (G)(S(x), S(y)) = Bt
jt

. In Lemma 2.3 we proved that there exists an index

i ∈ {0, 1, . . . , t} such that any BFS-tree T ′ of the graph G(↓Bi
ji

) rooted at a center

c for Bi
ji

(including local subtree T i
ji

rooted at ciji) satisfies dT ′(x, y) ≤ dT ′(x, c) +
dT ′(y, c) ≤ dG(x, y)+2r (see inequalities (1) and (2) in that proof). Since, among local
subtrees T 0, T 1

j1
, . . . , T t

jt
, the subtree T i′

j′ has minimum sum dT i′
j′

(x, ci
′

j′) + dT i′
j′

(y, ci
′

j′),

we conclude

dT i′ (x, y) = dT i′
j′

(x, y) ≤ dT i′
j′

(x, ci
′

j′) + dT i′
j′

(y, ci
′

j′)

≤ dT i
ji

(x, ciji) + dT i
ji

(y, ciji) ≤ dG(x, y) + 2r.

3. Acyclic hypergraphs, chordal graphs and (α, r)-decomposition. Let
H = (V, E) be a hypergraph with the vertex set V and the hyperedge set E , i.e., E is a
set of nonempty subsets of V . For every vertex v ∈ V , let E(v) = {e ∈ E : v ∈ e}. The
2-section graph 2SEC(H) of a hypergraph H has V as its vertex-set and two distinct
vertices are adjacent in 2SEC(H) if and only if they are contained in a common
hyperedge of H. A hypergraph H is called conformal if every clique (a set of pairwise
adjacent vertices) of 2SEC(H) is contained in a hyperedge e ∈ E , and a hypergraph
H is called acyclic if there is a tree T with node set E such that, for all vertices v ∈ V ,
E(v) induces a subtree Tv of T . For these and other hypergraph notions see [10].

The following theorem represents two well-known characterizations of acyclic hy-
pergraphs. Let C(G) be the set of all maximal (by inclusion) cliques of a graph
G = (V,E). The hypergraph (V, C(G)) is called the clique-hypergraph of G. Recall
that a graph G is chordal if it does not contain any induced cycles of length greater
than 3.

Theorem 3.1 (see [2, 9, 10, 17, 36, 67]). Let H = (V, E) be a hypergraph. Then
the following conditions are equivalent:

(i) H is an acyclic hypergraph;
(ii) H is conformal and 2SEC(H) of H is a chordal graph;
(iii) H is the clique hypergraph (V, C(G)) of some chordal graph G = (V,E).
Later we will need also the following known result. A vertex v of a graph G is

called simplicial if its neighborhood N(v) forms a clique in G.
Theorem 3.2 (see [17, 25]). Let G = (V,E) be a graph. Then the following

conditions are equivalent:
(i) G is a chordal graph;
(ii) the clique hypergraph (V, C(G)) of G is acyclic (in other words, G is the

intersection graph of a family of subtrees of a tree);
(iii) G has a perfect elimination ordering. i.e., an ordering v1, v2, . . . , vn of vertices

of G such that, for any i, i ∈ {1, 2, . . . , n}, vertex vi is simplicial in graph
G(vi, . . . , vn), the subgraph of G induced by vertices vi, . . . , vn.

Let now G = (V,E) be an arbitrary graph and r be a positive integer. We say
that G admits a radius r acyclic covering if there is a family S(G) = {S1, . . . , Sk} of

248 FEODOR F. DRAGAN, CHENYU YAN, AND IRINA LOMONOSOV

subsets of V such that
(1)

⋃k
i=1 Si = V ;

(2) for any edge xy of G there is a subset Si (i ∈ {1, . . . , k}) with x, y ∈ Si;

(3) H = (V,S(G)) is an acyclic hypergraph;

(4) radG(Si) ≤ r for each i = 1, . . . , k.
A class of graphs F is called hereditary if every induced subgraph of a graph G

belongs to F whenever G is in F . A class of graphs F is called (α, r)-decomposable if
every graph G from F is (α, r)-decomposable.

Theorem 3.3. Let F be a hereditary class of graphs such that any G ∈ F admits
a radius r acyclic covering. Then F is a (1/2, r)-decomposable class of graphs.

Proof. Consider a graph G ∈ F and let S(G) = {S1, . . . , Sk} be its radius r acyclic
covering. Since H = (V,S(G)) is an acyclic hypergraph, 2SEC(H) is chordal and H
is conformal. It is well known [47], that every n-vertex chordal graph Γ contains a
maximal clique C such that if the vertices in C are deleted from Γ, every connected
component in the graph induced by any remaining vertices is of size at most n/2.
Moreover, according to [47], for any chordal graph on n vertices and m edges, such a
separating clique C can be found in O(n+m) time. Applying this result to an n-vertex
chordal graph 2SEC(H), we will get in at most O(n2) time a maximal clique S of
2SEC(H) such that any connected component of the graph 2SEC(H)−S (obtained
from 2SEC(H) by deleting vertices of S) has at most n/2 vertices. Since 2SEC(H) is
obtained from G by adding some new edges, removing vertices of S from the original
graph G will leave no connected component (in G− S) with more than n/2 vertices.
Furthermore, since F is a hereditary class of graphs, all connected components of
G − S induce graphs from F (and they can be assumed by induction to be (1/2, r)-
decomposable graphs). It remains to note that, from conformality of H, there must
exist a set Si in S(G) which contains S, that is, radG(S) ≤ radG(Si) ≤ r must
hold.

Since for a chordal graph G = (V,E) the clique hypergraph (V, C(G)) is acyclic
and chordal graphs form a hereditary class of graphs, from Theorem 3.3 and Theorems
2.5 and 2.6, we immediately conclude the following corollaries.

Corollary 3.4. Any chordal graph G with n vertices and m edges admits an
additive 2-spanner with at most (n − 1) log2 n edges, and such a sparse spanner can
be constructed in O(m log2 n) time.

Corollary 3.5. Any chordal graph G with n vertices and m edges admits a
system T (G) of at most log2 n collective additive tree 2-spanners, and such a system
of spanning trees can be constructed in O(m log2 n) time.

Note that, since any additive r-spanner is a multiplicative (r+1)-spanner, Corol-
lary 3.4 improves a known result of Peleg and Schäffer on sparse spanners of chordal
graphs. In [58], they proved that any chordal graph with n vertices admits a mul-
tiplicative 3-spanner with at most O(n log2 n) edges and a multiplicative 5-spanner
with at most 2n − 2 edges. Both spanners can be constructed in polynomial time.
Note also that their result on multiplicative 5-spanners was earlier improved in [21],
where the authors showed that any chordal graph with n vertices admits an additive
4-spanner with at most 2n − 2 edges, constructable in linear time. Motivated by
this and Corollary 3.5, it is natural to ask whether a system of constant number of
collective additive tree 4-spanners exists for a chordal graph (or, generally, for which
r, a system of constant number of collective additive tree r-spanners exists for any
chordal graph). Recall that the problem whether a chordal graph admits a (one)
multiplicative tree t-spanner is NP-complete for any t > 3 [14].

COLLECTIVE TREE SPANNERS OF GRAPHS 249

Peleg and Schäffer showed also in [58] that there are n-vertex chordal graphs for
which any multiplicative 2-spanner will need to have at least Ω(n3/2) edges. This re-
sult leads to the following observation on collective additive tree 1-spanners of chordal
graphs.

Observation 3.6. There are n-vertex chordal graphs for which any system of
collective additive tree 1-spanners will need to have at least Ω(

√
n) spanning trees.

Proof. Indeed, the existence of a system of o(
√
n) collective additive tree 1-

spanners for a chordal graph will lead to the existence of an additive 1-spanner (and
hence, of a multiplicative 2-spanner) with o(n3/2) edges.

4. Collective tree spanners in c-chordal graphs. A graph G is c-chordal
if it does not contain any induced cycles of length greater than c; c-chordal graphs
naturally generalize the class of chordal graphs. Chordal graphs are precisely the
3-chordal graphs.

Theorem 4.1. The class of c-chordal graphs is (1/2, �c/2�)-decomposable.
Proof. By Theorem 3.3 and since c-chordal graphs form a hereditary class of

graphs, we need only to show that any c-chordal graph G admits a radius �c/2�
acyclic covering. The existence of a radius �c/2� acyclic covering for G easily follows
from a famous result of [43], which states that any c-chordal graph G = (V,E) admits
a special kind of Robertson and Seymour tree-decomposition [63]. That is, a tree
DT (G), whose nodes are subsets of V , exists such that

(1′)
⋃
{S : S is a node of DT (G)} = V ;

(2′) for any edge xy of G there is a node S of DT (G) with x, y ∈ S;
(3′) for any tree nodes X,Y, Z of DT (G), if Y is on the path from X to Z in

DT (G), then X ∩ Z ⊆ Y ;
(4′) diamG(S) ≤ �c/2� for each node S of DT (G).
The reader might notice a close similarity between these four properties and the

four properties from the definition of a radius r acyclic covering. In fact, they are
almost equivalent. Note that diamG(S) ≤ �c/2� implies radG(S) ≤ �c/2�. Let
S(G) = {S : S is a node of DT (G)} and consider a hypergraph H = (V,S(G)). We
claim that for a family S(G) of subsets of V , properties (1), (2) and (3) are equivalent
to properties (1′), (2′) and (3′). Indeed, since, by property (3′), v ∈ X ∩ Z implies
v belongs to any Y on the path of DT (G) from X to Z, for any vertex v ∈ V the
elements of S(G) containing vertex v induce a subtree in DT (G). Hence, by definition,
H = (V,S(G)) is an acyclic hypergraph. Conversely, let that for a graph G, a family
S(G) of subsets of V satisfies properties (1), (2) and (3). Then, the acyclicity of the
hypergraph H = (V,S(G)) implies the existence of a tree T with node set S(G) such
that for any vertex v ∈ V , the elements of S(G) containing v induce a subtree in T .
Therefore, if two nodes X and Z of the tree T contain a vertex v then any node Y of
T between X and Z must contain v, too.

A balanced separator of radius at most �c/2� of a c-chordal graph G on n vertices
and m edges can be found in O(n3) time as follows. Use an O(nm) time algorithm
from [33] to construct a Robertson–Seymour tree-decomposition DT (G) of G (it will
have at most n nodes [33]). Then define the family S(G) = {S : S is a node of DT (G)}
and consider the 2-section graph 2SEC(H) of an acyclic hypergraph H = (V,S(G)).
2SEC(H) can be constructed in at most O(n3) time. Using an algorithm from [47],
find a balanced separator C of a chordal graph 2SEC(H) in O(n2) time. We know
that C is a maximal clique of 2SEC(H) and there must exist a set S ∈ S(G) which
coincides with C (by conformality of H). As we showed earlier (see the proof of
Theorem 3.3), C = S is a balanced separator of radius at most �c/2� of G.

250 FEODOR F. DRAGAN, CHENYU YAN, AND IRINA LOMONOSOV

Thus, from Theorems 2.5 and 2.6, we conclude the following corollaries.
Corollary 4.2. Any c-chordal graph G with n vertices admits an additive

(2�c/2�)-spanner with at most (n − 1) log2 n edges, and such a sparse spanner can
be constructed in O(n3 log2 n) time.

Corollary 4.3. Any c-chordal graph G with n vertices admits a system T (G)
of at most log2 n collective additive tree (2�c/2�)-spanners, and such a system of
spanning trees can be constructed in O(n3 log2 n) time.

Note that there are c-chordal graphs which do not admit any radius r acyclic
covering with r < �c/2�. Consider, for example, the complement C6 of an induced
cycle C6 = (a − b − c − d − e − f − a), which is a 4-chordal graph. A family S(C6)
consisting of one set {a, b, c, d, e, f} gives a trivial radius 2 = �4/2� acyclic covering of
C6, and a simple consideration shows that no radius 1 acyclic covering can exist for C6

(it is impossible, by simply adding new edges to C6, to get a chordal graph in which
each maximal clique induces a radius one subgraph of C6). In the next subsection
we will show that yet an interesting subclass of 4-chordal graphs, namely, the class of
chordal bipartite graphs, does admit radius 1 acyclic coverings.

4.1. Collective tree spanners in chordal bipartite graphs. A bipartite
graph G = (X ∪ Y,E) is chordal bipartite if it does not contain any induced cycles of
length greater than 4 [48].

For a chordal bipartite graph G, consider a hypergraph H = (X ∪ Y, {N [y] : y ∈
Y }). In what follows we show that H is an acyclic hypergraph.

Lemma 4.4. The 2-section graph 2SEC(H) of H is chordal.
Proof. First notice that any y ∈ Y is simplicial in 2SEC(H) by construction of

H and definition of 2SEC(H). Assume now, by way of contradiction, that there is
an induced cycle Cp of length p, p ≥ 4, in 2SEC(H). Necessarily, all vertices of Cp

are from part X of G, since Cp is induced and all vertices from Y are simplicial in
2SEC(H). Let Cp = (x1, x2, . . . , xp, x1). For any edge xixi+1 of Cp (including the
edge xpx1), since it is not an edge of G, there must exist a vertex yi in Y such that
both xi and xi+1 are adjacent to yi in G. Also, since Cp is induced in 2SEC(H), yi is
not adjacent to any other vertex of Cp. Therefore, a cycle (x1, y1, x2, y2, . . . , xp, yp, x1)
of G must be induced. But, since its length is 2p ≥ 8, a contradiction with G being
a chordal bipartite graph arises.

Lemma 4.5. The hypergraph H = (X ∪ Y, {N [y] : y ∈ Y }) is conformal.
Proof. Let C be a clique of 2SEC(H) consisting of p vertices. First, note that, by

definitions of H and 2SEC(H), the clique C can contain at most one vertex from Y .
If C contains a vertex from Y (say y ∈ C ∩ Y) then for all v ∈ C \ {y}, vy is an edge
of G, and therefore C ⊆ N [y] must hold. Let now C ∩ Y = ∅. By induction on p we
will show that there exists a vertex y ∈ Y such that C ⊂ N [y]. Since G is connected,
any vertex x ∈ C ⊆ X has a neighbor in Y . Also, by definition of 2SEC(H), for
any edge uv of 2SEC(H) with u, v ∈ X there must exist a vertex y in Y adjacent
to both u and v. Assume now, by induction, that each p − 1 vertice of C has a
common neighbor y in Y . Consider three different vertices a, b and c in C and three
corresponding vertices a′, b′ and c′ in Y such that C \ {a} ⊂ N [a′], C \ {b} ⊂ N [b′]
and C \ {c} ⊂ N [c′]. Since graph G cannot have any induced cycles of length 6, the
cycle (a− b′ − c− a′ − b− c′ − a) of G cannot be induced. Without loss of generality,
assume that a is adjacent to a′ in G. But then, all p vertices of C are contained in
N [a′].

Since chordal bipartite graphs form a hereditary class of graphs and, for any
chordal bipartite graph G = (X ∪ Y,E), a family {N [y] : y ∈ Y } of subsets of X ∪ Y

COLLECTIVE TREE SPANNERS OF GRAPHS 251

satisfies all four conditions of radius 1 acyclic covering, by Theorem 3.3 we have the
following theorem.

Theorem 4.6. The class of chordal bipartite graphs is (1/2, 1)-decomposable.
Hence, by Theorems 2.5 and 2.6, we immediately conclude the following cor-

ollaries.
Corollary 4.7. Any chordal bipartite graph G with n vertices and m edges

admits an additive 2-spanner with at most (n − 1) log2 n edges, and such a sparse
spanner can be constructed in O(nm log2 n) time.

Corollary 4.8. Any chordal bipartite graph G with n vertices and m edges
admits a system T (G) of at most log2 n collective additive tree 2-spanners, and such
a system of spanning trees can be constructed in O(nm log2 n) time.

Recall that the problem whether a chordal bipartite graph admits a (one) multi-
plicative tree t-spanner is NP-complete for any t > 3 [15]. Also, any chordal bipartite
graph G with n vertices admits an additive 4-spanner with at most 2n−2 edges which
is constructable in linear time [21]. Again, it is interesting to know whether a system
of constant number of collective additive tree 4-spanners exists for a chordal bipartite
graph. We have the following observation on collective additive tree 1-spanners for
chordal bipartite graphs.

Observation 4.9. There are chordal bipartite graphs on 2n vertices for which any
system of collective additive tree 1-spanners will need to have at least Ω(n) spanning
trees.

Proof. Consider the complete bipartite graph G = Kn,n on 2n vertices (which is
clearly a chordal bipartite graph), and let T (G) be a system of μ collective additive
tree 1-spanners of G. Then, for any two adjacent vertices x and y of G there must
exist a spanning tree T in T (G) such that dT (x, y) ≤ 2. If dT (x, y) = 2, then a
common neighbor z of x and y in G would form a triangle with vertices x and y,
which is impossible for G = Kn,n. Hence, dT (x, y) = 1 must hold. Thus, any edge xy
of G is an edge of some tree T ∈ T (G). Since there are n2 graph edges to cover by
spanning trees from T (G), we conclude μ ≥ n2/(2n− 1) > n/2.

4.2. Collective tree spanners in cocomparability graphs. We will use the
following definition of cocomparability graphs (see [16, 48, 56]). A graph G is a
cocomparability graph if it admits a vertex ordering σ = [v1, v2, . . . , vn], called a co-
comparability ordering, such that, for any i < j < k, if vi is adjacent to vk, then vj
must be adjacent to vi or to vk. According to [56], such an ordering of a cocomparabil-
ity graph can be constructed in linear time. It is well known also that cocomparability
graphs are 4-chordal and they contain all interval graphs, all permutation graphs, and
all trapezoid graphs (see, e.g., [16, 48] for the definitions).

Since C6 is a cocomparability graph, cocomparability graphs generally do not
admit radius 1 acyclic coverings (although, we can show that both the class of per-
mutation graphs and the class of trapezoid graphs do admit radius 1 acyclic coverings
[28]). Here we will present a very simple direct proof for the statement that the class
of cocomparability graphs is (1/2, 1)-decomposable.

Theorem 4.10. The class of cocomparability graphs is (1/2, 1)-decomposable.
Moreover, for a given cocomparability graph G with n vertices and m edges a decom-
position tree BT (G) can be constructed in O(m log2 n) time.

Proof. Let G be a cocomparability graph with a cocomparability ordering σ =
[v1, v2, . . . , vn]. Consider the closed neighborhood of the vertex v�n/2�. We claim that
the graph G′ obtained from G by removing vertices of N [v�n/2�] has no connected
components with more that n/2 vertices. Indeed, there are no more than n/2 vertices

252 FEODOR F. DRAGAN, CHENYU YAN, AND IRINA LOMONOSOV

in G which are on the left (analogously, on the right) side of v�n/2� with respect
to σ. Also, if there is an edge connecting vertices vi and vj with i < �n/2� < j,
then at least one of these vertices must belong to N [v�n/2�] as σ is a cocomparability
ordering. Therefore, each connected component Gs of G′ has at most n/2 vertices
since it consists of vertices which are only on one side of v�n/2�. It is clear also that
the ordering σ projected to the vertices of Gs gives a cocomparability ordering of Gs.
Hence we can assume by induction that Gs is a (1/2, 1)-decomposable graph.

Hence, we have the following corollaries.
Corollary 4.11. Any cocomparability graph G with n vertices and m edges

admits an additive 2-spanner with at most (n − 1) log2 n edges, and such a sparse
spanner can be constructed in O(m log2 n) time.

Corollary 4.12. Any cocomparability graph G with n vertices and m edges
admits a system T (G) of at most log2 n collective additive tree 2-spanners, and such
a system of spanning trees can be constructed in O(m log2 n) time.

It is known [62] that any cocomparability graph admits a (one) additive tree 3-
spanner. In a forthcoming paper [31], using different technique, we show that the
result stated in Corollary 4.12 can further be improved. One can show that any
cocomparability graph admits a system of two collective additive tree 2-spanners and
there are cocomparability graphs which do not have any (one) additive tree 2-spanners.
Since the complete bipartite graph Kn,n is a cocomparability graph, from the proof
of Observation 4.9, we also have the following observation.

Observation 4.13. There are cocomparability graphs on n vertices for which any
system of collective additive tree 1-spanners will need to have at least Ω(n) spanning
trees.

5. Collective tree spanners in circular-arc graphs. In this section we de-
scribe another way of obtaining a system of few collective additive tree spanners. We
demonstrate it on the class of circular-arc graphs.

The intersection graph of a family of n sets is the graph where the vertices are the
sets, and the edges are the pairs of sets that intersect. Every graph is the intersection
graph of some family of sets. A graph G = (V,E) is an interval graph if it is the
intersection graph of a finite set of intervals (line segments) on a line. A graph G is a
circular-arc graph if it is the intersection graph of a finite set of arcs on a circle. An
interval graph is a special case of a circular-arc graph; it is a circular-arc graph that
can be represented with arcs that do not cover the entire circle. Hence, if we remove
from a circular-arc graph G = (V,E) a vertex v ∈ V together with its neighbors, the
resulting graph will be interval [48] (see Figure 3 for an illustration).

It is well known that any interval graph admits an additive tree 2-spanner, and
such a tree spanner is computable in linear time [61]. On the other hand, for any
constant r ≥ 0, there is a circular-arc graph without any additive tree r-spanner.
Indeed, consider an induced cycle Cq on q ≥ 3 vertices. Clearly, it is a circular-arc
graph. Let P be an arbitrary spanning path of Cq and x and y be the end vertices
of P . Then, trivially, dCq (x, y) = 1, dP (x, y) = q − 1, i.e., a circular-arc graph Cq

does not admit any additive tree (q − 3)-spanner. In what follows we show that two
spanning trees are enough to collectively additively 2-span any circular-arc graph.

Let G = (V,E) be a circular-arc graph, u be its arbitrary vertex, and Tu be a BFS-
tree of G rooted at u. Consider an interval graph G− obtained from G by removing
vertices of N [u]. For each connected component of G−, compute its additive tree 2-
spanner using a linear time algorithm from [61]. Extend obtained forest to a spanning
tree T of the original graph G (see Figure 3 for an illustration).

COLLECTIVE TREE SPANNERS OF GRAPHS 253

l
b

h

f

g

(a)

e
d

j

i

a

c

k

g k j

(b)

b

h

i clf

��
��
��

��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

����
����
����
����
����
����
����

����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
��������
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����������������
����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

����������������

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���������������������
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

f

k g

l e

h

b c

d

a
ji

(c)

��
��
��

��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

����
����
����
����
����
����
����

����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

����
����
����
����
����
����

����
����
����
����
����
����

����������������
����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

����������������

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
���������

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

f

k g

l e

h

b c

d

a
ji

(d)

Fig. 3. (a) A set S of circular-arcs (with arcs from N [e] in bold); (b) the set of intervals
corresponding to S \N [e]; (c) the corresponding to S circular-arc graph G with a spanning tree Te

in bold; (d) a spanning tree T of G obtained from two local tree 2-spanners.

Lemma 5.1. Spanning trees {T, Tu} are collective additive tree 2-spanners of a
circular-arc graph G.

Proof. Let x and y be two arbitrary vertices of G. If there is a shortest path
in G connecting vertices x and y and avoiding the neighborhood N [u] of u, then
dG(x, y) = dG−(x, y) and, by construction of T , dT (x, y) ≤ dG−(x, y)+2 = dG(x, y)+2
holds. Let now a shortest path P connecting x and y in G intersect N [u], and let v
be a vertex from N [u]∩P . Since Tu is a shortest-path tree of G rooted at u, we have
dG(x, u) = dTu(x, u) and dG(u, y) = dTu(u, y). Hence, dG(x, y) = dG(x, v)+dG(v, y) ≥
dG(x, u) − 1 + dG(u, y) − 1 = dTu(x, u) + dTu(u, y) − 2 ≥ dTu(x, y) − 2.

Hence, we conclude the following theorem and corollary.
Theorem 5.2. Any circular-arc graph G admits a system of two collective addi-

tive tree 2-spanners, and such a system of spanning trees can be constructed in linear
time.

Corollary 5.3. Any circular-arc graph G with n vertices and m edges admits
an additive 2-spanner with at most 2n − 2 edges, and such a sparse spanner can be
constructed in O(m + n) time.

6. Collective tree spanners and routing labeling schemes. Routing is one
of the basic tasks that a distributed network of processors must be able to perform.

254 FEODOR F. DRAGAN, CHENYU YAN, AND IRINA LOMONOSOV

A routing scheme is a mechanism that can deliver packets of information from any
vertex of the network to any other vertex. More specifically, a routing scheme is a
distributed algorithm. Each processor in the network has a routing daemon running
on it. This daemon receives packets of information and has to decide whether these
packets have already reached their destination, and if not, how to forward them
towards their destination. Each packet of information has a header attached to it.
This header contains the address of the destination of the packet, and in some cases,
some additional information that can be used to guide the routing of this message
towards its destination. Each routing daemon has a local routing table at its disposal.
It has to decide, based on this table and on the packet header only, whether to pass
the packet to its host, or whether to forward the packet to one of its neighbors in the
network.

The efficiency of a routing scheme is measured in terms of its multiplicative stretch,
called delay, (or additive stretch, called deviation), namely, the maximum ratio (or
surplus) between the length of a route, produced by the scheme for some pair of
vertices, and their distance.

A straightforward approach for achieving the goal of guaranteeing optimal routes
is to store a complete routing table in each vertex v in the network, specifying for each
destination u the first edge (or an identifier of that edge, indicating the output port)
along some shortest path from v to u. However, this approach may be too expensive
for large systems since it requires a total of O(n2 log d) memory bits in an n-processor
network with maximum degree d [41]. Thus, an important problem in large-scale
communication networks is the design of routing schemes that produce efficient routes
and have relatively low memory requirements (see [3, 24, 35, 49, 57, 60, 68]).

This problem can be approached via localized techniques based on labeling
schemes [57]. Informally speaking, the routing problem can be presented as requiring
us to assign a label to every vertex of a graph. This label can contain the address of
the vertex as well as the local routing table. The labels are assigned in such a way
that at every source vertex v and given the address of any destination vertex u, one
can decide the output port of an outgoing edge of v that leads to u. The decision
must be taken locally in v, based solely on the label of v and the address of u.

Following [57], one can give the following formal definition. A family � of graphs
is said to have an l(n) routing labeling scheme if there is a function L labeling the
vertices of each n-vertex graph in � with distinct labels of up to l(n) bits, and there
exists an efficient algorithm, called the routing decision, that given the label of a
source vertex v and the label of the destination vertex (the header of the packet),
decides in time polynomial in the length of the given labels and using only those two
labels, whether this packet has already reached its destination, and if not, to which
neighbor of v to forward the packet. Thus, the goal is, for a family of graphs, to find
routing labeling schemes with small stretch factor, relatively short labels, and fast
routing decision.

To obtain routing schemes for general graphs that use o(n)-bit label for each
vertex, one has to abandon the requirement that packets are always routed on shortest
paths, and settle instead for the requirement that packets are routed on paths with
relatively small stretch [3, 4, 24, 35, 60, 68]. A delay-3 scheme that uses labels of size
Õ(n2/3) was obtained in [24], and a delay-5 scheme that uses labels of size Õ(n1/2)
was obtained in [35].1 Recently, authors of [68] further improved these results. They
presented a routing scheme that uses only Õ(n1/2) bits of memory at each vertex of

1Here, Õ(f) means O(f polylog n).

COLLECTIVE TREE SPANNERS OF GRAPHS 255

an n-vertex graph and has delay 3. Note that each routing decision takes constant
time in their scheme, and the space is optimal, up to logarithmic factors, in the sense
that every routing scheme with delay < 3 must use, on some graphs, routing tables
of total size Ω(n2), and hence Ω(n) at some vertex (see [39, 42, 45]).

There are many results on optimal (with delay 1) routing schemes for particular
graph classes, including complete graphs, grids (alias meshes), hypercubes, complete
bipartite graphs, unit interval and interval graphs, trees and 2-trees, rings, tori, unit
circular-arc graphs, outerplanar graphs, and squaregraphs. All those graph families
admit optimal routing schemes with O(d log n) labels and O(log d) routing decision.
These results follow from the existence of special so-called interval routing schemes for
those graphs. We will not discuss details of this scheme here; for precise definitions
and an overview of this area, we refer the reader to [41].

Observe that in interval routing schemes the local memory requirement increases
with the degree of the vertex. Routing labeling schemes aim at overcoming the prob-
lem of large degree vertices. In [40], a shortest-path routing labeling scheme for trees
of arbitrary degree and diameter is described that assigns each vertex of an n-vertex
tree a O(log2 n/ log log n)-bit label. Given the label of a source vertex and the label
of a destination it is possible to compute, in constant time, the neighbor of the source
that heads in the direction of the destination. A similar result was independently
obtained also in [68]. This result for trees was recently used in [32, 33] to design inter-
esting low-deviation routing schemes for chordal graphs and general c-chordal graphs.
Reference [32] describes a routing labeling scheme of deviation 2 with labels of size
O(log3 n/ log log n) bits per vertex and O(1) routing decision for chordal graphs. Ref-
erence [33] describes a routing labeling scheme of deviation 2�c/2� with labels of size
O(log3 n) bits per vertex and O(log log n) routing decision for the class of c-chordal
graphs.

Our collective additive tree spanners give much simpler and easier to understand
means of constructing compact and efficient routing labeling schemes for all (α, r)-
decomposable graphs. We simply reduce the original problem to the problem on trees.

Let G be an (α, r)-decomposable graph and let T (G) = {T 1, T 2, . . . , Tμ} (μ ≤
O(log2 n)) be a system of μ collective additive tree 2r-spanners of G. We can prepro-
cess each tree T i using the O(n log2 n) algorithm from [40] and assign to each vertex
v of G a tree label Li(v) of size O(log2 n/ log log n) bits associated with the tree T i.
Then we can form a label L(v) of v of size O(log3 n/ log log n) bits by concatenating
the μ tree labels. We store in L(v) also the string Av of length O(log2 n) bits described
in subsection 2.2. Thus, L(v) := Av ◦ L1(v) ◦ · · · ◦ Lμ(v).

Now assume that a vertex v wants to send a message to a vertex u. Given the
labels L(v) and L(u), v first uses their substrings Av and Au to find in log2 n time
an index i such that for tree T i ∈ T (G), dT i(v, u) ≤ dG(v, u) + 2r holds. Then, v
extracts from L(u) the substring Li(u) and forms a header of the message H(u) :=
i ◦ Li(u). Now, the initiated message with the header H(u) = i ◦ Li(u) is routed to
the destination using the tree T i: when the message arrives at an intermediate vertex
x, vertex x using own substring Li(x) and the string Li(u) from the header makes a
constant time routing decision.

Thus, the following result is true.
Theorem 6.1. Each (α, r)-decomposable graph with n vertices and m edges

admits a routing labeling scheme of deviation 2r with addresses and routing tables of
size O(log3 n/ log log n) bits per vertex. Once computed by the sender in log2 n time,
headers never change. Moreover, the scheme is computable in O((p(n) + t(n) + m +
n log2 n) log2 n) time, and the routing decision is made in constant time per vertex,

256 FEODOR F. DRAGAN, CHENYU YAN, AND IRINA LOMONOSOV

Table 1

Routing labeling schemes obtained for special graph classes via collective additive tree spanners.

Graph Scheme Addresses and Message Routing Devia-
class construction routing tables initiation decision tion

time (bits per vertex) time time

Chordal O(m log2 n O(log3 n/ log logn) log2 n O(1) 2
+n log2

2 n)

Chordal O(nm log2 n) O(log3 n/ log logn) log2 n O(1) 2
bipartite

Cocompa- O(m log2 n O(log3 n/ log logn) log2 n O(1) 2
rability +n log2

2 n)

c-Chordal O(n3 log2 n) O(log3 n/ log logn) log2 n O(1) 2�c/2�

Circular- O(n log2 n O(log2 n) O(1) O(1) 2
arc +m)

where p(n) is the time needed to find a balanced and bounded radius separator S and
t(n) is the time needed to find a central vertex for S.

Projecting this theorem to the particular graph classes considered in this paper,
we obtain the following results summarized in Table 1. For circular-arc graphs, the
labels are of size O(log2 n) bits per vertex since this size labels are needed to decide in
constant time which tree T or Tu is good for routing for given source x and destination
y. We will choose tree T ′ ∈ {T, Tu} such that dT ′(x, y) = min{dT (x, y), dTu(x, y)}.
According to [57], in O(n log2 n) total time the vertices of an n-vertex tree T can be
labeled with labels of up to O(log2 n) bits such that, given two labels of two vertices
x, y of T , it is possible to compute in constant time the distance dT (x, y), by merely
inspecting the labels of x and y.

7. Extension to the weighted graphs. Although in our previous discussions
graph G is assumed (for simplicity) to be unweighted, the obtained results, in slightly
modified form, are true even for weighted graphs.

Let G = (V,E,w) be a weighted graph with the weight function w : E → R+. In a
weighted graph G, the length of a path is the sum of the weights of edges participating
in the path. The distance dG(x, y) between vertices x and y is the length of a shortest-
length path connecting vertices x and y.

It is easy to see that, if in sections 2–4 we consider shortest path trees instead
of BFS-trees, interpret r as an upper bound on the weighted radius of a balanced
separator S ⊆ V , and denote the maximum edge weight by w, then the following
corollaries from the previous results are true.

• Any weighted (α, r)-decomposable graph with n vertices, where r is an upper
bound on the weighted radius of a balanced separator, admits a system of at
most log1/α n collective additive tree 2r-spanners.

• Any weighted c-chordal graph with n vertices admits a system of at most
log2 n collective additive tree (2�c/2�w)-spanners.

• Any weighted chordal, chordal bipartite, or cocomparability graph with n
vertices admits a system of at most log2 n collective additive tree 2w-spanners.

8. Conclusion and further developments. In this paper, we introduced a
new notion of collective tree spanners, and showed that any (α, r)-decomposable graph
G with n vertices admits a system of at most log1/α n collective additive tree 2r-
spanners. As a consequence, we got that any chordal graph, chordal bipartite graph

COLLECTIVE TREE SPANNERS OF GRAPHS 257

or cocomparability graph admits a system of at most log2 n collective additive tree
2-spanners. We complemented these results by lower bounds, which say that any
system of collective additive tree 1-spanners must have Ω(

√
n) spanning trees for

some chordal graphs and Ω(n) spanning trees for some chordal bipartite graphs and
some cocomparability graphs. We also showed that every c-chordal graph admits a
system of at most log2 n collective additive tree (2�c/2�)-spanners and every circular-
arc graph admits a system of two collective additive tree 2-spanners. Furthermore,
we discussed an application of the collective tree spanners to the problem of designing
compact and efficient routing schemes in graphs.

Collective tree spanners can find applications also in designing compact and ef-
ficient distance labeling schemes for graphs, defined in [57]. As shown in [57], the
vertices of any n-vertex tree T can be labeled with labels of up to O(log2 n) bits such
that, given two labels of two vertices x, y of T , it is possible to compute in constant
time the distance dT (x, y) by merely inspecting the labels of x and y. Hence, any
n-vertex graph G, admitting a system of μ collective additive tree r-spanners, admits
a labeling that assigns O(μ log2 n) bit labels to vertices of G such that, given two
labels of two vertices x, y of G, it is possible to compute in O(μ) time an additive
r-approximation to the distance dG(x, y) by merely inspecting the labels of x and y,
without using any other information about the graph.

In forthcoming papers [23, 29, 31], we investigate the collective tree spanners
problem in other special families of graphs such as homogeneously orderable graphs,
AT-free graphs, House–Hole–Domino-free graphs, graphs of bounded tree-width (in-
cluding series-parallel graphs, outerplanar graphs), graphs of bounded asteroidal num-
ber, and others. We show that

• any homogeneously orderable graph admits a system of at most log2 n collec-
tive additive tree 2-spanners and (one) additive tree 3-spanner,

• any House–Hole–Domino-free graph admits a system of at most 2 log2 n col-
lective additive tree 2-spanners,

• any AT-free graph admits a system of two collective additive tree 2-spanners,
• any graph whose asteroidal number is bounded by a constant admits a system

of a constant number of collective additive tree 3-spanners,
• any graph whose tree-width is bounded by a constant admits a system of at

most O(log2 n) collective additive tree 0-spanners,
• any graph whose clique-width is bounded by a constant admits a system of

at most O(log2 n) collective additive tree 2-spanners.
We conclude this paper with a few open questions/problems:
1. What is the complexity of the problem, “Given a graph G and integers μ,

r, decide whether G has a system of at most μ collective additive tree r-
spanners” for different μ ≥ 1, r ≥ 0 on general graphs and on different
restricted families of graphs?

2. What is the best trade-off between the number of trees μ and the additive
stretch factor r on planar graphs? (So far, we can state only that any planar
graph admits a system of O(

√
n) collective additive tree 0-spanners.)

3. What would be some more applications where collective tree spanners could
be useful? The fact that collective tree spanners give a collection of (good)
trees might make it easy to adapt many tree algorithms for the graphs that
have collective tree r-spanners.

When this paper was already under review for this journal, we learned from A.
Gupta that they introduced in [49] a notion of tree covers of graphs which is identical to
our notion of collective multiplicative tree spanners. They additionally showed there

258 FEODOR F. DRAGAN, CHENYU YAN, AND IRINA LOMONOSOV

that any planar graph admits a system of at most 2 log2 n collective multiplicative
tree 3-spanners. This result makes question 2 even more intriguing.

Acknowledgments. We are very grateful to anonymous referees for many useful
suggestions.

REFERENCES

[1] I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares, On sparse spanners of weighted
graphs, Discrete Comput. Geom., 9 (1993), pp. 81–100.

[2] G. Ausiello, A. D’Arti, and M. Moscarini, Chordality properties on graphs and minimal
conceptual connections in sematic data models, J. Comput. System Sci., 33 (1986), pp. 179–
202.

[3] B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg, Improved routing strategies with
succinct tables, J. Algorithms, 11 (1990), pp. 307–341.

[4] B. Awerbuch and D. Peleg, Routing with polynomial communication-space tradeoff, SIAM
J. Discrete Math., 5 (1992), pp. 151–162.

[5] H.-J. Bandelt and A. Dress, Reconstructing the shape of a tree from observed dissimilarity
data, Adv. in Appl. Math., 7 (1986), pp. 309-343.

[6] Y. Bartal, Probabilistic approximations of metric spaces and its algorithmic applications, in
Proceedings of the 37th Annual Symposium on Foundations of Computer Science, IEEE,
1996, pp. 184–193.

[7] Y. Bartal, On approximating arbitrary metrices by tree metrics, Proceedings of the 13th
Annual ACM Symposium on Theory of Computing, 198, pp. 161-168.

[8] J.-P. Barthélemy and A. Guénoche, Trees and Proximity Representations, Wiley, New York,
1991.

[9] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis, On the desirability of acyclic database
schemes, J. ACM, 30 (1983), pp. 479–513.

[10] C. Berge, Hypergraphs, North-Holland, Amsterdam, 1989.
[11] S. Bhatt, F. Chung, F. Leighton, and A. Rosenberg, Optimal simulations of tree machines,

in Proceedings of the 27th Annual Symposium on Foundations of Computer Science, IEEE,
1986, pp. 274–282.

[12] U. Brandes and D. Handke, NP–Completeness Results for Minimum Planar Spanners,
preprint, University of Konstanz, Konstanzer Schriften in Mathematik und Informatik,
Nr. 16, Germany, 1996.

[13] A. Brandstädt, V. Chepoi, and F. F. Dragan, Distance approximating trees for chordal
and dually chordal graphs, J. Algorithms, 30 (1999), pp. 166-184.

[14] A. Brandstädt, F. F. Dragan, H.-O. Le, and V. B. Le, Tree spanners on chordal graphs:
Complexity, algorithms, open problems, in Proceedings of the 13th International Sym-
posium on Algorithms and Computation, Lecture Notes in Comput. Sci. 2518, Springer,
Berlin, 2002, pp. 163–174.

[15] A. Brandstädt, F. F. Dragan, H.-O. Le, V. B. Le, and R. Uehara, Tree spanners for bipar-
tite graphs and probe interval graphs, in Graph-Theoretic Concepts in Computer Science,
Lecture Notes in Comput. Sci. 2880, Springer, Berlin, 2003, pp. 106–118.

[16] A. Brandstädt, V. B. Le, and J. Spinrad, Graph Classes: A Survey, SIAM, Philadelphia,
1999.

[17] P. Buneman, A characterization of rigid circuit graphs, Discrete Math., 9 (1974), pp. 205–212.
[18] L. Cai, Tree Spanners: Spanning Trees that Approximate the Distances, Ph.D. thesis, Univer-

sity of Toronto, 1992.
[19] L. Cai and D. G. Corneil, Tree spanners, SIAM J. Discrete Math., 8 (1995), pp. 359–387.
[20] M. Charikar, C. Chekuri, A. Goel, S. Guha, and S. Plotkin, Approximating a finite

metric by a small number of tree metrics, in Proceedings of the 39th Annual Symposium
on Foundations of Computer Science, IEEE, 1998, pp. 379–388.

[21] V. D. Chepoi, F. F. Dragan, and C. Yan, Additive spanners for k-chordal graphs, Proceedings
of the 5th Conference on Algorithms and Complexity, Lecture Notes in Comput. Sci. 2653,
Springer, Berlin, 2003, pp. 96–107.

[22] L. P. Chew, There are planar graphs almost as good as the complete graph, J. Comput. System
Sci., 39 (1989), pp. 205–219.

[23] D. G. Corneil, F. F. Dragan, E. Köhler, and C. Yan, Collective tree 1-spanners for interval
graphs, in Graph-Theoretic Concepts in Computer Science, Lecture Notes in Comput. Sci.
3787, Springer, Berlin, 2005, pp. 151–162.

COLLECTIVE TREE SPANNERS OF GRAPHS 259

[24] L. Cowen, Compact routing with minimum stretch, in Proceedings of the 10th Annual ACM-
SIAM Symposium on Discrete Algorithms, 1999, pp. 255–260.

[25] G. A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg, 25 (1961), pp. 71–76.
[26] H. N. Djidjev, On the problem of partitioning planar graphs, SIAM J. Alg. Discrete Meth., 3

(1982), pp. 229–240.
[27] H. N. Djidjev, A separator theorem for graphs of fixed genus, Serdica, 11 (1985), pp. 319–329.
[28] F. F. Dragan and I. Lomonosov, On compact and efficient routing in certain graph classes, in

Proceedings of the 15th Annual International Symposium on Algorithms and Computation,
Lecture Notes in Comput. Sci. 3341, Springer, Berlin, 2004, pp. 402–414.

[29] F. F. Dragan and C. Yan, Collective Tree Spanners of Homogeneously Orderable Graphs, in
preparation.

[30] F. F. Dragan, C. Yan, and I. Lomonosov, Collective tree spanners of graphs, in Proceedings
of the 9th Scandinavian Workshop on Algorithm Theory, Lecture Notes in Comput. Sci.
3111, Springer, Berlin, 2004, pp. 64–76.

[31] F. F. Dragan, C. Yan, and D. G. Corneil, Collective tree spanners and routing in AT-
free related graphs, in Graph-Theoretic Concepts in Computer Science, Lecture Notes in
Comput. Sci. 3353, Springer, Berlin, 2004, pp. 68–80.

[32] Y. Dourisboure and C. Gavoille, Improved compact routing scheme for chordal graphs, in
Proceedings of the 16th International Conference on Distributed Computing, Lecture Notes
in Comput. Sci. 2508, Springer, Berlin, 2002, pp. 252–264.

[33] Y. Dourisboure and C. Gavoille, Tree-Decompositions with Bags of Small Diameter, Dis-
crete Math., 2003, to appear.

[34] W. Duckwortha and M. Zito, Sparse hypercube 3-spanners, Discrete Appl. Math., 103 (2000),
pp. 289–295.

[35] T. Eilam, C. Gavoille, and D. Peleg, Compact routing schemes with low stretch factor, in
Proceedings of the 17th Annual ACM Symposium Prin. Distr. Comput., 1998, pp. 11–20.

[36] R. Fagin, Degrees of acyclicity for hypergraphs and relational database schemes, J. ACM, 30
(1983), pp. 514–550.

[37] J. Fakcharoenphol, S. Rao, and K. Talwar, A tight bound on approximating arbitrary met-
rics by tree metrics, in Proceedings of the 35th ACM Symposium on Theory of Computing,
2003, pp. 448–455.

[38] S. P. Fekete and J. Kremer, Tree spanners in planar graphs, Discrete Appl. Math., 108
(2001), pp. 85–103.

[39] P. Fraigniaud and C. Gavoille, Memory requirements for universal routing schemes, in
Proceedings of the 14th Annual ACM Symposium Prin. Distr. Comput., 1995, pp. 223–
230.

[40] P. Fraigniaud and C. Gavoille, Routing in trees, in Proceedings of the 28th Int. Colloquium
on Automata, Languages and Programming, Lecture Notes in Comput. Sci. 2076, Springer,
Berlin, 2001, pp. 757–772.

[41] C. Gavoille, A survey on interval routing schemes, Theoret. Comput. Sci., 245 (1999),
pp. 217–253.

[42] C. Gavoille and M. Gengler, Space-efficiency of routing schemes of stretch factor three, J.
Parallel and Distr. Comput., 61 (2001), pp. 679–687.

[43] C. Gavoille, M. Katz, N. A. Katz, C. Paul, and D. Peleg, Approximate distance labeling
schemes, in Proceedings of the 9th Annual European Symposium on Algorithms, Lecture
Notes in Comput. Sci. 2161, Springer, Berlin, 2001, pp. 476–487.

[44] C. Gavoille, D. Peleg, S. Pérennes, and R. Raz, Distance labeling in graphs, in Proceedings
of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, 2001, pp. 210–219.

[45] C. Gavoille and S. Pérennès, Memory requirements for routing in distributed networks, in
Proceedings of the 15th Ann. ACM Symposium on Prin. Distr. Comput., 1996, pp. 125–133.

[46] J. R. Gilbert, J. P. Hutchinson, and R. E. Tarjan, A separator theorem for graphs of
bounded genus, J. Algorithms, 5 (1984), pp. 391–407.

[47] J. R. Gilbert, D. J. Rose, and A. Edenbrandt, A separator theorem for chordal graphs,
SIAM J. Alg. Discrete Meth., 5 (1984), pp. 306–313.

[48] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York,
1980.

[49] A. Gupta, A. Kumar, and R. Rastogi, Traveling with a Pez dispenser (or, routing issues in
MPLS), SIAM J. Comput., 34 (2005), pp. 453–474. Appeared also in FOCS IEEE, 2001.

[50] M. Katz, N. A. Katz, and D. Peleg, Distance labeling schemes for well-separated graph
classes, in Proceedings of the 17th Annual Symposium on Theoretical Aspects of Computer
Science, Lecture Notes in Comput. Sci. 1770, Springer, Berlin, 2000, pp. 516–528.

[51] H.-O Le and V. B. Le, Optimal tree 3-spanners in directed path graphs, Networks, 34 (1999),
pp. 81–87.

260 FEODOR F. DRAGAN, CHENYU YAN, AND IRINA LOMONOSOV

[52] A. L. Liestman and T. Shermer, Additive graph spanners, Networks, 23 (1993), pp. 343–364.
[53] R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs, SIAM J. Appl. Math.,

36 (1979), pp. 177–189.
[54] R. J. Lipton and R. E. Tarjan, Applications of a planar separator theorem, SIAM J. Comput.,

9 (1980), pp. 615–627.
[55] M. S. Madanlal, G. Venkatesan, and C. Pandu Rangan, Tree 3-spanners on interval,

permutation and regular bipartite graphs, Inform. Process. Lett., 59 (1996), pp. 97–102.
[56] R. M. McConnell and J. P. Spinrad, Linear-time transitive orientation, in Proceedings of

the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, 1997, pp. 19–25.
[57] D. Peleg, Distributed Computing: A Locality-Sensitive Approach, SIAM Monogr. Discrete

Math. Appl., SIAM, Philadelphia, 2000.
[58] D. Peleg and A. A. Schäffer, Graph spanners, J. Graph Theory, 13 (1989), pp. 99–116.
[59] D. Peleg and J. D. Ullman, An optimal synchronizer for the hypercube, in Proceedings of

the 6th ACM Symposium on Prin. of Distr. Comput., 1987, pp. 77–85.
[60] D. Peleg and E. Upfal, A tradeoff between space and efficiency for routing tables, in Pro-

ceedings of the 20th ACM Symposium on the Theory of Computing, 1988, pp. 43–52.
[61] E. Prisner, Distance approximating spanning trees, in Proceedings of the 14th Annual Sym-

posium on Theoretical Aspects of Computer Science, Lecture Notes in Comput. Sci. 1200,
Springer, Berlin, 1997, pp. 499–510.

[62] E. Prisner, D. Kratsch, H.-O. Le, H. Müller, and D. Wagner, Additive tree spanners,
SIAM J. Discrete Math., 17 (2003), pp. 332–340.

[63] N. Robertson and P. D. Seymour, Graph minors. Algorithmic aspects of tree-width, J. Al-
gorithms, 7 (1986), pp. 309–322.

[64] P. H. A. Sneath and R. R. Sokal, Numerical Taxonomy, W. H. Freeman, San Francisco,
1973.

[65] J. Soares, Graph spanners: A survey, Congr. Numer., 89 (1992), pp. 225–238.
[66] D. L. Swofford and G. J. Olsen, Phylogeny reconstruction, in Molecular Systematics, D. M.

Hillis and C. Moritz, eds., Sinauer Associates, Sunderland, MA, 1990, pp. 411–501.
[67] R. E. Tarjan and M. Yannakakis, Simple linear time algorithms to test chordality of graphs,

test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs, SIAM J. Comput.,
13 (1984), pp. 566–579.

[68] M. Thorup and U. Zwick, Compact routing schemes, Proceedings of the 13th Annual ACM
Symposium on Par. Alg. and Arch., 2001, pp. 1–10.

[69] G. Venkatesan, U. Rotics, M. S. Madanlal, J. A. Makowsky, and C. Pandu Rangan,
Restrictions of minimum spanner problems, Inform. and Comput., 136 (1997), pp. 143–164.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 261–271

THE STEINER k-CUT PROBLEM∗

CHANDRA CHEKURI† , SUDIPTO GUHA‡ , AND JOSEPH (SEFFI) NAOR§

Abstract. We consider the Steiner k-cut problem which generalizes both the k-cut problem and
the multiway cut problem. The Steiner k-cut problem is defined as follows. Given an edge-weighted
undirected graph G = (V,E), a subset of vertices X ⊆ V called terminals, and an integer k ≤ |X|,
the objective is to find a minimum weight set of edges whose removal results in k disconnected
components, each of which contains at least one terminal. We give two approximation algorithms
for the problem: a greedy (2 − 2

k
)-approximation based on Gomory–Hu trees, and a (2 − 2

|X|)-

approximation based on rounding a linear program. We use the insight from the rounding to develop
an exact bidirected formulation for the global minimum cut problem (the k-cut problem with k = 2).

Key words. multiway cut, k-cut, Steiner tree, minimum cut, linear program, approximation
algorithm

AMS subject classifications. 68Q25, 68W25, 90C27, 90C59

DOI. 10.1137/S0895480104445095

1. Introduction. The k-cut problem and the multiway cut problem are funda-
mental graph partitioning problems. In both problems we are given an undirected
edge-weighted graph G = (V,E) with w(e) denoting the weight of edge e ∈ E. In
the k-cut problem the goal is to find a minimum weight set of edges whose removal
separates the graph into k disconnected components. In the multiway cut problem we
are given a set of k terminals, X ⊆ V , and the goal is to find a minimum weight set
of edges whose removal separates the graph into components such that each terminal
is in a different connected component. In this paper we consider a generalization of
the two problems, namely, the Steiner k-cut problem. In this problem, we are given
an undirected weighted graph G, a set of terminals X ⊆ V , and an integer k ≤ |X|.
The goal is to find a minimum weight set of edges whose removal separates the graph
into k components with vertex sets V1, V2, . . . , Vk, such that Vi ∩X �= ∅ for 1 ≤ i ≤ k.
If X = V , we obtain the k-cut problem. If |X| = k, we obtain the multiway cut
problem.

The k-cut problem can be solved in polynomial time for fixed k [5, 6], but it is
NP-complete when k is part of the input [5]. In contrast, the multiway cut problem is
NP-complete for all k ≥ 3 and is also APX-hard for all k ≥ 3 [2]. It follows that the
Steiner k-cut problem is NP-complete and APX-hard for all k ≥ 3. For the multiway
cut problem Calinescu, Karloff, and Rabani [1] gave a 1.5− 1/k approximation using
an interesting geometric relaxation. Karger et al. [7] improved the analysis of the

∗Received by the editors July 12, 2004; accepted for publication (in revised form) September
26, 2005; published electronically March 24, 2006. A preliminary version appeared in Proceedings
of the 30th International Colloquium on Automata, Languages, and Programming (ICALP), 2003,
pp. 189–199.

http://www.siam.org/journals/sidma/20-1/44509.html
†Bell Labs, Lucent Technologies, 600 Mountain Ave., Murray Hill, NJ 07974 (chekuri@research.

bell-labs.com). This author’s research was supported in part by US-Israel BSF grant 2002276.
‡Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA

19104 (sudipto@cis.upenn.edu). This author’s research was supported in part by an Alfred P. Sloan
Research Fellowship and by NSF Award CCF-0430376.

§Computer Science Dept., Technion, Haifa 32000, Israel (naor@cs.technion.ac.il). This author’s
research was supported in part by US-Israel BSF grant 2002276 and by EU contract IST-1999-14084
(APPOL II).

261

262 CHANDRA CHEKURI, SUDIPTO GUHA, AND JOSEPH NAOR

integrality gap of this relaxation and obtained an approximation ratio of 1.3438− εk,
where εk → 0 as k → ∞. For the k-cut problem Saran and Vazirani [11] gave a 2− 2

k
approximation algorithm using a greedy algorithm. This result was improved by [13]
to 2− 3

k for odd k and to 2− 3k−4
k2−k for even k. Recently, two different 2-approximations

for the k-cut problem were obtained. The algorithm of Naor and Rabani [9] is based on
rounding a linear programming (LP) formulation of the problem, and the algorithm
of Ravi and Sinha [10] is based on the notion of network strength and Lagrangian
relaxation.

The authors have learned of related independent work of Maeda, Nagamochi, and
Ibaraki [8] (in Japanese) and Zhao, Nagamochi, and Ibaraki [14]. The Steiner k-cut
was considered in [8], where it is shown that a greedy algorithm similar to the one
we describe in this paper has an approximation ratio of 2 − 2/k. In [14], the authors
define a generalization of the Steiner k-cut problem which they refer to as the multiway
partition problem (MPP). MPP is defined as follows. We are given a finite set V , a
set of terminals X ⊆ V , and an integer k such that |X| ≥ k. We are also given a
submodular function f on V that assigns a real value f(S) to each subset S ⊆ V . The
function f is provided as an oracle. The goal is to partition V into k sets V1, V2, . . . , Vk

such that Vi ∩ X �= ∅ for 1 ≤ i ≤ k and minimize f(V1) + f(V2) + · · · + f(Vk). It
is shown in [14] that the greedy algorithm that iteratively increases the size of the
partition yields a (2− 2

k)-approximation for MPP. The Steiner k-cut problem can be
seen to be a special case of MPP: given an edge-weighted graph G = (V,E), we can
define a submodular function f where f(S) = 1

2

∑
e∈δG(S) we.

1.1. Results. We provide two approximation algorithms for the Steiner k-cut
problem. The first algorithm we present is combinatorial and has an approximation
ratio of (2 − 2

k). This algorithm is based on choosing cuts from the Gomory–Hu tree
of the given graph and is similar to approximation algorithms developed for the k-
cut problem and the multiway cut problem [12]. Maeda, Nagamochi, and Ibaraki [8]
obtained the same result earlier, but our proof is considerably simpler. Also, as we
mentioned earlier, Zhao, Nagamochi, and Ibaraki [14] show that the greedy algorithm
yields a (2 − 2

k) approximation for MPP. Our main result is a 2-approximation algo-
rithm for the Steiner k-cut problem which is based on rounding a LP formulation.
Although our formulation is a straightforward generalization of the formulation in
[9] (for the k-cut problem), our rounding scheme differs substantially. The rounding
in [9] exploits the properties of optimal solutions to the LP relaxation. These prop-
erties do not hold for the relaxation of the Steiner k-cut problem. Instead, we rely
on the primal dual algorithm and the analysis of Goemans and Williamson [4] for
the Steiner tree problem. As a consequence, our rounding algorithm extends to any
feasible solution of the LP formulation. This interesting new connection might have
future applications.

We conclude with a bidirected formulation for the global minimum cut problem
and prove that the linear relaxation of this formulation is exact. The formulation and
analysis are inspired by our analysis for the Steiner k-cut problem. This formulation
and its integrality gap may have been known previously; however, we could not find
a published reference and hence include it here.

2. Combinatorial (2 − 2
k
)-approximation algorithm. We assume without

loss of generality that the given graph G is connected. A natural greedy algorithm for
the Steiner k-cut problem is the following iterative algorithm. In each iteration, find a
minimum weight cut that increases the number of distinct components that contain a
terminal. This algorithm has been shown to achieve a (2− 2

k)-approximation algorithm

THE STEINER k-CUT PROBLEM 263

for both the k-cut problem and the multiway cut problem (see, e.g., [12]) and for
MPP [14]. However, the analysis of this algorithm is nontrivial. As in [11, 12], we
consider an alternative algorithm that is based on the Gomory–Hu tree representation
of the minimum cuts in a graph. Recall that a Gomory–Hu tree for an edge-weighted
undirected graph G = (V,E) is an edge-weighted tree T = (V,ET) with weight
function c that has the following property: for all u, v ∈ V , the weight of a minimum
cut separating u and v in G is equal to the smallest edge weight on the unique
path between u and v in T . In particular, for (u, v) ∈ ET , c(u, v) is the weight of
the minimum cut separating u and v in G, and the partition of V induced by the
removal of (u, v) from T induces such a minimum cut. We run the natural greedy
algorithm mentioned above on the tree T : Iteratively, pick the smallest weight edge
in T separating a pair of terminals that are not already separated until k components,
each of which contains a terminal, are generated.

It is easy to see that we pick k − 1 edges in T . We take the union of the cuts
associated with these edges and this defines our solution for the Steiner k-cut problem
in G.

Proposition 2.1. The algorithm produces a feasible solution to the Steiner k-cut
problem.

We need a simple proposition about Gomory–Hu trees.
Proposition 2.2. Let T = (V,ET) be a Gomory–Hu tree for a connected graph

G = (V,E). For any pair of vertices (s, t) in G and an s − t cut (S, V − S) in G,
there is an edge (u, v) ∈ ET such that u ∈ S, v ∈ V − S, and (u, v) lies on the path
between s and t in T .

Now we argue about the cost of the solution produced by the Gomory–Hu tree
based algorithm. Our analysis is similar to that of the analysis for the Gomory–
Hu tree based algorithm for the k-cut problem (see Theorem 4.8 in [12, page 42]).
However, the analysis is not a straightforward extension; in the Steiner k-cut problem,
the terminals constrain the choice of cuts, and we need to identify a mapping to the
optimal set of cuts in a careful manner.

Lemma 2.3. The cost of the (k − 1) edges picked by the algorithm is at most
(2 − 2/k) times the cost of the optimal solution.

Proof. Fix an optimal solution A to the Steiner k-cut problem. Let V1, V2, . . . , Vk

be the partitioning of V defined by A. Clearly, each set Vi (i = 1, . . . , k) contains
at least one terminal from X. From each set Vi we arbitrarily choose a terminal ti
contained in Vi. Define cuts Ai = (Vi, V \ Vi) for i = 1, . . . , k, and let w(Ai) denote
the weight of cut Ai. Assume without loss of generality that w(A1) ≤ w(A2) ≤
· · · ≤ w(Ak). Observe that each edge in the optimum solution A participates in
exactly two of the cuts A1, . . . , Ak; hence the weight of the optimal solution A is
w(A) =

∑k
i=1 w(Ai)/2. Let B1, B2, . . . , Bk−1 denote the k − 1 cuts chosen by the

above Gomory–Hu tree based algorithm. We claim that

w(Bi) ≤ w(Ai), 1 ≤ i ≤ k − 1.(1)

Assuming the claim, we have that

k−1∑
i=1

w(Bi) ≤
(

1 − 1

k

) k∑
i=1

w(Ai) ≤ 2

(
1 − 1

k

)
w(A),

which proves the desired bound on the performance of the algorithm.
To prove (1), we identify a set of edges e1, e2, . . . , ek−1 of the Gomory–Hu tree T

with the following properties:

264 CHANDRA CHEKURI, SUDIPTO GUHA, AND JOSEPH NAOR

1. w(Ai) ≥ c(ei), for 1 ≤ i ≤ k− 1, and since w(A1) ≤ w(A2) ≤ · · · ≤ w(Ak), it
follows that w(Ai) ≥ max1≤j≤i c(ei).

2. The removal of e1, e2, . . . , ei creates i + 1 components in T , each containing
a terminal.

Assuming the existence of e1, e2, . . . , ek−1 as above, let f1, f2, . . . , fk−1 be the
edges of T picked by the algorithm. We claim that c(fi) ≤ max1≤j≤i c(ei); this
follows by observing that there is some edge in {e1, e2, . . . , ei} that when added to
{f1, . . . , fi−1} would yield a new component containing a terminal. If not, removing
the edges in {f1, f2, . . . , fi−1}∪{e1, . . . , ei} would result in at most i components each
containing a terminal which contradicts the definition of the ei. Therefore,

w(Bi) = c(fi) ≤ max
1≤j≤i

c(ei) ≤ w(Ai).

We obtain e1, . . . , ek−1 as follows. Let E′ ⊆ ET be the set of edges of T that cross
the partition of V induced by the optimum solution V1, V2, . . . , Vk. In other words,
(u, v) ∈ E′ if and only if (u, v) ∈ ET , u ∈ Vi, v ∈ Vj , and i �= j; root the tree at
tk. For each ti, 1 ≤ i ≤ k − 1, we let ei be first edge in the directed path from ti to
the root tk that is in E′; by Proposition 2.2, ei exists. Also, for i �= j, ei and ej are
distinct; otherwise, the path between ti and tj in T would not have any edges in E′

and this contradicts Proposition 2.2. Further, since ei crosses the partition Vi, from
the Gomory–Hu tree property, w(Ai) ≥ c(ei). We claim that removing e1, e2, . . . , ei
from T will disconnect the set {t1, t2, . . . , ti, tk} in T . Suppose that this is not the
case. Clearly, tk is separated from t1, . . . , ti; therefore for some h, � ≤ i, th and t� are
connected by a path P after removing e1, . . . , ei. Let v be the least common ancestor
of th and t� in T rooted at tk. From our assumption eh and e� are both above v.
This implies that no edge in P is in E′, and therefore P connects th and t� even after
e1, . . . , ek−1 are removed, contradicting Proposition 2.2.

Given a Gomory–Hu tree for the input graph, the iterative greedy algorithm
that we described can be easily implemented in O(n2) time. This potentially could be
improved, but we do not attempt it since the running time to build a Gomory–Hu tree
is currently Ω(n2) even for sparse graphs. We conclude with the following theorem.

Theorem 2.4. There is a (2 − 2
k)-approximation algorithm for the Steiner k-

cut problem that runs in O(n2 + τ) time, where τ is the time required to build a
Gomory–Hu tree for the input graph.

3. LP formulation and a 2-approximation. We consider the following inte-
ger programming formulation for the Steiner k-cut problem. For each edge e we have
a binary variable d(e) which is 1 if the edge e belongs to the cut and 0 otherwise.
Let T be a Steiner tree on the terminal set X in G. In any feasible Steiner k-cut, at
least k − 1 edges of T have to be cut. Based on this we obtain the following integer
program for the Steiner k-cut problem:

(K) min
∑
e∈E

w(e) · d(e) subject to:

∑
e∈T

d(e) ≥ k − 1 ∀ T : T Steiner tree on X

d(e) ∈ {0, 1} ∀ e ∈ E.

A relaxation of this integer program is obtained by allowing the variables d(e) to
assume values in [0, 1]. The variables d(e) are to be interpreted as inducing a semimet-

THE STEINER k-CUT PROBLEM 265

ric1 on V . Our formulation above is a straightforward extension of the formulation of
Naor and Rabani [9] for the k-cut problem. In the k-cut problem X = V , and hence
[9] considers only spanning trees of G.

Unfortunately, we do not know how to solve the LP (K) in polynomial time.
Consider, for example, the separation oracle required for running the Ellipsoid algo-
rithm. Given edge weights d(e), the separation oracle has to check that the minimum
weight Steiner tree on X in G is of weight at least k − 1. However, this problem is
NP-hard. Note that for the k-cut problem, a polynomial time separation oracle is
available because the minimum spanning tree (MST) of a graph can be computed in
polynomial time.

We can use an approximate separation oracle based on the MST heuristic for the
Steiner tree problem. Given edge weights d(e), e ∈ E, we define the metric completion.
For an unordered pair of vertices uv we let d(uv) denote the shortest path distance
from u to v in G with edge weights defined by d. Let GX be the complete graph on
the terminal set X. The oracle computes the MST on GX where for each pair uv in
GX the weight of the edge uv is d(uv). If the MST is of weight at least k − 1, the
oracle concludes that d is feasible. If the weight of the MST is less than k − 1, it is
easy to find a corresponding Steiner tree on X in G whose weight is less than k − 1.
In other words, we are solving the following relaxation:

(K ′) min
∑

uv∈E(G)

w(uv) · d(uv) subject to:

∑
uv∈E(T)

d(uv) ≥ k − 1 T spanning tree in GX(2)

d(uv) + d(vw) ≥ d(uw) u, v, w ∈ V(3)

d(uv) ∈ [0, 1] u, v ∈ V .(4)

For an edge e ∈ E(G) with e = uv, we use d(e) and d(uv) interchangeably. The
next lemma follows from the discussion.

Lemma 3.1. The LP (K ′) is a valid relaxation for the Steiner k-cut problem and
it can be solved optimally in polynomial time.

For the multiway cut problem we note that the LP (K ′) is equivalent to a LP
that constrains the terminals to be at a distance of at least 1 from each other. This
latter LP has been shown to have an integrality gap of 2(1− 1/k) [2]. We will obtain
the same result as well for the Steiner k-cut problem. We now prove a property of
feasible solutions to (K ′) that will be useful later.

Lemma 3.2. In any feasible solution to (K ′) there is X ′ ⊆ X such that |X ′| ≥ k,
and for any two distinct vertices u and v in X ′, d(uv) > 0.

Proof. For any two, not necessarily distinct, vertices u and v in X, define a
relation R as follows: uRv if and only if d(uv) = 0. Since d is symmetric and satisfies
triangle inequality (hence the relation is transitive), R defines an equivalence relation
on X. We need to prove that the number of equivalence classes in R is at least k.
Suppose this is not the case. For any two vertices a and b in V , dab ≤ 1. Hence,
there is a spanning tree on X of cost at most �− 1, where � is the number of distinct
equivalence classes. If � < k, we get a contradiction to the feasibility of the solution
to (K ′).

1A semimetric is a distance function that is symmetric and satisfies triangle inequality. It differs
from a metric in that it need not satisfy reflexivity, that is, distinct points can be at distance 0 from
each other.

266 CHANDRA CHEKURI, SUDIPTO GUHA, AND JOSEPH NAOR

Note that the above proof is constructive and a set X ′ satisfying the required
properties can be easily computed. In the rest of the paper it is convenient to assume
that X ′ = X and that for each u, v ∈ X, d(uv) > 0.

3.1. A strategy to round the LP. We show how to round a solution to (K ′)
to yield a 2-approximation to the Steiner k-cut problem. To this end, we use the
Goemans and Williamson primal-dual approximation algorithm for the Steiner tree
problem [4] (henceforth referred to as the GW algorithm) to find a family of cuts.

Let d̄ be any feasible solution to the LP (K ′). Then, d̄ defines a weight function
on the edges of G. Let Gd̄ denote the resulting edge-weighted graph. We run the
GW primal-dual algorithm on the graph Gd̄ to create a Steiner tree on X. To find
a minimum Steiner tree on X in Gd̄, the GW algorithm uses the following cut based
LP relaxation of the Steiner tree problem. Let x(e) be 1 if e is in the Steiner tree
and 0 otherwise: every cut that separates the terminal set has to be covered by at
least one edge. This yields the following LP where the variables are relaxed to be in
[0, 1]. Note that the variables d̄(e) in the formulations below are treated as constants
obtained from a solution to (K ′).

Each subset of vertices S ⊂ V defines a cut which we denote by δ(S):

(STP) min
∑
e

d̄(e) · x(e) subject to:

∑
e∈δ(S)

x(e) ≥ 1 ∀ S : S separates X(5)

x(e) ∈ [0, 1] ∀ e.(6)

The dual of this LP is the following:

(STD) max
∑
S

y(S) subject to:

∑
S:e∈δ(S)

y(S) ≤ d̄(e) ∀ e(7)

y(S) ≥ 0 ∀ S : S separates X.(8)

The GW algorithm is a primal-dual algorithm that incrementally grows a dual
solution while maintaining feasibility and computes a corresponding feasible primal
Steiner tree such that the cost of the Steiner tree computed is at most twice the value
of the dual solution found. Let y′ be the dual solution produced by the GW algorithm
upon termination and let T be the tree returned by the algorithm. Then the following
properties hold for y′ and T [4].

1. y′ is a feasible solution to (STD).
2. T is a tree that spans the terminal set X.
3. Sets S (representing cuts) with y′(S) > 0 form a laminar family. Let S denote

this family of sets.
4.

∑
e∈T d̄(e) ≤ 2(1 − 1/|X|)

∑
S∈S y′(S).

5. For any u ∈ X,
∑

S:u∈S y′(S) ≤ 1
2 · maxv∈X,v �=u d̄(uv) ≤ 1

2 .
6. For any u, v ∈ X such that d̄(uv) > 0, there exists a cut S such that y′(S) > 0

and |S ∩ {u, v}| = 1.
With the above discussion in place, we are ready to describe our rounding proce-

dure. For a cut S, let w(S) =
∑

e∈δ(S) w(e) denote the weight of S in G; we observe
the following claim.

THE STEINER k-CUT PROBLEM 267

Claim 3.3.

∑
S∈S y′(S)w(S) ≤

∑
e w(e)d̄(e).

Proof. We have the following:∑
S∈S

y′(S)w(S) =
∑
S∈S

y′(S)
∑

e∈δ(S)

w(e)

=
∑
e

w(e)
∑

S:e∈δ(S)

y′(S)

≤
∑
e

w(e)d̄(e).

The final inequality follows from constraint (7) since y′ is a feasible solution to
(STD).

Claim 3.4. 2(1 − 1/|X|)
∑

S∈S y′(S) ≥ (k − 1).
Proof. The GW algorithm guarantees that 2(1 − 1/|X|)

∑
S y′(S) ≥

∑
e∈T d̄(e).

Since T is a spanning tree on X, from the feasibility of d̄ for (K ′),
∑

e∈T d̄(e) ≥ k− 1
by (2). The claim follows by combining the two equalities.

3.2. Choosing the cuts. We describe how we choose the cuts from S. We
partition S into classes S1,S2, . . . ,S� such that two cuts S and S′ are in the same
class Si if and only if S ∩ X = S′ ∩ X. Clearly, the number of classes is at least
|X| ≥ k. For a class Si, let Ci be a least weight cut in Si. Let C be the collection
of Ci, 1 ≤ i ≤ �. Without loss of generality assume that the classes are ordered such
that w(C1) ≤ w(C2) ≤ . . . ≤ w(C�).

A solution to the problem consists of a set of edges. Our algorithm outputs a
collection of cuts from C with the solution consisting of all edges that belong to one of
the chosen cuts; we therefore think of the cuts as defining the solution. The algorithm
considers classes in increasing order of their index and while considering class Si, adds
Ci to the solution if adding the cut produces a new component containing a terminal
from X. The process stops when k−1 cuts are chosen. This procedure is well defined
and yields a feasible solution for the following reason. From Lemma 3.2 and property 6
of the GW algorithm, if all the cuts C1, C2, . . . , C� are chosen, we obtain k (or more)
components, each containing a terminal from X. We now upper bound the value of
the solution output by the algorithm. Let 1 = i1 < i2 < · · · < ik−1 < � denote the
indices of the k−1 classes chosen by the algorithm. We let y′(Si) denote

∑
S∈Si

y′(S).
Definition 3.5. Given a collection of distinct cuts B, we say that a cut C ∈ B

is basic with respect to B if there is no cut C ′ ∈ B such that C ′
� C.

From the laminarity of S and hence of B, the set of basic cuts in B is well defined
and disjoint. Let Aj denote the set of cuts C1, C2, . . . , Cj .

Lemma 3.6. Let qj be the number of basic cuts in Aj and let pj be the number of
components created by the algorithm after the first j cuts have been considered. Then

•
∑

1≤h≤j y
′(Sh) ≤ qj/2,

• pj ≥ qj, and if pj = qj, then the components are induced by the basic cuts in

Aj and X ⊂ ∪j
h=1Cj.

Proof. From the analysis of the GW algorithm we have that for any cut S,∑
S′⊇S y′(S′) ≤ Δ/2, where Δ is the diameter of G. In our case Δ = 1. Since every

cut in Aj is a superset of some basic cut in Aj , we have that
∑

1≤h≤j y
′(Sh) ≤ qj/2.

Let r1 < r2 < · · · < rqj be the indices of the basic cuts in Aj . Note that the cuts
in S are laminar and hence these basic cuts are disjoint. We now argue that pj ≥ qj .
Let Xh = X ∩Crh , 1 ≤ h ≤ qj , and let X ′ = X −�qj

h=1Xh. We claim that for h < h′,
Xh and Xh′ are in separate components; otherwise, the algorithm when processing

268 CHANDRA CHEKURI, SUDIPTO GUHA, AND JOSEPH NAOR

Crh would add it to the solution and separate Xh and Xh′ ; therefore pj ≥ qj . By
the same argument, it follows that if X ′ is not empty, Xh and X ′ are in separate
components as well and in this case pj ≥ qj + 1. Thus, if pj = qj , X

′ = ∅, and each
Xh is in a separate component.

Let α = 1/(1 − 1/|X|). From the analysis of the GW algorithm we have that∑�
h=1 y

′(Sh) =
∑

S y′(S) ≥ α(k−1)/2. The main tool in our analysis is the following
lemma.

Lemma 3.7. For 1 ≤ r ≤ k − 1,
∑

j≥ir
y′(Sj) ≥ α(k − r)/2.

Proof. Let f = ir − 1, then pf = r. We consider two cases based on qf .
If pf > qf , we have that qf ≤ r−1, and by Lemma 3.6,

∑
1≤h≤f y

′(Sh) ≤ (r−1)/2.
Since

∑
1≤h≤� y

′(Sh) ≥ α(k − 1)/2 it follows that
∑

ir≤j≤� y
′(Sj) ≥ α(k − r)/2.

Now we consider the case pf = qf . From Lemma 3.6, the components at this stage
are induced by the basic cuts in Af . Let the basic cuts be Cj1 , Cj2 , . . . , Cjr . Let Xh

denote the terminals in Cjh . Recall that X = �hXh and hence
∑

1≤h≤r |Xh| = |X|.
The tree T created by the GW algorithm is of cost k − 1. We note that the part of
the tree that connects the components Cj1 , Cj2 , . . . , Cjr costs at most r − 1 since the
diameter of the graph is at most 1. For 1 ≤ h ≤ r, let Th be the minimal subtree of
T that connects Xh. It follows that

∑
1≤h≤r

∑
e∈Th

d̄e ≥ k− 1− (r− 1) ≥ k− r. Let
Lh = {i | (Ci ∩ X) � Xh} be the indices of classes that contain a proper subset of
terminals from Xh. From the analysis of the GW algorithm applied to tree Th and
terminals set Xh, we obtain that

∑
i∈Lh

y′(Si) ≥
1

2(1 − 1/|Xh|)
∑
e∈Th

d̄e;

therefore∑
1≤h≤r

∑
i∈Lh

y′(Si) ≥
∑

1≤h≤r

1

2(1 − 1/|Xh|)
∑
e∈Th

d̄e ≥ 1

2(1 − 1/|X|) (k − r).

We now claim that if i ∈ �hLh, then i > f = ir − 1. For if i ∈ Lh, then Cjh would
not be basic in C1, C2, . . . , Cf ; therefore

∑
j≥ir

y′(Sh) ≥
∑

1≤h≤r

∑
i∈Lh

y′(Si).

This finishes the proof of the lemma.
Corollary 3.8.

∑k−1
r=1 w(Cir) ≤ 2(1 − 1/|X|) ≤

∑
S y′(S)w(S).

Proof. For 1 ≤ h ≤ � let zh =
∑

j≥h y
′(Sj). Recall that 1 = i1 < i2 < · · · <

ik−1 < � are the indices of the cuts chosen by the algorithm and that w(C1) ≤ w(C2) ≤
· · · ≤ w(C�); hence,

∑
S

y′(S)w(S) =

�∑
h=1

∑
S∈Sh

y′(S)w(S)

≥
�∑

h=1

y′(Sh)w(Ch)

≥ w(Cik−1
)zik−1

+

k−2∑
r=1

w(Cir)(zir − zir+1).

THE STEINER k-CUT PROBLEM 269

From Lemma 3.7 we have that zir ≥ α(k − r)/2. The right-hand side of the last
inequality above is minimized when zir = α(k − r)/2 for 1 ≤ r ≤ k − 1. Therefore,

∑
S

y′(S)w(S) ≥ 1

2
α

k−1∑
r=1

w(Cir).

This yields the desired inequality.
From Corollary 3.8 and Claim 3.3 we obtain that

k−1∑
r=1

w(Cir) ≤ 2(1 − 1/|X|)
∑
S

y′(S)w(S) ≤ 2(1 − 1/|X|)
∑
e

wed̄e.

Thus the integrality gap of (K ′) is upper bounded by 2(1 − 1/|X|).
Lower bound on the integrality gap. The integrality gap of (K ′) (and (K)) is no

better than 2(1 − 1/|X|) even when k = 2 and X = V (the global minimum cut
problem). Consider the unit weight cycle on n vertices. Clearly, an integral solution
has to cut at least two edges to separate the cycle into two components. Consider
the following feasible solution to the relaxation. We set d(e) = 1/(n − 1) on each
edge of the cycle; for all other edges, d(e) is the shortest path distance induced by
the distances on the cycle edges. The value of this solution is n/(n− 1). Hence, the
integrality gap is 2(1 − 1/n).

Theorem 3.9. The integrality gap of the LP (K ′) is 2(1 − 1/|X|).
4. An exact formulation for the global minimum cut problem. In the

previous section we saw that LP (K ′) has an integrality gap of 2(1 − 1/n) for the
2-cut problem, i.e., for the global minimum cut problem. Here we give a bidirected
formulation of the global minimum cut problem. Given an undirected weighted graph
G = (V,E), let Gb = (V,A) be the directed graph obtained by replacing each edge
e ∈ E between u and v by two directed arcs (u, v) and (v, u). The weights of both
(u, v) and (v, u) in Gb are set to w(e). Let r be any vertex in V (G). An arborescence
in a directed graph rooted at a vertex r is a spanning out-tree from r (also known
as a branching). Our formulation is based on Gb. For an arc a ∈ A, let d(a) = 1 if
a is chosen to the cut, and let d(a) = 0 otherwise. The following is a valid integer
program for the global minimum cut problem:

(B) min
∑
a∈A

w(a) · d(a) subject to:

∑
a∈T

d(a) ≥ 1 T arborescence rooted at r in Gb

d(a) ∈ {0, 1} a ∈ A.

Although the above integer program is similar to integer program (K), we remark
that for k > 2 we do not obtain a valid formulation for the k-cut problem if we replace
the right-hand side of the constraint above by k − 1.

We obtain a LP by relaxing each variable d(a) to be in [0, 1]. We show that the
value of the LP is exactly equal to the global minimum cut of the graph G. The
separation oracle needed to solve (B) in polynomial time by the Ellipsoid algorithm is
the minimum cost arborescence problem in directed graphs. We can use the algorithm
of Edmonds [3] for this purpose. In fact, Edmonds [3] showed that the arborescence
polytope is integral and we use this to show that (B) is exact for the minimum cut

270 CHANDRA CHEKURI, SUDIPTO GUHA, AND JOSEPH NAOR

problem. The proof is similar in outline to the one in section 3, but we use arbores-
cences in place of spanning trees, and the result of Edmonds [3] on the integrality of
the arborescence polytope in place of the GW algorithm. Let d̄ be an optimal solution
to (B). Let Gb

d be the graph Gb equipped with d̄ as costs on the edges of Gb. We find
a minimum cost arborescence in Gb

d using the following formulation. For each arc a,
variable x(a) = 1 if a belongs to the arborescence and 0 otherwise:

(AP) min
∑
a∈A

d(a) · x(a) subject to:

∑
a∈δ(S)

x(a) ≥ 1 ∀ S : S �= V and r ∈ S

x(a) ∈ [0, 1] ∀ a.

The dual of the above LP is the following:

(AD) max
∑
S

y(S) subject to:

∑
S:a∈δ(S)

y(S) ≤ d(a) ∀ a

y(S) ≥ 0 ∀ S : S �= V and r ∈ S.

Let x̄∗ and ȳ∗ be optimal primal and dual solutions to (AP) and (AD) on the
graph Gb

d. From the feasibility of d̄, it follows that
∑

a d(a)x
∗(a) ≥ 1. From weak

duality we therefore also obtain that
∑

S y∗(S) ≥ 1. Let S = {S | y∗(S) > 0} be the
set of all cuts with strictly positive dual values. Let C ∈ S be a cut such that w(S) is
the cheapest cut. We pick C as our solution. We now show that w(C) ≤

∑
a w(a)d(a),

which shows that the weight of the cut is at most the value of the optimal solution to
(B). We see that ∑

S

y∗(S)w(S) =
∑
S

y∗(S)
∑

a∈δ(S)

w(a)

=
∑
a

w(a)
∑

S:a∈δ(S)

y∗(S)

≤
∑
a

w(a)d(a).

The last inequality follows from the feasibility of y∗. We have that
∑

S y∗(S)w(S) ≤∑
a w(a)d(a) and

∑
S y∗(S) ≥ 1. Therefore, the weight of the cheapest cut is no more

than
∑

a w(a)d(a).
Theorem 4.1. The LP relaxation of (B) can be solved in polynomial time and

is an exact formulation for the global minimum cut problem.

5. Conclusions. Our study of LP relaxations for the Steiner k-cut problem was
partly motivated by the goal of obtaining an approximation algorithm for the k-cut
problem with a ratio better than 2. This has been accomplished for the multiway
cut problem by a strengthened LP relaxation [1]. Our results show that the available
approximation techniques for the k-cut problem extend to the Steiner k-cut problem.
In the process we have shown an interesting connection between laminar cut families
obtained from the primal-dual algorithm of Goemans and Williamson [4] and their
use in analyzing the LP relaxation for the Steiner k-cut problem. Several interesting
questions are open.

THE STEINER k-CUT PROBLEM 271

• Is the k-cut problem APX-hard?
• Is there an approximation algorithm for the k-cut problem with ratio better

than 2?
• What is the integrality gap of the geometric relaxation in [1] for the multiway

cut problem?

Acknowledgments. We thank David Shmoys and Zoya Svitkina for pointing
out an erroneous proof in a previous version of the paper. We thank two anonymous
referees for comments which helped improve the clarity of the proofs in section 3.2.

REFERENCES

[1] G. Călinescu, H. Karloff, and Y. Rabani, An improved approximation algorithm for MUL-
TIWAY CUT, J. Comput. System Sci., 60 (2000), pp. 564–574.

[2] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis,
The complexity of multiterminal cuts, SIAM J. Comput., 23 (1994), pp. 864–894.

[3] J. Edmonds, Optimum branchings, J. Res. Nat. Bur. Standards, 71B (1967), pp. 233–240.
[4] M. Goemans and D. P. Williamson, A general approximation technique for constrained forest

problems, SIAM J. Comput., 24 (1995), pp. 296–317.
[5] O. Goldschmidt and D. S. Hochbaum, Polynomial algorithm for the k-cut problem, Math.

Oper. Res., 19 (1994), pp. 24–37.
[6] D. R. Karger and C. Stein, A new approach to the minimum cut problem, J. ACM, 43

(1996), pp. 601–640.
[7] D. R. Karger, P. Klein, C. Stein, M. Thorup, and N. E. Young, Rounding algorithms

for a geometric embedding of minimum multiway cut, Math. Oper. Res., 29 (2004), pp.
436–461.

[8] N. Maeda, H. Nagamochi, and T. Ibaraki, Approximate algorithms for multiway objec-
tive point split problems of graphs (in Japanese), Computing devices and algorithms (in
Japanese) (Kyoto, 1993). Surikaisekikenkyusho Kokyuroku, 833 (1993), pp. 98–109.

[9] J. Naor and Y. Rabani, Approximating k-cuts, in Proceedings of the 12th Annual ACM-SIAM
Symposium on Discrete Algorithms, Washington, DC, 2001, pp. 26–27.

[10] R. Ravi and A. Sinha, Approximating k-cuts via network strength, in Proceedings of the 13th
Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, 2002, pp. 621–622.

[11] H. Saran and V. Vazirani, Finding k cuts within twice the optimal, SIAM J. Comput., 24
(1995), pp. 101–108.

[12] V. Vazirani, Approximation Algorithms, Springer, Berlin, 2001.
[13] L. Zhao, H. Nagamochi, and T. Ibaraki, Approximating the minimum k-way cut in a graph

via minimum 3-way cuts, J. Combin. Optim., 5 (2001), pp. 397–410.
[14] L. Zhao, H. Nagamochi, and T. Ibaraki, Greedy splitting algorithms for approximating

multiway partition problems, Math. Program. A, 102 (2005), pp. 167–183.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 2, pp. 273–286

MULTICOLORED HAMILTON CYCLES AND PERFECT
MATCHINGS IN PSEUDORANDOM GRAPHS∗

DANIELA KÜHN† AND DERYK OSTHUS†

Abstract. Given 0 < p < 1, we prove that a pseudorandom graph G with edge density p and
sufficiently large order has the following property: Consider any red/blue-coloring of the edges of
G and let r denote the proportion of edges which have the color red. Then there is a Hamilton
cycle C so that the proportion of red edges of C is close to r. The analogue also holds for perfect
matchings instead of Hamilton cycles. We also prove a bipartite version which is used elsewhere to
give a minimum-degree condition for the existence of a Hamilton cycle in a 3-uniform hypergraph.

Key words. Hamilton cycles, perfect matchings, random graphs, pseudorandom graphs

AMS subject classifications. 05C45, 05C70, 05C80

DOI. 10.1137/050627010

1. Introduction.

1.1. Overview. It is well known that random graphs, pseudorandom graphs,
and ε-superregular graphs have some strong Hamiltonicity properties in common. For
instance, a recent result of Frieze and Krivelevich [10] states that, for every constant
0 < p < 1, with high probability almost all edges of the random graph Gn,p can be
packed into edge-disjoint Hamilton cycles. (They derive this from a similar result
about ε-superregular graphs.)

Hamiltonicity has also been investigated from the viewpoint of (anti-)Ramsey
theory. For example, Albert, Frieze, and Reed [1] proved that there is a linear function
k = k(n) such that for every edge-coloring of the complete graph Kn on n vertices
which uses each color at most k times there is a Hamilton cycle where each edge has
a different color. This improves bounds by previous authors. A related problem for
random graphs was also considered by Cooper and Frieze [6].

Here, we prove a related result about colorings of bipartite ε-superregular graphs
(which will imply analogous statements for pseudorandom and random graphs).
Roughly speaking, we prove that given a k-coloring of a sufficiently large ε-superregular
graph G (where ε is sufficiently small) there is a Hamilton cycle C in G which is
strongly multicolored (or well balanced) in the following sense: for all colors i, the
proportion of edges in C of color i is close to the proportion of edges in G which
have color i. We derive this from a related result about random perfect matchings
(Theorem 1.1) which is also a crucial tool in [12]; see section 1.3.

This paper is organized as follows. In sections 2 and 3.1 we collect some tools
which we will need in our proofs. In section 3.2 we then use these tools to deduce
some simple properties of random perfect matchings in ε-superregular graphs. The
core result of this paper is Lemma 3.8 in section 3.3, which proves Theorem 1.1 for
special graphs H. In the final section, the remaining results in this paper are easily
deduced from Lemma 3.8 and the results in section 3.2.

∗Received by the editors March 17, 2005; accepted for publication (in revised form) September
14, 2005; published electronically March 24, 2006.

http://www.siam.org/journals/sidma/20-2/62701.html
†School of Mathematics, Birmingham University, Edgbaston, Birmingham B15 2TT, UK (kuehn@

maths.bham.ac.uk, osthus@maths.bham.ac.uk).

273

274 DANIELA KÜHN AND DERYK OSTHUS

1.2. Statement of results. Given a bipartite graph G = (A,B) with vertex
classes A and B, we denote the edge set of G by E(A,B) and let e(G) = e(A,B) =
|E(A,B)|. The density of a bipartite graph G = (A,B) is defined to be

d(A,B) :=
e(A,B)

|A||B| .

Given 0 < ε < 1 and d ∈ [0, 1], we say that G is (d, ε)-regular if for all sets X ⊆ A and
Y ⊆ B with |X| ≥ ε|A| and |Y | ≥ ε|B| we have (1−ε)d < d(X,Y) < (1+ε)d. We say
that G is (d, ε)-superregular if it is (d, ε)-regular and, furthermore, if (1 − ε)d|B| <
dG(a) < (1+ε)d|B| for all vertices a ∈ A and (1−ε)d|A| < dG(b) < (1+ε)d|A| for all
b ∈ B. This is more or less equivalent to the traditional notions of ε-regularity and
ε-superregularity—see section 2.

Theorem 1.1. For all positive constants d, ν0, η ≤ 1 there is a positive ε =
ε(d, ν0, η) and an integer N0 = N0(d, ν0, η) such that the following holds for all n ≥ N0

and all ν ≥ ν0. Let G = (A,B) be a (d, ε)-superregular bipartite graph whose vertex
classes both have size n and let H be a subgraph of G with e(H) = νe(G). Choose a
perfect matching M uniformly at random in G. Then with probability at least 1−e−εn

we have

(1 − η)νn ≤ |M ∩ E(H)| ≤ (1 + η)νn.

At first sight it may seem surprising that the only parameter of H that is relevant
here is the number of its edges. However, this is quite natural in view of the fact that
the assertion would be trivial if instead of a perfect matching one would choose n
edges independently and uniformly at random.

The case when H is a sufficiently large induced subgraph of G was proved earlier
by Rödl and Ruciński [13] as a tool in their alternative proof of the blow-up lemma
of Komlós, Sárközy, and Szemerédi.

From Theorem 1.1 we will also deduce a (weaker) analogue for Hamilton cycles.

Theorem 1.2. For all integers k and all positive constants d, ν, η ≤ 1 there is
a positive ε = ε(d, ν, η) and an integer N1 = N1(k, d, ν, η) such that the following
holds for all n ≥ N1. Let G = (A,B) be a (d, ε)-superregular bipartite graph whose
vertex classes both have size n. For each 1 ≤ i ≤ k let Hi be a subgraph of G with
e(Hi) = νie(G), where νi ≥ ν. Then G contains a Hamilton cycle C such that for all
1 ≤ i ≤ k

(1 − η)2νin ≤ |C ∩ E(Hi)| ≤ (1 + η)2νin.

Theorems 1.1 and 1.2 can in turn be used to deduce analogues for nonbipartite
graphs (see the final section for details). For this, we need to modify the notion of
(d, ε)-superregularity as follows. Given 0 < ε < 1 and d ∈ [0, 1], we say that a graph G
with n vertices is (d, ε)-regular if for all disjoint sets X,Y ⊆ V (G) with |X|, |Y | ≥ εn
we have (1 − ε)d < d(X,Y) < (1 + ε)d. We say that G is (d, ε)-superregular if it
is (d, ε)-regular and, furthermore, if (1 − ε)dn < dG(x) < (1 + ε)dn for all vertices x
of G.

Theorem 1.3. For all integers k and all positive constants d, ν, η ≤ 1 there is a
positive ε = ε(d, ν, η) and an integer N2 = N2(k, d, ν, η) such that the following holds
for all n ≥ N2. Let G be a (d, ε)-regular graph with n vertices. For each 1 ≤ i ≤ k,
let Hi be a subgraph of G with e(H) = νie(G), where νi ≥ ν for all i ≥ k. Then

MULTICOLORED HAMILTON CYCLES 275

(i) G contains a Hamilton cycle C such that for all i
(1 − η)νin ≤ |C ∩ E(Hi)| ≤ (1 + η)νin;

(ii) if n is even then G contains a perfect matching M such that for all i
(1 − η)νin/2 ≤ |M ∩ E(Hi)| ≤ (1 + η)νin/2.

Note that the assertion is not even trivial (but much easier to prove) in the
special case where G is the complete graph Kn. Moreover, let Gn,p be a random
graph on n vertices obtained by connecting each pair of vertices with probability p
(independently of all the other pairs). For given 0 < p < 1 and n sufficiently large,
Gn,p is (p, ε)-superregular with high probability (in fact the probability that this is
not the case is easily seen to decrease exponentially in n). Thus the assertion of
Theorem 1.3 holds with high probability in this case. Also, if G is dn-regular and
the second eigenvalue of the adjacency matrix is at most λdn for sufficiently small λ,
then G is (d, ε)-superregular (see, e.g., Chung [7, Theorem 5.1]) so the result applies
in this case, too (such graphs are often called pseudorandom graphs).

1.3. Application: Loose Hamilton cycles in 3-uniform hypergraphs. A
fundamental theorem of Dirac states that every graph on n vertices with minimum
degree at least n/2 contains a Hamilton cycle. In [12], we prove an analogue of this
for 3-uniform hypergraphs, which we describe below. All the results proved in this
paper except Theorems 1.2 and 1.3 and Lemma 3.8 are used as a tool in [12].

One way to extend the notion of the minimum degree of a graph to that of a
3-uniform hypergraph H is as follows. Given two distinct vertices x and y of H, the
neighborhood N(x, y) of (x, y) in H is the set of all those vertices z which form a
hyperedge together with x and y. The minimum degree δ(H) is defined to be the
minimum |N(x, y)| over all pairs of vertices of H.

We say that a 3-uniform hypergraph C is a cycle of order n if there exists a cyclic
ordering v1, . . . , vn of its vertices such that every consecutive pair vivi+1 lies in a
hyperedge of C and such that every hyperedge of C consists of 3 consecutive vertices.
A cycle is tight if every three consecutive vertices form a hyperedge. A cycle of order
n is loose if it has the minimum possible number of hyperedges among all cycles on
n vertices. A Hamilton cycle of a 3-uniform hypergraph H is a subhypergraph of H
which is a cycle containing all its vertices. The following result is proved in [12].

Theorem 1.4. For each ε > 0 there is an n0 = n0(ε) such that every 3-uniform
hypergraph H with n ≥ n0 vertices and minimum degree at least n/4 + εn contains a
loose Hamilton cycle.

The bound on the minimum degree is essentially best possible in the sense that
there are hypergraphs with minimum degree �n/4�−1 which do not even contain some
(not necessarily loose) Hamilton cycle. Recently, Rödl, Ruciński, and Szemerédi [14]
proved that if the minimum degree is at least n/2+εn and n is sufficiently large, then
one can even guarantee a tight Hamilton cycle. This is also best possible up to the
error term (they announced in [14] that the error term εn can in fact be omitted).

2. Notation and a probabilistic estimate. Given a graph G, we write NG(x)
for the neighborhood of a vertex x in G and let dG(x) := |NG(x)|. Given ε > 0, we
say that G is ε-regular if for all sets X ⊆ A and Y ⊆ B with |X| ≥ ε|A| and
|Y | ≥ ε|B| we have |d(A,B) − d(X,Y)| < ε. This (more traditional) notion of
regularity is more or less equivalent to the one defined in the introduction. Indeed,
clearly every (d, ε)-regular graph is also 2εd-regular (and thus 2ε-regular). Conversely,
if d = d(A,B) ≥

√
ε then every ε-regular bipartite graph (A,B) is (d,

√
ε)-regular.

Given a positive number ε and sets A,Q ⊆ T , we say that A is split ε-fairly by

276 DANIELA KÜHN AND DERYK OSTHUS

Q if ∣∣∣∣ |A ∩Q|
|Q| − |A|

|T |

∣∣∣∣ ≤ ε.

Thus, if ε is small and A is split ε-fairly by Q, then the proportion of all those elements
of T which lie in A is almost equal to the proportion of all those elements of Q which
lie in A. We will use the following version of the well-known fact that if Q is random
then it tends to split large sets ε-fairly. It is an easy consequence of standard large
deviation bounds for the hypergeometric distribution; see, e.g., [12] for a proof.

Proposition 2.1. For each 0 < ε < 1 there exists an integer q0 = q0(ε) such
that the following holds. Given t ≥ q ≥ q0 and a set T of size t, let Q be a subset of
T which is obtained by successively selecting q elements uniformly at random without
repetitions. Let A be a family of at most q10 subsets of T such that |A| ≥ εt for each
A ∈ A. Then with probability at least 1/2 every set in A is split ε-fairly by Q.

3. Perfect matchings in superregular graphs. In this section, we collect
and prove several results about (random) perfect matchings in bipartite superregular
graphs G which will all be needed to prove Theorems 1.1 and 1.2. Moreover, Lem-
mas 3.6 and 3.7 will also be used in [12]. The main result of this section is Lemma 3.8.
Given a reasonably regular small subgraph H of G, it gives precise bounds on the likely
number of all those edges of H that are contained in a random perfect matching M of
G. This is proved in the third subsection. In the first subsection, we collect some tools
which we will need in the other two subsections. In the second subsection, we give
likely upper bounds on the number of all those edges of an arbitrary sparse subgraph
H of G that are contained in a random perfect matching and on the number of cycles
in the union of two random perfect matchings in G.

3.1. Known results on counting perfect matchings. We use the following
version of Stirling’s inequality (the bound is a weak form of a result of Robbins; see,
e.g., [4]).

Proposition 3.1. For all integers n ≥ 1 we have(n
e

)n

≤ n! ≤ 3
√
n
(n

e

)n

.(1)

We will frequently use the following immediate consequence of the lower bound
in Stirling’s inequality: (

n

k

)
≤

(en

k

)k

.(2)

We will also use that

1 − x ≥ e−x−x2

for all 0 < x < 0.45(3)

(see, e.g., [4, section 1.1]).
We also need the following result of Brégman [5] which settles a conjecture of Minc

on the permanent of a 0-1 matrix. (A short proof of it was given by Schrijver [15]; see
also [3].) We state this result in terms of an upper bound on the number of perfect
matchings of a bipartite graph.

Theorem 3.2. The number of perfect matchings in a bipartite graph G = (A,B)
is at most ∏

a∈A

(dG(a)!)1/dG(a).

MULTICOLORED HAMILTON CYCLES 277

An application of Stirling’s inequality (Proposition 3.1) to Theorem 3.2 immedi-
ately yields the following.

Corollary 3.3. For all ε > 0 there is an integer d = d0(ε) so that the following
holds: Let G = (A,B) be a bipartite graph with |A| = |B| = n and let m(G) denote
the number of perfect matchings in G. Then

m(G) ≤ (1 + ε)n
∏
a∈A

max{dG(a), d0}
e

.

A very useful lower bound on the number of perfect matchings in a k-regular
bipartite graph is provided by the following result by Egorichev [8] and Falikman [9],
which was formerly known as the van der Waerden conjecture.

Theorem 3.4. Let G be a k-regular bipartite graph whose vertex classes have
size n. Then the number of perfect matchings in G is at least (k/n)nn!.

To bound the number of perfect matchings in superregular graphs, we will use the
following theorem of Alon, Rödl, and Ruciński [2]. (Actually, we will only apply the
lower bound, which is based on Theorem 3.4. The upper bound in Theorem 3.5 is an
easy consequence of Corollary 3.3.) Note that their result is stated slightly differently
in [2] as the definition of (d, ε)-superregularity in [2] is slightly different.

Theorem 3.5. For every 0 < ε < 1/4 there exists an integer n1 = n1(ε) such
that whenever d > 0 and G is a (d, ε)-superregular bipartite graph whose vertex classes
both have size n ≥ n1, then the number m(G) of perfect matchings in G satisfies

(d(1 − 4ε))nn! ≤ m(G) ≤ (d(1 + 4ε))nn!.

3.2. Simple properties of random perfect matchings. Based on the results
in section 3.1, we can easily deduce the next lemma, which implies that if we are given
a (super)regular graph G and a “bad” subgraph F of G which is comparatively sparse,
then a random perfect matching of G will probably contain only a few bad edges. The
“moreover” part will only be used in [12]; the assertion about (d, ε)-regular graphs
will be used in [12] and the proof of Theorem 1.1.

Lemma 3.6. For all positive constants ε and d with d ≤ 1 and ε ≤ 1/6 there exists
an integer n0 = n0(ε, d) such that the following holds. Let G be a (d, ε)-superregular
graph whose vertex classes A and B satisfy |A| = |B| =: n ≥ n0. Let M be a perfect
matching chosen uniformly at random from the set of all perfect matchings of G. Let
F be a subgraph of G such that all but at most Δ′n vertices in F have degree most
Δ′dn, where 1/2 ≥ Δ′ ≥ 18ε. Then the probability that M contains at least 9Δ′n
edges of F is at most e−2εn. Moreover, the statement also holds if we assume that G
is dn-regular, where dn ∈ N.

Proof. First suppose that F has maximum degree at most Δ′dn. Let F ′ ⊇ F be
a subgraph of G such that dF ′(a) = Δ′dn for each vertex a ∈ A. (Such an F ′ exists
since dG(a) ≥ (1 − ε)dn ≥ Δ′dn as G is (d, ε)-superregular.) Given a set A′ ⊆ A, we
denote by F ′

A′ the bipartite graph with vertex classes A and B in which every vertex
a ∈ A′ is joined to all the vertices b ∈ NF ′(a), while every vertex a ∈ A \A′ is joined
to all the vertices b ∈ NG(a) \NF ′(a). For an integer q ≥ e2Δ′n, let m(q) denote the
number of perfect matchings in G which contain precisely q edges from F ′. Every
such matching M ′ can be obtained by first fixing a q-element set A′ ⊆ A and then
choosing a perfect matching in the graph F ′

A′ . (So the elements of A′ correspond to
the q endvertices of the edges in M ′ ∩ E(F ′).) If we apply Corollary 3.3 to F ′

A′ we

278 DANIELA KÜHN AND DERYK OSTHUS

now obtain

m(q) ≤
(
n

q

)
(1 + ε)n

(
Δ′dn

e

)q (
(1 + ε)dn

e

)n−q

(2)

≤
(

en

q

)q (
dn

e

)n

(Δ′)q(1 + ε)2n.

Let m(G) denote the number of perfect matchings in G. Then the lower bound in
Theorem 3.5 implies that

m(G) ≥ (d(1 − 4ε))nn!
(1)

≥
(

(1 − 4ε)dn

e

)n

.

Thus the probability m(q)/m(G) that M contains exactly q edges from F ′ is at most

(
enΔ′

q

)q

(1 + 5ε)3n ≤ e−q(1 + 5ε)3n ≤ e(15ε−Δ′)n ≤ e−3εn.

(To see the first inequality, use that q ≥ e2Δ′n.) By summing this bound over all
q ≥ e2Δ′n, we find that the probability that M contains at least e2Δ′n edges of F ′

is at most ne−3εn ≤ e−2εn. Since F ⊆ F ′, this implies that with probability at most
e−2εn the matching M contains at least e2Δ′n edges of F . If F is now allowed to have
up to Δ′n vertices whose degree is larger than Δ′dn, this can increase the number of
edges of F in M by at most Δ′n, which implies the result.

The same proof also works in the case where G is dn-regular. We now use the
lower bound m(G) ≥ dnn! ≥ (dn/e)n which follows from Theorem 3.4 and
inequality (1).

In the following lemma we will use Theorems 3.4 and 3.5 to show that a randomly
chosen 2-factor in a (super)regular graph G will typically contain only a few cycles.
We will need this fact in the proof of Theorem 1.2 (and in [12] again, as mentioned
earlier). A similar observation was also used in Frieze and Krivelevich [10]. The
“moreover” part will only be used in [12].

Lemma 3.7. For all positive constants ε < 1/64 and d ≤ 1 there exists an integer
n0 = n0(ε, d) such that the following holds. Let G be a (d, ε)-superregular graph whose
vertex classes A and B satisfy |A| = |B| =: n ≥ n0. Let M1 be any perfect matching
in G. Let M2 be a perfect matching chosen uniformly at random from the set of all
perfect matchings in G −M1. Let R = M1 ∪M2 be the resulting 2-factor. Then the
probability that R contains more than n/(log n)1/5 cycles is at most e−n. Moreover,
the statement also holds if we assume that G is dn-regular, where dn ∈ N, and that
G and M1 are disjoint.

Proof. Let G′ := G−M1. Let m(G′) denote the number of perfect matchings in
G′. Since the deletion of a perfect matching from G still leaves a (d, 2ε)-superregular
graph, Theorem 3.5 implies that

m(G′) ≥ ((1 − 8ε)d)nn!
(1),(3)

≥ e−9εn

(
dn

e

)n

.

Let k := n/(log n)1/2 and �′ := (logn)1/4. Given an integer � ≤ �′, let fk,� denote the
number of 2-factors of G which contain M1 and have at least k cycles of length 2�. We
will now find an upper bound on fk,�. For this, note that the number of possibilities

MULTICOLORED HAMILTON CYCLES 279

for choosing a set Ck,� of k disjoint cycles of length 2� in G where every second edge
is contained in M1 is at most

1

k!
n�k

(1)

≤
(e

k
n�
)k

=: ck,�.

(Indeed, each such cycle of length 2� is determined by an ordered choice of � edges
in M1.) By Corollary 3.3, given some Ck,� as above, the number of matchings on the
remaining vertices of G−M1 is at most

(1 + ε)2n
(
dn

e

)n−k�

≤ e2εn

(
dn

e

)n−k�

=: dk,�.

Hence we have that fk,� ≤ ck,�dk,�. Altogether, this implies that the probability
fk,�/m(G′) that a random 2-factor R (chosen as in the statement of the lemma)
contains at least k cycles of length 2� can be bounded as follows.

fk,�
m(G′)

≤ e11εn
(e

k
n�
)k (e

dn

)k�

= e11εn

(
e�+1

kd�

)k

≤ e11εnk−k/2 ≤ e−2n.

To derive the third inequality, we used the fact that (e/d)�
′
(and thus (e/d)�) is small

compared to k. For the final one, we used that k log k is large compared to n.
Hence the probability that there is an � ≤ �′ such that the random 2-factor R

contains at least k cycles of length 2� is at most �′e−2n ≤ e−n. Note that the number
of cycles of length at least 2�′ in R is at most 2n/(2�′). Thus with probability at least
1− e−n the number of cycles in R is at most k�′ +n/�′ = 2n/(log n)1/4, which implies
the first part of the lemma.

The proof of the “moreover” part of Lemma 3.7 is almost the same, except that
we use the lower bound m(G) ≥ (dn/e)n on the number of perfect matchings in G
which follows from Theorem 3.4 by an application of (1).

3.3. Counting perfect matchings which contain a given number of edges
of an almost regular subgraph.

Lemma 3.8. For each positive constant β �= 1 there is a constant f(β) with
0 < f(β) ≤ 1 such that the following holds. Suppose that α, ε, ξ, c′, and d are positive
constants with ε
 α, c′, d ≤ 1 and α, c′
 ξ
 f(β) ≤ 1. There exists an integer
n0 = n0(α, ε, ξ, c

′, d) for which the following is true. Let G be a bipartite (d, ε)-
superregular graph whose vertex classes V and W satisfy |V | = |W | =: n ≥ n0. Let
H be a subgraph of G with vertex classes C ⊆ V and D ⊆ W , where c′n ≤ |C| = cn ≤
2c′n and

αdn ≤ dH(v) ≤ (1 + ξ)αdn for all vertices v ∈ C.

Let M be a perfect matching chosen uniformly at random from the set of all perfect
matchings in G. Then

(i) P (|M ∩ E(H)| ≤ βαcn) ≤ e−f(β)αcn if β < 1,
(ii) P (|M ∩ E(H)| ≥ βαcn) ≤ e−f(β)αcn if β > 1.
The intuition behind this result is the following (see also the remark after Theo-

rem 1.1): If the inclusion of the edges of G into the random perfect matching M would
be mutually independent and equally likely, then the probability that a given edge e is
contained in M would be close to |M |/e(G). Thus the expected value of |M ∩E(H)|
would be close to ne(H)/e(G) which in turn is close to n(αdn)(cn)/(dn2) = αcn. The

280 DANIELA KÜHN AND DERYK OSTHUS

above result would thus immediately follow by an application of some large deviation
bound on the tail of the binomial distribution.

The basic strategy of the proof is similar to that of [13], where the authors assume
that H is a sufficiently large induced subgraph of G. The main difficulty of our proof
is due to the fact that H is assumed to be rather small compared to G.

Proof. Let m(G) denote the total number of perfect matchings in G. If we apply
Stirling’s formula (1) to the lower bound in Theorem 3.5, we obtain

m(G) ≥
(

(1 − 4ε)dn

e

)n (3)

≥
(
dn

e

)n

e−5εn.(4)

Given a ≤ cn, let m(a) be the number of perfect matchings in G which meet E(H)
in precisely a edges. Our aim is to show that m(a) is much smaller than m(G) if a
is significantly smaller or larger than αcn. Let

∑
J denote the summation over all

matchings J in H of cardinality a. Given such a matching J , let m(J) denote the
number of perfect matchings M ′ in G(J) := G − V (J) − E(H). Thus M ′ together
with J forms a perfect matching of G which intersects H in exactly a edges and so
m(a) =

∑
J m(J). We claim that for all matchings J as above, we have

m(J) ≤
(
dn

e

)n−a

e−αcn−aeξa+5εn.(5)

The first term is the roughly the bound we would get if we would use only the fact
that G(J) has maximum degree (1 + ε)dn. The second term is a small but crucial
improvement on this estimate. The third term is an insignificant error term.

We now prove (5). By Corollary 3.3, we have

m(J) ≤ (1 + ε)n−a
∏

v∈V \V (J)

max{dG(J)(v), d0(ε)}
e

,(6)

where d0(ε) is the integer defined in Corollary 3.3. Thus we have reduced the problem
of bounding m(J) to that of finding accurate upper bounds on the degrees of the
vertices in G(J). Recall that the vertex classes of H are C and D and that Δ(G) ≤
(1 + ε)dn since G is (d, ε)-superregular. For a vertex v ∈ C \ V (J) we have

dG(J)(v) ≤ dn(1 + ε− α) =: qH .

We say that a vertex v ∈ V \ V (H) is average for J if in the graph G it has at least
(1 − ε)d(a − εn) neighbors in W ∩ V (J). Let V av be the set of such vertices. For
v ∈ V av, we have

dG(J)(v) ≤ dn(1 + ε− (1 − ε)(a/n− ε)) =: qJ .

Since G is (d, ε)-superregular, we have that |V av| ≥ n− cn− εn if a ≥ εn. If a ≤ εn,
then trivially every vertex in v ∈ V \ V (H) is average for J , so the above bound on
|V av| holds in this case, too. Moreover, note that both qH ≥ d0(ε) and qJ ≥ d0(ε)
since n is sufficiently large compared to ε. Thus, inserting all these bounds into (6)
gives

m(J) ≤ (1 + ε)nea−n(qH)|C\V (J)|(qJ)|V
av|((1 + 2ε)dn)n−a−|C\V (J)|−|V av|.

MULTICOLORED HAMILTON CYCLES 281

Now note that qJ ≤ (1 + 2ε)dn to deduce that the right-hand side is maximized if
|V av| is minimized. Thus

m(J) ≤ eεnea−n(qH)cn−a(qJ)(1−c−ε)n((1 + 2ε)dn)εn

≤
(
dn

e

)n−a

expQ,(7)

where Q := εn + QH + QJ + 2ε(εn) and

QH :=(ε− α)(cn− a),

QJ :=[ε− (1 − ε)(a/n− ε)][(1 − c− ε)n].

Note that, we made use of the fact that 1 +x ≤ ex three times in order to obtain (7).
Now observe that

QH ≤ −αcn + αa + εn,

QJ ≤ εn− a(1 − c− ε)(1 − ε) + εn ≤ −a(1 − 2c) + 2εn.

Altogether, we thus have

Q ≤ εn− αcn + αa + εn− a + 2ac + 2εn + εn ≤ −αcn− a + ξa + 5εn,

which proves (5).
Let pa denote the probability that a perfect matching which is chosen uniformly

at random in the set of all perfect matchings in G contains exactly a edges of H. Thus
pa = m(a)/m(G) =

∑
J m(J)/m(G). Let |

∑
J | denote the number of summands,

i.e., the number of matchings in H of cardinality a. Each matching of cardinality a
in H can be obtained by first choosing a subset of a vertices in C and then choosing
one neighbor in H for each vertex in this subset. Thus, writing (x/0)0 := 1 for all
x > 0, it follows that∣∣∣∣∑

J

∣∣∣∣ ≤
(
cn

a

)
((1 + ξ)αdn)

a
(2)

≤
(

e1+ξαcdn2

a

)a

.(8)

Since the bound (5) on m(J) is independent of J , we can now combine (4) and (5) to
obtain

pa =
∑
J

m(J)

m(G)
≤

∣∣∣∣∑
J

∣∣∣∣ (e

dn

)a

e5εne−αcn−aeξa+5εn

(8)

≤
(eαcn

a

)a

e−αcne2ξa+10εn.

Now define β′ by a = β′αcn and let g(β′) := log{(e/β′)β
′
/e}. Then

pa ≤
((

e

β′

)β′

e−1

)αcn

e2ξa+10εn ≤ exp {αcn(g(β′) + 2ξβ′ + ξ)} .

Now set μ := αcn to obtain

pa ≤ exp{μ(g(β′) + ξ(1 + 2β′))}.

282 DANIELA KÜHN AND DERYK OSTHUS

(Note that if ξ = 0 and β′ < 1, this would be exactly the standard Chernoff bound
on the probability that X ≤ β′μ, where X has a binomial distribution with mean μ;
see, e.g., Theorem A.12 in [3].) It is easy to check that g(β′) < 0 if β′ �= 1.

The assertion (i) (i.e. the case β < 1) of the lemma now follows with f(β) :=
−g(β)/4 by summing over all values of a between 1 and βμ. Indeed, as g(β′) is
negative and increasing for β′ < 1, we have

P (|M ∩ E(H)| ≤ βαcn) ≤ βμ exp{μg(β) + 3ξ} ≤ βμ exp{μg(β)/2},

as required. To prove the assertion (ii) of the lemma, we first consider the case
1 < β ≤ β′ ≤ e2. As g(β′) is negative and decreasing for β′ > 1, it follows that

pa ≤ exp{μ(g(β) + 17ξ)} ≤ exp{μg(β)/2}.

Next consider the case that β′ ≥ e2. It is easy to check that g(β′) ≤ −β′. Thus

pa ≤ exp{μ(−β′ + ξ(1 + 2β′))} ≤ exp{−μβ′/2}.

Similarly to the case (i), the assertion of the lemma in case (ii) now follows by summing
the bounds on pa over all values of a between βμ and cn.

4. Proof of Theorems 1.1–1.3. We will prove Theorem 1.1 by decomposing
H into small “almost regular” subgraphs Hij and a small remainder F . We will apply
Lemma 3.8 to each of the Hij separately and then use Lemma 3.6 to show that a
random perfect matching contains only a negligible number of edges of F .

Proof of Theorem 1.1. By adding all the vertices in V (G) \ V (H) to H, we may
assume that H is a spanning subgraph of G. Set β := 1 + η/4, define f(β) as in the
statement of Lemma 3.8, and choose parameters α, ε, ξ, c′ so that 0 < ε
 α, c′, d ≤ 1
and c′
 α
 ξ
 ν, η, f(β). Thus the restrictions in the statement of Lemma 3.8
are satisfied. Choose N0 to be sufficiently large compared to both 1/ε and the integer
n0(α, ε, ξ, c

′, d) defined in Lemma 3.8. Finally, fix a constant c such that cn ∈ N and
c′ ≤ c ≤ 2c′.

First, we prove the upper bound in Theorem 1.1. Let � be the smallest integer so
that eξ�/2α > 1 + ε. Thus

� ≤ 2

ξ
log(2/α) ≤ 1/

√
c.(9)

Let A0 be the set of vertices in A with dH(a) < αdn. For all i ≥ 1, let αi := eξ(i−1)/2α.
Thus

αi+1 ≤ (1 + ξ)αi(10)

since eξ/2 ≤ 1 + ξ (see, e.g., [4, section 1.1]). Moreover,

1 + ε < α�+1 ≤ 2.(11)

For all i with 1 ≤ i ≤ �, let Ai be the set of vertices in a ∈ A with αidn ≤ dH(a) <
αi+1dn. Since G is (d, ε)-superregular and thus dH(a) ≤ dG(a) ≤ (1 + ε)dn for each
a ∈ A, it follows that the Ai with 0 ≤ i ≤ � give a partition of A.

We now define a partition of the edge set of H into graphs Hij . Given 1 ≤ i ≤ �,
define qi by |Ai| = qicn and let q(i) := �qi�. We partition the vertices in Ai into

MULTICOLORED HAMILTON CYCLES 283

q(i) + 1 parts Aij with 0 ≤ j ≤ q(i) as follows: the partition is arbitrary except that
we require that |Aij | = cn for all j ≥ 1. Thus |Ai0| < cn and so

�∑
i=1

|Ai0| ≤ �cn ≤
√
cn ≤ αn.(12)

Let Hij be the subgraph of H induced by Aij and B. Then for all a ∈ Aij , we have

αidn ≤ dHij (a) < αi+1dn
(10)

≤ (1 + ξ)αidn.(13)

Let H00 be the subgraph of H which is induced by A0 and B. Given 1 ≤ i ≤ �, let
Hi0 be the subgraph of H which is induced by Ai0 and B. Let F denote the union of
all the Hi0 with 0 ≤ i ≤ �. Then

e(F) ≤ αdn|A0| +
�∑

i=1

|Ai0|αi+1dn
(11),(12)

≤ αdn2 + 2αdn2 ≤ 4αe(G) ≤ ηe(H)/4.

(14)

Let M be a perfect matching chosen uniformly at random from the set of all perfect
matchings in G. Let Xij := |M ∩ E(Hij)| and μi := αicn. (Note that μi can be
thought of as roughly the expected value of Xij .) Then for all i, j with i, j ≥ 1 we can
apply Lemma 3.8(ii) to Hij to see that with probability at least 1− e−f(β)μi we have
Xij ≤ βμi (apply the lemma with αi taking on the role of the parameter α there).
Moreover, we can apply Lemma 3.6 to F as follows: Let Δ′ := α. Then (12) implies
that at most Δ′n vertices of F have degree more than Δ′dn. Thus Lemma 3.6 implies
that with probability at least 1 − e−2εn we have

|M ∩ E(F)| ≤ 9αn ≤ ηνn/2.

But F and the sets E(Hij) with i, j ≥ 1 form a partition of E(H), and so with

probability at least 1 − e−2εn −
∑�

i=1 q(i)e
−f(β)μi ≥ 1 − e−εn we have

|M ∩ E(H)| ≤ ηνn/2 + β

�∑
i=1

q(i)μi ≤ ηνn/2 + β

�∑
i=1

|Ai|αi.

Now use the fact that
∑�

i=1 |Ai|αidn ≤ e(H) ≤ (1+ ε)νdn2 to see that |M ∩E(H)| ≤
ηνn/2 + β(1 + ε)νn ≤ (1 + η)νn, as required.

The proof of the lower bound is almost exactly the same: in this case, we let
β = 1 − η/4. The graphs Hij are defined as before. We now apply Lemma 3.8(i) to

Hij to see that with probability at least 1 −
∑�

i=1 q(i)e
−f(β)μi ≥ 1 − e−εn we have

Xij ≥ βμi for all i, j with i ≥ 1. Thus with probability at least 1 − e−εn, we have

|M ∩ E(H)| ≥ β

�∑
i=1

q(i)μi ≥ β

�∑
i=1

(|Ai| − cn)αi

(11)

≥ β

�∑
i=1

|Ai|αi − 2β�cn

(9)

≥ β

�∑
i=1

|Ai|αi − 4
√
cn ≥ β

�∑
i=1

|Ai|αi − ηνdn/2.(15)

284 DANIELA KÜHN AND DERYK OSTHUS

But

�∑
i=1

|Ai|αidn
(10)

≥ (1 − 2ξ)

�∑
i=1

|Ai|dnαi+1 ≥ (1 − 2ξ)(e(H) − e(F))

(14)

≥ (1 − 2ξ)(1 − η/4)e(H) ≥ (1 − η/2)νdn2,

which implies the result together with (15).
We can now easily deduce Theorem 1.2 from Theorem 1.1 and Lemma 3.7.
Proof of Theorem 1.2. Put ε := min{1/64, d/5, ε(d, ν, η/2)/2}, where ε(d, ν, η/2)

is as defined in Theorem 1.1. Let N1 be sufficiently large compared to 1/η, 1/ν,
and k as well as larger than n0(ε, d) and N0(d, ν, η/2) defined in Lemma 3.7 and
Theorem 1.1, respectively.

Choose a perfect matching M1 uniformly at random in G and then choose a
perfect matching M2 uniformly at random in G−M1. Lemma 3.7 implies that with
probability at least 1 − e−n the resulting 2-factor R = M1 ∪ M2 contains at most
n/(log n)1/5 cycles. Moreover, Theorem 1.1 implies that we may assume that

(1 − η/2)2νin ≤ |R ∩ E(Hi)| ≤ (1 + η/2)2νin(16)

for all i ≤ k. Thus it suffices to prove that there is a Hamilton cycle C in G which
has sufficiently many edges in common with R. This is achieved using a standard
argument based on expansion properties of G.

Let C ′ be any cycle in R with the property that there are adjacent vertices
x and y on C ′ such that x has a neighbor z outside C ′. (Using that G is (d, ε)-
superregular, it is easy to see that such a cycle always exists unless R is already a
Hamilton cycle. Indeed, since δ(G) ≥ (1 − ε)dn, each cycle in R of length at most
(1 − ε)dn will have a neighbor outside and thus can be taken to be C ′. On the other
hand, |NG(X)| ≥ (1 − ε)n for any set X of size at least (1 − ε)dn/2 ≥ εn which lies
in one of the vertex classes of G. This implies that if all the cycles in R have length
at least (1 − ε)dn and R is not a Hamilton cycle, then we can take for C ′ any cycle
of R.)

Let C ′′ denote the cycle in R which contains z. Let P denote the path obtained
from C ′ ∪ C ′′ by adding the edge xz and deleting xy as well as one of the edges on
C ′′ adjacent to z. Note that the length of P is odd. If one of the endpoints of P has
a neighbor outside P , we can further enlarge P in a similar way. So suppose we can
no longer enlarge P in this way and view P as a directed path whose first vertex is
denoted by x and whose final vertex is denoted by y. Thus all the neighbors of x and
y lie on P . Moreover, since P is odd, x and y lie in different vertex classes of G.

We claim that there is a cycle C∗ which has the same vertex set as P . Let X1

be the set consisting of the first �dG(x)/2� neighbors of x on P and let X2 consist
of all other neighbors. Define Y1 and Y2 similarly. It is easily seen that either (i) all
vertices in Y1 come before all those in X2 or (ii) all vertices in X1 come before those
in Y2. Suppose first that (i) holds. Note that |Xi|, |Yj | ≥ δ(G)/4 ≥ (1 − ε)dn/4 ≥ εn
and so the (d, ε)-superregularity of G implies that there is an edge e ∈ E(G) between
a predecessor p of some vertex y1 ∈ Y1 and a successor s of some vertex x2 ∈ X2. We
thus obtain a cycle C∗ whose vertex set is V (P) by removing the edges py1 and x2s
from P and adding the three edges e, xx2, and yy1. The case (ii) is identical except
that we now consider the predecessors of the vertices in X1 and the successors of the
vertices in Y2.

MULTICOLORED HAMILTON CYCLES 285

Altogether, we have now constructed a 2-factor where the number of cycles has
decreased. Continuing in this way, we eventually arrive at a Hamilton cycle C. It
is easy to check that the symmetric difference of C and R contains only at most
5n/(log n)1/5 ≤ ηνn/2 edges. Together with (16) this shows that C is as required in
the theorem.

It remains to deduce Theorem 1.3 from Theorems 1.1 and 1.2.
Proof of Theorem 1.3. First suppose that n is even. Set n′ := n/2. Consider

a random partition of the vertex set of G into two sets A and B of equal size. Let
G′ be the bipartite subgraph of G between A and B. Lemma 2.1 implies that we
may assume that the graph G′ is (d, 2ε)-superregular (in the bipartite sense) if n is
sufficiently large compared to ε. Also, Lemma 2.1 implies that we may assume that
the density of the bipartite subgraph of Hi between A and B is still close to νid for
all i ≤ k. Thus we can apply Theorems 1.1 and 1.2 in this case.

Now suppose that n is odd and set n′ := �n/2�. Delete any vertex x from the
vertex set of G. Again, Lemma 2.1 implies that we may assume that the bipartite
graph G′ = (A,B) constructed as above on the remaining 2n′ vertices is (d, 3ε)-
superregular if n is sufficiently large compared to ε. Moreover, we may assume that
for all i ≤ k the density of the bipartite subgraph of Hi between A and B is still very
close to that of Hi, i.e., close to νid. Thus we may apply Theorem 1.2 to obtain a
Hamilton cycle C ′ which satisfies

(1 − η/2)2νin
′ ≤ |C ′ ∩ E(Hi − x)| ≤ (1 + η/2)2νin

′.

Let P be a Hamilton path obtained from C ′ by adding an edge between x and some
vertex y ∈ C ′ and deleting one of the two edges on C ′ incident to y. As in the
proof of Theorem 1.2, one can easily show that one can transform P into a Hamilton
cycle C by deleting two and adding three edges. Then C is as required in Theorem
1.3(i).

REFERENCES

[1] M. J. Albert, A. Frieze, and B. Reed, Multicoloured Hamilton cycles, Electron. J. Combin.,
2 (1995), #R10.

[2] N. Alon, V. Rödl, and A. Ruciński, Perfect matchings in ε-regular graphs, Electron. J. Com-
bin., 5 (1998), #R13.

[3] N. Alon and J. Spencer, The Probabilistic Method, 2nd edition, Wiley-Interscience, New
York, 2000.

[4] B. Bollobás, Random Graphs, 2nd edition, Cambridge Studies in Advanced Mathematics 73,
Cambridge University Press, Cambridge, UK, 2001.

[5] L. M. Brégman, Some properties of nonnegative matrices and their permanents, Soviet Math-
ematics Doklady, 14 (1973), pp. 945–949.

[6] C. Cooper and A. Frieze, Multicoloured Hamilton cycles in random graphs; an anti-Ramsey
threshold, Electron. J. Combin., 2 (1995), #R19.

[7] F. R. K. Chung, Spectral Graph Theory, CBMS Reg. Conf. Ser. Math. 92, AMS, Providence,
RI, 1997.

[8] G. P. Egorichev, The solution of the van der Waerden problem for permanents,
Dokl. Akad. Nauk SSSR, 258 (1981), pp. 1041–1044.

[9] D. I. Falikman, A proof of the van der Waerden’s conjecture on the permanent of a doubly
stochastic matrix, Mat. Zametki, 28 (1981), pp. 931–938.

[10] A. Frieze and M. Krivelevich, On packing Hamilton cycles in ε-regular graphs, J. Combin.
Theory Ser. B, 94 (2005), pp. 159–172.

[11] S. Janson, T. �Luczak, and A. Ruciński, Random Graphs, Wiley-Interscience, New York,
2000.

[12] D. Kühn and D. Osthus, Loose Hamilton cycles in 3-uniform hypergraphs of large minimum
degree, J. Combin. Theory Ser. B, to appear.

286 DANIELA KÜHN AND DERYK OSTHUS

[13] V. Rödl and A. Ruciński, Perfect matchings in ε-regular graphs and the blow-up lemma,
Combinatorica, 19 (1999), pp. 437–452.

[14] V. Rödl, A. Ruciński, and E. Szemerédi, A Dirac-type theorem for 3-uniform hypergraphs,
Combin. Probab. Comput., 15 (2006), pp. 229–251.

[15] A. Schrijver, A short proof of Minc’s conjecture, J. Combin. Theory Ser. A, 25 (1978), pp.
80–83.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 2, pp. 287–290

ON MULTICAST REARRANGEABLE 3-STAGE CLOS NETWORKS
WITHOUT FIRST-STAGE FAN-OUT∗

HONG-BIN CHEN† AND FRANK K. HWANG†

Abstract. For the multicast rearrangeable 3-stage Clos networks where input crossbars do not
have fan-out capability, Kirkpatrick, Klawe, and Pippenger gave a sufficient condition and also a
necessary condition which differs from the sufficient condition by a factor of 2. In this paper, we
first tighten their conditions. Then we propose a new necessary condition based on the affine plane
such that the necessary condition matches the sufficient condition for an infinite class of 3-stage Clos
networks.

Key words. rearrange, Clos networks, multicast, affine plane

AMS subject classifications. 94C15, 05B05

DOI. 10.1137/05062336X

1. Introduction. Consider a 3-stage Clos network C(n1, r1,m, n2, r2), where
the input stage consists of r1 n1 ×m crossbars, the middle stage m r1 × r2 crossbars,
the output stage r2 m× n2 crossbars, and where there exists one link between every
pair of crossbars between two adjacent stages (see Figure 1).

The inlets of the input crossbars are the inputs of the network, and the outlets of
the output crossbars are the outputs of the network. In the multicast traffic network,
an input can appear in a request more than once. If the appearance is restricted to at
most f times, the traffic is called an f -cast traffic. If there is no restriction, then it is
called the broadcast traffic. A network is rearrangeable if any set of disjoint pairs of
inputs and outputs can be simultaneously connected. If the calls come sequentially,
rearrangeability means we can disconnect all existing connections and reroute them
together with the new call simultaneously.

A crossbar is said to have the fan-out capability if the crossbar itself can route
multicast traffic without blocking, i.e., any inlet can be connected to any number of
idle outlets regardless of other connections. If the crossbars in a given stage perform
only point-to-point connections, then we say the stage has no fan-out capability. Four
models have been studied [3] on 3-stage Clos networks:

Model 0. no restriction on fan-out capability,
Model 1. input stage has no fan-out capability,
Model 2. middle stage has no fan-out capability,
Model 3. output stage has no fan-out capability.

Masson and Jordan [7] proved that C(n1, r1,m, n2, r2) under model 2 is multicast re-
arrangeable if and only if m ≥ max{min{n1f,N2},min{n2, N1}}. However, necessary
and sufficient conditions are not known under the other models. Under model 1, Kirk-
patrick, Klawe, and Pippenger [6] gave a sufficient condition for C(n1, r1,m, n2, r2)
to be multicast rearrangeable, and also a necessary condition which differs from the

∗Received by the editors January 27, 2005; accepted for publication (in revised form) October 12,
2005; published electronically March 24, 2006.

http://www.siam.org/journals/sidma/20-2/62336.html
†Department of Applied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan

(andan.am92g@nctu.edu.tw, fhwang@math.nctu.edu.tw). The work of the second author was par-
tially supported by Republic of China, National Science Council grant NSC 92-2115-M-009-014.

287

288 HONG-BIN CHEN AND FRANK K. HWANG

Fig. 1. C(3, 4, 5, 3, 4).

sufficient condition by a factor of 2. In this paper, we tighten their conditions, then
propose a new necessary condition which matches the sufficient condition for an infi-
nite class of networks.

2. Main results. Kirkpatrick, Klawe, and Pippenger proved the following the-
orem.

Theorem 2.1. (i) C(n1, r1,m, n2, r2) is broadcast rearrangeable under model 1 if
m ≥ n1 + (n2(n2 − 1)r2)

1/2, (ii) C(n1, r1,m, n2, r2) is broadcast rearrangeable under

model 1 only if m ≥ n1+(n2(n2−1)r2)
1/2

2 .
In the following theorem we modify Theorem 2.1(i) by considering integrality of

the number of crossbars. We also improve Theorem 2.1(ii).
Theorem 2.2. (i) C(n1, r1,m, n2, r2) is broadcast rearrangeable under model 1 if

m ≥ �(n2r2
n2−1)1/2�(n2−1)+(n1−n2+1)+, where x+ = max{x, 0}, (ii) C(n1, r1,m, n2, r2)

is broadcast rearrangeable under model 1 only if m ≥ max{n1, �n2/2��(2r2)1/2�}.
Proof. (i) The set L of requests each asking to connect to at least �(n2r2

n2−1)1/2�
outputs has size of at most

n2r2
�(n2r2

n2−1)1/2� ≤ n2r2
(n2r2
n2−1)1/2

= [n2r2(n2 − 1)]1/2 ≤
⌈(

n2r2
n2 − 1

)1/2
⌉

(n2 − 1).

Route each of these requests through a distinct middle crossbar. A request g other
than these can ask for connections to a set Og of at most �(n2r2

n2−1)1/2� − 1 output
crossbars. Such a request has to be routed through a middle crossbar not taken by
any of the at most (�(n2r2

n2−1)1/2� − 1)(n2 − 1) outputs on crossbars in Og, nor by the
n1 − 1 inputs on the same input crossbar as g. Therefore(⌈(

n2r2
n2 − 1

)1/2
⌉
− 1

)
(n2−1)+(n1−1)+1 =

⌈(
n2r2
n2 − 1

)1/2
⌉

(n2−1)+n1−n2 +1

middle crossbars are sufficient to route g. However, if n1 − n2 + 1 < 0, the number of
middle crossbars still cannot be less than the number required to route L.

(ii) Construct a complete graph Kv with v = �(2r2)1/2� vertices and e =
(
v
2

)
≤ r2

edges. Label each edge by a distinct output crossbar. Take c = �n2/2� copies of
Kv, keeping the edge-labels intact, and label the vc vertices by the set {1, 2, . . . , vc}.
Identify each vertex u as a request (Ou1, . . . , Ou(v−1)), where Ou1, . . . , Ou(v−1) are the
labels of the v − 1 edges incident to u. Note that each output crossbar appears in
2c ≤ n2 requests.

MULTICAST REARRANGEABLE CLOS NETWORKS 289

Since every pair of requests intersect in at least one output crossbar, each of the
vc requests must be routed through a distinct middle crossbar.

Our construction in (ii) improves over that of [6] by increasing the number of edges

in Kv. The corresponding graph in [6] contains only r
1/2
2 vertices, hence roughly r2/2

edges.

Corollary 2.3. Part (ii) is valid for f-cast traffic with f ≥ �(2r2)1/2� − 1.

Next we give a stronger necessary condition which is based on the observation
that requests from the same input crossbar cannot use the same middle crossbar,
even if the requests do not intersect (in output crossbars). Then the request graph
we need to construct is no longer a complete graph, but a graph whose vertices can
be partitioned into r1 subsets such that an edge exists between every pair of vertices
from different subsets. Such a graph corresponds to a resolvable block design.

A block design B(v, b, r, k, 1) is a collection of b k-subsets (called blocks) of a v-set
S, k < v, such that each pair of elements of S appears together in exactly one block
and each element of S appears in exactly r blocks. B(v, b, r, k, 1) is resolvable if the
blocks can be partitioned into r orbits such that each element appears once in each
orbit. For example, the following 12 blocks form a resolvable B(9, 12, 4, 3, 1) which
can be grouped into 4 orbits, each of 3 blocks, so that the blocks in each orbit together
contain each element exactly once:

({1, 2, 3}, {4, 8, 9}, {5, 6, 7}),
({1, 5, 8}, {3, 4, 6}, {2, 7, 9}),
({1, 4, 7}, {2, 6, 8}, {3, 5, 9}),
({1, 6, 9}, {2, 4, 5}, {3, 7, 8}).

A block design B(n2, n2 + n, n + 1, n, 1) is called an affine plane of order n. It
is well known that every affine plane is resolvable and that an affine plane of order q
exists whenever q is a prime power; see [1].

Theorem 2.4. For every prime power q, and every M in the range 1 ≤ M ≤ r,
there exist n1 ≥ q, r1 ≥ M,n2 ≥ M , and r2 ≥ q2 such that C(n1, r1,m, n2, r2) is
broadcast rearrangeable only if m ≥ q(q + 1).

Proof. For a prime power q we know that there exists an affine plane of order q,
i.e., a resolvable block design B(q2, q2 + q, q + 1, q, 1). Identify the elements as the
output crossbars, the orbits as the input crossbars, and the blocks as inputs, while
the elements in a block i represent the output crossbars input i requests to connect.
Note that each output crossbar appears in M ≤ n2 requests. Hence the given set of
requests are legitimate.

By our construction, two requests from different input crossbars (orbits) intersect
in one output crossbar and hence must be routed through different middle crossbars.
Requests from the same input crossbar do not intersect in any output crossbar, but
still have to be routed through different middle crossbars since they share the input
crossbar. Therefore the total number of middle crossbars required is at least the
number of requests constructed above, which is q(q + 1).

Introduction of the parameter M is just to broaden the applicability of Theorem
2.4, i.e., n2 does not have to be equal r, but can be less.

Now we show that the necessary condition of Theorem 2.4 matches the sufficient
condition in Theorem 2.2(i). Theorem 2.4 shows the necessary condition is m ≥
q(q+1). From Theorem 2.2(i), setting n1 = v

k = q, n2 = M = q+1, and r2 = v = q2,

290 HONG-BIN CHEN AND FRANK K. HWANG

the sufficient condition is

m ≥
⌈(

Mq2

q

)1/2
⌉
q + (q − (q + 1) + 1)+ = �((q + 1)q)1/2�q = q(q + 1),

same as the necessary condition.
Corollary 2.5. Theorem 2.4 holds for f-cast traffic with f ≥ q.

3. Conclusions. The current necessary condition for broadcast rearrangeable 3-
stage Clos networks differs from the sufficient condition by a factor of 2. We tightened
these conditions such that they match for an infinite class of 3-stage Clos networks.
This shows that our tightened conditions cannot be further improved for general
parameters.

While the main results obtained for multicast rearrangeable 3-stage Clos networks
are for broadcast networks so far, our arguments for necessary conditions are valid
also for f -cast networks for some specific f as shown in the corollaries, thus starting
the study of f -cast rearrangeable 3-stage Clos networks, which has been a vacuum so
far.

The model-1 model can be interpreted in two ways. One is that the input crossbars
do not have the fan-out capability, and thus perhaps can be obtained with a cheaper
cost. The other is that they do have the fan-out capability, but our routing algorithm
chooses not to use it. This type of routing algorithm has been used in the mixed-
requirement model where all point-to-point requests meet the strictly nonblocking
requirement and all f -cast requests for f ≥ 2 meet the rearrangeable requirement
[2, 4, 5].

REFERENCES

[1] I. Anderson, Combinatorial designs: Construction methods, Ellis Horwood Limited, New York,
1990.

[2] D.-Z. Du and H. Q. Ngo, An extension of DHH-Erdös conjecture on cycle-plus-triangle graphs,
Taiwanese J. Math., 6 (2002), pp. 261–267.

[3] F. K. Hwang, The mathematical theory of nonblocking switching networks, 2nd ed., World
Scientific, Hackensack, NJ, 2004.

[4] F. K. Hwang, S. C. Liaw, and L. D. Tong, Strictly nonblocking 3-stage Clos networks with
some rearrangeable multicast capability, IEEE Trans. Commun., 51 (2003), pp. 1765–1767.

[5] F. K. Hwang and C. H. Lin, Broadcasting in a 3-stage point-to-point nonblocking networks,
Inter. J. Rel. Qual. Safety Engin., 2 (1995), pp. 299–307.

[6] D. G. Kirkpatrick, M. Klawe, and N. Pippenger, Some graph-coloring theorems with appli-
cations to generalized connection networks, SIAM J. Algebraic Discrete Methods, 6 (1985),
pp. 576–582.

[7] G. M. Masson and B. W. Jordan, Jr., Generalized multi-stage connection networks, Networks,
2 (1972), pp. 191–209.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 2, pp. 291–301

A DICHOTOMY THEOREM ON FIXED POINTS OF SEVERAL
NONEXPANSIVE MAPPINGS∗

TOMÁS FEDER†

Abstract. The problem of finding a fixed point of a nonexpansive mapping on a hypercube
is that it has a polynomial time algorithm. In fact, it is known that one can find a 2-satisfiability
characterization of the set of all fixed points in polynomial time. This implies that the problem of
finding a vertex that is a common fixed point of several given nonexpansive mappings on a hypercube
is that it has a polynomial time algorithm.

We consider the problem of finding a vertex that is a common fixed point of several given non-
expansive mappings on a more general Cartesian product of graphs. For a single nonexpansive
mapping, a known polynomial time algorithm finds a fixed point and a 2-satisfiability-like character-
ization of all fixed points. We introduce graphs with a farthest point property (also called apiculate
graphs in [H. J. Bandelt and V. Chepoi, The Algebra of Metric Betweenness: Subdirect Represen-
tations, Retracts, and Axiomatics, manuscript]), and show that finding a common fixed point of
several nonexpansive mappings on Cartesian products of such graphs involves using a polynomial
time algorithm. We generalize this result to any family of graphs having a majority function.

By contrast, the smallest graph (in the sense of having the fewest vertices, and the fewest edges of
those having the fewest vertices) without the farthest point property is K2,3, and finding a vertex that
is a fixed point of two given nonexpansive mappings (retractions) on a Cartesian product of graphs
isomorphic to K2,3 is NP-complete. More generally, we exhibit an infinite family of graphs without
the farthest point property giving NP-completeness. We show that for any family of graphs not
having a majority function, the existence of a common fixed point of two nonexpansive mappings
on Cartesian products of such graphs is NP-complete. This proves a dichotomy for the problem
based on the existence of a majority function; a similar dichotomy is obtained for the special case of
nonexpansive mappings that are retractions. Finally we characterize the families of chordal graphs
corresponding to both dichotomies.

Key words. fixed points, nonexpansive mappings, product graphs, apiculate graphs, retractions

AMS subject classifications. 68R10

DOI. 10.1137/S0895480103427734

1. Introduction. Many results in computational complexity take the form of
a dichotomy theorem, where every problem in a given class is shown to be either
polynomial time solvable or NP-complete. An early result is Schaefer’s dichotomy
of Boolean constraint satisfaction problems [7]. Beyond the Boolean domain, an
approach to general constraint satisfaction was proposed by Feder and Vardi [5].
Recently, Bulatov has classified 3-element and conservative constraint satisfaction
problems, with two dichotomy theorems [2, 3].

A similar dichotomy and classification project, for network stability problems,
was initiated by Mayr and Subramanian [6] and Subramanian [8, 9]. They showed
that every Boolean network stability problem is either monotone, linear, adjacency-
preserving, or NP-complete. They also showed that the monotone and linear cases
are polynomial, and that a family of adjacency-preserving problems, the scatter-free
case (containing stable matching as a special case), is polynomial as well. The general
adjacency-preserving case was studied as the problem of finding a fixed point of a
nonexpansive mapping on a hypercube, and was shown polynomial by Feder [4], also

∗Received by the editors May 11, 2003; accepted for publication (in revised form) October 25,
2005; published electronically March 24, 2006.

http://www.siam.org/journals/sidma/20-2/42773.html
†Stanford University, 268 Waverley St., Palo Alto, CA 94301 (tomas@theory.stanford.edu).

291

292 TOMÁS FEDER

generalizing the nonexpansive case to other Cartesian products of graphs, and thus
extending the results beyond the Boolean domain.

The n-dimensional hypercube (or n-cube) is the graph G = (V,E), where V
consists of all n-bit vectors x = x1x2 · · ·xn, xi ∈ {0, 1}, and two vertices x, y in V
are joined by an edge in E if there exists a 1 ≤ i ≤ n such that xi �= yi, and xj = yj
for all j �= i. The distance d(x, y) between two vertices x, y in the n-cube equals the
number of positions 1 ≤ i ≤ n such that xi �= yi.

A mapping f : V (G) → V (G) on the n-cube G is nonexpansive if d(f(x), f(y)) ≤
d(x, y) for all vertices x, y in G. A fixed point of a nonexpansive mapping f is a vertex
x such that f(x) = x. Assuming that a nonexpansive f on the n-cube is given by
a black box that can be queried in polynomial time, we specify an input x to f and
the black box gives the image f(x). Feder [4] gave a polynomial time algorithm for
finding a fixed point x of a nonexpansive f on the n-cube, if one exists, and a second
polynomial time algorithm that finds a 2-satisfiability instance on the variables xi

whose set of solutions characterizes the set of fixed points x = x1x2 · · ·xn of the
nonexpansive mapping f .

Suppose we are given a collection of nonexpansive mappings fi : V (G) → V (G)
on the n-cube G, 1 ≤ i ≤ m, and that we wish to find a common fixed point x with
fi(x) = x for all i. We may then combine the m corresponding 2-satisfiability instances
to obtain a single 2-satisfiability instance characterizing the set of all common fixed
points, which can be solved in polynomial time to find a common fixed point, if one
exists.

We study a generalization of the problem of finding common fixed points of a
collection of nonexpansive mappings to Cartesian products of graphs, which include
the hypercube as the simplest special case. Given n graphs G1, G2, . . . , Gn, their
Cartesian product G = G1 G2 · · · Gn has vertices V (G) given by x = x1x2 · · ·xn

with xi ∈ V (Gi), and two vertices x, y in V (G) are joined by an edge in E(G) if there
exists an 1 ≤ i ≤ n such that (xi, yi) is an edge in E(Gi), and xj = yj for all j �= i.
The distance function d on G satisfies d(x, y) =

∑
1≤i≤n di(xi, yi), where di is the

distance function on Gi.

A mapping f : V (G) → V (G) on a Cartesian product G = G1 G2 · · · Gn is
nonexpansive if d(f(x), f(y)) ≤ d(x, y) for all vertices x, y in V (G). A fixed point of a
nonexpansive mapping f on G is a vertex x such that f(x) = x. Assuming again that
f is given by a black box that can be queried in polynomial time, Feder [4] showed
the following theorem.

Theorem 1.1. There is a polynomial time algorithm (polynomial in the sum of
the sizes of the Gi) that finds sets Sij ⊆ V (Gi Gj) for all 1 ≤ i < j ≤ n such that,
given a partial assignment of values ai ∈ V (Gi) for i ∈ S ⊆ {1, 2, . . . , n} with |S| ≥ 2,
there exists a fixed point x of the nonexpansive mapping f such that xi = ai for all
i ∈ S if and only if aiaj ∈ Sij for all 1 ≤ i < j ≤ n with i, j ∈ S. The partial
assignment of values ai can thus be extended to a fixed point x in polynomial time by
considering the sets Sij.

Suppose now we are given a collection of nonexpansive mappings fi : V (G) →
V (G) on a Cartesian product G = G1 G2 · · · Gn, with 1 ≤ i ≤ m. We wish to
determine whether the question of the existence of a common fixed point x with
fi(x) = x for all 1 ≤ i ≤ m can be solved in polynomial time; we obtain both positive
and negative answers to this question.

Given vertices xi, yi in V (Gi), the interval I(xi, yi) is the set of vertices ti in Gi

such that d(xi, yi) = d(xi, ti) + d(ti, yi). We say that Gi satisfies the farthest point

FIXED POINTS OF SEVERAL NONEXPANSIVE MAPPINGS 293

property if for all vertices xi, yi, zi there is a unique vertex ti in I(xi, yi)∩I(xi, zi) that
maximizes d(xi, ti) over all ti in I(xi, yi) ∩ I(xi, zi). Note that, in particular, cliques
and cycles satisfy the farthest point property, and that the Cartesian products and
the retracts of graphs satisfying the farthest point property also satisfy the farthest
point property.

We give a polynomial time algorithm for finding a common fixed point x with
fi(x) = x for all 1 ≤ i ≤ m in the Cartesian product G = G1 G2 · · · Gn, when all
Gi satisfy the farthest point property. We generalize this result to any family G of
graphs Gi having a majority function. The results are shown in a more general form
analogous to Theorem 1.1 involving a structural property that we show holds only for
families G of graphs Gi having a majority function.

The smallest graph not satisfying the farthest point property is the complete
bipartite graph K2,3. We define a family of graphs Ha,b,c for integers a, b, c ≥ 1
that do not satisfy the farthest point property; in particular a = b = c = 1 gives
H1,1,1 = K2,3. We consider the Cartesian product G = G1 G2 · · · Gn, in the case
where all Gi are isomorphic to a given Ha,b,c. We then define pairs of nonexpansive
mappings f1, f2 : V (G) → V (G) that are retractions, i.e., these mappings satisfy
fi(fi(x)) = fi(x) for all vertices x in G. We show that for all choices of Ha,b,c with
a, b, c ≥ 1, the question of whether two such mappings have a common fixed point
f1(x) = f2(x) = x is NP-complete.

We show that if a family G of graphs Gi does not have a majority function, then
the existence of a common fixed point of two nonexpansive mappings fi on Cartesian
products of graphs in G is NP-complete. This proves the dichotomy and classification
of the problem of finding common fixed points of several nonexpansive mappings
on Cartesian products of graphs in G as polynomial or NP-complete depending on
whether G has a majority function or not. A similar dichotomy holds for the special
case of retraction mappings.

Finally we characterize the families of chordal graphs that are polynomial or NP-
complete for the problems of fixed points of multiple nonexpansive mappings and of
fixed points of multiple retraction mappings.

2. Common fixed points with farthest point property and with ma-
jority function. Let fi : V (G) → V (G) be nonexpansive mappings on a Cartesian
product G = G1 G2 · · · Gn, with 1 ≤ i ≤ m. Assume again that fi is given by a
black box that can be queried in polynomial time. We generalize Theorem 1.1 in the
case where each Gi satisfies the farthest point property.

Theorem 2.1. Suppose each Gi satisfies the farthest point property. There is a
polynomial time algorithm that finds sets Sij ⊆ V (Gi Gj) for all 1 ≤ i < j ≤ n such
that, given a partial assignment of values ai ∈ V (Gi) for i ∈ S ⊆ {1, 2, . . . , n} with
|S| ≥ 2, there exists a common fixed point x of the nonexpansive mappings fi such
that xi = ai for all i ∈ S if and only if aiaj ∈ Sij for all 1 ≤ i < j ≤ n with i, j ∈ S.
The partial assignment of values ai can thus be extended to a common fixed point x
with fi(x) = x for all 1 ≤ i ≤ m in polynomial time by considering the sets Sij.

Proof. We can apply Theorem 1.1 to find the corresponding sets Sk
ij for each fk.

We can then define sets Tij that are the intersection of all Sk
ij over all 1 ≤ k ≤ m.

Define a mapping gi(xi, yi, zi) = ti on V (Gi) to be the unique ti maximizing d(xi, ti)
for ti ∈ I(xi, yi)∩I(xi, zi) by the definition of the farthest point property. Note that if
x, y, z are fixed points of fk, so that fk(x) = x, fk(y) = y, fk(z) = z, then t = t1t2 · · · tn
with ti = gi(xi, yi, zi) satisfies t ∈ I(x, y) ∩ I(x, z), fk(t) ∈ I(x, y) ∩ I(x, z), and
d(x, t) = d(x, fk(t)), so fk(t)i ∈ I(xi, yi) ∩ I(xi, zi), and d(xi, ti) = d(xi, fk(t)i),

294 TOMÁS FEDER

therefore fk(t)i = ti and fk(t) = t. That is, the vertex t is also a fixed point of fk.
Thus the sets Sk

ij are such that if xixj , yiyj , zizj ∈ Sk
ij , then gi(xi, yi, zi)gi(xj , yj , zj)

∈ Sk
ij . Furthermore, we have gi(xi, xi, yi) = gi(xi, yi, xi) = gi(yi, xi, xi) = xi. Such

a function gi is called a majority function. We may assume that the graphs Gi

are disjoint, and extend the mappings gi on each Gi to a single mapping g on
V (G1) ∪ V (G2) ∪ · · · ∪ V (Gn) satisfying g(x, x, y) = g(x, y, x) = g(y, x, x) = x.
Furthermore, the sets Tij are closed under g, that is, if xixj , yiyj , zizj ∈ Tij , then
g(xi, yi, zi)g(xj , yj , zj) ∈ Tij . The mapping g is thus a majority function for the sets
Tij . The problem of simultaneously satisfying the conditions xixj ∈ Tij when there
exists a majority function is a constraint satisfaction that can be solved in polynomial
time, as shown by Feder and Vardi [5]. In fact the algorithm in [5] infers smaller sets
Sij ⊆ Tij from the sets Tij by enforcing the condition that for all l �= i, j, if xixj ∈ Sij ,
then there exists an xl such that xixl ∈ Sil and xjxl ∈ Sjl (otherwise xixj is removed
from Sij). As shown in [5], these inferred sets Sij satisfy the condition that any par-
tial solution can be extended to a full solution, as in the statement of the Theorem,
completing the proof.

A family of graphs G has a majority function if each graph Gi in G has a function
gi such that gi(xi, xi, yi) = gi(xi, yi, xi) = gi(yi, xi, xi) = xi for all xi, yi in V (Gi),
and for every pair of graphs Gi, Gj in G, if f is a nonexpansive mapping on Gi Gj ,
and xixj , yiyj , zizj are fixed points of f , then gi(xi, yi, zi)gj(xj , yj , zj) is a fixed point
of f as well.

Note from Theorem 2.1 that the family of graphs with the farthest point property
has a majority function. Another example of graphs with a majority function is the
family of graphs Gi such that for all xi, yi, zi in V (Gi) there is a unique vertex ti in
V (Gi) minimizing d(xi, ti) + d(yi, ti) + d(zi, ti).

Theorem 2.2. The statement of Theorem 2.1 holds for a family G of graphs Gi

if and only if G has a majority function.
Proof. Suppose G has a majority function. Obtain the sets Sk

ij as in Theorem
2.1. The nonexpansive mapping fk on G can be projected to a nonexpansive mapping
fk,ij on Gi Gj whose fixed points are given by Sk

ij as shown in [4]. The projection
fk,ij is obtained by fixing inputs xi, xj , finding a periodic point p for the resulting
function on the remaining positions other than i, j, and obtaining the outputs yi, yj ,
independently of the choice of periodic point p. Thus the Sk

ij are closed under the
majority functions gi, gj , and the result follows as in Theorem 2.1.

If G does not have a majority function, then by the compactness theorem, the
family G has a finite subfamily G′ that does not have a majority function. Then the
sets Sk

ij that can be defined as fixed points of nonexpansive mappings fk,ij do not
satisfy the 2-Helly property, since the 2-Helly property is equivalent to the existence
of a majority function, as shown by Feder and Vardi [5]. The 2-Helly property is the
statement that a partial assignment of ai can be extended to a full solution if and only
if partial assignments consisting of just pairs aiaj can be extended to a full solution,
as in the statement of Theorem 2.1.

3. Common fixed points without farthest point property and without
majority function. Given integers a, b, c ≥ 1, let Ha,b,c be the graph consisting
of five particular vertices x, y, z, u, v, and six paths joining them, with two paths of
length a, from x to u and from x to v, two paths of length b, from y to u and from y
to v, and two paths of length c, from z to u and from z to v. Note that in particular,
for a = b = c = 1, the graph H1,1,1 is a complete bipartite graph K2,3 with u, v on
one side and x, y, z on the other. The graphs Ha,b,c do not satisfy the farthest point

FIXED POINTS OF SEVERAL NONEXPANSIVE MAPPINGS 295

property, since d(x, t) is maximized for t ∈ I(x, y) ∩ I(x, z) at both t = u and t = v.

For a particular choice of integers a, b, c ≥ 1, consider the Cartesian product
G = G1 G2 · · · Gn, where each Gi is isomorphic to Ha,b,c, so that vertices x, y, z, u, v
in Ha,b,c correspond to vertices xi, yi, zi, ui, vi in Gi.

A retraction on G is a nonexpansive mapping f : V (G) → V (G) such that
f(f(x)) = f(x) for all x ∈ V (G). We define several retractions on G. The retractions
fui map r to s in such a way that sj = rj for j �= i, si = ri for ri on the paths joining
ui to xi, yi, zi, respectively, and if ri is on a path joining vi to one of xi, yi, zi, then si
is the corresponding vertex on the corresponding path joining ui to one of xi, yi, zi,
respectively. Similarly, the retractions fvi

map r to s in such a way that sj = rj
for j �= i, si = ri for ri on the paths joining vi to xi, yi, zi, respectively, and if ri is
on a path joining ui to one of xi, yi, zi, then si is the corresponding vertex on the
corresponding path joining vi to one of xi, yi, zi, respectively.

For ti ∈ {xi, yi, zi} and wj ∈ {xj , yj , zj}, the retractions fti,wj
compose fui with

fuj , and then with the mapping taking r to s in such a way that sk = rk for k �= i, j,
and si = ri, sj = rj unless ri = ti and rj = wj , in which case si and sj are the
neighbors of ti and wj on paths to ui and uj , respectively.

Theorem 3.1. For each choice of integers a, b, c ≥ 1, one can define retractions
f1, f2 as compositions of the retractions fui , fvi , fti,wj such that the existence of a
common fixed point f1(x) = f2(x) = x is NP-complete.

Proof. An instance of the one-in-three satisfiability problem has a collection of
variables and triples of variables (X,Y, Z), and asks whether there exists an assign-
ment of values in {0, 1} to each variable in such a way that for each triple (X,Y, Z)
in this instance, one of X,Y, Z has value 1 and the other two have value 0. The
one-in-three satisfiability problem is NP-complete [7].

Let n be the number of triples (X,Y, Z) in a one-in-three satisfiability problem,
so that each Gi corresponds to one such triple, with a correspondence between X,Y, Z
and xi, yi, zi in Gi. Let f1 be the composition of the retractions fvi for 1 ≤ i ≤ n.
Let f2 be the composition of the retractions fui

for 1 ≤ i ≤ n, composed with the
retractions fti,wj such that ti and wj correspond to two distinct variables T and W
in a triple (X,Y, Z) in the one-in-three satisfiability instance.

The mappings f1 and f2 are retractions. Since the range of f1 contains only ver-
tices s such that si is on a path from vi to one of xi, yi, zi, and since the range of f2

contains only vertices s such that si is on a path from ui to one of xi, yi, zi, it follows
that the only candidate fixed points f1(s) = f2(s) = s have all si ∈ {xi, yi, zi}. A
choice of such an s with si ∈ {xi, yi, zi} thus chooses a variable from the correspond-
ing triple (X,Y, Z). Furthermore, if X is chosen for one such triple, then X will also
be chosen for all other triples containing X; otherwise f2(s) �= s, since the retractions
fti,wj used in the definition of f2 guarantee that we cannot choose two distinct vari-
ables T and W that share a triple. Thus the choice of si satisfies f1(s) = f2(s) = s if
and only if the si chooses an element from {xi, yi, zi} corresponding to a solution to
the one-in-three satisfiability problem.

We next show the following theorem.

Theorem 3.2. Let G be a family of graphs that does not have a majority function.
Then the question of whether several nonexpansive mappings fi on a Cartesian product
G of graphs Gi in G have a common x such that fi(x) = x for all fi is NP-complete.

Proof. As in the proof of Theorem 2.2, if G does not have a majority function,
then G has a finite subfamily G′ that does not have a majority function, and then
the sets Sk

ij that can be defined as fixed points of nonexpansive mappings fk,ij do

296 TOMÁS FEDER

not satisfy the 2-Helly property. This means that one can define an instance of the
problem with variables xi constrained by sets Sk

ij of fixed points of fk,ij in such a
way that for some r ≥ 3, there exist values a1, a2, . . . , ar such that no solution x has
xi = ai for all 1 ≤ i ≤ r, but for each 1 ≤ i ≤ r, there exists a solution xi that has
xi
j = aj for all 1 ≤ j ≤ r with j �= i.

Let bi be a possible value for xi
i which is closest to ai in Gi. Let Pi denote a

shortest path from ai to bi in Gi. We may restrict each variable xi with 1 ≤ i ≤ r
ranging over Gi to the path Pi by considering fixed points of the retraction that maps
Gi to Pi by mapping vertices in Gi at distance l from ai to the point on Pi at distance
min(l, d(ai, bi)) from ai.

Let Hi for 1 ≤ i ≤ r be a graph consisting of an edge joining two vertices 0 and 1.
Considering a retraction on Hi Pi that leaves 0ai and all 1x fixed by mapping all 0x
with x �= ai to 1y, where y is the neighbor of x on Pi toward ai. If yixi is the vertex
of Hi Gi so constrained, then there is no solution with yi = 0 for all 1 ≤ i ≤ r, since
such a solution would have xi = ai for all 1 ≤ i ≤ r. However, for each 1 ≤ i ≤ r,
there exists a solution with yi = 1 and yj = 0 for all 1 ≤ j ≤ r with j �= i.

In particular, if we require yj = 0 for all 3 ≤ j ≤ r with an appropriate retraction
on Hj , we have that (y1, y2, y3) cannot be (0, 0, 0) but can be (0, 0, 1), (0, 1, 0), or
(1, 0, 0). Furthermore, for 1 ≤ i < j ≤ 3, we can define a retraction on Hi Hj that
maps 11 to 00, while leaving 00, 01, 10 fixed. This enforces (yi, yj) �= (1, 1), so that
the only possible values for (y1, y2, y3) are (0, 0, 1), (0, 1, 0), and (1, 0, 0). Therefore,
by using fixed points of several nonexpansive mappings, we have defined the one-
in-three satisfiability relation on a Boolean domain, and the result follows from the
NP-completeness of one-in-three satisfiability [7].

Corollary 3.3. Let G be a family of graphs. Then the problem of finding a com-
mon fixed point of several nonexpansive mappings fi on a product G = G1 G2 · · · Gn

of graphs Gi from G is either polynomial time solvable or NP-complete, even with
just two nonexpansive mappings f1 and f2 such that f1 is composed of nonexpan-
sive mappings on G2i−1 G2i, and f2 is given by a permutation σ on 1 ≤ i ≤ n and
isomorphisms from Gi to Gσ(i).

Proof. If G has a majority function, then polynomiality is shown in Theorem 2.2.
If G does not have a majority function, then in the NP-completeness proof of

Theorem 3.2 we have only nonexpansive mappings fk
ij on Gi Gj whose fixed points

give Sk
ij . We may then make r copies of each Gi, one for each fk, so that we now have

a single nonexpansive mapping f1 so composed. It remains to force equality between
the r copies of Gi given by Gi1, . . . , Gir, which is achieved by letting σ(il) = i(l + 1),
with l + 1 obtained modulo r, and f2 mapping Gil to Gσ(il), giving this equality
correspondence for fixed points of f2.

Corollary 3.4. Let G be a family of graphs. Then the problem of finding a
common fixed point of several retractions fi on a product G = G1 G2 · · · Gn of
graphs Gi from G is either polynomial time solvable or NP-complete, even with just
retractions on products Gi Gj.

Proof. Modify the definition of a majority function for G by considering only
nonexpansive mappings f on Gi Gj that are retractions. The polynomiality in the
presence of a majority function follows as in Theorem 2.2, while the NP-completeness
in the absence of a majority follows as in Theorem 3.2 since all nonexpansive mappings
explicitly defined in the proof are retractions.

4. Chordal graphs. In this section we characterize the families of chordal
graphs giving rise to polynomiality or NP-completeness for the problems of fixed

FIXED POINTS OF SEVERAL NONEXPANSIVE MAPPINGS 297

points of multiple nonexpansive mappings and of fixed points of multiple retractions.
A chordal graph is a graph that does not contain any chordless cycles of length at
least four, where a chordless cycle is a cycle where no two nonconsecutive vertices in
the cycle are joined by an edge.

Consider a choice of integers l1, l2, l3 ≥ 0. The graph R0 = R0
l1,l2,l3

has a core S0

consisting of a single vertex y; in addition, there are three vertices x1, x2, x3 in R0,
where vertex xi is joined to the core S0 by a path pi of length li from xi to y.

The graph R1 = R1
l1,l2,l3

has a core S1 consisting of a triangle y1y2y3; in addition,

there are three vertices x1, x2, x3 in R1, where vertex xi is joined to the core S0 by a
path pi of length li from xi to yi.

The graph R2 = R2
l1,l2,l3

has a core S2 consisting of six vertices y1, y2, y3, z12, z23,
z31 with a triangle z12, z23, z31 and edges joining y1 to both z12 and z31, joining y2

to both z12 and z23, and joining y3 to both z23 and z31; in addition, there are three
vertices x1, x2, x3 in R2, where vertex xi is joined to the core S0 by a path pi of length
li from xi to yi.

A subgraph H of a graph G is an isometric subgraph if for every pair of vertices
a, b in H, the distance between a and b is the same in H as in G.

Let G be a chordal graph and consider a triple of vertices a1, a2, a3 in G. The
triple is of type 0 if G has an isometric subgraph isomorphic to R0

l1,l2,l3
with the

vertices x1, x2, x3 coinciding with a1, a2, a3, respectively. The triple is of type 1 if it is
not of type 0 and G has an isometric subgraph isomorphic to R1

l1,l2,l3
with the vertices

x1, x2, x3 coinciding with a1, a2, a3, respectively. The triple is of type 2 if it is not of
type 0 or 1 and G has an isometric subgraph isomorphic to R2

l1,l2,l3
with the vertices

x1, x2, x3 coinciding with a1, a2, a3, respectively.

Lemma 4.1. Let G be a chordal graph. Then every triple of vertices a1, a2, a3 in
G is of type 0, type 1, or type 2.

Proof. Let b1, b2, b3 be three vertices in G satisfying d(ai, aj) = d(ai, bi)+d(bi, bj)+
d(bj , aj) for i �= j. Note that we may always choose (b1, b2, b3) = (a1, a2, a3); choose
the vertices bi so as to minimize D = d(b1, b2)+d(b2, b3)+d(b1, b3). Assume d(b1, b2) ≤
d(b2, b3) ≤ d(b1, b3). We consider three cases.

If d(b1, b2) = 0, then d(b2, b3) = d(b1, b3) = 0, since in this case D = 0 can be
achieved by setting b3 to the common vertex b1 = b2. The three paths from a1, a2, a3

to b1 = b2 = b3 then form an R0
l1,l2,l3

isometric subgraph.

If d(b1, b2) = 1, then d(b2, b3) = d(b1, b3) = 1. Otherwise, if d(b1, b3) = d(b2, b3) +
1, then in this case D = 0 can be achieved by setting b1 and b3 to the vertex b2; and if
d(b2, b3) = d(b1, b3) ≥ 2, then the two paths from b2 to b3 and from b1 to b3 must be
disjoint except for b3, since otherwise we could move b3 to the next common vertex
and reduce D; furthermore, the ith vertex on the path from b2 to b3 can only have an
edge to the ith vertex on the path from b1 to b3, since otherwise we could use an edge
from the ith vertex in one path to the (i + 1)th vertex on the other path to modify
the second path to go through the ith vertex in the first path, so that the two paths
share a vertex other than b3 as before. The fact that these are the only additional
edges for the cycle through b1, b2, b3 implies that the graph has a chordless cycle of
even length at least four, contrary to chordality. Thus b1, b2, b3 form a triangle and
the three paths from a1, a2, a3 to b1, b2, b3 form an R1

l1,l2,l3
isometric subgraph.

Finally, if d(b1, b2) ≥ 2, then d(b1, b2) = d(b2, b3) = d(b1, b3) = 2. Otherwise, the
only edges joining the path from b1 to b2 to the path from b1 to b3 must join the ith
vertex in one path to the ith vertex in the other path, otherwise we could reduce D
by replacing one of the two paths by a path that shares a vertex other than b1 with

298 TOMÁS FEDER

the other path; furthermore, only one such value i is possible, otherwise we would
have a chordless cycle of even length at least four, contrary to chordality. Thus there
is only one edge joining each pair of the three paths from b1 to b2, from b1 to b3, and
from b2 to b3, and adding three edges to the cycle going through b1, b2, b3 can only
add enough chords to forbid chordless cycles if d(b1, b2) = d(b2, b3) = d(b1, b3) = 2. In
that case, we have paths b1c12b2, b2c23b3, and b3c31b1, with chords forming a triangle
c12c23c31. These six vertices form the core S2, and the three paths from a1, a2, a3 to
b1, b2, b3 form an R2

l1,l2,l3
isometric subgraph, since a shorter distance d(a1, c23) = l1+1

would allow achieving D = 0 by setting b1, b2, b3 to the vertex c23, and similarly for
d(a2, c31) = l2 + 1 and d(a3, c12) = l3 + 1.

We strengthen this result from isometric subgraphs to retracts.
Lemma 4.2. Let G be a chordal graph, with a triple of vertices a1, a2, a3 of type j

giving an Rj
l1,l2,l3

isometric subgraph. Then the Rj
l1,l2,l3

isometric subgraph is a retract
of G.

Proof. Map the vertices at distance d ≤ li from ai in G to the corresponding
vertex at distance d from ai on the path from ai to the core Sj . If j = 0, 1, then the
remaining vertices of G can be mapped to any vertex in the core Sj . If j = 2, then
the remaining vertices can be mapped to vertices in the triangle z12, z23, z31 inside
the core S2, since no vertex will be required to map to a vertex adjacent to all three
vertices y1, y2, y3 in the core, otherwise such a vertex would give type 0 to the triple
a1, a2, a3.

The following result characterizes the images of products of cores.
Lemma 4.3. Let f be a nonexpansive mapping on a product G G′ of two chordal

graphs, with three vertices x1x
′
1, x2x

′
2, x3x

′
3 that are fixed points of f . Suppose the

triple x1, x2, x3 is of type j in G and gives an Rj
l1,l2,l3

isometric subgraph with core

Sj; suppose the triple x′
1, x

′
2, x

′
3 is of type j′ in G′ and gives an Rj′

l1,l2,l3
isometric

subgraph with core Sj′ . Then the image of Sj Sj′ under f is a product U j U j′ for
two choices of cores U j and U j′ isomorphic to Sj and Sj′ , respectively.

Proof. The vertex yi (or y if j = 0) maximizes d(xi, yi) subject to d(xi, xi′) =
d(xi, yi) + d(yi, xi′) for i′ �= i. Similarly, the vertex y′i (or y′ if j = 0) maximizes
d(x′

i, y
′
i) subject to d(x′

i, x
′
i′) = d(x′

i, y
′
i) + d(y′i, x

′
i′) for i′ �= i. It follows that if

f(yiy
′
i) = tit

′
i, then d(ti, ti′) = d(yi, yi′) = j and d(t′i, t

′
i′) = d(y′i, y

′
i′) = j′.

If j = 0 and j′ = 0, then Sj Sj′ is a single vertex and the result follows. If j = 1
and j′ = 0, then the three vertices t1, t2, t3 form a triangle and the result follows. If
j = 2 and j′ = 0, then the three vertices t1, t2, t3 are at pairwise distance 2, and if we
consider the vertices uijy

′ = f(zijy
′), then the three uij must be different, otherwise

we could set the type j to 0 if two coincide. Thus the six vertices ti and uij form a
subgraph isomorphic to Sj and the result follows.

If j = 1 and j′ = 1, then the three vertices ti form a triangle and the three vertices
t′i also form a triangle. It follows that f(yiy

′
i′) is tit

′
i′ or ti′t

′
i. Furthermore, the six-

cycle y1y
′
2, y1y

′
3, y2y

′
3, y2y

′
1, y3y

′
1, y3y

′
2, y1y

′
2 implies that either all f(yiy

′
i′) = tit

′
i′ or all

f(yiy
′
i′) = ti′t

′
i, so the result follows.

If j = 2 and j′ = 1, 2, then consider the S2 given by y1y
′
i, y2y

′
i, y3y

′
i, z12y

′
i, z23y

′
i,

z31y
′
i; it must map to t1t

′
i, t2t

′
i, t3t

′
i, u12t

′
i, u23t

′
i, u31t

′
i or if j′ = 2, then possibly also

to tit
′
1, tit

′
2, tit

′
3, tiu

′
12, tiu

′
23, tiu

′
31. To see this, say if i = 1, note that the two paths

of length two y1y
′
1, z12y

′
1, y2y

′
1 and y1y

′
1, z31y

′
1, y3y

′
1 must map to paths of length two

because they approach y2y
′
2 and y3y

′
3, respectively. Furthermore, z12y

′
1 and z31y

′
1

must map to different vertices, since f(y2y
′
2) and f(y3y

′
3) cannot be approached si-

multaneously from f(y1y
′
1). This gives the two possible ways of mapping the triangle

FIXED POINTS OF SEVERAL NONEXPANSIVE MAPPINGS 299

y1y
′
1, z12y

′
1, z31y

′
1, along G or along G′. If j′ = 1, then in the second case we would

have to switch to proceeding along G for the two paths of length two, and the trian-
gles could not be completed. Note then that the triangle z12y

′
1, z31y

′
1, z23y

′
1 cannot be

mapped to a single edge, else again f(y2y
′
2) and f(y3y

′
3) could be approached simulta-

neously from f(y1y
′
1). The same argument implies that the triangles y2y

′
1, z23y

′
1, y12y

′
1

and y3y
′
1, z23y

′
1, y31y

′
1 must remain as triangles, proving the claim.

It follows again that we have either all f(yiy
′
i′) = tit

′
i′ or alternatively if j′ = 2 all

f(yiy
′
i′) = ti′t

′
i by the same six-cycle argument from the case j = 1 and j′ = 1. Thus

all f(yiy
′
i′) = tit

′
i′ , f(yiz

′
i′i′′) = tiu

′
i′i′′ , f(zii′y

′
i′′) = uii′t

′
i′′ , f(zii′z

′
i′′i′′′) = uii′u

′
i′′i′′′ ,

or alternatively if j′ = 2 we have all f(yiy
′
i′) = ti′t

′
i, f(yiz

′
i′i′′) = ui′i′′t

′
i, f(zii′y

′
i′′) =

ti′′u
′
ii′ , f(zii′z

′
i′′i′′′) = ui′′i′′′u

′
ii′ .

There is thus only one possible isomorphism from Sj Sj′ to U j U j′ , unless j
= j′ = 1 or j = j′ = 2, in which case a second isomorphism first exchanges Sj and
Sj′ .

Let G be a chordal graph and consider a triple a1, a2, a3 of type j giving possibly
several different Rj

l1,l2,l3
. If the corresponding possibly different cores Sj share a

vertex, then this vertex in the core is said to be a uniquely determined vertex.

Theorem 4.4. Given a family G of chordal graphs, the problem of finding a
common fixed point of several retractions on products of graphs from G can be solved
in polynomial time if all triples of vertices a1, a2, a3 of type j from a graph G in G
give at least one uniquely determined vertex in the corresponding cores Sj. Otherwise
the problem is NP-complete.

Proof. If the property in the statement of the theorem holds, then for every triple
a1, a2, a3 of type j from a graph Gi in G, define the majority function gi(a1, a2, a3) =
b, where b is a uniquely determined vertex in the corresponding core Sj . Given a
retraction mapping f on Gi Gi′ with fixed points a1a

′
1, a2a

′
2, a3a

′
3, the image under

f of a product of cores Sj Sj′ gives by Lemma 4.3 such a product of cores which is
fixed under f by the definition of a retraction. The fixed Sj Sj′ must contain bb′ =
gi(a1, a2, a3)gi′(a

′
1, a

′
2, a

′
3) since b and b′ are uniquely determined vertices and thus

must belong to Sj and Sj′ , respectively. Thus bb′ is a fixed point of f . Furthermore,
if two of a1, a2, a3 are the same vertex a, then this triple is of type 0 with core a and
so gi(a1, a2, a3) = a. This proves that the gi are majority functions, and a polynomial
time algorithm follows from Corollary 3.4.

In the other case, suppose three vertices a1, a2, a3 of type j from a graph G in
G do not give a uniquely determined vertex in the corresponding cores Sj . We show
that G does not have a majority function. First, we observe that G retracts to an
Rj

l1,l2,l3
by Lemma 4.2, so b = g(a1, a2, a3) must belong to this Rj

l1,l2,l3
. Second, the

vertex b cannot be a vertex in a core Sj , since every such vertex can be avoided by
a different choice of Sj , since there is no uniquely determined core vertex. So the
only possibility left is that b is on the path from some ai to a core Sj , say ai = a1.
Consider, however, a graph P with only two adjacent vertices c and d, so that on P
we have g′(c, d, d) = d. We can define a retraction f on Rj

l1,l2,l3
P that leaves every

vertex fixed except for the vertices ud, where u is on the path from a1 to the core Sj

(but not in Sj); here we define f(ud) = vc, where v follows u on the path from a1 to
the core Sj . It follows that a1c, a2d, a3d are fixed points of f , but bd is not a fixed
point of f , so we do not have a majority function. By Corollary 3.4 the problem is
NP-complete.

We derive a similar result for general nonexpansive mappings.

Theorem 4.5. Given a family G of chordal graphs, the problem of finding a

300 TOMÁS FEDER

common fixed point of several nonexpansive mappings on products of graphs from G
can be solved in polynomial time if all triples of vertices a1, a2, a3 of type j from a graph
G in G have all vertices in the corresponding cores Sj uniquely determined, except for
the case j = 2, where there is either never a yi that is not uniquely determined or
never a zii′ that is not uniquely determined.

Proof. Again we define a majority function gi(a1, a2, a3) = b for triples a1, a2, a3

of type j by letting b be the uniquely determined vertex y in the core S0 if j = 0,
letting b be the uniquely determined vertex y1 in the core S1 if j = 1, and letting b be
the uniquely determined vertex y1 in the core S2 if j = 2 and there is never a yi that
is not uniquely determined in this case, or letting b be the uniquely determined vertex
z12 in the core S2 if j = 2 and there is never a zii′ that is not uniquely determined.
If gi(a1, a2, a3) = b and gi′(a

′
1, a

′
2, a

′
3) = b′, and a1a

′
1, a2a

′
2, a3a

′
3 are fixed points of a

nonexpansive f , then bb′ is in the product of cores Sj Sj′ and must be left fixed by
f by Lemma 4.3. It follows that the gi are majority functions and a polynomial time
algorithm follows from Theorem 2.2.

If the conditions of the theorem are not met, we show that there is no majority
function. As in Theorem 4.4, we are left with setting gi(a1, a2, a3) = b, where b is
uniquely determined in the corresponding core Sj . However, if, say, gi(a1, a2, a3) = y1

in the core S1, then we must now set, say, gi′(a
′
1, a

′
2, a

′
3) = y′1 in the core Sj′ when

j′ = 1, since there is a nonexpansive mapping that exchanges the two cores S1 and Sj′

as suggested by Lemma 4.3 so that f(yiy
′
i′) = yi′y

′
i, forcing i = i′ to get a fixed point.

This thus requires all yi in S1 to be uniquely determined. The case with j = 2 and the
S2 similary requires all yi in the S2 to be uniquely determined, or all zii′ in the S2 to
be uniquely determined, otherwise by exchanging the two cores we would get a vertex
that is not a fixed point. The exchanging of the two cores can be performed after
retracting Rj

l1,l2,l3
Rj

l′1,l
′
2,l

′
3

to the product of cores Sj Sj joined by paths of length

l1 + l′1, l2 + l′2, l3 + l′3 to a1a
′
1, a2a

′
2, a3a

′
3, respectively. This retraction is obtained by

first mapping a vertex uv on a path from yiy
′
i′ to xix

′
i′ with i �= i′ to a vertex u′v′ on

such a path with d(u, u′) = d(v, v′) and either u′ = yi or v′ = y′i′ . Subsequently, every
vertex not on the product of cores Sj Sj is on a shortest path from this product
to a vertex xix

′
i, and can be mapped according to the distance to xix

′
i along the

path of length li + l′i from xix
′
i and proceeding if necessary into the product of cores.

Consequently, the absence of a majority function gives NP-completeness by Theorem
3.2.

5. Conclusion. We have studied the problem of finding a vertex in a Cartesian
product of graphs that is a simultaneous fixed point of several given nonexpansive
mappings. We found that the problem is polynomial time solvable if the graphs satisfy
a farthest point property, and otherwise the simplest counter examples to the farthest
point property with two retraction mappings give NP-completeness. The polynomial
cases for several given nonexpansive mappings extend to any family of graphs that
has a majority function, while families of graphs without a majority function give NP-
completeness using just two nonexpansive mappings, thus establishing a dichotomy
in the complexity of the problem giving a classification depending on the existence of
a majority function for any given class of graphs. A similar classification is obtained
for the case of nonexpansive mappings that are retraction mappings. The families of
graphs having a majority function for nonexpansive mappings or retractions can be
simply characterized in the case of chordal graphs.

Finally we note that following the work in [4], one may find in polynomial time a
characterization for the set of periodic points of a nonexpansive mapping f given by a

FIXED POINTS OF SEVERAL NONEXPANSIVE MAPPINGS 301

black box, which constitutes a retract to the given product graph. One may similarly
obtain as in [4] such a characterization for vertices belonging to fixed subproducts of
f . The results in this paper may thus be extended from fixed points and retractions
to periodic points and fixed subproducts.

REFERENCES

[1] H.-J. Bandelt and V. Chepoi, The Algebra of Metric Betweenness: Subdirect Representations,
Retracts, and Axiomatics of Weakly Median Graphs, manuscript.

[2] A. A. Bulatov, A dichotomy constraint on a three-element set, in Proceedings of the 43rd
Annual ACM Symposium on Theory of Computing, Montreal, 2002, pp. 649–658.

[3] A. A. Bulatov, Tractable conservative constraint satisfaction problems, in Proceedings of the
18th Annual IEEE Symposium on Logic in Computer Science, Ottawa, 2003, pp. 321–330.

[4] T. Feder, Stable Networks and Product Graphs, Doctoral dissertation, Stanford University, Palo
Alto, CA, 1990. Mem. Amer. Math. Soc. 116 (1995), pp. 1–223.

[5] T. Feder and M. Y. Vardi, The computational structure of monotone monadic SNP and
constraint satisfaction: A study through Datalog and group theory, SIAM J. Comput., 28
(1999), pp. 57–104.

[6] E. Mayr and A. Subramanian, The complexity of circuit value and network stability, in Fourth
Annual Conference on Structure in Complexity Theory, Eugene, OR, (1989), pp. 114–123.
Full version in J. Comput. System Sci., 44 (1992), pp. 302–323.

[7] T. J. Schaefer, The complexity of satisfiability problems, in Proceedings of the Tenth Annual
ACM Symposium on Theory of Computing, San Diego, ACM, New York, 1978, pp. 216–226.

[8] A. Subramanian, A new approach to stable matching problems, SIAM J. Comput., 23 (1994),
pp. 671–701.

[9] A. Subramanian, The Complexity of Circuit Value and Network Stability, Doctoral dissertation,
Stanford University, Palo Alto, CA, 1989.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 2, pp. 302–327

REAL NUMBER GRAPH LABELLINGS WITH DISTANCE
CONDITIONS∗

JERROLD R. GRIGGS† AND XIAOHUA TERESA JIN†

Abstract. The theory of integer λ-labellings of a graph, introduced by Griggs and Yeh [J. R.
Griggs and R. K.-C. Yeh, SIAM J. Discrete Math., 5 (1992), pp. 586–595], seeks to model efficient
channel assignments for a network of transmitters. To prevent interference, labels for nearby vertices
must be separated by specified amounts ki depending on the distance i, 1 ≤ i ≤ p. Here we expand
the model to allow real number labels and separations. The main finding (“D-Set Theorem”) is that
for any graph, possibly infinite, with maximum degree at most Δ, there is a labelling of minimum
span in which all of the labels have the form

∑p

i=1
aiki, where the ai’s are integers ≥ 0. We show

that the minimum span is a continuous function of the ki’s, and we conjecture that it is piecewise
linear with finitely many pieces. Our stronger conjecture is that the coefficients ai can be bounded
by a constant depending only on Δ and p. We offer results in strong support of the conjectures, and
we give formulas for the minimum spans of several graphs with general conditions at distance two.

Key words. channel assignment, graph labelling, generalized coloring

AMS subject classifications. 05C78, 05C15, 90B18

DOI. 10.1137/S0895480105446708

1. Integer labellings with distance conditions. A steadily growing body of
literature has evolved in the past 15 years on efficient integer labellings of the vertices
of a finite simple graph with restrictions not only on adjacent vertices—as is the case
with traditional graph coloring—but also on vertices at distance two.

In the traditional Channel Assignment Problem, introduced by Hale [17] and
studied by Cozzens and Roberts [6] and many others, vertices of a graph G = (V,E)
correspond to transmitter locations, and their labels represent transmission channels.
Adjacent vertices correspond to pairs of transmitters that interfere with each other
due to their proximity. There is a given finite set T of integers ≥ 0, with 0 ∈ T , of
forbidden differences in channels for adjacent vertices. A vertex labelling f : V → Z is
a T -coloring provided that |f(v)−f(w)| /∈ T whenever vertices v and w are adjacent.
Of course, one can select channels f(v) that are very far apart, but this would require
allocating a very large band of the frequency spectrum to the network. To optimize
the assignment f we seek to minimize the span

sp(f) := max
v∈V

f(v) − min
v∈V

f(v).

Note that labels need not be distinct. The set of labels used may contain gaps in the
interval between the smallest and largest labels. It is the width of the interval, given
by sp(f), that we seek to minimize.

In 1988 Roberts [27] described a new channel assignment problem, suggested by
Tim Lanfear at NATO. This time we consider a given network of transmitters in the

∗Received by the editors December 20, 2004; accepted for publication (in revised form) August
26, 2005; published electronically April 21, 2006. This research was supported in part by NSF
grants DMS-0072187 and DMS-0302307. This research was also described in the second author’s
dissertation [19].

http://www.siam.org/journals/sidma/20-2/44670.html
†Mathematics Department, University of South Carolina, Columbia, SC 29208 (griggs,jin2

@math.sc.edu). New address for second author is Department of Mathematics and Statistics, Uni-
versity of Vermont, Burlington, VT 05405 (xiaohua.jin@uvm.edu).

302

REAL NUMBER GRAPH LABELLINGS WITH DISTANCE CONDITIONS 303

6.2

0

>=1

>=2

0

4.3

1.1

2.2

2.5

Fig. 1.1. Labels for a planar transmitter network.

plane, with two different levels of interference. An integer channel is to be assigned to
each transmitter such that channels for nearby transmitters (within, say, 100 miles)
are distinct, and for very close transmitters (within, say, 50 miles) they differ by
at least two. There is some spectral spreading of transmitters that decreases with
distance between transmitters. Again, the goal is to construct a feasible labelling
with minimum span.

For instance, Figure 1.1 shows a transmitter location in the plane with some other
transmitters around it. The small circle is at 50 miles, while the large circle shows
points at 100 miles from the center. A possible real-number channel assignment is
shown, in which the central transmitter is assigned 0, two other very close transmitters
have labels at least two, and the two nearby transmitters that are not very close have
labels at least one. This labelling satisfies the distance-labelling conditions for every
pair of vertices, not just pairs involving the central transmitter. In the example, the
label 0 is repeated, but at distance more than 100 miles from the center.

Griggs quickly discovered that this problem of labelling a planar transmitter net-
work is quite challenging. In order to develop some heuristics for the real problem, he
decided to investigate the natural graph analogue of the distance-labelling problem
above, in which the vertices are the transmitters and adjacent vertices correspond to
transmitters that are very close [16].

Specifically, for a finite simple graph G = (V,E), consider a labelling f : V → Z

such that for all vertices v, w ∈ V ,

|f(v) − f(w)| ≥
{

2, if d(v, w) = 1;
1, if d(v, w) = 2,

where d(v, w) is the distance between v and w in G (the minimum number of edges
in any path from v to w). For such labellings f , called λ-labellings of G, we seek to
determine the minimum span, denoted λ(G).

For instance, the 4-cycle can be labelled by nonnegative integers by assigning 0
to one vertex and moving around the cycle, assigning each vertex the smallest label
satisfying the conditions above. We end up using 0, 2, 4, 6 at consecutive vertices, but
this “greedy first-fit” labelling is not optimal. We find that λ(C4) = 4 is achieved by

304 JERROLD R. GRIGGS AND XIAOHUA TERESA JIN

Fig. 1.2. The honeycomb of hexagonal coverage regions of the plane (left); the corresponding
triangular lattice ΓΔ of transmitters (right).

labelling successive vertices by 0, 4, 1, 3.
By converting a planar network of transmitters—the problem of Roberts—to

the graph problem, it is true that a pair of vertices at distance two in the graph
corresponds to a pair of transmitters that are nearby, but not very close (at distance
between 50 and 100 miles). However, a pair of transmitters in the plane can be close,
but not very close, while their corresponding vertices in the graph are more than
distance two apart. Their vertices need not even belong to the same component of
the graph! For instance, in Figure 1.1 the transmitter labelled 1.1 is not very close to
any other transmitter, so it would be isolated in the corresponding graph, although
it is actually close to the transmitter at the center and to the one labelled 2.2.

Nonetheless, the study of λ(G) for graphs G should lead to good bounds and
heuristics for efficiently labelling planar networks. Also, for some natural arrays the
problems are equivalent. Especially, one particular array often used in practice for
mobile communication networks assigns a hexagonal coverage region to each trans-
mitter, with the hexagons fitting together in a honeycomb tiling. This is efficient
in the sense of using a small number of transmitters. The graph corresponding to
this example is called the triangular lattice, Γ� (see Figure 1.2). In this case the
graph problem does properly represent the real problem in the plane. Besides, the
λ-labelling problem has turned out to be quite interesting on its own as a generalized
graph coloring problem.

The natural generalization of λ(G) to deal with multiple levels of interference was
introduced by Griggs in the original paper with Yeh [16]: Let N denote the set of
natural numbers, {0, 1, 2, . . .} (note that 0 is included). Given integers k1, . . . , kp ∈ N,
let L(k1, . . . , kp) denote the set of labellings f : V → Z such that for all v, w ∈ V

|f(v) − f(w)| ≥ ki, if d(v, w) = i ≤ p.

We may abbreviate this by L(k), where k = (k1, k2, . . . , kp). Note that L(k) always
depends on the graph G being considered. We seek the optimal span of any labelling
f , denoted by

λ(G; k1, . . . , kp) := min
f∈L(k)

sp(f).

We also denote this lambda number of G by λ(G;k). Alternate notation, also used
by many authors, is λk1,...,kp

(G). Another notation is in use for p = 2 [8], where

REAL NUMBER GRAPH LABELLINGS WITH DISTANCE CONDITIONS 305

λj
k(G) represents our λ(G; j, k). However, we recommend against it, as it cannot be

extended to model conditions at distances more than two. Also, we allow k1 < k2,
and their notation does not make it easy to tell which of j and k refers to k1 or k2.

Translating a labelling f , by adding the same element to all labels f(v), preserves
the span. Hence, to determine λ(G;k), it suffices to consider labellings with smallest
label 0. For such labellings f , sp(f) = maxv∈V f(v).

Ordinary graph coloring corresponds to the case k1 = 1 and ki = 0 otherwise.
More precisely, the chromatic number χ(G) of a graph G is expressed in our theory by

χ(G) = λ(G; 1) + 1,

where the difference of one arises due to our allowing 0 to be a label. While it is
convenient that λ is one off from χ, allowing 0 to be a label gives us the nice Scaling
Property, in which if all separations ki are multiplied by the same constant c, then so
is the optimal span λ. This principle is stated explicitly later when we formulate the
theory of real number labellings.

An interesting special case, more general than above, is for k consisting of p ones.
Here we have

λ(G; 1, . . . , 1) = χ(Gp) − 1,

where Gp is the graph that has the same vertex set V , and vertices v, w are joined by
an edge whenever their distance in G is at most p.

Recent literature has expanded beyond the basic case of L(2, 1)-labellings. Nu-
merous papers consider λ(G; k, 1) for arbitrary integers k > 0, or, more generally,
λ(G; p, q) for integer separations p ≥ q.

Here is an overview of the rest of the paper. In the next section we introduce our
model of labellings by real numbers. This more general setting is natural for many of
the models in which labellings with distance conditions arise, since it would seem that
the labels, e.g., frequencies, can actually be real numbers. Besides, we shall see that
real number labellings offer greater insight into the behavior of the lambda number
λ(G;k) when it is viewed as a function of the separations k = (k1, . . . , kp) with fixed
graph G and separation distance p.

We also extend our model to allow infinite graphs G, such as the triangular
lattice mentioned earlier. We will usually restrict our attention to infinite graphs
with bounded degrees, to be assured of dealing with graphs of finite span. We denote
by GΔ the class of simple graphs, possibly infinite, with maximum degree at most Δ.
In particular, ΓΔ ∈ G6.

Section 3 presents (without proof) our formulas for real number labellings with
conditions at distance two for the triangular lattice, paths, cycles, and the square
lattice. Their behavior is instructive and serves to motivate the results and conjectures
in the rest of the paper.

Our main general discovery about real number labellings, the D-Set Theorem, is
presented in section 4. It applies to the class of graphs GΔ. It shows that λ(G;k) must
be a sum of ki’s, repetitions allowed. Moreover, there is a labelling achieving λ(G;k)
in which every label has the form

∑
i aiki, where the coefficients ai are nonnegative

integers, the smallest label is zero, and the largest label is the span. Further, if G is
finite, we can restrict the possible labels to those sums with

∑
i ai < n, where n = |V |.

Among the consequences of the D-Set Theorem is that when all ki are integers,
our problem reduces to the familiar integer lambda labelling problem of section 1:

306 JERROLD R. GRIGGS AND XIAOHUA TERESA JIN

There is always an integer labelling that is optimal for the real number labelling
problem.

In section 5 we show that λ(G;k) is continuous as a function of the separations
k, and we conjecture that it is piecewise linear with only finitely many linear pieces.
This is verified for separations at distance two (p = 2) and for finite graphs. Section 6
poses a stronger conjecture that there is always a labelling as in the D-Set Theorem
in which the coefficients are bounded above by a constant that depends only on p and
the degree bound Δ. We can prove this for conditions out to distance two (p = 2).

Section 7 recalls the conjecture of [16] concerning the largest possible value of
λ(G; 2, 1) for graphs G of maximum degree Δ ≥ 2. We survey the progress on this
longstanding conjecture. We present upper bounds on λ(G;k) in terms of the sepa-
rations ki and the maximum degree.

We describe work that is closely related to our project in section 8. Besides the
fascinating conjectures that remain open, the model of real number labellings has
opened up interesting new lines of research, which we describe in the final section.

2. From integer to real number labellings. When the paper of Griggs and
Yeh [16] introduced λ-labellings, it actually began with a special case of real number
labellings, in which the transmitters were assigned real number labels and the sepa-
rations were k = (2d, d), where d is some real number, not necessarily integer. It was
shown that for any (finite) graph G, there is an optimal labelling in which all labels
are multiples of d. But by a change of scale, dividing the separations and the labels by
d, the problem was transformed into that of determining the optimal integer labelling
span λ(G; 2, 1). The same method applies to real labellings whenever the separations
ki are multiples of the same real number d.

It has always seemed overly restrictive that channel assignment models assumed
the channels—the vertex labels—are integers (or, equivalently, all are multiples of
the same number). This is certainly the case for familiar VHF television, with its
integer channels ranging from 2 to 13, but for FM radio and possibly even for UHF
television, the channels appear to have a continuous range of possibilities. The efficient
allocation of bands of the radio frequency spectrum is a subject receiving considerable
publicity.

Reviewing the progress on λ-labellings over the years, it is now sensible to consider
the generalization in which the separations ki and the labels f(v) are arbitrary real
numbers. As we would demand, this more general problem reduces to the familiar
integer labellings when the separations and labels are integers. However, a rich variety
of interesting new problems has been exposed by considering real number labellings,
and their solution does not generally follow from their integer restrictions. Further,
we have gained valuable new insights into the original integer λ-labellings by thinking
in this more general context—see the D-Set Theorem.

This study also widens the class of graphs to include infinite graphs, in order to
be able to deal properly with infinite arrays of transmitters. For instance, in cellular
communications, a very large flat area is partitioned honeycomb-style into hexagonal
cells, with a transmitter located in the center of each cell (its coverage area). This
transmitter placement is most efficient (minimizes the number of transmitters). The
channel assignment for the transmitter network is equivalent to the lambda labelling
of the vertices of the dual graph, where each vertex corresponds to a transmitter.
Extending the cellular network over the whole plane, the dual graph is a planar graph
in which every vertex has six neighbors, which form a cycle around the vertex. The
regions of the embedding of the dual graph are all triangles. This infinite 6-regular

REAL NUMBER GRAPH LABELLINGS WITH DISTANCE CONDITIONS 307

graph is called the triangular lattice, which we denote by ΓΔ. Because of its potentially
practical implications, the lambda labelling of ΓΔ is of particular interest to us.

Let G = (V,E) be any graph, possibly infinite. A real number labelling of G is a
function f : V → R, and its span is

sp(f) := sup
v∈V

f(v) − inf
v∈V

f(v).

We consider real separations k1, . . . , kp ∈ [0,∞). Define L(G;k) = L(G; k1, . . . , kp)
to be the set of real labellings f : V → R such that

|f(v) − f(w)| ≥ ki if d(v, w) = i ≤ p.

We may write L(k) or L(k1, . . . , kp) if G is understood.
We then define

λ(G;k) := inf
f∈L(k)

sp(f).

We will usually restrict our attention to the class GΔ of simple graphs with max-
imum degree at most Δ. We shall see that there are labellings with bounded span in
L(G;k) for G ∈ GΔ, so λ(G;k) < ∞ for all such G. Compactness arguments may be
used to show that for G ∈ GΔ, there is a labelling f that actually achieves λ(G;k),
meaning that its span is λ(G;k), and there are vertices on which f assumes its min-
imum and maximum values, which are λ(G;k) apart (recall this is true for infinite
graphs). However, we will derive this information by a simpler approach in the next
section. Our approach will also provide information about possible values of λ(G;k).

As a simple introduction to real labellings, let us determine λ(P3; k, 1), where P3

is the path on three vertices and k is any real ≥ 0. One valid labelling is (k, 0, k + 1),
and there is no way to improve on it among labellings where the middle label is the
smallest of the three. If we put the smallest label on an end, and the largest is in
the middle, we can do no better than (0, k + 1, 1). If the smallest and largest labels
are at the ends, we can either use (0, k, 2k), provided that k ≥ 1/2, or (0, k, 1), when
k ≤ 1/2.

It follows that

λ(P3; k, 1) =

⎧⎪⎨
⎪⎩

1, if 0 ≤ k ≤ 1/2;

2k, if 1/2 ≤ k ≤ 1;

k + 1, if 1 ≤ k.

Notice that we are allowing k1 = k to be less than k2 = 1, which seems strange
at first. Indeed, in models of interference between nearby transmitters, one expects
the interference to decrease with distance, so that the required separations ki would
be nonincreasing as i grows. However, some recent papers have considered situations
where the ki may increase with i, and our model allows arbitrary ki ≥ 0 (which is
mathematically interesting regardless of its usefulness).

We mention how it can arise in practice that k1 < k2. Jin and Yeh [20] cite a
packet communication model of Bertossi and Bonuccelli [2] that considers such a case.
Message packets are being sent throughout a wireless network of computer stations
(computers and transceivers). The computer stations are the vertices and wireless
connections between them are the edges if they can hear each other due to their prox-
imity. Using the Code Division Multiple Access protocol (CDMA), each computer

308 JERROLD R. GRIGGS AND XIAOHUA TERESA JIN

station is assigned a control code, and packets are sent along the edges simultane-
ously, using the control codes of the computer stations sending them. These codes
correspond to channels in our model. A problem arises whenever a computer station
receives packets simultaneously from two different adjacent computer stations that
cannot hear each other and use the same control code, and the receiving computer
station has to ask for the packets to be resent. Avoiding this interference then re-
quires that no two computer stations at distance two in the network use the same
control code. Minimizing the number of different control codes used is then the L(0, 1)
problem for the corresponding graph.

Of course, this is really just a standard graph coloring problem in disguise, but
for a different graph: Given G = (V,E), we form the graph G′ = (V,E′) = (G2 −G),
in which E′ = E(G2) − E(G) contains pairs of vertices that are at distance two in
G. Then λ(G; 0, 1) = χ(G′) − 1. It would be interesting to find other situations that
require lambda labellings L(k1, . . . , kp) in which ki < kj for some i < j.

Returning to the path P3, we have already given the values λ(P3; k, 1). Let us
note also that λ(P3; 1, 0) = χ(P3) − 1 = 1. We can now obtain all lambda numbers
for the path P3 with conditions at distance two from the following principle.

Property 2.1 (Scaling Property). For all reals k1, . . . , kp, c ≥ 0 and all graphs
G,

λ(G; ck1, . . . , ckp) = cλ(G; k1, . . . , kp).

This property is an immediate consequence of the definition of λ, since if any
labelling of G with separation conditions k has its labels each multiplied by c, it gives
a labelling with separation conditions ck, and vice versa.

For conditions at distance two, the Scaling Property gives us that

λ(G; k1, k2) = k2λ(G; k, 1)

for k = k1/k2, k2 > 0. So we can derive all values of λ with k2 > 0 from the one-
parameter values λ(G; k, 1), k ≥ 0, such as we gave above for G = P3. We can also
obtain the values λ(G; k1, 0), which is given by k1 limk→∞(λ(G; k, 1)/k).

We next give a simple general upper bound on λ(G;k) in terms of the maximum
degree and the separations ki for use in the proofs. Better bounds are given later in
section 8.

Lemma 2.2. Let G be a graph, possibly infinite, of maximum degree at most Δ.
Let p ∈ Z

+, k = (k1, . . . , kp), and k = maxi{ki}. Then λ(G;k) ≤ kΔp.
Proof. Let G ∈ GΔ. For such p and k we have that

λ(G;k) ≤ λ(G; k, . . . , k) = kλ(G; 1, . . . , 1) = k(χ(Gp) − 1),

which is, in turn, at most k times the maximum degree of graph Gp. Since G has
at most Δ(Δ − 1)i−1 vertices at distance i from any given vertex, we get that the
maximum degree of Gp is at most

Δ

p∑
i=1

(Δ − 1)i−1 ≤ Δp.

Note that a labelling that satisfies the bound of Lemma 2.2 can be obtained by
first arbitrarily ordering the vertices in some component of Gp. One can then greedily
color the vertices in the component one-by-one in order by nonnegative integers,

REAL NUMBER GRAPH LABELLINGS WITH DISTANCE CONDITIONS 309

always selecting the least color not already assigned to any neighboring vertex. Do
this for each component. (This is a so-called first-fit labelling.) Then multiply all the
labels by k to obtain a suitable labelling in L(G;k).

3. Optimal spans with conditions at distance two for special graphs.
In order to motivate the D-Set Theorem and other general results in later sections
concerning the general behavior of λ(G;k) viewed as a function of k, we present some
of our findings for particular graphs. Some of the results in this section were obtained,
in part, by using the D-Set Theorem. But many of them were obtained independently
of it, before the discovery of the D-Set Theorem, and played a role in its discovery.
We postpone the long and intricate proofs with many cases to later papers [15, 14].

We consider only conditions at distance at most two. As noted above, it suffices to
determine λ(G; k, 1). There are various results in the literature concerning λ(G; k, 1)
when k is a positive integer. In the 2000 Mathematical Competition in Modeling
(MCM), a problem of this kind (written by Griggs for the contest) was presented.
The problem can be found in the special journal issue for the contest that includes
a survey article by Griggs [12], or on the Web at www.comap.com. The problem
was selected and reported on by 271 teams, each consisting of three undergraduates,
from universities worldwide. Each team had a long weekend (less than four days) to
research the problem, write and run programs, and put together a paper. They had
access to libraries, computers, and the Web, but no human assistance was permitted.

Teams were asked in this problem to investigate distance labellings of the trian-
gular lattice graph ΓΔ. In some cellular communication networks [22] a large planar
region is partitioned into hexagonal cells with a transmitter at the center of each cell.
This method gives efficient coverage (minimizes the number of transmitters needed).
Strong interference occurs between transmitters in adjacent cells, while lighter inter-
ference occurs between transmitters in cells with just one cell in between. We may
form a graph, with a vertex for each cell and an edge between each two vertices that
represent adjacent cells. In this case, we are fortunate in that the graph labelling
problem with conditions at distance two is actually equivalent to the original trans-
mitter problem in the plane. When the planar coverage region is the entire plane, the
corresponding graph is an infinite 6-regular graph, the triangular lattice, which we
denote by ΓΔ. MCM teams were asked to determine λ(G; 2, 1) for G corresponding
to a certain large region and then for the entire plane (for G = ΓΔ). While experts
in the subject already knew the (unpublished) answer, it was pleasing to see how
many teams succeeded. MCM teams were asked to determine what they could about
λ(ΓΔ; k, 1) for integers k > 1. Several teams devised labellings that turned out to be
optimal, though no team came up with a valid proof for general k; their lower bound
proofs were not adequate. Condensed versions of the winning papers are collected in
the special UMAP journal issue mentioned above [12].

A subsequent manuscript of Zhu and Shi [30] considers λ(ΓΔ; k1, k2) for general
integers k1 ≥ k2 ≥ 1. It provided more impetus to undertake the study contained
in this paper. Note that by scaling, we shall find that to determine λ(ΓΔ; k1, k2) for
such integers is equivalent to determining λ(ΓΔ; k, 1) for rationals k ≥ 1.

With considerable effort, the present authors have completely determined the
values λ(ΓΔ; k, 1) for all reals k ≥ 1. For reals 0 ≤ k < 1, we have been chipping
away, determining the exact value for small k and for some other values k, and bounds
otherwise.

Theorem 3.1 (see [14]). For the triangular lattice ΓΔ, we have the following
values (or bounds, where it is not yet determined) for optimal spans of labellings with

310 JERROLD R. GRIGGS AND XIAOHUA TERESA JIN

(1,6)

k

2k+6

(4,14)

(2,8)

(4/3,8)

4/31/2 54321

6k

(3/4,23/4)
(2/3,16/3)

0

2

4

6

8

10

12

16

14

(1/2,9/2)

9k

(4/5,6)

(9/22,9/2)

(1/3,11/3)
(3/7,27/7)

2k+3

(3,11)

3k+2

(11/4,11)

4k

11k

1/3

Fig. 3.1. A graph of λ(Γ�; k, 1) as a function of k.

conditions at distance two:

λ(ΓΔ; k, 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2k + 3 if 0 ≤ k ≤ 1/3,

∈ [2k + 3, 11k] if 1/3 ≤ k ≤ 9/22,

∈ [2k + 3, 9/2] if 9/22 ≤ k ≤ 3/7,

∈ [9k, 9/2] if 3/7 ≤ k ≤ 1/2,

∈ [9/2, 16/3] if 1/2 ≤ k ≤ 2/3,

∈ [16/3, 23/4] if 2/3 ≤ k ≤ 3/4,

∈ [23/4, 6] if 3/4 ≤ k ≤ 4/5,

6 if 4/5 ≤ k ≤ 1,

6k if 1 ≤ k ≤ 4/3,

8 if 4/3 ≤ k ≤ 2,

4k if 2 ≤ k ≤ 11/4,

11 if 11/4 ≤ k ≤ 3,

3k + 2 if 3 ≤ k ≤ 4,

2k + 6 if k ≥ 4.

A graph of λ(ΓΔ; k, 1) as a function of k is presented in Figure 3.1. Coordinates
are given for endpoints and isolated points that are known precisely. For k ≥ 1 the
graph is seen to be nondecreasing, continuous, and piecewise linear, and the same
appears likely for k ≤ 1. Curiously, it is neither convex nor concave, nor is it even
strictly increasing (at least three sections are flat). It will follow from Theorem 5.6

REAL NUMBER GRAPH LABELLINGS WITH DISTANCE CONDITIONS 311

Pn, n>=7

k1 3 4 52

4

6

5

3

2

1

2k

2k

3k

k+2

k+1

k

0

2

1

P5,P6

P2

P3

P4

Fig. 3.2. The functions λ(Pn; k, 1) for the paths Pn on n vertices.

that the graph is piecewise linear over its whole domain, [0,∞), even though we cannot
yet give it on [0, 1].

We have completely determined λ(G; k, 1) for paths Pn and cycles Cn on n ver-
tices.

Theorem 3.2 (see [15], [19]). For the paths Pn, the optimal span λ(Pn; k, 1)
with conditions at distance two, for k ≥ 0, is shown in Figure 3.2. In particular, the
optimal span is the same for all k for n ≥ 7.

Theorem 3.3 (see [15], [19]). For the cycles Cn, the optimal span λ(Cn; k, 1)
with conditions at distance two, for k ≥ 0, is shown in Figure 3.3 for n = 3, 4, 5 and
in Figure 3.4 for n ≥ 6.

Note. For n ≥ 6, the choice of curve to follow in Figure 3.4 depends on the value
of n modulo 12. For instance, in the interval [2/3, 2], one follows the lower piece when
n is 0 (mod 12) and the upper piece when n is 1 (mod 12).

312 JERROLD R. GRIGGS AND XIAOHUA TERESA JIN

9

1/2

8

6

4

2

k543210

7

2

4

 C4

 C3

 C5

k+1

2k

2k3k

k+2
4k

2k

k+2

2k

10

1

3

5

Fig. 3.3. The functions λ(Cn; k, 1) for the cycles Cn, n = 3, 4, 5.

After obtaining these path and cycle lambda number formulas, we realized that
they were already known in part: Georges and Mauro [8] determined them for inte-
ger separations k1 ≥ k2. By the Scaling Property their formulas give λ(G; k, 1) for
rationals k ≥ 1 when G is a path or cycle (see section 8 for related remarks).

Notice that for each path and cycle, the graph is again a continuous nondecreasing
piecewise linear function. Also, the linear formulas for the straight sections of the
graphs above are always of the form ak + b, where a and b are nonnegative integers.
For the graph ΓΔ, one of the winning teams in the modeling contest, from Washington
University [11], claimed that this should be the case for the triangular lattice for all
(integers) k. They turned out to be correct. Indeed, we shall see there is a piecewise
linearity result, where the pieces are nonnegative integer linear functions of k1 and
k2, for general graphs of bounded degree (Theorem 5.6).

We wish to state one more important example, the square lattice Γ�, which is
used in some applications. Here, the vertices correspond to the integer lattice points
in the plane, and edges join pairs of vertices that are equal in one coordinate and are
consecutive in the other coordinate. It is possible to give the complete formula for
labellings with conditions at distance two, and, as expected, it is piecewise linear with
finitely many pieces. The graph of λ(Γ�; k, 1) is shown in Figure 3.5.

REAL NUMBER GRAPH LABELLINGS WITH DISTANCE CONDITIONS 313

9

8

7

6

5

4

3

2

1

4321 k

10

0(mod 4)

1(mod 2)

2(mod 4)

0(mod 4)

0(mod 3)

2

k+1

k+2

k+3

2k

2k

2k

k+2

3k

0

Fig. 3.4. The functions λ(Cn; k, 1) for the cycles Cn, n ≥ 6.

Theorem 3.4 (see [14]). For the square lattice Γ� we have the following values
for optimal spans of labellings with conditions at distance two:

λ(Γ�; k, 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k + 3 if 0 ≤ k ≤ 1/2,
7k if 1/2 ≤ k ≤ 4/7,
4 if 4/7 ≤ k ≤ 1,
4k if 1 ≤ k ≤ 4/3,
k + 4 if 4/3 ≤ k ≤ 3/2,
3k + 1 if 3/2 ≤ k ≤ 5/3,
6 if 5/3 ≤ k ≤ 2,
3k if 2 ≤ k ≤ 8/3,
8 if 8/3 ≤ k ≤ 3,
2k + 2 if 3 ≤ k ≤ 4,
k + 6 if k ≥ 4.

4. D-Set Theorem on real labellings. Motivated by partial results for paths
and cycles (our complete solution came later) and by observations described in the
previous section, we came to realize that for any finite graph G and any fixed sepa-
ration vector k = (k1, . . . , kp), λ(G;k) must be a sum of the separations ki (repeats
allowed). Indeed, this holds as well for the infinite graph ΓΔ (as claimed by the MCM

314 JERROLD R. GRIGGS AND XIAOHUA TERESA JIN

3

5

7

9

1/2

8

6

4

2

k543210

1

11k/3

(5/3,6)

(4,10)

3k

(8/3,8)

(4/3,16/3) (3/2,11/2)k+4

4k

3k+1

2k+2

k+6

(4/7,4)

(3,8)

(2,6)

(1,4)

(1/2,7/2)

7k

k+3

10

Fig. 3.5. A graph of λ(Γ�; k, 1) as a function of k.

team from Washington University), and, in general, for any graph with bounded
degrees.

Given k, let us define the “D-set”

D(k1, . . . , kp) :=

{
p∑

i=1

aiki : ai ∈ N, 1 ≤ i ≤ p

}
,

abbreviated by D(k). It turns out that it suffices to consider labellings with labels in
D(k) in order to prove the existence of optimal λ-labellings.

Theorem 4.1 (D-Set Theorem). Let G = (V,E) be a graph, possibly infinite,
of bounded maximum degree. Let k1, . . . , kp be real numbers ≥ 0. Then there is an
optimal labelling f ∈ L(k) with all labels f(v) ∈ D(k) in which the smallest label
is 0, the largest label is λ(G;k). In particular, λ(G;k) ∈ D(k). Moreover, if G is
finite, each label f(v) and λ(G;k) can be expressed in the form

∑
i aiki, where the

nonnegative integer coefficients ai satisfy
∑

i ai < |V |.
Proof. Let k = (k1, . . . , kp), and suppose G is a graph in GΔ. Let f ∈ L(k)

be any labelling of span at most Δpk, where k = maxi{ki}; such labellings exist
by Lemma 2.2. By translating the labelling f , if necessary, we may assume that
infv f(v) = 0. We modify f to get another labelling f∗, with span no larger than for
f , such that all labels for f∗ belong to D(k). Also, f∗ will have smallest label 0.

REAL NUMBER GRAPH LABELLINGS WITH DISTANCE CONDITIONS 315

Let us define the D-floor of a real number x ≥ 0 by

�x�D := max{y ∈ D(k) : y ≤ x}.

Note that D(k) contains only a finite number of elements ≤ x, so this is a maximum,
not a supremum. Then we define the new labelling f∗ at each vertex v by

f∗(v) := �f(v)�D.

Because D(k) has only finitely many elements in [0,Δpk], and infv f(v) = 0, it follows
that f∗ has minimum value 0. By design, all values f∗(v) belong to D(k). It suffices to
show that f∗ ∈ L(k), which requires checking the separation conditions. Suppose that
u, v ∈ V are at distance i ≤ p in G. Without loss of generality, suppose f(u) ≥ f(v).
Since f ∈ L(k), we find that

f(u) ≥ f(v) + ki ≥ �f(v)�D + ki = f∗(v) + ki.

Since f∗(v) + ki ∈ D(k), it follows from the definition of the D-floor that �f(u)�D ≥
f∗(v) + ki, so that

f∗(u) ≥ f∗(v) + ki,

and the separation conditions are satisfied.
We have shown that for every f ∈ L(k), there exists f∗ ∈ L(k) with sp(f∗) ≤

sp(f) such that sp(f∗) ≤ C and sp(f∗) ∈ D(k). Since D(k) ∩ [0, C] is finite, it
follows that λ exists, belongs to D(k), and is at most C. Also, there exists an optimal
labelling where the labels are in D(k), with smallest label 0 and largest label λ(G;k).

If G has n < ∞ vertices, let f be an optimal labelling of G as above. The
minimum label f(v) is 0; say it occurs at v1, . . . , vs. Consider the smallest label > 0;
say it occurs at vs+1. We may decrease f(vs+1) to 0 without any problem, and repeat
this process, unless there is some t < s+1 such that vt and vs+1 are at some distance
d with kd > 0. But we may at least still decrease f(vs+1) until it is some value
ki ≥ kd > 0, where some vertex vr is at distance i from vs+1, with r < s + 1.

Then we decrease the next smallest label until it is a sum of at most two ki’s,
not necessarily distinct, and so on, until all labels are sums of fewer than n ki’s. In
doing this, labels only get smaller or remain unchanged. Thus, in the end we still
have an optimal labelling, and its span is a sum of fewer than n ki’s, not necessarily
distinct.

We now confirm that real number labellings include integer labellings as a special
case:

Corollary 4.2. Let G = (V,E) be a graph, possibly infinite, of bounded maxi-
mum degree. Let k1, . . . , kp be integers ≥ 0. Then λ(G;k) is an integer, and there is
an optimal labelling with smallest label 0 and every label integer.

Example 4.3. Suppose G is a graph with bounded maximum degree, and suppose
k = (5, 3). Then there is an optimal labelling with smallest label 0 and all labels, and
λ(G; 5, 3), belonging to D(5, 3) = {0, 3, 5, 6, 8, 9, 10, . . .}. In particular, to search for
λ(G; 5, 3), it suffices to try nonnegative integer labellings, with smallest label 0, that
do not use 1, 2, 4, or 7. This could speed up computing λ(G; 5, 3).

The D-Set Theorem is particularly useful for proving lower bounds on λ(G;k).
(Explicit labellings are used to prove upper bounds.) Here are two proofs of (sharp)
lower bounds for paths that rely on the D-Set Theorem.

316 JERROLD R. GRIGGS AND XIAOHUA TERESA JIN

Example 4.4. For 1/2 ≤ k ≤ 1, we have λ(P3; k, 1) ≥ 2k.
Proof. Suppose not; say λ(P3; k, 1) < 2k. This forces k > 1/2. By the D-

Set Theorem, there is an optimal labelling f using labels only in [0, 2k) ∩D(k, 1) =
{0, k, 1}. For P3, the labels must be distinct by the separation conditions. But even
that is impossible, since label k is too close to 1: their difference, 1 − k is less than k
and 1. So no such f exists.

Example 4.5. For 1/2 ≤ k ≤ 2/3 (resp., 2/3 ≤ k ≤ 1), λ(P7; k, 1) ≥ 3k (resp.,
≥ 2).

Proof. For this range of k values we have that the smallest elements of D(k, 1)
are, in order, 0, k, 1, 2k, k + 1, followed by 3k (resp., 2), if 1/2 ≤ k ≤ 2/3 (resp.,
2/3 ≤ k ≤ 1). By the D-Set Theorem, it suffices to show that λ(P7; k, 1) > k + 1 for
1/2 < k ≤ 1. Suppose not; say f is a L(k, 1)-labelling of P7 using labels in the set
{0, k, 1, 2k, k + 1}.

Vertices not labelled with 0 have labels in [k, k + 1]. Since P3 has minimum span
2k > 1 by Example 4.4, f cannot assign nonzero labels to three consecutive vertices.
But f cannot assign 0 to two vertices at distance two or less. Hence, 0 labels must be
used at some vertices at distance a multiple of three. If three labels are zeros, they
are at the middle vertex and both endpoints of P7; then all other labels are at least
one, and one of them is at least two, which is larger than the span, a contradiction.
If two labels are zeros, neither of them is at the endpoints of P7. The two nonzero
labels in between are both at least one, and at least k apart from each other, so they
must be 1 and k + 1. Then the nonzero label at distance two from label 1 is at least
2, which is larger than the span, a contradiction.

5. Piecewise linearity. For a fixed graph G and a fixed integer p, we wish
to understand the behavior of the optimal span λ as a function of the minimum
separations k1, . . . , kp in the set

T p = {(k1, . . . , kp) ∈ R
p : ki ≥ 0 ∀i}.

In particular, we want to see why it is piecewise linear in all examples we have studied.
We first obtain the continuity of λ on T p, which ends up being unexpectedly

tricky to prove near the boundary.
Theorem 5.1. Let G = (V,E) be a graph, possibly infinite, of bounded maximum

degree. Let p ∈ Z
+. Then λ(G;k) is continuous and nondecreasing as a function of

k on T p.
Proof. Let G ∈ GΔ. For any k = (k1, . . . , kp), k′ = (k′1, . . . , k

′
p) ∈ Tp, we write

k ≤ k′ if ki ≤ k′i for all i. The function λ is nondecreasing, since if k ≤ k′, the
separations k′ are more restrictive than k, so that L(k′) ⊆ L(k), and thus λ(G;k) ≤
λ(G;k′).

We show that λ(G;k) is continuous at an arbitrary k ∈ T p. Let I be the set of
indices i where ki > 0. Let k∗ be any element of Tp that is distance at most ε > 0
from k. We need to show that |λ(G;k∗) − λ(G;k)| can be made arbitrarily small
by selecting ε small enough. Assume ε < (mini∈I ki)/2. Define vectors k′,k′′ ∈ T p,
where k′′ ≤ k ≤ k′, as follows. Let k′i = ki + ε for all i, while k′′i = ki − ε for i ∈ I
and k′′i = ki = 0 otherwise. By design, k′′ ≤ k∗ ≤ k′. As λ is nondecreasing, we have
that

|λ(G;k∗) − λ(G;k)| ≤ λ(G;k′) − λ(G;k′′),

and it suffices to show that λ(G;k′)−λ(G;k′′) can be made arbitrarily small as ε → 0.

REAL NUMBER GRAPH LABELLINGS WITH DISTANCE CONDITIONS 317

Let f ′′ be an optimal labelling as in the D-Set Theorem achieving λ(G;k′′).
We will modify f ′′ to obtain a labelling f ′ ∈ L(k′) with span only slightly larger.
Specifically, since λ(G;k′) − λ(G;k′′) ≤ sp(f ′) − sp(f ′′), it will suffice that sp(f ′) −
sp(f ′′) → 0 as ε → 0. Since 0 ≤ k′i−k′′i ≤ 2ε for all i, f ′ will be feasible for separations
k′ if, for each pair of vertices at distance at most p in G, f ′ increases the separation
between their labels by at least 2ε.

By the D-Set Theorem, all labels used by f ′′ belong to the set D(k′′)∩[0, λ(G;k′′)].
Let us denote these labels by 0 = r1 < r2 < · · · rA. Each of these labels rj has the
form

∑
i∈I aik

′′
i , where the coefficients ai are integers ≥ 0. Now we have

ai(ki/2) ≤ aik
′′
i ≤ λ(G;k′′) ≤ λ(G;k) ≤ Δpk,

where we use Lemma 2.2. Hence, for all i ∈ I, ai ≤ 2C/ki, so that ai is bounded in
terms of k and Δ. It follows that the number of labels used by f ′′, A, is bounded in
terms of k and Δ.

Now we modify the labels ri two different ways. Let δ be a small number, de-
pending on ε. First, increase each label ri by (i− 1)δ, which increases the separation
between each pair of distinct labels by at least δ. Secondly, take an optimal vertex
coloring g of graph Gp using colors that are integers in the interval [0, B], where
B = Δp (see proof of Lemma 2.2). Then increase the labels f ′′(v) again, this time by
2g(v)ε.

The labelling obtained after the two augmentations is what we call f ′, and it
depends on both ε and δ. Consider any pair of vertices v, w ∈ V which are at some
distance i ≤ p in G. If f ′′(v) = f ′′(w) (which can happen only if ki = 0), only the
second augmentation changes their difference, and we get that

|f ′(v) − f ′(w)| = |2(g(v) − g(w))ε| ≥ 2ε = |f ′′(v) − f ′′(w)| + 2ε,

which is what we claimed. On the other hand, suppose that f ′′(v) �= f ′′(w), say,
f ′′(v) < f ′′(w). The first operation must moves their labels at least δ farther apart,
while the second operation may move them closer together, but by at most 2Bε. Let
us then specify that δ = (2B + 2)ε, so that in f ′ the separation between labels for
such v, w increases by at least δ − 2Bε = 2ε over f ′′. We have that f ′ ∈ L(k′).

Now we compare the span of f ′ with that of f ′′. The smallest label in f ′ is at
least 0, while the largest label may increase over that in f ′′ due to the two operations,
by at most Aδ = A(2B + 2)ε from the first operation, and by at most another 2Bε
from the second operation. Thus, sp(f ′) − sp(f ′′) is at most a constant times ε, the
constant depending only on k and Δ, and it goes to 0 with ε.

Next we consider the piecewise linearity of λ(G;k). We say that a function
f defined on domain A ⊆ T p is PL on A if it is piecewise linear on A with only
finitely many pieces. More specifically, we mean that A can be split by finitely many
hyperplanes such that, on each of the closed (polyhedral) regions, f is linear. Further,
f is continuous, that is, the linear formulas for two adjacent regions agree on the
boundary between them.

We begin with the piecewise linearity for finite graphs, and then consider infinite
graphs with bounded degrees.

Theorem 5.2. Let G = (V,E) be a finite graph. Let p ∈ Z
+. Then λ(G;k) is

PL as a function of k on T p. Specifically, the domain T p can be split by finitely many
hyperplanes through the origin into closed convex polyhedral cones, such that λ(G;k)
is given by a linear function of the ki’s on each cone.

318 JERROLD R. GRIGGS AND XIAOHUA TERESA JIN

Proof. Let G = (V,E) be a finite graph on n vertices. Let us partition T p into
polyhedral cones by taking all hyperplanes with equations of the form

p∑
i=1

biki = 0, where
∑
i

|bi| < 2n.

By the D-Set Theorem, for any point k ∈ T p, λ(G;k) is the minimum, over
feasible labellings f : V → D(k), of the maximum label f(v), v ∈ V . Further, it
suffices to consider such f in which for all vertices v, f(v) has the form

∑p
i=1 ai(v)ki,

where the nonnegative integer coefficients ai(v) satisfy
∑p

i=1 ai(v) < n. (Note that
for every k ∈ T p, there is some feasible labelling, hence some feasible labelling of this
form.)

Now we turn things around and fix a labelling f of this form and consider the
feasible region for f , meaning the set of values k ∈ T p for which f ∈ L(G;k). We
claim that it is a union of convex cones with vertex at the origin.

To see this, note that k ∈ T p is feasible for such f whenever it is feasible for
each pair of vertices u, v at distance between 1 and p. If u and v are at distance
d, say, this means that f(u) − f(v) is either ≥ kd or ≤ −kd. For the pair u, v the
two constraints are bounded by the hyperplanes through the origin with equations∑

i(ai(u) − ai(v))ki = kd or = −kd, which both have the stated form. Then the
feasible region for f is the intersection, over such pairs u, v, of these sets in T p, each a
union (possibly empty) of at most two closed half-spaces. So it is a union of polyhedral
cones of the form stated in the theorem.

Within the feasible region of f , the maximum label maxv∈V

∑p
i=1 ai(v)ki depends

on k. Chopping the feasible region by all possible comparisons between values of f , we
get that the feasible region is refined into a union of closed polyhedral cones, bounded
by the hyperplanes above plus the additional hyperplanes f(u) = f(v), over distinct
u, v ∈ V , that is,

∑
i(ai(u) − ai(v))ki = 0, which also has the stated form.

By taking all possible hyperplanes of the stated form T p is divided into polyhedral
cones through the origin such that in each such cone (cell) K some nonempty collection
of our labellings f is feasible on all of K, and for each such feasible f , the maximum
label f(v) is achieved at a single vertex v (by a single linear formula in k). Similarly,
the minimum of these maximum labels, over all feasible f on K, will be given by a
single linear formula (some label f(v)) throughout K.

To summarize, cutting T p by all of the finitely many hyperplanes described above
divides it into a finite number of convex polyhedral cones such that λ(G;k) is given
by a linear formula of k in each (closed) cone, and we see λ(G;k) is PL.

We remark that since the formulas for adjacent cells K and K ′ agree on their
boundaries, the continuity of λ(G;k) follows for finite graphs G. The strength of
Theorem 5.1 is evidently that continuity holds as well for infinite graphs G ∈ GΔ.

Now consider infinite graphs with bounded maximum degree, say, G ∈ GΔ. The
same arguments above extend, but now the number of hyperplanes cutting through
the origin is infinite, so the convex cones in the feasible region are not necessarily
polyhedral. Nonetheless, we conjecture that Theorem 5.2 can be extended to such
infinite graphs.

Let G = (V,E) be a graph, possibly infinite, of bounded maximum degree. Let
p ∈ Z

+. Then λ(G;k) is continuous and nondecreasing as a function of k on T p.
Conjecture 5.3 (PL Conjecture). Let G = (V,E) be a graph, possibly infinite,

of bounded maximum degree. Let p ∈ Z
+. Then λ(G;k) is PL as a function of k

on T p. Specifically, the domain T p can be split by finitely many hyperplanes through

REAL NUMBER GRAPH LABELLINGS WITH DISTANCE CONDITIONS 319

the origin into closed convex polyhedral cones such that λ(G;k) is given by a linear
function of the ki’s on each cone.

Despite considerable effort we have not yet succeeded in proving this conjecture.
We can give weaker, though still quite strong, results in support of it. One strategy
is to restrict the domain by staying away from the coordinate planes (avoiding very
small values of the separations ki). For a number ε > 0, let us consider the region
T p(ε) of all points k with all ki ≥ ε(

∑
i ki). Consider any point k ∈ T p(ε). By

Lemma 2.2, λ(G;k) ≤ Δp
∑

i ki. By the D-Set Theorem there is an optimal labelling
in which each label has the form

∑
aiki, so that, for all i, aiki ≤ Δp

∑
i ki, from

which our assumption on k implies each coefficient is at most a constant, Δp/ε. We
can then proceed as for Theorem 5.2 and derive the PL property.

Theorem 5.4. Let G = (V,E) be a graph, possibly infinite, of bounded maximum
degree. Let p ∈ Z

+. Then for any ε > 0 the function h(k) = λ(G;k) is PL on T p(ε).
Our other supporting result for the PL Conjecture 5.3 is to prove it for conditions

out to distance two, that is, for p = 2. This explains why we obtained PL graphs
for λ(G; k, 1) for the graphs we considered. It depends on a special sort of argument
that we have been unable to extend to larger p. We can derive the PL Theorem for
p = 2 (Theorem 5.6) by a different argument in section 8. We first require some
simple bounds on λ(G; k1, k2) depending on the chromatic number. Note that the
upper bound here may be either better or worse than in Lemma 2.2, depending on
k1, k2.

Lemma 5.5. Let G = (V,E) be a graph, possibly infinite, of maximum degree at
most Δ > 0. Then

(χ− 1)k1 ≤ λ(G; k1, k2) ≤ (χ− 1)k1 + χΔ2k2,

where χ is the chromatic number of G. Also,

(χ(G2 −G) − 1)k2 ≤ λ(G; k1, k2) ≤ χ(G2 −G)Δk1 + (χ(G2 −G) − 1)k2.

Proof. We prove the first display; the proof of the second is similar. The lower
bound follows easily from

λ(G; k1, k2) ≥ λ(G; k1, 0) = λ(G; k1) = k1λ(G; 1) = k1(χ− 1).

For the upper bound, let us employ two labellings of G. First, take any optimal
coloring f1 of G, where the colors are integer labels in [0, χ − 1]. (Note that if we
instead use a greedy first-fit coloring of G, we might not get an optimal coloring; the
labels would be in [0,Δ].) Second, take labelling f2 to be a greedy L(0, 1)-labelling, as
in the proof of Lemma 2.2, so that the labels in f2 are integers in the interval [0,Δ2].
Then we define the labelling

f = (k1 + Δ2k2)f1 + k2f2.

By design, f ∈ L(k1, k2), and its span is at most

(k1 + Δ2k2)(χ− 1) + k2Δ
2 = (χ− 1)k1 + χΔ2k2.

Theorem 5.6. Let G = (V,E) be a graph, possibly infinite, of bounded maximum
degree. Then λ(G; k1, k2) is PL as a function of (k1, k2) on T 2. Specifically, the
domain T 2 can be partitioned by finitely many lines through the origin into closed

320 JERROLD R. GRIGGS AND XIAOHUA TERESA JIN

convex polyhedral cones such that λ(G; k1, k2) is given by a linear function of the ki’s
on each cone.

Proof. Let G ∈ GΔ. By the Scaling Property, λ(G; k1, k2) = k2λ(G; k, 1) for
k2 > 0 by setting k = k1/k2, so that it suffices to show that λ(G; k, 1), denote this
by g(k), is piecewise linear as a function of k. The proof of Theorem 5.2 gives us the
piecewise linearity we want, except there may be infinitely many linear pieces when
G is infinite. It is enough to prove that g(k) is eventually linear for sufficiently large k
and also for sufficiently small k > 0. Theorem 5.4 guarantees that it is piecewise linear
with integer coefficients, with only finitely many pieces, between the linear pieces at
the ends.

Let us deal with the case of large k. Consider some ko > χΔ2. As in the proof
of Theorem 5.2, g(ko) is on a linear segment of the graph of g with a formula of the
form αk+β, where α, β ∈ N. Moreover, the upper bound in Lemma 5.5 gives us that

αko + β ≤ (χ− 1)ko + χΔ2,

which forces

(α− (χ− 1))ko ≤ χΔ2.

But since ko > χΔ2, it must be that α ≤ χ− 1, as α is integral.
There must be a largest integer coefficient α over the values k > χΔ2; say it is

αo at ko so that g(ko) = αoko + βo. None of the linear formulas for k larger than
ko can be of the form αok + β with β > βo, because there is no way to get above
the linear function αok + β without some piece having a slope α > αo, contradicting
the maximality of αo, using the fact that g(k) is continuous. Hence, for all k ≥ ko,
g(k) ≤ αok+ βo. Then by the lower bound of Lemma 5.5, (χ− 1)k ≤ αok+ βo for all
large k. It follows that αo = χ− 1.

Linear pieces of the graph of g(k) for k > ko with slope αo must have decreasing
values of β, so that each subsequent linear piece with formula αok + β will have a
lower value of β ∈ N. There then must be a last linear piece with α = αo. Then this
piece never ends, because if it did, then after that the slopes would all be at most
χ− 2, and eventually the graph of g would drop by the lower bound of Lemma 5.5.

It remains to go the other way and show that, for sufficiently small k, g(k) is
linear. This is equivalent to showing that λ(G; 1, k) is eventually linear as k grows.
The same method used before now works, except the roles of k1 and k2 are reversed.
We conclude that g(k) is eventually linear as k → 0, with a formula of the form
αk+χ(G2−G), and it is piecewise linear overall with only finitely many pieces.

6. Bounds on the coefficients. We made a special effort to determine
whether the piecewise linearity theorem (Theorem 5.2) holds more generally than
for finite graphs. Does it hold for infinite graphs of bounded degree, that is, for the
class GΔ? We verified our PL Conjecture 5.3 in cases where we could bound the coef-
ficients ai independent of k. The full PL Conjecture would follow (by the arguments
used to prove Theorem 5.2) if one can prove this strengthening of the D-Set Theorem.

Conjecture 6.1 (Coefficient Bound Conjecture). Let G = (V,E) be a graph,
possibly infinite, of bounded maximum degree. Let p ∈ Z

+. Then there exists a
constant c1 = c1(G, p) such that, for all k ∈ T p, there is an optimal labelling f ∈ L(k)
with all labels f(v) ∈ D(k) in which the smallest label is 0, the largest label is λ(G;k),
and each of the labels f(v) and λ(G;k) can be expressed in the form

∑
i aiki, where

the nonnegative integer coefficients ai are at most c1.

REAL NUMBER GRAPH LABELLINGS WITH DISTANCE CONDITIONS 321

We cannot see how to derive the conjecture above from the PL Conjecture. We
would need to know more, such as the domain can be split into finitely many regions
such that in each region there is a single labelling of G that is optimal. Of course
then there would be a collection of just finitely many labellings fj such that, for any
k, some labelling in the collection is optimal (and feasible, of course) for k.

We suspect that coefficient bounds can be given that work for all graphs with
given maximum degree. Specifically, we propose this strengthening of the Coefficient
Bound Conjecture.

Conjecture 6.2 (Delta Bound Conjecture). Let Δ, p ∈ Z
+. Then there exists

a constant c2 = c2(Δ, p) such that, for all k ∈ T p and all graphs G = (V,E), possibly
infinite, of maximum degree at most Δ, there is an optimal labelling f ∈ L(G;k) with
all labels f(v) ∈ D(k) in which the smallest label is 0, the largest label is λ(G;k), and
each of the labels f(v) and λ(G;k) can be expressed in the form

∑
i aiki, where the

nonnegative integer coefficients ai are at most c2.
We have not even established this Delta Bound Conjecture yet for general finite

graphs G, since the bound on the coefficient sums
∑

i ai in the D-Set Theorem,
n− 1, is not restricted by Δ. It does hold trivially for p = 1 (with coefficient bound
a1 = χ(G) − 1 ≤ Δ). It is not clear to us how the proof of the PL Conjecture for
p = 2 (Theorem 5.6) can be used to obtain coefficient bounds to verify the Delta
Bound Conjecture for p > 2. However, we can present another approach, which then
gives a different proof of Theorem 5.6, one that may be useful in trying to prove the
Delta Bound Conjecture (and, hence, the PL Conjecture) for general p.

Theorem 6.3. Let Δ ∈ Z
+. There exists a constant c3 = c3(Δ) such that, for

all (k1, k2) ∈ T 2 and all graphs G = (V,E), possibly infinite, of maximum degree at
most Δ, there is an optimal labelling f ∈ L(G; k1, k2) with all labels f(v) ∈ D(k1, k2)
in which the smallest label is 0, the largest label is λ(k1, k2), and each of the labels
f(v) and λ(k1, k2) can be expressed in the form

∑
i aiki, where the nonnegative integer

coefficients ai are at most c3.
Proof. By the Scaling Property, it suffices to prove for given Δ the existence of

c3 that works for (k, 1) for all k ≥ 0. Let G = (V,E) ∈ GΔ. Let f be an optimal
labelling of G in L(k, 1) as in the D-Set Theorem.

Case 1. Assume k is very small; say 0 < k ≤ 1/(2Δ3).
By Lemma 2.2, f has span at most Δ2. Thus, all labels used in f have the form

ak+ b, with nonnegative integer coefficients a, b such that b ≤ Δ2. The trouble comes
in trying to bound a, independent of k, no matter how small it gets. What we do is
push down the labels f(v) in a greedy way to produce a labelling f ′ ∈ L(k, 1) such
that all labels belong to a set S ⊆ D(k, 1) in which the coefficients a are also bounded
in terms of Δ. Since f ′ also has smallest label 0, and f ′(v) ≤ f(v) for all vertices v, f ′

is an optimal labelling, one that satisfies the required conditions with c3 = Δ3 + Δ2.
We define the set

S = {ak + b : a, b ∈ Z, 0 ≤ b ≤ Δ2, 0 ≤ a ≤ (b + 1)Δ}.

It is important to note that our assumption that k is small means there is a gap
between elements in S of the form ak+ b and b+1. Let the set of labels used by f be
given by {0 = l0 < l1 < l2 < · · · < lr}, where r = r(k) is finite, since it is contained
in the finite set D(k, 1)∩ [0,Δ2]. For vertices v with label l0 = 0, we set f ′(v) = f(v).
We next take care of vertices in f−1(l1), then those in f−1(l2), and so on, through
f−1(lr). Let us suppose we are dealing with vertices v with label li, having already
pushed down labels for vertices w with f(w) < li. Although f−1(li) can be infinite, no

322 JERROLD R. GRIGGS AND XIAOHUA TERESA JIN

two of its vertices are within distance two, so they can all be pushed simultaneously
without any concern about interference. What we do have to ensure is that when we
push down f(v), f ′(v) is not too close to any f ′(w) for some w already pushed down.
We define f ′(v) to be the largest element of S ∩ [0, li] that is at least k (resp., 1) away
from f ′(w) for every w at distance one (resp., two) from v.

With this definition, f ′ has all of the required properties. What needs to be
proved is that there is, indeed, some element of S∩ [0, li] that is far enough away from
the labels f ′(w) already defined. Put B = �li� and R = li −B so that 0 ≤ R < 1.

Case 1a. Suppose that R ≤ (B + 1)Δk. Put A = �R/k�. Then f ′(v) will be
Ak + B. For we have Ak + B ∈ S, 0 ≤ li − (Ak + B) < k, and Ak + B is far enough
from values f ′(w) already defined for nearby vertices w. For vertices w at distance
one (resp., two) from v that were already pushed, f(w) ≤ f(v)−k = R−k+B (resp.,
f(w) ≤ f(v) − 1 = R + (B − 1)), so that f ′(w) ≤ (A − 1)k + B = f ′(v) − k (resp.,
f ′(w) ≤ Ak + (B − 1) = f ′(v) − 1).

Case 1b. Suppose that (B + 1)Δk < R < 1. Then f ′(v) will be the largest of the
Δ + 1 labels ak + B, BΔ ≤ a ≤ (B + 1)Δ, that is not used as f ′(w) for any vertices
w adjacent to v. Then f ′(v) is at least k away from labels f ′(w) for w adjacent to v.
If w at distance two from v was already pushed, then f(w) ≤ R+(B− 1) means that
f ′(w) ≤ BΔk + (B − 1) = (BΔk + B) − 1 ≤ f ′(v) − 1.

Either way, f ′(v) exists as required.
Case 2. Assume k is very large; say k ≥ 2Δ4.
The argument proceeds as in Case 1, though now we have to use the fact that

for any vertex v, the number of vertices at distance two is at most Δ2. This time we
define our set

S = {ak + b : a, b ∈ Z, 0 ≤ a ≤ Δ, 0 ≤ b ≤ (a + 1)Δ2}.
We push down f in a similar way as before to produce an optimal labelling f ′ which
has coefficient bound roughly Δ4.

Case 3. Assume k is intermediate, 1/(2Δ3) < k < 2Δ2.
By Lemma 2.2, λ(k, 1) ≤ Δ2 max{k, 1}, which leads to an upper bound of 2Δ5

on the coefficients a, b of the labels ak + b of the optimal labelling f .
We see that 2Δ5 serves as an upper bound on the coefficients for all k.
An important note about the Delta Bound Conjecture is that it is simple to give

a bound on the label coefficients (in terms of Δ and p) for which there does exist a
feasible labelling f . For instance, there are the labellings described in connection with
Lemma 2.2, in which every label has the form ak, where k = maxi{ki}, and a is at
most Δp. But such labellings are certainly not optimal in general. Hence, the tough
part of proving the Delta Bound Conjecture for general p is to show that for some
constant c3 there exists an optimal feasible labelling with coefficients bounded by c3.

Besides being stronger than the PL Conjecture, the Delta Bound Conjecture is
perhaps more natural, and easier to understand.

7. Degree bounds. Just as with chromatic numbers, it is interesting to con-
sider how large the optimal span λ(G;k) can be given the degrees of the vertices.
Specifically, what if we bound the maximum degree Δ(G)? Algorithms devised to
achieve bounds we find are potentially useful, since they may produce reasonably
efficient channel assignments.

For a connected finite graph G, an easy best-possible bound on the chromatic
number is

χ(G) ≤ Δ(G) + 1,

REAL NUMBER GRAPH LABELLINGS WITH DISTANCE CONDITIONS 323

and the well-known Brooks’s Theorem implies that this bound is best-possible if and
only if G is a clique Kn or an odd cycle C2k+1. The Δ(G) + 1 bound can be achieved
by arbitrarily ordering the vertices V , say, {v1, v2, . . .}, and doing a greedy first-fit
labelling of them one-by-one (always choose the lowest permissible color). Indeed,
this works even if G is infinite.

For the basic λ-number, λ(G) = λ(G; 2, 1), the analogous question was proposed
in [16], cf. [29]. Of course, a connected graph G with maximum degree 0 or 1 must
be a K1 or K2, respectively, and have λ equal to 0 or 2, respectively. After checking
many examples, Griggs and Yeh made the following still-unproved conjecture.

Conjecture 7.1 (Delta Squared Conjecture). If G is a connected graph with
maximum degree Δ ≥ 2, then λ(G) ≤ Δ2.

This was stated for finite graphs, but would hold as well for infinite graphs by
applying a compactness argument (the Rado Selection Principle, say). The quick
explanation for why the bound is quadratic in Δ, instead of linear as for chromatic
number, is that the interference in labels extends to distance two from a given vertex,
and the number of vertices within distance two can be as large as Δ+Δ(Δ−1) = Δ2.
Of course, this observation does not prove the conjecture, since there is the added
restriction that labels for adjacent vertices cannot be consecutive.

The conjecture is tantalizing in part because if it fails, it is not by much. Griggs
and Yeh used a simple vertex ordering and greedy first-fit labelling to show that

λ(G) ≤ Δ2 + 2Δ,

which supports the conjecture down to order O(Δ). On the other hand, they con-
structed graphs for infinitely many values Δ, using finite projective planes, for which

λ(G) ≥ Δ2 − Δ.

Also in support of the conjecture is that it has been shown by many researchers
to hold for many classes of graphs. To mention a few, it is known to hold if G is
diameter two [16], [29], and better bounds than Δ2 have been proved for trees [16],
chordal graphs [28], and planar graphs [18], [26]. Indeed, no one has found any graphs
for which the Δ2 bound is sharp, besides the short list in the original paper [16]:

• Paths and cycles, Pn and Cn, n ≥ 3 (Δ = 2),
• Petersen graph, n = 10 (Δ = 3),
• Hoffman-Singleton graph, n = 50 (Δ = 7),
• the 57-regular diameter-two graph on 572 + 1 vertices, if it exists.

Chang and Kuo [4] managed to cut the gap in the general upper bound in half,
proving that

λ(G) ≤ Δ2 + Δ.

The bound remained there for nearly ten years, before it was improved by Král’
and Škrekovski.

Theorem 7.2 (see [21]). Let G be a graph, possibly infinite, with finite maximum
degree Δ ≥ 2. Then λ(G) ≤ Δ2 + Δ − 1.

For Δ = 2, G must be a path or cycle, for which the conjecture is already verified.
The next case up is Δ = 3, where the best known general bound is now 11 [21].
Georges and Mauro checked many such graphs [9]. They not only found no graphs
with λ(G) > 9, they found no other connected graphs with λ = 9. In fact, they found
no such graphs at all with λ = 8, so they suspect (personal communication) that
λ(G) ≤ 7 if G is connected, has maximum degree 3, and is not the Peterson graph.

324 JERROLD R. GRIGGS AND XIAOHUA TERESA JIN

Now we consider Δ-bounds on λ(G;k) for general separations k. Earlier we gave
such a bound, again by ordering the vertices and doing a greedy first-fit labelling, in
Lemma 2.2:

λ(G;k) ≤ kΔp,

where k is the maximum ki. However, when some ki’s are smaller than k, it is clear
that λ(G;k) should be smaller. A more careful argument takes advantage of such
variation in the separations.

Theorem 7.3. Let G be a graph, possibly infinite, with finite maximum degree
Δ ≥ 0. Let k = (k1, . . . , kp) ≥ 0. Then λ(G;k) ≤

∑p
i=1 2kiΔ(Δ − 1)i−1.

Proof. As in the proof of Lemma 5.5, it is enough to consider a single com-
ponent of G in which the vertices are arbitrarily ordered V = v1, v2, We do a
greedy first-fit labelling f of the vertices, using for each vertex v the smallest label
in [0, B], where B is the bound in the theorem that is not too close to any previ-
ously assigned labels. To see that there is always such an available label, consider a
previously labelled vertex w at distance i from v, 1 ≤ i ≤ p. Then f(v) must avoid
the interval (f(w) − ki, f(w) + ki) in order that f ∈ L(k). Bounding the number of
vertices at distance i, and assuming in the worst case that all of these vertices are
already labelled and that their intervals are disjoint, we have a union of open inter-
vals of lengths adding up to the bound B, so some element of [0, B] is available for
f(v).

A variation of the argument above gives a related bound that is sometimes slightly
better, depending on the ki’s.

Theorem 7.4. Let G be a graph, possibly infinite, with finite maximum degree
Δ ≥ 0. Let k = (k1, . . . , kp) ≥ 0. Then λ(G;k) ≤

∑p
i=1(2
ki� − 1)Δ(Δ − 1)i−1.

Proof. Do a greedy first-fit labelling as before, but restrict the labels f(v) to
integers. For a previously labelled vertex w at distance i from v, f(v) must avoid the
integers in the interval (f(w) − ki, f(w) + ki) in order that f ∈ L(k). These integers
are from f(w) + 1−
ki� to f(w)− 1 +
ki�, a total of 2
ki� − 1 integers. The stated
bound follows as before.

8. Related results. The development of our theory of real number labellings
was influenced by work on the triangular lattice described in the winning student
MCM papers [3], [7], [11], [24], [5] and in the preprint [30]. These papers forced us to
consider values λ(ΓΔ; k, 1) for nonintegral values of k.

There is a considerable amount of work in the literature on labellings that is
related to this project. We must first mention earlier work of Georges and Mauro
that we only realized, after working out the concept of real-number labellings, is very
much in the spirit of this project. In 1995 [8] they proved a restricted version of the
D-Set Theorem: it is shown that for finite graphs G and for integers p ≥ q ≥ 0, there
is an optimal labelling in L(G; p, q) in which every label and λ(G; p, q) have the form
ap+ bq, where a, b are nonnegative integers. They prove in this restricted setting that
for integers c > 0, λ(G; cp, cq) = cλ(G; p, q), a special case of our Scaling Property 2.1.
They determine λ(G; p, q), p ≥ q for G being a path, a cycle, or various other graphs.
In fact, our path and cycle formulas Theorems 3.2 and 3.3 above can be deduced—for
k ≥ 1—from their formulas for integers p ≥ q by using our real number model, the
Scaling Property 2.1, Corollary 4.2, and continuity (Theorem 5.1).

Moreover, a later paper of Georges and Mauro [10] introduces what we refer to as
labellings in L(G; k, 1) with rational k ≥ 1. They prove these labellings are continuous.
This paper is also maybe the first to consider infinite graphs G. Its main result is to
determine λ(G; p, q) for integers p ≥ q ≥ 1 when G is the infinite Δ-regular tree.

REAL NUMBER GRAPH LABELLINGS WITH DISTANCE CONDITIONS 325

Early versions of our results were presented at conferences going back to 2001,
and slides from a presentation in 2003 are posted on the Web [13].

Georges and Mauro (personal communication) have now extended their earlier
results to obtain continuity and piecewise-linearity statements for labellings with con-
ditions at distance two, applicable to infinite graphs of bounded degree. This work
appears similar to our Theorem 6.3, though their model is more restricted.

Mohar [25] has investigated a more general model, but restricted to finite graphs,
in which there is a minimum separation kv,w for every pair of distinct vertices v and
w. He actually works with the circular span of a graph, proving that it is continuous
and piecewise linear, with only finitely many linear segments, as a function of the sep-
arations. He also considers an even more general directed graph model. A variation
of his argument in the setting of our labellings may give a proof of the PL Conjec-
ture 5.3 (for finite graphs). While our model is more restricted, in that separations
depend only the distance between v and w, it may have special properties due to this
restriction. We also work more generally with infinite graphs.

More recently, a paper by Leese and Noble [23] considers circular real number
labellings with conditions at distance two, and obtains a continuous piecewise linear
result in that context.

9. Directions for further research. Of course, we are anxious to see the
conjectures above settled. As we completed this paper, we learned that a group in
Prague (Babilon, Jeĺinek, Král’, Valtr) is also preparing a paper on distance-dependent
labellings from a somewhat different perspective [1], motivated in large part by the
paper of Leese and Noble mentioned above. (Our main ideas were already presented
at the DIMACS workshop [13] in October, 2003.)

In the distance two case (p = 2) let us consider how soon the formula becomes
linear. What John Georges (personal communication) has observed in many examples
is that λ(G; k, 1) seems to be linear for k > Δ—it settles down quickly. Is this true
and can it be proven in general? Also, Theorem 6.3 can be used to bound the number
of linear pieces in terms of Δ—but how good a bound can be given?

The authors are planning a future paper that explores the symmetry properties
of optimal labellings of the triangular lattice with conditions at distance two.

It would be interesting to expand our model to consider infinite graphs with sepa-
rations ki at all distances i, not just finitely many conditions. Even for the particular
examples of the triangular lattice and the square lattice, it would be interesting to
characterize infinite k such that λ exists.

For use in many applications, we should return to considering the original problem
of labelling transmitters in a planar network, using Euclidean distance, rather than
graph distance. Perhaps the results for graphs can be helpful?

In some applications we have been told that many channels must be assigned to
each transmitter (e.g., if each cell phone user in a particular cell must have a separate
frequency). This can be accomplished by assigning an entire arithmetic progression of
labels to each vertex in a graph, with the same distance d used for every progression
such that, for nearby vertices v and w, every label used for v is sufficiently separated
from every label for w. Equivalently, each vertex is assigned a label in the interval
[0, d), with distance between labels measured on the circle, that is, modulo d. The
goal is to minimize the circular span d. There is a sizable literature on this problem
for integer labellings. We have been investigating the extension of this model to allow
real-number labellings, and there are analogues of some of the results given in this
paper for “linear” labellings. This work will be described in a future paper.

326 JERROLD R. GRIGGS AND XIAOHUA TERESA JIN

Acknowledgments. The first author wishes to express gratitude to his old
friend, Tom Savage, whose enthusiasm for this subject was an inspiration in develop-
ing this project. The first author’s visit to Trinity, to speak in a special lecture series
sponsored by Savage, brought the author together with Trinity faculty John Georges
and David Mauro for a stimulating exchange of ideas. Both authors are thankful for
helpful discussions and correspondence with many other colleagues, including Tiziana
Calamoneri, Daniel Král’, Renu Laskar, Daphne D.-F. Liu, Lincoln Lu, László Székely,
and Craig Tovey. We also gladly acknowledge the support of the DIMACS-DIMATIA-
Rényi series of workshops on graph colorings.

REFERENCES

[1] R. Babilon, V. Jeĺinek, D. Král’, and P. Valtr, Graph Labelings with Adjustable Weights,
ITI Report 2004-226, Institute for Theoretical Computer Science, Prague, Czech Republic,
submitted.

[2] A. A. Bertossi and M. A. Bonuccelli, Code assignment for hidden terminal interference
avoidance in multihop packet radio networks, IEEE/ACM Trans. Networking, 3 (Aug.,
1995), pp. 441–449.

[3] R. E. Broadhurst, W. J. Shanahan, and M. D. Steffen , We’re sorry, you’re outside the
coverage area, UMAP J., 21 (2000), pp. 327–342.

[4] G. J. Chang and D. Kuo, The L(2, 1)-labeling problem on graphs, SIAM J. Discrete Math., 9
(1996), pp. 309–316.

[5] R. Chu, B. Xiu, and R. Zong, Utilize the limited frequency resources efficiently, UMAP J.,
21 (2000), pp. 343–356.

[6] M. B. Cozzens and F. S. Roberts, T-colorings of graphs and the channel assignment problem,
Congr. Numer., 35 (1982), pp. 191–208.

[7] D. J. Durand, J. M. Kline, and K. M. Woods, Groovin’ with the big band(width), UMAP
J., 21 (2000), pp. 357–367.

[8] J. P. Georges and D. W. Mauro, Generalized vertex labelings with a condition at distance
two, Congr. Numer., 109 (1995), pp. 141–159.

[9] J. P. Georges and D. W. Mauro, On generalized Petersen graphs labeled with a condition
at distance two, Discrete Math., 259 (2003), pp. 311-318.

[10] J. P. Georges and D. W. Mauro, Labeling trees with a condition at distance two, Discrete
Math., 269 (2003), pp. 127–148.

[11] J. Goodwin, D. Johnston, and A. Marcus, Radio channel assignments, UMAP J., 21 (2000),
pp. 369–378.

[12] J. R. Griggs, Judge’s commentary: The outstanding channel assignment papers, UMAP J.,
21 (2000), pp. 379–386.

[13] J. R. Griggs and X. T. Jin, Real number channel assignments with distance con-
ditions, DIMACS Graph Coloring Workshop lecture, Oct., 2003, posted online at
http://dimacs.rutgers.edu/Workshops/GraphColor/slides.html.

[14] J. R. Griggs and X. T. Jin, Real Number Channel Assignments for Lattices, preprint, Sept.,
2005, posted online at http://www.math.sc.edu/∼griggs/.

[15] J. R. Griggs and X. T. Jin, Real Number Labelings for Paths and Cycles, preprint, Sept.,
2005, posted online at http://www.math.sc.edu/∼griggs/.

[16] J. R. Griggs and R. K.-C. Yeh, labeling graphs with a condition at distance 2, SIAM J.
Discrete Math., 5 (1992), pp. 586–595.

[17] W. K. Hale, Frequency assignment: Theory and applications, Proc. IEEE, 68 (1980), pp.
1497–1514.

[18] J. van den Heuvel and S. McGuinness, Coloring the square of a planar graph, J. Graph
Theory, 42 (2003), pp. 110–124.

[19] X. T. Jin, Real Number Graph Labeling with Distance Conditions, Ph.D. dissertation, Math.
Dept., University of South Carolina, Columbia, SC August, 2005.

[20] X. T. Jin and R. K. Yeh, Graph distance-dependent labeling related to code assignment in
computer networks, Naval Res. Logist., 52 (2005), pp. 159–164.

[21] D. Král’ and R. Škrekovski, A theorem about the channel assignment problem, SIAM J.
Discrete Math., 16 (2003), pp. 426–437.

[22] R. A. Leese, A unified approach to the assignment of radio channels to a regular hexagonal
grid, IEEE Trans. Vehicular Tech., 46 (1997), pp. 969–980.

REAL NUMBER GRAPH LABELLINGS WITH DISTANCE CONDITIONS 327

[23] R. A. Leese and S. D. Noble, Cyclic labelings with constraints at two distances, Electron. J.
Combin., 11 (2004), #R16, 16pp.

[24] J. Mintz, A. Newcomer, and J. C. Prince, A channel assignment model: The span without
a face, UMAP J., 21 (2000), pp. 311–326.

[25] B. Mohar, Circular Colorings of Edge-Weighted Graphs, J. Graph Theory, 43 (2003), pp. 107–
116.

[26] M. Molloy and M. R. Salavatipour, Frequency channel assignment on planar networks, in
Proceedings of the 10th Annual Europ. Sympos. Algorithms (ESA), 2002, pp. 736–747.

[27] F. S. Roberts, Working Group Agenda, DIMACS/DIMATIA/Renyi Working
Group on Graph Colorings and their Generalizations, 2003, posted online at
http://dimacs.rutgers.edu/Workshops/GraphColor/main.html.

[28] D. Sakai, Labelling chordal graphs: Distance two condition, SIAM J. Discrete Math., 7 (1994),
pp. 133–140.

[29] R. K. Yeh, Labeling Graphs with a Condition at Distance 2, Ph.D. dissertation, University of
South Carolina, Columbia, SC, 1990.

[30] D. Zhu and A. Shi, Optimal Channel Assignments, personal communication, 2001.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 2, pp. 328–343

A BOUND ON THE PRECISION REQUIRED TO ESTIMATE A
BOOLEAN PERCEPTRON FROM ITS AVERAGE

SATISFYING ASSIGNMENT∗

PAUL W. GOLDBERG†

Abstract. A Boolean perceptron is a linear threshold function over the discrete Boolean domain
{0, 1}n. That is, it maps any binary vector to 0 or 1, depending on whether the vector’s components
satisfy some linear inequality. In 1961, Chow showed that any Boolean perceptron is determined by
the average or “center of gravity” of its “true” vectors (those that are mapped to 1), together with
the total number of true vectors. Moreover, these quantities distinguish the function from any other
Boolean function, not just from other Boolean perceptrons.

In this paper we go further, by identifying a lower bound on the Euclidean distance between
the average satisfying assignment of a Boolean perceptron and the average satisfying assignment
of a Boolean function that disagrees with that Boolean perceptron on a fraction ε of the input
vectors. The distance between the two means is shown to be at least (ε/n)O(log(n/ε) log(1/ε)). This
is motivated by the statistical question of whether an empirical estimate of this average allows us to
recover a good approximation to the perceptron. Our result provides a mildly superpolynomial upper
bound on the growth rate of the sample size required to learn Boolean perceptrons in the “restricted
focus of attention” setting. In the process we also find some interesting geometrical properties of the
vertices of the unit hypercube.

Key words. Boolean functions, threshold functions, geometry, inductive learning

AMS subject classifications. 68Q15, 68Q32, 52C07, 52C35

DOI. 10.1137/S0895480103426765

1. Introduction. A Boolean perceptron is a linear threshold function over the
domain of 0/1-vectors. (Subsequently we usually just say “perceptron” and omit the
adjective “Boolean.”) Thus it is specified by a weight vector w of n real numbers
and a real-valued threshold t, and it maps a binary vector x to the output value 1,
provided that w.x ≥ t; otherwise it maps x to 0.

In this paper we consider the problem of estimating a perceptron from an approx-
imate value of the mean, or “center of gravity” of its satisfying assignments. Chow [9]
originally showed that any Boolean perceptron is identified by the exact value of the
average of its satisfying assignments, along with the number of satisfying assignments,
in the sense that there are no other Boolean functions of any kind for which the aver-
age and number of satisfying assignments is the same. The question of the extent to
which an approximation to the average determines the perceptron is equivalent to the
problem of learning Boolean perceptrons in the “restricted focus of attention” setting,
described below.

The Chow parameters of a Boolean function are the coordinates of the vector
sum of the satisfying vectors, together with the number of satisfying vectors. Subject
to a uniform distribution over Boolean vectors, these are essentially equivalent to
the conditional probabilities that the ith component of x is equal to 1, conditioned

∗Received by the editors April 30, 2003; accepted for publication (in revised form) March 20, 2005;
published electronically April 21, 2006. This work was supported by EPSRC grant GR/R86188/01,
and in part by the IST Programme of the European Community, under the PASCAL Network of
Excellence, IST-2002-506778. This publication reflects only the author’s views. A preliminary version
of this paper was presented at the 2001 COLT conference.

http://www.siam.org/journals/sidma/20-2/42676.html
†Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK (pwg@dcs.

warwick.ac.uk, http://www.dcs.warwick.ac.uk/∼pwg/).

328

ESTIMATING A BOOLEAN PERCEPTRON 329

on x being a satisfying assignment. Letting y denote the output value and x =
((x)1, . . . , (x)n), these are the probabilities Pr((x)i = 1 | y = 1), for i = 1, . . . , n,
together with the value Pr(y = 1).1 Chow’s result says that these values uniquely
define the function, provided that it is a Boolean perceptron. (Bruck [8] shows, more
generally, that a threshold function G over a set of monomials is characterized by the
spectral coefficients of G that correspond to those monomials.) Hence a weights-based
parametrization (w, t) should in principle be derivable from the Chow parameters;
there will be some amount of freedom for (w, t) to vary while preserving the functional
behavior on binary inputs.

In this paper we show that additive approximations of the Chow parameters de-
termine the approximate behavior of the function, to within a mildly superpolynomial
factor. That is in contrast to the situation for the weights-based parametrization of
a perceptron, for which a tiny perturbation of some parameter may result in a large
change to the set of points that are mapped to output value 1. In this sense the Chow
parameters, as a description of a Boolean perceptron, are a more robust parametriza-
tion.

1.1. Background and previous results. Chow’s paper gave rise to subse-
quent work that addressed the algorithmic problem of recovering a weights-based
parametrization of a perceptron from its Chow parameters. This problem and related
ones were later reconsidered in the computational learning theory literature, notably
work on probably approximately correct (PAC)-learning in the so-called “restricted
focus of attention” setting.

Earlier work that followed from [9] includes an algorithm by Kaszerman [16] for
recovering a linear threshold function from its Chow parameters. The algorithm is
iterative and somewhat related to the perceptron algorithm [19]; it does not have
a good bound on the number of iterations and assumes that exact values of the
parameters are given. A paper of Winder [20] compares seven functions (four of which
were proposed in previous papers) for rescaling Chow parameters to obtain weights
for a linear-threshold function. None of these functions has perfect performance, and
it is uncertain that any function exists from individual Chow parameters to good
weights—it may be necessary to deal with them collectively rather than individually.
A further paper by Winder [21] investigates the class of Boolean functions that are
uniquely defined by their Chow parameters, and shows among other things that it lies
properly between the class of linear threshold functions and the class of monotonic
functions.

The problem of learning a function f means reconstructing it (exactly or approx-
imately) from a limited collection of observations of its input vectors x and associated
values f(x). There is much known about learning Boolean perceptrons in various set-
tings, for example irrelevant attributes [17], classification noise [6], and learning from
a source of “helpful” examples [2]. Special cases include monomials, decision lists
[18, 12], and Boolean threshold functions. Further work on this topic occurs in the
more general context of perceptrons over the real as opposed to the Boolean domain.
An example is that they may be PAC-learned in a time polynomial in the dimension
n and the PAC parameters ε and δ, using the Vapnik–Chervonenkis (VC) dimension
theory [7]. Chapter 24 of [1] and references therein are a good introduction to results

1If the coordinates of the sum of all satisfying vectors are rescaled down by the number of
satisfying vectors, one obtains the average satisfying assignment, whose coordinates are the proba-
bilities Pr((x)i = 1 | y = 1). The Chow parameters are recovered by multiplying this average by
2n · Pr(y = 1).

330 PAUL W. GOLDBERG

on learning Boolean perceptrons.
Restricted focus of attention (RFA) learning was introduced and developed in the

papers [3, 4, 5]. The k-RFA setting (where k is a positive integer) allows an algorithm
to see only a subset of size k of the input attributes of any training example. The usual
assumption has been that the distribution of input vectors x is known to be a product
distribution (with no other information given about it). Clearly, 1-RFA learning (in
which only one input attribute of each example is visible) is a very restrictive setting,
making positive results of particular interest. In [13] we studied in detail the problem
of learning linear-threshold functions over the real domain in the 1-RFA setting, so
that each example of input/output behavior of the target function has only a single
input component value, together with the binary value of the output, revealed to the
learning algorithm. We showed that the input distribution (in [13], not necessarily
a product distribution) needs to be at least partly known, and that the sample size
required for learning depends sensitively on the input distribution. We identified
measures of “well-behavedness” of the input distribution and gave sample size bounds
in terms of these measures.

This paper addresses the topic of 1-RFA learning of perceptrons where the input
distribution is uniform over V , the vertices of the unit hypercube. From [5] we have
that a random sample of 1-RFA data is equivalent, in terms of the information it
conveys, to approximations of the conditional probabilities Pr(y = 1 | (x)i = b), for
b ∈ {0, 1} (where (x)i denotes the ith component of x), together with the probability
Pr(y = 1), and these approximations have additive error inversely proportional to
the sample size. The coordinates of the average satisfying assignment are related as
follows:

Pr((x)i = 1 | y = 1) =
Pr((x)i = 1)

Pr(y = 1)
Pr(y = 1 | (x)i = 1)

=
1

2 Pr(y = 1)
Pr(y = 1 | (x)i = 1).

Provided that Pr(y = 1) is not too small, we obtain good estimates of the coordinates
of the average satisfying assignment from estimates of probabilities Pr(y = 1 | (x)i =
1) (and vice versa). Our analysis handles low values of Pr(y = 1) as a special case.

The reason why the uniform distribution on V (for which bounds of [13] are in-
applicable) is of particular interest is that it is the most natural and widely studied
input distribution from the perspective of computational learning theory. The ques-
tion of whether this learning problem is solvable with polynomial time or sample size
was previously discussed in [10] and [13] and is currently known to be solvable under
the restriction that weights are polynomially bounded. Birkendorf et al. [5] suggest
the following rule: for 1 ≤ i ≤ n and b ∈ {0, 1}, let pib be the observed conditional
probability Pr(y = 1 | (x)i = b) and let p = Pr(y = 1). Then take x to be a posi-
tive instance if 1

n

∑n
i=1 p

i
(x)i

> p; otherwise label x as negative. It is left as an open
problem whether the rule is valid.

We show here that, given a perceptron F and any Boolean function that dis-
agrees with F on at least a fraction ε of input vectors, their average satisfying
assignments must differ by (ε/n)O(log(n/ε) log(1/ε) in the L2 metric. The computa-
tional learning-theoretic result that follows is a mildly superpolynomial bound (of
the order of log(δ−1)(n/ε)O(log(n/ε) log(1/ε))) on the asymptotic growth rate of sample
size requirement for PAC-learning a perceptron from 1-RFA data. This is a purely
“information-theoretic” result; we do not have any algorithm whose runtime has an
asymptotic growth rate that improves substantially on a brute-force approach.

ESTIMATING A BOOLEAN PERCEPTRON 331

1.2. Notation and terminology. Let V be the input domain, i.e., the vertices
of the unit hypercube, or 0/1-vectors. By a vertex we mean a member of V , i.e., a
0/1-vector of length n.

F will denote a Boolean perceptron, typically the “target function,” and G will
denote a Boolean function (not necessarily a Boolean perceptron), for example an
estimate of F returned by an algorithm. The positive (respectively, negative) examples
of a function are those that are mapped to 1 (respectively, 0). Let pos(F), neg(F),
pos(G), neg(G) denote the positive and negative examples of F and G. (So pos(F) =
{F−1(1)}, etc.) F and G divide V into four subsets defined as follows:

V00 = neg(F) ∩ neg(G), V01 = neg(F) ∩ pos(G),

V10 = pos(F) ∩ neg(G), V11 = pos(F) ∩ pos(G).

For R ⊆ R
n, let m(R) be the number of elements of V that lie in R. Let a(R) be the

vector sum of elements of V ∩R. Let μ(R) denote the (unweighted) average of members
of V that lie in the region R, so that μ(R) = a(R)/m(R), well-defined provided that
m(R) > 0. The region of disagreement of F and G is V01∪V10; thus the disagreement
rate between F and G, over the uniform distribution on V , is (m(V01) +m(V10))/2

n.
Throughout, logarithms are to the base 2.
When we refer to subspaces, or spanning, or dimension, we mean in the affine

sense, so that a “subspace” does not necessarily contain the origin, and the spanning
set of S ⊆ R, denoted Span(S), is the set of points that are expressible as the sum of
one member of the spanning set plus a weighted sum of differences between pairs of
points in S. A line means a 1-dimensional affine subspace.

We adopt the following usage of alphabetic symbols throughout the paper, which
extends to variants embellished with primes or subscripts:

1. H denotes a hyperplane in R
n (an affine subspace with dimension n− 1).

2. A denotes an affine subspace with possibly lower dimension.
3. S denotes a finite set of points in R

n.
4. A point in R

n or an n-dimensional vector will be denoted by a lowercase
boldface letter such as x, and (x)i denotes the ith entry or component of x.
v is used to denote an element of V .

For x = ((x)1, . . . , (x)n) let ‖x‖ denote the Euclidean norm of x, i.e., (
∑n

i=1((x)i)
2)1/2.

Let dE(x, Z) denote the Euclidean distance between x ∈ R
n and the closest point to

x in Z ⊆ R
n.

2. Geometric results. In this section we give various geometric results about
the vertices of the unit hypercube, which we use in section 3 to deduce the bound on
sample size requirement in the inductive learning context described in the last section.
We start with an informal summary of the results of this section:

1. Lemma 1 gives a simple upper bound on the number of elements of V con-
tained in a linear subspace, in terms of the dimension of that subspace.

2. Theorem 2 shows that if a hyperplane contains a large number of elements of
V , then the coefficients of that hyperplane have a large common denominator.
(A lower bound on the common denominator is given in terms of the number
of elements of V contained by the hyperplane.)

3. Theorem 3 uses Theorem 2 to show that any hyperplane that “narrowly
misses” a large fraction of V can be perturbed slightly so that it actually
contains all those vertices. The resulting hyperplane no longer “narrowly
misses” any other vertices. More precisely, if a hyperplane comes within

332 PAUL W. GOLDBERG

distance O((1/α)(n log(n/α))log(n/α)) of a fraction α of the 2n vertices, then
all those α · 2n vertices lie on the perturbed hyperplane.

4. Theorem 4 uses Theorem 3 to derive a lower bound on the distance between
μ(V01) and μ(V10) (the means of the two regions of disagreement between two
Boolean functions, one of which is a perceptron) in terms of their disagreement
rate m(V01 ∪ V10)/2

n.
Lemma 1. Any affine subspace A of R

n of dimension d contains at most 2d

elements of the vertices of the unit hypercube.
Proof. The proof proceeds by induction on d. The lemma clearly holds for d = 0,

when A consists of a single point.
Suppose d > 0. Assume that A contains at least two elements of V (if not, we

are done). For v1,v2 ∈ V ∩ A, suppose that v1 and v2 differ in the ith component,
so that (v1)i 	= (v2)i.

Divide V into two subcubes V ′ and V ′′, where V ′ is elements v ∈ V such that
(v)i = 0, and V ′′ is elements v ∈ V with (v)i = 1. By construction, A ∩ V ′ 	= ∅ and
A ∩ V ′′ 	= ∅.

Since A intersects V ′, we have that A∩ Span(V ′′) is a proper subspace of A, and
similarly, A ∩ Span(V ′) is a proper subspace of A. The inductive hypothesis tells us
that each of these subspaces contains at most 2d−1 elements of V , for a total of at
most 2d elements of V , as required.

Observation 1. Let S ⊆ V , |S| = α · 2n (where 0 ≤ α ≤ 1). Let d = n −
�log(1/α)�− 1. Then, given any subset of size d of the n components, there exist two
distinct elements of S that agree on all those d components.

Proof. At most 2d elements of V can be distinguished from each other via their
values on a set of d coordinates. We assumed that |S| = α · 2n. Since d = n −
�log(1/α)� − 1, we can deduce that α > 2d−n, and hence |S| > 2d. By the pigeonhole
principle, two distinct elements of S agree on the d coordinates.

Theorem 2. Let H be a hyperplane in R
n, and suppose that H contains a

fraction α of the vertices of the unit hypercube and that H is spanned by the vertices
that it contains. Suppose that H is described as the set of points {x : w.x = t}, with
parameters (w, t) rescaled so that ‖w‖ = 1. Then all the components of w are integer
multiples of some quantity at least as large as

(√
n(1 + �log(1/α)�)!n(1+�log(1/α)�)

)−1

.

Proof. We construct a linear system that must be satisfied by the weights
{(w)i : 1 ≤ i ≤ n} such that when we solve it (invert a matrix), elements of
the inverted matrix have a large common denominator. Initially the system will be
satisfied by the (w)i values when they are rescaled so that their maximum (in absolute
value) is equal to 1. Afterwards we will rescale so that ‖w‖ = 1.

Let x1 ∈ arg maxi(|(w)i|). The first linear equality is (w)x1
= 1. This does the

job of rescaling the (w)i values such that their maximum (in absolute value) is 1.
Let d = n − �log(1/α)� − 1, as in Observation 1. For v ∈ V , (v)i, the ith

component of v, is equal to 0 or 1. We identify a subset of the component indices
{x2, . . . , xd} ⊆ {1, . . . , n} together with 2(d− 1) vertices {v2,v

′
2, . . . ,vd,v

′
d} ⊆ H ∩V

such that

(vj)xj − (v′
j)xj = 1 for 2 ≤ j ≤ d,

(vj)xi = (v′
j)xi

for 2 ≤ j ≤ d, 1 ≤ i ≤ d, j 	= i.

ESTIMATING A BOOLEAN PERCEPTRON 333

For v, v′ ∈ H ∩ V , w satisfies (v − v′).w = 0. The next d − 1 linear equalities
are (vj − v′

j).w = 0 for 2 ≤ j ≤ d. These linear constraints on w are independent of
each other, since for the subset {x2, . . . , xd} ⊂ {1, . . . , n}, the linear constraint (vj −
v′
j).w = 0 has coefficient 1 on the xjth component of w and 0 on the other components

in Ld. We continue by demonstrating how to find a suitable set {v2,v
′
2, . . . ,vd,v

′
d}.

Let

R1 = {1, . . . , n} \ {x1},
L1 = {x1}.

Choose v2,v
′
2 ∈ H ∩ V such that

{v2,v
′
2} ∈ arg max

{v,v′}⊆H∩V ;v 	=v′;(v)�=(v′)� for �∈L1

(
|{i ∈ R1 : (v)i = (v′)i}|

)
.

Thus v2 and v′
2 are chosen to be two distinct vertices in H ∩V , which have minimum

Hamming distance from each other, subject to the requirement that they agree on
component x1.

Since v2 	= v′
2, there exists x2 ∈ R1 such that (v2)x2 	= (v′

2)x2 . We may assume
that (v2)x2

= 1 and (v′
2)x2

= 0. Let

R2 = {i ∈ R1 : (v2)i = (v′
2)i},

L2 = {x1, x2}.

R2 is a maximal subset of R1 such that two distinct vertices agree on coordinates
indexed by R2 and L1. By Observation 1, |R2| ≥ n− �log(1/α)� − 2.

Generally, for j > 2, construct xj ∈ Rj−1, Rj ⊆ Rj−1\{xj}, and Lj = Lj−1∪{xj}
as follows. Choose vj ,v

′
j ∈ H ∩ V such that

{vj ,v
′
j} ∈ arg max

{v,v′}⊆H∩V ;v 	=v′;(v)�=(v′)� for �∈Lj−1

(
|{i ∈ Rj−1 : (v)i = (v′)i}|

)
.

Thus vj and v′
j are chosen to be two distinct vertices in H ∩ V that have minimum

Hamming distance over coordinates indexed by Rj−1, subject to the constraint that
they agree on coordinates indexed by Lj−1.

We claim that there exists xj ∈ Rj−1 such that (vj)xj 	= (v′
j)xj .

Suppose that the claim is false. Then (vj)i = (v′
j)i for all i ∈ Rj−1, and (vj)� =

(v′
j)� for all � ∈ Lj−1 (and note that for � ∈ Lj−1, � 	∈ Rj−1). This contradicts the

choice of {vj−1,v
′
j−1} as a pair of vertices that have minimum Hamming distance on

coordinates indexed by Rj−2 (which contains Rj−1) while also agreeing on coordinates
indexed by Lj−2. Note that

1. vj−1 and v′
j−1 agree on coordinates indexed by Lj−2. They agree on |Rj−1|

elements of Rj−2.
2. vj and v′

j agree on coordinates indexed by Lj−1 = Lj−2 ∪ {xj−1}, where
xj−1 ∈ Rj−2. They also agree on all elements of Rj−1 ⊆ Rj−2.

3. From the above two points, amongst pairs of vertices v and v′ that agree on
Lj−2, vj and v′

j agree on more elements of Rj−2 than do vj−1 and v′
j−1.

Hence there exists xj ∈ Rj−1 such that (vj)xj 	= (v′
j)xj , and we can assume (vj)xj = 1

and (v′
j)xj = 0. Let

Rj = {i ∈ Rj−1 : (vj)i = (v′
j)i},

Lj = Lj−1 ∪ {xj}.

334 PAUL W. GOLDBERG

Rj is a maximal subset of Rj−1 (where |Rj−1| ≥ n− �log(1/α)� − (j − 1)) such that
vj agrees with v′

j on coordinates indexed by Rj (and the j − 1 coordinates indexed
by Lj−1). By Observation 1, |Rj | ≥ n− �log(1/α)� − j.

Recall that d = n − �log(1/α)� − 1, as in Observation 1. Since |Rj | ≥ n −
�log(1/α)� − j, the above construction can be carried out for 2 ≤ j ≤ d.

By our assumption that Span(H∩V) = H, there exists a set {vd+1,v
′
d+1 . . . ,vn,v

′
n}

⊂ H ∩ V such that each pair of vertices {vj ,v
′
j} for d + 1 ≤ j ≤ n imposes on w a

new linear constraint (vj − v′
j).w = 0 that is linearly independent of the others.

Let M be a matrix whose first row is all zero apart from the x1th entry, which
contains the value 1. The jth row (for 2 ≤ j ≤ n) is the components of (vj −v′

j). We
have M.w = r, where r is all zero apart from (r)1 = 1. Now rearrange the columns
of M in the order x1, . . . , xn (where {xd+1, . . . , xn} = {1, . . . , n} \ {x1, . . . , xd}), and
let r = (1, 0, . . . , 0)T . We have constructed a linear system M.wP = r, where wP is
a permutation of w and

1. M is an invertible n× n matrix with entries in {0, 1,−1};
2. the d × d submatrix of M comprising the first d rows and columns is the

identity matrix;
3. r = (1, 0, . . . , 0)T .

Hence wP = M−1r. The (i, j)th entry of M−1 is given by det(Mi,j)/det(M),
where det(M) denotes the determinant of matrix M , and Mi,j is the submatrix of M
obtained by removing column i and row j. We will upper-bound the determinant of
M .

Construct M ′ by adding (respectively, subtracting) row j (for 1 ≤ j ≤ d) to row
j′ (for d + 1 ≤ j′ ≤ n) whenever the jth entry of row j′ is equal to −1 (respectively,
1). M ′ = (m)ij satisfies

mij = 0 for d + 1 ≤ i ≤ n, 1 ≤ j ≤ d,
−n ≤ mij ≤ n for d + 1 ≤ i ≤ n, d + 1 ≤ j ≤ n.

Here det(M ′) = det(M), the first d rows and columns of M ′ is still the identity matrix,
and so from the features of M ′ noted above, det(M ′) is equal to det(M ′′), where M ′′

is the (n− d) × (n− d) submatrix of M ′ in the bottom right-hand corner of M ′.
Now observe that the determinant of any i× i matrix with entries in {−n,−(n−

1), . . . , n−1, n} is upper bounded2 by i!ni, so that |det(M)| ≤ (n−d)!nn−d. Accord-
ingly, entries of M−1 (and consequently, components of w) must be integer multiples
of a quantity greater than or equal to(

(n− d)!nn−d
)−1

=
(
(1 + �log(1/α)�)!n(1+�log(1/α)�)

)−1

,

and so components of w are also integer multiples of this quantity.
The maximum absolute value of a component of w (or wP) is 1, so 1 ≤ ‖w‖ ≤

√
n.

Rescaling w to get ‖w‖ = 1, we find that the components of w are integer multiples
of a quantity at least as large as the above, divided by

√
n. That is,(√

n(1 + �log(1/α)�)!n(1+�log(1/α)�)
)−1

,

as in the statement of the theorem.

2There is not a substantially better upper bound on the determinant of this matrix that uses
the fact that the matrix is over integers with absolute value at most n; from Hadamard [14], the
determinant of a i × i matrix over {1,−1} may be as high as ii/2. This becomes ni.ii/2 when the
entries 1 and −1 are replaced with n and −n, respectively.

ESTIMATING A BOOLEAN PERCEPTRON 335

We use Theorem 2 to prove the following.
Theorem 3. Given any hyperplane in R

n whose β-neighborhood contains a subset
S of vertices of the unit hypercube, where |S| = α · 2n, there exists a hyperplane which
contains all elements of S, provided that

0 ≤ β ≤
(
(2/α) · n(5+�log(n/α)�) · (2 + �log(n/α)�)!

)−1

.

Proof. Let H = {x : w.x = t}, where by rescaling we can assume ‖w‖ = 1.
Assume that the β-neighborhood of H contains S. Then for v ∈ S, we have w.v ∈
[t− β, t + β].

Define a new weight vector w′ derived from w by taking each weight in w and
rounding it off to the nearest integer multiple of β (rounding down in the event of a
tie). Then we claim that scalar products w′.v can take at most n + 2 distinct values
for v ∈ S. To see this, note that for v ∈ S,

1. w′.v < w.v + nβ/2 ≤ t + β + nβ/2,
2. w′.v ≥ w.v − nβ/2 ≥ t− β − nβ/2,
3. w′.v is an integer multiple of β for v ∈ V .

Items 1 and 2 show that w′.v lies in a semiopen interval of length β(n+ 2), and with
3 there are only at most (n + 2) possible values in the interval. Let T be the set of
these n + 2 values.

Let t′ be the member of T which maximizes the number of vertices v ∈ S satisfying
w′.v = t′. Then there are at least α · 2n/(n+ 2) vertices v ∈ S that satisfy w′.v = t′.
Let

A1 = Span({v ∈ S : w′.v = t′}),
H1 = {x ∈ R

n : w′.x = t′}.

Note that |A1 ∩ V | ≥ α · 2n/(n + 2), and hence by Lemma 1,

dim(A1) ≥ n− log(1/α) − log(n + 2).(1)

We next show that for all v ∈ S,

dE(v, H1) ≤ 2nβ.(2)

Note that ‖w′ − w‖ ≤
√
nβ/2. ‖w‖ = 1, and since the Euclidean norm is a metric,

‖w′‖ ∈ [1 −
√
nβ/2, 1 +

√
nβ/2].

For v ∈ S, w′.v − t′ ∈ [−(n + 2)β, (n + 2)β]. Let (w′′, t′′) be (w′, t′) rescaled so
that ‖w′′‖ = 1. Then

w′′.v − t′′ ∈ [−(n + 2)β/(1 −
√
nβ/2), (n + 2)β/(1 −

√
nβ/2)]

⇒ w′′.v − t′′ ∈ [−2nβ, 2nβ] (since
√
nβ � 1)

⇒ w′′.v ∈ [t′′ − 2nβ, t′′ + 2nβ].

Since ‖w′′‖ = 1, v is within Euclidean distance 2nβ of H1. This establishes (2).
We want to show that dim(Span(S)) ≤ n − 1. We next find a hyperplane Hk

that contains A1 and other elements of S such that Span(Hk ∩ S) = Hk (allowing
Theorem 2 to apply to Hk) and such that we also obtain a bound on dE(v, Hk) for
v ∈ S.

336 PAUL W. GOLDBERG

We know that dim(A1) < n. If dim(A1) = n − 1, then set k = 1 and use
Hk = H1 = A1. Suppose that dim(A1) < n − 1. Then let A′

1 be a subspace of H1

such that dim(A′
1) = n− 2 and A1 ⊆ A′

1. Let v1 ∈ arg maxv∈S(dE(v, A′
1)).

Let H2 be the hyperplane Span(A′
1 ∪ {v1}). Then for all v ∈ S, using (2),

dE(v, H2) ≤ dE(v, H1) + dE(v1, H1) ≤ 4nβ.

Let A2 = Span(A1 ∪ {v1}). Since v1 	∈ A1 we have dim(A2) = dim(A1) + 1.
Generally, for j ≥ 1, if Aj ⊂ Hj , Aj 	= Hj , construct Aj+1 and Hj+1 from Aj

and Hj as follows. Choose A′
j of dimension n− 2 such that

Aj ⊆ A′
j ⊂ Hj .

Then choose

vj ∈ arg max
v∈S

(dE(v, A′
j)).

Then let Hj+1 = Span(A′
j ∪ {vj}) and Aj+1 = Span(Aj ∪ {xj}). Then for all v ∈ S,

dE(v, Hj+1) ≤ dE(v, Hj) + dE(vj , Hj) ≤ 2j+1nβ.

Aj+1 ⊆ Hj+1 and dim(Aj+1) = 1 + dim(Aj). The maximum value that j can
take is

k = n− dim(A1) ≤ log(1/α) + log(n + 2)(3)

(the inequality follows from (1)), at which point we obtain Ak = Hk with dim(Hk) =
n− 1. Hk satisfies

1. Hk = Span(Hk ∩ S),
2. dim(Hk) = n− 1,
3. |Hk ∩ S| ≥ α · 2n/(n + 2),
4. for all v ∈ S, dE(v, Hk) ≤ 2knβ ≤ (1/α)(n + 2)nβ, using (3).

Hence by properties 1–3 above and Theorem 2, Hk takes the form

Hk = {x : wk.x = tk},

where ‖wk‖ = 1 and entries of wk and tk are multiples of

E =

(√
n

(
1 +

⌊
log

(
n + 2

α

)⌋)
!n(1+�log((n+2)/α)�)

)−1

(the expression from Theorem 2 with α/(n + 2) plugged in for α).
wk.v is an integer multiple of E for all v ∈ V . Hence if tk −E < wk.v < tk +E,

then wk.v = tk.
From property 4 of Hk, for all v ∈ S, wk.v = tk, provided that we have

(1/α)(n + 2)nβ < E.

Equivalently,

β <

(
(1/α)(n + 2)n

√
n

(
1 +

⌊
log

(
n + 2

α

)⌋)
!n(1+�log((n+2)/α)�)

)−1

.

The expression for β given in the statement of this theorem satisfies the in-
equality.

ESTIMATING A BOOLEAN PERCEPTRON 337

Theorem 4. Let F be a Boolean perceptron and let G be a Boolean function
that disagrees with F on a fraction ε of the 2n elements of V . Assume also that
|V01| ≥ 1

4ε · 2n and |V10| ≥ 1
4ε · 2n. Then the Euclidean distance between μ(V01) and

μ(V10) is lower bounded by

(
(4/ε) · n(5+�log(2n/ε)�) · (2 + �log(2n/ε)�)!

)−4 log(1/ε)

,

which is (ε/n)O(log(n/ε) log(1/ε)).
Proof. If l is a line and S is a set of points, let l(S) denote the set of points

obtained by projecting elements of S onto their closest points on l.
Let HF denote a hyperplane defining F , and let l1 be a line normal to HF . We

may assume that HF does not contain any elements of V . Observe that members of
l1(V01) are separated from members of l1(V10) by the point of intersection of l1 and
HF (which itself is l1(HF)). Let

β =
(
(4/ε) · n(5+�log(2n/ε)�) · (2 + �log(2n/ε)�)!

)−1

(4)

(where we have plugged ε/2 for α into the expression for β in the statement of Theo-
rem 3). Our analysis uses a sequence of �log(1/ε)� cases.

Case 1. Suppose that at least a fraction β4 log(1/ε)−2 of elements of V01 ∪ V10

(i.e., at least (ε · 2n)β4 log(1/ε)−2 vertices altogether) have projections onto l1 that are
more than β distant from l1(HF). In this case we have

‖μ(V01) − μ(V10)‖ ≥ β · β4 log(1/ε)−2.

The alternative is that at least a fraction (1−β4 log(1/ε)−2) of elements of V01∪V10

(thus, at least (ε ·2n)(1−β4 log(1/ε)−2) points altogether) have projections onto l1 that
are less than β distant from l1(HF).

In this case we apply Theorem 3 to obtain a hyperplane A1 that contains all these
points, that is, at least a fraction 1−β4 log(1/ε)−2 of elements of V01∪V10. (Theorem 3
applies since ε(1−β4 log(1/ε)−2) plays the role of α, and ε(1−β4 log(1/ε)−2) > 1

2ε (thus,
with (4), the corresponding β-value is sufficiently small).)

Case 2. Let A′
2 = HF ∩ A1; since HF does not contain any elements of V , HF

does not contain A1. A′
2 ⊂ A1 separates V01 ∩ A1 from V10 ∩ A1. Let l2 ⊆ A1 be a

line normal to A′
2.

Now suppose that at least a fraction β4 log(1/ε)−4 of elements of V01 ∪ V10 lie in
A1 and have projections onto l2 that are more than β distant from l2(A

′
2). Then

‖μ(A1 ∩ V01) − μ(A1 ∩ V10)‖ ≥ β · β4 log(1/ε)−4.

|(V01 \ A1)|/|V01| ≤ εβ4 log(1/ε)−2/(ε/4), and since all vertices lie within
√
n of each

other, the distance ‖μ(V01) − μ(V01 \ A1)‖ is at most (4
√
n)β4 log(1/ε)−2. A similar

argument applies to V10. Hence we have

‖μ(V01) − μ(V10)‖ ≥ β · β4 log(1/ε)−4 − 2(4
√
n)β4 log(1/ε)−2

= β4 log(1/ε)−4(β − β28
√
n) ≥ β4 log(1/ε).

It remains to cover the cases where a fraction less than β4 log(1/ε)−4 of the mem-
bers of V01 ∪ V10 have projections onto l2 that are more than β distant from l2(A

′
2).

Generally case j arises when a subspace Aj−1 of dimension n − (j − 1) has been

338 PAUL W. GOLDBERG

identified that contains at least a fraction 1 −
∑j−1

�=1 β
(4 log(1/ε)−2�) of the elements of

V01 ∪V10 (and we have not yet found a hyperplane separating enough of V01 from V10

with a sufficiently large margin).
Case j. Subspace Aj−1 with dim(Aj−1) = n− (j − 1) satisfies

|Aj−1 ∩ (V01 ∪ V10)|
|V01 ∪ V10|

≥ 1 −
j−1∑
�=1

β(4 log(1/ε)−2�).

Let A′
j = Aj−1 ∩HF and dim(A′

j) = n− j. Let lj ⊆ Aj−1 be a line normal to A′
j .

Suppose that at least a fraction β(4 log(1/ε)−2j) of elements of V01 ∪V10 lie in Aj−1

and have projections onto lj that are more than β distant from lj(A
′
j). Then

‖μ(Aj−1 ∩ V01) − μ(Aj−1 ∩ V10)‖ ≥ β · β(4 log(1/ε)−2j).

Note that

|(V01 ∪ V10) \Aj−1|
|V01 ∪ V10|

≤
j−1∑
�=1

β(4 log(1/ε)−2�).

Since β < 1
2 , this fraction is less than 2β(4 log(1/ε)−2(j−1)). Hence

‖μ(V01) − μ(V10)‖ ≥ β · β(4 log(1/ε)−2j) − (4
√
n)2β(4 log(1/ε)−2(j−1))

= β(4 log(1/ε)−2j)(β − 2β24
√
n)

≥ β4 log(1/ε).

If, alternatively, a fraction at least 1 − β(4 log(1/ε)−2j) of elements of V01 ∪ V10 have
projections onto lj at most β from lj(A

′
j), then we construct Aj of dimension n − j

that contains all these points.
Let Vj ⊆ (V01 ∪ V10) denote this set of points. Let Sj be a set of j − 1 vertices

such that dim(Span(Aj−1 ∪ Sj)) = n. The hyperplane Span(A′
j ∪ Sj) lies within

Euclidean distance β of elements of Vj , where |Vj | ≥ 1
2ε · 2n. (For j ≤ �log(ε−1)�,

the fraction of elements of V01 ∪ V10 that are in Vj is at least 1 − β(4 log(1/ε)−2j), so
that |Vj | ≥ 1

2ε.) Use Theorem 3 (and (4)) to obtain hyperplane Hj , which contains
Vj ∪ Sj . Let Aj = Hj ∩Aj−1. Hj cannot contain Aj−1 since Hj also contains Sj and
we have Span(Aj−1 ∪ Sj) = n. Hence dim(Aj) = n− j.

For j < �log(ε−1)�,

|Aj ∩ (V01 ∪ V10)|
|V01 ∪ V10|

=
|Vj |

|V01 ∪ V10|
≥ 1 − β4 log(1/ε)−2j > 1 −

j∑
�=1

β4 log(1/ε)−2� >
1

2
ε,

and thus for j < �log(ε−1)� we are ready for case j + 1.
By Lemma 1 the number of cases (and hence j) is indeed upper bounded by

�log(ε−1)�, since otherwise the subspace Aj does not have sufficient dimension to
hold a fraction 1

2ε of elements of V . Each of these cases provides a lower bound on

‖μ(V01) − μ(V10)‖ of β4 log(1/ε), which is

(
(4/ε) · n(5+�log(2n/ε)�) · (2 + �log(2n/ε)�)!

)−4 log(1/ε)

,

as in the statement of the theorem.

ESTIMATING A BOOLEAN PERCEPTRON 339

3. Statistical learning-theoretic consequences. For domain V = {0, 1}n let
U(V) denote the uniform distribution on V . For a Boolean function G having at
least one satisfying assignment, let YG,0 be the following Bernoulli random variable:
YG,0 = 1 if for v ∼ U(V) we have G(v) = 1. Recall that (v)i denotes the 0/1 value
of the ith component of v. For 1 ≤ i ≤ n let YG,i be the following Bernoulli random
variable: YG,i = 1 if for v ∼ U({u ∈ V : (u)i = 1}) we have G(v) = 1.

To learn a Boolean perceptron in the 1-RFA regime (over the uniform distribution
on V = {0, 1}n), a “target perceptron” F is selected by an adversary. A learning
algorithm may (in unit time) generate an observation (v, �), where v ∼ U(V) and
� = F (v). The algorithm has access to the value � and may select i ∈ {1, . . . , n}, so as
to observe the value (v)i. The remainder of v is not available to the algorithm. This
is equivalent to being given access to repeated observations of the random variables
YF,i above, for 0 ≤ i ≤ n. The objective is to output, with probability 1−δ, a function
G (the “hypothesis,” an estimate of F) such that G disagrees with F on a fraction at
most ε of elements of V . (An alternative formulation of RFA learning assumes that
the indices of the observed components of an input vector v are selected uniformly at
random. We noted in [13] that for 1-RFA learning this is equivalent, for the purpose
of obtaining polynomial bounds, to the assumption that the index is chosen by the
algorithm.)

We continue by using the results of section 2 to obtain a bound on the sample size
required to learn a Boolean perceptron in the 1-RFA setting. Thus we show how a
computationally unbounded (but with limited sample size) algorithm can select a good
hypothesis from the entire set of Boolean perceptrons, using sample size log(δ−1) ·
(n/ε)log(n/ε) log(1/ε), where δ is the probability that the hypothesis has error greater
than ε. For any Boolean function G let

pG,0 = Prv∼U(V)(G(v) = 1),
pG,i = Prv∼U(V)(G(v) = 1 | (v)i = 1).

For a Boolean function G define cost function cF (G) and empirical cost function
ĉF (G) as

cF (G) = max0≤i≤n(|pG,i − pF,i|),
ĉF (G) = max0≤i≤n(|pG,i − p̂F,i|),

where p̂F,i is defined in Figure 1. Note that cF (F) = 0.
Lemma 5. Let F be a Boolean perceptron that is satisfied by at least (ε/2) · 2n

input vectors. Let Boolean function G disagree with F on at least a fraction ε of
inputs. Then

cF (G) ≥
(

ε2

32
√
n

)(
(4/ε) · n(5+�log(2n/ε)�) · (2 + �log(2n/ε)�)!

)−4 log(1/ε)

.

Proof. We consider two cases. As in the proof of Theorem 4, let β = ((4/ε) ·
n(5+�log(2n/ε)�) · (2 + �log(2n/ε)�)!)−1.

Case 1. |pF,0 − pG,0| ≥ ε2

32
√
n
· β4 log(1/ε) (that is, there is a difference of at least

ε2

32
√
n
· β4 log(1/ε) between the probability that F (v) = 1 and the probability that

G(v) = 1). Then cF (G) ≥ ε2

32
√
n
· β4 log(1/ε), which implies the statement of the

lemma.

340 PAUL W. GOLDBERG

1. Draw a sample S0 of observations, where |S0| = Θ((1/ε) log(1/δ)).
2. Let p̂F,0 be the fraction of examples in S0 which satisfy F (we do not look

at any component of the input vectors).
3. If p̂F,0 < 3

4ε, then output G, where G(v) = 0 for all v ∈ {0, 1}n.
4. Else

(a) For 1 ≤ i ≤ n, draw a sample Si of observations, where |Si| =
(log(1/δ)(n/ε)O(log(n/ε) log(1/ε))). Look at the ith component of each
input v in Si.

(b) For 0 ≤ i ≤ n, let p̂F,i be the fraction of all examples with (v)i = 1 in
Si which are positive (satisfy F).

(c) For every satisfiable Boolean function G let pG,i = Pr(YG,i = 1) (for
0 ≤ i ≤ n).

(d) Let ĉ(G) = max0≤i≤n(|p̂F,i − pG,i|).
(e) Output a Boolean function from arg minG(ĉ(G)).

Fig. 1. Rule for selecting low-error perceptron.

Case 2. If |pF,0 − pG,0| < ε2

32
√
n
· β4 log(1/ε), then |V01| ≥ (ε/4) · 2n and |V10| ≥

(ε/4) · 2n. So Theorem 4 applies to F and G, and we have

‖μ(V01) − μ(V10)‖ ≥ β4 log(1/ε).

Let λ = |V10|/(|V10|+|V11|), λ′ = |V01|/(|V01|+|V11|). If |V10| ≥ |V01|, then λ ≥ λ′

and

λ− λ′ ≤ |V10| − |V01|
|V01| + |V11|

≤ |V10| − |V01|
|V01|

≤ (ε2/32
√
n)β4 log(1/ε)

ε/4
=

ε

8
√
n
β4 log(1/ε).

If |V01| ≥ |V10|, we have the same upper bound on λ′ − λ ≥ 0.

μ(pos(F)) = (1 − λ) · μ(V11) + λμ(V10),
μ(pos(G)) = (1 − λ′) · μ(V11) + λ′μ(V01)

= (1 − λ) · μ(V11) + λμ(V01) + (λ− λ′)(μ(V11) − μ(V01)).

Hence (note that λ ≥ ε
4):

‖μ(pos(F)) − μ(pos(G))‖ ≥ λ‖(μ(V10) − μ(V01))‖ − (λ− λ′)‖μ(V11) − μ(V01)‖
≥ ε

4‖μ(V10) − μ(V01)‖ − (λ− λ′)
√
n

≥ ε
4β

4 log(1/ε) − ε
8β

4 log(1/ε).

The statement of the lemma follows—there exists i ∈ {1, . . . , n} such that the ith
component of μ(pos(F)) differs from the ith component of μ(pos(G)) by at least the
above quantity divided by

√
n.

Theorem 6. Let F be an arbitrary Boolean perceptron, and suppose that we have
access to a source of observations of the form ((v)i, F (v)), where v ∼ U(V) and where
we may select the value of i ∈ {1, . . . , n} for each observation. Then (ignoring issues
of computational efficiency) it is possible to find, with probability 1 − δ, a Boolean
function G such that Prv∼U(V)(F (v) 	= G(v)) ≤ ε, and the number of observations
required is

log(1/δ) · (n/ε)O(log(n/ε) log(1/ε)).

ESTIMATING A BOOLEAN PERCEPTRON 341

Proof. We use the procedure illustrated in Figure 1. Note that symbols denoting
various quantities are introduced in Figure 1.

Choose N = |S0| to ensure that with probability 1− 1
2δ, if p̂F,0 < 3

4ε, then pF,0 ≤ ε.
As a result, the function G output in line 3, which has no satisfying assignments, has
error at most ε. We show as follows that N = O((1/ε) log(1/δ)) is large enough.

Recall Hoeffding’s inequality: Let Y1, . . . , YN be Bernoulli trials with probability
p of success. Let T = Y1 + · · · + YN denote the total number of successes. Then for
γ ∈ [0, 1],

Pr(|T − pN | > γN) ≤ 2e−2Nγ2

.

Set γ = 1
4ε to ensure that with high probability

|p̂F,0 − pF,0| <
1

4
ε.(5)

N = |S0| must then satisfy 2e−2N(ε/4)2 ≤ 1
2δ, which is satisfied by N = O(ε−1 log(δ−1)).

Equation (5) ensures that if p̂F,0 ≥ 3
4ε, then pF,0 ≥ 1

2ε. Thus line 3 of Figure 1
is (with probability 1 − 1

2δ) used only when pF,0 ≥ 1
2ε (and Lemma 5 is applicable).

As in the proofs of Theorem 4 and Lemma 5, let β = ((4/ε) · n(5+�log(2n/ε)�) · (2 +
�log(2n/ε)�)!)−1.

We choose the size of each Si large enough to ensure that with probability 1−δ/4
each Si contains at least N ′ examples (v, F (v)) with (v)i = 1, where N ′ is large
enough to ensure that

with probability 1− δ/4, for 1 ≤ i ≤ n, |p̂F,i− pF,i| <
(

ε2

64
√
n

)
β4 log(1/ε).(6)

The above can be ensured by taking a union bound if we have

for 1 ≤ i ≤ n, with probability 1 − δ/4n, |p̂F,i − pF,i| <
(

ε2

64
√
n

)
β4 log(1/ε).

By Hoeffding’s inequality it is sufficient for N ′ to satisfy 2 exp(−2N ′(ε2/64
√
n)β4 log(1/ε))

< δ/4n, which is satisfied by N ′ = O((n/ε2) log(n/δ)/β4 log(1/ε)).
Set |Si| = 4N ′. A standard Chernoff bound (see, for example, [1, p. 361]) tells us

that if T is the number of successes in N Bernoulli trials with probability p of success,

Pr

(
T <

1

2
Np

)
≤ exp

(
−Np

8

)
.

Here |Si| = 4N ′, and so the expected number of examples with (v)i = 1 is 2N ′ (since
Pr((v)i = 1) = 1

2), and the probability that we fail to obtain N ′ of these examples is

O(exp(−N ′(ε/2)/8)) = O(δ/n). For N ′ = O((n/ε2) log(n/δ)/β4 log(1/ε)) this failure
probability can be made as low as δ/4n, so that with probability at least 1 − 1

4δ, for
1 ≤ i ≤ n, Si contains at least N ′ examples with (v)i = 1.

Equation (6) implies

with probability 1 − δ/4, for all G, |ĉF (G) − cF (G)| <
(

ε2

64
√
n

)
β4 log(1/ε).

Then by Lemma 5 (and noting that cF (F) = 0), ĉF (F) < ĉF (G) for all Boolean
functions G that disagree with F on a fraction at least ε of inputs.

The total sample size is O(n ·N ′), which is O((n2/ε2) log(n/δ)/β), which is
log(1/δ) · (n/ε)O(log(n/ε) log(1/ε)).

342 PAUL W. GOLDBERG

3.1. Conclusions and open problems. The problem of PAC-learning a Bool-
ean perceptron from empirical estimates of its Chow parameters has been raised in
various papers in computational learning theory. We have so far just shown a bound
on the asymptotic growth rate of sample-size required (the problem of how to best
select the right hypothesis, given sufficient data, having not been addressed), and that
bound is still superpolynomial. We suspect that the true growth rate is polynomially
bounded as a function of n/ε.

Our results show that an algorithm can minimize over the set of all Boolean func-
tions; we do not have to restrict ourselves to Boolean perceptrons. This demonstrates
how the usage of a set of statistics, as opposed to empirical risk minimization, can
automatically avoid over-fitting. However, there is the possibility that there should
exist a better bound on the distance between the average satisfying assignment of two
functions if both, and not just one, of them are perceptrons.

There may be a practical advantage to minimizing over all Boolean functions, in
that if the minimization is being done by local search, it may reduce problems with
local optima. However, in principle one can just minimize over the set of all Boolean
perceptrons. The algorithm uses the values pG,i for Boolean functions G, and for
Boolean perceptrons computing these quantities exactly is 	P -hard since it is the 0/1
knapsack problem [11]. However, sufficiently good approximations to these quantities
could be found by generating a polynomial-size collection of inputs from U(V) and
using the empirical values.

Hȧstad [15] has shown that some Boolean perceptrons need weights of size around
2(n logn)/2−n to be represented exactly. For n = �log(ε−1)� (n being the dimension of
the domain), an approximation with error less than ε must be exact. This implies that
we may need to learn a weight of size more than polynomial in ε, in order to recover
a weights-based parametrization—weights may be as high as (1/ε)log log(1/ε). This
eliminates one natural-looking way of obtaining the desired polynomial growth rate
in ε−1 (namely, looking for a perceptron whose coefficients are polynomially bounded
as a function of the dimension and the quality of the approximation).

Acknowledgment. I would like to thank the referees for their corrections and
comments.

REFERENCES

[1] M. Anthony and P. L. Bartlett, Neural Network Learning: Theoretical Foundations, Cam-
bridge University Press, Cambridge, UK, 1999.

[2] M. Anthony, G. Brightwell, and J. Shawe-Taylor, On specifying Boolean functions by
labelled examples, Discrete Appl. Math., 61 (1995), pp. 1–25.

[3] S. Ben-David and E. Dichterman, Learning with restricted focus of attention, J. Comput.
System Sci., 56 (1998), pp. 277–298.

[4] S. Ben-David and E. Dichterman, Learnability with restricted focus of attention guarantees
noise-tolerance, in Proceedings of the 5th International Workshop on Algorithmic Learning
Theory, Lecture Notes in Comput. Sci. 872, Springer, New York, 1994, pp. 248–259.

[5] A. Birkendorf, E. Dichterman, J. Jackson, N. Klasner, and H. U. Simon, On restricted-
focus-of-attention learnability of Boolean functions, Machine Learning, 30 (1998), pp. 89–
123.

[6] A. Blum, A. Frieze, R. Kannan, and S. Vempala, A polynomial-time algorithm for learning
noisy linear threshold functions, Algorithmica, 22 (1998), pp. 35–52.

[7] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, Learnability and the
Vapnik–Chervonenkis dimension, J. ACM, 36 (1989), pp. 929–965.

[8] J. Bruck, Harmonic analysis of polynomial threshold functions, SIAM J. Discrete Math., 3
(1990), pp. 168–177.

[9] C. K. Chow, On the characterization of threshold functions, in Proceedings of the Sympo-

ESTIMATING A BOOLEAN PERCEPTRON 343

sium on Switching Circuit Theory and Logical Design, American Institute of Electrical
Engineers, 1961, pp. 34–38.

[10] E. Dichterman, Learning with Limited Visibility, CDAM Research Reports Series, LSE-
CDAM-98-01, London School of Economics, London, 1998.

[11] M. E. Dyer, A. M. Frieze, R. Kannan, A. Kapoor, L. Perkovic, and U. Vazirani, A
mildly exponential time algorithm for approximating the number of solutions to a multi-
dimensional knapsack problem, Combin. Probab. Comput., 2 (1993), pp. 271–284.

[12] T. Eiter, T. Ibaraki, and K. Makino, Decision Lists and Related Boolean Functions, Institut
Für Informatik JLU Giessen (IFIG) Research Reports 9804, Justus-Liebig Universitat,
Giessen, Germany, 1998.

[13] P. W. Goldberg, Learning fixed-dimension linear thresholds from fragmented data, Inform.
and Comput., 171 (2001), pp. 98–122.

[14] J. Hadamard, Résolution d’une question relative aux déterminants, Bull. Sci. Math., 2 (1893),
pp. 240–246.

[15] J. Håstad, On the size of weights for threshold gates, SIAM J. Discrete Math., 7 (1994),
pp. 484–492.

[16] P. Kaszerman, A geometric test-synthesis procedure for a threshold device, Inform. and Con-
trol, 6 (1963), pp. 381–398.

[17] N. Littlestone, Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm, Machine Learning, 2 (1988), pp. 285–318.

[18] R. L. Rivest, Learning decision lists, Machine Learning, 2 (1996), pp. 229–246.
[19] F. Rosenblatt, Principles of Neurodynamics, Spartan Books, New York, 1962.
[20] R. O. Winder, Threshold gate approximations based on Chow parameters, IEEE Trans. Com-

put., 18 (1969), pp. 372–375.
[21] R. O. Winder, Chow parameters in threshold logic, J. ACM, 18 (1971), pp. 265–289.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 2, pp. 344–356

THE MINOR CROSSING NUMBER∗

DRAGO BOKAL† , GAŠPER FIJAVŽ‡ , AND BOJAN MOHAR§

Abstract. The minor crossing number of a graph G is defined as the minimum crossing number
of all graphs that contain G as a minor. Basic properties of this new invariant are presented. We
study topological structure of graphs with bounded minor crossing number and obtain a new strong
version of a lower bound based on the genus. We also give a generalization of an inequality of Moreno
and Salazar crossing numbers of a graph and its minors.

Key words. crossing number, graph minor

AMS subject classifications. 05C10, 05C83

DOI. 10.1137/05062706X

1. Preliminaries. Crossing numbers of graphs have been thoroughly studied
[20], yet only a few exact results are known, and new ideas seem to be needed. Crossing
numbers in general give a measure of nonplanarity of graphs. Unfortunately, they are
not monotone with respect to graph minors. Seymour (see Archdeacon [1]) asked
“How to define a crossing number that would work well with minors?” In this paper
we propose two possible answers to this question and study one of them in greater
detail. Our approach is based on general principles of how a graph invariant can be
transformed into a minor-monotone graph invariant [4].

Crossing numbers of graphs are believed to have applications in VLSI design where
one wants a design of a (huge) electrical network such that the number of crossing
edges (wires) is minimized [3, 10, 11]. However, today’s chip manufacturers replace
vertices of high degree by binary trees. The minor crossing number treated in this
paper does precisely this—each vertex is expanded into a cubic tree in such a way
that the resulting graph can be realized with as few crossings as possible. It turns out
that this interpretation of crossing numbers has rich mathematical structure, whose
basics are uncovered in this work.

Let G = (VG, EG) be a graph and Σ a closed surface. If Σ has Euler characteristics
χ, then the number g = 2−χ is called the Euler genus of Σ. The nonorientable surface
of Euler genus g ≥ 1 is denoted by Ng, and the orientable surface of Euler genus 2g
(g ≥ 0) is denoted by Sg.

A drawing D = (ϕ, ε) of G in (PL) surface Σ consists of a one-to-one mapping
ϕ : VG → Σ and a mapping ε : EG → Ω(Σ) that maps edges of G to simple (polygonal)
curves in Σ such that endpoints of ε(uv) are ϕ(u) and ϕ(v), ϕ(VG) does not intersect
interiors of images of edges, and the intersection of interiors of ε-images of any two
distinct edges contains at most one point.

∗Received by the editors March 17, 2005; accepted for publication (in revised form) November
28, 2005; published electronically April 21, 2006. This work was supported in part by the Ministry
of Higher Education, Science and Technology of Slovenia, Research Project L1-5014 and Research
Program P1-0297.

http://www.siam.org/journals/sidma/20-2/62706.html
†Department of Mathematics, IMFM, SI-1000 Ljubljana, Slovenia (drago.bokal@imfm.uni-lj.si).
‡Faculty of Computer and Information Science, University of Ljubljana, SI-1000 Ljubljana, Slove-

nia (gasper.fijavz@fri.uni-lj.si).
§Department of Mathematics, University of Ljubljana, SI-1000 Ljubljana, Slovenia (bojan.

mohar@uni-lj.si). Current address: Department of Mathematics, Simon Fraser University, Burn-
aby, B.C., Canada.

344

THE MINOR CROSSING NUMBER 345

Let e and f be distinct edges of G, let r and s be their images in Σ, and suppose
that x ∈ r ∩ s. Let U be a neighborhood of x so that for each disk neighborhood
B ⊆ U of x both B ∩ r ∩ s = {x} and |∂B ∩ (r ∪ s)| = 4. We say that e and f or
that r and s cross at x (and call x a crossing) if points of r and s interlace along ∂B
for every such B, and say that r and s touch otherwise. In the latter case we call x a
touching of r and s (or of e and f).

A drawing D is normal if it has no touchings and for each crossing x there are
precisely two edges of G whose crossing is x.

Crossing number of a graph G in Σ, cr(G,Σ), is defined as the minimum number
of crossings in any normal drawing of G in Σ, and with cr(G) we denote the crossing
number of G in the sphere. For a drawing D = (ϕ, ε) of G in Σ, connected regions of
Σ \ ε(EG) are called faces of D. By our standards, a drawing of G in the plane R

2

is a drawing of G in the sphere S0, equipped with an infinite point ∞ avoiding the
image of G. The infinite face of a drawing of G in the plane is the face containing ∞.
Further, an embedding is a drawing without crossings. Besides this terminology, the
reader is referred to [15] for other notions related to graph embeddings.

For a given graph G, the minor crossing number is defined as the minimum
crossing number of all graphs that contain G as a minor:

mcr(G,Σ) := min{cr(H,Σ) |G ≤m H}.(1.1)

By mcr(G) we denote mcr(G,S0).

Similarly, the major crossing number of G is the maximum crossing number taken
over all minors of G:

Mcr(G,Σ) := max{cr(H,Σ) |H ≤m G}.(1.2)

The following two lemmas follow directly from the definitions.

Lemma 1.1. For every graph G and every surface Σ,

mcr(G,Σ) ≤ cr(G,Σ) ≤ Mcr(G,Σ).

Lemma 1.2. If G is a minor of H, then for every surface Σ,

mcr(G,Σ) ≤ mcr(H,Σ) and Mcr(G,Σ) ≤ Mcr(H,Σ).

Lemma 1.2 immediately yields the following.

Corollary 1.3. Let k ≥ 0 be an integer and Σ a surface. The families
of graphs ω(k,Σ) := {G | mcr(G,Σ) ≤ k} and Ω(k,Σ) := {G | Mcr(G,Σ) ≤ k} are
minor-closed.

For each graph G there exists a graph Ḡ such that G ≤m Ḡ and mcr(G,Σ) =
cr(Ḡ,Σ). We call such a graph Ḡ a realizing graph of G, and an optimal drawing of
Ḡ in Σ is called a realizing drawing of G (with respect to Σ). By no means are a
realizing graph or drawing uniquely determined, but we shall always assume that G
and Ḡ have the same number of connected components.

As G is a minor of its realizing graph Ḡ, G can be obtained as a contraction of
a subgraph of Ḡ. In other words, G = (Ḡ − R)/C for suitable edge sets R,C ⊆ EḠ.
The edges of R are called removed edges, and those in C are contracted edges. Note
that the edge-set C is acyclic and that EG = EḠ \ (R ∪ C) are the original edges of
G. It is clear that every graph G has a realizing graph Ḡ such that R = ∅.

346 DRAGO BOKAL, GAŠPER FIJAVŽ, AND BOJAN MOHAR

Fig. 1. mcr as an extension of cr.

For each vertex v ∈ VG there is a unique maximal tree Tv ⊆ Ḡ[C] which is
contracted to v. In the figures, the original edges will be drawn as thin lines and the
contracted edges as thick lines.

The minor crossing number can be considered a natural extension of the usual
crossing number. Clearly, if e, f ∈ EḠ cross in a realizing drawing of G, then e, f ∈
C ∪ EG. If both belong to C, then their crossing is a vertex-vertex crossing; if both
belong to EG, then they cross in an edge-edge crossing; and otherwise they cross in
an edge-vertex crossing. This point of view is illustrated in Figure 1. Note that by
subdividing the original edges appropriately, all the crossings in the realizing drawing
can be forced to be vertex-vertex crossings.

If G is a cubic graph, then clearly mcr(G,Σ) = cr(G,Σ). Hliněný proved in
[6] that computing the planar crossing number of cubic graphs is NP-hard and has
remarked that this implies that the same holds for computing mcr(G) for any graph
G. Crossing numbers of cubic graphs were also studied by McQuillan and Richter [13]
and Richter [17].

Proposition 1.4. For every graph G and every surface Σ there exists a cubic re-
alizing graph H. Moreover, if δ(G) ≥ 3, then G can be obtained from H by contracting
edges only.

Proof. Let H0 be a realizing graph of G without removed edges, and let D0 =
(ϕ, ε) be an optimal drawing of H0. We shall describe H in terms of its drawing D
obtained from D0. For each vertex v of H0 of degree d := dH0(v) �= 3 let Uv be a
closed disk containing ϕ(v) in its interior, so that a small neighborhood of Uv contains
no crossings, Uv is disjoint from Uu for u ∈ VH0 \ {v}, and Uv ∩ϕ(EH0) is connected.

For each of the cases d > 3, d = 2, and d = 1, we modify D0 in Uv as indicated
in Figure 2. Let D be this new drawing and H the graph defined by D.

Clearly G ≤m H, and so cr(H,Σ) ≥ mcr(G,Σ). As D contains no new crossings,
we have mcr(G,Σ) = cr(H0,Σ) = cr(D,Σ) ≥ cr(H,Σ). A combination of these two
inequalities proves that cr(H,Σ) = mcr(G,Σ).

If δ(G) ≥ 3, then we can assume δ(H0) ≥ 3, which implies |EH | − |VH | = |EH0
| −

|VH0 |. As H0 ≤m H, we can obtain G from H by contracting edges only.

2. Minor crossing number and maximum degree. In this section we pre-
sent a generalization of the following result (cf. also section 6).

Theorem 2.1 (see Moreno and Salazar [16]). Let G be a minor of a graph H
with Δ(G) ≤ 4. Then 1

4 cr(G,Σ) ≤ cr(H,Σ) for every surface Σ.
Suppose that G = H/e for e = v1v2 ∈ EH . For i = 1, 2, let di = degH(vi) − 1

be the number of edges incident with vi and distinct from e. We may assume that

THE MINOR CROSSING NUMBER 347

e1

e1

e1

e2

e2

. . .
ed−1

ed

v1

v1 v2
v2

v2
v3v3

v3

v4
v4 v5

. . .

vd−1

Uv
UvUv

(a) (b) (c)

Fig. 2. Drawing a cubic realizing graph; cf. Proposition 1.4.

v1

v2 v1v2

Fig. 3. Contracting edges on a drawing.

d1 ≤ d2. As shown in Figure 3, any given drawing of H can be changed into a drawing
of G such that every crossing involving e is replaced by d1 new crossings.

More generally, let G be a minor of H. We assume that G = (H − R)/C. Then
EG = EH \ (R ∪ C). Let DH = (ϕH , εH) be a normal drawing of H. Then DH

determines a normal drawing of H −R in Σ in which no new crossings arise. On the
other hand, by contracting the edges in C, the number of crossings can increase. If we
perform edge-contractions one by one, and every time apply the redrawing procedure
as described above, then we can control the number of new crossings. To do the
counting properly, we need some additional notation.

Let us define w(G,H) : EH → N by setting w(G,H, e) = 0 if e ∈ R and
w(G,H, e) = 1 if e ∈ EG. If e ∈ C, let Tv be the maximal tree induced by C
containing e (which contracts to the vertex v in G). Let T1, T2 be the components of
Tv − e, and let di (i = 1, 2) denote the number of edges in EG that are incident with
Ti. Then we set w(G,H, e) = min{d1, d2}. For e ∈ EH we call w(G,H, e) the weight
of the edge e.

Let G ≤m H1 ≤m H, so that G = (H1 − R1)/C1, H1 = (H − R′)/C ′, and
G = (H −R)/C, where R = R1 ∪R′ and C = C1 ∪C ′. Let DH be a normal drawing
of H. Further, let D1 be a drawing of H1 obtained from DH by removing the edges
of R′ and applying the described contractions of the edges in C ′ one after another.
When doing these contractions, we proceed much as shown in Figure 3 except that
the criterion for whether to contract towards v1 or v2 is not the degree of v1 or v2

but the quantities d1 or d2 introduced in the previous paragraph. Similarly, let DG

348 DRAGO BOKAL, GAŠPER FIJAVŽ, AND BOJAN MOHAR

be obtained from D1 by using R1 and C1. If D is a drawing, let X(D) be the set of
crossings of D, and for x ∈ X(D) let ex and fx be the edges that cross at x.

Lemma 2.2. Let G, H, H1 and their drawings DG, DH , D1 be as defined in the
previous paragraph. Then∑

x∈X(D1)

w(G,H1, ex)w(G,H1, fx) ≤
∑

x∈X(DH)

w(G,H, ex)w(G,H, fx).(2.1)

Proof. It is enough to prove this for the case when H1 and H differ only in a
single minor operation with respect to G, i.e., R′ ∪ C ′ = {e}. If H1 = H − e, then
w(G,H, e) = 0 and the sums are equal.

Suppose now that H1 = H/e. As simplifying the image of e decreases the right-
hand sum, we may assume that εH(e) is a simple arc. We adopt the notation intro-
duced above. The edge e is contracted, and thus e ∈ C. After the contraction of e, all
weights remain the same; i.e., w(G,H1, f) = w(G,H, f) for every f ∈ EH − e. Hence,
the difference between the left- and the right-hand sides in (2.1) is that the crossings
of e in DH are replaced by newly introduced crossings in D1 (as shown in Figure 3).
Let x ∈ X(DH) with ex = e = v1v2, and let E1 be the set of edges incident with v1.
Since

∑
f∈E1−e w(G,H1, f) =

∑
f∈E1−e w(G,H, f) = w(G,H, e) and to each crossing

x of e with some e′ in D1 there correspond exactly the crossings of E1 − e with the
edge e′, the inequality (2.1) follows.

Theorem 2.3. Let G be a minor of a graph H, Σ be a surface, and τ :=⌊
1
2Δ(G)

⌋
. Then

cr(G,Σ) ≤ τ2 cr(H,Σ).

Proof. Let DH be an optimal drawing of H, and let DG be the drawing of G,
obtained from DH as described before Lemma 2.2. We apply Lemma 2.2 with H1 = G.
Obviously, cr(G,Σ) ≤ cr(DG,Σ). As all edges in G have weight w(G,G, e) = 1,
the left-hand side of inequality (2.1) equals the number of crossings in DG. Since
the weights w(G,H, e) of edges in H are bounded from above by τ , the theorem
follows.

By using Theorem 2.3 together with definition (1.1) and Lemma 1.2, we obtain
the following corollary.

Corollary 2.4. Let G be a graph, Σ a surface, and τ :=
⌊

1
2Δ(G)

⌋
. Then

mcr(G,Σ) ≤ cr(G,Σ) ≤ τ2mcr(G,Σ).

3. Minor crossing number and genus. In this section we derive some genus-
related lower bounds for minor crossing number of graphs. For additional terminology,
we refer the reader to [15].

Theorem 3.1. Let G be a graph with genus g(G) and nonorientable genus g̃(G).
If Σ is an orientable surface of genus g(Σ), then mcr(G,Σ) ≥ g(G) − g(Σ) and
mcr(G,Σ) ≥ g̃(G) − 2g(Σ).

If Σ is a nonorientable surface with nonorientable genus g(Σ), then mcr(G,Σ) ≥
g̃(G) − g(Σ).

Proof. Let D be an optimal drawing of a realizing graph Ḡ in an orientable
surface Σ. For each crossing in D we add a handle to Σ and obtain an embedding of
Ḡ in a surface Σ′ of genus g(Σ′) = g(Σ) + mcr(G,Σ). Using minor operations on D,
we can obtain an embedding of G in Σ′, which yields g(Σ′) ≥ g(G). Thus, we have
mcr(G,Σ) ≥ g(G) − g(Σ).

THE MINOR CROSSING NUMBER 349

The other two claims can be proved in a similar way by adding crosscaps at
crossings of D. Note also that adding a crosscap to an orientable surface of genus g
results in a surface of nonorientable genus 2g + 1.

When the genus of a graph is not known, one can derive the following lower bound
using the Euler formula and the same technique as in the preceding proof.

Proposition 3.2. Let G be a graph with n = |VG|, m = |EG|, and girth r, and
let Σ be a surface of Euler genus g. Then mcr(G,Σ) ≥ r−2

r m− n− g + 2.
Proof. As in the proof of Theorem 3.1, we obtain an embedding D of G in Ng+k,

where k = mcr(G,Σ). Let f be the number of faces in D. All faces have length at least
r, and thus f ≤ 2m

r . The Euler formula results in 2−(g+k) = n−m+f ≤ n− r−2
r m,

which yields the claimed bound.
In section 5 we derive an improvement over Proposition 3.2; see Theorem 5.6.
The following proposition relates minor crossing numbers in different surfaces

with the one in the plane.
Proposition 3.3. The inequality mcr(G,Σ) ≤ max(0,mcr(G) − g(Σ)) holds for

every surface Σ and every graph G, where g(Σ) denotes the (non)orientable genus of
Σ.

Proof. Let us start with a realizing drawing of G in the sphere. We can remove at
least one existing crossing by adding either a crosscap (if the surface is nonorientable)
or a handle. This increases the genus of the surface by 1, and the result follows.

4. Minor crossing number and connectivity. Let G1, . . . , Gk be the com-
ponents of a graph G. It is easy to see that mcr(G) =

∑k
i=1 mcr(Gi). We shall extend

this fact to the blocks (2-connected components) of G, even in the setting of the minor
crossing number in a surface.

Let Σ be a surface and k a positive integer. We say that a collection Σ1, . . . ,Σk

of surfaces is a decomposition of Σ and write Σ = Σ1# · · ·#Σk if Σ is homeomorphic
to the connected sum of Σ1, . . . ,Σk.

Theorem 4.1. Let Σ be a surface and let G be a graph with blocks G1, . . . , Gk.
Then

k∑
i=1

mcr(Gi,Σ) ≤ mcr(G,Σ) ≤ min

{
k∑

i=1

mcr(Gi,Σi)

∣∣∣∣ Σ = Σ1# · · ·#Σk

}
.

Proof. Let D be an optimal drawing of a realizing graph Ḡ in Σ. For each Gi it
contains an induced subdrawing Di of some graph G̃i with Gi as a minor. Gi and Gj

are either disjoint (implying that G̃i and G̃j are disjoint), or they have a cutvertex

v in common (implying that G̃i and G̃j intersect in a part of the tree Tv). As there
are at least mcr(Gi,Σ) crossings in Di and there are no crossings in the subdrawing
induced by Tv for any v ∈ VG, the lower bound follows.

Let us reorder the blocks of G in such a way that for i = 2, . . . , k the block Gi

shares at most one vertex with the graph Hi :=
⋃i−1

j=1 Gj . This can be done using the
block-cutvertex forest of G.

Let Σ1, . . . ,Σk be a decomposition of Σ where the minimum is attained. For
i = 1, . . . , k let the Di be some optimal drawing of Ḡi in Σi. Set D̃1 = D1, H̃1 = Ḡ1,
and Π1 = Σ1. For i = 2, . . . , k we choose a face fi of D̃i−1 in Πi−1 and f ′

i of Di in Σi.
If Hi−1 and Gi share a vertex v, then we choose fi incident with some vertex xi of
Tv ⊆ H̃i−1 and f ′

i incident with some vertex yi of Tv ⊆ Ḡi; otherwise the choice can be
arbitrary. By constructing a connected sum of faces fi, f

′
i and, if necessary, connecting

xi with yi in the new face fi # f ′
i , we obtain a drawing D̃i of H̃i in Πi := Πi−1 # Σi.

350 DRAGO BOKAL, GAŠPER FIJAVŽ, AND BOJAN MOHAR

It is clear that G ≤m H̃k and that D̃k is a drawing of H̃k in Σ with at most∑k
i=1 mcrΣi(Gi) crossings. This proves the upper bound inequality.
Corollary 4.2. Let G be a graph with blocks G1, . . . , Gk. Then

mcr(G) =

k∑
i=1

mcr(Gi).

Proof. To prove this, one just has to observe that, for Σ = S0, the left-hand side
and the right-hand side in the inequalities in Theorem 4.1 are equal.

5. Structure of graphs with bounded mcr(G, Σ). As mentioned in section
1, the family ω(k,Σ) of all graphs, whose mcr(G,Σ) is at most k, is minor-closed. Let
us denote by F (k,Σ) the set of minimal forbidden minors for ω(k,Σ). F (k) and ω(k)
stand for F (k,S0) and ω(k,S0), respectively.

Graphs in ω(0,Σ) have a simple topological characterization—they are precisely
the graphs that can be embedded in Σ. A similar topological characterization holds for
graphs in ω(1). They are precisely the graphs that can be embedded in the projective
plane with face-width at most 2. This was observed by Robertson and Seymour [18],
who determined the set F (1) of minimal forbidden minors for ω(1) as follows.

Theorem 5.1 (see Robertson and Seymour [18]). The set F (1) contains precisely
the 41 graphs G1, . . . , G35 and Q1, . . . , Q6, where G1, . . . , G35 are the minimal for-
bidden minors for embeddability in the projective plane and Q1, . . . , Q6 are projective
planar graphs that can be obtained from the Petersen graph by successively applying
the Y Δ and ΔY operations.

This theorem establishes the following linear time algorithm for testing whether
mcr(G) is at most 1: first embed G in the projective plane [14] and then check whether
the face-width of the embedding is less than or equal to 2 (see [8]).

Let us remark that the forbidden minors for the projective plane have been deter-
mined by Glover, Huneke, and Wang [7] and Archdeacon [2]. There are seven graphs
that can be obtained from the Petersen graph by Y Δ and ΔY operations (known as
the Petersen family), but one of them cannot be embedded in the projective plane
and is one of the forbidden minors for the projective plane.

We will prove that every family ω(k,Σ) has a similar topological representation,
for which we need some further definitions.

Let γ be a one-sided simple closed curve in a nonorientable surface Π of Euler
genus g. Cutting Π along γ and pasting a disk to the resulting boundary yields a
surface denoted by Π/γ of Euler genus g− 1. We say that Π/γ is obtained from Π by
annihilating a crosscap at γ.

Let us call a set of pairwise noncrossing, onesided, simple closed curves Γ =
{γ1, . . . , γk} in a nonorientable surface Π a k-system in Π. It is easy to see that for
distinct γi, γj ∈ Γ the surface (Π/γi)/γj is homeomorphic to (Π/γj)/γi. Therefore
the order in which we annihilate the crosscaps at prescribed curves is irrelevant, and
we define Π/Γ := Π/γ1/ . . . /γk. We say that the k-system Γ in Π is an orienting
k-system if the surface Π/Γ is orientable.

Suppose that D is a drawing of G in a nonorientable surface Π with at most c
crossings. If there exists an (orienting) k-system Γ in Π with each γ ∈ Γ intersecting
D in at most two points, then we say that D is (orientably) (c, k)-degenerate, and we
call Γ an (orienting) k-system of D. If c = 0, then D is an embedding and we also say
that it is k-degenerate. Let us observe that an embedding of a graph in the projective
plane is 1-degenerate precisely when the face-width of the embedding is at most 2.

THE MINOR CROSSING NUMBER 351

Fig. 4. Replacing a crossing by a crosscap and a respective annihilating curve.

Lemma 5.2. Let Σ be an (orientable) surface of Euler genus g, and let k ≥ 1 be
an integer. Then, for any l ∈ {1, . . . , k}, the family ω(k,Σ) consists precisely of all
those graphs G ∈ ω(k − l,Ng+l), for which there exists a graph G̃ that contains G as
a minor and that can be drawn in the nonorientable surface Ng+l of Euler genus g+ l
with (orienting) degeneracy (k − l, l).

Proof. Let G ∈ ω(k,Σ) and let Ḡ be its realizing graph, drawn in Σ with at most
k crossings. Choose a subset of l crossings of Ḡ. By replacing a small disk around
each of the chosen crossings with a Möbius band, we obtain a drawing of Ḡ in Ng+l

with (orienting) degeneracy (k − l, l). The replacement at one such crossing and the
corresponding curve annihilating the crosscap are illustrated in Figure 4.

For the converse we first prove the induction basis l = 1.

Let G̃ be the graph that contains G as a minor and is drawn in Ng+1 with at most
k − 1 crossings, and let us assume that a one-sided curve γ intersects the drawing of
G̃ in at most two points, x and y. After cutting the surface along γ and pasting a disc
Δ on the resulting boundary, we get a surface of Euler genus g. On the boundary of
Δ, two copies of x and y interlace. By adding paths Px and Py joining the copies of

x and y (respectively), we obtain a drawing D′ of a graph G′, which contains G̃ (and
hence also G) as a minor. Clearly, D′ has one crossing more (the one between Px and
Py) than the drawing of G̃. So, D′ is (k − 1, 1)-degenerate.

If l ≥ 2, we may annihilate the crosscaps consecutively, as the curves in the
corresponding l-system are noncrossing. Note that if the l-system is orienting, we
obtain an orientable surface Σ.

Lemma 5.3. Let G̃ be a graph with an (orientably) k-degenerate embedding in a
surface Σ. If G is a surface minor of G̃, then G is also (orientably) k-degenerate.

Proof. It suffices to verify the claim for edge-deletions and edge-contractions. For
edge-deletions, there is nothing to be proved, and for edge contractions, one has to
show only that a k-system for G̃ can be transformed into a k-system for G̃/e. We
leave the details to the reader.

Lemma 5.3 can be extended to drawings with crossings if we restrict edge-contrac-
tion to edges that are not involved in crossings.

As a direct consequence of Lemmas 5.2 and 5.3 we have the following result.

Theorem 5.4. Let Σ be an (orientable) surface of Euler genus g, and let k ≥ 1
be an integer. Then ω(k,Σ) consists of precisely all the graphs that can be embedded
in the nonorientable surface Ng+k of Euler genus g + k with (orienting) degeneracy
k.

Figure 5(a) exhibits the geometric structure of a realizing drawing in the Klein
bottle, (b) shows the general structure of its minors G with mcr(G) ≤ 2, and (c)
is a degenerate example of this structure in which the curves of the corresponding

352 DRAGO BOKAL, GAŠPER FIJAVŽ, AND BOJAN MOHAR

f1f1f1 f2
f2f2 f2f2f2

(a) (b) (c)

Fig. 5. Embeddings in the Klein bottle with orienting degeneracy 2.

2-system {γ1, γ2} touch twice.
Theorem 5.4 can be used to express a more intimate relationship between the

graphs in ω(k,Σ) and ω(0,Σ), as follows.
Corollary 5.5. Let Σ be a surface of Euler genus g, k ≥ 0 be an integer, and

G ∈ ω(k,Σ). Then there exists a graph H, which embeds in Σ, such that G can be
obtained from H by identifying at most k pairs of vertices.

Theorem 5.4 can be used to improve the lower bound of Proposition 3.2.
Theorem 5.6. Let G be a simple graph with n = |VG|, m = |EG| and let Σ be a

surface of Euler genus g. Then

mcr(G,Σ) ≥ 1
2 (m− 3(n + g) + 6).

Two technical lemmas are needed for the proof of this result. Let Σ be a closed
surface and x, y ∈ Σ. Let Γ = {γ1, . . . , γk} be a k-system of one-sided noncrossing
simple closed curves in Σ such that γi ∩ γj = {x, y} for all 1 ≤ i < j ≤ k. Let
γi = γ1

i ∪ γ2
i , where γl

i is an arc from x to y. If a curve γl
i ∪ γm

j (i �= j) bounds a disk

in Σ whose interior contains no segment of curves in Γ, then we say that γl
i ∪ γm

j is a
Γ-digon.

Lemma 5.7. Every k-system Γ has at most k − 1 Γ-digons.
Proof. We assume the notation introduced above. Let us contract one of the

segments, say γ1
1 . Then each other γl

i becomes a loop in Σ. Since Γ is a k-system
of one-sided noncrossing loops, the loops in Γ generate a k-dimensional subspace
of the first homology group H1(Σ; Z2). This implies that the 2k − 1 loops L ={
γl
i | 1 ≤ i ≤ k, l = 1, 2

}
\ {γ1

1} also generate at least k-dimensional subspace. If there
are k Γ-digons, then k of the loops could be removed from L, and the remaining
k− 1 loops would still generate the same k-dimensional subspace. This contradiction
completes the proof.

Let G be a graph and D its k-degenerate embedding in a surface Σ. Let Γ =
{γ1, . . . , γk} be the corresponding k-system of D. The curves γi are pairwise non-
crossing, so we may assume that γi and γj (i �= j) intersect (touch) only in points
where they intersect the graph. We subdivide edges of D in such a way that every
γi intersects D only at vertices. If γi intersects D at vertices ui and vi, we add to
D two new edges ei, fi with ends ui, vi whose embedding in Σ coincides with γi. (If
ui = vi, we add one loop ei at vi.) We call the resulting embedding D′ a k-augmented
embedding of D and the corresponding graph G′ a k-augmented graph of G (with
respect to Γ). Let us observe that we may assume that curves in Γ intersect D only at
vertices. In that case, subdivision of edges is not necessary, and then G is a subgraph
of G′.

THE MINOR CROSSING NUMBER 353

Fig. 6. Realizing drawings of K6, K7, and K8, respectively.

Lemma 5.8. Let D be a k-degenerate embedding of a simple graph G in a nonori-
entable surface Σ, and let D′ be a k-augmented embedding of D. Then D′ has at most
k faces of length two and has no faces of length one.

Proof. We shall use the notation introduced before the lemma. Since G is a simple
graph, any face of length 1 or 2 involves some edge ei, fi (i ∈ {1, . . . , k}). If ei is
a loop, it cannot bound a face since γi is a onesided curve in Σ. Two loops cannot
form a facial boundary since then they would be homotopic, and homotopic onesided
curves always cross each other. So, an edge ei or fi can be part of a face of length
two only when ui �= vi.

For simplicity of notation, suppose that γ1, . . . , γt all contain the same pair of
vertices u1 and v1. It suffices to see that the edges ei, fi (i = 1, . . . , t) and possible
edge e0 = u1v1 of G together form at most t faces of length 2. By Lemma 5.7,
{ei, fi | 1 ≤ i ≤ t} form at most t − 1 faces of length 2, and e0 can give rise to one
additional such face. This proves the claim, and the application of this claim to all
pairs ui, vi completes the proof of the lemma.

Proof of Theorem 5.6. Let mcr(G,Σ) = k. By Theorem 5.4, there exists an
embedding D of G in Ng+k with crossing degeneracy k. Let D′ be a k-augmented
embedding of D, and let G′ be its graph. By Lemma 5.8, removing at most k edges
from G′ yields an embedding D′′ without faces of length two, implying |FD′′ | ≤
2
3 |ED′′ |. Euler formula implies n−|ED′′ |+ |FD′′ | = 2− (g+k). The stated inequality
follows.

If one would like to extend the bound of Proposition 3.2 for graphs of girth r ≥ 4,
additional arguments would be needed.

6. Examples. We have so far developed some tools to find lower bounds of the
minor crossing number. In this section, they are applied to several families of graphs.
In general, Theorem 2.3 yields better bounds for graphs of small maximum degree
(cubes, Cn�Cm), while Theorem 3.1 suits graphs with large maximum degree better,
e.g., complete bipartite graphs. Theorem 5.6 performs best on dense graphs of girth
three, for instance complete graphs.

6.1. Complete graphs. Theorem 5.6 implies the following inequality, which is
sharp for n ∈ {3, . . . , 8}, as demonstrated in Figure 6.

Proposition 6.1. Let n ≥ 3. Then mcr(Kn) ≥
⌈

1
4 (n− 3)(n− 4)

⌉
.

The following proposition establishes an upper bound.

Proposition 6.2. For n ≥ 9, mcr(Kn) ≤
⌊

1
2 (n− 5)2

⌋
+ 4.

354 DRAGO BOKAL, GAŠPER FIJAVŽ, AND BOJAN MOHAR

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

Fig. 7. Drawings of graphs K̃10 and K̃11.

Proof (sketch). We shall exhibit graphs K̃n (n ≥ 9) together with their drawings
Dn so that K̃n contains Kn as a minor and that cr(Dn) =

⌊
1
2 (n− 5)2

⌋
+ 4. Figure 7

presents drawings of K̃10 and K̃11. Different vertex symbols (diamond, circle, triangle,
etc.) represent vertices in the same tree Tv, v ∈ VKn , which contracts to the vertex v
in the Kn minor. By contracting the thick edges of the graphs in Figure 7, we obtain
K10 and K11, respectively.

The reader should have no difficulty placing the tree Tn+1 into Dn in order to
obtain Dn+1. The tree Tn+1 crosses precisely each Tv with 7 ≤ v ≤ n. To connect
Tn+1 with the trees T1, . . . , T6, we need three new crossings if n is even (T1 with T2,
T3 with T4, and T5 with T6) and no new crossing if n is odd.

Let cn denote the number of crossings in the drawing of K̃n described above, and
let ak = c2k. We have a4 = 6, a5 = 14, a6 = 26, and a recurrence equation

ak+1 = c2k+2 = c2k+1 + (2k − 1 − 6)

= c2k + (2k − 6) + 3 + (2k − 1 − 6)

= c2k + 4k − 8

= ak + 4k − 8,

whose solution is ak = 2k2 − 10k + 14. For even n this yields

cn = 1
2 ((n− 5)2 + 3),

and for odd n

cn = 1
2 (n− 5)2 + 4.

Corollary 6.3. Let Σ be a fixed surface. For n ∈ N, let cn = mcr(Kn,Σ)
n(n−1) . The

sequence {cn}∞n=1 is nondecreasing and

c∞ := lim
n→∞

cn ∈
[
1
4 ,

1
2

]
.

Proof. First we prove the following claim: Let mcr(Kn,Σ) ≥ c n(n − 1). Then
mcr(Km,Σ) ≥ cm(m− 1) for every m ≥ n.

THE MINOR CROSSING NUMBER 355

Fig. 8. A drawing of the graph K̃8,7 with 22 crossings.

Clearly it suffices to prove this for m = n + 1. Let D̄ be a realizing drawing
of Kn+1 in Σ. Let Ti be the tree in D̄ which contracts to the vertex i of Kn+1. If
we remove Ti and all incident edges from D̄, we obtain a drawing of a graph with
Kn minor. This can be done in n + 1 different ways. These n + 1 drawings contain
at least (n + 1) mcr(Kn,Σ) crossings altogether. We may assume that there are no
removed edges in D̄, as their number can only increase the number of crossings.
Then each crossing from D̄ appears in at most n − 1 of these drawings. Therefore,
(n− 1) mcr(Kn+1,Σ) ≥ (n + 1) mcr(Kn,Σ) ≥ c (n + 1)n(n− 1).

The stated bounds on c∞ follow easily from Propositions 6.1 and 6.2.
We believe that the minor crossing number of complete graphs lies close to the

upper bound from Proposition 6.2, so that the following asymptotic holds: mcr(Kn) =
1
2n

2 + O(n).

6.2. Complete bipartite graphs. The genus of complete bipartite graphs [15,
Theorem 4.4.7] in combination with Theorem 3.1 establishes the following proposition.

Proposition 6.4. Let 3 ≤ m ≤ n. Then

mcr(Km,n) ≥
⌈

1
2 (m− 2)(n− 2)

⌉
.

For the upper bound, consider a set of graphs K̃m,n. They are constructed in a

way similar to that of their complete analogues K̃n, and an example is presented in
Figure 8.

Proposition 6.5. Let 4 ≤ m ≤ n. Then

mcr(Km,n) ≤ (m− 3)(n− 3) + 5.

Also in the case of complete bipartite graphs we think that the upper bound
from Proposition 6.5 lies close to the actual minor crossing number: mcr(Km,n) =
m · n + O(m + n).

6.3. Hypercubes. Applying Proposition 3.2 to hypercubes yields the following
result.

Proposition 6.6. Let n ≥ 4. Then mcr(Qn) ≥ (n− 4)2n−2 + 2.

356 DRAGO BOKAL, GAŠPER FIJAVŽ, AND BOJAN MOHAR

Using the best known lower bound for crossing number of hypercubes, cr(Qn) >
4n/20 − (n2 + 1)2n−1 by Sýkora and Vrťo [19] in combination with Theorem 2.3, we
can deduce the following alternative lower bound, which is stronger for large values
of n.

Proposition 6.7. Let n ≥ 4. Then mcr(Qn) > 1
n2

(
1
5 4n − 2n+1

)
− 2n+1.

Following the same idea as in [12, Figures 2 and 3], one can obtain a family of
graphs Q̃n and their drawings Dn with Δ(Q̃n) = 4 and Q̃n having Qn as a minor.
They establish the following upper bound.

Proposition 6.8. Let n ≥ 2. Then mcr(Qn) ≤ 2 · 4n−2 − (n− 1)2n−1.

6.4. Cartesian products of cycles Cm�Cn. Combining the results presented
in [5] and Theorem 2.3 implies the following fact.

Proposition 6.9. Suppose that n ≥ m and either m ≤ 7 or m ≥ 3 and n ≥
m(m + 1). Then 1

4 (m− 2)n ≤ mcr(Cm�Cn) ≤ (m− 2)n.

REFERENCES

[1] D. Archdeacon, Problems in Topological Graph Theory, Department of Mathematics and
Statistics, University of Vermont, Burlington, VT; online at http://www.emba.uvm.edu/
∼archdeac/problems/minorcr.htm, 1995.

[2] D. Archdeacon, A Kuratowski theorem for the projective plane, J. Graph Theory, 5 (1981),
pp. 243–246.

[3] S. N. Bhatt and F. T. Leighton, A framework for solving VLSI graph layout problems,
J. Comput. System Sci., 28 (1984), pp. 300–343.

[4] G. Fijavž, Graph Minors and Connectivity, Ph.D. thesis, Department of Mathematics, Uni-
versity of Ljubljana, Slovenia, 2001 (in Slovene).

[5] L. Y. Glebsky and G. Salazar, The crossing number of Cm�Cn is as conjectured for n ≥
m(m + 1), J. Graph Theory, 47 (2004), pp. 53–72.

[6] P. Hliněný, Crossing number is hard for cubic graphs (extended abstract), in Math Foundations
of Computer Science MFCS 2004, Lecture Notes in Comput. Sci. 3153, Springer-Verlag,
New York, 2004, pp. 772–782.

[7] H. H. Glover, J. P. Huneke, and C.-S. Wang, 103 graphs that are irreducible for the pro-
jective plane, J. Combin. Theory Ser. B, 27 (1979), pp. 332–370.

[8] M. Juvan and B. Mohar, An Algorithm for Embedding Graphs in the Torus, manuscript.
[9] K. Kuratowski, Sur le problème des courbes gauches en topologie, Fund. Math., 15 (1930),

pp. 271–283.
[10] F. T. Leighton, Complexity Issues in VLSI, MIT Press, Cambridge, MA, 1983.
[11] F. T. Leighton, New lower bound techniques for VLSI, Math. Systems Theory, 17 (1984),

pp. 47–70.
[12] T. Madej, Bounds for the crossing number of the N-cube, J. Graph Theory, 15 (1991), pp. 81–

97.
[13] D. McQuillan and R. B. Richter, On 3-regular graphs having crossing number at least 2, J.

Graph Theory, 18 (1994), pp. 831–893.
[14] B. Mohar, Projective planarity in linear time, J. Algorithms, 15 (1993), pp. 482–502.
[15] B. Mohar and C. Thomassen, Graphs on Surfaces, Johns Hopkins University Press, Balti-

more, MD, 2001.
[16] E. G. Moreno and G. Salazar, Bounding the crossing number of a graph in terms of the

crossing number of a minor with small maximum degree, J. Graph Theory, 36 (2001),
pp. 168–173.

[17] R. B. Richter, Cubic graphs with crossing number two, J. Graph Theory, 12 (1988), pp. 363–
374.

[18] N. Robertson and P. Seymour, Excluding a graph with one crossing, Contemp. Math., 147
(1993), pp. 669–675.

[19] O. Sýkora and I. Vrťo, On crossing numbers of hypercubes and cube connected cycles, BIT,
33 (1993), pp. 232–237.

[20] I. Vrťo, Crossing number of graphs: A bibliography, Institute of Mathematics, Slovak Academy
of Sciences, Bratislava, Slovak Republic; available online from ftp://ftp.ifi.savba.sk/pub/
imrich/crobib.pdf.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 2, pp. 357–371

THE BIDIMENSIONAL THEORY OF BOUNDED-GENUS GRAPHS∗

ERIK D. DEMAINE† , MOHAMMADTAGHI HAJIAGHAYI† , AND

DIMITRIOS M. THILIKOS‡

Abstract. Bidimensionality provides a tool for developing subexponential fixed-parameter algo-
rithms for combinatorial optimization problems on graph families that exclude a minor. This paper
extends the theory of bidimensionality for graphs of bounded genus (which is a minor-excluding
family). Specifically we show that, for any problem whose solution value does not increase under
contractions and whose solution value is large on a grid graph augmented by a bounded number
of handles, the treewidth of any bounded-genus graph is at most a constant factor larger than the
square root of the problem’s solution value on that graph. Such bidimensional problems include
vertex cover, feedback vertex set, minimum maximal matching, dominating set, edge dominating
set, r-dominating set, connected dominating set, planar set cover, and diameter. On the algorith-
mic side, by showing that an augmented grid is the prototype bounded-genus graph, we generalize
and simplify many existing algorithms for such problems in graph classes excluding a minor. On
the combinatorial side, our result is a step toward a theory of graph contractions analogous to the
seminal theory of graph minors by Robertson and Seymour.

Key words. treewidth, grids, graphs on surfaces, graph minors, graph contractions

AMS subject classifications. 05C83, 05C85

DOI. 10.1137/040616929

1. Introduction. The recent theory of fixed-parameter algorithms and param-
eterized complexity [DF99] has attracted much attention in its less than 10 years
of existence. In general the goal is to understand when NP-hard problems have al-
gorithms that are exponential only in a parameter k of the problem instead of the
problem size n. Fixed-parameter algorithms whose running time is polynomial for
fixed parameter values—or more precisely f(k) · nO(1) for some (superpolynomial)
function f(k)—make these problems efficiently solvable whenever the parameter k is
reasonably small.

In the last five years, several researchers have obtained exponential speedups in
fixed-parameter algorithms for various problems on several classes of graphs. While
most previous fixed-parameter algorithms have a running time of 2O(k)nO(1) or worse,
the exponential speedups result in subexponential algorithms with typical running

times of 2O(
√
k)nO(1). For example, the first fixed-parameter algorithm for finding a

dominating set of size k in planar graphs [AFF+01] had running time O(8kn); sub-
sequently, a sequence of subexponential algorithms and improvements have been ob-

tained, starting with running time O(46
√

34kn) [ABF+02], then O(227
√
kn) [KP02],

and finally O(215.13
√
kk + n3 + k4) [FT03]. Other subexponential algorithms for

∗Received by the editors October 13, 2004; accepted for publication (in revised form) August 29,
2005; published electronically May 3, 2006. A preliminary version of this paper appeared in Pro-
ceedings of the 29th International Symposium on Mathematical Foundations of Computer Science,
Prague, 2004, pp. 191–203.

http://www.siam.org/journals/sidma/20-2/61692.html
†MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St., Cambridge, MA

02139 (edemaine@mit.edu, hajiagha@mit.edu).
‡Department of Mathematics, National and Capodistrian University of Athens, Panepistimioupo-

lis, GR-15784, Athens, Greece (sedthilk@math.uoa.gr). This author’s work was supported by the EU
within the 6th Framework Programme under contract 001907 (DELIS) and by the Spanish CICYT
project TIC-2002-04498-C05-03 (TRACER).

357

358 E. D. DEMAINE, M. HAJIAGHAYI, AND D. M. THILIKOS

other domination and covering problems on planar graphs have also been obtained
[ABF+02, AFN04, CKL01, KLL02, GKLY05].

All subexponential fixed-parameter algorithms developed so far are based on
showing a “treewidth-parameter bound”: Any graph whose optimal solution has value
k has treewidth at most some function f(k). In many cases, f(k) is sublinear in k,
often O(

√
k). Combined with algorithms that are singly exponential in treewidth

and polynomial in problem size, such a bound immediately leads to subexponential
fixed-parameter algorithms.

A series of papers [DFHT05, DFHT04b, DFHT04a] introduce the notion of bidi-
mensionality as a general approach for obtaining treewidth-parameter bounds and
therefore subexponential algorithms. This theory captures essentially all subexpo-
nential algorithms obtained so far. Roughly speaking, a parameterized problem is
bidimensional if the parameter is large in a “grid-like graph” (linear in the number of
vertices) and either closed under contractions (contraction-bidimensional) or closed
under minors (minor-bidimensional). Examples of bidimensional problems include
vertex cover, feedback vertex set, minimum maximal matching, dominating set, edge
dominating set, r-dominating set,1 connected dominating set, planar set cover, and
diameter. Diameter is a simple computational problem, but its bidimensionality has
important consequences as it forms the basis of locally bounded treewidth for minor-
closed graph families [DH04a].

Treewidth-parameter bounds have been established for all minor-bidimensional
problems in H-minor-free graphs for any fixed graph H [DFHT04b, DFHT04a]. In
this case, the notion of “grid-like graph” is precisely the regular (r × r)-square grid.
However, contraction-bidimensional problems (such as dominating set) have proved
substantially harder. In particular, the largest class of graphs for which a treewidth-
parameter bound can be obtained is apex-minor-free graphs instead of general H-
minor-free graphs [DFHT04a]. (“Apex-minor-free” means “H-minor-free” where H is
a graph in which the removal of one vertex leaves a planar graph.) Such a treewidth-
parameter bound has been obtained for all contraction-bidimensional problems in
apex-minor-free graphs [DFHT04a]. In this case, the notion of a “grid-like graph” is
an r× r grid augmented with additional edges such that each vertex is incident to
O(1) edges to nonboundary vertices of the grid. (Here O(1) depends on H.) Unfor-

tunately, this treewidth-parameter bound is large: f(k) = (
√
k)O(

√
k). For a subex-

ponential algorithm, we essentially need f(k) = o(k). For apex-minor-free graphs,
such a bound is known only for the special cases of dominating set and vertex cover
[DH04b, DFHT04b].

The biggest graph classes for which we know a sublinear (indeed, O(
√
k)) treewidth-

parameter bound for many contraction-bidimensional problems are single-crossing-
minor-free graphs and bounded-genus graphs. (“Single-crossing-minor-free” means
“H-minor-free” where H is a minor of a graph that can be drawn in the plane with
one crossing.) For single-crossing-minor-free graphs [DHT05, DHN+04] (in particu-
lar, planar graphs [DFHT05]), all contraction-bidimensional problems have a bound
of f(k) = O(

√
k). In this case, the notion of “grid-like graph” is an r × r grid par-

tially triangulated by additional edges that preserve planarity. For bounded-genus
graphs [DFHT04b], a bound of f(k) = O(

√
k) has been shown, for the same notion of

“grid-like graphs” but only for contraction-bidimensional problems with an additional

1A set S of vertices is an r-dominating set of graph G if any vertex of G has distance at most r
from some vertex in S.

THE BIDIMENSIONAL THEORY OF BOUNDED-GENUS GRAPHS 359

property called α-splittability : Upon splitting a vertex, the parameter should increase
by at most α = O(1) (or decrease).

In this paper we extend the theory of bidimensionality for bounded-genus graphs
by establishing a sublinear (f(k) = O(

√
k)) treewidth-parameter bound for general

contraction-bidimensional problems in bounded-genus graphs. Our notion of “grid-
like graph” is somewhat broader: a partially triangulated r × r grid (as above) with
up to g additional edges (“handles”), where g is the genus of the original graph. This
form of contraction-bidimensionality is more general than α-splittability,2 and thus
we generalize the results for α-splittable contraction-bidimensional problems from
[DFHT04b]. It is easy to construct a parameter that is contraction-bidimensional but
not α-splittable, although these parameters are not “natural.” So far all “natural”
contraction-bidimensional parameters we have encountered are α-splittable, though
we expect other interesting problems to arise that violate α-splittability.

Our results show that a partially triangulated grid with g additional edges is the
prototype graph of genus g, as observed by Lovász [Lov03]. At a high level, this
property means that, to solve an (algorithmic or combinatorial) problem on a general
graph of genus g, the “hardest” instance on which we should focus is the prototype
graph. This property generalizes the well-known result in graph theory that the grid
is the prototype planar graph. This also extends our theory of constructing such
prototypes for bidimensional problems.

Further algorithmic applications of our results follow from the graph-minor theory
of Robertson and Seymour (e.g., [RS85]) and its extensions [DFHT04b, DH04b]. In
particular, [RS03, DFHT04b] show how to reduce many problems on general H-minor-
free graphs to subproblems on bounded-genus graphs. Essentially, the difference be-
tween bounded-genus graphs and H-minor-free graphs are “apices” and “vortices,”
which are usually not an algorithmic barrier. Applying our new theory for bounded-
genus graphs, we generalize the algorithmic extensions of [DFHT04b, DH04b]. Indeed,
we simplify the approaches of both [DFHT04b] and [DH04b], where it was necessary
to “split” bounded-genus graphs into essentially planar graphs because of a lack of
general understanding of bounded-genus graphs. Specifically, we remove the necessity
of Lemmas 7.4–7.8 in [DH04b].

Last but not least are the combinatorial aspects of our results. In a series of 20
papers (so far), Robertson and Seymour (e.g., [RS85]) developed the seminal theory
of graphs excluding a minor, which has had many algorithmic and combinatorial ap-
plications. Our understanding of contraction-bidimensional parameters can be viewed
as a step toward generalizing the theory of graph minors to a theory of graph con-
tractions. Specifically, we show that any graph of genus g can be contracted to its
core of a partially triangulated grid with at most g additional edges; this result gen-
eralizes an analogous result from [RS03] when permitting arbitrary minor operations
(contractions and edge deletions). Avoiding edge deletions in this sense is particularly
important for algorithmic applications because many parameters are not closed under
edge deletions, while many parameters are closed under contraction.

This paper is part of a series of papers on bidimensionality [DHT05, DHN+04,
DFHT05, DH04a, DFHT04b, DH04b, DFHT04a, DH05b, DH05a]. The theory of bidi-
mensionality has become a comprehensive body of algorithmic and combinatorial re-
sults, with consequences including tight parameter-treewidth bounds, direct separator

2This statement is the contrapositive of the following property: If the parameter is k for the
partially triangulated grid with g additional edges, then by α-splitting the additional edges, the
parameter is at most k + αg on the partially triangulated grid.

360 E. D. DEMAINE, M. HAJIAGHAYI, AND D. M. THILIKOS

theorems, linearity of local treewidth, subexponential fixed-parameter algorithms, and
polynomial-time approximation schemes for a broad class of problems on graphs that
exclude a fixed minor. See [DH04c] for a survey of this work and the role of this
paper. In particular, the results of this paper are used in the subsequent papers
[DH05b, DH05a].

2. Preliminaries. All the graphs in this paper are undirected without loops or
multiple edges. Given a graph G, we denote by V (G) the set of its vertices and by
E(G) the set of its edges. For any vertex v ∈ V (G) we denote by Ev the set of edges
incident to v. Moreover, we use the notation NG(v) (or simply N(v)) for the set of
neighbors of v in G (i.e., vertices adjacent to v).

Given an edge e = {x, y} of a graph G, the graph obtained from G by contracting
the edge e is the graph we get if we identify the vertices x and y and remove all loops
and duplicate edges. A graph H obtained by a sequence of edge-contractions is said to
be a contraction of G. A graph class C is a contraction-closed class if any contraction
of any graph in C is also a member of C. A contraction-closed graph class C is H-
contraction-free if H �∈ C. Given any graph class H, we say that a contraction-closed
graph class C is H-contraction-free if C is H-contraction-free for any H ∈ H.

2.1. Treewidth and branchwidth. The notion of treewidth was introduced
by Robertson and Seymour [RS86] and plays an important role in their fundamental
work on graph minors. To define this notion, first we consider the representation
of a graph as a tree, which is the basis of our algorithms in this paper. A tree
decomposition of a graph G, denoted by TD(G), is a pair (χ, T) in which T is a tree and
χ = {χi | i ∈ V (T)} is a family of subsets of V (G) such that (1)

⋃
i∈V (T) χi = V (G);

(2) for each edge e = {u, v} ∈ E(G) there exists an i ∈ V (G) such that both u and
v belong to χi; and (3) for all v ∈ V (G), the set of nodes {i ∈ V (T) | v ∈ χi} forms
a connected subtree of T . To distinguish between vertices of the original graph G
and vertices of T in TD(G), we call vertices of T nodes and their corresponding χi’s
bags. The maximum size of a bag in TD(G) minus one is called the width of the tree
decomposition. The treewidth of a graph G (tw(G)) is the minimum width over all
possible tree decompositions of G.

A branch decomposition of a graph (or a hypergraph) G is a pair (T, τ), where T
is a tree with vertices of degree 1 or 3 and τ is a bijection from the set of leaves of T
to E(G). The order of an edge e in T is the number of vertices v ∈ V (G) such that
there are leaves t1, t2 in T in different components of T (V (T), E(T) − e) with τ(t1)
and τ(t2) both containing v as an endpoint.

The width of (T, τ) is the maximum order over all edges of T , and the branchwidth
of G, bw(G), is the minimum width over all branch decompositions of G. (In the case
where |E(G)| ≤ 1, we define the branchwidth to be 0; if |E(G)| = 0, then G has no
branch decomposition; if |E(G)| = 1, then G has a branch decomposition consisting of
a tree with one vertex—the width of this branch decomposition is considered to be 0.)

It is easy to see that, if H is a minor of G, then bw(H) ≤ bw(G). The following
result is due to Robertson and Seymour [RS91, Theorem 5.1].

Lemma 2.1 (see [RS91]). For any connected graph G where |E(G)| ≥ 3, bw(G) ≤
tw(G) + 1 ≤ 3

2bw(G).

The main combinatorial result of this paper is Theorem 4.8 (see the end of section
4.2), which determines, for any k and g, a family of graphs Hk,g such that any Hk,g-
contraction-free graph G with genus g will have branchwidth O(gk). To describe such
a family, we will need some definitions on graph embeddings.

THE BIDIMENSIONAL THEORY OF BOUNDED-GENUS GRAPHS 361

2.2. Graph embeddings. Most of the notions defined in this subsection can
be found in [MT01].

A surface Σ is a compact 2-manifold without boundary. We will always consider
connected surfaces. We denote by S0 the sphere {(x, y, z) | x2 + y2 + z2 = 1}. A line
in Σ is a subset homeomorphic to [0, 1]. An O-arc is a subset of Σ homeomorphic to
a circle. A subset of Σ is an open disk if it is homeomorphic to {(x, y) | x2 + y2 < 1},
and it is a closed disk if it is homeomorphic to {(x, y) | x2 + y2 ≤ 1}.

A 2-cell embedding of a graph G in a surface Σ is a drawing of the vertices as
points in Σ and the edges as lines in Σ such that every face (connected component
of Σ − E(G) − V (G)) is an open disk. To simplify notations we do not distinguish
between a vertex of G and the point of Σ used in the drawing to represent the vertex
or between an edge and the line representing it. We also consider G as the union of
the points corresponding to its vertices and edges. That way, a subgraph H of G can
be seen as a graph H where H ⊆ G. We use the notation V (G), E(G), and F (G)
for the set of the vertices, edges, and faces of the embedded graph G. For Δ ⊆ Σ, Δ
is the closure of Δ. The boundary of Δ is bd(Δ) = Δ ∩ Σ − Δ, and the interior is
int(Δ) = Δ − bd(Δ).

A subset of Σ meeting the drawing only in vertices of G is called G-normal. If
an O-arc is G-normal, then we call it a noose. The length of a noose is the number
of vertices it meets.

Representativity [RS88] is the measure of the “density” of the embedding of a
graph in a surface. The representativity (or facewidth) rep(G) of a graph G embedded
in surface Σ �= S0 is the smallest length of a noncontractible noose in Σ. In other
words, rep(G) is the smallest number k such that Σ contains a noncontractible (non–
null-homotopic in Σ) closed curve that intersects G in k points.

It is more convenient to work with Euler genus. The Euler genus eg(Σ) of a
surface Σ is equal to the nonorientable genus g̃(Σ) (or the crosscap number) if Σ is
a nonorientable surface. If Σ is an orientable surface, eg(Σ) is 2g(Σ), where g(Σ) is
the orientable genus of Σ. Given a graph G, its Euler genus eg(G) is the minimum
eg(Σ) where Σ is a surface in which G can be embedded.

2.3. Splitting graphs and surfaces. In this section we describe precisely how
to cut along a noncontractible noose in order to decrease the genus of the graph until
we obtain a planar graph.

Let G be a graph and let v ∈ V (G). Also suppose we have a partition Pv =
(N1, N2) of the set of the neighbors of v. Define the splitting of G with respect to
v and Pv to be the graph obtained from G by (i) removing v and its incident edges;
(ii) introducing two new vertices v1, v2; and (iii) connecting vi with the vertices in
Ni, i = 1, 2. If H is the result of the consecutive application of the above operation
on some graph G, then we say that H is a splitting of G. If additionally in such a
splitting process we do not split vertices that are results of previous splittings, then
we say that H is a fair splitting of G.

The following lemma defines how to find a fair splitting for a given noncontractible
noose. It will serve as a link between Lemmas 4.4 and 4.7 in the proof of the main
result of this paper. Its proof is straightforward, following lines similar to those of
[DFHT04b].

Lemma 2.2. Let G be a connected graph 2-cell embedded in a nonplanar surface
Σ, and let N be a noncontractible noose of Σ. Then there is a fair splitting G′

of G affecting the set S = (v1, . . . , vρ) of the vertices of G met by N , such that
(i) G′ has at most two connected components; (ii) each connected component of G′

362 E. D. DEMAINE, M. HAJIAGHAYI, AND D. M. THILIKOS

can be 2-cell embedded in a surface with Euler genus strictly smaller than the Euler
genus of Σ; and (iii) there are two faces f1 and f2, each in the 2-cell embedding of a
connected component of G′ (and the connected components are different for the two
faces if G′ is disconnected), such that the boundary of fi, for i ∈ {1, 2}, contains
Si = (vi1, . . . , v

i
ρ), where v1

j and v2
j are the vertices created after the splitting of the

vertex vj, for j = 1, . . . , ρ.

3. Incomplete embeddings and their properties. In this section we give a
series of definitions and results that support the proof of the main theorem of the next
section. In particular, we will need special embeddings of graphs that are incomplete;
i.e., only some of the edges and vertices of the graph are embedded in a surface.
Moreover, we will extend the definition of a contraction so that it will also consider
contractions of faces for the part of the graph that is embedded.

Let Σ be a surface (orientable or not). Given a graph G, a vertex set V ⊆ V (G),
and an edge set E ⊆ E(G) such that ∪v∈V Ev ⊆ E, we denote by G− the graph
obtained by G by removing all vertices in V and all edges in E, i.e., the graph
G− = (V (G) − V,E(G) − E).3 We also say that G is (V,E)-embeddable in Σ if G−

has a 2-cell embedding in Σ. We call the graph G− the ground of G and we call the
edges and vertices of G− landed. On the other hand, we call the vertices in V and E
flying. Notice that the flying edges are partitioned into three categories: those that
have both endpoints in V (G) − V (we call them bridges), those with one endpoint
in V (G) − V and one endpoint in V (we call them pillars), and those with both
endpoints in V (we call them clouds). From now on, whenever we refer to a graph
(V,E)-embeddable in Σ we will accompany it with the corresponding 2-cell embedding
of G− in Σ.

The set of atoms of G with respect to some (V,E)-embedding of G in Σ is the set
A(G) = V (G) ∪E(G) ∪ F (G), where F (G) is the set of faces of the 2-cell embedding
of G− in Σ. Notice that a flying atom can only be a vertex or an edge. In this paper,
we will consider the faces as open sets whose boundaries are cyclic sequences of edges
and vertices.

3.1. Contraction mappings. A strengthening of a graph being a contraction
of another graph is for there to be a “contraction mapping” which preserves some
aspects of the embedding in a surface during the contractions. See Figure 3.1 for
an example. Given two graphs G and H that are (V (G), E(G))- and (V (H), E(H))-
embeddable in Σ and Σ′, respectively, we say that φ : A(G) → A(H) is a contraction
mapping from G to H with respect to their corresponding embeddings if the following
conditions are satisfied:

1. For any v ∈ V (G), φ(v) ∈ V (H).
2. For any e ∈ E(G), φ(e) ∈ E(H) ∪ V (H).
3. For any f ∈ F (G), φ(f) ∈ F (H) ∪ E(H) ∪ V (H).
4. For any v ∈ V (H), G[φ−1(v)] is a connected subgraph of G.
5. {φ−1(v) | v ∈ V (H)} is a partition of V (G).
6. If φ({x, y}) = v ∈ V (H), then φ(x) = φ(y) = v.
7. If φ({x, y}) = e ∈ E(H), then {φ(x), φ(y)} ∈ E(H).
8. If f ∈ F (G) and φ(f) = v ∈ V (G) and f = (x0, . . . , xr−1), then φ({xi, xi+1}) =

φ(xi) = v for any i = 0, . . . , r − 1 (where indices are taken modulo r).

3In this paper, the vertices and edges of a graph G are referred to as V (G) and E(G), respectively,
while V and E are subsets.

THE BIDIMENSIONAL THEORY OF BOUNDED-GENUS GRAPHS 363

h

b

a

c

d

e

fg h

b

c

x ← a, g, h y ← d, f, e

b

c

h d, f, ez ← a, g

G H
a

b

g

c

d, f, e

Fig. 3.1. An example of a contraction of a graph (V,E)-embeddable in S0, where V = {g, h}
and E = {{g, a}, {g, b}, {g, c}, {h, g}, {h, d}, {h, f}, {h, e}}. The contraction is shown in a three-step
sequence: contracting the edges of the face {d, e, f}, then the edge {a, g}, and then edge {z, h}.
A contraction mapping from G to H is defined as follows: φ(a) = φ(g) = φ(h) = φ({a, g}) =
φ({g, h}) = x, φ(b) = b, φ(c) = c, φ(d) = φ(f) = φ(e) = φ({f, d}) = φ({d, e}) = φ({e, f}) =
φ({d, e, f}) = y, φ({a, b}) = φ({g, b}) = {x, b}, φ({a, c}) = φ({g, c}) = {x, c}, φ({b, c}) = {b, c},
φ({b, d}) = {b, y}, φ(c, e) = {c, y}, φ({a, b, c}) = {x, b, c}, φ({b, d, e, c}) = {b, c, y}, φ({h, d}) =
φ({h, e}) = φ({h, f}) = {x, y}, φ({a, b, d, f, e, c}) = {x, b, y, c}.

9. If f ∈ F (G) and if φ(f) = e (an edge of H), then there are two edges of f
contained in φ−1(e).

10. If f ∈ F (G) and if φ(f) = g (a face of H), then each edge of g is landed and
is the image of some edge in f .

Notice that, from conditions 1, 2, and 3, the preimages of the faces of H are faces
of G.

The following lemma is easy.
Lemma 3.1. If there exists some contraction mapping from a graph G to a graph

H with respect to some embedding of G and H, then H is a contraction of G.
Proof. Observe that H can be obtained from G if we contract all the edges of⋃

v∈V (H) G[φ−1(v)].

3.2. Properties of contraction mappings. It is important that the two no-
tions (contraction and existence of a contraction mapping) are identical in the case
where G and H have no flying atoms, i.e., V (G) = V (H) = E(G) = E(H) = ∅. We
choose to work with contraction mappings instead of simple contractions because
they include stronger information that is sufficient to build the induction argument
of Lemma 4.7.

Lemma 3.2. If G and H are graphs and H is a contraction of G, then for any
(∅, ∅)-embedding of G and H on the same surface Σ there exists a contraction mapping
from G to H with respect to their corresponding embeddings.

Proof. We partition the contracted edges of H into connected subsets such that
no edges belonging to different subsets are connected by a path of contracted edges.
We map all edges of each such subset to the vertex of H that remains after their
contraction. We also observe that an edge that does not belong to such a subset
survives after the contraction and we map it to its copy in H. Notice that no edges
incident to the same vertex belong to different subsets. Using this fact, we map each
vertex of G to a vertex of H as follows: If v is incident to some contracted edge, then
we map it to the same vertex to which this contracted edge is mapped. If not, then
this vertex survives after the contraction procedure and therefore it is mapped to its
copy in H. It remains now to map any face f of G to atoms of H. Notice that, if some
face of G is incident to noncontractible edges, then these edges should be at least two.
Using this fact, we distinguish three cases: In the first, all the edges in bd(f) belong
to the same subset of the partition. Then we map f to the vertex occurring by the
construction of the edges in this subset. In the second case, there are exactly two
noncontractible edges of G in bd(f). Then these two edges should be mapped to the
same edge e of H, and we map f to e. In the third case, we have that bd(f) contains

364 E. D. DEMAINE, M. HAJIAGHAYI, AND D. M. THILIKOS

Fig. 3.2. A (7 × 7)-grid, a partially triangulated (7 × 7)-grid, and a (7, 9)-gridoid (the flying
edges and vertices are the distinguished ones).

more than 2 noncontractible edges of G. We observe that the noncontractible edges
in bd(f) define a face g in H and we map f to g. It is now easy to verify that the
mapping we just defined satisfies conditions 1–10.

The following lemma is a useful generalization of Lemma 3.2.

Lemma 3.3. Let G be a graph (V,E)-embeddable on some surface Σ and let H
be the graph occurring from G after contracting edges in E(G−). Then G[V] = H[V],
H is also (V,E)-embeddable in Σ, and there exists a contraction mapping φ from G
to H with respect to their corresponding embeddings.

Proof. Let H− be the result of the application of the same contractions on G−

embeddable on the surface Σ. From Lemma 3.2, there exists a mapping φ′ from G−

to H−. Add in H− all the flying vertices and all the clouds of G. This implies that
G[V] = H[V]. Then, for any flying vertex v, add in H− all pillar edges connecting
it to the vertices in {φ−1(u) | u ∈ V (G−) and u ∈ NG(v)}. Finally, for any bridge
{v, u} of G where φ′(v) �= φ′(u), we add in H− the bridge {φ′(v), φ′(u)}. Notice that
after the aforementioned edge additions transform H− to H, it is embeddable in Σ.

We now construct the required map φ as follows: For any a ∈ A(G−), φ(a) =
φ′(a); for any v ∈ V, φ(v) = v. Finally, for any {x, y} ∈ E, we define φ({x, y}) as
follows. If φ(x) �= φ(y), we set φ({x, y}) = {φ(x), φ(y)}, and if φ(x) = φ(y), we set
φ({x, y}) = φ(x).

3.3. Gridoids. A partially triangulated (r × r)-grid is any graph that contains
an (r × r)-grid as a subgraph and is a subgraph of some triangulation of the same
(r × r)-grid.

We call a graph G an (r, k)-gridoid if it is (V,E)-embeddable in S0 for some
pair V,E, where |E| ≤ k, E(G[V]) = ∅ (i.e., G does not have clouds), and G− is a
partially triangulated (r′ × r′)-grid embedded in S0 for some r′ ≥ r. For an example
of a (7, 9)-gridoid and its construction, see Figure 3.2.

4. Main result. In this section we will prove that, if a graph G has branchwidth
more than 4k(eg(G)+1), then G contains as a contraction some (k−12eg(G), eg(G))-
gridoid, where k ≥ 12eg(G).

4.1. Transformations of gridoids.

Lemma 4.1. Let G be an (r, k)-gridoid (∅, E)-embeddable in S0 and let v ∈
V (G−). Then there exists some contraction mapping φ from G to some (r−4, k+1)-
gridoid ({v}, E ∪ {{v, y}})-embeddable in S0 such that φ(v) = v.

Proof. Let G∗ be the grid from which G is constructed. Let (x, y) denote the
coordinates of the vertex v in G∗. We define the required map φ by distinguishing
two cases.

THE BIDIMENSIONAL THEORY OF BOUNDED-GENUS GRAPHS 365

Fig. 4.1. An example of the first case in the proof of Lemma 4.1.

Case 1. (x, y) is a vertex of degree 4 in G∗, i.e., x, y �∈ {1, r}. Refer to Figure 4.1
for an example. Let f1, . . . , fρ be the faces of G− containing v, cyclically ordered
in the way they appear in the embedding of G− in Σ, and set f = ∪i=1,... ,ρf i. We
first consider a modified embedding of G where now v is a flying vertex (we add it
in V) and the remaining ground graph has the same embedding as before with the
difference that now f − bd(f) is a face replacing the faces f1, . . . , fr that disappear.
We construct a graph J that is ({v}, E∪{{v, y}})-embeddable in Σ by contracting all
the edges in bd(f) to a single vertex y. This makes the face f − bd(f) “disappear”
toward creating y and the pillars adjacent to v shrink to a single edge connecting
v with y. We construct a mapping φ′ : A(G) → A(J) as follows. Notice that any
atom a of G that is not contained in f is also an atom of J . If a is such an atom,
then set φ′(a) = a. If a ∈ bd(f), then φ′(a) = y. If a ∈ f − bd(f) − {v}, then set
φ′(a) = {y, v} and, finally, set φ′(v) = v. It is easy to verify that φ′ is a contraction
mapping G to J such that φ′(v) = v.

We now further contract in J− all the edges in {{(x − 1, i), (x, i)}, {(x, i), (x +
1, i)} | i = 1, . . . , y − 2, y + 2, . . . , r} and in {{(i, y − 1), (i, y)}, {(i, y), (i, y + 1)} | i =
1, . . . , x− 2, x + 2, . . . , r}, and we call H the resulting graph (these contractions are
well defined because these edges are not contracted during the previous transformation
of G to J). Observe that H is an (r− 2, k + 1)-gridoid and that applying Lemma 3.3
we construct a contraction mapping φ′′ from J to H with respect to their ({v}, E ∪
{{v, y}})-embeddings in S0, where φ′′(v) = v. It remains to observe that φ = φ′ ◦ φ′′

is the required map and φ(v) = v.

Case 2. We now examine the case where v = (x, y) is a vertex of G∗ with degree
2 or 3. Refer to Figure 4.2 for an example. Let q be the union of all the squares
of G∗ that have common edges with the unique face of G∗ that is not a square (we
call the cycle defined by the boundary of this face the exterior cycle). We construct
a minor of G− by contracting all the edges in bd(q̄). bd(q̄) contains two connected
components that are disjoint cycles, and one of them is the exterior cycle of G∗. These
components are shrunk to two distinct adjacent vertices v and u, and we can assume
that v is the one of degree 1. We further contract some edge incident to u that is
different from {v, u}. The remaining graph is a partially triangulated (r − 4, r − 4)-
grid with some additional pending edge adjacent to its exterior cycle. Let G′ be the
graph occurring from G after applying to G the same sequence of contractions as
in G−. From Lemma 3.3 we have that G′ is also (∅, E)-embeddable in Σ and there
exists a contraction mapping φ′ from G to G′ with respect to their corresponding
embeddings. Moreover, as v is an endpoint of the edges contracted toward forming
the vertex v of G′, we have φ′(v) = v. Now we update the embedding of G′ so that
v becomes a flying vertex (we move it in V) and the remaining ground graph has the
same embedding as before with the difference that now {v, u} is not drawn anymore
in the surface (it becomes a pillar). We will use the notation H in order to denote G′

({v}, E ∪ {{v, u}})-embeddable in Σ in the updated way. We also define a mapping

366 E. D. DEMAINE, M. HAJIAGHAYI, AND D. M. THILIKOS

Fig. 4.2. An example of the second case in the proof of Lemma 4.1.

φ′′ from G′ to H with respect to their corresponding embeddings so that φ′′(a) = a
for any a ∈ A(G′) that is not the face of G′ containing the edge {v, u}. For this face
f we set φ′′(f) = f ′, where f ′ is the face created in H− after the removal of {v, u}
from the interior of f in G′−.

Observe that H is an (r − 4, k + 1)-gridoid and that φ = φ′ ◦ φ′′ is a con-
traction mapping from G to H with respect to the (∅, E)-embedding of G and the
({v}, E∪{{v, y}})-embedding of H in S0 where φ(v) = v. This completes the proof as
φ(v) = v.

Lemma 4.2. Let G be an (r, k)-gridoid (∅, E)-embeddable in S0, and let e be some
of its flying edges. Then there exists some (r − 4, k)-gridoid H (∅, E′)-embeddable in
S0 for some E′ and a contraction mapping φ of G to H such that φ(e) ∈ V (H).

Proof. Let e = {v, u}. Refer to Figure 4.3 for an example. According to
Lemma 4.1, there exists some contraction mapping φ from G to some (r − 4, k + 1)-
gridoid G′ ({v}, E ∪ {{v, y}})-embeddable in S0 such that φ(v) = v. We construct a
new graph H (∅, E−{v, u}∪{v, y})-embeddable in S0 by simply contracting the edge
{v, u} to the vertex v. We define a contraction mapping φ′ from G′ to H as follows:
If a ∈ A(G′)− {v, u, {v, u}}, then φ′(a) = a; otherwise φ′(a) = v. Finally, we observe
that φ ◦ φ′ is a contraction mapping φ from G to H such that φ(e) ∈ V (H).

e

u

v

φ(e)u

v

Fig. 4.3. An example of the proof of Lemma 4.2.

Lemma 4.3. Let G be an (r, k)-gridoid (∅, E)-embeddable in S0, and let a be some
of its atoms. Then there exists some (r − 4, k)-gridoid (∅, E)-embeddable in S0 and a
contraction mapping φ from G to H with respect to their corresponding embeddings
such that φ(a) ∈ V (H).

Proof. We will denote as G∗ the (r× r)-grid that should be triangulated in order
to construct G−.

The lemma follows directly from Lemma 4.2 in the case where a is a flying edge
of G. If this is not the case, then a is an atom of G− that is either a vertex or an
edge or a face. If a is a face, then either it is a square or triangular face included in
some square C = ((x, y), (x, y + 1), (x + 1, y), (x + 1, y + 1)) of G∗ or it is a face with
all vertices in the exterior face of G∗.

We will first examine all the aforementioned cases except for the last one. We
take the (r − 1, k)-gridoid H− that is constructed if we contract in G− all the edges

THE BIDIMENSIONAL THEORY OF BOUNDED-GENUS GRAPHS 367

in {{(x, i), (x + 1, i)} | i = 1, . . . , r} and in {{(i, y), (i, y + 1)} | i = 1, . . . , r}.
We will now examine the case where a is a face with all vertices in the exterior

face of G∗. Then we take the (r− 2, k)-gridoid H− that is constructed if we contract
in G− all the edges included in the exterior face of G∗ to a single vertex q and then
contract some edge incident to q.

Because in both cases H− is a contraction of H, we can use Lemma 3.3 to con-
struct a contraction (∅, E)-mapping φ from G to H with respect to their (∅, E)-
embeddings in Σ. Notice also that φ(a) ∈ V (H−) because, in both cases, all the
edges of the cycle (x, y), (x, y + 1), (x+ 1, y), (x+ 1, y + 1) are contracted (and there-
fore mapped) to a single vertex of H−.

4.2. Excluding gridoids as contractions.
Lemma 4.4. Let G be a graph (∅, ∅)-embeddable on some surface Σ. Let H be

an (r, k)-gridoid (∅, E)-embeddable on the sphere, and assume that φ is a contraction
mapping from G to H with respect to their corresponding embeddings.

Let {vi1, . . . , viρ}, i = 1, 2, be subsets of the vertices of two faces fi, i = 1, 2, of the
embedding of G where f1∩f2 = ∅ (we assume that the orderings of the indices in each
subset respect the cyclic orderings of the vertices in fi, i = 1, 2). Let G′ be the graph
obtained if we identify in G the vertex v1

i with the vertex v2
i . Then, the following hold:

(a) G′ has some 2-cell embedding on a surface of bigger Euler genus.
(b) There exists some (r− 12, k+1)-gridoid H, (∅, E ∪{{e}})-embeddable on the

sphere such that there exists some contraction mapping from G′ to H with
respect to their corresponding embeddings.

Proof. (a) Let Σ be the surface where G is embedded. We define a surface Σ−

from Σ by removing the two “patches” defined by the (internal) points of the faces
f1 and f2. Notice that G is still embeddable on Σ− and that Σ− is a surface with a
boundary whose connected components are the boundaries B1, B2 of the faces f1 and
f2. We now construct a new surface from Σ− by identifying the boundaries B1 and
B2 in a way that v1

i is identified with v2
i . Notice that the embedding that follows is

a 2-cell embedding and that the new surface has bigger Euler genus.
(b) From conditions 1, 2, and 3 in subsection 3.1, φ(f1) is either a vertex, an

edge, or a face of H. We apply Lemma 4.3 to construct a contraction mapping σ1

from H to some (r − 4, k)-gridoid H1, where σ1(φ(f1)) ∈ V (H1). Notice again that
σ1(φ(f2)) is either a vertex, an edge, or a face of H1. We again use Lemma 4.3 to
construct a contraction mapping σ2 from H1 to some (r − 8, k)-gridoid H2, where
σ2(σ1(φ(fi))) = vi ∈ V (H2), i = 1, 2. We now apply Lemma 4.1 for v1 and construct
some contraction mapping σ3 from H2 to some (r − 12, k + 1)-gridoid H3, ({v1}, E ∪
{{v1, y}})-embeddable in S0 such that σ3(v1) = v1. Summing up, we have that
φ′ = φ ◦ σ1 ◦ σ2 ◦ σ3 is a map from G to H3 with respect to the (∅, ∅)-embedding
of G on Σ and the ({v1}, E ∪ {{v1, y}})-embedding of H3 in S0. Moreover, we have
that φ′(f1) = v1 and φ′(f2) = v2 ∈ V (H3) (to facilitate the notation we assume that
σ3(v2) = v2).

Notice now that if v is the result of the identification in H3 of the vertex v1 with
the vertex v2, we take a new graph H (∅, E ∪ {{v, y}})-embeddable in S0. Let A′ be
all the atoms of G that are not included in the faces f1 and f2. Notice that these
atoms are not harmed while constructing G′ from G, and we set μ(a) = φ′(a) for each
a ∈ A′. Finally, for each atom a ∈ A(G′)−A, we set μ(a) = v. It now is easy to check
that μ is a contraction mapping from G′ to H with respect to their corresponding
embeddings. Because H is an (r − 12, k + 1)-gridoid, we are done.

The following is one of the main results in [DFHT04b].

368 E. D. DEMAINE, M. HAJIAGHAYI, AND D. M. THILIKOS

=
f1

f2

f1 f2

v1 v2

Fig. 4.4. An example of the transformations in the proof of Lemma 4.7.

Theorem 4.5. Let G be a graph 2-cell embedded in a nonplanar surface Σ of
representativity at least θ. Then one can contract edges in G to obtain a partially
triangulated (θ/4 × θ/4)-grid.

We also need the following easy lemma.

Lemma 4.6 (see [DFHT04b]). Let G be a graph and let H be the graph occurring
from G after splitting some vertex v ∈ V (G). Then bw(G) ≤ bw(H) + 1.

We are now ready to prove the central result of this section.

Lemma 4.7. Let G be a graph (∅, ∅)-embeddable on a surface Σ of Euler genus
g and assume that bw(G) ≥ 4(r − 12g)(g + 1). Then there exists some (r − 12g, g)-
gridoid H, (∅, E)-embeddable in S0 such that there exists some contraction mapping
from G to H with respect to their corresponding embeddings.

Proof. First, if the graph G is disconnected, we discard all but one connected
component C such that bw(C) = bw(G).

We use induction on g. Clearly, if g = 0, G is a planar graph and after ap-
plying Lemma 3.1, the result follows from the planar exclusion theorem of [RST94].
(The induction base relies heavily on the fact that for conventional embeddings the
contraction relation is identical to our mapping.)

Suppose now that g ≥ 1 and the theorem holds for any graph embeddable in a
surface with Euler genus less than g. Refer to Figure 4.4. If the representativity of
G is at least 4(r − 12g), then by Theorem 4.5 we can contract edges in G to obtain
a partially triangulated ((r − 12g) × (r − 12g))-grid (with no additional edges) and
we are done. Otherwise, the representativity of G is less than 4(r − 12g). In this
case, the smallest noncontractible noose has vertex set S of size less than 4(r − 12g).
Let G′ be a splitting of G with respect to S as in Lemma 2.2. Recall that G′ is now
(∅, ∅)-embeddable on a surface of Euler genus g′ ≤ g − 1.

By Lemma 4.6, the branchwidth of G′ is at least the branchwidth of G minus
|S|. Because |S| ≤ 4(r − 12g), we have that bw(G′) ≥ 4(r − 12g)(g + 1) − 4(r −
12g) = 4(r − 12g)g ≥ 4(r − 12g)(g′ + 1). By the induction hypothesis there exists
some (r − 12g′, g′)-gridoid H ′, (∅, E)-embeddable in S0 such that there exists some
contraction mapping from G′ to H with respect to their corresponding embeddings.
From Lemma 4.4, there exists some (r − 12g′ − 12, g′ + 1)-gridoid H, (∅, E ∪ {{e}})-
embeddable on the sphere such that there exists some contraction mapping from G to
H with respect to their corresponding embeddings. Because r − 12g′ − 12 ≥ r − 12g

THE BIDIMENSIONAL THEORY OF BOUNDED-GENUS GRAPHS 369

and g′ + 1 ≤ g, we are done.
Now we have the conclusion of this section.
Theorem 4.8. If a graph G excludes all (k − 12eg(G), eg(G))-gridoids as con-

tractions for some k ≥ 12eg(G), then G has branchwidth at most 4k(eg(G) + 1).
By Lemma 2.1 we can obtain a treewidth-parameter bound as desired.

5. Algorithmic consequences. Define the parameter corresponding to an op-
timization problem to be the function mapping graphs to the solution value of the
optimization problem. In particular, deciding a parameter corresponds to computing
whether the solution value is at most a specified value k. A parameter is contraction-
bidimensional if (1) its value does not increase when taking contractions and (2) its
value on an (r,O(1))-gridoid is Ω(r2).4

Theorem 5.1. Consider a contraction-bidimensional parameter P such that,
given a tree decomposition of width at most w for a graph G, the parameter can be
decided in h(w) · nO(1) time. Then we can decide parameter P on a bounded-genus

graph G in h(O(
√
k)) · nO(1) + 2O(

√
k)n3+ε time.

Proof. The algorithm proceeds as follows. First we approximately compute the
treewidth and a corresponding tree decomposition of the graph G. Specifically, given
a number ω, Amir’s algorithm [Ami01] either reports that the treewidth of G is
at least ω or produces a tree decomposition of width at most (3 + 2

3)ω in time

O(23.698ωn3ω3 log4 n). We use this algorithm to check whether tw(G) = O(
√
k) for a

sufficiently large constant in the O notation (similar algorithmic results on treewidth
that also work for our purposes can be found in [Lag96, Ree92, RS95]). If not, The-
orem 4.8 tells us that the graph G has an (O(

√
k), O(1))-gridoid as a contraction.

Property 2 of contraction bidimensionality tells us then that the parameter value is
Ω(k). By choosing the constant in the O notation (in tw(G) = O(

√
k)) large enough,

we can make the constant in the Ω notation greater than 1. Then we conclude that the
parameter value is strictly greater than k (assuming k is at least some constant), so we
can answer the decision problem negatively. On the other hand, if tw(G) = O(

√
k),

we apply the h(tw(G))·nO(1) algorithm to the tree decomposition produced by Amir’s

algorithm. The overall running time is h(O(
√
k)) · nO(1) + 2O(

√
k)n3+ε.

Corollary 5.2. Vertex cover, minimum maximal matching, dominating set,
edge dominating set, r-dominating set (for fixed r), and clique-transversal set can

be solved on bounded-genus graphs in 2O(
√
k)n3+ε time, where k is the size of the

optimal solution. Feedback vertex set and connected dominating set can be solved on

bounded-genus graphs in 2O(
√
k log k)n3+ε time.

Acknowledgments. Thanks go to Fedor Fomin for early collaboration on this
project, and to the anonymous referees for their helpful feedback on the paper.

REFERENCES

[ABF+02] J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier, Fixed
parameter algorithms for dominating set and related problems on planar graphs,
Algorithmica, 33 (2002), pp. 461–493.

[AFF+01] J. Alber, H. Fan, M. R. Fellows, H. Fernau, R. Niedermeier, F. A. Rosamond,

and Ulrike Stege, Refined search tree technique for Dominating Set on planar
graphs, in Proceedings of the 26th International Symposium on Mathematical
Foundations of Computer Science (MFCS 2001), Lecture Notes in Comput. Sci.
2136, Springer-Verlag, Berlin, 2001, pp. 111–122.

4The requirement of Ω(r2) can be weakened to allow any function g(r), as in [DFHT04b,

DFHT04a]; the only consequence is that
√
k gets replaced by g−1(r).

370 E. D. DEMAINE, M. HAJIAGHAYI, AND D. M. THILIKOS

[AFN04] J. Alber, H. Fernau, and R. Niedermeier, Parameterized complexity: Exponential
speed-up for planar graph problems, J. Algorithms, 52 (2004), pp. 26–56.

[Ami01] E. Amir, Efficient approximation for triangulation of minimum treewidth, in Proceed-
ings of the 17th Conference on Uncertainty in Artificial Intelligence (UAI-2001),
Morgan Kaufmann, San Francisco, 2001, pp. 7–15.

[CKL01] M.-S. Chang, T. Kloks, and C.-M. Lee, Maximum clique transversals, in Proceed-
ings of the 27th International Workshop on Graph-Theoretic Concepts in Com-
puter Science (WG 2001), Lecture Notes in Comput. Sci. 2204, Springer-Verlag,
Berlin, 2001, pp. 32–43.

[DF99] R. G. Downey and M. R. Fellows, Parameterized Complexity, Springer-Verlag,
New York, 1999.

[DFHT04a] E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos, Bidimensional
parameters and local treewidth, SIAM J. Discrete Math., 18 (2004), pp. 501–511.

[DFHT04b] E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos, Subexpo-
nential parameterized algorithms on graphs of bounded-genus and H-minor-free
graphs, in Proceedings of the 15th ACM-SIAM Symposium on Discrete Algo-
rithms (SODA 2004), New Orleans, 2004, pp. 823–832.

[DFHT05] E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos, Fixed-parameter
algorithms for the (k, r)-center in planar graphs and map graphs, ACM Trans.
Algorithms, 1 (2005), pp. 33–47.

[DH04a] E. D. Demaine and M. Hajiaghayi, Diameter and treewidth in minor-closed graph
families, revisited, Algorithmica, 40 (2004), pp. 211–215.

[DH04b] E. D. Demaine and M. Hajiaghayi, Equivalence of local treewidth and linear local
treewidth and its algorithmic applications, in Proceedings of the 15th ACM-SIAM
Symposium on Discrete Algorithms (SODA 2004), New Orleans, 2004, pp. 833–
842.

[DH04c] E. D. Demaine and M. Hajiaghayi, Fast algorithms for hard graph problems: Bidi-
mensionality, minors, and local treewidth, in Proceedings of the 12th Interna-
tional Symposium on Graph Drawing (Harlem, NY, 2004), Lecture Notes in
Comput. Sci. 3383, Springer-Verlag, Berlin, 2004, pp. 517–533.

[DH05a] E. D. Demaine and M. Hajiaghayi, Bidimensionality: New connections between
FPT algorithms and PTASs, in Proceedings of the 16th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2005), Vancouver, 2005, pp. 590–601.

[DH05b] E. D. Demaine and M. Hajiaghayi, Graphs excluding a fixed minor have grids as
large as treewidth, with combinatorial and algorithmic applications through bidi-
mensionality, in Proceedings of the 16th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA 2005), Vancouver, 2005, pp. 682–689.

[DHN+04] E. D. Demaine, M. Hajiaghayi, N. Nishimura, P. Ragde, and D. M. Thilikos,
Approximation algorithms for classes of graphs excluding single-crossing graphs
as minors, J. Comput. System Sci., 69 (2004), pp. 166–195.

[DHT05] E. D. Demaine, M. Hajiaghayi, and D. M. Thilikos, Exponential speedup of fixed-
parameter algorithms for classes of graphs excluding single-crossing graphs as
minors, Algorithmica, 41 (2005), pp. 245–267.

[FT03] F. V. Fomin and D. M. Thilikos, Dominating sets in planar graphs: Branch-width
and exponential speed-up, in Proceedings of the 14th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA 2003), Baltimore, 2003, pp. 168–177.

[GKLY05] G. Gutin, T. Kloks, C. M. Lee, and A. Yeo, Kernels in planar digraphs, J. Comput.
System Sci., 71 (2005), pp. 174–184.

[KLL02] T. Kloks, C. M. Lee, and J. Liu, New algorithms for k-face cover, k-feedback vertex
set, and k-disjoint set on plane and planar graphs, in Proceedings of the 28th
International Workshop on Graph-Theoretic Concepts in Computer Science (WG
2002), Lecture Notes in Comput. Sci. 2573, Springer-Verlag, Berlin, 2002, pp. 282–
295.

[KP02] I. Kanj and L. Perković, Improved parameterized algorithms for planar dominat-
ing set, in Proceedings of the 27th International Symposium on Mathematical
Foundations of Computer Science, Lecture Notes in Comput. Sci. 2420, Springer-
Verlag, 2002, pp. 399–410.

[Lag96] J. Lagergren, Efficient parallel algorithms for graphs of bounded tree-width, J. Al-
gorithms, 20 (1996), pp. 20–44.

[Lov03] L. Lovász, Private communication, 2003.
[MT01] B. Mohar and C. Thomassen, Graphs on Surfaces, Johns Hopkins Stud. Math. Sci.,

The Johns Hopkins University Press, Baltimore, MD, 2001.

THE BIDIMENSIONAL THEORY OF BOUNDED-GENUS GRAPHS 371

[Ree92] B. A. Reed, Finding approximate separators and computing tree width quickly, in Pro-
ceedings of the 24th Annual ACM Symposium on Theory of Computing (STOC
1992), ACM, New York, 1992, pp. 221–228.

[RS85] N. Robertson and P. D. Seymour, Graph minors—a survey, in Surveys in Com-
binatorics, I. Anderson, ed., Cambridge University Press, Cambridge, UK, 1985,
pp. 153–171.

[RS86] N. Robertson and P. D. Seymour, Graph minors. II. Algorithmic aspects of tree-
width, J. Algorithms, 7 (1986), pp. 309–322.

[RS88] N. Robertson and P. D. Seymour, Graph minors. VII. Disjoint paths on a surface,
J. Combin. Theory Ser. B, 45 (1988), pp. 212–254.

[RS91] N. Robertson and P. D. Seymour, Graph minors. X. Obstructions to tree-
decomposition, J. Combin. Theory Ser. B, 52 (1991), pp. 153–190.

[RS95] N. Robertson and P. D. Seymour, Graph minors. XIII. The disjoint paths problem,
J. Combin. Theory Ser. B, 63 (1995), pp. 65–110.

[RS03] N. Robertson and P. D. Seymour, Graph minors. XVI. Excluding a non-planar
graph, J. Combin. Theory Ser. B, 89 (2003), pp. 43–76.

[RST94] N. Robertson, P. D. Seymour, and R. Thomas, Quickly excluding a planar graph,
J. Combin. Theory Ser. B, 62 (1994), pp. 323–348.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 2, pp. 372–394

CLASSIFICATION OF BIPARTITE BOOLEAN CONSTRAINT
SATISFACTION THROUGH DELTA-MATROID INTERSECTION∗

TOMÁS FEDER† AND DANIEL FORD‡

Abstract. Matroid intersection has a known polynomial time algorithm using an oracle. We
generalize this result to delta-matroids that do not have equality as a restriction and give a polynomial
time algorithm for delta-matroid intersection on delta-matroids without equality using an oracle.
We note that when equality is present, delta-matroid intersection is as general as delta-matroid
parity. We also obtain algorithms using an oracle for delta-matroid parity on delta-matroids without
inequality, and for delta-matroid intersection where one delta-matroid does not contain either equality
or inequality, and the second delta-matroid is arbitrary. Both these results also generalize matroid
intersection. The results imply a dichotomy for bipartite Boolean constraint satisfaction problems
using an oracle when one of the two sides does not contain equality, leaving open cases of delta-
matroid parity when both sides have equality; the results also imply a full dichotomy for k-partite
Boolean constraint satisfaction problems for k ≥ 3. We then discuss polynomial cases of Boolean
constraint satisfaction problems with two occurrences per variable through delta-matroid parity that
cannot be obtained using the oracle approach.

Key words. Boolean constraint satisfaction, delta matroids, blossoms

AMS subject classifications. 68Q17, 68T20, 03C13

DOI. 10.1137/S0895480104445009

1. Introduction. An instance of the Boolean constraint satisfaction problem
consists of a collection of variables ranging over the Boolean domain and a collection
of constraints on them. The aim is to assign value 0 or 1 to each variable so as
to satisfy all the constraints. The Boolean constraint satisfaction problem is NP-
complete. Schaefer [11] considered the restriction of Boolean constraint satisfaction
problems to the case where the constraints used must each belong to a given collection
of allowed constraint types. Schaefer then classified the Boolean constraint satisfaction
problems as polynomial time solvable or NP-complete, depending on the choice of the
collection of allowed constraint types. In the case where restricting a variable to take
value 0 or to take value 1 is an allowed constraint, the Schaefer polynomial cases
are conjunctions (1) of Horn clauses, (2) of dual-Horn clauses, (3) of 2-satisfiability
clauses, and (4) of linear equations modulo 2.

The constraint satisfaction problem with a collection of allowed constraint types
can be further restricted so that each variable is allowed to participate in only two
constraints. While the polynomial cases of Schaefer’s classification remain polyno-
mial under this restriction, some of the NP-complete cases may become polynomial
time solvable. Feder [5] showed that the NP-complete cases of Schaefer’s classifi-
cation remain NP-complete unless each allowed constraint type is a delta-matroid.
In that case, the problem with two occurrences for each variable is the well-known
delta-matroid parity problem [1], which generalizes matroid parity [10]. Only certain
families of matroid and delta-matroid parity problems are known to be polynomial
time solvable. The best known such problem is graph matching.

∗Received by the editors July 2, 2004; accepted for publication (in revised form) September 14,
2005; published electronically May 3, 2006.

http://www.siam.org/journals/sidma/20-2/44500.html
†268 Waverley Street, Palo Alto, CA 94301 (tomas@theory.stanford.edu).
‡900 South East Baker Street, McMinnville, OR 97128 (dford@linfield.edu).

372

BOOLEAN BIPARTITE CONSTRAINTS AND DELTA MATROIDS 373

A further restriction of Boolean constraint satisfaction problems with two occur-
rences per variable requires the constraints in an instance to be partitioned into two
sets, so that each variable participates in only one constraint from each set. This
restricted problem is known as the bipartite Boolean constraint satisfaction problem.
Again, Feder [5] showed that for the bipartite Boolean constraint satisfaction prob-
lem, the NP-complete cases of Schaefer’s classification remain NP-complete unless
each allowed constraint type is a delta-matroid. In that case, the bipartite constraint
satisfaction problem is delta-matroid intersection, which generalizes matroid intersec-
tion, and in particular bipartite graph matching.

Since matroid intersection is polynomial time solvable by the algorithm of Ed-
monds [4], it is natural to ask whether delta-matroid intersection is polynomial time
solvable. The main difficulty is that if the equality constraint is among the allowed
constraint types, matroid intersection becomes as hard as matroid parity. In fact,
a bipartite Boolean constraint satisfaction problem is more restrictive than the gen-
eral Boolean constraint satisfaction problem with two occurrences per variable only
if the equality constraint is not among the allowed constraints. In this paper, we
thus consider delta-matroid intersection in the case where the delta-matroids do not
contain the equality constraint as a restriction, and we give a polynomial time al-
gorithm for the problem. This completes our first classification result for bipartite
Boolean constraint satisfaction problems, which are assumed not to contain the equal-
ity constraint as an allowed constraint type, as polynomial time solvable or NP-
complete.

In the model adopted, we impose no restriction on the size of constraints de-
scribing the two delta-matroids without equality to be intersected. We thus adopt
the most general model, in which each of the delta-matroids is given by an oracle
that can be queried in polynomial time to obtain a feasible assignment for the delta-
matroid, or to determine whether a given assignment is feasible for the delta-matroid.
We observe also that Schaefer’s polynomial cases remain polynomial with a slightly
more powerful oracle, which allows querying the oracle to determine whether a given
partial assignment can be extended to a full assignment satisfying a given constraint.
Both oracles have the same power in the case of delta-matroids.

In this general oracle model, we also show that delta-matroid parity for delta-
matroids that do not have the inequality constraint as a restriction can also be solved
in polynomial time. We further show that intersecting a delta-matroid that has nei-
ther the equality constraint nor the inequality constraint as a restriction, with an
arbitrary delta-matroid, also has a polynomial time algorithm. As matroid intersec-
tion can be represented as the intersection of two delta-matroids that contain neither
the equality constraint nor the inequality constraint as a restriction, all these results
generalize matroid intersection. In fact all three results follow from a single more
general algorithm for a class of delta-matroid parity problems.

This last result is then used to obtain a more general classification result for
bipartite Boolean constraint satisfaction, in which the allowed constraint types may
be different for both sides of the bipartition, and it is assumed that at least one
side does not contain equality. If both sides contain equality, then both sides can be
assumed to be the same, where the problems not yet classified are delta-matroid parity
problems. We note that the polynomial cases in the classification are polynomial in
the oracle model as well. See Table 1 for the classification. This also implies a
dichotomy for k-partite Boolean constraint satisfaction with k ≥ 3, where we have k
sets of allowed constraint types and each variable is allowed to participate in only one
constraint from each of k sets of constraints of the corresponding types.

374 TOMÁS FEDER AND DANIEL FORD

Table 1.1

Classification of bipartite Boolean constraint satisfaction problems: Cases other than zebra are
also polynomial with oracle.

• bipartite Boolean constraint satisfaction
1. NP-complete cases
2. Schaefer derived cases

(a) Horn
(b) dual-Horn
(c) linear
(d) 2-SAT
(e) one side has only monadic constraints
(f) upward 2-SAT in one side and constraints with 2-SAT downward closure in

other side (and case interchanging upward and downward)
3. one side has 2-SAT upward closure with delta-matroid downward closure and other

side has 2-SAT downward closure with delta-matroid upward closure, each side is
intersection of upward and downward closure, and a flat of the delta-matroid can
intersect a 2-SAT clause in exactly one element only if the flat or the 2-SAT clause
has only one element.

4. delta-matroid derived cases
(a) delta-matroid intersection without equality
(b) delta-matroid intersection having one side without equality or inequality
(c) upward delta-matroid in one side and constraints with delta-matroid downward

closure in other side (and case interchanging upward and downward)
(d) delta-matroid parity with equality

i. local even or odd delta-matroid
ii. A-local-zebra delta-matroid
iii. linear-zebra delta-matroid
iv. delta-matroid without inequality
v. open cases

• k-partite Boolean constraint satisfaction for k ≥ 3
1. NP-complete cases
2. polynomial cases using an oracle

The study is thus conducted in the full generality of the oracle model. On the
other hand, the general case with two occurrences per variable cannot be solved in
the general oracle model. In particular, matroid parity has an exponential lower
bound due to Lovász [9] in the oracle model. We thus seek to study cases of delta-
matroid parity where each of the constraints used is described explicitly. In this model,
Feder [5] showed that coindependent delta-matroids have a polynomial time algorithm
for delta-matroid parity. We show here that coindependent delta-matroid parity has
an exponential lower bound when the coindependent delta-matroid is described by an
oracle. We also introduce zebra delta-matroids, as a common generalization of coinde-
pendent delta-matroids and the delta-matroids from the general factor problem that
was solved by Cornuejols [2]. We show that zebra delta-matroid parity can be solved
in polynomial time when each of the zebra constraints is described explicitly. We also
show how to recognize certain delta-matroids that can be represented through zebra
delta-matroids, thus obtaining the class of zebra-compact delta-matroids generaliz-
ing the compact delta-matroids of Istrate [8] based on the general factor problem.
Finally, for any class of even delta-matroids that has a polynomial time algorithm
for delta-matroid parity, such as linear matroids with the algorithms of Lovász [9],
Gabow and Stallman [6], linear delta-matroids with the algorithm of Geelen, Iwata,
and Murota [7], or local delta-matroids with the algorithm of Dalmau and Ford [3],
we define an associated class of delta-matroids that are not necessarily even, along
the same line that defined zebra delta-matroids from certain even delta-matroids that
can be obtained via graph matching. We show that these zebra like delta-matroids

BOOLEAN BIPARTITE CONSTRAINTS AND DELTA MATROIDS 375

associated with the given class of even delta-matroids also have a polynomial time
algorithm for delta-matroid parity when the constraints used are described explicitly.

2. Definitions. A delta-matroid is a pair M = (E,F), where E is a set and F
is a set of subsets of E, satisfying the following axiom: for all A,B ∈ F , and for all
x ∈ AΔB, there exists a y ∈ AΔB such that AΔ{x, y} ∈ F . Note that we may have
y = x. The sets A ∈ F are called the feasible sets of the delta-matroid M .

A restriction of a delta-matroid M = (E,F) is a delta-matroid M1 = (E1,F1)
with E1 ⊆ E such that for some E′

1 ⊆ E\E1, we have A ∈ F1 if and only if A∪E′
1 ∈ F .

Given two delta-matroids M1 = (E1,F1) and M2 = (E2,F2) with E1 ∩ E2 = ∅, the
direct sum of M1 and M2 is the delta-matroid M = (E,F) with E = E1 ∪ E2 such
that A ∈ F if and only if A ∩ E1 ∈ F1 and A ∩ E2 ∈ F2.

Let M = (E,F) be a delta-matroid and L a partition of E into pairs. For every
u ∈ E, its mate will be denoted by u, that is, u is the only element in E such that
{u, u} ∈ L.

Let F ∈ F be a feasible set. We will let LF denote the subset of L containing
those pairs {u, u} ∈ L such that either both u and u are in F or neither u nor u is in
F .

An instance of the delta-matroid parity problem consists of a delta-matroid M =
(E,F) and a partition L of E into pairs. The goal is to find a feasible set F ∈ F such
that LF is maximum, that is, at least as large as LG for any other G ∈ F .

The delta-matroid intersection problem is the special case of the delta-matroid
parity problem where M = (E,F) is the direct sum of M1 = (E1,F1) and M2 =
(E2,F2), and every pair in L contains one element in E1 and one element in E2.

We consider two particular delta-matroids, the equal delta-matroid M= = ({a, b},
{∅, {a, b}}) and the not-equal delta-matroid M �= = ({a, b}, {{a}, {b}}). Note that
every delta-matroid parity problem with M,L is equivalent to a delta-matroid in-
tersection problem with M ′,L′, where M1 = M and M2 is the direct sum of M=

delta-matroids, one for each pair in L, where L′ has the corresponding pairs {u, a}
and {u, b}.

Thus delta-matroid intersection is a strict special case of delta-matroid parity
only for delta-matroids M that do not have M= as a restriction. In an instance of
delta-matroid parity or intersection, we are given an oracle for M = (E,F) that can
be queried to provide a particular feasible set in F , and tested with some A ⊆ E so
that the oracle responds whether A ∈ F , that is, whether A is feasible.

The following is known [5]. If M = (E,F), L is an instance of delta-matroid
parity, and K is a subset of pairs from L, then we obtain a delta-matroid M ′ = (E′,F ′)
with E′ consisting of the elements of E that are not in pairs in K, and including in
F ′ all sets A ⊆ E′ such that there exists a B ∈ F such that B ∩ E′ = A and B is
a feasible set for the delta-matroid M satisfying the pairings in K, that is, KB = K.
We say that M ′ is the delta-matroid obtained from M , L by contracting K. We can
then let L′ = L \ K.

We give a polynomial time algorithm for any instance of delta-matroid parity on
a delta-matroid M with pairing L such that no subset K ⊂ L and pair {a, b} ∈ L \K
are such that the delta-matroid M ′ obtained from M by contracting K has the not-
equal delta-matroid M �= on {a, b} as a restriction. The bipartite Boolean constraint
satisfaction classification will follow from this result.

3. Small delta-matroids. In this section we establish simple properties of
delta-matroids with three or four elements.

376 TOMÁS FEDER AND DANIEL FORD

Lemma 3.1. Let M = ({a, b, c},F) be a delta-matroid with a feasible set F
such that FΔ{a, b, c} is also feasible. Then one of FΔ{a}, FΔ{c}, FΔ{a, c} is also
feasible.

Proof. Let A = FΔ{a, b, c}, B = F , and x = b in the definition of delta-
matroid.

Lemma 3.2. Let M = ({a, b, c},F) be a delta-matroid having feasible sets FΔ{c}
and FΔ{a, b}. Then one of of FΔ{a}, FΔ{a, c}, FΔ{a, b, c} is also feasible.

Proof. Let A = FΔ{c}, B = FΔ{a, b}, and x = a in the definition of delta-
matroid.

Lemma 3.3. Let M = ({a, b, c, d},F) be a delta-matroid with a feasible set F such
that FΔ{a, b} and FΔ{a, b, c, d} are also feasible. Then one of FΔ{a}, FΔ{a, c},
FΔ{a, d}, FΔ{c, d} is also feasible.

Proof. Consider C = FΔ{a, c, d}. If C is feasible, let A = FΔ{a, b}, B = C, and
x = b in the definition of delta-matroid. If C is not feasible, take A = FΔ{a, b, c, d},
B = F , and x = b in the definition of delta-matroid.

Lemma 3.4. Let M = ({a, b, c, d},F) be a delta-matroid with a feasible set F
such that FΔ{a, b} and FΔ{c, d} are also feasible. Then one of FΔ{a}, FΔ{a, c},
FΔ{a, d}, FΔ{a, b, c, d} is also feasible.

Proof. Consider C = FΔ{a, c, d}. If C is feasible, let A = FΔ{a, b}, B = C,
and x = b in the definition of delta-matroid. If C is not feasible, take A = FΔ{c, d},
B = FΔ{a, b}, and x = a in the definition of delta-matroid.

4. Structure and algorithm for augmenting paths and blossoms. Let
M = (E,F), L be an instance of the delta-matroid parity problem. A path in
M is an ordered collection u1, . . . , un of different elements in E. Let L ⊆ L be
any collection of pairs of L. A path u1, . . . , un is called L-alternating if (1) for ev-
ery 1 ≤ 2j < n, {u2j , u2j+1} ∈ L, (2) {u1, u1} /∈ L, and (3) if n is even, then
{u1, un}, {un, un} /∈ L, un
= u1. Let F ∈ F be a feasible set. We say that a path
u1, . . . , un is an F -augmenting path (or simply an augmenting path when F is implicit)
if (1) FΔ{u1, . . . , u2j} ∈ F for all 1 < 2j ≤ n and (2) FΔ{u1, . . . , un} ∈ F .

The basic intuition behind this definition is that if F is a feasible set such that
|LF | is not maximum, then there exists some F -augmenting LF -alternating path. This
path can be used to obtain a new feasible set G = FΔ{u1, . . . , un} which increases
the objective function that we intend to maximize, |LG| > |LF |. In fact if |LF | is
not maximum, then there exists an F -augmenting LF -alternating path that can be
computed in time polynomial in |E| given a G ∈ F with |LG| > |LF |; see, e.g., [3].

Given a feasible F ∈ F , an edge is a pair {u, v} of distinct elements in E such that
FΔ{u, v} ∈ F , and a special element is a single element u in E such that FΔ{u} ∈ F .

Theorem 4.1. Suppose M has an F -augmenting LF -alternating path. Let
u1, . . . , us be a shortest such path. Then either (1) there exists an LF -alternating
path v1, . . . , vn with v1 = u1, vn = us, such that for 2 ≤ 2i ≤ n, {v2i−1, v2i} is an
edge, and vn is a special element if n is odd, with each vi among the uj, or (2) there
exists an LF -alternating path w1, . . . , wk with w1 = u1 and k odd, and a 2 ≤ 2r < k
such that for every 2 ≤ 2j < k, {w2j−1, w2j} is an edge, and {wk, w2r−1} is also an
edge, with each wi among the uj.

The alternating path in case (2) is called a blossom.
Proof. Let u1, . . . , un be a shortest augmenting path. We show that either (1)

for each 2 ≤ 2j ≤ n there is an edge {u2i−1, u2j} for some 2 ≤ 2i ≤ 2j, and if n
is odd, then un is a special element, or (2) for some 2 ≤ 2k < n there is an edge
{u2l+1, u2k+1} for some 0 ≤ 2l < 2k, and for each 2 ≤ 2j ≤ 2k there is an edge

BOOLEAN BIPARTITE CONSTRAINTS AND DELTA MATROIDS 377

{u2i−1, u2j} for some 2 ≤ 2i ≤ 2j. In case (1), tracing back the edges from u2j for
j = n or j = n − 1 to u2i−1, to the mate u2i−2, then the edge joining u2i−2 to some
u2i′−1 with 2i′ < 2i, then to the mate u2i′−1, and so on until u1 = u is reached, gives
an alternating path from u1 to un that alternates going to a mate and traversing an
edge. In case (2), we get such a path from u1 to u2k to the mate u2k+1 with an edge
to u2l+1, with a similar alternating path from u2l+1 back to u1, which at the point it
meets the path from u1 to u2k completes the blossom.

For each 2j ≤ n and each 0 ≤ 2s < 2j, we show that either there is a 2s < 2i ≤ 2j
such that FΔ{u1, . . . , u2s, u2i−1, u2j} is feasible, or there is a 2s < 2i < 2j such that
FΔ{u1, . . . , u2s, u2i−1, u2j−1} is feasible, unless there is a blossom among elements
u1, . . . , u2s, u2i−1. The proof is by induction with decreasing s. When we reach s = 0,
we have either the edge {u2i−1, u2j} or the edge {u2i−1, u2j−1} as required.

The base case 2s = 2j − 2 is verified since FΔ{u1, . . . , u2j−2, u2j−1, u2j} is fea-
sible by the definition of an augmenting path. Suppose the claim holds for 2s + 2,
and FΔ{u1, . . . , u2s, u2s+1, u2s+2, u2i−1, ut} is feasible, where t = 2j or t = 2j − 1.
Let G = FΔ{u1, . . . , u2s}, and apply Lemma 3.3 with a = u2s+1, b = u2s+2,
c = u2i−1, d = ut. We have that G, GΔ{a, b}, and GΔ{a, b, c, d} are feasible.
If GΔ{a} is feasible, we have a shorter augmenting path obtained from GΔ{a} =
FΔ{u1, . . . , u2s, u2s+1}, contrary to assumption. If GΔ{a, c} is feasible, we have
GΔ{a, c} = FΔ{u1, . . . , u2s, u2s+1, u2i−1} feasible, which inductively will give an edge
{u2l+1, u2k+1} as above with 2k+1 = 2i−1 ant 2l+1 ≤ 2s+1, and thus a blossom. If
GΔ{a, d} is feasible, we have GΔ{a, d} = FΔ{u1, . . . , u2s, u2s+1, ut} feasible, which
inductively will give an edge {u2j−1, ut} as above with 2j − 1 ≤ 2s + 1. If GΔ{c, d}
is feasible, we have GΔ{c, d} = FΔ{u1, . . . , u2s, u2i−1, ut} feasible, which inductively
will give an edge {u2r−1, ut} as above with 2r − 1 ≤ 2i− 1.

It remains to show that un is a special element if n is odd. We show for each
0 ≤ 2s < n that FΔ{u1, . . . , u2s, un} is feasible inductively with s decreasing, unless
there is a blossom. When we reach s = 0 we have un as a special element. The base
case 2s = n−1 is verified since FΔ{u1, . . . , un} is feasible. Suppose the claim holds for
2s+2, and FΔ{u1, . . . , u2s, u2s+1, u2s+2, un} is feasible. Let G = FΔ{u1, . . . , u2s} and
apply Lemma 3.1 with a = u2s, b = u2s+1, c = un. We have that G and GΔ{a, b, c}
are feasible. If GΔ{a} is feasible, we have a shorter augmenting path obtained from
GΔ{a} = FΔ{u1, . . . , u2s, u2s+1}, contrary to assumption. If GΔ{c} is feasible, we
have GΔ{c} = FΔ{u1, . . . , u2s, un} feasible, proceeding with the induction for un. If
GΔ{a, c} is feasible, we have GΔ{a, c} = FΔ{u1, . . . , u2s, u2s+1, un} feasible, which
inductively will give an edge {u2l+1, u2k+1} as above with 2k+1 = n and 2l+1 ≤ 2s+1
and thus a blossom.

We describe next an algorithm for finding an augmenting path or a blossom. Let
u be such that {u, u} /∈ LF . Start a breadth first search at u that assigns levels to
elements of E as follows. The element u is at level 1. If u2j−1 is at level 2j − 1, then
put at level 2j all elements u2j not at levels up to 2j − 1 such that {u2j−1, u2j} is an
edge. If u2j is at level 2j, then put its mate u2j+1 = u2j at level 2j + 1 if it is not at
a level up to 2j and {u2j , u2j+1} ∈ LF . The mate u of u = u1 is omitted from the
depth first search.

The algorithm terminates in one of four situations: (1) two distinct elements
u2j , v2j are mates, in which case a blossom has been found; (2) two distinct elements
u2j+1, v2j+1 have an edge {u2j+1, v2j+1}, in which case a blossom has also been found;
(3) an element u2j at level 2j is such that {u2j , u2j} /∈ LF , in which case an augment-
ing path has been found; (4) an element u2j+1 at level 2j + 1 is a special element, in
which case an augmenting path has been found.

378 TOMÁS FEDER AND DANIEL FORD

Theorem 4.2. The claims about having found an augmenting path or a blossom
by the breadth first search in the four cases are correct.

Proof. In case (1) the two paths from u1 to u2j and v2j plus the mates u2j and
v2j complete a blossom. In case (2) the two paths from u1 to u2j+1 and v2j+1 plus
the edge {u2j+1, v2j+1} complete a blossom.

In case (3) we have a path u1, . . . , u2j . We claim that it is an augmenting path,
inductively on j. Let K be the subset of L consisting of the pairs {u2i, u2i+1} for
each 2 ≤ 2i ≤ 2j − 4, and obtain M ′, L′ by contracting K. Let F ′ be the feasi-
ble set in M ′ corresponding to F in M . We apply Lemma 3.4 to F ′ with a = u1,
b = u2j−2, c = u2j−1, d = u2j . We have that F ′Δ{a, b} is feasible for M ′ since
F1 = FΔ{u1, u2, . . . , u2j−3, u2j−2} is feasible inductively for M and KF1 = K, by
removing {u2j−2, u2j−1} from L and adding new mates for u2j−2, u2j−1, so that
u1, . . . , u2j−2 will be an augmenting path by induction. Also F ′Δ{c, d} is feasible
for M ′ since F2 = FΔ{u2j−1, u2j} is feasible for M by the definition of an edge, and
KF2 = K. If F ′Δ{a} is feasible for M ′, then FΔS1 is feasible for M with u1 ∈ S1

and S1 ⊆ {u1, u2, . . . , u2j−3}, and KFΔS1 = K, so there must be an augmenting
path contained in S1. This subset, however, does not have all the edges and special
vertices needed to satisfy the conditions in Theorem 4.1 when there exists an aug-
menting path, as otherwise they would have been found in the breadth first search.
If F ′Δ{a, c} is feasible for M ′, then FΔS2 is feasible for M with u1, u2j−1 ∈ S2 and
S2 ⊆ {u1, u2, . . . , u2j−3, u2j−1}, and KFΔS2

= K. In this case u2j−1 would have been
reached earlier in the breadth first search. Similarly, if F ′Δ{a, d} is feasible for M ′,
then FΔS3 is feasible for M with u1, u2j ∈ S3 and S3 ⊆ {u1, u2, . . . , u2j−3, u2j}, and
KFΔS3 = K, so u2j would have been reached earlier in the breadth first search.
Therefore F ′Δ{a, b, c, d} is feasible for M ′, and so FΔS4 is feasible for M with
u1, u2j−2, u2j−1, u2j ∈ S4 and S4 ⊆ {u1, . . . , u2j}, and KFΔS4

= K. Furthermore,
S4 must be equal to this subset, otherwise u2j would have been reached earlier in the
breadth first search. This proves we have obtained an augmenting path that replaces
F with FΔ{u1, . . . , u2j}.

The proof in case (4) is analogous. We have a path u1, . . . , u2j+1. We show again
that it has the elements of some augmenting path. Let K be the subset of L consisting
of the pairs {u2i, u2i+1} for each 2 ≤ 2i ≤ 2j − 2, and obtain M ′, L′ by contracting
K. Let F ′ be the feasible set in M ′ corresponding to F in M . We apply Lemma 3.2
to F ′ with a = u1, b = u2j , c = u2j+1. We have that F ′Δ{c} is feasible for M ′ since
F3 = FΔ{u2j+1} is feasible for M because u2j+1 is a special element and KF3 = K.
Also F ′Δ{a, b} is feasible for M ′ since F4 = FΔ{u1, u2, . . . , u2j−1, u2j} is feasible by
the preceding case of an even length path. If F ′Δ{a} is feasible for M ′, then FΔS5

is feasible for M with u1 ∈ S5 and S5 ⊆ {u1, . . . , u2j−1}, and KFΔS5 = K, so there
must be an augmenting path contained in S5, which does not have the edges in special
vertices to satisfy the conditions in Theorem 4.1. If F ′Δ{a, c} is feasible for M ′, then
FΔS6 is feasible for M with u1, u2j+1 ∈ S6 and S6 ⊆ {u1, . . . , u2j−1, u2j+1}, and
KFΔS6 = K, which is not possible since u2j+1 would then have been reached earlier
by the breadth first search. Therefore F ′Δ{a, b, c} is feasible for M ′, and so FΔS7

is feasible for M with u1, u2j , u2j+1 ∈ S7 and S7 ⊆ {u1, . . . , u2j+1}, and KFΔS7
= K.

Furthermore, S7 must be equal to this subset, otherwise u2j would have been reached
earlier in the breadth first search. This proves we have obtained an augmenting path
that replaces F with FΔ{u1, . . . , u2j+1}.

5. Delta-matroid intersection without equality. So far the argument has
been carried in the full generality of arbitrary delta-matroids and the general par-

BOOLEAN BIPARTITE CONSTRAINTS AND DELTA MATROIDS 379

ity problem. The arguments usually become more difficult with the introduction of
blossoms, which can contain other blossoms, and this can lead to requiring the delta-
matroid to have a presentation that is not only by means of an oracle, or some other
special structure, such as in the case of linear or local delta-matroids [7, 3]. In spe-
cial cases with restrictions involving the equal delta-matroid M= and the not-equal
delta-matroid M �=, blossoms can be more easily handled. This leads to our main
result.

Suppose the algorithm of Theorem 4.2 found a blossom as in Theorem 4.1. Re-
strict the breadth search for an augmenting path to the elements w1, . . . , w2r, . . . , wk

of the blossom. When we restrict the breadth first search further by excluding some
w2i, w2i+1 we may find a smaller blossom or an augmenting path as in Theorem 4.2.
We may thus assume this does not happen for the blossom under consideration.

Theorem 5.1. There is a polynomial time algorithm using an oracle for any
instance of delta-matroid parity on a delta-matroid M with pairing L such that no
subset K ⊂ L and pair {a, b} ∈ L\K are such that the delta-matroid M ′ obtained from
M by contracting K has the not-equal delta-matroid M �= on {a, b} as a restriction.

Proof. Let w1, . . . , w2r, . . . , wk be the blossom obtained above. Let K be the
pairs {w2i, w2i+1} for 2 ≤ 2i ≤ k − 2. Contracting K in M , we obtain M ′ with
corresponding feasible set F ′. Let a = w1, b = wk, c = wk−1. The set F ′Δ{a, b} is
feasible by the augmenting path w1, . . . , w2r−1, wk obtained after removing the pair
{wk−1, wk} from L and adding new mates for wk−1, wk, using Theorem 4.2. The
set F ′Δ{a, c} is feasible by the augmenting path w1, . . . , wk−1 obtained also after
removing the pair {wk−1, wk} from L and adding new mates for wk−1, wk, using
Theorem 4.2. Setting G′ = F ′Δ{a}, we have that G′Δ{b} and G′Δ{c} are feasible,
giving M �= on {b, c} as a restriction unless G′ or G′Δ{b, c} is feasible.

If G′ or G′Δ{b, c} is feasible, then there is an augmenting path involving a subset
of w1, . . . , wk, and this augmenting path cannot miss any {w2i, w2i+1} by the choice
of the blossom, so the elements w1, . . . , wk form an augmenting path in some order.
The remaining case has M �= on {b, c} simulated by G′Δ{b} and G′Δ{c}, contrary to
assumption.

We infer three results as special cases.
Lemma 5.2. Let M = ({a, b, c, d},F) be a delta-matroid that contracts to M ′ on

{c, d} using K = {{a, b}}. If M ′ is either the M= or the M �= delta-matroid, but M
does not have M ′ on {c, d} as a restriction, then |FΔG| is even for all F,G ∈ F .

Proof. We have M ′ = ({c, d}, {F, FΔ{c, d}}). By assumption on M , we have a
feasible F such that FΔ{a, b, c, d} is feasible, but FΔ{a, b}, FΔ{c, d} are not feasible,
and furthermore FΔ{c}, FΔ{d}, FΔ{a, b, c}, FΔ{a, b, d} are not feasible. This guar-
antees that M ′ is not a restriction of M and that contracting K = {{a, b}} gives M ′.

If FΔ{a} is feasible, then taking A = FΔ{a}, B = FΔ{a, b, c, d}, and x = b
in the definition of delta-matroid yields a contradiction. If FΔ{b} is feasible, then
taking A = FΔ{b}, B = FΔ{a, b, c, d}, and x = a in the definition of delta-matroid
yields a contradiction. If FΔ{a, c, d} is feasible, then taking A = FΔ{a, c, d}, B = F ,
and x = a in the definition of delta-matroid yields a contradiction. If FΔ{b, c, d}
is feasible, then taking A = FΔ{b, c, d}, B = F , and x = b in the definition of
delta-matroid yields a contradiction. Thus |FΔG| is even for all feasible G.

We shall make use of Wenzel’s strong exchange axiom for even delta-matroids [12]
M = (E,F), which states that for all A,B ∈ F and x ∈ AΔB, there exists y ∈ AΔB
such that AΔ{x, y} ∈ F and BΔ{x, y}.

The first special case is as follows.

380 TOMÁS FEDER AND DANIEL FORD

Theorem 5.3. There is a polynomial time algorithm using an oracle for delta-
matroid parity on delta-matroids M that do not have the not-equal delta-matroid M �=
as a restriction.

Proof. It suffices that if M ′ is obtained from M by contracting K, then M ′ does
not have M �= as a restriction either, so that the algorithm of Theorem 5.1 applies.
Suppose M �= on {c, d} is obtained as a restriction after contracting K = {{a, b}}, but
not before. We may restrict M to {a, b, c, d} and apply Lemma 5.2. We thus have a
feasible F = {c} such that |FΔG| is even for all feasible G and with FΔ{a, b, c, d}
also feasible. By Wenzel’s strong exchange axiom there are two other complementary
feasible sets, say, FΔ{a, c} and FΔ{b, d}. Restricting M to feasible sets that do not
contain either b or d, we obtain two feasible sets {a}, {c} giving M�= as a restriction
on {a, c} before contracting K.

The second special case is as follows.
Theorem 5.4. There is a polynomial time algorithm using an oracle for delta-

matroid parity on a delta-matroid M with pairing L for which there exist two disjoint
sets of elements S, T each containing one element from each pair in L such that if
the not-equal delta-matroid M �= is a restriction of M on {a, b}, then both a and b are
in S, and if the equal delta-matroid M= is a restriction of M on {a, b}, then at least
one of a, b is in S.

Proof. It suffices that if M ′ is obtained from M by contracting K ⊆ L, then
M ′ also satisfies the property in the theorem, so that M ′ does not have M �= as a
restriction on {a, b} with at most one of a, b in S, and thus for {a, b} ∈ L, and the
algorithm of Theorem 5.1 applies. We show this by induction on |K|.

Suppose M= or M �= on {c, d} is obtained as a restriction after contracting K =
{{a, b}} with c and d in T . We may restrict M to {a, b, c, d} and apply Lemma
5.2. We thus have a feasible F such that |FΔG| is even for all feasible G, and with
FΔ{a, b, c, d} also feasible. By Wenzel’s strong exchange axiom there are two other
complementary feasible sets, say, FΔ{a, c} and FΔ{b, d}. If a is in T , then F and
FΔ{a, c} give M= or M �= as a restriction on {a, c} with both a and c in T , which is
not possible by inductive hypothesis. Otherwise b is in T , and then F and FΔ{b, d}
give M= or M �= as a restriction on {b, d} with both b and d in T , which is not possible
by inductive hypothesis.

Suppose M �= on {c, d} is obtained as a restriction after contracting K = {{a, b}},
with c in S and d in T , but not before. We may restrict M to {a, b, c, d} and apply
Lemma 5.2. We thus have a feasible F = {c} or F = {d} such that |FΔG| is even
for all feasible G, and with FΔ{a, b, c, d} also feasible. By Wenzel’s strong exchange
axiom there are two other complementary feasible sets, say, FΔ{a, c} and FΔ{b, d}.
If F = {d}, then the two feasible sets {b}, {d} give a M�= delta-matroid on {b, d}
with d in T , which is not possible by inductive hypothesis. If b is in T and F = {c},
then the two feasible sets F and FΔ{b, d} give an M= delta-matroid on {b, d} with
both b, d in T , which is not possible. Otherwise a is in T and F = {c}, and then the
two feasible sets {a}, {c} give a M �= delta-matroid on {a, c} with a in T , which is not
possible by inductive hypothesis.

Corollary 5.5. There is a polynomial time algorithm using an oracle for delta-
matroid intersection on two delta-matroids M1,M2 where the delta-matroid M1 is
arbitrary, and the delta-matroid M2 does not have either the equal delta-matroid M=

or the not-equal delta-matroid M �= as a restriction.
Proof. Apply Theorem 5.4 with S consisting of the elements in M1 and T con-

sisting of the elements in M2.

BOOLEAN BIPARTITE CONSTRAINTS AND DELTA MATROIDS 381

The third special case is as follows.
Theorem 5.6. There is a polynomial time algorithm using an oracle for delta-

matroid parity on a delta-matroid M with pairing L for which there exist two disjoint
sets of elements S, T each containing one element from each pair in L such that if the
not-equal delta-matroid M �= is a restriction of M on {a, b}, then either both a and b
are in S or both a and b are in T , and if the equal delta-matroid M= is a restriction
of M on {a, b}, then one of a, b is in S and the other one is in T .

Proof. It suffices that if M ′ is obtained from M by contracting K ⊆ L, then M ′

also satisfies the property in the theorem, so that M ′ does not have M �= as a restriction
on {a, b} with one of a, b in S and the other one in T , and thus for {a, b} ∈ L, and
the algorithm of Theorem 5.1 applies. We show this by induction on |K|.

Suppose M �= on {c, d} is obtained as a restriction after contracting K = {{a, b}},
with c in S and d in T , but not before. We may restrict M to {a, b, c, d} and apply
Lemma 5.2. We thus have a feasible F = {c} such that |FΔG| is even for all feasible
G, and with FΔ{a, b, c, d} also feasible. By Wenzel’s strong exchange axiom there are
two other complementary feasible sets, say, FΔ{a, c} and FΔ{b, d}. If a is in T , then
restricting M to feasible sets that do not contain either b or d, we obtain two feasible
sets {a}, {c} giving M�= as a restriction on {a, c} before contracting K, which is not
possible by inductive hypothesis. Otherwise b is in T , and restricting M to feasible
sets that contain a and do not contain c, we obtain two feasible {a} and {a, b, d}
giving M= as a restriction on {b, d}, which is not possible by inductive hypothesis.

Suppose M= on {c, d} is obtained as a restriction after contracting K = {{a, b}},
with c, d both in S, but not before. Say a is in S and b is in T . We may restrict M
to {a, b, c, d} and apply Lemma 5.2. We thus have a feasible F = ∅ or F = {a, b}
such that |FΔG| is even for all feasible G, and with FΔ{a, b, c, d} also feasible. By
Wenzel’s strong exchange axiom there are two other complementary feasible sets, say,
FΔ{a, c} and FΔ{b, d}. If F = ∅, then restricting M to feasible sets that do not
contain either b or d, we obtain two feasible sets ∅, {a, c} giving M= as a restriction
on {a, c} with both a and c in S, which is not possible by inductive hypothesis.
Otherwise F = {a, b}, and restricting M to feasible sets that contain a and do not
contain c, we obtain two feasible sets {a, b} and {a, d} giving M �= as a restriction on
{b, d} with b in T and d in S, which is not possible by inductive hypothesis.

Corollary 5.7. There is a polynomial time algorithm using an oracle for delta-
matroid intersection on two delta-matroids M1,M2 that do not have the equal delta-
matroid M= as a restriction. This generalizes matroid intersection, as matroids do
not have the equal delta-matroid M= as a restriction.

Proof. Apply Theorem 5.6 with S consisting of the elements in M1 and T con-
sisting of the elements in M2.

We note also that intersecting two matroids M1 and M2 is equivalent to intersect-
ing M−

1 consisting of the independent sets of M1, and M+
2 consisting of the spanning

sets of M2. Furthermore both M−
1 and M+

2 have neither M= nor M �= as a restriction.
Therefore all the results above generalize matroid intersection.

6. Bipartite Boolean constraint satisfaction. Corollary 5.7 also completes
the classification of bipartite Boolean constraint satisfaction from [5, 11] as mentioned
in the introduction. A constraint C on a set of Boolean variables X is a set of Boolean
assignments x to the variables in X. A restriction of C by an assignment y to Y ⊆ X
is the constraint CX,y on the variables X \Y consisting of all assignments z such that
if x is the assignment to X that agrees with y on Y and agrees with z on X \ Y ,
then x is in CX,y. The bipartite Boolean constraint satisfaction problem on a set C

382 TOMÁS FEDER AND DANIEL FORD

of allowed constraints has an instance consisting of two sets of constraints S and T
on subsets of a set of variables X, where each constraint in S or T corresponds to a
constraint in C under some correspondence of variables, and each variable in X occurs
in at most one constraint in S and at most one constraint in T . The aim is to assign
Boolean values to the variables in X so as to satisfy the constraints in S and the
constraints in T simultaneously. The bipartite case of Boolean constraint satisfaction
differs from the general case with two occurrences per variable only when the equality
constraint {00, 11} is not an allowed constraint in C. Let the inequality constraint
be {10, 01}. A constraint is a delta-matroid if the collection of subsets of a set E
with n elements defining a delta-matroid is viewed as a collection of assignments to n
Boolean variables defining a constraint C, where a 0 or 1 in a bit position corresponds
to presence or absence of an element in the subset.

Theorem 6.1. Every bipartite Boolean constraint satisfaction problem, with a
set of allowed constraints closed under restriction, and where equality is not an al-
lowed constraint, is one of Schaefer’s polynomial cases, or polynomial by delta-matroid
intersection without M= as a restriction, or is NP-complete. The polynomial cases
remain polynomial even when the two sides of the bipartition are given by an oracle
that answers whether a restriction SX,y or TX,y of either side of the bipartition is
nonempty. This oracle result holds in the general case where equality is an allowed
constraint for Schaefer’s polynomial cases and for delta-matroids that do not contain
inequality.

Proof. The classification is obtained by Feder [5], and the remaining open case
of delta-matroid intersection without M= as a restriction is polynomial by Corollary
5.7 using an oracle. When M= is allowed in delta-matroids, forbidding M �= gives
polynomiality by Theorem 5.3 using an oracle. The polynomial cases of Schaefer [11]
are the following: (1) each constraint is a conjunction of 2-satisfiability clauses, (2)
each constraint is a conjunction of Horn clauses, (3) each constraint is a conjunction of
dual-Horn clauses, and (4) each constraint is a conjunction of linear equations modulo
2. An oracle in (1) allows us to obtain all the 2-satisfiability clauses and solve the
problem. An oracle in (2) (resp., (3)) allows us to obtain all the variables forced to
value 1 (resp., value 0) by some clause, and once no variable is forced, the remaining
variables can be assigned value 0 (resp., value 1) if a solution exists.

For (4), we consider a candidate assignment x to the variables X and if this
candidate assignment does not satisfy one of the two oracles, we obtain an assignment
y to a subset of variables Y ⊆ X such that y is a restriction of x and does not satisfy
the oracle, yet every restriction of y to |Y | − 1 variables in Y satisfies the oracle.
This implies that the single linear equation involving precisely the variables in Y not
satisfied by y must be satisfied by all assignments in the oracle. We then repeat the
process for a candidate assignment x to the variables X satisfying this equation, and
this assignment either satisfies both oracles or provides another equation. We proceed
to add equations until a solution is found, or until the equations obtained so far are
not satisfiable. Note that at most n = |X| equations will be obtained, since each
equation reduces by one the number of free variables, so the process terminates in
polynomial time.

We now proceed to the classification of bipartite Boolean constraint satisfaction
problems in the case where the allowed constraint types may not be the same for
both sides of the bipartition. Let A and B be two sets of constraint types. We
say that (A,B) simulates constraint C on A if there exists an instance of bipartite
Boolean constraint satisfaction with constraints from A in one side and constraints
from B in the other side, with every variable constrained exactly once in the A side

BOOLEAN BIPARTITE CONSTRAINTS AND DELTA MATROIDS 383

and constrained at most once in the B side, such that the variables that are not
constrained in the B side are the variables of C, and the set of assignments of values
to variables in C for which there exists a solution to this instance is the same as C.
We say that (A,B) simulates constraint C on B if (B,A) simulates constraint C on B.

Let A,B,A′,B′ be sets of constraint types. We say that (A,B) simulates (A′,B′) if
(A,B) simulates every constraint C ∈ A′ on A and simulates every constraint C ∈ B′

on B. We say that (A,B) is closed under simulation if whenever (A,B) simulates
(A′,B′) we have A′ ⊆ A and B′ ⊆ B.

Theorem 6.2. Let A,B be sets of constraint types such that (A,B) is closed
under simulation and both A,B contain the single variable constraints {0}, {1}, and
{0, 1}. Then the bipartite Boolean constraint satisfaction with constraints from A in
one side and from B in the other has (1) polynomial cases derived from Schaefer’s
classification; (2) polynomial cases derived from delta-matroid intersection in the case
where neither side has equality and in the case where one side has neither equality
nor inequality; (3) a polynomial case that combines 2-satisfiability and delta-matroid
intersection. If a problem is not in cases (1), (2), or (3), then either (4) A is the
same as B and consists of delta-matroids including equality, so the problem is a delta-
matroid parity problem, or (5) the problem is NP-complete. The polynomial cases (1),
(2), (3) remain polynomial in the oracle model as in Theorem 6.1.

We define some specific constraint types on variables x, y, z. Let [x = y] be
{00, 11}. Let [x
= y] be {10, 01}. Let [x ≤ y] be {00, 01, 11}. Let [x∨y] be {10, 01, 11}.
Let [x = y = z] be {000, 111}. Let [1-3 x, y, z] be {100, 010, 001}. Let [x ∨ y ∨ z]
be {100, 010, 001, 110, 101, 011, 111}. Let [x ≤ y, z] be {000, 001, 010, 011, 111}. Let
[x+ y + z = 0] be {000, 110, 101, 011}, and let [x+ y + z = 1] be {100, 010, 001, 111}.
Let [≈ x∨ y ∨ z] be any constraint satisfying [1-3 x, y, z] ⊆ [≈ x∨ y ∨ z] ⊆ [x∨ y ∨ z].
Let [≈ x ≤ y, z] be any constraint satisfying [x = y = z] ⊆ [≈ x ≤ y, z] ⊆ [x ≤ y, z].
For these constraint types, we denote by x the complement of variable x, and by x̃ a
literal that may be either x or x. Feder [5] showed the following.

Lemma 6.3. For a given constraint C, we have that ({C}, {{0}, {1}, {0, 1}})
simulates (1) [x ∨ y] or [x
= y] if C is not Horn; (2) [x ∨ y] or [x
= y] if C is not
dual-Horn; (3) [x ≤ y] or [x∨ y] or [x∨ y] if C is not linear; (4) some [≈ x̃∨ ỹ ∨ z̃] if
C is not 2-SAT; and (5) some [≈ x̃ ≤ ỹ, z̃] if C is not a delta-matroid.

If X = x1x2 · · ·xk and Y = y1y2 · · · yk are k-bit vectors, write X ≤ Y if xi ≤ yi
for all 1 ≤ i ≤ k, write X < Y if X ≤ Y and X
= Y , and let d(X,Y) be the Hamming
distance between X and Y , that is, the number of bits 1 ≤ i ≤ k such that xi
= yi.

Lemma 6.4. For a given constraint C, (1) if ({C}, {{0}, {1}, {0, 1}}) simulates
neither [x = y] nor [x ≤ y], then for every X,Y ∈ C with X ≤ Y we have that every
Z such that X ≤ Z ≤ Y satisfies Z ∈ C; (2) if ({C}, {{0}, {1}, {0, 1}}) simulates
neither [x
= y] nor [x∨y], then there exists X ∈ C such that Z ≤ X for every Z ∈ C;
(3) if ({C}, {{0}, {1}, {0, 1}}) simulates neither [x
= y] nor [x ∨ y], then there exists
X ∈ C such that X ≤ Z for every Z ∈ C.

Proof. For (1), if X ≤ X ′ < Y ′ ≤ Y with X ′, Y ′ ∈ C and d(X ′, Y ′) ≥ 2,
then there exists X ′ < Z ′ < Y ′ such that Z ′ ∈ C. Otherwise we can consider the
restriction C ′ of C to bit vectors T such that ti = bi if x′

i = y′i = bi, and select i, j
such that x′

i < y′i and x′
j < y′j , so that the condition defined by C ′ on bit positions

i, j is [xi = xj]. Thus by induction there exist X = X0 < X1 < · · · < Xk = Y with
d(Xi, Xi+1) = 1 and each Xi ∈ C. Consider the restriction C ′ of C to bit vectors T
such that ti = bi if xi = yi = bi and say Xi has xi

j = 1 for 1 ≤ j ≤ i and xi
j = 0

for i < j ≤ k. Assume inductively that if X ≤ T ≤ Xi, then T ∈ C. Suppose Z is

384 TOMÁS FEDER AND DANIEL FORD

such that X ≤ Z ≤ Xi+1 and Z /∈ C with d(Z,Xi+1) minimum. Then zi+1 = 1, and
choosing 1 ≤ j ≤ i such that zj = 0, we have that the bit vectors T obtained from
Z by changing zj or zi+1 or both are in C, thus giving [xi+1 ≤ xj], completing the
induction and the proof of (1).

For (2), if the condition does not hold, then there exist X,Y ∈ C such that there
is no T ∈ C with X < T or Y < T , and d(X,Y) ≥ 2. Choose X,Y ∈ C such that if
we consider the restriction C ′ of C to bit vectors T with ti = bi if xi = yi = bi, then
there is not T ∈ C ′ with X < T or Y < T , and d(X,Y) ≥ 2 is minimum with this
property. The minimality of d(X,Y) implies that if Z ∈ C ′, then Z ≤ X or Z ≤ Y ;
otherwise some Z ′ ∈ C ′ with Z ′ ≥ Z is such that there is no T ∈ C ′ with Z ′ < T and
Z ′
= X,Y , so that 2 ≤ d(X,Z ′) < d(X,Y), contrary to minimality. Let i, j be bit
positions such that xi = 0, xj = 1, yi = 1, yj = 0. Then there is no Z ∈ C ′ such that
zi = zj = 1, so the condition defined by C ′ on bit positions i and j is either [xi
= xj]
or [xi ∨ xj], proving (2). The proof for (3) is the same as for (2).

A constraint C is upward closed if for every X ∈ C, if X ≤ Z, then Z ∈ C, and
downward closed if for every X ∈ C, if Z ≤ X, then Z ∈ C. The upward closure of
a constraint C is the constraint up(C) consisting of the bit vectors Z such that there
exists X ∈ C with X ≤ Z. The downward closure of a constraint C is the constraint
down(C) consisting of the bit vectors Z such that there exists X ∈ C with Z ≤ X.

Lemma 6.5. Let A,B be as in the statement of Theorem 6.2, and suppose every
constraint in A can be decomposed into an upward closed constraint, and constraints
{0}. Then the Boolean constraint satisfaction problem with constraints from A in one
side and from B in the other is polynomial in cases (1) for every C ∈ B, down(C)
can be decomposed into {0}, {0, 1} constraints, or every C ∈ A can be decomposed
into {0}, {1}, {0, 1} constraints; (2) the constraints in A are delta-matroids, and for
every C ∈ B, down(C) is a delta-matroid; (3) the constraints in A are 2-SAT, and
for every C ∈ B, down(C) is 2-SAT. If we are not in cases (1), (2), (3), then A is
NP-complete.

Proof. We show that the problem reduces to the problem where B is replaced by
down(B) consisting of the constraints down(C) for C ∈ B. Given an instance of the
problem with B, if a constraint C in the B side has a variable x constrained by {0} in
A, restrict C to bit vectors satisfying x = 0. If the resulting instance has a solution,
then it also has a solution with each C in the B side replaced with down(C). If the
resulting instance has a solution with each C in the B side replaced with down(C),
then we may replace the X chosen from some down(C) with a Y ∈ C such that
X ≤ Y . This gives a solution with C, since replacing X with Y ≥ X will still satisfy
the constraints in the A side, because these are upward closed.

If down(C) in down(B) can always be decomposed into {0} and {0, 1} constraints,
then it suffices to test the corresponding restriction of the A side. The same argument
holds if C ∈ A can be decomposed into {0}, {1}, {0, 1} constraints.

Suppose A is delta-matroid and C ∈ A cannot be decomposed into {0}, {1},
{0, 1} constraints. Then by (3) of Lemma 6.4 we can simulate [x
= y] or [x ∨ y] in
the A side, and in fact we can simulate [x ∨ y] since [x
= y] is not upward closed.
Given a constraint D ∈ B use for every variable xi in D a corresponding condition
[xi ∨ yi] in A to simulate a constraint C in A with variables yi. The constraint C
is obtained from down(D) by complementing all bits. Since A is delta-matroid and
closed under simulation, it follows that C is delta-matroid and thus down(D) is delta-
matroid. Once both sides are delta-matroids, the fact that the constraints in A are
upward closed implies that they do not have [x = y] or [x
= y] as a restriction, and

BOOLEAN BIPARTITE CONSTRAINTS AND DELTA MATROIDS 385

the intersection of a delta-matroid without equality or inequality with an arbitrary
delta-matroid is polynomial by Corollary 5.5.

Suppose A is 2-SAT, and C ∈ A cannot be decomposed into {0}, {1}, {0, 1}
constraints. Then as in the delta-matroid case we get [x ∨ y] in the A side, and so
for every constraint D ∈ B we get the constraint C obtained by complementing all
bits of down(B) in A, so since A is 2-SAT and closed under simulation, it follows
that down(D) is 2-SAT as well. The problem is thus reduced to 2-SAT and therefore
polynomial.

In the remaining case, A is not delta-matroid or 2-SAT, and for some C in B we
have that down(C) cannot be decomposed into {0}, {0, 1} constraints. Then by (3)
of Lemma 6.4 we can simulate [x
= y] or [x ∨ y] in the B side, obtaining [x ∨ y] as
the downward closure. By (4) of Lemma 6.3, we can simulate some [≈ x̃ ∨ ỹ ∨ z̃] in
the A side, and the only such constraint that is upward closed as required for the A
side is [x ∨ y ∨ z]. By (5) of Lemma 6.3, we can simulate some [≈ x̃ ≤ ỹ, z̃] in the A
side, and the only such constraint that is upward closed as required for the A side is
[x ≤ y, z], which we denote also by [x ∨ y, z].

We thus have [x∨ y∨ z], [x∨ y, z] in the A side. Combining these with conditions
[x ∨ x′], [y ∨ y′], [z ∨ z′] on the B side gives corresponding [x ∨ y ∨ z], [x ∨ y, z] in
the B side. We do a reduction from 3-SAT. A 3-SAT clause that has both positive
and negative literals can be decomposed into a clause that has only positive and a
clause that has only negative literals, so that the two give the original 3-SAT clause
by resolution. We already have positive and negative 3-SAT clauses simulated. By
combining [x ∨ y ∨ z] in A with [z ∨ z′] in B and with [z′ ∨ z1, z2] in A, we obtain
[x∨ y∨ z1, z2] in A. This creates the multiple copies of variable z in the 3-SAT clause
needed to combine with corresponding copies of z in 3-SAT clauses for B, which
can be obtained analogously. We thus have multiple copies of variables in clauses
[x ∨ y ∨ z] in A and clauses [x ∨ y ∨ z] in B as needed to complete the reduction and
get NP-completeness.

Note that the same result holds if we exchange upward closed with downward
closed. A constraint C is Horn if every nonempty restriction C ′ of C has a least
element. Thus in the first part of case (1) in Lemma 6.5, both A and B are dual-
Horn. In the second part of case (1) the constraints in A decompose into monadic
relations.

Lemma 6.6. Let A,B be as in the statement of Theorem 6.2, and suppose some
constraint in A cannot be decomposed into an upward closed constraint, and con-
straints {0}, and some constraint in A cannot be decomposed into a downward closed
constraint, and constraints {1}. Then we have the polynomial cases where A and B
are both Horn, both dual-Horn, both 2-SAT, both linear, or with at most one side
having [x = y] the polynomial case of delta-matroids. In the remaining cases, either
both sides are delta-matroids with [x = y] and A = B, corresponding to delta-matroid
parity, or the A side is neither Horn, dual-Horn, 2-SAT, linear, or delta-matroid.

Proof. If A is a delta-matroid and B is not a delta-matroid, then by (5) of Lemma
6.3 we have some [≈ x̃ ≤ ỹ, z̃] in B. In the cases where A has one of [t = t′], [t
= t′],
[t ≤ t′] or both [t ∨ t′] and [t ∨ t′], then combining such conditions for t or t′ being
x, y, z and corresponding x′, y′, z′ we get [≈ x̃ ≤ ỹ, z̃] in A, which is not a delta-
matroid, contrary to assumption. We thus have of these choices for t, t′ either just
[t∨ t′] or just [t∨ t′]. By cases (1), (2), (3) of Lemma 6.4, we have that A decomposes
into constraints {0}, {1}, and just upward closed constraints or just downward closed
constraints, contrary to assumption.

386 TOMÁS FEDER AND DANIEL FORD

If both A and B are delta-matroids, and A does not have [x = y], then either B
does not have [x = y] either and the problem is polynomial by Corollary 5.7, or B
does have [x = y], in which case A does not have [x
= x′] since using also [y
= y′]
would give [x′ = y′] in A as well, so the problem is polynomial by Corollary 5.5. If
both sides have [x = y], then every constraint in A can also be obtained in B and
viceversa, so A = B and we have a class of delta-matroid parity problems.

If A is 2-SAT and B is not 2-SAT, then by (4) of Lemma 6.3 we have some
[≈ x̃ ∨ ỹ ∨ z̃] in B. In the cases where A has one of [t = t′], [t
= t′], [t ≤ t′], or
both [t ∨ t′] and [t ∨ t′], then combining such conditions for t or t′ being x, y, z and
corresponding x′, y′, z′ we get [≈ x̃ ∨ ỹ ∨ z̃] in A, which is not 2-SAT, contrary to
assumption. We thus have of these choices for t, t′ either just [t ∨ t′] or just [t ∨ t′].
By cases (1), (2), (3) of Lemma 6.4, we have that A decomposes into constraints {0},
{1}, and just upward closed constraints or just downward closed constraints, contrary
to assumption. If both sides are 2-SAT the problem is polynomial.

If A is linear and B is not linear, and A is not 2-SAT, then we have in A a linear
constraint [x + y + z = 0] or [x + y + z = 1], and in B by (3) of Lemma 6.3 we have
[z ≤ z′], or [z∨z′], or [z∨z′]. combining these with [x′+y′+z′ = 0] or [x′+y′+z′ = 1]
in A gives a constraint on x, y, x′, y′ that is not linear, contrary to assumption. If both
sides are linear the problem is polynomial.

If A is Horn and B is not Horn, then in B we get [x
= y] or [x ∨ y] by (1) of
Lemma 6.3. Since A does not decompose into {1} constraints and downward closed
constraints by assumption, we have by (1), (3) of Lemma 6.4 that A has [x = y], or
[x ≤ y], or [x
= y], or [x ∨ y], yet the last two are not Horn, so A must have [x = y]
or [x ≤ y]. Combining these with [x
= y] or [x ∨ y] in B gives [x′ ∨ y′] in A, which is
not Horn, contrary to assumption. If both sides are Horn the problem is polynomial.
The case of dual-Horn is identical.

We now consider situations where the last case in the preceding lemma gives
NP-completeness.

Lemma 6.7. Let A,B be as in the statement of Theorem 6.2. Assume A is
not Horn, dual-Horn, 2-SAT, linear, or delta-matroid. Assume also B contains either
[x = y] or [x ≤ y]. Then the bipartite constraint satisfaction problem is NP-complete.

Proof. If B contains [x = y], then either we have [x
= y] in A which combines
with a condition from (3) of Lemma 6.3 to give [x ≤ y] in B, or we have both [x ∨ y]
and [x ∨ y] by (1), (2) of Lemma 6.3 to also give [x ≤ y] in B.

If B contains [t ≤ t′], combining this with [≈ x̃ ∨ ỹ ∨ z̃] from A by (4) of Lemma
6.3 gives [x̃ ∨ ỹ ∨ z̃] in B. Combining with [≈ x̃ ≤ ỹ, z̃] from A by (5) of Lemma 6.3
gives [x̃ ≤ ỹ, z̃] in B. Since A contains either [t
= t′] or both [t ∨ t′] and [t ∨ t′] from
(1) and (2) of Lemma 6.3, we also get [x̃ ∨ ỹ ∨ z̃] and [x̃ ≤ ỹ, z̃] in A. Using [x ≤ y]
from B and [t
= t′] or both [t ∨ t′], [t ∨ t′] from A we get both [x ∨ y] and [x ∨ y]
in B, that is, all three kinds of 2-SAT clauses in B. We can thus replace each x̃ in
the conditions of A with any choice out of x or x using these clauses in B. Since A
contains [x̃∨ ỹ ∨ z̃], we have that A contains [x∨ y] or [x∨ y]. Say A contains [x∨ y],
and then using [x∨ y∨ z] and [x∨ y, z] in B gives NP-completeness as in the last part
of the proof of Lemma 6.5.

In the remaining case, neither A nor B contains either [x = y] or [x ≤ y]. By (1)
of Lemma 6.4, this implies that every constraint C in A or B satisfies C = up(C) ∩
down(C). Furthermore A is not delta-matroid, so it contains a constraint [≈ x̃ ≤ ỹ, z̃],
and by the property just stated this must be either [x∨y, z], [x∨y, z]\{111}, [x∨y, z],
[x ∨ y, z] \ {000}. Say by symmetry it is either [x ∨ y, z] or [x ∨ y, z] \ {111}. Then A

BOOLEAN BIPARTITE CONSTRAINTS AND DELTA MATROIDS 387

contains [x∨ y]. Since B is not dual-Horn, it contains either [x∨ y] or [x
= y], and in
this last case it contains [x∨y] as well by combination with [x∨y] from A. Combining
[x∨y] from B with either [x∨y, z] or [x∨y, z]\{111} from A, we get [x∨y, z] in B, and
thus [x ∨ y, z] in A. Furthermore, we get the complement of down(D) in A for every
constraint D in A, so by Lemma 6.5 the problem is NP-complete unless down(D) is
2-SAT. Similarly, we get the complement of up(C) in B for every constraint C in A,
and by Lemma 6.5 the problem is NP-complete unless up(C) is 2-SAT.

If up(D) is not delta-matroid, then by (5) of Lemma 6.3 it contains [x ∨ y, z] so
D contains [x∨ y, z] or [x∨ y, z] \ {111}. Then by the preceding argument exchanging
A and B, we have that the problem is NP-complete unless up(D) and down(C) are
2-SAT. In this last case, since C = up(C) ∩ down(C) and D = up(D) ∩ down(D), the
whole problem is 2-SAT.

Thus in the remaining case up(D) is a delta-matroid, and by the same argument
down(C) is a delta-matroid, while up(C) and down(D) are 2-SAT, for every C in A
and D in B. By complementing A, this problem is more easily viewed as having
an instance consisting of M such that up(M) is a delta-matroid and down(M) is
2-SAT, with the variables partitioned into pairs x, y that must satisfy [x
= y] in a
solution.

Eliminate any variable x such that M has no bit-vector with x = 1 (resp., x = 0),
while setting y = 1 (resp., y = 0) for the corresponding variable in the pair [x
= y].
We may solve the down(M) 2-SAT part with constraints [x
= y] and obtain a solution
X if one exists. We may also solve the up(M) delta-matroid part with constraints
[x
= y] and obtain a solution Y if one exists, by Corollary 5.7. If X is in up(M),
then X is in M = up(M) ∩ down(M) and we are done. If X is not in up(M), then
there exists a T ≥ X with T not in up(M) such that every U > T is in up(M). Let
S be the set of variables x that have value 0 in T , called a flat of up(M). There is no
element of up(M) that has all variables x in S with value 0. For every x in S, there
is a least element of M that has x = 1 and with y = 0 for all other y in S.

We claim that X ′ obtained from X by changing x = 0 to x = 1 is also in down(M).
Otherwise X ′ fails to satisfy some 2-SAT clause involving x, say, [x ∨ z] for some z
not in S. Then an element V of M with x = 1 and y = 0 for all other y in S also
has z = 0. Restricting M to the variables in S ∪ {z}, to obtain M ′, we have that
up(M ′) is a delta-matroid and contains V with a single variable x = 1. Let W be
a least vector in M ′ having z = 1, and let y be some other variable that has y = 1
in W . Restrict M ′ by setting all variables other than x that have value 0 in W to
value 0, thus obtaining M ′′. We have in M ′′ vectors with yz = 00 and vectors with
yz = 11 but no vector with yz = 01 in M ′′, giving either [z ≤ y] or [z = y], contrary
to assumption. This proves the claim.

Note that the solution Y obtained above must have some x in S with value x = 1.
Thus we may just obtain X ′ by trying all choices of variables x that have x = 0 in X
and x = 1 in Y , until X ′ obtained by changing x does not fail to satisfy the 2-SAT
clauses in down(M). We may then change the mate that was linked to x by [x
= y]
from y = 1 to y = 0 to obtain a new solution X ′′ in down(M) which is closer to
Y . Repeating the process, we eventually reach some X ′′ in down(M) that is also in
up(M), since otherwise we keep getting closer to Y , and Y is in up(M). We thus
obtain from X and Y some X ′′ such that X ′′ ∈ down(M)∩ up(M) = M and satisfies
all conditions [x
= y] as well.

This algorithm completes the proof of Theorem 6.2.
Theorem 6.8. Let M be an upward closed delta-matroid, and let R be a collection

of 2-SAT clauses [x], [x ∨ y] such that no flat of M with at least two elements meets

388 TOMÁS FEDER AND DANIEL FORD

a clause [x ∨ y] in exactly one element. Then one can solve the constraints given by
M , R, and a pairing with conditions [x
= y] in polynomial time.

We now obtain a full classification for k-partite Boolean constraint satisfaction
for k ≥ 3.

Theorem 6.9. Let A1, . . . ,Ak be sets of constraint types each containing the
single variable constraints {0}, {1}, {0, 1} and at least one constraint that does not
decompose into these, with k ≥ 3. Then the k-partite Boolean constraint satisfaction
problem with constraints from Ai in part i and each variable participating in only
one constraint from each part i is either polynomial time solvable using an oracle or
NP-complete.

Proof. If some Ai contains a constraint that is not a delta-matroid, say, A1, then
the problem defined by A1 and A2 is either polynomial time solvable using an oracle
or NP-complete by Theorem 6.2. The NP-completeness of this subproblem implies
the NP-completeness of the entire problem, while if the subproblem is polynomial,
then the algorithm simulates an oracle for the solutions of the subproblem, thus giving
a new problem where the parts A1 and A2 have been combined into a single part A′

that contains a constraint that is not a delta-matroid, thus reducing the analysis for
k to k − 1.

In the remaining case all Ai are delta-matroids. If at most one Ai contains [x = y],
say A1, then all Aj for j > 1 not containing [x = y] also do not contain [x
= y] unless
A1 does not contain [x = y]; otherwise [x = y] could be simulated on Aj as well.
We may thus intersect the delta-matroids from A1 and A2 by Corollaries 5.5 and 5.7,
again giving a new problem where the parts A1 and A2 have been combined into a
single part A′ for which an oracle can be simulated, thus reducing the analysis for k
to k − 1.

If all Ai are delta-matroids, at least one Ai contains [x = y], say, A1, and at least
one Ai does not contain [x = y], say, A2, then we may again combine A1 and A2 into
a single part A′ by Corollary 5.5, and this part is not a delta-matroid by a constraint
on x, y, z given by [x = y] in A1 and one of [x
= z], [x ≤ z], [x∨ z], [x∨ z] in A2, thus
reducing the analysis to an earlier case from k to k − 1.

Finally, if all Ai are delta-matroids and contain [x = y], then combining [x = y]
in A1, [y = z] in A2, and [x = x′], [y = y′], [z = z′] in A3 gives [x′ = y′ = z′] in A3,
contrary to the assumption that A3 is a delta-matroid.

7. Delta-matroid parity without oracle. For the remaining open cases of
the general problem where equality is an allowed constraint, namely, cases where all
constraints are given by delta-matroids, we note that not all known polynomial cases
remain polynomial in the oracle model. The coindependent delta-matroid case from
Feder [5] has an algorithm polynomial in n2k, where n is the number of variables
and k is the maximum number of variables per constraint, and has a lower bound
exponential in k if a constraint on k variables is given by an oracle. There are other
cases, such as local delta-matroids [3], that remain polynomial with an oracle.

We generalize the case of coindependent delta-matroids. A delta-matroid M =
(E,F) is a zebra delta-matroid if there exist integers 0 ≤ r ≤ s ≤ |E| such that (1)
for all feasible sets F ∈ F , r ≤ |F | ≤ s; (2) for all A ⊆ E with |A| ∈ {r, s}, A is a
feasible set, that is, A ∈ F ; and (3) for all A ⊆ E with r < |A| < s, either A ∈ F ,
or for all B ⊆ E, if |AΔB| = 1, then B ∈ F . Zebra delta-matroids generalize the
delta-matroids arising in the general factor problem.

A zebra delta-matroid is a coindependent delta-matroid if r ∈ {0, 1} and s ∈
{|E| − 1, |E|}. Coindependent delta-matroids were studied in [5].

BOOLEAN BIPARTITE CONSTRAINTS AND DELTA MATROIDS 389

Theorem 7.1. Delta-matroid parity on a coindependent delta-matroid with |E| =
2k with oracle has a lower bound of 2k on the number of queries to the oracle.

Proof. Let E = {x1, . . . , x2k} and L = {{x2i−1, x2i} : 1 ≤ i ≤ k}. Consider a set
A ⊆ E such that for all 1 ≤ i ≤ k, x2i−1 ∈ A if and only if x2i ∈ A. Let F be the set
of all subsets of E of odd cardinality plus A, which is of even cardinality. While an
algorithm has queried fewer than 2k sets B ⊆ E such that for all 1 ≤ i ≤ k, x2i−1 ∈ B
if and only if x2i ∈ B, the oracle may answer that B /∈ F , and only when the 2kth
such B is queried set A = B, giving the answer to the problem.

We prove a counterpart to this lower bound.
Theorem 7.2. Suppose M = (E,F) with |E| = n is the direct sum of zebra

delta-matroids Mi = (Ei,Fi) with |Ei| ≤ k, |Fi| ≤ f . Then delta-matroid parity on
M , L, can be solved in time O(n3f).

We successively simplify the problem.
Lemma 7.3. The problem reduces to the case where we have a feasible F and

only a single {a, b} ∈ L such that {a, b} /∈ LF , and one of the Mi has Ei = {b}.
Proof. The problem reduces to finding an augmenting path. For each choice of an

element a with which to start the augmenting path given F ∈ F , so that {a, b} ∈ L
and {a, b} /∈ LF , let S be the set of elements c such that {c, d} ∈ L and {c, d} /∈ LF for
some element d. For each c ∈ S, let M ′

c = ({c},F ′
c), where F ′

c = {∅, {c}} if c
= a, b,
{b} ∈ F ′

b if and only if b ∈ F , ∅ ∈ F ′
b if and and only if b /∈ F , {a} ∈ F ′

a if and only if
a /∈ F , and ∅ ∈ F ′

a if and only if a ∈ F . Let M ′ be the direct sum of the Mi and the
M ′

c. Extend the feasible F for M to a feasible F ′ for M ′ by including c ∈ S in F ′ if
and only if c ∈ F for c
= a, and including a in F ′ if and only if a /∈ F . Let L′ consist
of the pairs {c, d} ∈ L such that c, d /∈ S, and the pairs {c, c} for c ∈ S. Thus the only
{c, d} ∈ L′ such that {c, d} /∈ L′

F ′ is {c, d} = {a, a}, and the augmenting paths for
M,L started at a correspond to the augmenting paths for M ′,L′, which must start
at a.

Consider the problem in the form of Lemma 7.3, with zebra delta-matroids Mi =
(Ei,Fi) having corresponding ri, si. Let M ′

i = (Ei,F ′
i), where F ′

i consists of the sets
F ′
i ⊆ Ei such that ri ≤ |F ′

i | ≤ si and F ′
iΔ(F ∩ Ei) is of even size.

Lemma 7.4. The problem reduces to a problem where all but one of the Mi have
been replaced by M ′

i and the conditions of Lemma 7.3 are also met.
Proof. The augmenting path starting at a must end in some M0 = (E0,F0).

Replace all Mi
= M0 with M ′
i to obtain M ′. Since every Mi
= M0 has an even number

of elements in the augmenting path starting at a, it follows that this augmenting path
is also an augmenting path in M ′. Conversely, suppose we have an augmenting path
in M ′, starting at a. Let the augmenting path be a = x1, . . . , x2t+1 with x2t+1 ∈ E0.
Either this is also an augmenting path for M , or there exists an 1 ≤ j ≤ t such that
FΔ{x1, . . . , x2j−2} is feasible for M but FΔ{x1, . . . , x2j} is not feasible for M . In
this last case, since each Mi is a zebra delta-matroid, we have that x2j−1 is in some
Mi with ri, si and (FΔ{x1, . . . , x2j−1}) ∩ Ei has size ri ≤ u ≤ si, so the fact that
FΔ{x1, . . . , x2j} is not feasible implies that FΔ{x1, . . . , x2j−1} is feasible, giving an
augmenting path a = x1, . . . , x2j−1 for M .

Consider the problem in the form of Lemma 7.4.
Lemma 7.5. The problem reduces to graph matching.
Proof. So far, we have a single M0 = (E0,F0) not of the form of the M ′

i , with
|E0| ≤ k. We may then consider each of the at most f feasible sets F0 ∈ F0 such that
|(F ∩ E0)ΔF0| is odd and replace M0 with M ′

0 = (E0, {F0}), which decomposes into
|E0| ≤ k zebra delta-matroids, giving at most k unmatched pairs plus the pair {a, b}.

390 TOMÁS FEDER AND DANIEL FORD

Now the problem has delta-matroids M ′
i = (Ei,F ′

i) with F ′
i consisting of all F ′

i

with r ≤ |F ′
i | ≤ s and both t = s − r, |F ′

i | − r even. Define a graph G consisting
of a clique K on t vertices, an independent set I on r vertices, a complete bipartite
graph with the r + t vertices in K ∪ I in one side, and some additional r + t vertices
forming a set U in the other side. To match all vertices in K ∪ I ∪ U , we must have
r ≤ r + 2j ≤ r + t vertices in U matched to vertices in K ∪ I, corresponding to a
choice of r + 2j elements from Ei forming some F ′

i ∈ F ′
i . We may then join the sets

U = Ui for each M ′
i with edges corresponding to the pairs {a, b} ∈ L.

We may assume a is not in M0. We look for an F ′-augmenting path in the resulting
graph starting at a for F ′ = FΔ((FΔF0) ∩ E0). The augmenting path a, . . . , x1 will
have x1 ∈ (F ∩ E0)ΔF0, and either (F ∩ E0)Δ{x1} is feasible for M0, in which case
we replace F with F ′ = FΔ{a, . . . , x1, x1}, or we replace F with F ′′ = F ′Δ{x2} for
some x2 ∈ (F ′ ∩E0)ΔF0 such that (F ′ ∩E0)Δ{x2} is feasible for M0, set a = x2, and
proceed to look for an augmenting path starting at a. In the end, we either will have
F ∩ E0 = F0 or will have found a shorter augmenting path by Lemma 7.4.

The graph of Lemma 7.5 has O(n) vertices and m = O(nk) edges and requires
finding at most f augmentations in a graph if we go through the F0 with d0 =
|(F ∩ E0)ΔF0| in order of increasing d0. Each augmentation can be done in time
O(m), giving a total time O(mf) = O(nkf) for the problem of Lemma 7.4. This
complexity can be reduced by only implicity maintaining the graph corresponding to
of each Mi, so that only the O(|Ei|) times that Mi is visited are counted, and the
search for an augmenting path takes O(n) time. Each of the sets in F0 is considered
at most k times while finding augmenting paths, once for each element in E0 to be
included. Thus the problem of Lemma 7.4 is solved in O(nf) time. The problem
of Lemma 7.3 can be solved in time O(n2f) by considering the at most n possible
choices of M0. Testing the at most n unmatched pairs to find a maximum number
of augmentations for the original problem can be done in time O(n3f), solving the
original problem and proving Theorem 7.2.

Of course, for the general factor problem, which can be viewed as consisting of
zebra delta-matroids such that if A is feasible then every B with |B| = |A| is also
feasible, we can let M ′

0 consist of the sets of a given size, and only two sizes need to
be considered, namely, the sizes p, q such that p < v = |F ∩E0| < q that give the least
odd values for v − p, q − v. This costs of a factor of k for at most k augmentations
instead of f , giving a bound of O(n3k) on the running time. See also Cornuejols [2]
for a more efficient algorithm for the general factor problem.

Istrate [8] defined compact delta-matroids by combining the delta-matroids of
the general factor problem in a star arrangement. More generally, we can combine
zebra delta-matroids in a tree configuration. Formally, define M = (E,F) to be a
zebra-compact delta-matroid inductively if there exists a zebra delta-matroid M1 =
(E1∪{a},F1) and a zebra-compact delta-matroid M2 = (E2∪{b},F2) such that M is
obtained from M1,M2 by linking a and b and contracting K = {{a, b}}; also the direct
sum of a zebra delta-matroid and a zebra-compact delta-matroid is a zebra-compact
delta-matroid, and every zebra delta-matroid is a zebra-compact delta-matroid.

Theorem 7.6. A zebra-compact delta-matroid M = (E,F) with |E| = k can

be recognized and decomposed into zebra delta-matroids in time O(ck
2

) for some con-
stant c.

Proof. We can test each of the 2k possible decompositions E1 ⊆ E, E2 = E \E1,
each in time O(ck) for some constant c. If there exist two elements A∪B,A′∪B′ ∈ F ,
where A,A′ ⊆ E1 and B,B′ ⊆ E2, such that A∪B′, A′∪B /∈ F , then this determines

BOOLEAN BIPARTITE CONSTRAINTS AND DELTA MATROIDS 391

uniquely the feasible sets of M1,M2, namely, the possible choices of B′′, B′′′ such that
A∪B′′, A′ ∪B′′′ ∈ F give feasible sets B′′ ∪ {b}, B′′′ ∈ F2 or B′′, B′′′ ∪ {b} ∈ F2, and
similarly for F1. After verifying this decomposition, we proceed inductively.

Otherwise, unless M is a direct product of M1 = (E1,F1) and M2 = (E2,F∈, we
only have A∪B,A∪B′, A′∪B′ ∈ F but A′∪B /∈ F . Then we have B∪{b}, B′ ∈ F2,
and possibly B′∪{b} ∈ F2 (or equivalently B,B′∪{b} ∈ F2 and possibly B′ ∈ F2). All
the possibly included subsets must be included either for F1 or for F2, say, for F1, and
it can then be shown that including all or none for F2 will allow the decomposition
to proceed if some subset of them allows the decomposition to proceed. However,
we then may not get a zebra delta-matroid for each delta-matroid that is not further
decomposed. It may at that point be decided whether to include the possibly included
subsets in F2 for the resulting delta-matroid that is not further decomposed containing
{b}. A similar situation arises for the case of a direct product of M1 and M2 where we
still choose to decompose using elements a, b. In that case, for elements A∪B ∈ F , we
must always include B ∈ F2 and possibly B∪{b} ∈ F2 or always include B∪{b} ∈ F2

and possibly B ∈ F2.
For the delta-matroids Mi = (Ei,Fi) that are not decomposed and must be zebra

delta-matroids, we may choose what possibly included elements for Fi to exclude by
choosing the corresponding 0 ≤ ri ≤ si ≤ |Ei| so as to satisfy the definition of a zebra
delta-matroid, thus having to exclude all sets of size less than ri or greater than si,
while we may always choose to include sets of size from ri to si.

There are thus dk cases that take O(ck) time and reduce to a case for a smaller k,
giving the recurrence f(k) = dk(ck + f(k− 1)), f(0) = 0, on the time used for finding

such a decomposition, that is time complexity of the order O((cd)
k2

).
A delta-matroid M = (E,F) is even if for all F,G ∈ F , |FΔG| is even. We

consider any class C of even delta-matroids, closed under restriction and direct sum,
such that there is a polynomial time algorithm for delta-matroid parity on matroids
in C. Examples of C include even local delta-matroids [3] and linear delta-matroids
over a given field [7].

A delta-matroid M = (E,F) is a C-zebra delta-matroid if for every feasible set
A ∈ F , there exists a delta-matroid MA = (E,FA) in C such that (1) all sets B ∈ F
such that AΔB is of even size are also in FA; (2) if B ∈ F ∩ FA and C ∈ FA \ F
are such that |BΔC| = 2 and |AΔC| = |AΔB| + 2, then the two sets D such that
|BΔD| = |DΔC| = 1 satisfy C ∈ F .

We assume that a C-zebra delta-matroid M is given together with appropriate
presentations for the corresponding delta-matroids MA in C.

Theorem 7.7. Suppose M = (E,F) with |E| = n is the direct sum of C-zebra
delta-matroids Mi = (Ei,Fi) with |Ei| ≤ k, |Fi| ≤ f . Then delta-matroid parity on
M , L, can be solved in time polynomial in n and f .

Proof. The proof is analogous to the proof of Theorem 7.2. As in Lemma 7.3, the
problem reduces to the case where we have a feasible F and only a single {a, b} ∈ L
such that {a, b} /∈ LF , and one of the Mi has Ei = {b}.

Consider the problem in this form with C-zebra delta-matroids Mi = (Ei,Fi).
For A = F ∩ Ei, let M ′

i = (Ei,Fi) be the delta-matroid (Mi)A in C in the definition
of C-zebra delta-matroids. As in Lemma 7.4, the problem reduces to a problem where
all but one of the Mi have been replaced by M ′

i . The key point as before is that
given an augmenting path be a = x1, . . . , x2t+1 with x2t+1 ∈ E0 in M ′, either this
is also an augmenting path for M , or we have FΔ{x1, . . . , x2j−2} feasible for M
and for M ′, but FΔ{x1, . . . , x2j} feasible for M ′ and not feasible for M , and then

392 TOMÁS FEDER AND DANIEL FORD

FΔ{x1, . . . , x2j−1} is feasible for M by the definition of C-zebra delta-matroids, giving
an augmenting path for M as well. Finally, as in Lemma 7.5, we replace M0 = (E0,F0)
with M ′

0 = (E0, {F0}) for each F0 ∈ F0 and find augmenting paths starting at a and
ending in M ′

0 so that in the end, we either will have F ∩E0 = F0 or will have found a
shorter augmenting path, using the algorithm for delta-matroid parity in C, since any
algorithm for delta-matroid parity can be used to find an augmenting path starting
at a if it exists.

An even delta-matroid M = (E,F) is local if for every F ∈ F and every pair-
ing L, if x1, . . . , x2k is a path such that FΔ{x2i−1, x2i} ∈ F for 2 ≤ 2i ≤ 2k and
{x2i, x2i+1} ∈ L for 2 ≤ 2i < 2k, and there is no shorter path x1 = y1, . . . , y2l = x2k

satisfying this property with {y1, . . . , y2l} ⊂ {x1, . . . , x2k}, then FΔ{x1, . . . , x2k} ∈
F .

The algorithm of Dalmau and Ford [3] for local delta-matroid parity only requires
in the case of even delta-matroids that this property hold, in an augmenting phase
started at a feasible set F ∈ F , for that particular feasible set F . We say that in that
case M is F -local. The algorithm uses the fact that if z1, . . . , z2r is an F -augmenting,
LF -alternating path, then by repeated application of Wenzel’s strong exchange axiom
for even delta-matroids, there exists a LF -alternating path z1 = x1, . . . , x2k = z2r

such that FΔ{x2i−1, x2i} ∈ F for 2 ≤ 2i ≤ 2k. Such a path may be found by an
augmentation in graph matching, by considering the graph consisting of all edges
{x, y} such that FΔ{x, y} ∈ F , plus edges {x, y} in the given matching for {x, y} ∈
LF . The algorithm also attempts to find a shorter augmenting path, in the subgraph
induced by x1, . . . , x2i−1, x2i+2, . . . , x2k, for each 2 ≤ 2i < 2k. When such a shorter
augmenting path is not found, the definition of F -local guarantees that x1, . . . , x2k is
an F -augmenting path.

We generalize local-zebra delta-matroids by only requiring MA to be A-local in-
stead of local and still obtain a polynomial time algorithm for the corresponding A-
local-zebra delta-matroid parity problem. We thus have polynomial time algorithms
when the even delta-matroids MA in the definition of C-zebra are all linear over a
given field, or all A-local. These classes are closed under direct sums. More generally,
we may allow MA to be obtained from MB in the class of delta-matroids linear over a
given field or the class of B-local delta-matroids by contracting K such that KB = K
and A consists of the elements of B not in pairs from K.

A main example of local-zebra delta-matroids is the class of delta-matroids M =
(E,F) that satisfy a stronger exchange property, namely, that for all feasible sets A,B
and every element x ∈ AΔB, either AΔ{x} is feasible or for every y ∈ AΔ{x}ΔB
the set AΔ{x, y} is feasible. In this case the local delta-matroid MA = (E,FA) can
be defined by letting FA be the set of all B ⊆ E such that AΔB is of even size and
AΔB ⊆ AΔD for some D ∈ F .

Indeed, condition (2) in the definition of local-zebra holds by the stronger ex-
change property applied to B and D such that AΔC ⊆ AΔD. It remains to show
that MA is a local delta-matroid. The subsets D ∈ F can be chosen without loss of
generality with AΔD of maximum size over D ∈ F . Any two such D must satisfy
|D1ΔD2| = 2; otherwise, there exists {x, y} ⊂ D1ΔD2 such that |AΔ(D1Δ{x, y})| =
|AΔD1| + 2, and so D1Δ{x}, D1Δ{x, y} /∈ F , contrary to the stronger exchange
property for D1, D2. There exists thus a set E such that |DiΔE| = 1 for all such Di,
and if |AΔDi| > 1, then E can be chosen so that |AΔE| = |AΔDi| + 1. Further-
more, if there are at least two such feasible Di, say, D1 and D2, then we may not
have two Di such that |AΔE| = |AΔDi| + 1 that are not feasible, say, D3 and D4.

BOOLEAN BIPARTITE CONSTRAINTS AND DELTA MATROIDS 393

Otherwise, if Di = EΔ{xi}, then the possible intersections of AΔF for F ∈ F with
X = {x1, x3, x4} include ∅ and X but do not include any other subset Y containing
x1 corresponding to some feasible G, by the stronger exchange property applied to
D1, G and x1, contradicting M beign a delta-matroid by the exchange property for
∅, X and x1.

Letting E = D if there is only one such Di, and letting E = ∅ if |AΔDi| ≤ 1, we
have that MA = (E,FA) has FA consisting of all sets G such that AΔG is of even
size and a subset of AΔE, or consisting of all these sets G except for a single G with
|AΔG| = |AΔE| − 1. Suppose now G ∈ FA and some path x1, . . . , x2k fails to satisfy
the definition of G-local for MA. If k ≥ 3, then either GΔ{x1, x4} or GΔ{x1, x6} is
in FA since at most one even size subset of GΔE fails to give a feasible set. Thus
x1, . . . , x2k has a shortcut path as in the definition of G-local when k ≥ 3. If k = 2,
then either GΔ{x1, x4} ∈ FA giving again a shortcut, or GΔ{x1, x2, x3, x4} ∈ FA

because at most one even size subset of GΔE is missing, satisfying the definition of
G-local. Thus MA is G-local for all G ∈ FA, that is, MA is local and therefore M is
local-zebra.

8. Conclusions. We considered bipartite Boolean constraint satisfaction having
two different sets of allowed constraint types for both sides of the bipartition. This
case is properly bipartite only if at least one side does not contain equality. We
obtain a classification for these problems if they do not have equality in both sides.
All the algorithms work even in an oracle model, leaving open when equality is an
allowed constraint in both sides cases of delta-matroid parity, which in general cannot
be solved in oracle model. We also obtain a full classification for k-partite Boolean
constraint satisfaction with k ≥ 3.

Known polynomial cases of delta-matroid parity include local and linear delta-
matroids, and delta-matroids obtained from these by simulation. All the remaining
known polynomial cases are covered by cases studied in this paper. The first case is
that of delta-matroids that do not contain inequality. The second case is obtained
from any of the known polynomial cases C of even delta-matroids by considering the
corresponding C-zebra delta-matroids and adding closure under simulation as well.
Here C may be the class of delta-matroids obtained by simulation from linear delta-
matroids over a given field or the class of delta-matroids obtained by simulation from
A-local delta-matroids.

REFERENCES

[1] A. Bouchet and B. Jackson, Parity systems and the delta-matroid intersection problem,
Electron. J. Combin., 7 (2000).

[2] G. P. Cornuejols, General factors of graphs, J. Combin. Theory Ser. B, 45 (1988), pp. 185–
198.

[3] V. Dalmau and D. Ford, Generalized satisfiability with k occurrences per variable: A study
through delta-matroid parity, in Proceedings of the 28th International Symposium of
Mathematical Foundations of Computer Science, 2003.

[4] J. Edmonds, Matroid intersection, Ann. Discrete Math., 14 (1979), pp. 39–49.
[5] T. Feder, Fanout limitations on constraint systems, Theoret. Comput. Sci., 255 (2001),

pp. 281–293.
[6] H. N. Gabow and M. Stallman, An augmenting path algorithm for linear matroid parity,

Combinatorica, 6 (1986), pp. 123–150.
[7] J. F. Geelen, S. Iwata, and K. Murota, The linear delta-matroid parity problem, J. Combin.

Theory Ser. B, 88 (2003), pp. 377–398.
[8] G. Istrate, Looking for a Version of Schaefer’s Dichotomy Theorem when Each Variable Oc-

curs At Most Twice, Technical Report #652, Computer Science Deptartment, University
of Rochester, New York, 1997.

394 TOMÁS FEDER AND DANIEL FORD

[9] L. Lovász, Matroid matching and some applications, J. Combin. Theory Ser. B, 28 (1980),
pp. 208–236.

[10] L. Lovász and M. Plummer, Matching Theory, North-Holland, Dordrecht, the Netherlands,
1986.

[11] T. J. Schaefer, The complexity of satisfiability problems, in Proceedings of the 10th ACM
Symposium on Theory of Computing, 1978, pp. 216–226.

[12] W. Wenzel, δ-matroids with the strong exchange conditions, Appl. Math. Lett., 6 (1993),
pp. 67–70.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 2, pp. 395–411

THE VOLUME OF THE GIANT COMPONENT OF A RANDOM
GRAPH WITH GIVEN EXPECTED DEGREES∗

FAN CHUNG† AND LINYUAN LU‡

Abstract. We consider the random graph model G(w) for a given expected degree sequence
w = (w1, w2, . . . , wn). If the expected average degree is strictly greater than 1, then almost surely the
giant component in G of G(w) has volume (i.e., sum of weights of vertices in the giant component)
equal to λ0Vol(G) + O(

√
n log3.5 n), where λ0 is the unique nonzero root of the equation

n∑
i=1

wie
−wiλ = (1 − λ)

n∑
i=1

wi,

and where Vol(G) =
∑

i wi.

Key words. random graphs, expected degree sequences, giant connected component

AMS subject classification. 05C80

DOI. 10.1137/050630106

1. Introduction. Among the many celebrated results of Erdős and Rényi on
random graphs, one of the most well-known theorems is a sharp estimate for the size
of the giant component. For the random graph G(n, p), as introduced by Erdős and
Rényi in 1959 [17], every pair of a set of n vertices is chosen to be an edge with
probability p independently. Erdős and Rényi [17] showed that the size (i.e., the
number of vertices) of the giant component of G(n, p) satisfies the following.

Theorem A. If d = np > 1, a graph G of G(n, p) almost surely contains a giant
component with (f(d) + o(1))n vertices, where f(d) is given by

f(d) = 1 − 1

d

∞∑
k=1

kk−1

k!
(de−d)k.(1)

In G(n, p), every vertex has the same expected degree np. Although such a
random graph model is useful in some applications, most real-world networks have
degree distributions far from regular [1, 4, 5, 6, 20, 21, 22, 25, 26]. It is therefore not
surprising that the random graph model G(n, p) does not capture many behaviors of
numerous networks [1, 2, 3, 9, 10, 11, 12, 13, 14, 15, 23].

Here we consider the random graph model G(w) for a given expected degree
sequence w = (w1, w2, . . . , wn), as introduced in [10, 11, 12, 13]. The edges are
chosen independently and randomly as follows. The probability pij that there is an
edge between vi and vj is proportional to the product wiwj (as well as the loop at vi
with probability proportional to w2

i). Namely,

pij =
wiwj∑
k wk

=
wiwj

Vol(G)
.(2)

∗Received by the editors April 27, 2005; accepted for publication (in revised form) December 13,
2005; published electronically May 3, 2006.

http://www.siam.org/journals/sidma/20-2/63010.html
†Department of Mathematics, University of California, San Diego, CA 92093 (fan@ucsd.edu).

The work of this author was supported in part by NSF grants DMS 0457215, ITR 0205061, and ITR
0426858.

‡Department of Mathematics, University of South Carolina, Columbia, SC 29208 (lu@math.sc.
edu).

395

396 FAN CHUNG AND LINYUAN LU

Here the expected volume for a subset S of vertices, Vol(S), is defined as

Vol(S) =
∑
vi∈S

wi,

and Vol(G) = Vol(V (G)). The (actual) volume of S in a graph G is the sum of all
degrees of vertices in S and is denoted by vol(S):

vol(S) =
∑
vi∈S

di,

where di denotes the degree of vertex vi. In order to avoid confusion when we deal
with the graph G in a nonprobabilistic context, we can view wi as a weight assigned
to vertex vi.

In [10], the following theorem was given concerning the giant components for
graphs in the random graph model G(w).

Theorem B. Suppose that G is a random graph in G(w) with expected degree se-
quence w. If the expected average degree d is strictly greater than 1, then the following
hold:

(1) Almost surely G has a unique giant component. Furthermore, the volume of
the giant component is at least (1 − 2√

de
+ o(1))Vol(G) if d ≥ 4

e = 1.4715 . . ., and is

at least (1 − 1+log d
d + o(1))Vol(G) if d < 2.

(2) The second-largest component almost surely has size at most (1+o(1))μ(d) log n,
where

μ(d) =

{
1

1+log d−log 4 if d > 4
e ,

1
d−1−log d if 1 < d < 2.

Moreover, with probability at least 1 − n−k, the second-largest component has size at
most (k + 1 + o(1))μ(d) log n for any k ≥ 1.1

In this paper, we will state a sharp asymptotic estimate for the volume of the
giant component for a random graph in G(w).

Theorem 1. If the expected average degree is strictly greater than 1, then al-
most surely the giant component in a graph G in G(w) has volume λ0Vol(G) +
O(

√
n log3.5 n), where λ0 is the unique nonzero root of the following equation:

n∑
i=1

wie
−wiλ = (1 − λ)

n∑
i=1

wi.(3)

We remark that Vol(G) in the statement of Theorem 1 can be replaced by vol(G),
since it was proved in [10] that with probability at least 1 − e−c,

|vol(G) − Vol(G)| ≤
√
cVol(G).

Since the average degree is vol(G)/n, the average degree can also be approximated by
the average expected degree Vol(G)/n.

The paper is organized as follows. Section 2 contains several facts concerning
(3). In section 3, we show that the asymptotic formula for the volume of the giant
components of a random graph in G(w) is a generalization of Theorem A by Erdős

1The quantitative estimate of this probability is in the proof of Theorem 1 in [10].

THE VOLUME OF THE GIANT COMPONENT 397

Fig. 1. When d̃ > 1, f(x) has a unique positive root.

0 1

Fig. 2. When d̃ < 1, f(x) > 0 for all x > 0.

and Rényi. Section 4 includes some improved lower bounds for the volume of the giant
component of G ∈ G(w) as a function of the expected average degree. In section 5,
we give the complete proof of Theorem 1. In section 6, we derive a sharp estimate for
the number of vertices in the giant components.

2. Preliminaries. Before we proceed, we examine some basic properties of the
solutions to the equation in (3). The proof is quite straightforward and will be omitted
here.

Let d̃ denote the expected second order average degree:

d̃ =

∑
i w

2
i∑

i wi
.

Lemma 1. Suppose that the expected second order average degree satisfies d̃ > 1.
Define

f(λ) =
n∑

i=1

wie
−wiλ − (1 − λ)

n∑
i=1

wi.

We have f(0) = 0, f ′(0) < 0, and f ′′(λ) > 0. Hence f(λ) = 0 has a unique positive
solution λ0 (see Figure 1). In particular,

1. if f(x1) ≤ 0 for some positive x1, then λ0 ≥ x1;
2. if f(x2) ≥ 0 for some positive x2, then λ0 ≤ x2;
3. λ0 < 1 since f(1) > 0.

When d̃ < 1, we have f(0) = 0, f ′(0) > 0, and f ′′(λ) > 0. Zero is the only
nonnegative root for f(x) (see Figure 2). This corresponds to the case in which there
is no giant component.

The following fact is useful in the proof of the main theorem.
Lemma 2. Suppose that the expected average degree d satisfies

d =
1

n

n∑
i=1

wi ≥ 1 + δ > 1

398 FAN CHUNG AND LINYUAN LU

for some positive constant δ. Define f(λ) =
∑n

i=1 wie
−wiλ − (1 − λ)

∑n
i=1 wi, and

let λ0 denote the unique nonzero root of f(λ) = 0. Then there is a positive constant
c = c(δ) such that

f ′(λ0) ≥ c

n∑
i=1

wi.

Proof. Since d̃ ≥ d > 1, the unique root λ0 of f exists. We have

f ′(λ0) =

n∑
i=1

wi −
n∑

i=1

w2
i e

−wiλ0 .

Case 1. λ0 ≥ 1
2 . Since xe−xλ0 attains its maximum at x = 1/λ0, we have

f ′(λ0) =

n∑
i=1

wi −
n∑

i=1

w2
i e

−wiλ0

≥
n∑

i=1

wi −
n∑

i=1

wi
1

eλ0

=

(
1 − 1

eλ0

) n∑
i=1

wi

≥
(

1 − 2

e

) n∑
i=1

wi.

The statement holds for this case.

Case 2. λ0 < 1
2 . We will utilize some convexity inequalities. First we will prove

the following claim.

Now we consider the function h(x) = (x2 + x
λ0

)e−λ0x. We have

h′(x) =

(
1

λ0
+ x− λ0x

2

)
e−λ0x,

h′′(x) = −λ0x(3 − λ0x)e−λ0x.(4)

We need the following facts, whose proofs will be given at the end of this section.

Claim A.

(i) h(x) is concave downward over x in (0, 3
λ0

). The maximum value of h(x) for

x in [0,∞) is reached at x0 =
√

5+1
2λ0

.

(ii) d < 2
eλ0

< x0.

(iii) λ0 > 1 − 1
d .

Now, we consider the following function:

H(x) =

{
h(x), 0 ≤ x ≤ x0,
h(x0), x ≥ x0.

Using Claim A(i), H(x) is concave downward and H(x) ≥ h(x) for all x ≥ 0. We
have

THE VOLUME OF THE GIANT COMPONENT 399

f ′(λ0) =

n∑
i=1

wi −
n∑

i=1

w2
i e

−wiλ0

=

n∑
i=1

wi +
1

λ0

n∑
i=1

wie
−wiλ0 −

n∑
i=1

h(wi)

=

n∑
i=1

wi +
1

λ0
(1 − λ0)

n∑
i=1

wi −
n∑

i=1

h(wi)

=
1

λ0

n∑
i=1

wi −
n∑

i=1

h(wi)

≥ 1

λ0

n∑
i=1

wi −
n∑

i=1

H(wi)

≥ 1

λ0

n∑
i=1

wi − nH

(
1

n

n∑
i=1

wi

)

=
1

λ0
nd− nH(d).

By Claim A(ii), we have d < 2
eλ0

< x0. Hence, H(d) = h(d).

f ′(λ0) ≥
1

λ0
nd− nh(d)

=
1

λ0
nd− n

(
d2 +

d

λ0

)
e−λ0d

= nd
1

λ0
(1 − (1 + dλ0)e

−λ0d)

≥ nd(1 − (1 + dλ0)e
−λ0d).

The function ψ(x) = 1 − (1 + x)e−x is increasing for x in [0,∞). For any x > 0,
ψ(x) > ψ(0) = 0. Hence we have

f ′(λ0) ≥ ndψ(λ0d)

≥ ndψ(d− 1)

≥ cnd

by choosing c = c(δ) = min{ψ(δ), 1 − 2/e}.
It remains to prove Claim A.
Proof of Claim A. (i) follows from (4).
To prove (ii), we use the facts that λ0 is a root of f and xe−λ0x has its maximum

value 1
eλ0

at x = 1/λ0. Then

(1 − λ0)nd = (1 − λ0)

n∑
i=1

wi

=

n∑
i=1

wie
−λ0wi

≤
n∑

i=1

1

eλ0

=
n

eλ0
.

400 FAN CHUNG AND LINYUAN LU

Thus,

λ0(1 − λ0) ≤
1

de
.

We have

λ0 ≤ 1

2

(
1 −

√
1 − 4

de

)
or λ0 ≥ 1

2

(
1 +

√
1 − 4

de

)
.

Then λ0 < 1
2 implies

λ0 ≤ 1

2

(
1 −

√
1 − 4

de

)

=
2

de

1

1 +
√

1 − 4
de

<
2

de
.

Hence, we have d < 2
eλ0

< x0, as desired.
To prove (iii), we consider the function

g(x) =

{
xe−λ0x, 0 ≤ x ≤ 1

λ0
,

1
eλ0

, x > 1
λ0
.

We observe that g(x) is concave downward and g(x) ≥ xe−λ0x for all x ≥ 0.
By the definition of λ0, we have

(1 − λ0)nd = (1 − λ0)

n∑
i=1

wi

=

n∑
i=1

wie
−λ0wi

≤
n∑

i=1

g(wi)

≤ ng(d).

By Claim A(ii), d < 2
eλ0

. Thus, g(d) = de−λ0d. We have

1 − λ0 ≤ e−λ0d.

Note that φ(λ) = (1−λ)− e−λd is concave downward over [0,∞). Since φ(0) = 0 and
φ′(0) = d − 1 > 0, φ(x) has a unique positive root, which we denote by s. We have
φ(x) > 0 for any 0 < x < s. Since φ(λ0) ≤ 0 and λ0 �= 0, we have λ0 ≥ s.

Define t = (1 − s)d; then we have

t

d
= 1 − s = e−sd = e−d+t.

Thus t satisfies the following equation:

te−t = de−d.(5)

THE VOLUME OF THE GIANT COMPONENT 401

The function xe−x increases in [0, 1] and decreases in [1,∞]. There is a unique t < 1
satisfying (5).

We have

λ0 ≥ s = 1 − t

d
> 1 − 1

d
.

The proof of Claim A is now finished, and therefore the proof of Lemma 2 is
complete.

3. Theorem 1 ⇒ Theorem A. In this section we want to show that the
formula for the size of the giant component for a random graph in G(n, p) as derived
by Erdős and Rényi in Theorem A is a special case of Theorem 1. In other words, if
we restrict the expected degree sequence to the case when all degrees are equal, then
we recover the theorem of Erdős and Rényi.

Theorem 2. Theorem 1 implies Theorem A of Erdős and Rényi for G(n, p).
Proof. In G(n, p), we have w1 = w2 = · · · = wn = np = d. Equation (3) becomes

e−dλ = 1 − λ.

Let λ = 1 − 1
dz. We have

e−d+z =
z

d
,

or equivalently,

z = de−dez.

Here we use the following version of the well-known Lagrange inversion formula.
Lagrange inversion formula. Suppose that z is a function of x and y in

terms of another analytic function φ as follows:

z = x + yφ(z).

Then z can be written as a power series in y as follows:

z = x +
∞∑
k=1

yk

k!
D(k−1)φk(x),

where D(t) denotes the tth derivative.
We apply the above formula with x = 0, y = de−d, and φ(z) = ez. Then we have

z =

∞∑
k=1

yk

k!
D(k−1)ekx

∣∣
x=0

=

∞∑
k=1

kk−1

k!
yk

=

∞∑
k=1

kk−1

k!
(de−d)k.

This is exactly (1) in Theorem A of Erdős and Rényi.

402 FAN CHUNG AND LINYUAN LU

4. Lower bounds. Theorem 1 gives an implicit formula for the volume of the
giant component for a random graph with a given expected degree sequence. It is
often useful to deduce some bounds which depend only on the expected average degree
d. Of particular interest is the following question.

Among all random graphs G(w) with the same expected average degree d, which
degree distributions minimize or maximize the volume of the giant component?

One obvious example comes to mind. Almost surely G(m, p) with mp = Ω(logm)
is connected. By adding n−m vertices to G(m, p) with weights zero, we get a random
graph G(w) with the expected average degree d = mp

n , which almost surely has a giant
component with volume Vol(G).

One might be inclined to conjecture that the random graph with equal expected
degrees generates the smallest giant component among all possible degree distributions
with the same volume. The answer is “yes” for 1 < d ≤ e

e−1 , and a surprising “no” if
d is sufficiently large.

We will prove the following theorem.
Theorem 3. When d ≥ 4

e , almost surely the giant component of G ∈ G(w) has
volume at least (

1

2

(
1 +

√
1 − 4

de

)
+ o(1)

)
Vol(G).

We remark that 1
2 (1+

√
1 − 4

de) = 1− 1
de +O(1

d2) improves the bound in Theorem

B. In fact, this bound is best possible as d approaches infinity, as shown by the
following example.

Example. Let m = �n3/4	 and y = 1 + n
m (d − 1) ≈ (d − 1)n1/4. We choose the

expected degrees

w1 = w2 = · · · = wm = y, wm+1 = · · · = wn = 1.

The expected average degree of this random graph G(w) is

my + (n−m)

n
= d.

Let x0 = 1 − 1
de . To show that the giant component of G has volume at most

(x0 + o(1))Vol(G), it is sufficient to verify f(x0) ≥ 0. Here

f(λ) =
n∑

i=1

wie
−wiλ − (1 − λ)

n∑
i=1

wi.

We have

f(x0) =

n∑
i=1

wie
−wix0 − (1 − x0)

n∑
i=1

wi

= mye−yx0 + (n−m)e−x0 − (1 − x0)nd

≥ n

e
(e

1
de − 1 −O(n−1/4))

≥ 0,

as desired.

THE VOLUME OF THE GIANT COMPONENT 403

We are now ready to prove Theorem 3.

Proof of Theorem 3. We note that the function g(z) = ze−zλ reaches its maximum
value at z = 1

λ . We have

f(λ) =

n∑
i=1

wie
−wiλ − (1 − λ)

n∑
i=1

wi

≤
n∑

i=1

1

λ
e−1 − (1 − λ)

n∑
i=1

wi

=
n

eλ
(1 − λ(1 − λ)de).

Since λ0 is a solution of f(λ) = 0, we have

λ0(1 − λ0) ≤
1

de
,

which implies either λ0 ≤ 1
2 (1 −

√
1 − 4

de) or λ0 ≥ 1
2 (1 +

√
1 − 4

de).

We will show that λ0 ≤ 1
2 (1 −

√
1 − 4

de) is not true by proving f(1
2) ≤ 0.

We note that

f

(
1

2

)
=

n∑
i=1

wie
−wi/2 − 1

2

n∑
i=1

wi

≤ 2ne−1 − 1

2
nd

=
n

2

(
4

e
− d

)
≤ 0.

Thus we conclude that λ0 ≥ 1
2 (1 +

√
1 − 4

de).

When d is small and not in the range covered by Theorem 3, we can still derive
the following lower bound.

Theorem 4. When 1 < d ≤ e
e−1 , then almost surely G(w) has a giant component

of size at least (λ1+o(1))Vol(G), where λ1 is the nonzero root of the following equation:

e−λd = 1 − λ.(6)

In other words, among all random graphs G(w) with fixed expected average degree d,
the Erdős–Rényi random graph G(n, d

n) has the smallest giant component (measured
in volume).

Proof. Consider the function

g(x) =

{
xe−λ1x, 0 ≤ x ≤ 1

λ1
,

1
eλ1

, x > 1
λ1
.

We observe that g(x) is concave downward and g(x) ≥ xe−λ1x for all x ≥ 0. We have

404 FAN CHUNG AND LINYUAN LU

f(λ1) =

n∑
i=1

wie
−λ1wi − (1 − λ1)nd

≤
n∑

i=1

g(wi) − (1 − λ1)nd

≤ ng

(
1

n

n∑
i=1

wi

)
− (1 − λ1)nd

≤ n(g(d) − (1 − λ1)d).

Since λ1 is an increasing function of d, dλ1 is also an increasing function of d.
When d = e

e−1 , it is easy to verify that λ = 1 − 1
e is the other root of (6). Therefore,

dλ1 ≤ 1 when d ≤ e
e−1 . In particular, we have

g(d) = de−λ1d.

Hence

f(λ1) ≤ n(g(d) − (1 − λ1)d)

= nd(e−λ1d − (1 − λ1))

= 0.

By Remark 1, we have λ0 ≥ λ1, as desired.

5. The proof of the main theorem. A central tool that we use in the proof
of the main theorem is a relaxed version of the Azuma inequality (as seen in Theorem
1 of [12]), which can be described as follows.

Suppose that Ω is a probability space, and that F denote a σ-field on Ω (i.e.,
a collection of subsets of Ω, which contains ∅ and Ω and is closed under unions,
intersections, and complementation). A filter F is an increasing chain of σ-subfields

{0,Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F .

A martingale (obtained from) X is associated with a filter F and a sequence of random
variables X0, X1, . . . , Xn satisfying Xi = E(X | Fi) and, in particular, X0 = E(X)
and Xn = X. For undefined terminology on martingales, the reader is referred to
[19].

For c = (c1, c2, . . . , cn) a vector with positive entries, a martingale X is said to
be c-Lipschitz if

|Xi −Xi−1| ≤ ci(7)

for i = 1, 2, . . . , n.
If the c-Lipschitz condition is not satisfied, we can still consider the following

relaxed version.
A martingale X is said to be near-c-Lipschitz with an exceptional probability η if∑

i

Pr(|Xi −Xi−1| ≥ ci) ≤ η.(8)

Theorem C (Theorem 1 as in [12]). For nonnegative values, c1, c2, . . . , cn, a
martingale X is near-c-Lipschitz with an exceptional probability η. Then X satisfies

Pr(|X − E(X)| < a) ≤ 2e
− a2

2
∑n

i=1 c2i + η.

THE VOLUME OF THE GIANT COMPONENT 405

The idea for the proof of Theorem 1 is to first prove that the volume of gi-
ant component concentrates on its expected value E(Vol(GCC)) and then show that
E(Vol(GCC))/Vol(G) can be approximated by the nonzero root of (3). To do so, we
need to establish several useful facts.

Lemma 3. With probability at least 1 − 2n−k, a vertex with weight greater than
max{8k, 2(k + 1 + o(1))μ(d)} log n is in the giant component of G(w).

Proof. Consider a vertex vi with weight wi ≥ max{8k, 2(k + 1 + o(1))μ(d)} log n.
For a random graph G in G(w), let di denote the degree of vi in G. Then, di is the
sum of independent 0-1 random variables with E(di) = wi. For any nonnegative value
λ, we have

Pr(di − E(di) < −λ) ≤ e
− λ2

2E(di) .

By choosing λ = wi/2, we have

Pr(di < wi/2) ≤ e−wi/8 ≤ n−k.

With probability at least 1 − n−k, vi is in a connected component of size at least
wi/2. If this connected component is not the giant component, then the second
largest component must have size at least wi/2. However, from Theorem B, this can
happen with probability only at most n−k because of the assumption that

wi/2 ≥ (k + 1 + o(1))μ(d) log n.

Hence, with probability at least 1− 2n−k, a vertex with weight greater than max{8k,
2(k + 1 + o(1))μ(d)} log n is in the giant component.

Lemma 4. For any k > 2, with probability at least 1 − 6n−k+2, we have

|Vol(GCC) − E(Vol(GCC))| ≤ 2C1(k + 1)2
√
k − 2

√
n log2.5 n,

for some positive constant C1.
Proof. Let L = L(k) be the set of vertices with weight greater than max{8k, 2(k+

1 + o(1))μ(d)} log n. If L �= ∅, we form a new graph G∗ by adding a new vertex v∗
to G(w) and add edges from v∗ to each vertex in L. G(w) almost surely has a giant
component, and so does G∗. Let X denote the volume of the giant component in
G∗. (While computing the values for Vol of the giant component in G∗, we use the
convention that the weight of v∗ is zero.) If L = ∅, we simply let X = Vol(GCC).

We wish to show the concentration of the random variable X. It is sufficient to
prove the following claim.

Claim B.

Pr(|X − E(X)| < λ) ≤ 4n−k+2,

where λ = 2C1(k + 1)2
√
k − 2

√
n log2.5 n.

We observe that X does not depend on whether {u, v} is an edge if both u
and v are in L. We list all pairs of vertices with at least one vertex not in L by
{f1, f2, . . . , fm}, where m =

(
n
2

)
−

(|L|
2

)
. (The order of edges in the list is arbitrarily

chosen.) For i = 0, 1, 2, . . . ,m, let Fi denote the σ-field generated by exposing pairs
f1, f2, . . . , fi. We apply Theorem C on the edge-exposing martingale X with Xi =
E(X|Fi) and Xm = X. We wish to find a good Lipschitz or near-Lipschitz bound for
|Xi −Xi−1|. By definition, Xi−1 is the conditional expectation of Xi. Choosing the

406 FAN CHUNG AND LINYUAN LU

pair fi as an edge can change X by at most the volume of a small component. Let
vi be a vertex of the pair fi not in L. (If there is a tie, break arbitrarily.) Let Gvi be
the random graph obtained by deleting vi from G(w). The possible small component
containing v before fi is exposed can be broken into at most di largest connected
components excluding the giant component in Gvi .

First, we apply Theorem B to the random graph Gvi
. Note that the average degree

of Gvi
is (1 + o(1))d. Thus, with probability at least 1 − n−k, all small components

of Gvi have size at most (k + 1 + o(1))μ(d) log n. Similarly, with probability at least
1 − n−k, all small components of Gvi have volumes at most C(k + 1) log n for some
positive constant depending only on d. Also, for any positive λ′, the degree di of vi
can be upper bounded by

Pr(di > wi + λ′) < e
− λ2

2(wi+λ′/3) .

By choosing λ′ = wi + 2k log n, we have

Pr(di > 2wi + 2k log n) < e
− λ2

2(wi+λ/3)

= e
− (wi+2k log n)2

2(wi+(wi+2k log n)/3)

< n−k.

Thus, with probability at least 1 − 2n−k, we have

|Xi −Xi−1| ≤ di × (k + 1)C log n

< (2wi + 2k log n)(k + 1)C log n

< (10k log n + 2(k + 1 + o(1))μ(d) log n)(k + 1)C log n

< C1(k + 1)2 log2 n,

where C1 = C(10 + 2μ(d)) is a bounded positive number.
Now we apply Theorem C on martingale X with ci = C1(k + 1)2 log2 n and

η ≤
(
n
2

)
2n−k. For any positive λ, we have

Pr(|X − E(X)| > λ) ≤ 2e
− λ2

2
∑n

i=1 c2i + η

≤ 2e
− λ2

2C2
1(k+1)4n log4 n + 2n−k+2.

For λ = 2C1(k + 1)2
√
k − 2

√
n log2.5 n, we have

Pr(|X − E(X)| > λ) ≤ 4n−k+2,

as desired.
Proof of Theorem 1. For any vertex v with weight wv, the probability that v is

not in the giant component of G(w) can be estimated as follows. To simplify the
notation, we write Ck = max{8k, 2(k + 1 + o(1))μ(d)}.

Case a. wv ≥ Ck log n. By Lemma 3, we have

Pr(v �∈ GCC) ≤ 2

nk
.

Case b. wv ≤ Ck log n. Let Gv be the random graph by removing v from G.
Expose every pair of vertices in Gv. Let H be the giant component of Gv. Applying
Lemma 4 to Gv, with probability at least 1 − 6

(n−1)k−2 , we have

|Vol(H) − E(Vol(H))| ≤ 2C1(k + 1)2
√
k − 2

√
n log2.5 n.

THE VOLUME OF THE GIANT COMPONENT 407

Now we expose the pairs of vertices containing v. We have

Pr(v �∈ GCC|H) =
∏

vj∈V (H)

(1 − wvwjρ)

= e
−

∑
vj∈V (H) wvwjρ+

∑
vj∈V (H) w

2
vw

2
jρ

2

= e−wvVol(H)ρ(1+O(wv d̃ρ)).

The probability that v is not in the giant component can be estimated as follows:

Pr(v �∈ GCC) = E(Pr(v �∈ GCC|H)) + O(n−k+2)

= E(e−wvVol(H)ρ) + O(n−k+2)

= e−wvE(Vol(H))ρ+O(k2wiρ
√
n log2.5 n) + O(n−k+2).(9)

Note that GCC can be formed from H by joining at most dv’s small components.
Thus, we have

|E(GCC) − E(H)| ≤ E(dv)(k + 1)C log n + 2n−k

= wv(k + 1)C log n + 2n−k

= O(wvk log n).

By substituting E(H) by E(Vol(GCC)) + O(wvk log n) in (9), we have

Pr(v �∈ GCC) = e−wvE(Vol(GCC))ρ+O(w2
vkρ logn)+O(k2wvρ

√
n log2.5 n) + O(n−k+2)

= (1 + O(k3ρ
√
n log3.5 n))e−wvE(Vol(GCC))ρ + O(n−k+2).

Putting these together, we have

Vol(G) − E(vol(GCC))

=
∑
v

wv Pr(v �∈ GCC)

=
∑

wv<Ck logn

wv Pr(v �∈ GCC) +
∑

wv≥Ck logn

wv Pr(v �∈ GCC)

=
∑

wv<Ck logn

wv

[
(1 + O(k3ρ

√
n log3.5 n))e−wvE(Vol(GCC))ρ + O(n−k+2)

]

+
∑

wv≥Ck logn

wvO(2n−k)

=
∑

wv<Ck logn

wve
−wvE(Vol(GCC))ρ + O(k3

√
n log3.5 n).

We choose k to be a constant large enough satisfying

Ck ≥

⎧⎨
⎩

2
(1− 2√

de
)

if d > 4
e ,

2
(1− 1+log d

d)
if 1 < d < 2.

By Theorem A, we have CkE(Vol(GCC))ρ ≥ 2. In particular, for any vertex v with
wv ≥ Ck log n, we have

e−wvE(Vol(GCC))ρ ≤ n−2.

408 FAN CHUNG AND LINYUAN LU

Thus, ∑
wv≥Ck logn

wve
−wvE(Vol(GCC))ρ = O(n−1).

Therefore we have

Vol(G) − E(vol(GCC)) =
∑
v

wve
−wvE(Vol(GCC))ρ + O(

√
n log3.5 n).

Letting x0 = Vol(GCC)
Vol(G) and f(x) =

∑n
i=1 wie

−wix − (1 − x)
∑n

i=1 wi, we have

f(x0) = O(
√
n log3.5 n).(10)

The equation f(x) = 0 has only two roots, x = 0 and x = λ0. Note that f(x)
is concave upward with |f ′(0)| = n(d2 − d), and |f ′(λ0)| > cnd. Consider a small
interval I around 0 with diameter O(

√
n log3.5 n). The preimage f−1(I) has diameter

at most O(n−1/2 log3.5 n). Since x0 is bounded away from 0 by a small constant, we
have |x0 −λ0| = O(n−1/2 log3.5 n). Therefore, almost surely the giant component has
volume

λ0Vol(G) + O(
√
n log3.5 n).

Theorem 1 is proved.

6. The complement of the giant component and its size. As we know,
the giant component almost surely exists if the expected average degree d > 1. We
consider the remaining graph G′ after removing the giant component.

For a random graph G in the Erdős–Rényi model G(n, p), where p = d/n, if d > 1,
there is a unique c < 1 satisfying

ce−c = de−d.

We write λ0 = 1− c
d . For any vertex v, the probability that v ∈ S is known [19] to be

e−λ0d = e−d+c =
c

d
.

Hence S has (c
d + o(1))n vertices. After removing the giant component from G(n, p),

the remaining graph can be viewed as a random graph in G(n′, p), where n′ ≈ c
dn.

The above fact can be generalized to the random graph model G(w). The follow-
ing theorem is based on the proof of Theorem 1, and we omit the proof here.

Theorem 5. Suppose that the expected average degree d is strictly greater than
1. Let G′ denote the remaining graph of a random graph G in G(w) by removing the
giant component. Then almost surely G′ is an induced subgraph on a random subset
S satisfying the following:

1. Any vertex vi is contained in S with probability e−λ0wi , where λ0 is as defined
in (3).

2. For any vi, vj ∈ S, the probability that vivj is an edge of GS is wiwj/Vol(G).
The induced subgraph GS is a random graph with given expected degrees

{(1 − λ0)wi}vi∈S .

3. G′ \GS consists of at most O(log n) components each with size O(log n).

THE VOLUME OF THE GIANT COMPONENT 409

We further analyze the size of the giant component. The proof is similar and will
be omitted.

Theorem 6. If the expected average degree is strictly greater than 1, then al-
most surely the giant component in a random graph of given expected degrees wi,
i = 1, . . . , n, has n−

∑n
i=1 e

−wiλ0 + O(
√
n log4.5 n) vertices and (λ0 − 1

2λ
2
0)Vol(G) +

O(
√

Vol(G) log3.5 n) edges, where λ0 is as defined in (3).

7. Comparing theoretical results with the data from the collaboration
graph. To illustrate the effectiveness of our results, we use an example of the collabo-
ration graph of the second kind. Based on the data of Mathematics Review [18], there
are about 401,000 authors as vertices. Two vertices are joined by an edge if there is a
paper by exactly two authors. There are about 284,000 edges. The giant component
has 176,000 vertices and 248,000 edges. Suppose that we model this collaboration
graph as a random graph with some given expected degrees wi. Although we do not
know the exact values of the wi’s, we can make the following deductions using the
theorems in the previous section.

By Theorem 6, we have

λ0(2 − λ0) ≈
Vol(GCC)

Vol(G)
≈ 248000

284000
.

Solving the above equation, we have λ0 ≈ 0.644.
For a fixed vertex vi, the degree of vi follows the Poisson distribution with ex-

pected value wi. Namely, for a fixed k, the probability that vi has degree k is
wk

i

k! e
−wi .

Let nk denote the number of vertices of degree k. Then by the linearity of the expec-
tation, we have

E(nk) ≈
∑
i=0

wk
i

k!
e−wi .

Theorem 6 implies that the size of the giant component satisfies

|GCC| ≈ n−
n∑

i=1

e−λ0wi

= n−
n∑

i=1

e(1−λ0)wie−wi

=
∑
k≥0

nk −
n∑

i=1

∞∑
k=0

(1 − λ0)
k

k!
wk

i e
−wi

≈
∑
k≥0

nk(1 − (1 − λ0)
k)

=
∑
k≥1

nk(1 − (1 − λ0)
k).(11)

Here we estimate nk by

nk ≈ E(nk) ≈
n∑

k=1

wk
i

k!
e−wi .

Grossman, Ion, and De Castro [18] have computed the nk’s as shown in Table 1.

410 FAN CHUNG AND LINYUAN LU

Table 1

The degree sequence of the collaboration graph of the second kind.

n0 n1 n2 n3 n4 n5 n6 n7 n8 n9 · · ·
166381 145872 34227 16426 9913 6670 4643 3529 2611 2032 · · ·

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000

N
um

be
r

of
 v

er
tic

es

Degrees

"collab2.degree"

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06
N

um
be

r
of

 c
om

po
ne

nt
s

Component size

"collab2.comp"

Fig. 3. Degree distribution of the collabora-
tion graph of the second kind.

Fig. 4. Size distribution of connected com-
ponents of the collaboration graph of the second
kind.

By substituting the above nk’s into (11), the size of the giant component is esti-
mated to be about 177, 400. This is rather close to the actual value 176, 000, within
an error bound of less than 1%.

In Figures 3 and 4, we have plotted the degree distribution and the distribution
of the sizes of connected components of the collaboration graph of the second kind.

Acknowledgment. The authors are grateful to the referees for numerous valu-
able comments and crucial corrections on the earlier draft of this paper.

REFERENCES

[1] W. Aiello, F. Chung, and L. Lu, A random graph model for massive graphs, in Proceedings
of the 32nd Annual ACM Symposium on Theory of Computing, Portland, OR, 2000,
pp. 171–180.

[2] W. Aiello, F. Chung, and L. Lu, A random graph model for power law graphs, Experi-
ment. Math., 10 (2001), pp. 53–66.

[3] W. Aiello, F. Chung, and L. Lu, Random evolution in massive graphs, in Handbook of
Massive Data Sets, Vol. 2, J. M. Abello, P. M. Pardalos, and M. G. C. Resende, eds.,
Kluwer Academic Publishers, Norwell, MA, 2002, pp. 97–122.

[4] A.-L. Barabási and R. Albert, Emergence of scaling in random networks, Science, 286 (1999)
pp. 509–512.

[5] A.-L. Barabási, R. Albert, and H. Jeong, Scale-free characteristics of random networks:
The topology of the World Wide Web, Phys. A, 281 (2000), pp. 69–77.

[6] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomp-

kins, and J. Wiener, Graph structure in the web, in Proceedings of the WWW9 Confer-
ence, Amsterdam, 2000, pp. 309–320.

[7] B. Bollabás and O. Riordan, Robustness and vulnerability of scale-free random graphs,
Internet Math., 1 (2003), pp. 1–35.

[8] F. Chung, Spectral Graph Theory, AMS, Providence, RI, 1997.
[9] F. Chung and L. Lu, The diameter of random sparse graphs, Adv. Appl. Math., 26 (2001),

pp. 257–279.
[10] F. Chung and L. Lu, Connected components in a random graph with given degree sequences,

Ann. Comb., 6 (2002), pp. 125–145.
[11] F. Chung and L. Lu, The average distance in random graphs with given expected degrees,

Proc. Natl. Acad. Sci. USA, 99 (2002), pp. 15879–15882.

THE VOLUME OF THE GIANT COMPONENT 411

[12] F. Chung and L. Lu, Coupling online and offline analyses for random power law graphs,
Internet Math., 1 (2004), pp. 409–461.

[13] F. Chung, L. Lu, and V. Vu, The spectra of random graphs with given expected degrees,
Proc. Natl. Acad. Sci. USA, 100 (2003), pp. 6313–6318.

[14] C. Cooper and A. Frieze, A general model of undirected web graphs, Random Structures
Algorithms, 22 (2003), pp. 311–335.

[15] C. Cooper, A. Frieze, and J. Vera, Random deletions in a scale free random graph, Internet
Math., 1 (2004), pp. 463–483.

[16] P. Erdős and T. Gallai, Gráfok elő́ırt fokú pontokkal (Graphs with points of prescribed
degrees), Mat. Lapok, 11 (1961), pp. 264–274 (in Hungarian).

[17] P. Erdős and A. Rényi, On random graphs. I, Publ. Math. Debrecen, 6 (1959), pp. 290–297.
[18] J. Grossman, P. Ion, and R. De Castro, Facts about Erdős Numbers and the Collaboration

Graph, resource website at http://www.oakland.edu/enp/trivia.html.
[19] S. Janson, T. �Luczak, and A. Rucinski, Random Graphs, Wiley-Interscience, New York,

2000.
[20] H. Jeong, B. Tomber, R. Albert, Z. Oltvai, and A.-L. Babárasi, The large-scale organi-

zation of metabolic networks, Nature, 407 (2000), pp. 378–382.
[21] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, and E. Upfal, The

web as a graph, in Proceedings of the 19th ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, Dallas, TX, 2000, pp. 1–10.

[22] A. J. Lotka, The frequency distribution of scientific productivity, J. Washington Acad. Sci.,
16 (1926), pp. 317–323.

[23] L. Lu, The diameter of random massive graphs, in Proceedings of the 12th ACM-SIAM Sym-
posium on Discrete Algorithms, Washington, DC, 2001, SIAM, Philadelphia, pp. 912–921.

[24] C. McDiarmid, Concentration, in Probabilistic Methods for Algorithmic Discrete Mathematics,
Algorithms Combin. 16, M. Habib, C. McDiarmid, J. Ramirez-Alfonsin, and B. Reed, eds.,
Springer-Verlag, Berlin, 1998, pp. 195–248.

[25] S. Milgram, The small world problem, Psychology Today, 2 (1967), pp. 60–67.
[26] M. Mitzenmacher, A brief history of generative models for power law and lognormal distri-

butions, Internet Math., 1 (2004), pp. 226–251.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 2, pp. 412–427

ON THE SPANNING RATIO OF GABRIEL GRAPHS AND
β-SKELETONS∗

PROSENJIT BOSE† , LUC DEVROYE‡ , WILLIAM EVANS§ , AND DAVID KIRKPATRICK§

Abstract. The spanning ratio of a graph defined on n points in the Euclidean plane is the
maximum ratio over all pairs of data points (u, v) of the minimum graph distance between u and v
divided by the Euclidean distance between u and v. A connected graph is said to be an S-spanner if
the spanning ratio does not exceed S. For example, for any S there exists a point set whose minimum
spanning tree is not an S-spanner. At the other end of the spectrum, a Delaunay triangulation is
guaranteed to be a 2.42-spanner [J. M. Keil and C. A. Gutwin, Discrete Comput. Geom., 7 (1992),
pp. 13–28]. For proximity graphs between these two extremes, such as Gabriel graphs [K. R. Gabriel
and R. R. Sokal, Systematic Zoology, 18 (1969), pp. 259–278], relative neighborhood graphs [G. T.
Toussaint, Pattern Recognition, 12 (1980), pp. 261–268], and β-skeletons [D. G. Kirkpatrick and
J. D. Radke, Comput. Geom., G. T. Toussaint, ed., Elsevier, Amsterdam, 1985, pp. 217–248] with
β ∈ [0, 2] some interesting questions arise. We show that the spanning ratio for Gabriel graphs
(which are β-skeletons with β = 1) is Θ(

√
n) in the worst case. For all β-skeletons with β ∈ [0, 1],

we prove that the spanning ratio is at most O(nγ), where γ = (1 − log2(1 +
√

1 − β2))/2. For all
β-skeletons with β ∈ [1, 2), we prove that there exist point sets whose spanning ratio is at least(

1
2
− o(1)

)√
n . For relative neighborhood graphs [G. T. Toussaint, Pattern Recognition, 12 (1980),

pp. 261–268] (skeletons with β = 2), we show that there exist point sets where the spanning ratio
is Ω(n). For points drawn independently from the uniform distribution on the unit square, we show
that the spanning ratio of the (random) Gabriel graph and all β-skeletons with β ∈ [1, 2] tends to ∞
in probability as

√
logn/ log logn.

Key words. Gabriel graph, β-skeletons, spanners, proximity graphs, probabilistic analysis,
computational geometry, geometric spanners

AMS subject classifications. Primary 68U05; Secondary 60D05, 68R10

DOI. 10.1137/S0895480197318088

1. Introduction. Many problems in geometric network design, pattern recogni-
tion and classification, geographic variation analysis, geographic information systems,
computational geometry, computational morphology, and computer vision use the un-
derlying structure (also referred to as the skeleton or internal shape) of a set of data
points revealed by means of a proximity graph (see, for example, [16, 13, 7, 9]). A
proximity graph attempts to exhibit the relation between points in a point set. Two
points are joined by an edge if they are deemed close by some proximity measure. It
is the measure that determines the type of graph that results. Many different mea-
sures of proximity have been defined, giving rise to many different types of proximity
graphs. An extensive survey on the current research in proximity graphs can be found
in Jaromczyk and Toussaint [9].

∗Received by the editors March 10, 1997; accepted for publication (in revised form) July 22, 2005;
published electronically May 12, 2006.

http://www.siam.org/journals/sidma/20-2/31808.html
†School of Computer Science, Carleton University, Ottawa, ON, K1S 5B6, Canada (jit@scs.

carleton.ca). This auhtor’s research was supported by NSERC grant OGP0183877 and by a FIR
grant.

‡School of Computer Science, McGill University, Montreal, PQ, H3A 2A7, Canada (luc@cs.mcgill.
ca). This author’s research was supported by NSERC grant A4456 and by FCAR grant 90-ER-0291.

§Department of Computer Science, University of British Columbia, Vancouver, BC, V6T 1Z4,
Canada (will@cs.ubc.ca, kirk@cs.ubc.ca). The research of these authors was supported by the
NSERC.

412

SPANNING RATIO OF GABRIEL GRAPHS AND β-SKELETONS 413

We are concerned with the spanning ratio of proximity graphs. Consider n points
in R

2, and define a graph on these points, such as the Gabriel graph [8], or the relative
neighborhood graph [16]. For a pair of data points (u, v), the length of the shortest
path between u and v in the graph, where edge length is measured by Euclidean
distance, is denoted by L(u, v), while the direct Euclidean distance is D(u, v). The
spanning ratio of the graph is defined by

S
def
= max

(u,v)

L(u, v)

D(u, v)
,

where the maximum is over all
(
n
2

)
pairs of data points. Note that if the graph is

not connected, the spanning ratio is infinite. In this paper, we will concentrate on
connected graphs.

Graphs with small spanning ratios are important in some applications (see [7] for a
survey on spanners). The history for the Delaunay triangulation is interesting. First,
Chew [2, 3] showed that in the worst case, S ≥ π/2. Subsequently, Dobkin, Friedman,
and Supowit [5] showed that the Delaunay triangulation was a ((1 +

√
5)/2)π ≈ 5.08

spanner. Finally, Keil and Gutwin [10, 11] improved this to 2π/(3 cos(π/6) which is
about 2.42. It is conjectured that the spanning ratio of the Delaunay triangulation is
π/2. The complete graph has S = 1, but is less interesting because the number of edges
is not linear but quadratic in n. In this paper, we concentrate on the parametrized
family of proximity graphs known as β-skeletons [12] with β in the interval [0, 2]. The
family of β-graphs contains certain well-known proximity graphs such as the Gabriel
graph [8] when β = 1 and the relative neighborhood graph [16] when β = 2. As graphs
become sparser, their spanning ratios increase. For example, it is trivial to show that
there are minimal spanning trees with n vertices for which S ≥ n − 1, whereas the
Delaunay triangulation has a constant spanning ratio.

In this note, we probe the expanse between these two extremes. We show that
for any n there exists a point set in the plane whose Gabriel graph satisfies S ≥ c

√
n,

where c is a universal constant. We also show that for any Gabriel graph in the plane,
S ≤ c′

√
n for another constant c′. For all β-skeletons with β ∈ [0, 1], we prove that

the spanning ratio is at most O(nγ), where γ = (1 − log2(1 +
√

1 − β2))/2. For all
β-skeletons with β ∈ [1, 2), we prove that there exist point sets whose spanning ratio
is at least

(
1
2 − o(1)

)√
n . For relative neighborhood graphs, we show that there exist

point sets where the spanning ratio is Ω(n). The second part of this paper deals with
point sets drawn independently from the uniform distribution on the unit square. We
show that the spanning ratio of the (random) Gabriel graph and all β-skeletons with
β ∈ [1, 2] tends to ∞ in probability as

√
log n/ log log n.

2. Preliminaries. We begin by defining some of the graph theoretic and geo-
metric terminology used in this paper. For more details, see [1] and [15].

A graph G = (V,E) consists of a finite nonempty set V (G) of vertices, and a set
E(G) of unordered pairs of vertices known as edges. An edge e ∈ E(G) consisting
of vertices u and v is denoted by e = uv; u and v are called the endpoints of e and
are said to be adjacent vertices or neighbors. A path in a graph G is a finite nonnull
sequence v1v2 . . . vk with vi ∈ V (G) and vivi+1 ∈ E(G) for all i. The vertices v1 and
vk are known as the endpoints of the path. A graph is connected if, for each pair of
vertices u, v ∈ V , there is a path with endpoints u and v (i.e., a path from u to v).

Intuitively speaking, a proximity graph on a finite set P ⊂ R
2 is obtained by

connecting pairs of points of P with line segments if the points are considered to be
close in some sense. Different definitions of closeness give rise to different proximity

414 P. BOSE, L. DEVROYE, W. EVANS, AND D. KIRKPATRICK

graphs. One technique for defining a proximity graph on a set of points is to select a
geometric region defined by two points of P—for example, the smallest disk containing
the two points—and then specifying that a segment is drawn between the two points if
and only if this region contains no other points from P . Such a region will be referred
to as a region of influence of the two points.

Given a set P of points in R
2, the relative neighborhood graph of P , denoted by

RNG(P), has a segment between points u and v in P if the intersection of the open
discs of radius D(u, v) centered at u and v is empty. This region of influence is referred
to as the lune of u and v. Equivalently, u, v ∈ P are adjacent if and only if

D(u, v) ≤ max{D(u,w), D(v, w)} for all w ∈ P,w 	= u, v.

The Gabriel graph of P , denoted by GG(P), has as its region of influence the
closed disk having segment uv as diameter. That is, two vertices u, v ∈ P are adjacent
if and only if

D2(u, v) < D2(u,w) + D2(v, w) for all w ∈ P,w 	= u, v.

A Delaunay triangulation of a set P of points in the plane, denoted by DT (P), is a
triangulation of P such that for each interior face, the triangle which bounds that face
has the property that the circle circumscribing the triangle contains no other points of
the graph in its interior. A set P may admit more than one Delaunay triangulation,
but only if P contains four or more cocircular points. A list of properties of the
Delaunay triangulation can be found in [15].

We describe another graph, a minimum spanning tree, which is not defined in
terms of a region of influence. Given a set P of points in the plane, consider a
connected straight-line graph G on P , that is, a graph having as its edge set E a
collection of line segments connecting pairs of vertices of P . Define the weight of G
to be the sum of all of the edge lengths of G. Such a graph is called a minimum
spanning tree of P , denoted by MST (P), if its weight is no greater than the weight
of any other connected straight-line graph on P . (It is easy to see that such a graph
must be a tree.) In general, a set P may have many minimum spanning trees (for
example, if P consists of the vertices of a regular polygon).

The following relationships among the different proximity graphs hold for any
finite set P of points in the plane.

Lemma 1 (see [15]). MST (P) ⊆ RNG(P) ⊆ GG(P) ⊆ DT (P).
A β-skeleton of a set P of points in the plane is a proximity graph in which the

region of influence, R(u, v, β), for two points u, v ∈ P is a function of β:
1. For β = 0, R(u, v, β) is the line segment uv.
2. For 0 < β < 1, R(u, v, β) is the intersection of the two discs of radius

D(u, v)/(2β) passing through both u and v.
3. For 1 ≤ β < ∞, R(u, v, β) is the intersection of the two discs of radius

βD(u, v)/2 centered at the points (1−β/2)u+(β/2)v and (β/2)u+(1−β/2)v.
4. For β = ∞, R(u, v, β) is the infinite strip perpendicular to the line segment

uv.
The edge uv is in the β-skeleton of P if R(u, v, β)∩P \{u, v} = ∅. Notice that different
values of the parameter β give rise to different graphs. Note also that different graphs
may result for the same value of β if the regions of influence are constructed with open
rather than closed discs; however, these boundary effects do not alter our results.
When necessary, we will explicitly state whether the region of influence is open or
closed. These graphs will be referred to as open β-skeletons and closed β-skeletons,

SPANNING RATIO OF GABRIEL GRAPHS AND β-SKELETONS 415

respectively. The closed 1-skeleton is the Gabriel graph and the open 2-skeleton is
the relative neighborhood graph.

As the value of β increases, β-skeletons become sparser since each region of influ-
ence expands.

Observation 1. If β ≤ β′, then the β′-skeleton is a subset of the β-skeleton of
a point set.

β-skeletons with β > 2 may be disconnected, so we will concentrate on the interval
β ∈ [0, 2].

Fig. 1. Gabriel graph for a random point set.

3. Lower bounds. When β = 0, the β-skeleton of a point set has a spanning
ratio of 1. When β is in the interval (0, 1], Eppstein [6] presents an elegant fractal
construction that proves a nonconstant lower bound on the spanning ratio. His result
is summarized in the following theorem.

Theorem 1 (see Eppstein [6]). For any n = 5k +1, there exists a set of n points
in the plane whose β-skeleton with β ∈ (0, 1] has a spanning ratio of Ω(nc), where
c = log5(5/(3 + 2 cos θ)) and θ < (2/3) sin−1 β.

Our lower bounds apply to β-skeletons with β ∈ [1, 2]. The tower construction
developed here in the proof of Theorem 2 is similar to the tower-like configuration we
later use in lower bounding the spanning ratio of random Gabriel graphs.

Theorem 2. For any n ≥ 2, there exists a set of n points in the plane whose
β-skeleton with β ∈ [1, 2] has a spanning ratio of

S ≥
(

1

2
− o(1)

)√
n.

Note that the closed 1-skeleton is the Gabriel graph and that all β-skeletons with

416 P. BOSE, L. DEVROYE, W. EVANS, AND D. KIRKPATRICK

β > 1 are subgraphs of the Gabriel graph. Therefore, it suffices to prove the theorem
for the Gabriel graph. Also, the 1/2 − o(1) factor can be improved to 2/3.

(0, yi)

pi

pi+1

ri

qi

qi+1

ri − 1/n1/n

1/
√

n

Fig. 2. Illustration of one level in the Gabriel graph tower construction.

Proof. Let m =
n/2�. Place points pi and qi at locations (−ri, yi) and (ri, yi),
respectively, (1 ≤ i ≤ m), where

ri = 1 − (i− 1)/n,

yi = (i− 1)/
√
n.

If n is odd place the remaining point at the same location as p1.
We claim that for each pair pi, qi, the circle with diameter piqi contains the points

pi+1 and qi+1 (1 ≤ i ≤ m − 1). Let d be the distance from the center of the circle
with diameter piqi to the point pi+1. For pi+1 to lie within this circle, d must be at
most ri. By construction,

d =
√

(ri − 1/n)2 + 1/n.

Thus we require (ri − 1/n)2 + 1/n ≤ r2
i or, equivalently, ri ≥ 1/2 + 1/(2n), which

holds for 1 ≤ i ≤ m− 1.
It follows that when i ≤ j, edge piqj does not belong to the Gabriel graph of

these points (unless i = j = m), since pi+1 lies in or on the circle with diameter piqj .
Similarly, when i > j, edge piqj is precluded by point qj+1.

The Euclidean distance between p1 and q1 is two. However, the shortest path
from p1 to q1 using Gabriel graph edges is at least 2ym, which results in a spanning
ratio of

S = ym = (
n/2� − 1)/
√
n =

(
1

2
− o(1)

)√
n.

Note that for Gabriel graphs (β = 1), Eppstein’s result (Theorem 1) implies a
ratio of Ω(nc) with 0.138 < c < 0.139, while Theorem 2 provides a much stronger
bound of Ω(

√
n).

SPANNING RATIO OF GABRIEL GRAPHS AND β-SKELETONS 417

θ θ

θ

θ

θ θ
θ

θ

α
α

α
α

a0

a1

a2

b0

b1

b2

A

A1

A0 B0

B1

Fig. 3. Relative neighborhood graph tower.

For relative neighborhood graphs (β = 2), the lower bound is Ω(n).
Theorem 3. For any n ≥ 2, there exists a set of n points in the plane whose

relative neighborhood graph (open 2-skeleton) has a spanning ratio of Ω(n).
Proof. Refer to Figure 3. Let θ = 60−ε and α = 60+2ε. We will fix ε later. Since

α + 2θ = π, the points a0, a1, . . . , an are colinear. Similarly, the points b0, b1, . . . , bn
are colinear. The point ai+1 blocks the edge aibi. An edge aibj for i < j is blocked by
ai+1 and an edge aibj for i > j is blocked by bi+1. Thus, the only edges in the relative
neighborhood graph of these points are aiai+1, bibi+1, and anbn. Let Ai = ‖ai+1−ai‖.
Let Bi = ‖bi+1 − bi‖.

Triangle(a0, a1, b0) and triangle(a1, b1, b0) are similar; therefore, B0 = A2
0/A. By

the same argument, A1 = A3
0/A

2 and B1 = A4
0/A

3. In general, Ai = A2i+1
0 /A2i and

Bi = A2i+2
0 /A2i+1.

We choose an ε so that A0/A > (1/2)1/(2n). Let L be the length of the path from

a0 to b0. L >
∑n−1

i=0 Ai +Bi =
∑2n−1

i=0 A0(A0/A)i. Since A0/A > (1/2)1/(2n), we have

that
∑2n−1

i=0 A0(A0/A)i > 1/2
∑2n−1

i=0 A0 = A0n. Therefore, L > A0n.

4. Upper bounds. We start with a straightforward upper bound that applies
to all β-skeletons for β ∈ [0, 2].

Theorem 4. For any β ∈ [0, 2], the spanning ratio of the β-skeleton of a set of
n points is at most n− 1.

Proof. Let G be the β-skeleton of a set of n points P . Note that the minimum
spanning tree MST (P) is contained in G. Every edge in the unique path from u to v in
MST (P) has length at most D(u, v), otherwise MST (P) is not minimum. Therefore
the shortest path in G from u to v has length at most (n− 1)D(u, v).

The rest of this section establishes an upper bound for β-skeletons when β ∈ [0, 1].
The β-skeleton of a point set P for β ∈ [0, 1] is a graph in which points x and y in
P are connected by an edge if and only if there is no other point v ∈ P such that
∠xvy > π − sin−1 β.

To upper bound the spanning ratio of β-skeletons, we show that there exists a
special walk SWβ(x, y) in the β-skeleton between the endpoints of any Delaunay

418 P. BOSE, L. DEVROYE, W. EVANS, AND D. KIRKPATRICK

edge xy. We upper bound the length |SWβ(x, y)| of SWβ(x, y) as a multiple of
D(x, y). We then combine this with an upper bound on the spanning ratio of Delaunay
triangulations [10, 11] to obtain our result.

Let DT (P) be the Delaunay triangulation of a points set P . In order to describe
the walk between the endpoints of a Delaunay edge, we define the peak of a Delaunay
edge.

Lemma 2. Let xy be an edge of DT (P). For β ∈ [0, 1], either xy is an edge
of the β-skeleton of P or there exists a unique z (called the peak of xy) such that
triangle(xyz) is in DT (P) and z lies in the β-region of xy.

Proof. Suppose xy ∈ DT (P) is not an edge in the β-skeleton of P . Then there
exists a point v ∈ P such that ∠xvy > π − sin−1 β. Since xy is an edge of DT (P),
there exists a unique z on the same side of xy as v such that disc(xyz) is empty. This
implies ∠xzy ≥ ∠xvy and thus z lies in the β-region of xy. Since β ≤ 1, disc(xyz)
contains that part of the β-region of xy which lies on the other side of xy from z.
Since this circle is empty, z is unique.

We now define the walk SWβ(x, y) between the endpoints of the Delaunay edge
xy. (Note that in a walk edges may be repeated; see Bondy and Murty for details
[1].)

SWβ(x, y) =

{
xy if xy ∈ β-skeleton of P ,
SWβ(x, z) ∪ SWβ(z, y) otherwise (z is the peak of xy).

x

z

y

Fig. 4. The solid lines form the Gabriel graph of the point set with SW1(x, y) in bold. All edges
together form the Delaunay triangulation.

Lemma 3. Given a set P of n points in the plane. If xy ∈ DT (P) then the
number of edges in SWβ(x, y) is at most 6n− 12, for β ∈ [0, 1].

Proof. Since a Delaunay edge is adjacent to at most two Delaunay triangles,
an edge can occur at most twice in the walk SWβ(x, y). Since there are at most
3n− 6 edges in DT (P) by Euler’s formula, SWβ(x, y) can consist of at most 6n− 12
edges.

Lemma 4. Let P be a set of n points in the plane. For any β ∈ [0, 1], for all
x, y ∈ P , if xy ∈ DT (P), then

|SWβ(x, y)| ≤ mγD(x, y),

where γ = (1 − log2(1 +
√

1 − β2))/2 and m is the number of edges in SWβ(x, y).

SPANNING RATIO OF GABRIEL GRAPHS AND β-SKELETONS 419

Proof.1 The proof is by induction on the number of edges m in SWβ(x, y). When
m = 1, i.e., SWβ(x, y) is simply the line segment from x to y, the lemma clearly holds.

If m > 1, then |SWβ(x, y)| = |SWβ(x, z)| + |SWβ(z, y)| for z the peak of xy.
Let k be the number of edges in SWβ(x, z). Thus, m − k is the number of edges
in SWβ(z, y). Let a = D(x, y), b = D(x, z), and c = D(y, z). Since xz and zy are
Delaunay edges, by induction, |SWβ(x, z)| ≤ bkγ and |SWβ(z, y)| ≤ c(m− k)γ . Thus
it suffices to prove that

bkγ + c(m− k)γ ≤ amγ .

By the law of cosines, a2 = b2 + c2 − 2bc cosA, where A is the angle at the peak z.
With this substitution for a, after dividing both sides by c and letting δ = b/c, it
remains to show

δkγ + (m− k)γ ≤ mγ ≤
√

1 + δ2 − 2δ cosA,

where we may assume without loss of generality that δ ∈ [0, 1]. As a function of
k the left-hand side of the equation is maximized when k = m/(1 + δ−s), where
s = 1/(1 − γ). With this substitution for k, after factoring mγ , it suffices to show

δ + δ−γs

(1 + δ−s)γ
≤

√
1 + δ2 − 2δ cosA when δ ∈ [0, 1].

We can simplify the left-hand side using the fact that s = 1/(1 − γ):

δ + δ−γs

(1 + δ−s)γ
=

δ(1 + δ−s)

(1 + δ−s)γ
= δ(1 + δ−s)1−γ = (δs + 1)1−γ .

Thus, after squaring both sides of the inequality, it suffices to show

(1 + δs)2/s ≤ 1 + δ2 − 2δ cosA when δ ∈ [0, 1].

The angle A is minimized (thus minimizing the right-hand side of the inequality)

when z lies on the boundary of the β-region. For such z, cosA = −
√

1 − β2, and it
remains to show

(1 + δs)2/s ≤ 1 + δ2 + 2δ
√

1 − β2 when δ ∈ [0, 1].

Let L(δ) be the left-hand side and R(δ) the right-hand side of this inequality. We
want to show that L(δ) ≤ R(δ) when δ ∈ [0, 1]. The maximum of L(δ) − R(δ) (for
δ ∈ [0, 1]) occurs at δ = 0 or δ = 1 or at some value δ with L′(δ) = R′(δ). At δ = 0,
L(0) = R(0) = 1. At δ = 1,

L(1) = 22/s and R(1) = 2 + 2
√

1 − β2.

Since γ = (1− log2(1+
√

1 − β2))/2, s = 2/(1+log2(1+
√

1 − β2)), and L(1) = R(1).
The derivatives of L(δ) and R(δ) are

L′(δ) = 2δs−1(1 + δs)2/s−1 and R′(δ) = 2δ + 2
√

1 − β2.

1Thanks to Ansgar Grüne and Sébastien Lorenz at the University of Bonn for pointing out a
flaw in an earlier proof.

420 P. BOSE, L. DEVROYE, W. EVANS, AND D. KIRKPATRICK

For β ∈ [0, 1], L′(0) ≤ R′(0), and for our chosen value of γ, L′(1) = R′(1). For
β ∈ [0, 1], γ lies in [0, 1/2], which implies s ∈ [1, 2]. Thus,

L′′′(δ) = 2(1 + δs)2/s−3δs−3(s− 1)(s− 2)(1 − δs) ≤ 0

and the function L′(δ) is concave. Since R′(δ) is linear and L′(1) = R′(1), there is at
most one value of δ ∈ (0, 1), where L′(δ) = R′(δ). Since L′(0) ≤ R′(0), L(δ)−R(δ) is
a minimum at this value. Thus the maximum of L(δ)−R(δ) is 0 for γ = (1− log2(1+√

1 − β2))/2.
Theorem 5. For β ∈ [0, 1], the spanning ratio of the β-skeleton of a set P of n

points in the plane is at most

4π(6n− 12)γ

3
√

3
,

where γ = (1 − log2(1 +
√

1 − β2))/2.
Proof. Given two arbitrary points x, y in P , let M = e1, e2, . . . , ej represent the

shortest path between x and y in DT (P). Keil and Gutwin [10, 11] have shown that
the length of P is at most 2π/(3 cos(π/6)) times D(x, y).

For each edge ei in M , by Lemmas 3 and 4, we know there exists a path in
the β-skeleton whose length is at most (6n − 12)γ times the length of ei. Therefore,
the shortest path between x and y in the β-skeleton has length at most 2π(6n −
12)γ/(3 cos(π/6)) times D(x, y). The theorem follows.

Corollary 1. The spanning ratio of the Gabriel graph (β = 1) of an n-point
set is at most

4π

3

√
2n− 4.

When β lies strictly between 0 and 1, there is a gap between the upper bound and
lower bound on the spanning ratio of β-skeletons. As noted in section 3, the spanning
ratio is at least Ω(nc), where c = log5(5/(3 + 2 cos θ)) and θ < (2/3) sin−1 β. We
have shown here that the spanning ratio is at most O(nγ), where γ = (1 − log2(1 +√

1 − β2))/2; refer to Figure 5 for a graph of the exponents of the upper and lower
bound. For Gabriel graphs (β = 1), the lower bound construction given in section 3,
together with the upper bound given here, show that the spanning ratio is indeed
Θ(

√
n).

5. Random Gabriel graphs. If n points are drawn uniformly and at random
from the unit square [0, 1]2, the spanning ratio of the induced Gabriel graph grows
unbounded in probability. In particular, we have the following theorem.

Theorem 6. If n points are drawn uniformly and at random from the unit square
[0, 1]2, and S is the spanning ratio of the induced Gabriel graph, then

P

{
S < c

√
a log n

log log n

}
≤ 2e−2n1−12a−o(1)

for constants c and a < 1/12. Thus, for a < 1/12, with probability tending exponen-
tially quickly to one,

S ≥ c
√
a log n/ log log n.

SPANNING RATIO OF GABRIEL GRAPHS AND β-SKELETONS 421

0

0.1

0.2

0.3

0.4

0.5

0.2 0.4 0.6 0.8 1
β

0

This paper

Eppstein

Fig. 5. Exponents of n in the upper and lower bound on the spanning ratio of β-skeletons when
β ∈ [0, 1].

Proof. The main idea is to show that a set of n points randomly distributed in the
unit square contains many tower-like structures of size c log n/ log log n, each of which
has spanning ratio approximately the square root of its size. We first define what a
tower-like structure is and then show that the expected number of such structures is
large.

A tower-like structure resembles the towers of section 3 but the points may be
slightly perturbed. For i = 1, ..., k, let Ai and Bi be discs both of radius d/k (the
constant d will be specified later) located at (ri, yi) and (−ri, yi), respectively, where
the sequences ri and yi are given below,

ri = 1 − i− 1

2k
,

yi = (i− 1)

√√√√1/2 − (1 +
√

2)d

k

(
1 − 1/2 − (1 +

√
2)d

k

)
.

The value of d is chosen so that yi is positive (d < 1/(2 + 2
√

2)).
Let C be the smallest square enclosing the Ai and Bi within a border of width yk.

Typically, when k is large enough and the tower is taller than it is wide, C extends
from (−3yk/2 − d/k,−yk − d/k) to (3yk/2 + d/k, 2yk + d/k); see Figure 7 for an
example of such a square, and note that in this figure the discs Ai and Bi would be
smaller than the dots used to represent points.

Assume that each of the Ai and Bi contain exactly one point and C contains no
other data point beyond these 2k points. We claim that among the points in C, the
only edges are those connecting A1 with A2, A2 with A3, and so forth, up to Ak−1

and Ak. Then Ak connects with Bk, Bk with Bk−1 and so forth down to B1. The
proof of this claim is rather technical and is deferred to the appendix. Note that the
Ai’s and Bi’s are disjoint.

Let u and v be the points in A1 and B1, respectively. We have D(u, v) ≤ 2+2d/k.

422 P. BOSE, L. DEVROYE, W. EVANS, AND D. KIRKPATRICK

(0, yi+1)

(0, yi)

Ai+1

Ai

ri

ri+1 √
2Ai

Fig. 6. The construction of Ai and Ai+1.

Also, any path from u to v entirely in C must be equal in length to the chain, which
is longer than 2yk. If the path leaves C, then at least two edges leave C, and those
edges have a length of at least 2yk, taken together. Thus, L(u, v) ≥ 2yk and

S ≥ L(u, v)

D(u, v)
≥ yk

1 + d/k
≥ c

√
k

for sufficiently large k where c is a constant that depends on d.

Let bC denote the scaled down set {bx : x ∈ C}.

Divide [0, 1]2 into n nonoverlapping tiles of size 1/
√
n×1/

√
n. For b = 1/(4

√
kn),

bC fits within one of these tiles. Thus we may place n nonoverlapping copies of bC
within the unit square. For a given data set, we call a tile tower-like if it contains
exactly 2k data points, one each for bAi and bBi, 1 ≤ i ≤ k within it. Let N be the
number of tiles that are tower-like.

Clearly, since the distribution is uniform,

EN = nP{a tile is tower-like}.

Pick one tile and partition the n data points over the following disjoint sets: the bAi’s,
the bBi’s, bC − ∪bAi ∪ bBi, and [0, 1]2 − bC. The cardinalities of these sets, taken
together, form a multinomial random vector with probabilities given by the areas of
the sets involved. For example, area (bAi) = b2πd2/k2. According to the formula for

SPANNING RATIO OF GABRIEL GRAPHS AND β-SKELETONS 423

Fig. 7. Gabriel graph with tower-like square.

the multinomial distribution,

P{a tile is tower-like} =
n!

(n− 2k)!

(
b2πd2

k2

)2k

(1 − 1/n)n−2k

≥ (n− 2k + 1)2k
(

πd2

16nk3

)2k

(1 − 1/n)n

≥ 1

4

(
(n− 2k + 1)πd2

16nk3

)2k

≥ 1

4

(
πd2

32k3

)2k

provided that n is sufficiently large and k < (n + 2)/4. We conclude that

EN ≥ n

4

(
πd2

32k3

)2k

.

If k = a log n/ log log n for a constant a < 1/6, then

EN ≥ n1−6a−o(1) → ∞.

For each one of these tower-like squares, there is a pair of data points for which
the spanning ratio is at least

c
√
k ≥ c

√
a log n

log log n
.

424 P. BOSE, L. DEVROYE, W. EVANS, AND D. KIRKPATRICK

Table 1

Summary table of results on the spanning ratio of β-skeletons.

β = 0 0 < β < 1 β = 1 1 < β < 2 β = 2 β > 2
Lower bound 1 Ω(nc)[6] Ω(

√
n) Ω(

√
n) Ω(n) ∞

Upper bound 1 O(nγ) O(
√
n) O(n) O(n) ∞

c = log5(5/(3 + 2 cos θ)) and θ < (2/3) sin−1 β.

γ = (1 − log2(1 +
√

1 − β2))/2.

Change one of the n data points. That will change the number N by at most
one. But then, by McDiarmid’s inequality [14], we have

P{|N − EN | ≥ t} ≤ 2e−2t2/n.

In particular, for fixed ε > 0,

P{|N − EN | ≥ εEN} ≤ 2e−2ε2n1−12a−o(1) → 0

when a < 1/12. This shows that N/EN → 1 in probability for such a choice of a
(and thus k), and thus that for every ε > 0,

P{N < (1 − ε)EN} → 0.

As another application, we have

P{S < c
√
a log n/ log log n} ≤ P{N = 0}

= P{N − EN ≤ −EN}
≤ 2e−2n1−12a−o(1)

→ 0.

Note that this probability decreases exponentially quickly with n.
We have implicitly shown several other properties of random Gabriel graphs. For

example, a Gabriel graph partitions the plane into a finite number of polygonal re-
gions. The outside polygon which extends to ∞ is excluded. Let Dn be the maximum
number of vertices in these polygons. Then Dn → ∞ in probability, because Dn is
larger than the maximum size of any tower that occurs in the point set, and this was
shown to diverge in probability. From what transpired above, this is bounded from
below in probability by Ω(a log n/ log log n).

6. Conclusion. We studied the spanning ratio of β-skeletons with β ranging
from 0 to 2. This class of proximity graphs includes the Gabriel graph and the rela-
tive neighborhood graph. Table 1 summerizes our results. For β > 2, β-skeletons lose
connectivity; thus, their spanning ratio leaps to infinity. For points drawn indepen-
dently from the uniform distribution on the unit square, we showed that the spanning
ratio of the (random) Gabriel graph (and all β-skeletons with β ∈ [1, 2]) tends to ∞
in probability as

√
log n/ log log n.

Several open problems arise from this investigation. It would be interesting to
close the gap between upper and lower bounds for β-skeletons in the ranges 0 < β < 1
and 1 < β < 2. Also, for random point sets, it would be interesting to try to find a
matching upper bound for the spanning ratio.

SPANNING RATIO OF GABRIEL GRAPHS AND β-SKELETONS 425

a b

A B

u

t

p q

v∗

(0,−r)

s

T

D

Q

Fig. 8. If the region Q contains a point, then for any a ∈ A and b ∈ B the edge ab is not in
the Gabriel graph of the point set. We insure that there is a point in the disc D ⊂ Q.

Appendix. Tower-like construction. The purpose of this section is to show
that the only Gabriel edges among the points in the tower-like construction described
in section 5 are between Ai and Ai+1, Bi and Bi+1, and Ak and Bk for i = 1, . . . , k−1.
Recall that the tower-like construction consists of 2k points, one in each of the discs
Ai, Bi for i = 1, . . . , k, where Ai and Bi are discs of radius d/k centered at (yi, ri)
and (yi,−ri), respectively. The definition of the sequences ri and yi is repeated here:

ri = 1 − i− 1

2k
,

yi = (i− 1)

√√√√1/2 − (1 +
√

2)d

k

(
1 − 1/2 − (1 +

√
2)d

k

)
.

In a Gabriel graph, two points are connected by an edge if and only if the disc
whose diameter is the segment joining those points is empty. In our construction, we
do not have precise information as to the location of the points. We only know that
a point lies within a small disc (whose location we do know). Thus a basic problem
is, given two discs, what is the region that, if it contains a point, will forbid an edge
between a point in one disc and a point in the other. After we have determined this
region, we must show for any two discs in our construction between which we claim
no edge exists, that there is a third disc contained within that pair’s region.

Let A and B be two discs each of radius s, whose centers are at p = (r, 0) and
q = (−r, 0). The region Q we are interested in is the intersection of all discs whose
diameter has one endpoint a in A and the other endpoint b in B; see Figure 8.

426 P. BOSE, L. DEVROYE, W. EVANS, AND D. KIRKPATRICK

We will determine the upper boundary of Q (the points with positive y coordi-
nate). The lower boundary is symmetric. Consider a ray with origin (0,−r) that
intersects the segment pq. A point v on this ray is inside Q if and only if for all points
a ∈ A and b ∈ B, ∠avb ≥ π/2. For each point v, the points a ∈ A and b ∈ B that
minimize ∠avb are the tangent points of the lines through v tangent to the A and B,
respectively. (Strictly speaking, there are two tangent lines from a point to a disc, and
a and b are defined by those tangent lines which form the minimum of the resulting
four possible angles.) For v with positive y coordinate, this minimum angle is a con-
tinuous, decreasing function of the distance between v and (0,−r). Thus the upper
boundary of Q intersects the ray at a single point v∗, where mina∈A,b∈B ∠av∗b = π/2.

Let T be the circle whose diameter is the segment pq, and let t be the point (other
than (0,−r)), where our chosen ray intersects T . We claim that v∗ is the point on
the ray that is distance s

√
2 from t. To show this, consider the lines from t to p and

q. These lines are parallel to the tangent lines from v∗ to a and b, respectively, where
a ∈ A and b ∈ B minimize ∠av∗b. In order to establish that v∗a is parallel to tp,
drop a line perpendicular to tp from v∗ to a point u on tp. Since ∠p, t, (0,−r) = π/4,
the triangle �tuv∗ is a right, isosceles triangle. Its hypotenuse has length s

√
2 so its

sides have length s. Thus v∗a is consistently distance s from tp. The same argument
applies to v∗b and tq. Since ∠ptq = π/2, the claim is established. It is perhaps
surprising that the region Q does not touch A or B.

For our tower-like construction we use a disc to approximate the region Q. The
disc D centered at (0, 0) with radius r−s

√
2 is contained within Q. (Note: The point

v∗ appears to lie on the boundary of D in Figure 8. This is misleading. The point v∗

does not lie on the boundary of D except for v∗ with x-coordinate equal to 0.) Thus
if a point lies within D, there is no Gabriel edge between any two points a ∈ A and
b ∈ B. The tower-like construction insures that this is the case for any pair of discs
A = Ai and B = Bi, by placing the discs Ai+1 and Bi+1 within the disc D. Also the
disc D for any pair A = Ai and B = Bj with i 	= j contains either Ai+1 if i < j or
Bi+1 if i > j. Finally, for A = Ai and B = Aj with i < j− 1, the disc D contains Ak,
where i < k < j. (This holds for Bi discs by symmetry.)

It remains to show that the remaining edges in the tower-like construction do
exist. A similar argument to the one presented above establishes that the union of
the discs with diameter ab with a ∈ A and b ∈ B is a region contained in the disc D̂
of radius r + s

√
2 centered at the origin. This region is empty for each pair A = Ai

and B = Ai+1 since ri ≥ 1/2 while the distance between the centers of A and B is
O(1/

√
k).

Acknowledgments. The authors would like to thank Ansgar Grüne and Sébastien
Lorenz at the University of Bonn for pointing out a flaw in an earlier proof. We also
thank the referees whose comments helped improve the presentation of the paper.

REFERENCES

[1] J. A. Bondy and U. S. R. Murty, Graph theory with applications, Elsevier, New York, 1976.
[2] L. P. Chew, There is a planar graph almost as good as the complete graph, in Proceedings of the

2nd Annual ACM Symposium on Computational Geometry, New York, 1986, pp. 169–177.
[3] L. P. Chew, There are planar graphs almost as good as the complete graph, J. Comput. System

Sci., 39 (1989), pp. 205–219.
[4] L. Devroye, The expected size of some graphs in computational geometry, Comput. Math.

Appl., 15 (1988), pp. 53–64.
[5] D. P. Dobkin, S. J. Friedman, and K. J. Supowit, Delaunay graphs are almost as good

as complete graphs, in Proceedings of the 28th Annual Symposium on the Foundations

SPANNING RATIO OF GABRIEL GRAPHS AND β-SKELETONS 427

of Computer Science, Los Angeles, 1987, pp. 20–26. Also in Discrete Comput. Geom., 5
(1990), pp. 399–407.

[6] D. Eppstein, Beta-skeletons have unbounded dilation, Comput. Geom., 23 (2002), pp. 43–52.
[7] D. Eppstein, Spanning trees and spanners, Handbook of Computational Geometry, North–

Holland, Amsterdam, 2000, pp. 425–461.
[8] K. R. Gabriel and R. R. Sokal, A new statistical approach to geographic variation analysis,

Systematic Zoology, 18 (1969), pp. 259–278.
[9] J. W. Jaromczyk and G. T. Toussaint, Relative neighborhood graphs and their relatives, in

Proceedings of the IEEE, 80 (1992), pp. 1502–1517.
[10] J. M. Keil and C. A. Gutwin, The Delaunay triangulation closely approximates the complete

Euclidean graph, in Proceedings of the 1st Workshop Algorithms Data Struct., Ottawa,
Canada, Lecture Notes in Computer Science 382, Springer-Verlag, 1989, pp. 47–56.

[11] J. M. Keil and C. A. Gutwin, Classes of graphs which approximate the complete Euclidean
graph, Discrete Comput. Geom., 7 (1992), pp. 13–28.

[12] D. G. Kirkpatrick and J. D. Radke, A framework for computational morphology, Comput.
Geom., G. T. Toussaint, ed., Elsevier, Amsterdam, 1985, pp. 217–248.

[13] D. W. Matula and R. R. Sokal, Properties of Gabriel graphs relevant to geographic variation
research and the clustering of points in the plane, Geograph. Anal., 12 (1980), pp. 205–222.

[14] C. McDiarmid, On the method of bounded differences, in Surveys in Combinatorics, London
Math. Soc. Lecture Note Ser. 141, Cambridge University Press, Cambridge, UK, 1989,
pp. 148–188.

[15] F. P. Preparata and M. I. Shamos, Computational geometry. An introduction, Springer-
Verlag, New York, 1985.

[16] G. T. Toussaint, The relative neighborhood graph of a finite planar set, Pattern Recognition,
12 (1980), pp. 261–268.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 2, pp. 428–443

FULL COLOR THEOREMS FOR L(2, 1)-COLORINGS∗

PETER C. FISHBURN† AND FRED S. ROBERTS‡

Abstract. The span λ(G) of a graph G is the smallest k for which G’s vertices can be L(2, 1)-
colored, i.e., colored with integers in {0, 1, . . . , k} so that adjacent vertices’ colors differ by at least
2, and colors of vertices at distance two differ. G is full-colorable if some such coloring uses all
colors in {0, 1, . . . , λ(G)} and no others. We prove that all trees except stars are full-colorable. The
connected graph G with the smallest number of vertices exceeding λ(G) which is not full-colorable
is C6. We describe an array of other connected graphs that are not full-colorable and go into detail
on full-colorability of graphs of maximum degree four or less.

Key words. distance-two colorings, no-hole colorings, channel assignment problems

AMS subject classifications. 05C78, 05C15, 94C15

DOI. 10.1137/S0895480100378562

1. Introduction. Ordinary colorings of graphs that assign different integers to
adjacent vertices have the property that the fewest colors needed can always lie in an
interval all of whose integers are assigned to vertices. The present paper considers
special integer colorings called L(2, 1)-colorings, whose shortest interval containing
all colors may necessarily have integers assigned to no vertex. The paper identifies a
variety of graphs with this feature, along with conditions which imply that every color
in a shortest interval can be assigned to some vertex. Our topic is related to so-called
no-hole colorings, which are L(2, 1)-colorings that use every integer in an interval of
colors but do not presume that the interval is the shortest possible; see, for example,
[3, 4, 7].

L(2, 1)-colorings assign integers to vertices so that adjacent vertices’ colors differ
by at least 2 and so that the colors of any two nonadjacent vertices that are adjacent to
a third vertex differ by at least 1. L(2, 1)-colorings were first investigated extensively
by Yeh [10] and Griggs and Yeh [5] as a generalization of T -colorings for the channel
assignment problem, which were introduced by Hale [6] (see also Roberts [9]). By now,
there are over 50 papers on the subject of L(2, 1)-colorings. For a recent compilation
of references, see [1]. K2 is the smallest graph with the feature that every interval
which contains the integers of an L(2, 1)-coloring also contains an integer assigned to
no vertex.

The rest of this introduction specifies our notation and assumptions, notes prior
results for L(2, 1)-colorings, and outlines our new results.

Let G∗ be the set of finite simple graphs. An L(2, 1)-coloring of G = (V,E) in G∗

is a vertex coloring, f : V → Z for which

|f(u) − f(v)| ≥ 2 for all {u, v} ∈ E,
|f(u) − f(v)| ≥ 1 whenever u �= v, {u, v} �∈ E, and {u, t}, {t, v} ∈ E

for some t ∈ V .

∗Received by the editors September 25, 2000; accepted for publication (in revised form) September
1, 2005; published electronically May 12, 2006.

http://www.siam.org/journals/sidma/20-2/37856.html
†AT&T Labs-Research, Florham Park, NJ 07932 (fish@research.att.com).
‡DIMACS, Rutgers University, Piscataway, NJ 08854 (froberts@dimacs.rutgers.edu). This author

thanks the National Science Foundation for its support under grants NSF-SBR-9709134 and NSF-
INT-0140431.

428

FULL COLOR THEOREMS FOR L(2, 1)-COLORINGS 429

The span λ = λ(G) of G ∈ G∗ is the smallest k ≥ 2 for which G has an L(2, 1)-coloring
f : V → {0, 1, . . . , k}. A span coloring is an L(2, 1)-coloring f : V → {0, 1, . . . , λ}.
We say that G is full-colorable, or FC for short, if some span coloring has f(V) =
{0, 1, . . . , λ}, i.e., so that all colors in {0, 1, . . . , λ} are used by f , and call such an f
a full coloring. On the other hand, G is NFC if it is not full-colorable.

L(2, 1)-colorings into {0, 1, . . . , λ} have natural duals. If f is an L(2, 1)-coloring,
its dual g is defined by g(x) = λ− f(x). Since span colorings must use color 0, g is a
span coloring if and only if f is, and g is full if and only if f is.

Henceforth, f denotes a span coloring, and all colorings considered are span color-
ings. As usual, Pn, Cn, Kn, and Kn,m denote the n-vertex path, n-vertex cycle, com-
plete n-vertex graph, and complete bipartite graph with part sizes n and m, respec-
tively. Every Kn, n ≥ 2, is NFC with λ = 2(n− 1) and f(V) = {0, 2, 4, . . . , 2(n− 1)}.
Moreover [5, 10],

λ(P2) = 2, λ(P3) = λ(P4) = 3, λ(Pn) = 4 for n ≥ 5,
λ(Cn) = 4 for all n ≥ 3.

Although K2 = P2, K3, and P3 are NFC, the two-component graphs K2 + K3 and
P2+P3 are FC, as verified by (f(K2), f(K3)) = ({1, 3}, {0, 2, 4}) and (f(P2), f(P3)) =
({0, 2}, {0, 1, 3}).

Full colorability is impossible when |V | ≤ λ because |{0, 1, . . . , λ}| = λ + 1. We
will note a variety of graphs that have |V | ≤ λ, but will be more concerned with NFC
graphs for which |V | ≥ λ + 1. Pekeč [8] has observed that “almost all” graphs have
λ = |V | − 1 and have all span colorings full. That is, if we choose a random graph
Gn,.5 (a graph with n vertices and edges independently chosen with probability 1/2),
then the probability that λ = n−1 and the probability that all span colorings are full
both approach 1 as n approaches ∞. In fact, this is true for a random graph Gn,p(n)

as long as np(n)2 − 2 log n, n2[1 − p(n)], and n[1 − p(n)] − log n− log log n approach
∞ as n → ∞.

We confine further attention to connected graphs and will base much of our anal-
ysis on Δ = Δ(G), the maximum degree of a vertex in G. Accordingly, let

G = {G ∈ G∗ : G is connected},
GΔ = {G ∈ G : G has maximum degree Δ},

GΔ(λ) = {G ∈ GΔ : G has span λ} for λ ≥ Δ + 1,

where λ ≥ Δ + 1 is presumed because GΔ(λ) is empty if λ ≤ Δ. Also let T , TΔ, and
TΔ(λ) be the subsets of trees in G, GΔ, and GΔ(λ), respectively. The following lemma
and theorem from [5] involve the smallest possible span for Δ.

Lemma 1.1. If G ∈ GΔ(Δ + 1), then f(u) ∈ {0,Δ + 1} for every vertex u of
degree Δ in G.

Theorem 1.2. If T ∈ TΔ, then λ(T) ∈ {Δ + 1,Δ + 2}.
Thus, every tree with maximum degree Δ has span Δ + 1 or Δ + 2. Chang and

Kuo [2] present a polynomial time algorithm that determines λ(T) for T ∈ T . On
the other hand, Griggs and Yeh [5] prove that determination of λ(G) for G ∈ G is
NP-complete.

Henceforth let n = |V |. An outline of our results for n ≥ λ + 1 follows. We will
also identify graphs in GΔ with n ≤ λ.

We show first in section 2 that the only NFC graph in G2 with n ≥ λ + 1 is C6,
where f(C6) = {0, 2, 4}. This is followed in section 3 by the observation that all trees
in TΔ with Δ ≥ 3 and n ≥ λ + 1 are FC.

430 PETER C. FISHBURN AND FRED S. ROBERTS

We then focus on CΔ(λ), the set of connected nontree graphs with maximum
degree Δ and span λ, for Δ ≥ 3 and λ ≥ Δ + 1. A complete account of full coloring
is given in section 4 for C3(4). It has exactly three NFC graphs with n ≥ 5. Two
involve C6 with appended vertices, and the third is C9 with three appended vertices
equally spaced around C9. We also identify every graph in C3(4) that has both a full
coloring and a nonfull coloring.

Partial results are provided for C4(5) and C3(5) in sections 5 and 6. The only
NFC graph in C4(5) with 6 ≤ n ≤ 8 is an 8-vertex graph. C4(5) contains at least six
NFC graphs with n = 9, and at least 18 with n = 10. C3(5) also has no NFC graph
for n = 6 and at least one for n = 8, three for n = 9, and two for n = 10. Moreover,
C3(5) contains an infinite number of NFC graphs.

Our final three results, given in section 7, involve NFC graphs for larger values
of Δ and λ. The first says that CΔ(λ) has an NFC graph with n ≥ λ + 1 whenever
Δ ≥ 3 and Δ + 1 ≤ λ ≤ 2Δ − 1. The second says that every CΔ(Δ + 2) for n ≥ 3
has an NFC graph with n ≥ λ + 1 = Δ + 3, all of whose colorings omit two colors in
{0, 1, . . . ,Δ+2}. The third notes that for every Δ ≥ 3 there is a graph in CΔ(2Δ−2)
with n ≥ λ + 1 = 2Δ − 1 such that every coloring of the graph omits Δ − 2 colors in
{0, 1, . . . , 2Δ − 2}.

2. Maximum degree 1 or 2. Because G1 = {P2} with λ(P2) = 2 and f(P2) =
{0, 2}, the only graph in G1 is NFC. The following theorem addresses Δ = 2.

Theorem 2.1. G2 = {P3, P4, . . .} ∪ {C3, C4, . . .} with λ(P3) = λ(P4) = 3 and
λ(G) = 4 for all other G ∈ G2. All graphs in G2 are FC except for P3, C3, C4, and
C6. Moreover, f(C6) = {0, 2, 4}.

Proof. It is easily seen that G2 = {P3, P4, . . .} ∪ {C3, C4, . . .}. The spans of these
graphs were noted earlier [5]. The members of G2 with n ≤ λ are P3, C3, and C4, and
so they are NFC.

Suppose G = P4 with λ(P4) = 3. The L(2, 1)-coloring 1302 of successive vertices
shows that P4 is FC. When G = Pn for n ≥ 5 with λ(Pn) = 4, the first n terms of
3024130241 . . . taken as successive vertex colors show that Pn is FC.

Suppose G = C6. If a span coloring of C6 uses color 1, then five successive vertex
colors around C6 must be 41302, and no color from {0, 1, 2, 3, 4} for the sixth vertex
is admissible for an L(2, 1)-coloring. Hence 1 �∈ f(C6). Similarly (replace c by 4− c),
3 �∈ f(C6), and the successive colors around C6 are 024024 or 042042.

Successive vertex colors 02413 for C5 show that it is FC. The following successive
vertex colors for the Cn with n ≥ 7 show that they are FC:

n ≡ 0 (mod 3) : 024 . . . 024130413,
n ≡ 1 (mod 3) : 024 . . . 0240314,
n ≡ 2 (mod 3) : 024 . . . 02413.

The only NFC graph in G2 with n ≥ λ + 1 is C6, where f(C6) contains neither 1
nor 3.

3. Trees with Δ ≥ 3. We assume henceforth that Δ ≥ 3. Our next theorem
accounts for all trees that are not paths.

Theorem 3.1. The only NFC trees in T with Δ ≥ 3 are the K1,Δ for Δ =
3, 4,

Proof. We consider trees with Δ ≥ 3. By Theorem 1.2, λ ∈ {Δ+1,Δ+2}. Given
Δ, the tree with the fewest vertices is K1,Δ, which is clearly NFC. We show that all

FULL COLOR THEOREMS FOR L(2, 1)-COLORINGS 431

other trees with Δ ≥ 3 are FC. If tree T has n ∈ {Δ + 2,Δ + 3} vertices, then T
consists of K1,Δ and one or two other vertices. It follows easily that λ(T) = Δ + 1
and that T is FC. Assume henceforth that n ≥ Δ + 4. The rest of the proof divides
into two cases, λ(T) = Δ + 1 or Δ + 2.

Case 1. λ(T) = Δ+2. We show first that we can choose vertices v1, v2, . . . , vΔ+3

so that v1, v2, . . . , vΔ+1 form K1,Δ with center v1 and so that there is an L(2, 1)-
coloring of v1 through vΔ+3 that uses exactly the colors 0, 1, . . . , λ = Δ + 2. The
choice of vΔ+2 and vΔ+3 depends on adjacencies to v1 through vΔ+1. Cases (a)–(c)
below exhaust the possibilities.

(a) Suppose that a neighbor x of v1 has degree 3 or more. Denote two non-v1

neighbors of x by vΔ+2 and vΔ+3. Take f(v1) = 0, f(x) = Δ + 2, f(vΔ+2) = 1,
f(vΔ+3) = 2, and use colors 3 through Δ + 1 for the non-x neighbors of v1.

(b) Suppose that (a) does not apply, but that there are degree-2 neighbors x
and y of v1. Let vΔ+2 and vΔ+3 be non-v1 neighbors of x and y, respectively. Take
f(v1) = 0, f(x) = Δ + 1, f(vΔ+2) = 1, f(y) = Δ + 2, f(vΔ+3) = 2, and use colors 3
through Δ for the other neighbors of v1.

(c) Suppose that neither (a) nor (b) applies. Then all but one of v2 through vΔ+1

are leaves, i.e., terminal vertices, and the other, say v2 for definiteness, has degree
2. Let vΔ+2 be the non-v1 neighbor of v2, and let vΔ+3 be a new vertex adjacent to
vΔ+2. Take f(v1) = 0, f(v2) = 2, f(vΔ+2) = Δ + 2, f(vΔ+3) = 1, and use colors 3
through Δ + 1 for the terminal neighbors of v1.

The tree structure in each case allows us to extend our analysis to an ordering v1,
v2, . . . , vn of all vertices so that vj for j = 2, . . . , n is adjacent to exactly one vertex in
{v1, v2, . . . , vj−1}. We now note that we can proceed greedily to extend the coloring of
{v1, v2, . . . , vΔ+3} to a full L(2, 1)-coloring of T by successively labeling vΔ+4, . . . , vn
with the smallest admissible color in {0, 1, . . . ,Δ+2} as in the first-fit greedy algorithm
in [5]. Because each such vj is adjacent to only one vi for i < j, and because that vi
is adjacent to at most Δ − 1 others, at most Δ + 2 of the Δ + 3 colors are forbidden
for vj , and thus the greedy procedure can be completed. This completes the proof for
λ = Δ + 2.

Case 2. λ(T) = Δ + 1. Given T , let M be the set of degree-Δ vertices in T . We
say that distinct x, y ∈ M are M -neighbors if the unique path between them has no
interior vertex in M . Let s denote a distance between M -neighbors, and let s∗ be
the minimum such s. The following lemma provides a partial basis for the rest of the
proof of Theorem 3.1.

Lemma 3.2. Suppose that there are NFC trees other than K1,Δ with λ = Δ + 1.
Let T be such a tree with the fewest vertices. Then

(i) every leaf of T is adjacent to a vertex in M ,
(ii) |M | ≥ 2,
(iii) s∗ ≥ 3.
Proof. (i) Suppose that leaf l of T is adjacent to vertex u �∈ M . Then T − l is

FC by the fewest-vertices condition for T . Let f be a full coloring of T − l. Whatever
f(u) equals, at least (Δ + 2) − 3 = Δ − 1 colors are available for its neighbors, and
because no more than Δ − 2 of these are used for the non-l neighbors of u, we can
extend the full coloring f of T − l to T . However, this contradicts the presumed NFC
status of T .

(ii) This follows from (i) and T �= K1,Δ.
(iii) If s ∈ {1, 2} for M -neighbors, then their colors in a span coloring of T must

be 0 and Δ + 1 by Lemma 1.1. It follows that T is FC, a contradiction.

432 PETER C. FISHBURN AND FRED S. ROBERTS

We suppose henceforth that T = (V,E) is an NFC tree for Δ ≥ 3 and λ = Δ + 1,
as described in Lemma 3.2. By duality, we can assume that f is a coloring of T with
f(u) = 0 for every u ∈ M , for if f takes on values of 0 and Δ + 1 for vertices in M ,
then f would be a full coloring. By hypothesis, f(V) = {0, 2, 3, . . . ,Δ + 1}. Let

Z = {z ∈ V : f(z) = 0},
X = V \ Z,

and define f ′ : V → {0, 2, 3, . . . ,Δ + 1} by

f ′(z) = 0 for all z ∈ Z,

f ′(x) = Δ + 3 − f(x) for all x ∈ X.

It is easily seen that f ′ is also a coloring of T . We say that x is adjacent to Z if some
z ∈ Z is adjacent to x. A similar definition applies below when Z is replaced by Z1.

Lemma 3.3. Let f be a coloring such that f(u) = 0 for all u ∈ M and f(V) =
{0, 2, 3, . . . ,Δ + 1}. Suppose x ∈ X. If f(x) ∈ {2, 3,Δ,Δ + 1}, then x is adjacent to
Z. For Δ ≥ 5, if f(x) ∈ {4, . . . ,Δ− 1} and x is not adjacent to Z, then x is adjacent
to v, w ∈ X for which f(v) = 2 and f(w) = Δ + 1.

Proof. Suppose f(x) ∈ {2, 3}. If x is a leaf, it is adjacent to a u ∈ M ⊆ Z.
Otherwise, with x adjacent to no z ∈ Z, a change of x’s color to 1 yields a full
coloring of T , a contradiction. If f(x) ∈ {Δ,Δ + 1}, we use f ′ to arrive at the same
conclusion.

Suppose for Δ ≥ 5 that 4 ≤ f(x) ≤ Δ − 1 and x has no neighbor in Z. If x
has no color-2 neighbor, we can change x’s color to 1 to contradict the NFC status
of T . If x has no neighbor v with f(v) = Δ + 1, we use f ′ to arrive at the same
conclusion.

Lemma 3.3 does not exhaust the restrictions on f , but it suffices to derive the
contradiction that T is in fact FC. To begin this part of the proof, let T1 be a tree
with Δ ≥ 3 and λ = Δ + 1 that satisfies (i)–(iii) of Lemma 3.2 and has a coloring
f that satisfies hypotheses and conclusions of Lemma 3.3 with Z1 the vertices of T1

with f(z) = 0. Obviously, T is such a T1.
Let u0 ∈ M be such that all but one of its Δ neighbors are leaves. (It suffices

to choose u0 as one of a pair of M -vertices that are farthest apart.) Let u1 be the
nonleaf neighbor of u0, and let u2 be any other vertex adjacent to u1 in T1. We show
that T1 has a full coloring g for which

(g(u0), g(u1), g(u2)) = (0, 3, 1).

We actually prove a slightly stronger result. Let T2 be T1 with leaves added to
members of Z1 so that all z ∈ Z1 have degree Δ. It is easily seen that λ(T2) = Δ + 1.
Henceforth X2 is the set of vertices of T2 not in Z1. We argue that T2 has a full
coloring h with (h(u0), h(u1), h(u2)) = (0, 3, 1). Then we can take g for T1 as the
restriction of h to the vertices in T1.

In coloring T2, we work outward from u0u1 along paths to the rest of T2. Every
z ∈ Z1 must get color 0 or Δ + 1. The colors of the vertices in X2 are subject only to
the L(2, 1) constraints. For visual convenience, vertices in Z1 will be marked by �.
We consider three subcases, Δ = 3, Δ = 4, and Δ ≥ 5.

Case 2.1. Suppose Δ = 3. Then, under the restrictions of Lemmas 3.2 and 3.3,
and with u0 and v0 maximum-distance vertices in M , f or f ′, extended from T1 to
T2, must be similar to

FULL COLOR THEOREMS FOR L(2, 1)-COLORINGS 433

44

2

222 00000 4

v0u 210 uu

3

333
3

4

To verify the diagram, we start at u0 and go right. We must use colors 024024 . . .
or 042042 . . . on the path between u0 and v0. We may assume the former without
loss of generality. Then every vertex off that path must have color 3, as shown, and
it must be a leaf, or else any other neighbor of it would have color 1. However, note
that we can change the diagram’s coloring to get a full coloring h with color sequence
0314024 . . . 4024 along the path between u0 and v0, with leaves colored appropriately.

Case 2.2. Suppose Δ = 4. We construct h by starting with colors 0, 3, 1 for
u0, u1, u2 respectively. We continue along paths away from u1. Every vertex of Z1

must get color 0 or color Δ + 1. Once we reach and color a vertex in Z1, there are
just enough feasible colors in {0, 1, . . . ,Δ + 1} to color its as-yet-uncolored successors
in the path from u0, since there are at most Δ − 1 of these. We show that we can
continue the coloring any time we have reached and colored a vertex x ∈ X2. We
have to be careful not to color a pair xy of adjacent vertices in X2 going away from
u0 with color pairs 04, 05, 50, or 51 in that order, because then if a new neighbor of y
is in Z1, the h-coloring will be stymied at this point. We shall suppose that we have
achieved a coloring up to h(x) that never uses any of color pairs 04, 05, 50, or 51 on
successive vertices ab for a, b ∈ X2 and show that we can extend the coloring to X2

neighbors y of x so that h(x)h(y) is not one of these color pairs.
Since x ∈ X2, it has at most two successors away from u1. Let x′ be its predecessor

on a path from u1. By checking all cases of h(x)h(x′), one can easily show that there
are always two colors from {0, 1, 2, 3, 4, 5} available for the at most two successors of
x. If x′ is in Z1, then h(x′) = 0 or 5. Moreover, if h(x) is also 0 or 5, then we can
avoid h(x)h(y) = 04, 05, 50, or 51 for y a successor of x by using colors 2 and 3 for
the at most two successors of x.

If x′ is in X2, then h(x′)h(x) �= 04, 05, 50, 51, by hypothesis. By checking the
cases of h(x′)h(x), one can easily see that there are always two colors available for
the successors of x, one of them 0 or 5 to be used on a successor of x in Z1, if there is
such, and the other 2 or 3, thus allowing us to avoid 04, 05, 50, and 51 for h(x)h(y)
for y a successor of x in X2. This gives us a full coloring h of T2.

Case 2.3. Suppose Δ ≥ 5. By our definitions and Lemma 3.3, we have f(x) = 0 ⇔
x ∈ Z1, f(x) ∈ {2, 3,Δ,Δ+1} ⇒ x is adjacent to Z1, and if x with 4 ≤ f(x) ≤ Δ− 1
is not adjacent to Z1, then it is adjacent to vertices of colors 2 and Δ + 1. Under
these conditions, we prove the following claim.

Claim 3.4. Suppose x ∈ X2. If x is not adjacent to Z1, then degree(x) ≤ Δ− 3.
If x is adjacent to Z1, then degree(x) ≤ Δ − 1.

Proof. Suppose x ∈ X2 is not adjacent to Z1. Then f(x) �∈ {0, 2, 3,Δ,Δ + 1}, so
4 ≤ f(x) ≤ Δ−1. The neighbors of x cannot have colors in {0, f(x)−1, f(x), f(x)+1},
so degree(x) ≤ |{0, 2, 3, . . . ,Δ+1}|−4 = Δ−3. Suppose that x ∈ X2 is adjacent to Z1

and f(x) = 2. Then the non-Z1 neighbors of x can have colors in {4, 5, . . . ,Δ+1}, so
x can have as many as 1+(Δ−2) = Δ−1 neighbors. Using f ′, the same thing is true
if f(x) = Δ + 1. On the other hand, if x ∈ X2 is adjacent to Z1 and 3 ≤ f(x) ≤ Δ,
then x can have at most 1 + |{2, 3, . . . ,Δ + 1}| − 3 = Δ − 2 neighbors.

434 PETER C. FISHBURN AND FRED S. ROBERTS

We begin h for T2 as before with colors 0, 3, and 1 for u0, u1, and u2, respectively,
and continue along paths away from u1. Every z ∈ Z1 must get color 0 or Δ + 1, and
once we color a z ∈ Z1 there are just enough feasible colors in {0, 1, . . . ,Δ+1} to color
its as-yet-uncolored Δ − 1 neighbors. In addition, we can continue the coloring from
vertices in X2 without encountering a point where the coloring cannot be continued,
so long as no color pair in {(0,Δ), (0,Δ + 1), (Δ + 1, 0), (Δ + 1, 1)} is ever used on a
pair xy of adjacent vertices in X2 going away from u1. The problem with these four
color pairs is that if y is followed by a z ∈ Z1, then z cannot be colored.

To show that we can continue the h-coloring while avoiding the four noted color
pairs on adjacent vertices in X2, suppose that x ∈ X2 has just been colored. Let c
denote that color of x’s predecessor on the path from u1 to x, and suppose that none
of (0,Δ), (0,Δ + 1), (Δ + 1, 0), (Δ + 1, 1) has been used thus far on adjacent vertices
in X2 going away from u1. We consider the following three cases for coloring x’s
immediate successors:

Case I. x is not adjacent to Z1;
Case II. the predecessor of x is in Z1;
Case III. a successor of x is in Z1.

We analyze these in turn. Let S = {0, 1, . . . ,Δ + 1}, so that |S| = Δ + 2.
Case I. By Claim 3.4, x has at most Δ − 4 successors. If h(x) = 0, the set of

feasible colors for x’s successors that avoids color pairs (0,Δ) and (0,Δ+1) for x and
a successor is S \{c, 0, 1,Δ,Δ+1}, and there are at least Δ−3 such colors. A similar
remark applies if h(x) = Δ + 1. And if 1 ≤ h(x) ≤ Δ, any Δ − 4 of the Δ − 2 colors
in S \ {c, h(x) − 1, h(x), h(x) + 1} can be used for x’s successors.

Case II. Here c must be 0 or Δ+1, so assume c = Δ+1 without loss of generality.
By Claim 3.4, x can have as many as Δ − 2 successors, all of which are in X2. If
h(x) = 0, the set of feasible colors for x’s successors that avoid Δ (and Δ+1, used for
c) is S \{0, 1,Δ,Δ+1}, and there are exactly Δ−2 such colors. If 1 ≤ h(x) ≤ Δ−1,
the feasible color set for x’s successors is S \ {Δ + 1, h(x) − 1, h(x), h(x) + 1}, and
again there are exactly Δ − 2 such colors.

Case III. By Claim 3.4, x can have no more than Δ − 3 non-Z1 successors. If
h(x) = 0, prior avoidance of (Δ + 1, 0) for adjacent X2-vertices implies c ≤ Δ.
Therefore Δ + 1 can be used to color the Z1-successor of x, and the feasible color set
for the non-Z1 successors of x that avoids (0,Δ) and (0,Δ+1) is S \{c, 0, 1,Δ,Δ+1},
which has as at least Δ−3 colors. If h(x) = 1, prior avoidance of (Δ+1, 1) for adjacent
X2-vertices implies c ≤ Δ, and so we use Δ + 1 to color the Z1-successor of x. This
leaves S \ {c, 0, 1, 2,Δ + 1} for the feasible color set for x’s non-Z1 successors (we do
not forbid (1,Δ) for an adjacent pair in X2), and this set has Δ − 3 colors. Similar
remarks apply if h(x) = Δ + 1 or if h(x) = Δ. Further, if 2 ≤ h(x) ≤ Δ − 1, we
use one of 0 and Δ + 1 not equal to c to color x’s Z1-successor, which leaves feasible
color set S \ {c, h(x) − 1, h(x), h(x + 1), (0 or Δ + 1)} with exactly Δ − 3 colors for
the non-Z1 successors of x.

The preceding three cases are exhaustive and show that h can be extended
throughout T2. This completes the proof of Theorem 3.1.

4. Analysis of C3(4). Because Theorems 2.1 and 3.1 account for all trees with
Δ ≥ 2, we focus henceforth on connected graphs that are not trees and let

CΔ(λ) = GΔ(λ) \ TΔ(λ) for Δ ≥ 3 and λ ≥ Δ + 1.

The only nonempty CΔ(λ) with Δ ≥ 3 for which we have complete results is C3(4).

FULL COLOR THEOREMS FOR L(2, 1)-COLORINGS 435

GGG G

4 2

0

42

3

43

4

2

0

1

2

3

0
3

4

3

2

0

4

2

3

0
4

2

0

4

3

0

4 2

0

2

3

Fig. 1. The NFC graphs in C3(4). Numbers shown are L(2, 1)-colorings of span 4.

Theorem 4.1. Every graph in C3(4) is FC except G1 through G4 in Figure 1.
To prove Theorem 4.1, we note that the labels on the vertices of G1–G4, giving

L(2, 1)-colorings of span 4, are unique up to duality. This is obvious from f(C6) =
{0, 2, 4} in Theorem 2.1 for G2 and G3. It follows by contradiction for G4 if we use
Lemma 1.1 and note that if on C9 a label 1 is used and a vertex of degree 3 gets label
0, then we may assume that the first four vertices clockwise from the top of C9 are
labeled 0314. Thus, G1–G4 are in C3(4) and are NFC.

We assume that G is connected with Δ = 3 and λ = 4 and, because it is not a
tree, has a cycle. The only G with these properties and n < 5 is G1 of Figure 1 (C4

with diagonal has λ > 4), so assume henceforth that n ≥ 5.
To complete the proof of Theorem 4.1, we show that every G ∈ C3(4)\{G1, G2, G3, G4}

is FC. Our proof proceeds through a series of observations to a key lemma, Lemma 4.2,
which guides its completion. As usual, all colorings are span colorings.

Step 1. Because λ = 4 for all cycles [5], every cycle uses colors 0 and 4, and so G
uses these colors. By Lemma 1.1, every degree-3 vertex has color 0 or 4.

Step 2. Suppose that Cm in G is colored without using color 2. Then Cm’s
successive colors can be assumed to be

0314 0314 0314 . . . ,

and thus m = 4t for some t ≥ 1. Connectedness and Δ = 3 require at least one
pendant edge or chord for Cm. A chord gives a contradiction because it would have
to join vertices labeled 0 and 3, 0 and 4, or 1 and 4. However, in the first case, 0 has
a neighbor 3 on the cycle, which is impossible, and similarly for the other two cases.
Hence Cm has a pendant vertex which must have color 2 because its edge-mate in Cm

is either 0 (with adjacent colors 3 and 4) or 4 (with adjacent colors 0 and 1). Hence
G is FC.

Step 3. Suppose that Cm in G is colored without using color 1 or, equivalently
(by duality), without using color 3. Then Cm’s successive colors can be assumed to
be

024 024 024 . . . ,

and thus m = 3t for some t ≥ 1.
Suppose t = 1, and thus m = 3. Then either C3 has exactly two pendant edges

to new vertices, which must have colors 1 and 3, or, since G isn’t G1, C3 has a P2 off
of a C3 vertex whose two new vertices must have colors 1 and 3. Thus m = 3 implies
a full coloring.

436 PETER C. FISHBURN AND FRED S. ROBERTS

Suppose t ≥ 2 with m = 3t. A chord in C3t gives a contradiction, and so C3t

has at least one pendant edge to a new vertex. Suppose such a pendant vertex x
has another neighbor y. If y is not adjacent to any vertex of C3t, then the two new
vertices x and y must have colors 1 and 3. If y is adjacent to a vertex of C3t, let u be
the vertex of C3t adjacent to x, and v the vertex of C3t adjacent to y. A contradiction
occurs if u and v receive the same color. Thus, u and v are colored using 0 and 4,
and x and y are colored using 1 and 3. In both situations, we have a full coloring.

Step 4. Steps 2 and 3 imply that the only way to avoid a full coloring of G
is for G to consist of exactly one Cm with m = 3t and t ≥ 2 which is colored
024024 . . . , has no chord, has one or more pendant edges to distinct new vertices,
and has no other vertices. Suppose that G satisfies these restrictions. Number Cm’s
vertices successively as 1, 2, 3, . . . , 3t and assume without loss of generality that the
corresponding colors are 024024 . . . and that vertex 1 has degree 3. The pendant
vertex adjacent to vertex 1 must have color 3. If another pendant edge goes off a
color-4 vertex of C3t, the pendant vertex there must have color 1, and we get a full
coloring. We conclude that a full coloring can be avoided only if all other pendant
edges (if any) besides the one off vertex 1 go off Cm vertices colored 0, i.e., vertices
numbered 4, 7, 10, This brings us to the key lemma.

Lemma 4.2. Suppose G ∈ C3(4) with n ≥ 5. Then G is FC unless it has the
following structure with feasible coloring as indicated:

(i). G has exactly one Cm, m must be in {3t : t ≥ 2}, and the successive vertices
of Cm are colored 024024

(ii). G has at least one other vertex besides the m of Cm, and each of its other
vertices is a terminal vertex adjacent to a color-0 vertex of Cm (and has color
3).

Step 5. Assume that G has the structure described by (i) and (ii) of Lemma 4.2
and that, with the vertices of Cm numbered successively as 1, 2, . . . ,m, the non-Cm

vertices of G for (ii) are adjacent to Cm vertices in {1, 4, 7, 10, . . . ,m− 2}.
Suppose m = 6. Then G is G2 or G3, and both are NFC.
Suppose m = 9. If there are three other vertices besides the nine in C9, the most

allowed by (ii), we get G4, which is NFC. If G has one or two vertices not in C9, we
recolor C9’s vertices successively as 031420314, arranged so that the one other vertex
is adjacent to vertex 1 (the first vertex in the labeling), or the two other vertices are
adjacent to vertices 1 and 4. Then G is FC.

Suppose m ≥ 12. Recolor Cm’s vertices successively as

031 402 413 024 024 . . . 024.

Then G is FC because all pendant vertices are adjacent to vertices in positions
1, 4, 7, 10, . . . ,m − 2 which have colors in {0, 4} and can therefore be colored to give
an overall L(2, 1)-coloring. This completes the proof of Theorem 4.1.

Some FC graphs in C3(4) must be fully colored by every span coloring, whereas
others also have nonfull span colorings. The following result notes when the latter
possibility arises.

Theorem 4.3. Suppose G ∈ C3(4) \ {G1, G2, G3, G4}. Then G has both a full
coloring and a nonfull coloring if and only if it consists entirely of one C3t for t ≥ 3
plus one or more pendant edges to terminal vertices adjacent to vertices of C3t that
are spaced at distances that are multiples of 3 around the cycle.

We omit the proof.

FULL COLOR THEOREMS FOR L(2, 1)-COLORINGS 437

5. Aspects of C4(5). The next cases for C are C4(5) with λ = Δ + 1, and C3(5)
with λ = Δ+2. We present partial results for these cases, then give examples of NFC
graphs with n ≥ λ+ 1 and larger values of Δ and λ. The following theorem indicates
that C4(5) is already considerably more daunting than C3(4).

Theorem 5.1. C4(5) has four graphs with n = 5 (and all are NFC). The only
NFC graph in C4(5) with 6 ≤ n ≤ 8 is the 8-vertex graph G5 in Figure 2. C4(5) has at
least six NFC graphs with n = 9 and at least 18 NFC graphs with n = 10.

Proof. The four graphs with n = 5 in C4(5) are the nonisomorphic ways that one or
more edges can be added between terminal vertices of K1,4 that admit L(2, 1)-colorings
of span 5. Figure 2 shows L(2, 1)-colorings of the other graphs of Theorem 5.1. A
dashed line in the figure indicates an optional edge that is L(2, 1)-compatible but
is not needed to show that G is NFC. With and without the optional edges, there
are six graphs for n = 9 in the figure. The options for n = 10 give 3, 3, 7, and 6
nonisomorphic graphs for I, II, III, and IV, respectively, but the two maximum-edge
graphs in the upper n = 10 row are identical, and the number of distinct graphs
shown for n = 10 is 18. The upper-right of the figure also shows an 8-point graph
that is not NFC but plays a role for n ∈ {9, 10}.

We now verify that the graphs with n ≥ 6 described here are in fact NFC.
In what follows, we begin with the coloring of K1,4 shown at the top of a graph

and refer to its four terminal vertices as the key vertices. Note that a new vertex
cannot be adjacent to both key vertices 2 and 4, or 2 and 5.

We verify that G5 in Figure 2 is NFC, prove that it is the only NFC graph in
C4(5) with 6 ≤ n ≤ 8, and then note that the graphs of Figure 2 for n ∈ {9, 10} are
NFC.

Suppose G = G5. Vertices x and y must be adjacent to key vertices 2 and 3,
and 4 and 5. Then f(x) must be 5, as shown on the upper-left of Figure 2, and
f(y) ∈ {1, 2}. The bottom vertex must have color 0 or 1, but it is forced to have color
0 because of y, which then has f(y) = 2. This gives a unique (up to duality) coloring
that is nonfull. Note that no edges can be added to G5 without forcing λ ≥ 6, since
adding any edge violates an L(2, 1)-coloring requirement.

We now prove that G5 is the only NFC graph in C4(5) with 6 ≤ n ≤ 8. Let G
consist of K1,4 plus sixth, seventh, and eighth vertices x, y, and z, as needed. We
use the usual coloring for K1,4 with color 0 for its center and take x adjacent to one
or more key vertices for connectedness. Switch colors means that colors 2, 3, 4, 5 are
replaced by 5, 4, 3, 2, respectively. We consider n = 6, 7, 8 in turn.

n = 6. If f(x) = 1, G is FC. If f(x) ∈ {2, 3}, change f(x) to 1 for a full coloring.
If f(x) ∈ {4, 5}, switch colors and then change f(x) to 1.

n = 7. Suppose that y as well as x is adjacent to a key vertex. Suppose that
min{f(x), f(y)} > 1, else G is FC. If {f(x), f(y)} ∩ {2, 3} �= φ, change the smaller
color for x and y to 1 to get a full coloring. If {f(x), f(y)} ⊆ {4, 5}, switch colors,
then repeat the preceding step. Suppose that y is adjacent only to x, and f(x) > 1.
If f(x) ≥ 3, take f(y) = 1. If f(x) = 2, set f(y) to 0, switch colors, and then change
f(y) to 1.

n = 8. Let F = {f(x), f(y), f(z)} and suppose 1 �∈ F .
Suppose 0 �∈ F . If F ∩{2, 3} �= φ, change those in {x, y, z} with F ’s smallest color

to color 1 to get a full coloring. If F ⊆ {4, 5}, switch colors and repeat the preceding
step.

Suppose 0 ∈ F , and say f(z) = 0, so that z has edges only to {x, y}. If z has
only one edge to t ∈ {x, y}, take f(z) = 1 if f(t) ≥ 3. If f(t) = 2, switch colors

438 PETER C. FISHBURN AND FRED S. ROBERTS

G5

0

2y5 x

543

0

2

NOT NFC

2

32

 = 8n

3

15

42

0

35

0

25

43
5

4

5

0

5324

0

II

3254

0

5432

I

4

recolor

IVIII

0

2534

4352

0

 = 10n

3

0

2

0

0
y

32
x

5

0

0

5

32
4

0

325

0

5 2

3254

0

5432

 = 9n

0

253

4
35

0

Fig. 2. NFC graphs in C4(5) with L(2, 1)-colorings of span 5 shown, and one non-NFC graph
with a recoloring. Dashed edges can be included in the graph or omitted.

FULL COLOR THEOREMS FOR L(2, 1)-COLORINGS 439

and then set f(z) = 1 to get a full coloring. Assume henceforth that {x, z}, {y, z} ∈
E so that f(x) ≥ 2 and f(y) ≥ 2. If min{f(x), f(y)} ≥ 3, change f(z) to 1; if
max{f(x), f(y)} ≤ 4, switch colors and then change f(z) to 1. It follows that a full
coloring is impossible only if {f(x), f(y)} = {2, 5}.

With f(z) = 0, {f(x), f(y)} = {2, 5}, and {x, z}, {y, z} ∈ E, suppose {x, y} �∈ E.
If y has no edge to a key vertex, we can presume that f(x) = 5 and change (f(z), f(y))
to (1, 3) to get a full coloring. To prevent this, assume that f(y) = 2 with y adjacent
to one or both of the key vertices colored 4 and 5. If y is adjacent to only one key
vertex, we can choose this key vertex to have color 5 and then change (f(z), f(y)) to
(1, 3) to get a full coloring. It follows that the only way to prevent a full coloring is
to have x adjacent to the key vertices with colors 2 and 3, with f(x) = 5, and to have
y adjacent to the key vertices with colors 4 and 5, with f(y) = 2. This gives G5. We
have already proved that G5 is NFC and that any edge additions to G5 force λ > 5.

With f(z) = 0, {f(x), f(y)} = {2, 5}, and {x, z}, {y, z} ∈ E, suppose {x, y} ∈ E.
Assume without loss of generality that f(x) = 5. Then x is adjacent only to the key
vertex with color 3, and y is adjacent to no key vertex or to the key vertex with color
4. If y is adjacent to no key vertex, interchange key vertex colors 2 and 3, then change
(f(z), f(y)) to (1, 3) to get a full coloring. If y is adjacent to the key vertex with color
4, we obtain the middle diagram on the top of Figure 2 and recolor as indicated there
to get a full coloring. This completes the proof that G5 is the only NFC graph in
C4(5) with 6 ≤ n ≤ 8.

It remains to show that graphs for n ∈ {9, 10} in Figure 2 are in fact NFC. This
is immediate from our analysis of G5 for the leftmost diagram for n = 9 and diagram
I for n = 10. The adjacencies of II for n = 10 force the nonfull coloring there.

It is easily seen that, up to duality, the two colorings of the 8-point graph on the
upper-right of Figure 2 are the only L(2, 1)-colorings of that graph. When a P2 is
added from the bottom vertex to an upper-left key vertex, as in the rightmost diagram
for n = 9, the full coloring of the upper-right 8-point graph is not L(2, 1)-feasible, and
so we must use the top-middle coloring on the rightmost diagram for n = 9, and it
is NFC. For a different reason, namely Lemma 1.1, diagram IV for n = 10 must also
use the top-middle coloring, and so it too is NFC.

This leaves only the middle diagram for n = 9 and diagram III for n = 10. Careful
analysis of the middle n = 9 diagram shows that if we delete its left {2, 5} edge, then
the bottom vertex must have color 0 or 1. One can try different values for the right-
most vertex labeled 5 and show that only 0 or 1 works for y. However, the presence
of the left {2, 5} edge forces the bottom vertex to have color 0, and no vertex can
have color 1. For diagram III for n = 10, where the left {2, 5} edge is now optional,
suppose as usual that the top vertex is colored 0. Lemma 1.1 forces the bottom vertex
to be 0 or 5, but a careful analysis shows that 5 is not possible. If the bottom vertex
is 0, then its neighbors do not include 1, so III never has color 1.

6. Aspects of C3(5). The following results for C3(5) are like those for C3(4) in
that no graph in C3(5) for n = 6 is NFC but at least one for n = 8 is NFC. It is true
also that C3(5) has no NFC graph for n = 7, but the proof is case-intensive, so we
omit n = 7 from the following theorem. We also show that C3(5) has arbitrarily large
NFC graphs, and thus it has an infinite number of such graphs in distinction to the
small finite number of Theorem 4.1 for C3(4).

Theorem 6.1. C3(5) has four graphs with n ≤ 5 (and all are NFC). It has 17
graphs with n = 6, and all are FC. The number of NFC graphs in C3(5) is at least
one for n = 8, at least three for n = 9, and at least two for n = 10. Moreover, C3(5)

440 PETER C. FISHBURN AND FRED S. ROBERTS

14

30

2 4

0 1

3 5

1

2 5

0 3

5

5

1

3

4

4

0 1

3 5

4 1

2 5

30

2

5

3 5

2

0 4

3 1

4

0 1

3 5

2

0
53

1

1

32

4 0

2 5

0 3

2 5

0 3

2

4

0

0

1

0

3 5

1 n

4

0

3 5

1

4

5 5

10

3

3

0 1

5

0 1

5

10

5

3G 6

0

3

1

3

0 1
4

0 1

5

35

4

3

1

35

1

5 3 5 3 5 3 5

4

< 5

5 5 G 7

0
4

1

3

0
4

0 1

3

44
0 1

3

0

4

4

3

0 5

2

2

4

3

5

0 1 2

0

4

3

1

5

5

3

1

0
5

2

4

5 2 1

4 4 1 14

3

4

1

2

5

0
4

1

5

3

0 1

5

3

0
4

1

5

0 1 1

0 4

3 1

1 3

5

2 4

0

n = 6

3

0
2

0

_

Fig. 3. Graphs in C3(5) with full colorings for n = 6 and essentially unique span colorings for
n = 8, 9, 10, and 10m− 1.

has at least one NFC graph for every n ∈ {10m− 1 : m = 2, 3, 4, . . .}.
Proof. The four graphs in C3(5) with n ≤ 5 are shown at the top of Figure 3, and

the 17 with n = 6 appear below them. The NFC graphs for n ∈ {8, 9, 10} are in the
lower part of the figure along with the pattern used to prove NFC for n = 10m− 1.

We begin the proof of these observations with comments that lead easily to the
conclusion that the only members of C3(5) with n ≤ 5 are the four graphs in the top
row of Figure 3. (Of course, all are NFC.) A triangle with two appended vertices and
Δ = 3 has λ = 4. The vertices of C4 for λ = 4 are successively colored 0314, and

FULL COLOR THEOREMS FOR L(2, 1)-COLORINGS 441

0

525 3

3210

3 02

0 253

0

5

2545401

5

 λ = 5The two (2, 1) − colorings of of Figure 3 with

The three (2, 1) − colorings of of Figure 3 with λ = 5L G6

7GL

1

3

1
4

545410

2

0

5

0

03

Fig. 4. L(2, 1)-colorings of graphs G6 and G7 of Figure 3 with λ = 5.

thus the addition of a diagonal forces λ = 5. Two diagonals give K4 with λ = 6.
Addition of a vertex outside C4 or outside C4 plus a diagonal leads to the examples.
The successive-vertex coloring of C5 for λ = 4 is 03142. This allows one chord (0 to
4), but two disjoint chords require λ = 5. Two chords with a common vertex or more
than two chords give Δ > 3.

The graphs of Figure 3 for n = 6 are organized by cycle sizes. The only λ = 4
coloring of C6 is 024024, and thus the addition of one or more chords forces λ ≥ 5.
Eight such additions have Δ = 3. Seven appear in the second row of Figure 3. The
eighth has three diagonal chords and λ = 6. The rest of Figure 3 for n = 6 shows
that C3(5) has four graphs with a C5 and no C6, two with a C4 plus diagonal and no
C5 or C6, two with a C4 and no diagonal and no C5 or C6, and two with a C3 and no
C4, C5, or C6. This yields 17 graphs in C3(5) with n = 6, and all are FC.

The rest of Theorem 6.1 is based on the 8-vertex graph G6 in the lower-left of
Figure 3. It has exactly three span colorings with λ = 5; see Figure 4. These three
result from a systematic examination of feasible colorings for the left diamond (C4).
Only the three of Figure 4 extend to the right diamond, and their extensions are
unique. The original G6 coloring yields the colorings for n ∈ {9, 10} at the bottom of
Figure 3. All are NFC.

Let G7 be the 9-vertex graph on the lower halves of Figures 3 and 4. It has only
two L(2, 1)-colorings of span 5, shown in Figure 4, because the rightmost G6 coloring
in the upper part of Figure 4 does not accommodate the new vertex. Denote by
G7(m) the graph in C3(5) with m copies of G7 linked in series by m− 1 new vertices,
as illustrated for m = 3 in the bottom row of Figure 3. It has 9m+m− 1 = 10m− 1
vertices. A new vertex adjacent to a degree-2 vertex of G7 must have color 2 or 4 if
we use the left coloring of G7, and must have color 1 or 3 if we use the right coloring
of G7 in Figure 4. Because {2, 4}∩{1, 3} = φ, all copies of G7 in G7(m) have identical
colorings. If the left G7 coloring is used, all m − 1 linking vertices must have color
4, and if its right dual coloring is used, all m − 1 linking vertices must have color 1.
Hence G7(m) is NFC.

7. More NFC graphs. Our next two theorems follow the lead of G6 on the
lower-left of Figure 3 to obtain NFC graphs for a variety of other (Δ, λ) pairs.

442 PETER C. FISHBURN AND FRED S. ROBERTS

0

3

3

3

0 1

5

10

4

4

5

2, 3

λ = 4 λ = 5
Δ = 3 Δ = 3

2 4

0

4
K

Δ :

k :

k :
k,

Δ

2 3

Δ :

1 1k −

k = λ − Δ

k < Δ − 1
1k + 2k + 3k + 4k + λ − 2 λ − 1 λ

1 <

Δ > 4

0

K 2, 3

K k,

K Δ

0 1 1k −

1k + 2k + 3k + 4k + λ − 2 λ − 1 λ

Fig. 5. L(2, 1)-colorings of graphs for proof of Theorem 7.1.

Theorem 7.1. If Δ ≥ 3, and Δ + 1 ≤ λ ≤ 2Δ− 1, then CΔ(λ) contains an NFC
graph with n ≥ λ + 1.

Proof. Let G be the graph of Figure 5 for Δ ≥ 3, 1 ≤ k ≤ Δ− 1, and λ = Δ + k.
G has 2λ vertices, which exceeds λ + 1. The colorings shown and the fact that
λ(Kk,Δ) = k + Δ verify that its span is in fact λ.

The colorings of Figure 5 are not full because they omit color k. It is easily seen
that the only alternative span coloring of Kk,Δ is the dual of the one shown with
colors Δ + 1 through λ for row 1 (or 4) and 0 through Δ − 1 for row 2 (or 3). This
dual coloring for rows 1 and 2 is L(2, 1)-incompatible with the original coloring of
rows 3 and 4, and if the dual coloring is used for both pairs of rows, then color Δ is
not used. It follows that G is NFC.

The next theorem shows that there are graphs in CΔ(Δ + 2) with n ≥ λ + 1,
whose span colorings must omit at least two colors in {0, 1, . . . , λ}. Of course Kn

colorings omit nearly half the colors in their span coloring sets, but they also have
λ = 2(n−1) > n. Our final result, Theorem 7.3, notes that there are connected graphs
with n ≥ λ+ 1 whose colorings omit nearly half the colors in their span coloring sets.

Theorem 7.2. If Δ ≥ 3 and λ = Δ + 2, then CΔ(Δ + 2) contains an NFC graph
with n = 2(Δ + 1), all of whose colorings use exactly λ− 1 colors.

Figure 6 presents a graph that satisfies the hypotheses and conclusions of Theo-
rem 7.2. Its coloring omits colors Δ − 1 and Δ + 1. The dual coloring omits colors 1
and 3. It is easily seen that all colorings must omit at least two colors. We omit the
proof that no other span coloring of G omits fewer than two colors.

Theorem 7.3. If Δ ≥ 3 and λ = 2Δ− 2, then CΔ(2Δ− 2) contains a graph with
n = 2Δ + 1, all of whose colorings omit exactly Δ − 2 colors in {0, 1, . . . , 2Δ − 2}.

Proof. Given Δ ≥ 3, let G consist of disjoint copies A and B of KΔ and one more
vertex, x, of degree 2 that has an edge to a ∈ A and to b ∈ B. Every coloring of
G assigns colors 0, 2, 4, . . . , 2Δ − 2 to each of A and B, and an odd color between 0

FULL COLOR THEOREMS FOR L(2, 1)-COLORINGS 443

0 1 Δ − 2

Δ Δ + 2
2:

2:

Δ − 1:

K 2, Δ −1

K 2, Δ −1

Δ Δ + 2

Δ − 2

Δ − 1 :

10

Fig. 6. An L(2, 1)-coloring for Theorem 7.2.

and 2Δ − 2 to x. It follows that every coloring of G omits exactly Δ − 2 colors in
{0, 1, . . . , 2Δ − 2}.

Acknowledgment. We are indebted to Jan Kratochv́ıl, Renu Laskar, Aleksan-
dar Pekeč, Denise Sakai Troxell, and John Villalpando for discussions on L(2, 1)-
colorings, and to the referees for their help in improving the present paper.

REFERENCES

[1] G. J. Chang, References for L(2, 1)-Labelings, website at http://www.math.ntu.edu.tw/
gjchang/courses/2005-02-graph-algorithm/2004-02-06-l21-ref-chu.pdf, accessed February
6, 2004.

[2] G. J. Chang and D. Kuo, The L(2, 1)-labeling problem on graphs, SIAM J. Discrete Math., 9
(1996), pp. 309–316.

[3] P. C. Fishburn and F. S. Roberts, No-hole L(2, 1)-colorings, Discrete Appl. Math., 130
(2003), pp. 513–519.

[4] J. P. Georges, D. W. Mauro, and M. A. Whittlesey, Relating path coverings to vertex
labelings with a condition at distance two, Discrete Math., 135 (1994), pp. 103–111.

[5] J. R. Griggs and R. K. Yeh, Labelling graphs with a condition at distance 2, SIAM J. Discrete
Math., 5 (1992), pp. 586–595.

[6] W. K. Hale, Frequency assignment: Theory and application, Proc. IEEE, 68 (1980), pp. 1497–
1514.

[7] D. D.-F. Liu and R. K. Yeh, On distance two labellings of graphs, Ars Combin., 47 (1997),
pp. 13–22.

[8] A. Pekeč, private communication, Fuqua School of Business, Duke University, Durham, NC,
2000.

[9] F. S. Roberts, T -colorings of graphs: Recent results and open problems, Discrete Math., 93
(1991), pp. 229–245.

[10] R. K. Yeh, Labeling Graphs with a Condition at Distance Two, Ph.D. thesis, Department of
Mathematics, University of South Carolina, Columbia, SC, 1990.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 2, pp. 444–462

A LINEAR-TIME ALGORITHM FOR FINDING
A MAXIMAL PLANAR SUBGRAPH∗

HRISTO N. DJIDJEV†

Abstract. We construct an optimal linear-time algorithm for the maximal planar subgraph
problem: given a graph G, find a planar subgraph G′ of G such that adding to G′ an extra edge
of G results in a nonplanar graph. Our solution is based on a fast data structure for incremental
planarity testing of triconnected graphs and a dynamic graph search procedure. Our algorithm can
be transformed into a new optimal planarity testing algorithm.

Key words. planar graphs, planarity testing, incremental algorithms, graph planarization, data
structures, triconnectivity

AMS subject classifications. 05C10, 05C85, 68R10, 68Q25, 68W40

DOI. 10.1137/S0895480197328771

1. Introduction. A graph is planar if it can be drawn in the plane so that no
two edges intersect except at a common endpoint. Planar graphs arise naturally in
many applications of graph theory, e.g., in circuit and VLSI design, network design
and analysis, computational geometry, and are one of the most intensively studied
classes of graphs [21]. Many problems that are computationally hard for arbitrary
graphs have efficient solutions for the case of planar graphs; testing an n-vertex m-edge
graph for planarity takes O(n + m) time [16, 2].

If the graph is not planar, then often a problem arises of how to find a planar
subgraph that is as close to the given graph as possible. A problem of this type is
called a graph planarization problem. For any n-vertex graph G of genus g there exists
a vertex set of size O(

√
ng) whose removal leads to a planar graph [9]. However, the

linear-time implementation of the algorithm that finds such a planarizing set requires
a genus-g embedding of G as input; the best algorithm that finds such an embedding
[10] is polynomial in n, but doubly exponential in g. Another version of the graph
planarization problem, the problem of finding the smallest number of edges whose
removal leaves a planar graph, is known to be NP-complete [13].

Since finding a maximum planar subgraph is very hard, many researchers have in-
vestigated the problem of constructing, for a given n-vertex m-edge graph G, a planar
subgraph G′ of G such that adding to G′ any edge of E(G)−E(G′) results in a non-
planar graph. Such a graph G′ is called a maximal planar subgraph of G. This prob-
lem has been intensively investigated in relation to its applications to circuit layout
[23, 20, 5, 22, 19]. More recently, Cai, Han, and Tarjan [4] developed an O(m log n) al-
gorithm for the maximal planar subgraph problem based on the Hopcroft–Tarjan pla-
narity testing algorithm. Their result improved (if m = o(n2/ log n)) the best previous

∗Received by the editors October 15, 1997; accepted for publication (in revised form) December
7, 2005; published electronically June 2, 2006. A preliminary version of this paper was presented
at WADS ’95 [8]. This work was performed by an employee of the U.S. Government or under U.S.
Government contract. The U.S. Government retains a nonexclusive, royalty-free license to publish
or reproduce the published form of this contribution, or allow others to do so, for U.S. Government
purposes. Copyright is owned by SIAM to the extent not limited by these rights.

http://www.siam.org/journals/sidma/20-2/32877.html
†Los Alamos National Laboratory, Basic and Applied Simulation Science (CCS-5), Los Alamos,

NM 87545 (djidjev@lanl.gov). This work was partially supported by NSF grant CCR-9409191 and
by EPA grant R82-5207-01-0.

444

FINDING A MAXIMAL PLANAR SUBGRAPH 445

O(n2) algorithm from [19] (based on the PQ-tree technique [2]). An algorithm with
the same complexity bound of O(m log n) can also be derived from the incremental
planarity testing algorithm of Di Battista and Tamassia [6]. Using an approach simi-
lar to [6], Westbrook [25] described an algorithm that works in O(n log n+mα(m,n))
worst-case time plus an additional O(n) expected time. La Poutré [24] recently gave
an incremental planarity testing algorithm that takes O(α(m,n)) amortized time per
operation, which can be transformed into an O(n+mα(m,n)) time algorithm for the
maximal planar subgraph problem.

In this paper we describe a linear-time O(n+m)-time algorithm for the maximal
planar subgraph problem. Our algorithm uses a tree-represented decomposition of a
biconnected graph into triconnected components, a common feature of the incremental
planarity testing algorithms [6, 7, 25, 24]. We use a variation of the decomposition tree
of Di Battista and Tamassia; however, any of the alternative representations could be
used instead. Our algorithm has the following structure: (i) it initially constructs a
depth-first spanning tree of G (we can assume w.l.o.g. that G is connected) and uses
it as an initial approximation of the maximal planar subgraph; (ii) it adds the edges
one by one, making an online choice of the next edge to be added so that the testing
time will be appropriately small.

Note that our ability to make a choice of the order in which to insert, while
possible, the edges into the subgraph so that planarity is preserved is essential for
achieving O(1) amortized time per test and insert operation. As noted by Westbrook
[25], there is an Ω(α(m,n)) lower bound on the amortized time per operation of any
algorithm that maintains a decomposition of the triconnected components of a graph
subject to arbitrary edge insertions, which gave rise to the conjecture that O(α(m,n))
is the best possible time bound for the incremental planarity testing problem [24].

Another technique we use is maintaining in each bicomponent a special dynamic
path of nodes of the decomposition tree such that all testing and updating opera-
tions are performed on nodes of that path. This makes it possible to implement data
structures supporting set union and set split operations in a constant amortized time.
Also, we develop a new efficient data structure used for incremental planarity test-
ing of triconnected graphs, which works in O(1) amortized time per operation, an
improvement over the best previous O(α(m,n))-time algorithms.

Independently of our result, Hsu [17] has constructed a linear-time algorithm for
the maximal planar subgraph problem that is based on the modified version of the
Hopcroft–Tarjan planarity testing algorithm.

Our algorithm for the maximal planar subgraph problem can be transformed into
a linear-time algorithm for planarity testing based on an approach entirely different
from the existing ones. The previous algorithms of Hopcroft and Tarjan [16] and
Booth and Lueker [2] are based on the Jordan Curve Theorem, which states that any
closed curve in the plane divides it into exactly two disjoint connected regions, while
our planarity testing algorithm exploits the fact that any triconnected planar graph
has a unique embedding in the plane.

This paper is organized as follows. In section 2 we give some definitions and review
a dynamic data structure that maintains a decomposition of a connected graph into
biconnected and triconnected components. In section 3 we develop an algorithm for
online planarity testing in triconnected graphs in a constant amortized time, which we
use as a subroutine in the main algorithm. In section 4 we give the overall structure
of the algorithm as well as more details about individual data structures and update
operations.

446 HRISTO N. DJIDJEV

2. Preliminaries. In this section we give some basic definitions related to graph
connectivity and graph orientation and describe briefly the data structure for main-
taining the biconnected and triconnected components of a graph developed by Di
Battista and Tamassia [6, 7].

2.1. Definitions. We use standard graph terminology [14]. An undirected graph
G is connected if any two vertices of G are connected by a path. The maximal
connected subgraphs of G are the connected components of G. A vertex v is a cutvertex
if the removal of v increases the number of components. G is biconnected if G is
connected and G has no cutvertices. The maximal biconnected subgraphs of G are
called bicomponents. A pair v, w of vertices of G is a separation pair if the deletion
of v and w disconnects G. G is triconnected if G has no cutvertex and no separation
pair.

An essential property of triconnected graphs related to planarity is given in the
next lemma. A subdivision of a graph H is a graph H ′ that can be obtained by H by
replacing some of the edges of H by paths having at most their endpoints in common.

Lemma 2.1 (see [21]). A planar graph G has a unique embedding in the plane iff
G is a subdivision of a triconnected graph.

The triconnected components (or tricomponents) of G are produced by a recursive
procedure that, if G has a separation pair v, w, divides G into two subgraphs G1 and
G2 defined by the separation pair. Each of v and w is included in both G1 and G2.
For the precise definition and a linear-time algorithm that finds the tricomponents of
a graph, see [15].

An st-graph is a directed acyclic graph with exactly one source and exactly one
sink. Any biconnected graph can be converted into an st-graph using the linear-time
st-numbering algorithm of [11]. A planar st-graph is an st-graph that is embedded
in the plane such that the source and the sink belong to the external face of the
embedding.

Let G be an st-graph. A split pair {a, b} of G is either a separation pair or a
pair of adjacent vertices of G. A split component of a split pair {a, b} is either an
edge (a, b) or a maximal subgraph G′ of G that is an st-graph with a source a and
a sink b such that {a, b} is not a split pair of G′. For instance, the graph G from
Figure 2.1(a) has split pairs (3,8), (3,5), (2,7), and all pairs of adjacent vertices; its
split components are the subgraphs G2, G4, and G5 from Figure 2.1, as well as all
edges of G. If there is no other split pair {a′, b′} such that {a, b} is contained in a
split component of {a′, b′}, then {a, b} is a maximal split pair.

2.2. Decompositions of biconnected graphs. First we consider the case
where G is biconnected. Let n be the number of vertices and m be the number
of edges of G.

We recall the definition of SPQR trees from [6]. An SPQR tree for G is a recur-
sively defined tree T closely related to the decomposition of G with respect to its split
pairs. T has four types of nodes S, P, Q, and R, and there is an st-graph, skeleton(μ),
associated with each node μ of T . The skeletons of the internal nodes of T are in
one-to-one correspondence with the tricomponents of G, and hence their number is
O(m). The endpoints of each edge e in the skeleton of the root of T correspond to
a maximal split pair of G, and e represents the set of split components of that split
pair (see Figure 2.1).

Formally, SPQR trees are defined as follows [6, 7]. Let G be an st-graph with
source s and sink t. An SPQR tree T for G has four types of nodes S, P, Q, and R,

FINDING A MAXIMAL PLANAR SUBGRAPH 447

8

57

6
4

2

3

1

8

2
3

1

8

6

5

3

4

8

6

5

3

5

3

4

2

7

8

(a) (b) (c) (d) (f)(e)

G1 G2 G3 G4 G5G

Fig. 2.1. Illustration of the definition of SPQR trees: (a) A planar st-graph with source 1 and
sink 8. (b) The skeleton associated with the root μ of the SPQR tree for G (μ is an R node). (c)
The split component corresponding to edge (3, 8) of G1. (d) The skeleton associated with node(G2).
(e) The split component corresponding to edge (3, 5) of G3. (f) The split component corresponding
to edge (2, 8) of G1.

and there is an st-graph, skeleton(μ), associated with each node μ of T . T is defined
recursively as follows.

(i) (trivial case) If G is a single edge from s to t, then T consists of a single Q
node μ (leaf), and skeleton(μ) is G.

(ii) (parallel case) If {s, t} is a split pair with split components G1, . . . , Gk, then
the root of T is a P node μ, and skeleton(μ) consists of vertices s and t joined by k
parallel edges e1, . . . , ek.

(iii) (series case) If G has cutvertices x1, . . . , xk−1, k ≥ 1, dividing it into com-
ponents G1, . . . , Gk in this order from s to t, then the root of T is an S node μ, and
skeleton(μ) is the path s = x0, x1, . . . , xk−1, t = xk. We denote edge ei = (xi−1, xi),
for i = 1, . . . , k.

(iv) (rigid case) If none of the above cases applies, let {a1, b1}, . . . , {ak, bk} be the
maximal split pairs of G, and let Gi be the union of all split components of {ai, bi}.
Then the root of T is an R node μ, and skeleton(μ) is the graph obtained by replacing
in G each subgraph Gi by an edge between ai and bi with orientation compatible with
the orientation of Gi (so that the resulting graph is an st-graph.)

In cases (ii)–(iv) μ has children nodes μ1, . . . , μk, which are the roots of the
SPQR trees of G1, . . . , Gk. We denote node(G) = μ and node(Gi) = μi. The edge ei
representing the skeleton of μi in G is called a virtual edge of μi.

A property of the SPQR trees that is relevant to planarity testing is that either
the skeleton of any internal node μ of a SPQR tree has a unique planar embedding
(if μ is an R node), or any two edges can be placed on the same face (if μ is a P, Q,
or S node.) For a more detailed discussion of SPQR trees, see [6, 7]. Our next goal is
to show how to reduce a planarity testing in a graph to planarity testing in skeletons
of nodes of its SPQR tree.

2.2.1. Planarity testing using SPQR trees. An allocation node of a vertex
v of G is a node μ such that skeleton(μ) contains v. A proper allocation node of v,
denoted by proper(v), is the least common ancestor of all allocation nodes of v.

For any pair of vertices v1 and v2 we will define projections pr(v1) and pr(v2),
so either can be a vertex or an edge of the skeleton of an appropriate node μ of the

448 HRISTO N. DJIDJEV

SPQR tree. The relevant property of the projections of v1 and v2 is that v1 and v2

belong to the same face of G iff pr(v1) and pr(v2) will belong to the same face of the
skeleton of μ.

Let v1 and v2 be two vertices of G, and let proper(v1) and proper(v2) be the
proper allocation nodes of v1 and v2. Assume that proper(v1) and proper(v2) belong
to a simple tree path to the root of the SPQR tree. (In our algorithm described
in section 4.1 this will always be the case.) Assume w.l.o.g. that proper(v1) is an
ancestor of proper(v2). Define μ = μ(v1, v2) to be the nearest common ancestor of
proper(v1) and proper(v2) (proper(v1) in our case). Call a joining path p(v1, v2) the
tree path in the SPQR tree between proper(v1) and proper(v2) excluding μ and its
child. For i = 1 and i = 2, if skeleton(μ) contains vi, then define pr(vi) to be the
vertex vi of skeleton(μ); otherwise define pr(vi) to be the virtual edge in skeleton(μ)
corresponding to the subgraph containing vi.

We define a peripheral vertex (resp., edge) of an st-graph to be a vertex (resp.,
edge) that appears on the external face of some st-planar embedding of the graph. A
peripheral node is a node μ whose virtual edge is peripheral.

The following lemma relates incremental planarity testing in an arbitrary graph
to incremental planarity testing in its tricomponents (assuming that proper(v1) is an
ancestor of proper(v2)).

Lemma 2.2 (see [6]). There exists a planar embedding of G such that v1 and v2

belong to the same face iff
(i) pr(v1) and pr(v2) are on the same face of some planar embedding of

skeleton(μ(v1, v2)),
(ii) all the nodes on the joining path p(v1, v2) are peripheral, and
(iii) if proper(v1) �= proper(v2), then v2 is a peripheral vertex of proper(v2).
As an example, apply the lemma for vertices v1 = 2 and v2 = 4 of G (Figure

2.1). Their projections (in G1) are pr(v1) = 2 and pr(v2) = (3, 8). The joining
path p(v1, v2) consists of a single node node(G4) whose virtual edge (3, 5) in G3 is
peripheral. By Lemma 2.2, edge (2, 4) can be added to G while preserving planarity.

In the next sections we will describe data structures for answering queries of types
(i), (ii), and (iii) from Lemma 2.2 in a constant time.

2.3. Decompositions of connected graphs. In order to handle connected
graphs that are not necessarily biconnected we define the BC trees introduced in [7],
which are extensions of the SPQR trees. To construct a BC tree of a connected graph
G first find all bicomponents of G. Then construct a tree that contains a node of type
B for any bicomponent b and a node of type C for any cutvertex c of G. Associate
with each B node b an SPQR tree representing b. Connect a C node c and a B node
b iff c belongs to b. Finally root the tree at an arbitrary B node. Call the nodes of B
level-1 nodes and the nodes of the SPQR trees level-2 nodes.

Suppose that an edge (v1, v2) has to be added to G. If v1 and v2 belong to the
same bicomponent b of G, then the BC tree of G is not changed after the insertion.
In this case we use the SPQR tree associated with b and Lemma 2.2 to determine if
(v1, v2) can be added while preserving the planarity and do the insertion by modifying
the SPQR tree for b. Now assume that v1 and v2 belong to different bicomponents
b(v1) and b(v2). Let p = {b1 = b(v1), c1, b2, c2, . . . , ck, bk+1 = b(v2)} be the unique
tree path between b(v1) and b(v2). If one of b1 and bk+1 is an ancestor to the other
and the edge (ci−1, ci) can be added to bi while preserving planarity, then we call bi
a peripheral level-1 node (with respect to path p.) We have the following lemma [7].

Lemma 2.3. There exists a planar embedding of G such that v1 and v2 belong

FINDING A MAXIMAL PLANAR SUBGRAPH 449

v1 v
2

c
1

v
2

v1

c
1

c
2 c

3

c
2

c
3

(a)

(b)

1 2

3 4

5

6

8

3 4

5 8

1 2

6

13

13

12

12

11

11

10

10

9

9

7

7

Fig. 2.2. Illustration of Lemma 2.3. (a) A graph with 4 bicomponents. (b) The result after
adding the edge (v1, v2) to the planar embedding.

to the same face iff edges (v1, c1) and (ck, v2) can be added to G while preserving
planarity and nodes b2, . . . , bk are peripheral.

See Figure 2.2 for illustration.

For edges (v1, c1) and (ck, v2) we do planarity testing using the corresponding
SPQR trees, and for edges (c1, c2), . . . , (ck−1, ck) we use dynamically maintained max-
imal paths of edges (ci, ci+1) whose addition preserves planarity. We will give more
details in section 4.

In order to use the above data structure for the maximal planar subgraph problem
we also need algorithms for efficiently updating the data structure after the insertion of
any edge. Before discussing the update operations we will describe the data structures
for incremental planarity testing in triconnected graphs and give an outline of the
whole algorithm.

3. The triconnected case. By Lemma 2.1 the maximal planar subgraph (MPS)
problem is easier to solve if a planar spanning triconnected subgraph of the original
graph is known. Accordingly, we will first describe a linear-time algorithm for the fol-
lowing restricted version of the MPS problem, which we call the triconnected maximal
planar subgraph (TMPS) problem.

Problem. Let G be a planar triconnected graph and E′ be a set of edges between
vertices of G. Find a maximal set E′′ ⊂ E′ such that G + E′′ is still planar.

No linear-time algorithm for this problem is known. We will use the solution of
the TMPS problem, with some little modifications, for the problem of finding an MPS
of a general graph.

Our solution is based on the fact that any triconnected planar graph has a unique
planar embedding (Lemma 2.1). Thus an edge (v, w) can be added to a triconnected

450 HRISTO N. DJIDJEV

right(h)left(h)
hright(x)left(x) x f

bottom(f)

top(f)

redge(x)ledge(x)

Fig. 3.1. Illustration of the definition of left, right, top, and bottom for vertices and left and
right for edges.

embedded planar graph so that planarity is preserved, iff v and w belong to the same
face of the embedding. To solve the TMPS problem we need a fast procedure that
tests whether any arbitrary pair of vertices belong to any face of the embedding. We
will use the following method of representing planar embeddings from [6].

3.1. Representation of planar st-graphs. Let G be a planar st-graph. For
any vertex x, the incoming edges in x appear consecutively around x, and the edges
outgoing from x also appear consecutively around x. Thus there is a single face, de-
noted by left(x), that separates incoming and outgoing edges in a clockwise direction,
and there is a single face, right(x), that separates incoming and outgoing edges in a
counterclockwise direction (see Figure 3.1). We also record for x a pair of outgoing
edges ledge(x) and redge(x) which are incident to x and, respectively, to faces left(x)
and right(x). Furthermore, the vertices from the boundary of each face f form two
directed paths. The common start vertex of these paths will be denoted by bottom(f),
and the common endvertex will be denoted by top(f). Furthermore, if h is an edge
of G, we denote by right(h) the face whose clockwise boundary contains h and by
left(h) the other face containing h. The values of left, right, ledge, redge, bottom,
and top can be easily computed in linear time and space.

The next lemma concerns testing in a static graph.
Lemma 3.1. For any triconnected planar n-vertex graph G there exists a data

structure for G that can be constructed in O(n) time, uses O(n) space, and that
provides answers in O(1) time to the following two types of queries:

(a) If v and w are vertices of G and v has degree O(1), check if v and w belong
to the same face of G.

(b) If v is a vertex and e is an edge of G, check if v and e belong to the same face
of G.

Queries of type (b) will be used in the algorithms described in section 4.
Proof. Consider first a query of type (a). Since the degree of v is O(1), we can

answer the query in a constant time by checking if, for some fv ∈ {left(v), right(v)}
and some fw ∈ {left(w), right(w)}, any of the following cases applies:

fv = fw;(3.1)

top(fv) = w or bottom(fv) = w;(3.2)

top(fw) = v or bottom(fw) = v;(3.3)

{v, w} = {top(f), bottom(f)} for some face f incident to v.(3.4)

FINDING A MAXIMAL PLANAR SUBGRAPH 451

Similarly, for queries of type (b), the problem is reduced to checking whether the
following condition is satisfied:

There exists f ∈ {left(e), right(e)} such that f ∈ {left(v), right(v)},(3.5)

or top(f) = v, or bottom(f) = v.

Note that condition (3.4) is the only condition that we would not be able to check
in constant time if there were no restrictions on the degree of v. Our next goal is to
show that for solving the TMPS problem, an edge (v, w) ∈ E′ can always be chosen
so that the number of faces f incident to either v or w that are “relevant” in certain
context to the planarity testing is O(1). The idea of our solution is related to the
observation that any n-vertex planar graph G has no more than 3n − 3 edges and
thus there exists a vertex of G of degree less or equal to 6.

Define a graph Gtb with vertices V (G) and where the set of edges consists of all
pairs (top(f), bottom(f)), for each face f of the graph G. Note that Gtb is a planar
graph (since any edge of Gtb can be drawn inside a distinct face of G), and its edges
correspond to all pairs of vertices that satisfy condition (3.4) above. We define a
graph G′

tb to be the subgraph of Gtb induced by the set of vertices incident to at least
one edge of E′. From the definition of G′

tb the next lemma follows.
Lemma 3.2. For any edge (v, w) ∈ E′ vertices v and w belong to the same

face f of G iff (v, w) is in G′
tb or at least one of the conditions (3.1)–(3.3) holds.

Furthermore, G′
tb always contains a vertex of degree at most 6.

In our algorithm for solving the TMPS problem described below we iteratively
choose a new edge e of E′ using information about the degrees of G′

tb. We add e to
G if the planarity of the embedding is preserved, and we update G′

tb. The following
procedure specifies the details.

Algorithm Triconnected.
{Finds a maximal planar subgraph G of Gtr + E′ if Gtr is triconnected.}
1. Set initially G = Gtr, and construct the data structures of Lemma 3.1 for G.
2. Construct graphs Gtb and G′

tb for G.
3. For each vertex v of G construct the linked list of the edges of E′ incident to v by

a lexicographical sort. For each vertex v of G maintain the values degree1(v)
of the number of edges from E′ incident to v and degree2(v) of the degree of
v in G′

tb. Also maintain a list SmallDeg of all vertices whose degree in G′
tb

is less than or equal to 6.
4. Repeat until E′ = ∅.

4.1. Pick any vertex x in SmallDeg and choose any edge (x, y) ∈ E′.
4.2. If any of the conditions of Lemma 3.1 is satisfied for x = v and y = w,

then add (x, y) to G and update variables left, right, top, bottom, and
the graph G′

tb for G.
4.3. Remove (x, y) from E′ and update G′

tb and variables degree1, degree2,
and SmallDeg.

The correctness of Algorithm Triconnected follows from Lemmas 2.1 and 3.2.
Next we will discuss how the algorithm can be implemented in linear time.

By the definition of G′
tb and Lemma 3.2 the list SmallDeg is nonempty iff E′ �= 0

and the conditions from step 4.2 of Algorithm Triconnected can be checked in O(1)
time. Furthermore, the initial construction of the data structures in steps 1 and 2
requires O(n) time. Updating any of the data structures except left and right takes
clearly O(1) time.

Maintaining the left and right relations is more complex, because inserting a new
edge in G splits a face f of G into two faces f1 and f2 which may require as many as

452 HRISTO N. DJIDJEV

half of the vertices and edges on f to change their left or right pointer from f to f1

or f2. Next we show how to solve this problem making use of the microset technique
of Gabow and Tarjan [12].

3.2. A find-split-insert data structure.

3.2.1. Formulation of the problem. We describe a data structure that main-
tains a partition of a set of edges of a graph G into a set P of edge-disjoint paths
under the following operations:

find(e): Return the label of the path containing edge e within it. (Each path is
labeled by a distinct integer.)

split(v, e): Split the path p containing edge e = (v, w) into two paths, the path of
the vertices from the start vertex of the path to v and the path from v to the
last vertex of the path.

insert vertex(v, (x, y)): Replace edge (x, y) by edges (x, v) and (v, y) in the path
containing (x, y).

add vertex(x, (y, z)): If edge (y, z) belongs to a path p and y is an endpoint of p,
then add a new edge (x, y) to p making x an endpoint of p.

insert edge(v, w, e): Transform the path p containing e into two paths, one consisting
of the portion of p between v and w and the other containing the remaining
two parts of p joined by an additional edge (v, w). Here it is assumed that v
and w belong to p and divide it into exactly three nonempty open paths.

new path(x, y): Create a new path consisting of a single new edge (x, y). It is
assumed that no edge (x, y) belongs to a current path in P.

Each operation will take O(1) amortized time on a random access machine with
unit cost measure and O(log n) bits machine word. The technique we use is similar
to the one developed by Gabow and Tarjan [12] for a variation of the set union
problem. The same technique was used also by Imai and Asano [18] for the problem
of maintaining a partition of a sorted sequence of integers under a sequence of split,
find, and insert operations.

3.2.2. The data structure. The edges currently in paths of P are partitioned
into subsets of edges occupying consecutive memory locations called mezzosets. Each
mezzoset contains at most ln = �log n	 edges so that the total number of mezzosets
is O(n/ log n) (n > 2 is the total number of edges of G). Each mezzoset is partitioned
into smaller blocks called microsets of at most λ(n) = �log log n	 edges each so that
the total number of microsets is O(n/ log log n).

Each path is labeled by a distinct integer. Each mezzoset and each microset will
have a label that can be a name of a path in P or nil. A path will consist of a
subset of the edges belonging to at most �n/ln	 mezzosets with the label of p, at most
λ(n) additional microsets with the label of p, and at most 2 microsets with label nil.
Intuitively, mezzosets and microsets with the label of p will be “internal” for p; i.e.,
they will contain some edge of p but will contain neither the first nor the last edge of
p. (We will make sure that no more than one such path exists for any microset so the
labels of microsets are uniquely defined.)

A microset containing only internal edges will be called a labeled microset, and a
mezzoset containing only identically labeled microsets will be called a labeled mezzoset.
The other microsets and mezzosets will be called unlabeled; see Figure 3.2 for an
illustration. The label of any path p is recorded in variables associated with the first
and the last edge of p as well.

FINDING A MAXIMAL PLANAR SUBGRAPH 453

mc mc mc mcmz mz mz1 1 3 2 3 42

u l l l l l u

mz = mezzoset
mc = microset

l = labeled
u = unlabeled

(a)

mc mc

ppppp
3 41 2

(b) (c)

Fig. 3.2. Examples: (a) A (long) path consisting of 3 mezzosets and 4 microsets. (b) An
unlabeled microset containing (short) paths p2 and p3 and portions of paths p1 and p4. (c) A labeled
microset containing only internal edges of a path p.

We will use different strategies for maintaining partitions and implementing the
query and update operations on levels of (sequences of) labeled mezzosets or microsets
and on the level of individual microsets. To execute an update operation involving an
edge e, we locate the microset μ1 and the mezzoset μ2 containing e. Then we perform
the necessary updates on μ1 using the algorithm for microsets. If μ1 is unlabeled, we
are done. If μ1 is labeled, we apply the algorithm for labeled microsets on μ1. Finally,
if μ2 is labeled, we apply the algorithm for labeled mezzosets on μ2. Next we will
describe the algorithms applied in each case.

On levels of labeled mezzosets we use the “relabel the smaller half” technique [12].
By this technique we store with each mezzoset its label and maintain the sequence of
labeled mezzosets in any path as a doubly linked list. When we split a path the labels
of the labeled mezzosets in the smaller half are updated. For a set of k mezzosets this
algorithm requires totally O(k log k) time for all splits and O(1) time for any query
[1]. Since k = O(n/ log n), this yields an O(n) bound on the time for operations
on the level of labeled mezzosets. A similar method and the same bound apply for
maintaining the labels of the labeled microsets.

For maintaining the partition of the edges in the individual microsets we use the
following table lookup method. The edges in each microset are arranged in doubly
linked lists corresponding to the partition defined by paths in P. With each edge
e of a microset μ we keep the addresses of the previous and the next edge in the
list containing e, if any. The addresses are computed relative to the beginning of
the memory block corresponding to μ, and therefore each address occupies �log λ(n)	
bits. The whole microset can be recorded in one computer word of O(λ(n) log λ(n)) =
O(log n) bits.

Next we will explain how this information can be used to answer queries and
implement updates in constant time.

Note. The main difference between our implementation and those of Gabow and
Tarjan [12] and Imai and Asano [18] is that we maintain linked list data structures
within each microset, while in previous cases the data structures maintained are ar-
rays. We need lists in order to implement the insert edge operation.

3.2.3. The find operation on microset level. To answer a find(e) query one
can follow the backward or forward pointers to the first or the last edge of the path,
if any of these edges is in the same microset. Recall that information about the name
of the path is associated with the first and the last edge. If both the first and the last
edge are contained in other microsets, then the current microset must be a labeled

454 HRISTO N. DJIDJEV

one, and its label gives the name of the path containing e.
In order to do these computations faster, we use the table lookup method. The

idea of the table lookup approach is to precompute the results of all possible find
operations for any possible structure of the microset and record them in a table. Due
to the small size of the microsets, the preprocessing will take only linear time and
space, as illustrated bellow.

We compute a first and last table defined as follows. If e is an edge in a microset
μ, if i is the position of e in μ, and if μ is encoded by an integer m, then first(m, i)
(resp., last(m, i)) denotes the address of the first (resp., last) edge of the path con-
taining e that is also in μ. The number of entries of first is 2λ(n) log λ(n)λ(n), and
each entry can be computed in O(λ(n)) time. Since λ(n) = �log log n	, then

2λ(n) log λ(n)λ(n)2 = 2(λ(n)+2) log λ(n) = 2o(log n) = o(n).

Thus the entire first table occupies O(n) space and can be constructed in O(n) time.
Similarly we compute the last table.

3.2.4. The update operations. Note that updating a pointer in the represen-
tation of a microset μ is equivalent to changing a digit in the radix λ(n) representation
of μ. Thus the computer word representing μ can be updated in a constant time if
one precomputes the values of λ(n)k, k = 1, . . . , λ(n) − 1, and stores them in a table.
We implement the update operations on a microset level as follows:

• split(v, e): Let μ be the microset containing e. Splitting along v the doubly
linked list representing μ requires updating the corresponding O(1) pointers,
which takes a constant time.

• insert vertex(v, (x, y)): Update the corresponding pointers in the doubly
linked list. If as a result of the insertion the size of the microset, μ, becomes
larger than λ(n), divide μ into two microsets of sizes at most λ(n)/2 + 1 so
that at most one path does not belong to a single microset and compute the
encodings of the resulting microsets. The time required for one division is
O(λ(n)). The total time for all divisions is easily shown to be O(n). Similarly
divide a mezzoset if its size exceeds ln.

• add vertex(x, (y, z)): The implementation of this operation is similar to
insert vertex.

• insert edge(v, w, e): Recall that for this operation v and w must belong to the
same path p determined by e. If v and w belong to the same microset, then
just update the corresponding pointers in O(1) time. If v and w belong to
different microsets, then split p at v and w by changing the pointers. Add the
edge (v, w) to the corresponding path in one of the microsets. If that microset
becomes too large, divide it into two microsets. Recall that the doubly linked
lists of labeled microsets and mezzosets representing the two resulting paths
are updated at the corresponding higher levels (levels of labeled microsets
and mezzosets).

• new path(x, y): Choose an arbitrary microset μ and add the path consisting
of the edge e = (x, y) to μ. This is done by adding in μ the next and previous
pointers from e to itself and storing with e a pointer to its location in microset
μ.

We need also to explain how the above update operations affect the labels of
mezzosets and microsets. Recall that a microset or a mezzoset is labeled if for some
path it contains only internal edges of that path. Consider a split in a microset μ.

FINDING A MAXIMAL PLANAR SUBGRAPH 455

y x

y

y

y x

x x

(a) (b)

(e)(d)(c)

y

x

f

fff

yy

f
x

x

q

p q

p q
pp q

p

q

Fig. 3.3. Cases for inserting edge (x, y) in f .

After the operation the labels of μ and the mezzoset containing μ are set to nil. After
an insert vertex in μ, if μ has not been divided because of its larger size, then no label
is changed. If the microset is divided, we have the following two cases: If the original
microset has a non-nil label, then copy the same label to both resulting microsets. If
the original microset has a nil label, label any of the resulting microsets that consists of
edges from only one path p but contains no endpoint of p (if there is such a microset)
with the label of p, or otherwise keep the nil label. A similar rule applies when a
mezzoset is divided into two mezzosets because of a larger size. Add vertex operation
is similar to insert vertex. Finally, for insert edge, if the microset and mezzoset are
not divided because of a larger size, we keep the original label (or nil). If any of them
is divided, we assign labels to the resulting microsets using the rules described for
insert vertex.

We summarize the main result from this subsection in the following theorem.
Theorem 1. Any sequence consisting of at most k insert vertex, add vertex,

insert edge, and new path operations and at most l find and split operations on a
set of edge-disjoint paths P can be implemented in O(k + l + m) time and O(k + m)
space, where m is the original number of edges in the paths of P.

3.2.5. Maintaining the left and right relations. Now let us consider the
original problem of maintaining the left and right relations in Algorithm Tricon-
nected. Let us consider the right relation for vertices (the right relation for edges
and the left relations are maintained similarly). We maintain the set of paths
P representing the original triconnected planar st-graph G. Specifically, for any face
f , we keep in P the simple directed path p of all edges e such that right(e) = f .
We associate with p a variable containing the name of f . Denote by q the other
directed path on f . Let x ∈ p and y be two vertices on f . The addition of a new
edge e = (x, y) to the embedding can be implemented as a sequence of O(1) of the
above type operations on paths in P depending on the locations of x and y in p and
q (see Figure 3.3). Consider the following cases. By x′ and y′ we denote two vertices
adjacent, respectively, to x and y, as denoted on Figure 3.3.

(a) x �∈ q, y ∈ q, y �∈ p (Figure 3.3(a)). Then we add e to the embed-
ding by performing the following sequence of operations: split(x, (x, x′)),
add vertex(y, (x, x′)).

456 HRISTO N. DJIDJEV

(b) x �∈ q, y ∈ p, y �∈ q (Figure 3.3(b)). Then add edge(x, y).
(c) x ∈ q, y ∈ p, y �∈ q (Figure 3.3(c)). Then split(y, (y, y′)), add vertex(x, (y, y′)).
(d) x �∈ q, y ∈ p, y ∈ q (Figure 3.3(d)). Then split(x, (x, x′)), add vertex(y, (x, x′)).
(e) x ∈ p, q, y ∈ p, q (Figure 3.3(e)). In this case we just do new path(x, y).

In all cases (a)–(e) we update, if necessary, the variables associated with each of
the resulting paths that contain the name of the adjacent face to the right of the path.

For implementing right queries we use the variable redge(x) defined for any vertex
x (see Figure 3.1). Then right(x) is the face associated with path find(redge(x)) and
can be found in O(1) time.

We showed that adding an edge requires O(1) time, and any left or right query
requires O(1) time. Since any planar n-vertex graph has O(n) edges, the total number
of edge additions will be O(n). Clearly, the number of find operations is O(|E′|).
Thus the total time for all operations connected with maintaining left and right
relations for vertices will be O(n + m).

Note that we did not use insert vertex for maintaining left and right relations.
We will use this operation in our algorithms given in the next sections.

This concludes our discussion of the triconnected case. We proved the following
theorem.

Theorem 2. Let G be a planar triconnected n-vertex graph and E′ be a set of m
edges between vertices of G. A maximal set E′′ ⊂ E′ such that G + E′′ is planar can
be constructed in O(n + m) time.

4. Finding a maximal planar subgraph of an arbitrary graph.

4.1. Outline of the algorithm. Our algorithm uses the decomposition tree
described in section 2 to represent the decomposition of the current planar subgraph.
Recall that we can assume w.l.o.g. that the input graph is connected, because other-
wise we can apply the same algorithm to each connected component. For maintaining
the embeddings of skeletons and for answering queries at each node of a SPQR tree we
use a procedure similar to Algorithm Triconnected. At each iteration the algorithm
chooses a new edge and checks if it is possible to add it to the subgraph so that pla-
narity is preserved. The efficiency of our algorithm essentially depends on the order
in which the edges are tested for insertion in the subgraph. Another feature of the
algorithm is that it maintains a dynamic set Upaths of paths in the decomposition
tree called update paths which will be our “working” paths; i.e., all information we
could currently need will be associated with nodes in these paths, and all updates will
be done on nodes in paths from Upaths. By using properties of these paths we will
be able to make queries and do updates more efficiently.

Algorithm Maxplanar.

(Outline)
Input: A connected n-vertex m-edge graph G.
Output: A maximal planar subgraph G′ of G.

1. Construct a depth-first spanning tree T of G. Associate a BC tree B with T whose
root is the root of T . Let E′ = E(G) − E(T), E∗ = E(T), where E′ denotes
the set of edges of G not examined yet and E∗ denotes the set of edges of the
current approximation of the maximal planar subgraph.

2. Initialize for the skeleton of each level-2 node of B the data structures for online
planarity testing from steps 1, 2, and 3 of Algorithm Triconnected.

3. Use a variation of a postorder search to visit the nodes of B. Denote the current
level-1 node by λ∗ and the current level-2 node by μ∗.

FINDING A MAXIMAL PLANAR SUBGRAPH 457

{Comment: The postorder will guarantee that any level-2 node that either is
a descendant of μ∗ or belongs to a level-1 node which is a proper descendant
of λ∗ is marked. (A level-2 node μ will be marked if no vertex of skeleton(μ)
is incident to any edge from E′.)}
3.1. Update Upaths and the associated data structures if a new node has

been examined in the previous step (details to be given below.)
3.2. Pick any vertex x of the skeleton of μ∗ belonging to the SmallDeg list

of μ∗.
3.3. Pick an edge (x, y) ∈ E′ and update E′ := E′ − {(x, y)}. If no vertex

remains in skeleton(μ∗) that is incident to an edge of E′, then mark μ∗.
Denote by ν∗ the proper allocation node proper(y) of y. Check if (x, y)
can be added to E∗ by considering the following cases:
3.3.1. If ν∗ = μ∗, then test whether y belongs to any of the faces incident

to x by checking whether either μ∗ is a P, S, or Q node, or the
conditions of Lemma 3.2 for v = x and w = y are satisfied. If
the answer is “yes,” then add (x, y) to E∗ and update the data
structures associated with μ∗.

3.3.2. If ν∗ is a proper ancestor of μ∗, then let edge d be the projection
pr(x) of x on the skeleton of ν∗. By Lemma 2.2, we have to check if
y and d belong to the same face of skeleton(ν∗) and if all nodes on
the joining path p(x, y) are peripheral. If ν∗ is a P, S, or Q node or
if condition (3.5) of the proof of Lemma 3.1 is satisfied for v = y and
e = d, then y and d belong to the same face of the skeleton of ν∗.
Using information stored in Upaths we decide whether all nodes on
p(x, y) are peripheral. If both queries give positive answers, then we
add (x, y) to E∗ and update the data structures, as will be described
in the next subsection.

3.3.3. If ν∗ belongs to a level-1 node κ∗ that is a proper ancestor of λ∗,
then, by Lemma 2.3, we perform on the SPQR trees corresponding
to κ∗ and λ∗ two test operations of the type described in step 3.3.2
and (using precomputed information stored with Upaths) also check
if all other level-1 nodes on the tree path π∗ between κ∗ and λ∗ are
peripheral. If all answers are positive, we add (x, y) to E∗ and merge
into the SPQR tree of κ∗ the SPQR trees of all other level-1 nodes
of π∗.

Next we give more details about the implementation of some of the steps. The
search of B in step 3 is essentially a postorder search applied at two levels: first with
respect to level-1 nodes and then, when the level-1 node is chosen, with respect to the
level-2 nodes in its SPQR tree. Another feature is that the search is applied online to
dynamic trees. Thus, if in steps 3.3.2 or 3.3.3 a path of two or more level-1 or level-2
nodes has been shrunk, then the resulting node, μ, might have unmarked children
(which must be visited now before continuing with μ), even if μ∗ may have had no
marked children before the shrinking.

In the next subsection we describe the data structures associated with Upaths
that will allow us to determine in a constant time whether a certain path of level-1
or level-2 nodes contains only peripheral nodes. We will also show that it is possible
to do all updates on B and on the planar st-graphs associated with its nodes after
shrinking of paths of level-1 and level-2 nodes in O(n) total time.

4.2. Updating the data structures. Our update algorithms are simpler and

458 HRISTO N. DJIDJEV

more efficient than the algorithms of [6, 25, 24] because of our use of Upaths.

4.2.1. The update paths. Upaths are a set of paths called update paths that
includes the current path π of level-1 nodes of B from λ∗ to the root of the tree and a
path of level-2 nodes in the SPQR tree of each node in π. Let π = {b1, c1, b2, c2, . . . ,
ck−1, bk}, where the path of level-2 nodes in node b1 = λ∗ is called the top update
path and bk is the root of B. For λ∗, the corresponding path of level-2 nodes is from
μ∗ to the root of the SPQR tree of λ∗. The update path in bi, for 2 ≤ i ≤ k, is the
path from the allocation node of ci−1 to the root of the SPQR tree for bi. At any
iteration we will use only π and the top update path. The other paths in Upaths will
be needed when we backtrack to an ancestor node during the postorder search. We
prove the following important property of Upaths.

Lemma 4.1. Let x be a vertex in μ∗ and (x, y) ∈ E′ be the edge chosen in step
3.3 of Algorithm Maxplanar. Then the proper allocation node proper(y) of y belongs
to the update path of λ∗ or to the SPQR tree of a node in π different from λ∗.

Proof. Because the tree T constructed in step 1 is a depth-first spanning tree,
then any nontree edge joins two vertices of T , one of which is a descendant to the
other. By the definition of a BC tree, such a property will also hold for the tree B
constructed in step 1 of Algorithm Maxplanar; i.e., any nontree edge with respect to
T joins vertices from two level-1 nodes, one of which is a descendant of the other.
For any of the following iterations, we prove that the endpoints of any edge not in B
have allocation nodes such that either one of them is an ancestor of the other, or they
belong to the SPQR trees of level-1 nodes one of which is a proper ancestor of the
other. This follows by induction from the fact that each modification of B consists of
shrinking a path of either level-1 or level-2 nodes to a single node.

Assume that proper(x) and proper(y) belong to the same SPQR tree. Then, by
the above observation, either μ∗ is a descendant of proper(y), or vice versa. However,
since the nodes of B are visited in postorder, all descendants of μ∗ have already been
visited and marked. Hence proper(y) is an ancestor of μ∗, and it belongs to the
update path of λ∗ (the top update path).

The proof in the case when proper(x) and proper(y) belong to different SPQR
trees is similar. In this case the node corresponding to the SPQR tree containing
proper(y) is a proper ancestor of λ∗, and by definition that node belongs to π.

The update paths change during the computation when a new node of B is visited
and when a subpath of B is contracted. This requires that some information associated
with Upaths be dynamically updated, as described below.

4.2.2. Update algorithms. We need to dynamically maintain the following
types of information:

• the proper allocation nodes of the vertices of G;
• for any level-1 or level-2 node μ, the nearest ancestor of μ that is not periph-

eral;
• a planar embedding of a triconnected planar st-graph G′ (a skeleton of a

level-2 R node ν) with respect to the structures described in section 3, subject
to the operation replacement of an edge of G′ with a planar st-graph (the
skeleton of a child of ν.)

1. Proper allocation nodes. Information about the proper allocation nodes of the
vertices of G is needed in step 3.3 of Algorithm Maxplanar. We store for each vertex
v of G a pointer to the representative of v in the skeleton of proper(v). Furthermore,
we dynamically maintain for each level-2 node μ belonging to a path in Upaths a
set of all vertices x of G such that proper(x) = μ. This can be done by using the

FINDING A MAXIMAL PLANAR SUBGRAPH 459

merged skeletons

p
1

p
2

skeleton(parent())μ

f1
f2

skeleton()μ

e

Fig. 4.1. Merging a skeleton of a level-2 node into the skeleton of its parent.

linear-time incremental set union algorithm of Gabow and Tarjan [12]. Hence one can
find the proper allocation node μ of any vertex of G in O(1) amortized time, provided
that μ belongs to a path of Upaths. By the description of Algorithm Maxplanar and
Lemma 4.1, the proper allocation nodes of the vertices x and y examined in step 3.3
will always belong to a path of Upaths.

2. Nonperipheral ancestors. For any level-2 node ν of a path from Upaths we
store in a variable nearest(ν) the value of the nearest nonperipheral ancestor of ν.
Whenever a new level-2 node μ is examined in step 3 of Algorithm Maxplanar, we
add μ to the top update path and check if μ is peripheral. Depending on the value
of nearest for the parent of μ (if μ is not the root of B), the value of nearest(μ) is
determined. Note that when a subpath of level-2 nodes is contracted, that subpath
always includes the endvertex (i.e., the most recently added vertex) of the top update
path. Thus in this case at most one value of nearest needs to be updated which takes
O(1) time. The information about the nearest nonperipheral ancestors of level-1 nodes
is maintained in a similar way.

3. Merging skeletons. Merging the skeleton of a level-2 node μ of B with the
skeleton of its parent parent(μ) requires a replacement of an edge e of a planar st-
graph Ge (the skeleton of parent(μ)) with another st-graph (the skeleton of μ.)

Consider the case where both μ and parent(μ) are R nodes (the nontrivial case)
and e is an internal edge. The set of the faces of the resulting planar st-graph is the
union of all internal faces of the skeleton of parent(μ) and all faces of the skeleton of
μ, where the two faces, say f1 and f2, incident to e, are modified as follows. In each of
f1 and f2 we replace e by a path using a sequence of insert vertex operations. Let p1

and p2 be the resulting paths (Figure 4.1). The time needed for these insert vertex
operations will be proportional to the sum of the lengths of p1 and p2. However, for
the whole execution of the algorithm, the time needed for such insertions will be O(n),
since any edge of p1 or p2 becomes internal and cannot be inserted again.

If e is on the periphery of Ge, we apply the same algorithm. But now the above
argument for bounding the number of edges that need to be inserted does not apply
because some edges may need to be reinserted more than once. To handle this case
we modify our data structure for maintaining the planar embeddings of the skeletons
of level-2 nodes by using the same label outer to denote the outer face of any skeleton
of a level-2 node. For example, if x is a vertex on the left boundary path of such
a skeleton μ incident to an internal face f , then right(x) = f and left(x) = outer.
Thus, the value of left(x) does not need to be changed if x becomes a boundary
vertex of another skeleton as a result of a merge.

460 HRISTO N. DJIDJEV

Testing if the addition of an edge (x, y) preserves planarity requires checking
whether left(x) = left(y) = outer and whether x and y have the same proper allo-
cation node.

If x becomes an internal edge of a skeleton after some merge, then we set left(x)
to the (actual) internal face containing x and maintain its value using the original
algorithm.

We can summarize our main result as follows.

Theorem 3. Given any n-vertex m-edge graph G, a maximal planar subgraph of
G can be found in O(n + m) time.

5. Conclusion. We can also adapt our technique to find a maximal outerplanar
subgraph of an n-vertex graph. Create an additional vertex z, and join z to all vertices
of G. Then find a maximal planar subgraph of the resulting graph by a procedure
similar to Algorithm Maxplanar; however, the initial tree constructed in step 1 is the
star spanning graph with root z. This guarantees that the maximal planar graph
constructed by the modified algorithm will contain all edges incident to z. Removing
at the end z and all incident edges clearly will result in a maximal outerplanar graph.
We need to show that the time complexity of this algorithm is still O(n+m), since our
initial subgraph is not a depth-first tree as in Algorithm Maxplanar, and the analysis
of the new algorithm (e.g., Lemma 4.1) cannot be directly applied. In this case,
however, we do not need to use the update paths since each level-1 or level-2 node can
have at most one ancestor and condition (ii) of Lemma 2.2 and the condition from
Lemma 2.3 can be directly checked in a constant time. Thus we have the following
theorem.

Theorem 4. Given any n-vertex m-edge graph G, a maximal outerplanar sub-
graph of G can be found in O(n + m) time.

Also we note that our linear-time algorithm for the MPS problem yields a linear-
time algorithm for planarity testing. Given an n-vertex m-edge graph G, we can
test in O(n + m) time whether G is planar by finding a maximal planar subgraph
G′ of G. Then G is planar iff G = G′. This result is interesting because the new
algorithm is based on an approach entirely different from the existing ones. The
linear-time algorithms of Hopcroft and Tarjan [16] and Booth and Lueker [2] (and
their modifications) essentially use the Jordan Curve Theorem which states that any
closed curve in the plane divides it into exactly two connected regions. In contrast,
our algorithm is based on the uniqueness of the planar embedding of any triconnected
planar graph. It will be of theoretical and practical interest to refine our technique in
order to construct a new practical algorithm for planarity testing whose performance
is comparable to the algorithms of [16] and [2].

As another approach to the graph planarization problem, other researchers have
constructed approximation algorithms for the maximum planar subgraph problem.
The algorithm in [3] constructs in O(m3/2n log6 n) time a “maximum triangular struc-
ture,” a planar graph whose bicomponents are single edges or triangles, and prove ap-
proximation ratio 2/5. Although the approximation ratio corresponding to a maximal
planar subgraph in the worst case cannot be proved to be better than 1/3, it seems
that in most cases our algorithm produces larger subgraphs, e.g., for planar or almost
planar graphs, for sparse graphs (e.g., with less than (5/2)n−5 edges), for any bipar-
tite graphs. For practical purposes, probably the best algorithm for constructing large
planar subgraphs will be a combination of both approaches: first a planar subgraph
is constructed by the approximation algorithm guaranteeing a good approximation
ratio, and then the subgraph is augmented to a maximal planar subgraph.

FINDING A MAXIMAL PLANAR SUBGRAPH 461

Acknowledgment. The author would like to thank the anonymous referees for
their helpful comments.

REFERENCES

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.

[2] K. Booth and G. Lueker, Testing for the consecutive ones property, interval graphs, and
graph planarity using PQ-tree algorithm, J. Comput. System Sci., 13 (1976), pp. 335–379.

[3] G. Cǎlinescu, C. G. Fernandes, U. Finkler, and H. Karloff, A better approximation
algorithm for finding planar subgraphs, in Proceedings of the 7th Annual ACM-SIAM
Symposium on Discrete Algorithms, Atlanta, GA, 1996, SIAM, Philadelphia, pp. 16–25.

[4] J. Cai, X. Han, and R. E. Tarjan, An O(m log n)-time algorithm for the maximal planar
subgraph, SIAM J. Comput., 22 (1993), pp. 1142–1162.

[5] T. Chiba, I. Nishioka, and I. Shirakawa, An algorithm of maximal planarization of graphs,
in Proceedings of the IEEE International Symposium on Circuits and Systems, 1979, IEEE
Press, Piscataway, NJ, pp. 649–652.

[6] G. Di Battista and R. Tamassia, Incremental planarity testing, in Proceedings of the IEEE
Symposium on Foundations of Computer Science, 1989, IEEE Press, Piscataway, NJ,
pp. 436–441.

[7] G. Di Battista and R. Tamassia, On-line graph algorithms with SPQR trees, in Proceedings
of the International Colloquium on Automata, Languages and Programming, Warwick,
UK, Lecture Notes in Comput. Sci. 443, Springer-Verlag, New York, 1990, pp. 598–611.

[8] H. Djidjev, A Linear algorithm for the maximal planar subgraph problem, in Proceedings
of WADS’95, Kingston, ON, Lecture Notes in Comput. Sci. 955, Springer-Verlag, Berlin,
1995, pp. 369–380.

[9] H. N. Djidjev, On some properties of nonplanar graphs, C.R. Acad. Bulgare Sci., 37 (1984),
pp. 1183–1184.

[10] H. N. Djidjev and J. Reif, An efficient algorithm for the genus problem with explicit construc-
tion of forbidden subgraphs, in Proceedings of the Annual ACM Symposium on Theory of
Computing, 1991, ACM, New York, pp. 337–347.

[11] S. Even and R. E. Tarjan, Computing an st-numbering, Theoret. Comput. Sci., 2 (1976),
pp. 339–344.

[12] H. Gabow and R. E. Tarjan, A linear-time algorithm for a special case of disjoint set union,
J. Comput. System Sci., 30 (1985), pp. 209–221.

[13] M. R. Garey and D. S. Johnson, Algorithms and Intractability: A Guide to the Theory of
NP Completeness, Freeman, San Francisco, 1979.

[14] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
[15] J. E. Hopcroft and R. E. Tarjan, Dividing a graph into triconnected components, SIAM J.

Comput., 2 (1973), pp. 135–158.
[16] J. E. Hopcroft and R. E. Tarjan, Efficient planarity testing, J. ACM, 21 (1974), pp. 549–568.
[17] W.-L. Hsu, A linear time algorithm for finding maximal planar subgraphs, in ISAAC’95, Lec-

ture Notes in Comput. Sci. 1004, Springer-Verlag, Berlin, 1995, pp. 352–361.
[18] H. Imai and T. Asano, Dynamic orthogonal segment intersection search, J. Algorithms, 8

(1987), pp. 1–18.
[19] R. Jayakumar, K. Thulasiraman, and M. N. S. Swamy, O(n2) algorithms for graph pla-

narization, in Lecture Notes in Comput. Sci. 344, Springer-Verlag, Berlin, 1989, pp. 352–
377.

[20] M. Marek-Sadowska, Planarization algorithm for integrated circuits engineering, in Proceed-
ings of the IEEE International Symposium on Circuits and Systems, 1979, IEEE Press,
Piscataway, NJ, pp. 919–923.

[21] T. Nishizeki and N. Chiba, Planar Graphs: Theory and Algorithms, North–Holland, Amster-
dam, 1988.

[22] T. Ozawa and H. Takahashi, A graph-planarization algorithm and its applications to random
graphs, in Graph Theory and Algorithms, Lecture Notes in Comput. Sci. 108, Springer-
Verlag, London, 1981, pp. 95–107.

[23] K. Pasedach, Criterion and algorithms for determination of bipartite subgraphs and their
application to planarization of graphs, in Graphen-Sprachen und Algorithmen in Graphen,
Hanser, Munich, 1976, pp. 175–183.

462 HRISTO N. DJIDJEV

[24] J. A. La Poutré, Alpha-algorithms for incremental planarity testing, in Proceedings of the
Annual ACM Symposium on Theory of Computing, 1994, ACM, New York, pp. 706–715.

[25] J. Westbrook, Fast incremental planarity testing, in Proceedings of the International Collo-
quium on Automata, Languages, and Programming, Lecture Notes in Comput. Sci. 623,
Springer-Verlag, Berlin, 1992, pp. 342–353.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 2, pp. 463–501

SPARSE SOURCEWISE AND PAIRWISE DISTANCE PRESERVERS∗

DON COPPERSMITH† AND MICHAEL ELKIN‡

Abstract. We introduce and study the notions of pairwise and sourcewise preservers. Given
an undirected N -vertex graph G = (V,E) and a set P of pairs of vertices, let G′ = (V,H), H ⊆ E,
be called a pairwise preserver of G with respect to P if for every pair {u,w} ∈ P, distG′ (u,w) =
distG(u,w). For a set S ⊆ V of sources, a pairwise preserver of G with respect to the set of all pairs

P = (S
2
) of sources is called a sourcewise preserver of G with respect to S. We prove that for every

undirected possibly weighted N -vertex graph G and every set P of P = O(N1/2) pairs of vertices of
G, there exists a linear-size pairwise preserver of G with respect to P. Consequently, for every subset
S ⊆ V of S = O(N1/4) sources, there exists a linear-size sourcewise preserver of G with respect to
S. On the negative side we show that neither of the two exponents (1/2 and 1/4) can be improved
even when the attention is restricted to unweighted graphs. Our lower bounds involve constructions
of dense convexly independent sets of vectors with small Euclidean norms. We believe that the link
between the areas of discrete geometry and spanners that we establish is of independent interest and
might be useful in the study of other problems in the area of low-distortion embeddings.

Key words. graph theory, spanners, distance preservation

AMS subject classifications. 05C12, 05C85, 68R05

DOI. 10.1137/050630696

1. Introduction. For a graph G = (V,E), its sparse subgraph G′ = (V,H),
H ⊆ E, is called a spanner of G if the metric space that is defined by G′ is close in
some respect to the metric space that is defined by G.

Graph spanners were introduced in a pioneering paper of Peleg and Schäffer [26],
and since then have been used as an underlying combinatorial structure for many
applications, mostly in the areas of graph algorithms and distributed computing.
Among the most prominent applications of spanners are algorithms for computing
almost shortest paths [3, 14, 17], routing algorithms [27, 5, 28], and algorithms for
constructing synchronizers [4, 6] and for network design [23]. There are also indirect
applications for distance labeling and distance oracles [25, 19, 29]. Significant research
efforts were also invested in the problem of devising efficient algorithms for construct-
ing spanners [3, 14, 16, 17, 10]. Despite this extensive study of the algorithmic aspects
of spanners, so far relatively little attention has been devoted to their combinatorial
properties. The study of these properties is the subject of the current paper.

The first result of this kind was due to Peleg and Schäffer, who have shown [26]
that for any unweighted undirected N -vertex graph G = (V,E), and a positive integer
parameter κ = 1, 2, . . . , there exists a subgraph G′ = (V,H), H ⊆ E, with N1+O(1/κ)

edges satisfying that for every pair of vertices u,w ∈ V , the distance between them
in G′, denoted distG′(u,w), is at most κ times greater than the distance between
them in G, distG(u,w). It was also shown in [26] that this trade-off is optimal up

∗Received by the editors May 5, 2005; accepted for publication (in revised form) January 30, 2006;
published electronically June 2, 2006. A preliminary version of this paper appeared in Proceedings
of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms [15]. This work was supported
by the DoD University Research Initiative (URI) administered by the Office of Naval Research under
grant N00014-01-1-0795.

http://www.siam.org/journals/sidma/20-2/63069.html
†IBM Research, Yorktown Heights, NY 10598 (dcopper@idaccr.org).
‡Department of Computer Science, P.O.B. 653, Ben-Gurion University of Negev, Beer-Sheva,

84105, Israel (elkin@cs.bgu.ac.il).

463

464 DON COPPERSMITH AND MICHAEL ELKIN

to the constants hidden by the O-notation. The next result of this flavor was due to
Dor, Halperin, and Zwick [16], who have shown that for every unweighted undirected
N -vertex graph G = (V,E) there exists a subgraph G′ = (V,H), H ⊆ E, with
O(N3/2 · logN) edges such that for every pair of vertices u,w ∈ V , distG′(u,w) ≤
distG(u,w) + 2 (such a subgraph is called an additive 2-spanner). A lower bound of
Ω(N3/2) on the size of an additive 2-spanner follows directly from [26]. The gap of
logN was closed (by improving the upper bound) in [18]. Very recently Baswana
et al. [9] proved the existence of additive 6-spanners with O(n4/3) edges for every
(undirected unweighted) graph.

Further, Elkin and Peleg [18] have shown that for every ε > 0, κ = 1, 2, . . . ,
there exists β = β(ε, κ) such that for every unweighted undirected N -vertex graph
G = (V,E) there exists a subgraph G′ = (V,H) with O(N1+1/κ) edges such that for
every pair of vertices u,w ∈ V , distG′(u,w) ≤ (1 + ε) · distG(u,w) + β.

Finally, recently Bollobas, Coppersmith, and Elkin [12] have shown that for every
unweighted undirected N -vertex graph G = (V,E), and a positive integer parameter
D, there exists a subgraph G′ = (V,H) with |H| = O(N2/D) edges that preserves all
the distances between pairs of vertices that are at a distance of D or more from one
another in the graph G. It is also shown in [12] that this result is optimal up to a
small constant factor.

In this paper we continue this line of research and introduce the following notions.
Given an N -vertex graph G = (V,E) and a set P of pairs of vertices, let G′ = (V,H),
H ⊆ E, be called a pairwise preserver of G with respect to P if for every pair {u,w} ∈
P, distG′(u,w) = distG(u,w). For a set S ⊆ V of vertices, called sources, a pairwise
preserver of G with respect to the set of all pairs P = (S2) of sources is called a
sourcewise preserver of G with respect to S. We prove the following results.

Theorem 1.1.

1. For every undirected weighted or unweighted N -vertex graph G = (V,E), and
a set P of P = O(N1/2) pairs of vertices of G, there exists a linear-size
pairwise preserver G′ = (V,H), H ⊆ E, of G with respect to the set P.
Consequently, for every graph G and subset S ⊆ V of S = O(N1/4) vertices,
there exists a linear-size sourcewise preserver G′ = (V,H), H ⊆ E, of G with
respect to the set S.

2. For every value α, 1/2 < α < 2, for every sufficiently large N and P = Θ(Nα)
there exists an unweighted undirected N -vertex graph G = (V,E), and a set
P of P pairs of vertices of G such that any pairwise preserver G′ = (V,H),
H ⊆ E, of G with respect to the set P contains ω(N + P) edges.

3. For every value α, 1/4 < α < 9/16, for every sufficiently large N and S =
Θ(Nα) there exists an unweighted undirected N -vertex graph G = (V,E), and
a subset S ⊆ V of S sources such that any sourcewise preserver G′ = (V,H),
H ⊆ E, of G with respect to the set S contains ω(N + S2) edges.

Note that the lower bounds (assertions 2 and 3) apply even for unweighted undi-
rected graphs.

We remark that these results are special cases of the, far more general, theorems
that we will prove. The detailed exposition of the latter theorems is deferred to
section 1.2.

1.1. Motivation. We believe that the problem of constructing sparse pairwise
and sourcewise preservers is an important basic combinatorial problem. Our results
on it enable one to gain deep insight into the metric properties of graphs. Further,
we believe that the ultimate resolution of this problem is essential for resolving other

SPARSE SOURCEWISE DISTANCE PRESERVERS 465

major open problems in the area of spanners, such as the question of existence or
nonexistence of sparse additive spanners (see [16, 12]).

From a broader perspective, spanners are currently widely recognized as one of
the topics in the area of low-distortion embeddings (see, e.g., the section on spanners
in the recent survey paper by Indyk and Matousek [20]). The latter area is currently
one of the most intensively studied subdisciplines of theoretical computer science. For
many fundamental existential results in this area (such as Bourgain’s embeddings [13],
Johnson–Lindenstrauss dimension reduction [22], average-stretch tree embeddings of
Alon et al. [1]) there were found multiple important algorithmic applications, some-
times many years after these existential results were proven. We believe that our
research of pairwise and sourcewise preservers will also bear algorithmic fruits.

We remark that in this paper we do not explore the algorithmic potential of the
pairwise and sourcewise preservers, but instead focus on their combinatorial proper-
ties. We hope that their potential will be fully explored in subsequent work. Another
promising direction that we did not study is the approximate variants of the pairwise
and sourcewise preservers. In our opinion it is very likely that these approximate vari-
ants will be useful in the design of improved algorithms for fast distance estimation.
However, we feel that the study of these approximate variants would be premature
before gaining a thorough understanding of the exact variants of these problems. We
believe that this paper is a major step towards achieving such an understanding.

1.2. Our results. The specific behavior of our lower bound on the size of pair-
wise preservers for unweighted undirected graphs is parameterized by the “dimension”

parameter d and has the following form: for d = 2, 3, . . . , for Ω(N2· d2−d−1
(d−1)(d+2)) = P =

O(N2· d
2+d−1
d(d+3)), the lower bound is |H| = Ω(N

2d
d2+1 · P

d(d−1)

d2+1). (Observe that if we

denote f(d) = 2 · d2−d−1
(d−1)(d+2) , then the condition on P is of the form Ω(Nf(d)) =

P = O(Nf(d+1)).) Note that this result directly implies assertion 2 of Theorem 1.1;
that is, this lower bound is superlinear in N + P for the entire feasible range of P ,
ω(

√
N) = P = o(N2). For undirected weighted graphs we show an even stronger lower

bound of |H| = Ω((N · P)2/3), and this lower bound is also superlinear in N + P in
the same range of P .

We also show that there are unweighted undirected N -vertex graphs G = (V,E),
and subsets S ⊆ V of S vertices, such that any sourcewise preserver G′ = (V,H) of G
with respect to S contains |H| = Ω(max{N9/11 · S6/11, N10/11 · S4/11}) edges. This
lower bound is superlinear in N + S2 for ω(N1/4) = S = o(N9/16) (i.e., it implies
assertion 3 of Theorem 1.1). This result cannot be extended for S = O(N1/4) in view
of our upper bound of Theorem 1.1(1). For undirected weighted graphs we show a
slightly stronger lower bound of |H| = Ω(N6/7 ·S4/7). This lower bound is superlinear
in N + S2 in a slightly wider range ω(N1/4) = S = o(N3/5).

Finally, we show two upper bounds. First, we show that for every undirected
possibly weighted N -vertex graph G = (V,E), and a set P of P pairs of vertices,
there exists a pairwise preserver G′ = (V,H) of G with respect to P with |H| =
O(N +

√
N ·P) edges. Note that this upper bound implies assertion 1 of Theorem 1.1.

Second, we show an analogous upper bound of |H| = O(
√
P ·N) that applies even to

the most general case of weighted directed graphs. See Tables 1 and 2, and Figures 1
and 2, for summaries of these results.

Note that our results do not rule out the possibility that for any unweighted
undirected N -vertex graph G = (V,E) and any subset S of S = Ω(N9/16) vertices,
there exists a sourcewise preserver G′ = (V,H), H ⊆ E, of G with respect to S with

466 DON COPPERSMITH AND MICHAEL ELKIN

Table 1

A summary of our results on pairwise preservers. The columns correspond to different types of
graphs. The upper (resp., lower) bounds appear in the first (resp., second) row. See Figure 1 for a
graphical illustration of these results.

Undirected Undirected Directed
unweighted graphs weighted graphs weighted graphs

Upper

bound O(min{N ·
√
P ,

√
N · P}) O(min{N ·

√
P ,

√
N · P}) O(N ·

√
P)

Lower

bound Ω

(
max{N

2d
d2+1 · P

d(d−1)

d2+1 : d = 2, 3, . . . }
)

Ω((NP)2/3) Ω((NP)2/3)

Table 2

A summary of our results on sourcewise preservers. See also Figure 2 for a graphical illustration.

Undirected Undirected
unweighted graphs weighted graphs

Upper bound O(min{
√
N · S2, N · S}) O(min{

√
N · S2, N · S})

Lower bound Ω
(
max{N9/11 · S6/11, N10/11 · S4/11}

)
Ω(N6/7 · S4/7)

only O(S2) edges. To prove or disprove this statement is a challenging open problem.
Also, as Figures 1 and 2 suggest, there are some gaps between the curves of the upper
and lower bounds. Closing these gaps is a very interesting open problem as well. We
hope that our paper will trigger future research on these fundamental problems.

1.3. Our techniques. The lower bounds constitute the technically more in-
volved part of the paper, and the techniques that are used for proving them are
mainly from the area of discrete geometry.

Specifically, we consider certain sets of points that belong to high-dimensional
integer lattices, and we build graphs whose sets of vertices are those sets. Next, for
each of those points we build a convex polytope, whose extreme points are also vertices
of the graph, and connect this point to all the extreme points of its polytope via edges.
This way the edgesets of our graphs are constructed. In some cases additional vertices
and edges that have no geometric interpretation are added to the graph, and the proofs
combine geometric and combinatorial techniques.

The main polytope that is used for constructing the edgesets is the convex hull
of the set of integer points of a ball with a large radius R � 1. This polytope is an
important object of study in discrete geometry, and our proofs make use of the most
recent advances in the study of this object. Specifically, we use the results of Barany
and Larman [8] and Balog and Barany [7] that analyze the number of vertices and
faces of this polytope. We believe that introducing the techniques from the area of
discrete geometry to the study of spanners is our important technical contribution.

To motivate the use of geometric (Euclidean) graphs, we remark that we are not
aware of other constructions of dense graphs in which the structure of shortest paths
is well understood and relatively simple. Designing significantly simpler constructions
of graphs with these properties is a challenging open problem.

The proofs of our upper bounds are conceptually simpler and are based on double-
counting of appropriate combinatorial quantities.

Structure of the paper. Section 3 is devoted to the lower bound on the car-
dinality of pairwise preservers for weighted graphs. In section 4 we turn to the lower
bounds for unweighted graphs. In sections 5 and 6 we describe our lower bound for

SPARSE SOURCEWISE DISTANCE PRESERVERS 467

(log P)/(log N)1/2 1 3/2 229/20

6/5

4/3

10/7
3/2

2

11/9
19/14

N+P

(log |H|)/(log N)

1

Fig. 1. The x-axis of this graph corresponds to logN P , and the y-axis to logN |H|. The trivial
lower bound of N+P is depicted by the thick dashed line. The lower bound for undirected unweighted
graphs is depicted by the thin solid line. The lower bound for weighted graphs is depicted by the
thick dotted line, and, finally, the upper bound is depicted by the thick solid line. Note that the
lower bound for undirected unweighted graphs is a piecewise linear curve with infinitely many linear
segments. It is above the trivial lower bound in the entire feasible range of P and asymptotically
converges to it when the exponent of P tends to 2.

Particularly, for P = N (logN P = 1), the trivial lower bound is Ω(N), our lower bound for
unweighted undirected graphs is Ω(N6/5), our lower bound for weighted directed graphs is Ω(N4/3),
and our upper bound is O(N3/2). See also Table 1.

(log S)/(log N)1/4 1/2 1

3/2

2

N+S*S

(log |H|)/(log N)

1
12/11
10/9

5/9
9/16

9/8

3/5

6/5

Fig. 2. The x-axis of this graph corresponds to logN S, and the y-axis to logN |H|. The types
of lines are consistent with those on Figure 1.

Particularly, for S = N1/2, the trivial lower bound is Ω(N), our lower bound for unweighted
undirected graphs is Ω(N12/11), our lower bound for weighted undirected graphs is Ω(N8/7), and
the upper bound is O(N3/2). See also Table 2.

468 DON COPPERSMITH AND MICHAEL ELKIN

sourcewise preservers for unweighted and weighted graphs, respectively. Section 7 is
devoted to our upper bounds. In section 6 we present a three-dimensional construc-
tion that yields slight improvements on the lower bounds of section 5. Section 6.4 is
devoted to our somewhat stronger lower bounds on the sourcewise preservers that,
however, apply only to weighted graphs.

2. Preliminaries.

2.1. Numbers and sets.
1. Let N (resp., Z; Q; R; R

+) denote the set of all natural (resp., integer;
rational; real; nonnegative real) numbers. For a positive integer number k, let
[k] denote the set {1, 2, . . . , k}, and [(k)] denote the set {0, 1, . . . , k − 1}.

2. For a set C and a positive integer k ≤ |C|, let (Ck) (resp., ((Ck))) denote
the set of all unordered (resp., ordered) k-tuples of different elements of C,
and let Ck denote the set of all ordered k-tuples of not necessarily different
elements of C.

3. For a function f : A → B between two sets A and B, and a subset C ⊆ A,
let f |C denote the restriction of the function f to the set C.

4. For a pair of integer numbers a, b, a �= 0, we say that a is a divisor of b, and
denote a|b, if b/a is an integer. For a pair of integer numbers a, b, the greatest
positive integer divisor of both a and b is denoted gcd(a, b). If gcd(a, b) = 1,
we say that a and b are relatively prime.
The following basic fact is needed in our proof.
Lemma 2.1. Let (a, b) ∈ Z

2 such that gcd(a, b) = 1. Then for any real
number ρ > 1 such that (ρa, ρb) ∈ Z

2, we have ρ ∈ Z.
Proof. Since gcd(a, b) = 1, there exists numbers i, j ∈ Z such that a · i+b ·j =
1. Hence, ρ = ρ · (a · i + b · j) = i · (ρ · a) + j · (ρ · b) ∈ Z since ρ · a, ρ ·
b ∈ Z.

5. Let μ : N → {−1, 0, 1} denote the Mobius function. For an argument d that
is divisible by an integer square k2 �= 1, μ(d) is defined as 0; μ(1) is defined
as 1; and for d = p1 · . . . · pk, pi are distinct primes different from 1, μ(d) is
defined as (−1)k.
We will need the following two simple facts.
Lemma 2.2. For a positive integer R,

6

π2
−

R∑
d=1

μ(d)

d2
= O

(
1

R

)
.

Proof. By definition of the Mobius function,

∞∑
d=1

μ(d)

d2
= Πp

(
1 − 1

p2

)
,

where the product ranges over all prime numbers p.
As (1 − 1/p2)−1 = 1 + 1/p2 + 1/p4 + · · · , it follows that

Πp

(
1 − 1

p2

)−1

= Πp

(
1 +

1

p2
+

1

p4
+ · · ·

)

=

∞∑
n=1

1

n2
= ζ(2) =

π2

6
,

SPARSE SOURCEWISE DISTANCE PRESERVERS 469

where ζ(·) denotes the Riemann zeta function.
Consequently,

∞∑
d=1

μ(d)

d2
=

6

π2
.

Moreover, ∣∣∣∣∣
∞∑

d=R+1

μ(d)

d2

∣∣∣∣∣ ≤
∞∑

d=R+1

1

d2
≤

∫ ∞

R

1

x2
dx =

1

R
.

The lemma follows.
An (elementary) proof of the following fact can be found in [2, Thm. 2.1,
p. 25].
Lemma 2.3. If n ≥ 1, then

∑
d|n

μ(d) =

⌊
1

n

⌋
.

6. For a real number r, let the sign of r, denoted sign(r), be defined as + if r is
positive, as − if r is negative, and as 0 if r = 0.

7. For a vector v = (v1, . . . , vd) ∈ R
d, let ||v|| = ||v||2 =

√∑d
i=1 v

2
i denote its

Euclidean norm, and let ||v||∞ = max{|vi| : i ∈ [d]} denote its
∞-norm.
8. Lemma 2.4. Let B be a convex two-dimensional body containing the origin.

Let A denote its area and D denote its diameter (D = max{||u− v|| : u, v ∈
B}). Let M denote the number of integer points (x, y) ∈ B with gcd(x, y) = 1.
Then |M −A · 6

π2 | = O(A/D + D · logD).
Proof. For a given positive real q, let an outer body B+

q consist of B and
all the points at a distance of at most q from B, and let an inner body B−

q

consist of all points at a distance of at least q from the complement of B. The
areas of B+

q and B−
q differ from the area of B by at most O(Dq) (because the

perimeter of B is at most πD, and the area of B+
q \Bq is, consequently, at most

πD · q). Tile the plane with squares centered on lattice points (x, y), where
q|gcd(x, y); each of these squares has area q2. If such a lattice point is inside
B, then the whole square is inside B+

q . Hence, the number M(B, q) of such
lattice points is at most (A+O(Dq))/q2. If a lattice point is outside B, then
the whole square is outside B−

q . Hence, M(B, q) is at least (A−O(Dq))/q2.
It follows that the number of lattice points (x, y) with gcd(x, y) = 1 is

M =
∑

(k,�)∈B

⌊
1

gcd(k,
)

⌋
=

∑
(k,�)∈B

∑
d|gcd(k,l)

μ(d)

=
∑
d≤D

μ(d) ·M(B, d).

(The second equality follows from Lemma 2.3. The last equality holds because
the diameter of B is at most D, and B contains the origin.)
As we have seen,

A

d2
−O

(
D

d

)
≤ M(B, d) ≤ A

d2
+ O

(
D

d

)
.

470 DON COPPERSMITH AND MICHAEL ELKIN

Hence,∣∣∣∣∣∣M −A ·
∑
d≤D

μ(d)

d2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
d≤D

μ(d) ·M(B, d) −A ·
∑
d≤D

μ(d)

d2

∣∣∣∣∣∣ = O(D)·

∣∣∣∣∣∣
∑
d≤D

μ(d)

d

∣∣∣∣∣∣ .
By Lemma 2.2,

6

π2
−

∑
d≤D

μ(d)

d2
≤ O

(
1

D

)
.

Also,
∑

d≤D μ(d)/d ≤
∑

d≤D 1/d = O(logD). Hence∣∣∣∣M −A · 6

π2

∣∣∣∣ = O(A/D) + O(D · logD).

2.2. Graphs.
1. An undirected unweighted graph G = (V,E) is an ordered pair in which the

first element V is the set of elements called vertices, and E ⊆ (V2). A directed
unweighted graph G = (V,E) is an ordered pair in which V is the set of
vertices, and E ⊆ ((V2)). A weighted undirected (resp., directed) graph G =
((V,E),wt), wt : E → R

+, is an unweighted undirected (resp., directed)
graph with a nonnegative real weight function wt attached to it.
We will occasionally refer to a weighted graph G = ((V,E),wt) as G = (V,E),
omitting the weight function from the notation.

2. A sequence Π = (v0, v1, . . . , v�) of distinct vertices of the graph G = (V,E)
is called a path if {vi, vi+1} ∈ E (or (vi, vi+1) ∈ E if G is a directed graph)
for every index i ∈ [(
)]. The length of the path Π, denoted L(Π), is defined

as
 if the graph is unweighted, as
∑�

i=1 wt({vi−1, vi}) if it is weighted and

undirected, and as
∑�

i=1 wt(〈vi−1, vi〉) if it is weighted and directed. For a

pair of vertices u,w ∈ V , let Π̂u,w denote the set of paths between u and w
in G (or from u to w if G is a directed graph).
For a pair of vertices u,w ∈ V , the distance between u and w (resp., from u
to w) in an undirected (resp., directed) weighted or unweighted graph G with
vertex set V and edgeset E, denoted distG(u,w) or distE(u,w), is the length
of the shortest path between u and w (resp., from u to w) in G, that is,

distG(u,w) = min{L(Π) : Π ∈ Π̂u,w}.

3. For an undirected (resp., directed) graph G with vertex set V and edgeset E
(weighted or unweighted) and a set P ⊆ (V2) (resp., P ⊆ ((V2))) of pairs of
vertices, the subgraph G′ = (V,H), H ⊆ E, is called a pairwise preserver of
G with respect to the set P if for every pair {u,w} ∈ P (resp., (u,w) ∈ P),
distG(u,w) = distG′(u,w).
For a subset S ⊆ V of vertices, also called sources, the pairwise preserver
with respect to the set (S2) is also called the sourcewise preserver of G with
respect to the set S.

4. For a directed (weighted or unweighted) graph G = (V,A), its underlying
undirected graph G′ = (V,E′) is defined by E′ = {{u,w} : 〈u,w〉 ∈ A}.
An arborescence is a directed graph whose underlying undirected graph is a
tree.

SPARSE SOURCEWISE DISTANCE PRESERVERS 471

For a directed graph G = (V,A), and a vertex v ∈ V , a subgraph τ = (V,Eτ)
is called a shortest-path in-arborescence (resp., out-arborescence) rooted at v if
it is a spanning arborescence of G, and for every vertex w ∈ V , distτ (w, v) =
distG(w, v) (resp., distτ (v, w) = distG(v, w)).

5. For an undirected graph G = (V,E), and a vertex v ∈ V , let degG(v), or
degE(v), denote the degree of the vertex v in G, that is, degG(v) = |{w :
{v, w} ∈ E}|.

2.3. Polytopes and convexity. For a set {γ1, γ2, . . . , γk} ∈ R
d of vectors,∑k

i=1 aiγi is called a convex combination of them if a1, a2, . . . , ak ∈ R
+, and

∑k
i=1 ai =1.

The convex hull of the set {γ1, . . . , γk} ⊂ R
d of vectors is the set of all convex

combinations of these vectors. A polytope is the convex hull of some set of vectors.
It is known that a polytope can also be defined as the set of feasible solutions of n
linear inequalities, n > d, and these two definitions are equivalent (see, e.g., [24]). A
polygon is a two-dimensional polytope.

The set {γ1, . . . , γk} ⊂ R
d is called a convexly independent set (henceforth, CIS)

if for every index i ∈ [k], i ∈ [k] = {1, 2, . . . , k}, the vector γi cannot be expressed as
a convex combination of the vectors γ1, . . . , γi−1, γi+1, . . . , γk.

For k = 0, 1, . . . , d, a k-face of the polytope P is the set of points of the polytope
in which some d− k inequalities hold as equalities. The extreme points or vertices are
0-faces of the polytope, and the (d − 1)-faces are called the facets of the polytope.
Equivalently, an extreme point of the polytope P can be defined as a vector v ∈ P
that cannot be expressed as a convex combination of other vectors of P .

2.4. Lattices.
Definition 2.5. For a pair of vectors α, β ∈ R

3, the set L = {a·α+b·β : a, b ∈ Z}
is called a two-dimensional lattice. The pair {α, β} of vectors is called a basis of the
lattice L.

Note that the same lattice may have more than one basis.
Definition 2.6. For a lattice L = {a · α+ b · β : a, b ∈ Z} let H = {x · α+ y · β :

x, y ∈ R} be the plane that contains the lattice L. The area of the parallelogram whose
corners are the origin, α, α + β, and β (this parallelogram is contained in the plane
H), is called the cell area, or the determinant, of the lattice L and is denoted detL.

It is a well known fact (see, e.g., [24]) that the determinant of a lattice does not
depend on the choice of its basis. We also need the following standard geometric fact.

Lemma 2.7 (see [24]). Consider the lattice L = {(x1, x2, x3) : 〈a, x〉 = 0} for
some vector a ∈ Z

3, a = (a1, a2, a3), with gcd(a1, a2, a3) = 1. The determinant of
this lattice is detL = ||a||.

The next lemma follows directly from Lemma 2.7.
Lemma 2.8. Consider a three-dimensional polytope P, all of whose extreme points

belong to the integer lattice Z
3. The area of a facet of P whose integer normal (in its

reduced form) is a = (a1, a2, a3) is at least half the norm of the normal, that is, ||a||/2.
Proof. Consider the two-dimensional lattice that is spanned by the extreme points

of the facet and is contained in the plane that contains the facet. By Lemma 2.7,
and since the facet contains at least one half of a cell of the lattice, the lemma
follows.

3. Lower bounds: Pairwise preservers for weighted graphs. In this sec-
tion we show lower bounds on the cardinalities of pairwise preservers. Specifically, we
show that for any sufficiently large positive integer numbers N and P , Ω(

√
N) = P =

O(N2), there exist weighted undirected graphs G = ((V,E),wt), and sets P ⊆ (V2)

472 DON COPPERSMITH AND MICHAEL ELKIN

of cardinality |P| = P , such that any pairwise preserver of the graph G with respect
to the set P requires |E| = Ω((N · P)2/3) edges. This lower bound is superlinear in
N + P for the range ω(

√
N) = P = o(N2). We remark that in view of our linear

upper bound of Corollary 7.8 in section 7.2, this lower bound applies for the entire
feasible range of P . In section 4 we will show similar, though weaker, lower bounds
that are applicable for unweighted undirected graphs.

We next construct a fairly dense weighted graph G = ((V,E),wt), wt : E →
R

+, and a set P ⊆ (V2) of pairs of vertices. We will show that for any subgraph
G′ = ((V,H),wt), H ⊂ E (H �= E), there exists a pair p = {u,w} ∈ P so that
distG′(u,w) > distG(u,w).

Consider a square portion of the two-dimensional integer lattice Z
2, with real

dimensions
√
N ×

√
N , where N is the number of vertices in the graph G that we

construct. In other words, let V = {(i, j) : i, j ∈ [(
√
N)]}. (We assume that

√
N is

integral; all the nonintegrality issues affect only lower-order terms of our results, and
are, henceforth, ignored.)

Let T , T ≤
√
N/10, be a positive integer parameter of the construction that will

be fixed later. For a pair of vertices (i, j), (
, k) ∈ V , {(i, j), (
, k)} is an edge if the
Euclidean distance ||(i, j) − (
, k)|| =

√
(
− i)2 + (k − j)2 between (i, j) and (
, k) is

at most T , and gcd(|
− i|, |k − j|) = 1.
The weight function wt is defined by wt(e) = ||(i, j)−(
, k)|| for every edge e ∈ E.

This completes the construction of the graph G = ((V,E),wt).
The boundary frame set BF is defined by

BF = {(i, j) : (i ∈ [(T)]) or (i ∈ [(
√
N)] \ [(

√
N − T)])

or (j ∈ [(T)]) or (j ∈ [(
√
N)] \ [(

√
N − T)])},

and the boundary set B is defined by

B = {(i, j) : (i = 0) or (i =
√
N − 1) or (j = 0) or (j =

√
N − 1)}.

For a point (i, j) ∈ V , and an edge e = {(i, j), (
, k)} that is adjacent to (i, j),
consider the (straight) line L that passes through the two points (i, j) and (
, k) in
the Euclidean plane. Let L = L ∩ V . Let L′ be the subset of L that contains those
points of L that are farther from (i, j) than from (
, k) (in terms of the Euclidean
distance). Let (i′, j′) ∈ L′ be the farthest (in terms of the Euclidean distance) point
from (i, j). This point is called the antipodal point to (i, j) in the direction of (
, k)
and is denoted (i′, j′) = A((i, j), (
, k)). See Figure 3. The set of pairs P is now
defined by

P = {{(i, j), (i′, j′)} : (i, j) ∈ BF , (i′, j′) = A((i, j), (
, k)), {(i, j), (
, k)} ∈ E}.

By Lemma 2.4, every point (i, j) ∈ V has Θ(T 2) neighbors, and thus

|E| = Θ(N · T 2).(1)

Also, since |BF | = Θ(
√
N · T), it follows that

P = |P| = Θ(
√
N · T 3).(2)

We next argue that all the antipodal points belong to the boundary frame BF .
Lemma 3.1. For an edge {(
, k), (
′, k′)} ∈ E, A((
, k), (
′, k′)) ∈ BF.

SPARSE SOURCEWISE DISTANCE PRESERVERS 473

Fig. 3. A graphical illustration of the instance. The pair {C,D} belongs to the set P of pairs.

Proof. Let L denote the line in the Euclidean plane that passes through the
two points (
, k) and (
′, k′), and consider the ray R ⊆ L that starts in (
′, k′) and
does not contain the point (
, k). Let S be the boundary of the square Sq whose
corners are (in counterclockwise order) the origin, (

√
N − 1, 0), (

√
N − 1,

√
N − 1),

(0,
√
N − 1), that is, the union of the segments that connect every consecutive pair

of these corners, and the origin, to (0,
√
N − 1). Let (x, y) be the intersection of the

ray R with the boundary S of this square. If x−�
�′−� is an integer, then, obviously,

(x, y) = A((
, k), (
′, k′)), and since (x, y) ∈ BF , we are done. Otherwise, let (x′, y′)
be the point in L′ closest to (x, y).

We next show that (x′, y′) ∈ BF . Let I denote the segment of the ray R that
connects the points (x, y) and (x − (
′ −
), y − (k′ − k)). Obviously, (x′, y′) ∈ I.
Note, however, that the distance between (x′, y′) and the boundary B of the square
Sq is at most max{|
′ −
|, |k′ − k|} ≤ T . (Note that this is the distance between a
point and a line that is parallel to one of the axes.) It follows that (x′, y′) ∈ BF , as
required.

The next lemma follows directly from the construction of the set P and from
Lemma 3.1.

Lemma 3.2. For an edge {(
, k), (
′, k′)} ∈ E, the pair {A((
, k), (
′, k′)), A((
′, k′),
(
, k))} belongs to the set P of pairs.

Proof. By Lemma 3.1, both points C = A((
, k), (
′, k′)) and D = A((
′, k′), (
, k))
belong to BF . Furthermore, it is easy to see that all four points C, (
, k), (
′, k′), and
D belong to the same line L. Consider the segment J of the line L that connects the
points C and D. Let v ∈ J ∩ L be the (unique) point that belongs to the segment
and such that the edge {D, v} belongs to the edgeset E. Obviously, A(D, v) = C,
and so the pair {C,D} belongs to P. (See Figure 4 for an illustration.)

For a graph G = ((V,E),wt), and an edge e ∈ E, let G \ e denote the graph
((V,E \ {e}),wt |(E\{e})).

We next argue that no edge of the graph G can be removed without increasing
the distance between some pair of points (i, j), (i′, j′) such that {(i, j), (i′, j′)} ∈ P.

474 DON COPPERSMITH AND MICHAEL ELKIN

(l,k)

D

C (l’,k’)

A((l’,k’),(l,k))=A(A((l,k),(l’,k’)),v)

v A((l,k),(l’,k’))

Fig. 4. An illustration for the proof of Lemma 3.2.

Lemma 3.3. For an edge e = {u,w}, u = (
, k), w = (
′, k′), let x = A(u,w),
y = A(w, u). Then distG\e(x, y) > distG(x, y).

Remark. The proof of this lemma is based on the observation that, intuitively,
the shortest distance between x and y is attained (uniquely) by the straight line that
connects them, and if this line is interrupted, the distance becomes longer.

Proof. Consider the line L that goes through the points (
, k) and (
′, k′). Let
(i′, j′) = A((
, k), (
′, k′)) and (i, j) = A((
′, k′), (
, k)). By Lemma 3.2 {(i, j), (i′, j′)} ∈
P. By construction, the distance between these two points in G, distG((i, j), (i′, j′)),
is equal to the Euclidean distance

√
(i− i′)2 + (j − j′)2 between them, since they lie

on the same line, and for each integer 0 ≤ h ≤ j′−j
k′−k − 1, the edge {(i + h(
′ −
), j +

h(k′ − k)), (i+ (h+ 1)(
′ −
), j + (h+ 1)(k′ − k))} belongs to the graph G. Let Π(L)
be the shortest path in G between (i, j) and (i′, j′) that uses these edges.

Any path Π in the graph G corresponds to a piecewise linear trajectory C that
is formed by replacing each edge of Π with the linear segment that connects its
endpoints in the Euclidean plane and by concatenating these segments. Let · denote
the concatenation. For such a trajectory C, let C = L1 · L2 · . . . · Lt, t = 1, 2, . . . ,
be its (unique) representation as a concatenation of segments such that Li · Li+1 is
not a linear segment for every index q ∈ [t − 1], and (i, j) ∈ L1. Henceforth, such a
representation will be referred to as the concatenating representation of the path Π.
(See Figure 5.)

It is easy to see that in the graph G, the length of any simple path Π is equal to
the Euclidean length of the concatenating representation of Π. The unique shortest
curve joining x and y is the straight line between them. Also, since every edge of G
corresponds to a vector with relatively prime coordinates, for any path Π other than
Π(L) joining x and y, its concatenating representation necessarily contains a segment
of slope which differs from that of L. Consequently, the concatenating representation
of Π is longer than that of Π(L), and so Π is longer than Π(L). Hence the unique
shortest path between x and y in G contains e.

Corollary 3.4. For infinitely many positive integer numbers N and T , T ≤√
N/10, there exist weighted N -vertex graphs G = ((V,E),wt) with |E| = Θ(N ·

SPARSE SOURCEWISE DISTANCE PRESERVERS 475

�
�

�

�

�

�

�
�

�

�

�

�
�
�
�
�

�
�
�
�
�
��������

�
�

�
�

�
��

�
�
�
�

(i,j)

e

(i’,j’)
L4

C = L1 · L2 · L3 · L4

L3L1

L2

Fig. 5. The direct path of length ||(i′, j′)− (i, j)|| that uses the edge e is depicted by the dashed
line. The path Π and its concatenating representation are depicted by the solid piecewise linear
curve.

T 2) edges, and a collection P with P = O(
√
N · T 3) pairs of vertices, such that

every subgraph G′ that preserves all the distances between the pairs of vertices from
P contains all the edges of G.

Proof. The graph G and the collection P of pairs were defined above. The
assertion follows from Lemma 3.3 and from (1) and (2).

Note that (1) and (2) imply the lower bound of

|E| = Ω((NP)2/3),(3)

which is the main result of this section. Note that the lower bound is superlinear in
P + N whenever ω(

√
N) = P = o(N2). For P = O(

√
N) no superlinear lower bound

is possible due to our upper bound from Corollary 7.8.
This construction generalizes readily to any constant dimension d = 3, 4, . . . , but

the obtained lower bounds are (weakly) inferior to that of (3).

4. Lower bounds: Pairwise preservers for unweighted graphs. In this
section we present a more elaborate construction that enables us to show lower bounds
on the cardinalities of pairwise preservers for unweighted undirected graphs. These
lower bounds are somewhat weaker than the lower bounds for weighted graphs that
are given by (3), but they are also superlinear in N + P in the entire feasible range
of P , that is, ω(

√
N) = P = o(N2).

For a fixed large positive integer T , and a fixed small positive integer d = 2, 3, . . . ,
consider the set Balld(T) ∩ Z

d, Balld(T) = {x ∈ R
d : ||x|| ≤ T}, of all the points of

the integer lattice Z
d that belong to the d-dimensional ball of radius T centered at

the origin.
Consider the convex hull CH = CH (Balld(T) ∩ Z

d) of the set Balld(T) ∩ Z
d.

Obviously, this convex hull is symmetric around the origin, i.e., if α ∈ CH , then
(−α) ∈ CH as well. Let VH = VH (Balld(T) ∩ Z

d) be the set of the extreme points
(or vertices) of the convex hull CH . This set is also symmetric around the origin. It

476 DON COPPERSMITH AND MICHAEL ELKIN

is known [8] that the cardinality of the set VH is Θ(T d−2+ 2
d+1), where the constant

hidden by the Θ-notation depends only on the dimension d. (For the dimension d = 2
this result was shown in [7]. However, for our purposes any construction of a large
CIS of vectors with small Euclidean norm is sufficient. Particularly, for the dimension
d = 2 a much simpler classical construction of [21], instead of the construction of [8]
or [7], can be plugged in our proof. For the most general version of our proof, though,
the d-dimensional construction of [8] is required. The construction of [21] will be
discussed in greater detail in section 5.)

We next construct the unweighted graph G = (V,E), and the set of pairs P ⊆
(V2), that will be used for our lower bound. Let N (the number of vertices of the
graph) be a fixed large positive integer. The vertex set V is the set of all points
x = (x1, . . . , xd) of the integer lattice Z

d with nonnegative coordinates and such that
||x||∞ = max{xi : i ∈ [d]} ≤ N1/d − 1. In other words,

V = {(x1, . . . , xd) ∈ Z
d : 0 ≤ xi ≤ N1/d − 1 ∀i ∈ [d]}.

For every point x = (x1, . . . , xd) ∈ V , let Γ(x) = {(x + y) ∈ V : y ∈ VH } be

the Minkowski sum of x and VH , where T < 1
5N

1
d is a positive integer parameter to

be fixed later. Note that since the set VH is symmetric around the origin, z ∈ Γ(x)
if and only if x ∈ Γ(z). The edgeset E is defined by E = {{x, z} : z ∈ Γ(x)}. Let
the boundary frame set BF ⊆ V be the set of all points x = (x1, . . . , xd) ∈ V so
that at least one of the coordinates xi, i ∈ [d], satisfies either 0 ≤ xi ≤ T − 1 or
N1/d−T ≤ xi ≤ N1/d−1, and let the boundary set B ⊆ V be the set of all the points
x ∈ V such that at least one of the coordinates is either 0 or N1/d − 1.

For each point x ∈ V and each neighbor z ∈ Γ(x), we define A(x, z) (the antipodal
point to x in the direction z−x (or in the direction z)) in the following way. Let L be
the line in the d-dimensional Euclidean space that passes through the points x and
z. Let L = L ∩ V be the set of the vertices of the graph G that belong to this line,
and let L′ ⊆ L be the subset of L that contains only vertices that are closer to the
point z than to the point x, in terms of the Euclidean distance. The point A(x, z) is
defined as the farthest (in terms of the Euclidean distance) point from x that belongs
to the set L′. Finally, similar to the way that the set P of pairs was constructed in
section 3, we now define P = {{x,A(x, z)} : x ∈ BF , z ∈ Γ(x)}. Denote P = |P|.

Note that for every vertex x = (x1, . . . , xd) ∈ V \ BF , the vertex x has precisely
|VH | neighbors in the graph. In other words, the edgeset E has cardinality at least

|E| ≥ |V \ BF | · |VH | = Ω((N1/d − 2T)d · T d−2+ 2
d+1) = Ω(NT d−2+ 2

d+1). (Hereafter
all the asymptotic notation may hide dependence on the dimension d, but not on the
number of vertices N or the parameter T .)

Observe also that |BF | = Θ(N1− 1
dT) and P = O(|BF | · |VH |) = O(N1− 1

d ·
T d−1+ 2

d+1).

We next argue that no edge can be removed from the graph G without increasing
the distance between some pair of vertices {x, y} ∈ P. To this end, consider an edge
e = {u,w} ∈ E. Let y = A(u,w), and x = A(w, u). It is easy to see that the proof
of Lemma 3.1 generalizes readily to the d-dimensional space with d > 2, and thus,
x, y ∈ BF , and, furthermore, {x, y} ∈ P.

The statement of the next lemma is analogous to Lemma 3.3. Its proof is, however,
more involved, since the “Euclidean lengths” of the edges of the graph are no longer
uniform.

Lemma 4.1. distG\e(x, y) > distG(x, y).

SPARSE SOURCEWISE DISTANCE PRESERVERS 477

Proof. Let Πx,y = ({x, x + (w − u)}, {x + (w − u), x + 2(w − u)}, . . . , {x + (k −
1)(w−u), x+k(w−u)}), x+k(w−u) = y, be the path in the graph G that connects
the vertices x and y, and all its edges lie on the line L that passes through the points
u and w. (We say that an edge (z1, z2) ∈ E lies on a line L′ if both points z1 and z2

belong to this line.)
Observe that the length of this path is k =

yj−xj

wj−uj
, where xj , yj , uj , and wj are

the jth coordinates of the vectors x, y, u, and w, respectively, and j ∈ [d] is one of
the indices that satisfy wj − uj �= 0. (Note that since the points x, y, u, and w are

colinear, the expression
yj−xj

wj−uj
is independent of the choice of the index j ∈ [d], as far

as wj − uj �= 0. Since w − u ∈ VH , it follows that w − u �= 0.)
Consider some path Π′

x,y of length at most k that connects the vertices x and

y in the graph G. Let Π′
x,y = (e(1), e(2), . . . , e(�−1)),
 ≤ k + 1, ei = {x(i), x(i+1)},

i ∈ [
− 1], x(1) = x, x(�) = y.
For an index i ∈ [
 − 1], let d(i) = x(i+1) − x(i), where e(i) = {x(i), x(i+1)}. It

follows that y = x(�) = x+
∑�−1

i=1 d
(i). Hence, y− x =

∑�−1
i=1 d

(i),
− 1 ≤ k. Note also
that y − x = k · (w − u). Hence,

w − u =
1

k

�−1∑
i=1

d(i).

Let {d′(1), . . . , d′(�′)},
′ ≤
 − 1, be the set of distinct terms that appear in the sum∑�−1
i=1 d

(i), and let αi, i ∈ [
′], denote the number of times that the element d′(i)

appears in this sum. It follows that w−u = 1
k

∑�′−1
i=1 αid

′(i) and
∑�′

i=1 αi =
− 1 ≤ k.
Hence,

w − u =
�′∑
i=1

βid
′(i),(4)

where βi = αi

k > 0,
∑�′

i=1 βi = 1
k

∑�′

i=1 αi = �−1
k ≤ 1.

Recall that {u,w} is an edge of the graph G, and so the vector w − u belongs to
the set VH . Analogously, for each index i ∈ [
′], there exists an index j ∈ [
− 1] such
that d′(i) = d(j), and d(j) = x(j+1) − x(j), where e(j) = {x(j), x(j+1)} is an edge of the
graph G. Hence, the vector d′(i) = d(j) = x(j+1) − x(j) also belongs to the set VH .
In other words, w − u, d′(1), d′(2), . . . , d′(�

′) ∈ VH , and (4) is satisfied. However, since
VH is the set of extreme points of the convex hull of a set of points in R

d, it follows
that a vector w − u ∈ VH can be represented uniquely as a convex combination of
vectors from VH , specifically, as w − u = β1(w − u) with β1 = 1. It follows that

′ = 1, and d′1 = w − u, and so the path Π′

x,y coincides with the path Πx,y.
Hence, the path Πx,y is the unique shortest path between the vertices x and y in

the graph G, and this path uses the edge e. Hence, distG\e(x, y) > distG(x, y).

Recall that |E| = Ω(N · T d−2+ 2
d+1) and P = O(N1− 1

d · T d−1+ 2
d+1), for T ≤ 1

5N
1
d .

A straightforward calculation shows that

|E| = Ω
(
N

2d
d2+1 · P

d(d−1)

d2+1

)
,(5)

and this lower bound is applicable to Ω(N1− 1
d) = P = O(N2− 2

d+1). For d = 2, 3, . . . ,
let Ed denote the right-hand side of (5). By comparing these lower bounds for different

478 DON COPPERSMITH AND MICHAEL ELKIN

values of d it follows that for d = 2, 3, . . . , in the range Ω(N2· d2−d−1
(d−1)(d+2)) = P =

O(N2· d
2+d−1
d(d+3)), the lower bound is

E = Ω(Ed) = Ω
(
N

2d
d2+1 · P

d(d−1)

d2+1

)
.(6)

5. Lower bounds: Sourcewise preservers for unweighted graphs. In this
section we show lower bounds on the cardinalities of sourcewise preservers.

5.1. Constructing a large CIS. We start by describing our variant of the
Jarnik construction [21] of a large CIS of two-dimensional vectors of norm at most R
for some fixed parameter R. We will use this construction, and some of its properties,
for our lower bound.

Let t be an even integer parameter to be fixed later. Let Z = {(a, b) : a, b ∈
[t], gcd(a, b) = 1}. By Lemma 2.4, |Z| = Θ(t2). Sort all the elements of Z by the
ratio b/a, starting from the pair (a, b) with the largest ratio b/a, and ending with the
smallest one. (Note that if two ratios b1/a1, b2/a2 are equal, then the two vectors
(a1, b1), (a2, b2) are colinear, and since both of them are integer vectors, one of them
is a rational multiple of the other. However, since both have gcd equal to 1, it follows
that the two vectors are equal, which is a contradiction.)

Let (a1, b1), . . . , (ak, bk) be the sorted sequence of the vectors of Z. Let A =∑k
i=1 ai, B =

∑k
i=1 bi. Let

w0 = (A, 0), w1 = w0 + (−a1, b1),

w2 = w1 + (−a2, b2), . . . , wk = wk−1 + (−ak, bk) =

(
A−

k∑
i=1

ai,

k∑
i=1

bi

)
= (0, B).

Generally, for j = 0, 1, . . . , k,

wj =

(
A−

j∑
i=1

ai,

j∑
i=1

bi

)
=

⎛
⎝ k∑

i=j+1

ai,

j∑
i=1

bi

⎞
⎠ ,

where
∑k

i=k+1(·) is defined as 0. Denote W = {w0, w1, . . . , wk}. Note that |W | = k =

|Z| = Θ(t2). The norms of the vectors wj , j = 0, 1, . . . , k, are at most
√

2·k ·t = O(t3).
It is also not hard to see (see [21] for the formal proof) that the set W is a CIS, or,
in other words, that the vectors w0, w1, . . . , wk are the extreme points of the convex
hull of the set {w0, w1, . . . , wk}, CH (w0, w1, . . . , wk).

Furthermore, consider the set U of vectors given by

U = {u = (x, y) : ∃σx, σy ∈ {−1, 1} s.t. (σxx, σyy) ∈ W}.

It is easy to see that this set is a CIS as well. Consider the convex hull CH (U) of
the set U . Let (v0, v1, . . . , v4k−1) be the sequence of vectors of U ordered counterclock-
wise, starting with v0 = w0. By construction, every edge of the convex hull CH (U) has
slope b/a, where |a|, |b| ≤ t. (The slope of the line L = {(x1, y1) +α · (x2, y2) : α ∈ R}
is defined as y2/x2 if x2 �= 0, and as ∞ otherwise. In this paper, however, all lines
have finite slopes.) Setting R = t3 we derive the following theorem.

Theorem 5.1 (see [21]). For infinitely many positive integer numbers R there
exist CISs of vectors (v0, v1, . . . , v4k−1) ∈ R

2, ordered counterclockwise, with k =
Θ(R2/3) of norm ||vj || ≤ R for every j ∈ {0, 1, . . . , 4k − 1}. Furthermore, for every
index j in this range, ||vj+1 − vj ||∞ = O(R1/3), where j + 1 is shorthand for the
remainder of the division of j + 1 by 4k.

SPARSE SOURCEWISE DISTANCE PRESERVERS 479

5.2. Constructing supporting lines. We next describe the construction of a
collection of supporting lines of the polygon CH (U).

Fix a positive integer parameter T . Let C be the CIS that satisfies the properties
guaranteed by Theorem 5.1 with R = T . (Consequently, t = T 1/3.) Let P be the
boundary of the convex hull P̂ = CH (C). Note that P is a convex polygon whose
extreme points are the vectors of C.

We need an additional piece of notation. For a convex polygon Q, let Ex (Q)
denote the set of its extreme points. Note that Ex (P) = C.

For each vertex v of the polygon P , let v(1) and v(2) be the two vertices of P
so that there are two facets of the polygon that connect v(1) to v and v to v(2). Let
b(1)/a(1) and b(2)/a(2) be the two slopes of these two facets (in their lowest terms), and
assume without loss of generality that b(2)/a(2) > b(1)/a(1). (Note that a facet of a
polygon is a segment, and so its slope is well defined.) Assume also that a(1), a(2) are
both positive (other cases are similar). Then, by construction, v(2) − v = (a(2), b(2)),
v − v(1) = (a(1), b(1)), and |a(i)|, |b(i)| ≤ T 1/3 for i = 1, 2. Furthermore, there exists
no vector (a(3), b(3)) ∈ Z

2 with (a(3))2 +(b(3))2 ≤ T 2/3, and gcd(a(3), b(3)) = 1 so that
b(1)/a(1) < b(3)/a(3) < b(2)/a(2). It follows that the vector (a(1) + a(2), b(1) + b(2)) has
an intermediate slope

b(1)/a(1) < (b(1) + b(2))/(a(1) + a(2)) < b(2)/a(2),

and that the numbers a(1) + a(2) and b(1) + b(2) are relatively prime. Furthermore,
||(a(1) + a(2), b(1) + b(2))|| =

√
(a(1) + a(2))2 + (b(1) + b(2))2 = O(T 1/3).

For each vector v ∈ C, let e(v) denote the vector (a(1) + a(2), b(1) + b(2)).

We also need to guarantee that each e(v) will have norm Ω(T 1/3). As the num-
ber of pairs of relatively prime integers (a, b) with a, b ≤ t is Ω(t2), it follows that∑4k−1

i=0 ||(ai, bi)|| = Ω(t3). Consequently,
∑4k−1

i=0 ||(ai+ai+1, bi+bi+1)|| = Ω(t3), where
i+1 is shorthand for the remainder of the division of i+1 by 4k−1. It follows that for
at least Ω(k) indices i, ||(ai+ai+1, bi+bi+1)|| = Ω(t3/k) = Ω(t) = Ω(T 1/3). Moreover,
since the construction is symmetric around the axes, the same applies for the vectors
in the first orthant.

Let C ′ denote the subset of the CIS C that contains only those vectors v ∈ C that
satisfy the condition that ||(ai+ai+1, bi+bi+1)|| is Ω(T 1/3), where (ai, bi), (ai+1, bi+1)
are the facets of the polygon CH (C) that are adjacent to the vertex v. It follows that
|C ′| = Θ(T 2/3).

Definition 5.2. For a set Z ⊆ R
2 of points, the line L = {v + α · u : α ∈ R},

u = (a, b) ∈ R
2, v ∈ Z, is called a supporting line of the set Z in the point v ∈ Z if

the following condition holds: For every two points x, x′ ∈ Z \ {v}, the signs of the
inner products 〈x− v, u⊥〉 and 〈x′ − v, u⊥〉 are the same, where u⊥ = (−b, a).

Lemma 5.3. Let L be the line (in the Euclidean plane) that passes through the
point v and is parallel to the vector e(v). Then the line L is a supporting line of the
polygon P̂ in the point v.

Proof. We prove the lemma for the special case when the vector v is in the first
quadrant (i.e., has nonnegative coordinates). The proof for the case that one of the
coordinates of v is negative is symmetric to the proof of this case.

Let v = wj = (
∑k

i=j+1 ai,
∑j

i=1 bi) for some j = 0, 1, . . . , k. We will prove that

for every extreme point x �= v of the polygon P , 〈x − v, u⊥〉 < 0 for u = e(v). Since
every other point y �= v of the polygon P̂ is a nontrivial convex combination of the
extreme points of the polygon, this is sufficient for proving the lemma.

480 DON COPPERSMITH AND MICHAEL ELKIN

Observe that wj+1 − wj = (−aj+1, bj+1) and wj − wj−1 = (−aj , bj). Hence,
u = (−(aj + aj+1), (bj + bj+1)), and consequently, u⊥ = (bj + bj+1, aj + aj+1). Let x

be an extreme point of the polygon P̂ , x �= v. The proof splits into several cases.
1. x = wh for j < h ≤ k.

Then x− v = wh − wj =
∑h

i=j+1(−ai, bi), and

〈x− v, u⊥〉 = − (bj + bj+1)

h∑
i=j+1

ai + (aj + aj+1)

h∑
i=j+1

bi.

Hence,

sign(〈x− v, u⊥〉) = sign

(
aj + aj+1

bj + bj+1
−

∑h
i=j+1 ai∑h
i=j+1 bi

)
.

Note that

aj + aj+1

bj + bj+1
<

aj+1

bj+1
<

∑h
i=j+1 ai∑h
i=j+1 bi

,

and thus sign(〈x− v, u⊥〉) =′′ −′′.
2. x = wh, 0 ≤ h ≤ j.

This case is symmetric to case 1, and

sign(〈x− v, u⊥〉) = sign

(∑j
i=h+1 ai∑j
i=h+1 bi

− aj + aj+1

bj + bj+1

)
.

Note that

aj + aj+1

bj + bj+1
>

aj
bj

>

∑j
i=h+1 ai∑j
i=h+1 bi

,

and so sign(〈x− v, u⊥〉) =′′ −′′.

3. For h = 0, 1, . . . , k, let w′
h = (−

∑k
i=h+1 ai,

∑h
i=1 bi). (Recall that wh =

(
∑k

i=h+1 ai,
∑h

i=1 bi), and so w′
h is a reflection of wh with respect to the

x-axis.)

If h = j, then x − v = w′
j − wj = (−2

∑k
i=j+1 ai, 0), and 〈x − v, u⊥〉 =

−2(
∑k

i=j+1 ai)(bj + bj+1) < 0, as required.

If x = w′
h, h > j, then x−v = w′

h−wj = (−(
∑h

i=j+1 ai+2
∑k

i=h+1 ai),
∑h

i=j+1 bi).
Hence,

sign(〈x− v, u⊥〉) = sign

⎛
⎝−(bj + bj+1)

⎛
⎝ h∑

i=j+1

ai + 2

k∑
i=h+1

ai

⎞
⎠

+ (aj + aj+1)

h∑
i=j+1

bi

⎞
⎠

= sign

(
aj + aj+1

bj + bj+1
−

∑h
i=j+1 ai + 2

∑k
i=h+1 ai∑h

i=j+1 bi

)
= ′′−′′

SPARSE SOURCEWISE DISTANCE PRESERVERS 481

because

aj + aj+1

bj + bj+1
−

∑h
i=j+1 ai + 2

∑k
i=h+1 ai∑h

i=j+1 bi
<

aj + aj+1

bj + bj+1
−

∑h
i=j+1 ai∑h
i=j+1 bi

< 0.

For x = w′
h, h < j, the computation is symmetric (the roles of the indices h

and j are switched).
4. For x̄ = −x such that 〈x−v, u⊥〉 < 0, it follows that 〈−x, u⊥〉 ≤ 0 ≤ 〈x, u⊥〉 ≤

〈v, u⊥〉, since both vectors x and u⊥ have only nonnegative coordinates.

5. x = w′′
h = (

∑k
i=h+1 ai,−

∑h
i=1 bi).

If h = j, then 〈x− v, u⊥〉 = −2(aj + aj+1)
∑j

i=1 bi < 0.
If h > j, then

x− v = w′′
h − wj =

(
k∑

i=h+1

ai,−
h∑

i=1

bi

)
−
(

k∑
i=j+1

ai,

j∑
i=1

bi

)

=

(
−

h∑
i=j+1

ai,−2

j∑
i=1

bi −
h∑

i=j+1

bi

)
.

Hence

〈x−v, u⊥〉 = −
〈(

h∑
i=j+1

ai, 2

j∑
i=1

bi +

h∑
i=j+1

bi

)
, (bj + bj+1, aj + aj+1)

〉
< 0,

as required.
Finally, the case h < j is symmetric (the roles of the indices h and j are
switched).

5.3. Constructing the instance. We next describe the construction of the
graph G = (V,E), and a subset S ⊆ V of sources that will be used in the proof of our
lower bound for the sources problem.

Let N > 10 ·T 2 be another positive integer parameter. Enlarge the polygon P by
a factor

√
N/T . In other words, let P ′ = (

√
N/T) · P = {(

√
N/T) · u : u ∈ P}. Note

that the polygon P ′ is contained in a disc of radius
√
N , and therefore, it contains

O(N) points of the integer lattice Z
2.

For each extreme point v of the polygon P that belongs to the set C ′ (that is, has
norm Ω(T 1/3)), consider the line that passes through the origin and is perpendicular
to the vector e(v). Let Av be one of the two points on this line (chosen arbitrarily)
that are at (Euclidean) distance exactly

√
N/2 from the origin. Let Iv be a segment

of length
√
N parallel to the vector e(v) that passes through the point Av, and,

furthermore, Av is its center. Let Cv and Dv be its endpoints. Let I ′v be a segment
of the same length as Iv (that is,

√
N), parallel to Iv, and such that its center A′

v

is located on the line that connects the origin to Av, at distance exactly T from the
point Av. Let C ′

v, D
′
v be its endpoints. Let Bv be the rectangle CvDvD

′
vC

′
v. (See

Figure 6.)

Let F =
√
N
T , and let B′

v be the box Bv displaced by F · v. In other words,
B′

v = {x + F · v : x ∈ Bv}. Note that by the triangle inequality, the box B′
v is

contained in a disc of radius 2
√
N .

For each integer point x ∈ Bv ∩ Z
2, insert the edges {x, x + v}, {x + v, x +

2v}, . . . , {x + (F − 1) · v, x + F · v} into the edgeset E of the graph G = (V,E) that
we construct.

482 DON COPPERSMITH AND MICHAEL ELKIN

�

�

�

�

�

��

� �

�

�

�

��

� �

��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�����������������

�
�
�
�

Bv

Cv Dv

B′
v

F · v

e(v)

√
N

C ′
v D′

v

Iv

v

T

Fig. 6. The boxes Bv and B′
v have real dimensions

√
N × T , with the long edge of length

√
N

aligned in parallel to the vector e(v).

Definition 5.4. For the box Bv, a segment Iv is called an aligned segment of
the box Bv if it contains at least one integer point x of the box Bv, it is parallel to the
vector e(v) (and, consequently, to the long edge of the box Bv), and it contains all the
integer points of the box Bv of the form x + α · e(v), α ∈ Z, and its endpoints lie on
the boundary of the box Bv.

For an aligned segment Iv , let Zv denote the set of integer points of the segment
Iv. The set Zv will be referred to also as an integer aligned segment of the box Bv.

Fix the vector v for the rest of this section. Note that the real length of each
aligned segment Iv is

√
N . Note also that the set of all the integer points of the box

Bv decomposes into the disjoint union of integer aligned segments Zv of Bv. For an
integer aligned segment Zv of the box Bv, let Z ′

v = Zv + F · v = {x+ F · v : z ∈ Zv}.
By definition, the set Z ′

v is an integer aligned segment of the box B′
v.

Let m(v) = |Zv| denote the cardinality of some set Zv. The notation suggests
that this cardinality does not depend on the choice of the particular integer aligned
segment of the box Bv. In fact, this is not the case, and it may happen that for
two different aligned segments Zv and Z̃v, |Zv| = Z̃v ± 1. However, this difference
of 1 has no effect on our analysis, and we will henceforth ignore it, and assume that
|Zv| = m(v) for every integer aligned segment of the box Bv. As v is fixed, let m
serve as a shortcut for m(v).

For each integer aligned segment Zv of Bv, order the points of Zv according to
the order in which they appear on the line (there are two such orders; choose either
one of them arbitrarily). Let ov be this ordering, and write Zv = (x1, . . . , xm) with
xi <ov xj if and only if i < j. Order Z ′

v in the same order, i.e., Z ′
v = (x′

1, . . . , x
′
m),

x′
i = xi + F · v, i ∈ [m].

SPARSE SOURCEWISE DISTANCE PRESERVERS 483

Fig. 7. An illustration of an auxiliary tree.

Arrange the numbers (1, 2, . . . ,m) as an
√
m×

√
m matrix M (ignoring possible

nonintegrality of
√
m; it affects only the lower-order terms of the analysis), with

Mij =
√
m(i− 1) + j, for i, j ∈ [

√
m].

Let Ri (resp., Ci), i ∈ [
√
m], be the set of numbers that appear on the ith row

(resp., column) of this matrix, i.e., Ri = {
√
m(i− 1) + 1,

√
m(i− 1) + 2, . . . , (

√
m)i}

(resp., Ci = {i,
√
m + i, . . . , (

√
m − 1)

√
m + i}). Let Ri(Zv) = {x� ∈ Zv :
 ∈ Ri},

and, analogously, Ci(Zv) = {x� ∈ Zv :
 ∈ Ci}. Obviously, for every pair of indices
i, j ∈ [

√
m], |Ri ∩ Cj | = 1, and consequently, |Ri(Zv) ∩ Cj(Zv)| = 1. For each index

i ∈ [
√
m], a new source si(Zv) is introduced, that is, a vertex of the graph G that

belongs to the set S of sources. The source vertices do not correspond to points of
the Euclidean plane. In addition,

√
m − 2 (assuming that

√
m is a power of 2) new

auxiliary vertices are introduced for each source. (If
√
m is not a power of 2, then

2t − 2 vertices are introduced, where t satisfies 2t−1 <
√
m ≤ 2t.) These auxiliary

vertices are used to form a complete binary tree rooted in si(Zv). This tree τ̂ has√
m/2 leaves, all of which are new auxiliary vertices. Each of these leaves is connected

to exactly two vertices of the set Ri(Zv), and each vertex of Ri(Zv) has exactly one
neighbor in τ̂ .

Consider the obtained complete binary tree τ̂i(Zv), rooted in the source si(Zv).
(See Figure 7 for an illustration.) This tree has depth d = log

√
m, and its leaves are

the
√
m vertices of the set Ri(Zv). The vertices of this tree are assigned levels in the

following way. Each leaf z is assigned level
(z) = 0, and each vertex w whose children
are all assigned level
 is assigned level
(w) =
 + 1. An edge e = {u,w} ∈ τ̂i(Zv)
that connects a vertex u to its parent w in the tree is assigned the level of the child
u, i.e.,
(e) =
(u). Next, each edge e of the tree τ̂i(Zv) is replaced with a path of

length 20 ·2�(e) ·
√
m

T 2/3 , which is formed using new auxiliary vertices. The resulting tree
is denoted τi(Zv), and the tree τ̂i(Zv) is called its skeleton.

Consider the edges e of the skeleton tree τ̂i(Zv) that have a fixed level
(e) = p.
The number of such edges is 2d−p. Each edge e of τ̂i(Zv) with
(e) = p is replaced

with a path of length 20 · 2p ·
√
m

T 2/3 in the tree τi(Zv), and so all edges e of level p

484 DON COPPERSMITH AND MICHAEL ELKIN

contribute together O(
√
m

T 2/3 ·2d) = O(m
T 2/3) vertices to τi(Zv), and thus, overall, τi(Zv)

contains O(m logm
T 2/3) vertices.

An almost symmetrical tree is constructed for the vertices of Z ′
v. Specifically, a

new source s′i(Z
′
v) is introduced, along with a bunch of new auxiliary vertices. These

vertices are used to build a complete binary tree rooted in the source s′i(Z
′
v). This

tree has
√
m/2 leaves, and each of them is connected to two vertices of the set Ci(Z

′
v)

such that each vertex of the set Ci(Z
′
v) is connected to exactly one such leaf. (Note

that the difference is that s′i(Z
′
v) is connected to vertices of Ci(Z

′
v), while si(Zv) is

connected to vertices of Ri(Zv).) Finally, every edge e of the obtained tree τ̂ ′i(Z
′
v) by

a path of appropriate length (specifically, 20 · 2�(e) ·
√
m

T 2/3 , where
(e) is the level of
the edge), and this path is formed using new auxiliary vertices. The obtained tree is
denoted τ ′i(Z

′
v).

This is done separately for every extreme point v ∈ Ex (P), for every integer
aligned segment Zv of Bv, and Z ′

v of B′
v, and for every index i ∈ [

√
m(v)].

5.4. The analysis of the construction. In this section we analyze the instance
G = (V,E), S ⊆ V , that was constructed in the previous section. Note that for each
vector v, each integer aligned segment Zv, and each pair of sources si(Zv), s

′
j(Z

′
v),

i, j ∈ [
√
m(v)], there exists a unique vertex x ∈ Zv such that x serves as a leaf of

the tree τi(Zv), and x′ = x + F · v serves as a leaf of the tree τ ′j(Z
′
v). Furthermore,

for each vertex x ∈ Zv, there exists a unique pair of sources si(Zv), s
′
j(Z

′
v), as above.

Therefore, for each vertex x ∈ Zv, the shortest path between x and x′ is indispensable;
i.e., no edge of this path can be removed without increasing the distance between some
pair of sources.

The involved way in which the trees τi(Zv), τ
′
j(Z

′
v) are constructed is dictated by

the necessity of balancing two contradictory requirements. On the one hand, we need
to prevent these trees from affecting the geometric properties of the graph, that is,
from making a distance in the graph between some pair of points of the Euclidean
plane shorter than the Euclidean distance between them (divided by a scaling factor).
On the other hand, we have to keep the number of vertices as small as possible, in
order to achieve a stronger lower bound.

We next provide a few bounds on the number of vertices, edges, and sources of
this instance.

Lemma 5.5. The number N ′ of vertices in the graph G = (V,E) is O(N +N3/4 ·
T 5/6 · logN), the number of edges is |E| = O(N · T 2/3 + N3/4 · T 5/6 · logN), and the
number of sources is S = O(N1/4 · T 11/6).

Proof. First, observe that all the vertices of the graph G that are contained in
the different boxes Bv, B

′
v for different extreme points v of the polygon P , as well

as the vertices of the paths that connect these boxes, are all contained in the set of
integer points of a disc of radius 2

√
N , and therefore, the number of these vertices is

at most O(N). Hence, we need only argue that the number of auxiliary vertices is
O(N3/4 · T 5/6 · logN), and the number of sources is O(N1/4 · T 11/6).

Consider a fixed box Bv for some extreme point v ∈ Ex (P). Recall that the real
dimensions of the box Bv are

√
N × T , with the long edge (the one of length

√
N)

parallel to the vector e(v). Consider an integer aligned segment Zv of Bv. Recall
that the slope of the vector e(v), a/b, satisfies Ω(T 1/3) = |a|, |b| ≤ 2 · T 1/3, where the
fraction a/b is in its lowest terms. It follows that |Zv| = Θ(

√
N/T 1/3). Observe that

each aligned segment Iv of the box Bv has the same number m(v) = Θ(
√
N/T 1/3)

of integer points. Note that m(v) does actually depend on v ∈ Ex (P), but for every

SPARSE SOURCEWISE DISTANCE PRESERVERS 485

v ∈ Ex (P),

m(v) = Θ(
√
N/T 1/3).(7)

Let m denote Θ(
√
N/T 1/3).

Recall that every set Zv is partitioned into
√
m(v) subsets R1(Zv), R2(Zv), . . . ,

R√
m(v)

(Zv) of equal size
√

m(v). For each such subset, an auxiliary tree with

Θ

(
m(v) logm(v)

T 2/3

)
= Θ

(
m · logm

T 2/3

)

vertices is constructed. Hence, altogether these
√
m(v) binary trees contain

Θ

(
m3/2 logm

T 2/3

)

vertices.
The box Bv contains Θ(

√
N · T) integer points, and since each aligned segment

of Bv contains m(v) vertices, it follows that the box Bv contains

Θ

(√
N · T
m

)

aligned segments. Hence, altogether for all these segments, Θ(
√
N · T 1/3

√
m · logm)

vertices are created. Hence, overall there are Θ(
∑

v(
√
N ·T 1/3

√
m · logm)) = Θ(N3/4 ·

T 5/6 logN) auxiliary vertices (since there are O(T 2/3) vertices v ∈ Ex (P)).
To count the number of edges, note that for each extreme point v ∈ Ex (P), the

boxes Bv, B
′
v are connected by Θ(

√
N · T) paths of length F =

√
N/T each. This

sums up to at most O(N) edges.
Let Hv denote the set of these paths. The norm of v is Θ(T), and the depth of

the boxes Bv and B′
v is T . Hence, there is a subset H′

v ⊆ Hv of these paths that

contains at least a constant fraction of the paths of Hv (i.e.,
|H′

v|
|Hv| = Ω(1)), and such

that the paths in H′
v are pairwise disjoint. It follows that the number of edges in the

paths of Hv is actually Θ(N).
Since there are Θ(T 2/3) extreme points v ∈ Ex (P), inequality (7) implies that

there are Θ(N ·T 2/3) edges in all these paths. The auxiliary trees contribute additional
Θ(N3/4 · T 5/6 · logN) edges.

For the number of sources, note that for every extreme point v, and for every
aligned segment of one of the boxes Bv or B′

v,
√

m(v) = Θ(
√
m) sources are formed.

Since each box contains

Θ

(√
N · T
m

)

aligned segments, and there are Θ(T 2/3) extreme points, overall we have

Θ

(
√
m ·

√
N · T
m

· T 2/3

)
= Θ

(√
N · T 5/3

√
m

)
= Θ(N1/4 · T 11/6)

sources.

486 DON COPPERSMITH AND MICHAEL ELKIN

Intuitively, the next lemma shows that the auxiliary trees do not affect the geo-
metric properties of the graph.

Lemma 5.6. For an extreme point v ∈ Ex (P), and a pair of points u, w that
belong to the same integer aligned segment Zv of the box Bv, any path Π between them
that is contained entirely in some auxiliary tree τi(Zv) can be replaced with a sequence
(u = u0, u1, . . . , uL = w), L = |Π|, of points in the plane satisfying that for every
index j ∈ [L], the vector uj − uj−1 is contained in the convex hull P̂ of C.

Proof. Consider the box Bv and an integer aligned segment Zv of Bv. Consider
a pair of vertices u,w ∈ Zv, and let L be the line that passes through u and w.
Suppose that there exists an auxiliary tree τ = τi(Zv), for some index i ∈ [

√
m(v)],

that contains both vertices u and w as leaves. Then u and w are also leaves of the
skeleton tree τ̂ = τ̂i(Zv). Let z be the closest vertex of τ̂ that is an ancestor of both
u and w in the tree τ̂ . Note that the shortest path between u and w in the tree τ
passes through the vertex z. Let
 ≥ 1 denote the distance between u and z in the
skeleton tree τ̂ . Then, by construction, the distance between them in the tree τ is

20 · (
√

m(v)/T 2/3)

�−1∑
i=1

2i = 20 · (
√
m(v)/T 2/3) · (2� − 1).

Hence, the distance between u and w in the tree τ is

40 · (2� − 1)(
√
m(v)/T 2/3) ≥ 20 · 2� · (

√
m(v)/T 2/3).

Consider the ordering ov of the points of Zv on the aligned segment Iv. By
construction, since the closest common ancestor of u and w is at distance
 from each
of them in the skeleton tree τ̂ , it means that at most (2� − 2) points of Zv that serve
as leaves of τ̂ appear between u and w in the ordering ov of the points of Zv. In other
words, at most 2�− 2 integer points of the set Ri(Zv) appear between u and w on the
line L. Each pair of consecutive points of Ri(Zv) is separated by at most

√
m(v)− 2

points of Zv that appear between them on the line L. Each pair of consecutive points
of Zv are at a Euclidean distance of at most 3T 1/3. Hence, the Euclidean distance
between u and w is at most 2� ·

√
m(v) · 3 · T 1/3.

In other words, starting from a vertex u on the Euclidean plane, and travelling for

at least q = 20 · 2� ·
√

m(v)

T 2/3 edges on the tree τi(Zv), brings us to another vertex w on

the plane which is at a Euclidean distance of at most r = 3 ·2� ·
√
m(v) ·T 1/3 from the

vertex u. Consider the sequence of points (u, u+ w−u
q , u+2 · w−u

q , . . . , u+q · w−u
q = w)

in the plane (the points u+i · s−u
q are not necessarily integer). The Euclidean distance

between each pair of consecutive points of this sequence is, naturally, ||w − u||/q =
r/q ≤ (3/20)T . Observe that the convex hull P̂ = CH (C) contains the disc of radius
(3/20)T centered at the origin. (In fact, it contains the disc of radius T−o(T) centered
at the origin, but for the current proof this much weaker statement is sufficient.) It
follows that the vector w−u

q is contained in the convex hull P̂ of C.

Obviously, the same lemma applies to the trees τ ′j(Z
′
v).

Furthermore, this lemma readily generalizes to a pair of integer points u, w in
the plane that belong to the vertex set V of the graph, but do not necessarily belong
to the same aligned segment. Suppose that for such a pair u, w of points there
exists a path Π′ that is contained entirely in the union J of auxiliary trees τ and
τ ′. To see that Lemma 5.6 is applicable to such a pair of points, note that each such
path Π′ is a concatenation of one or more subpaths Π that satisfy the assumptions

SPARSE SOURCEWISE DISTANCE PRESERVERS 487

of Lemma 5.6. Applying the lemma to each of these subpaths provides the desired
generalized statement.

The proof of the next lemma was outlined in the beginning of this section. On
the intuitive level, it uses Lemma 4.1 to argue that the way our construction uses
CISs makes shortcutting impossible.

Lemma 5.7. No edge e of the graph G = (V,E) can be removed without increasing
the distance between at least one pair of sources s, s′ ∈ S.

Proof. The edgeset E of the graph G contains two types of edges. First, we have
the edges of the paths between u and u′, that is, {u, u+ v}, {u+ v, u+ 2v}, . . . , {u+
(F −1) ·v, u+F ·v}, for some v ∈ Ex (P), and u ∈ Bv. Let E1 denote the collection of
these edges. Second, we have the edges of the auxiliary trees τ and τ ′. Let E2 denote
the collection of these edges, i.e., E2 = E \ E1. We start with proving the statement
of the lemma for the edges e ∈ E1.

Fix an edge e = {u + j · v, u + (j + 1) · v}, v ∈ Ex (P), u ∈ Bv, j ∈ [(F)]. Let u
and u′ be the endpoints of the corresponding path (u′ = u + F · v). Let Zv be the
integer aligned segment of Bv to which the vertex u belongs. Consequently, u′ ∈ Z ′

v.
Let m = m(v) denote |Zv| = |Z ′

v|. Recall that there exists a unique pair of indices
i, j ∈ [

√
m] such that u ∈ Ri(Zv) ∩ Cj(Zv). It follows that for this pair of indices

u ∈ Ri(Zv), u
′ ∈ Cj(Z

′
v). We first argue that distG\e(u, u

′) > F .

Lemma 5.8. The unique path between u and u′ of length at most F in the graph
G is ({u, u+ v}, {u+ v, u+ 2 · v}, . . . , {u+ (F − 1) · v, u+ F · v}), and this path uses
the edge e = {u + j · v, u + (j + 1) · v}.

Proof. Consider some path Π′ in G of length at most F between u and u′. Let Π′

represent a concatenation, Π′ = Π′
1 · Π′

2 · . . . · Π′
�, of the subpaths Π′

j , j ∈ [
],
 ≤ F ,
such that every subpath Π′

j is contained entirely in either E1 or E2, and such that for
every index j ∈ [
− 1], Π′

j ⊆ E1 if and only if Π′
j+1 ⊆ E2, and vice versa. Note that

this representation is unique.

For each subpath Π′
j that is contained in E2, observe that its endpoints w, w′

are points in the plane. Hence (the generalized version of) Lemma 5.6 can be applied
to each such subpath Π′

j , and so there exists a sequence (w = w0, w1, . . . , wLj = w′)
of points in the plane, with Lj = |Π′

j |, and for every index i ∈ [Lj], the vector

wi − wi−1 is contained in the convex hull P̂ of the set C. We next construct a
sequence Π′′ of points in the following way. For each index j ∈ [
] such that Π′

j ⊆ E1,

replace the subpath ({w(j)
0 , w

(j)
1 }, {w(j)

1 , w
(j)
2 }, . . . , {w(j)

Lj−1, w
(j)
Lj

}) with the sequence

Π′′
j = (w

(j)
0 , w

(j)
1 , . . . , w

(j)
Lj

) of points in the plane. For each index j ∈ [
] such that

Π′
j ⊆ E2, replace the subpath with the sequence of points Π′′

j = (w
(j)
0 , w

(j)
1 , . . . , w

(j)
Lj

)
that is obtained by applying Lemma 5.6 to this subpath. Finally, concatenate the
sequences Π′′ = Π′′

1 · Π′′
2 · . . . · Π′′

� . (A concatenation of two sequences (a1, a2, . . . , at),
(at, at+1, . . . , aq) is defined as (a1, a2, . . . , aq).)

Observe that the obtained sequence Π′′ = (u = u0, u1, . . . , ur = u′), r ≤ F ,
satisfies that for every index j ∈ [r] the vector uj − uj−1 belongs to the convex hull

P̂ of the set C (as either an extreme point or an internal point). It follows that
F · v = u′−u =

∑r
j=1(uj −uj−1). The argument is now identical to the one that was

used in the proof of Lemma 4.1.

Specifically, let {d1, . . . , dp} be the set of distinct vectors from the collection
{(uj − uj−1) : j ∈ [r]}, and let αi, i ∈ [p], denote their multiplicities (i.e., αi =
|{j : uj − uj−1 = di}|). It follows that F · v =

∑p
i=1 αidi,

∑p
i=1 αi = r ≤ F , and

{d1, . . . , dp} ⊆ P̂ . In other words, v =
∑p

i=1
αi

F di,
∑p

i=1(
αi

F) ≤ 1, and for every

488 DON COPPERSMITH AND MICHAEL ELKIN

index i ∈ [p], αi

F ≥ 0, and di ∈ P̂ . Since the vector v is an extreme point of the
polygon P , it follows that p = 1, α1 = F , and d1 = v, proving that the unique path
between u and u′ of length at most F in the graph G is the path ({u, u+v}, {u+v, u+
2v}, . . . , {u+(F−1)·v, u+F ·v}), and this path uses the edge e. Hence, distG\e(u, u

′) >
F .

We next provide a lower bound on the distance in the graph G between a pair of
“nonmatching” vertices u ∈ Zv and w ∈ Z ′

v.
Lemma 5.9. For a vertex u ∈ Zv, and a vertex w′ ∈ Z ′

v such that w′ �= u′,
distG(u,w′) > F .

Proof. Consider the polygon u + F · P = {u + w : w ∈ F · P}, where F · P =
{F · z : z ∈ P}. Note that u′ = u+F · v is an extreme point of this polygon (because
v is an extreme point of the polygon P). Also, both vertices u′ and w′ belong to the
integer aligned segment Z ′

v. Hence, both points u′ and w′ lie on the aligned segment
I ′v. By construction, the segment I ′v is parallel to the vector e(v). Hence, the segment
I ′v passes through the extreme point u′ = u + F · v of the polygon (u + F · P) and is
parallel to the vector e(v). By Lemma 5.3, the segment I ′v is contained in a supporting
line of the polygon (u+F ·P) in the point u′. By the definition of the supporting line
(Definition 5.2), for every point z �= u′ on this line, z does not belong to the convex
hull of the polygon (u + F · P), that is, to (u + F · P̂). Hence, w′ �∈ (u + F · P̂).

The rest of the proof is analogous to that of Lemma 5.8. Suppose for contradiction
that there exists a path Π in the graph G of length r ≤ F between the vertices u
and w′. Let Π′′ = (u = u0, u1, . . . , ur = w′) be the sequence of points in the plane
obtained from the path Π via the same transformation as that used in the proof of
Lemma 5.8 for obtaining the sequence Π′′ from the path Π′. This sequence satisfies
that for every index j ∈ [r], the vector uj − uj−1 belongs to the convex hull P̂ of the
set C.

Hence, w′ − u =
∑r

j=1(uj − uj−1). Let {d1, . . . , dp} be the set of distinct vectors
from the collection {(uj−uj−1) : j ∈ [r]}, and let αi, i ∈ [p], denote their multiplicities.

It follows that w′ − u =
∑p

i=1 αidi,
∑p

i=1 αi = r ≤ F , and {d1, . . . , dp} ⊆ P̂ . Hence,
(w′−u)/F =

∑p
i=1(αi/F)·di,

∑p
i=1(αi/F) ≤ 1, and for every index i ∈ [p], αi/F ≥ 0.

It follows that the vector (w′ − u)/F belongs to the convex hull P̂ of the polygon P .
Hence, w′ − u ∈ F · P̂ , and so w′ ∈ (u + F · P̂), which is a contradiction.

Hence, there is no path in G of length at most F between the vertices u and w′

for w′ �= u′. Hence, distG(u,w′) > F .
We now return to the proof of Lemma 5.7. Consider the pair of vertices u ∈

Ri(Zv), u
′ ∈ Cj(Z

′
v). Recall that si(Zv) is the source that serves as the root of the

auxiliary tree τi(Zv) whose set of leaves is equal to Ri(Zv), and s′j(Z
′
v) is the source

that serves as the root of the auxiliary tree τ ′j(Z
′
v) whose set of leaves is equal to

Cj(Z
′
v). Observe that

distG(si(Zv), s
′
j(Z

′
v)) = distG(si(Zv), u) + distG(u, u′) + distG(u′, s′j(Z

′
v)).

By construction,

distG(si(Zv), u) = distG(u′, s′j(Z
′
v)) = 20 ·

√
m

T 2/3
(2� − 1),(8)

where
 = log
√
m = 1

2 logm. Hence the right-hand side of (8) is equal to 20
√
m(

√
m−

1)/T 2/3. Denote this expression by M . Hence, distG(si(Zv), s
′
j(Z

′
v)) = 2M + F . We

next show that distG\e(si(Zv), s
′
j(Z

′
v)) > 2M + F .

SPARSE SOURCEWISE DISTANCE PRESERVERS 489

Observe that by construction,

distG\e(si(Zv), s
′
j(Z

′
v)) = min{distG\e(si(Zv), x) + distG\e(x, y)(9)

+ distG\e(y, s
′
j(Z

′
v)) : x ∈ Ri(Zv), y ∈ Cj(Z

′
v)}.

Since distG\e(si(Zv), x) ≥ distG(si(Zv), x) = M for every x ∈ Zv, and, analogously,
distG\e(y, s

′
j(Z

′
v)) ≥ M for every y ∈ Z ′

v, it follows that distG\e(si(Zv), s
′
j(Z

′
v)) ≥

2M + min{distG\e(x, y) : x ∈ Ri(Zv), y ∈ Cj(Z
′
v)}. So, it remains to argue that for

every pair of vertices x ∈ Ri(Zv), y ∈ Cj(Zv), distG\e(x, y) > F .
Let u denote the unique vertex such that {u} = Ri(Zv)∩Cj(Zv). Let u′ = u+F ·v.

Note that u′ ∈ Cj(Z
′
v). If x = u, y = u′, then by Lemma 5.8, distG\e(x, y) > F .

Otherwise, y �= x′, and thus, by Lemma 5.9, distG(x, y) ≥ distG\e(x, y) > F . This
proves the statement of the lemma for the case e ∈ E1.

Consider an edge e ∈ E2. There exists an auxiliary tree τi(Zv) (the case that e
belongs to a tree τ ′j(Z

′
v) is symmetric) such that the edge e belongs to the edgeset of

this tree. Let u ∈ Ri(Zv) be one of the leaves of the tree τi(Zv) so that the unique
path in the tree between the root si(Zv) and the leaf u uses the edge e. Let j ∈ [m] be
the unique index such that {u} = Ri(Zv) ∩ Cj(Zv). Consider the pair si(Zv), s

′
j(Z

′
v)

of sources. Following the argument that starts with (9), it is easy to see that in this
case too,

distG\e(si(Zv), s
′
j(Z

′
v)) > 2M + F = distG(si(Zv), s

′
j(Z

′
v)).

To summarize, we have proved that there exist infinitely many values of positive
integer parameters N and T for which there exists a graph G = (V,E) with N ′ =
O(N +N3/4 ·T 5/6 · logN) vertices, |E| = Θ(N ·T 2/3 +N3/4 ·T 5/6 · logN) edges, and
a subset S ⊆ V of O(N1/4 · T 11/6) sources, so that removal of any edge e from the
graph results in increasing the distance between some pair of sources.

Direct calculation shows that for T ≤ N3/10

log6/5 N
, N ′ = O(N), and the lower bound

of |E| = Ω(N10/11 ·S4/11) follows. (Up to this point the analysis requires only a weaker
constraint N > 10 · T 2. Hence, particularly, all previous calculations are applicable

for T in the more narrow range T ≤ N3/10

log6/5 N
.) This lower bound is superlinear in

N + S2 for ω(N1/4) = S = o(N5/9). We proved the following theorem.
Theorem 5.10. There exists infinitely many positive integer numbers N and S,

Ω(N1/4) = S = o(N5/9), for which there exist N -vertex unweighted undirected graphs
G = (V,E) and subsets S ⊆ V of S sources, with |E| = Ω(N10/11 · S4/11) edges such
that removal of any edge e from the graph results in increasing the distance between
some pair of sources.

6. The three-dimensional construction. In this section we devise a variant
of our construction from section 5 that is based on a large CIS in the Euclidean
three-dimensional space. This enables us to extend the range of values of S to which
the lower bound of Theorem 5.10 applies. Specifically, while the lower bound of
Theorem 5.10 is superlinear for ω(N1/4) = S = o(N5/9), the lower bound that is
based on the three-dimensional construction is superlinear in the range ω(N1/4) = S =
o(N9/16). Furthermore, the new lower bound is stronger than the one of Theorem 5.10
for ω(

√
N) = S = o(N9/16).

The d-dimensional variants of our construction, for d = 4, 5, . . . , yield no improve-
ment to these results, but require a more complicated analysis. Hence, we restrict our
attention to the dimension d = 3.

490 DON COPPERSMITH AND MICHAEL ELKIN

6.1. Constructing a dense CIS. For some fixed positive integer parameter T ,
consider the polytope P̂ defined as the convex hull of the set of integer points of the
ball of radius T centered at the origin. By [8], for a sufficiently large T , this polytope
has Θ(T 3/2) extreme points and Θ(T 3/2) facets. Let P denote the boundary of this
polytope. Observe that the surface area of P is no greater than the surface area of
the three-dimensional sphere of radius T , that is, Θ(T 2).

Note that since the facet f passes through three linearly independent integer
points (the extreme points of the polytope P), it follows that it has an integer normal
vector. We define a(f) to be this integer normal in its reduced form. Formally,
a(f) = (a1, a2, a3) satisfies gcd(a1, a2, a3) = 1. (We define gcd(0, x, y) = gcd(x, y),
gcd(0, 0, x) = x, etc.)

Lemma 6.1. There exists a subset V ′′ ⊆ V of the extreme points of the polytope
P that satisfies the following:

1. |V ′′| ≥ 4
5 |V | (and hence |V ′′| = Θ(T 3/2)).

2. Every extreme point v ∈ V ′′ has O(1) adjacent facets, and all these facets
f ∈ F have normals a(f) of norm at most ||a(f)|| = O(T 1/2).

Proof. Let |V | = cV T
3/2 denote the number of extreme points of the polytope

P , |F | = cFT
3/2 denote the number of two-dimensional facets of P , and A = cAT

2

denote its surface area, where cV , cF , and cA are positive real constants.
It follows that the number of facets f ∈ F with normal a(f) that satisfies ||a(f)|| >

max{ 20·cA
cF

, 60·cA
cV

} · T 1/2 is at most

A

10(cA/cF)T 1/2
=

1

10
cFT

3/2 =
1

10
|F |.

Let c0 = max{ 20·cA
cF

, 60·cA
cV

}. Furthermore, those facets contain together at most

3 ·A
||a(f)||/2 ≤ 1

10
|V |

integer points (because if we divide the facet f into triangles, then each triangle has
an area of at least ||a(f)||/2 and contains three integer points).

Let F ′ = {f ∈ F : ||a(f)|| ≤ c0T
1/2}. It follows that |F ′| ≥ 9

10 |F | = 9
10cFT

3/2.
Let V ′ ⊆ V be the subset of extreme points of the polygon P that contains only
extreme points that are adjacent only to facets f ∈ F ′. Since all the extreme points
of P have integer coordinates, it follows that |V ′| ≥ 9

10 |V | = 9
10cV T

3/2.
Consider the following bipartite graph G′

P = (V ′, F ′, E′
P), with (v, f) ∈ E′

P

whenever v ∈ f , v ∈ V ′, f ∈ F ′. (Analogously, let GP = (V, F,EP), EP = {(v, f) :
v ∈ f, v ∈ V, f ∈ F}.) We next argue that |E′

P | = O(|V |). To see it, note that a facet
that is adjacent to
 vertices is an
-gon and is adjacent to
 one-dimensional facets
(edges) of P . Each such edge is shared by exactly two facets. So the facet contributes

 edges to the graph GP , and
/2 one-dimensional facets to the polytope P . Hence,
denoting by R the number of the one-dimensional facets of the polytope P , we get
R = |EP |/2. By Euler’s formula, |V |−R+ |F | = 2, and so |EP |/2 = R = |V |+ |F |−2,
implying |EP | = 2|V | + 2|F | − 4 = O(|V |) (since for a three-dimensional polytope,
|F | = O(|V |)). Hence, |E′

P | ≤ |EP | = O(|V |).
Let c denote the constant such that |E′

P | ≤ c|V |. Disregard all the extreme points
with at least 10c adjacent facets. There are at most (1/10)|V | such extreme points.
Let V ′′ ⊆ V ′ be the subset of all the extreme points of V ′ with at most 10c adjacent
facets. It follows that |V ′′| ≥ 4

5 |V |.

SPARSE SOURCEWISE DISTANCE PRESERVERS 491

For each extreme point v ∈ V , let e(v) be the plane that passes through v and
that is normal to the vector

a(v) =
∑

{a(f) : (v, f) ∈ E′
P },(10)

where a(f) is the normal of the facet f .
Observe that since each v ∈ V ′′ has only O(1) adjacent facets, ||a(v)|| = O(1) ·

max{||a(f)|| : (v, f) ∈ E′
P }. Also, since for every vector v ∈ V ′′ and facet f such that

(v, f) ∈ E′
P , ||a(f)|| = O(T 1/2), it follows that ||a(v)|| = O(T 1/2) as well.

Note that Definition 5.2 of supporting lines naturally generalizes to supporting
planes.

Lemma 6.2. The plane e(v) is a supporting plane of the polytope P .
Proof. Consider some point x ∈ P̂ . We need to show that 〈x − v, a(v)〉 < 0,

for every x ∈ P̂ , x �= v. Since x ∈ P̂ , and P̂ is a convex polytope, x is a convex
combination of the extreme points of P̂ . That is, x =

∑�
i=1 αi · vi,

∑�
i=1 αi = 1,

αi > 0, for every i ∈ [
], and
 ≥ 1. Hence,〈
�∑

i=1

αivi, a(v)

〉
− 〈v, a(v)〉 =

�∑
i=1

αi

〈
vi − v,

∑
(v,f)∈EP

a(f)

〉

=

�∑
i=1

∑
(v,f)∈EP

αi〈vi − v, a(f)〉.(11)

The inner products 〈vi− v, a(f)〉 are always nonpositive because vi ∈ P̂ and the facet
f contains the vertex v. It can be equal to zero only when vi ∈ f . Hence, for the sum
(11) to degenerate, all the vertices v1, v2, . . . , v� must belong to all the facets f ∈ F
such that (v, f) ∈ EP . In other words, it follows that v1 = v2 = · · · = v� = v, as
required.

To summarize, we have constructed a CIS V ′′ of Θ(T 3/2) integer vectors of norm
at most T , a polytope P̂ that contains all of them as extreme points, and a supporting
plane e(v) for every vector v ∈ V ′′ with normal a(v) of norm O(T 1/2). It is not hard
to ensure also that the norms will be Ω(T 1/2) by eliminating only a constant fraction
of vertices of V ′′.

6.2. Constructing the instance. We next use the construction of the dense
three-dimensional CIS for improving the lower bound on the size of sourcewise pre-
servers.

Let N and T , N > 10 · T 3, be two sufficiently large positive integer parameters.
We start with enlarging the polytope P̂ by a factor of N1/3/T .

Similarly to the two-dimensional construction, for each vertex v ∈ V ′′ we now
build a box Bv of real dimensions N1/3×N1/3×T with the square facet of dimensions
N1/3 ×N1/3 parallel to the plane e(v) and with the rectangular facet of dimensions
N1/3 × T perpendicular to e(v). The box is placed at a distance of roughly N1/3/2
from the origin (the exact location of the box is not crucial for the analysis; one
possible way of placing those boxes is analogous to the way it is done in section 5.3

for the two-dimensional boxes). Define F = N1/3

T , and let B′
v be the box Bv displaced

by F · v, that is, B′
v = {x′ = x + F · v : x ∈ Bv}.

Now, for each vertex x, x and x′ are connected by the paths of length F , exactly as
it was done in the two-dimensional construction. The construction of auxiliary trees
is also similar, and the main difference is the ordering of points on integer aligned

492 DON COPPERSMITH AND MICHAEL ELKIN

segments. (An aligned segment Iv is defined analogously to Definition 5.4. It is a
two-dimensional square with both edges of length N1/3, parallel to the plane e(v).
An integer aligned segment is the set of integer points of the aligned segment Iv. Let
m = m(v) denote the cardinality of Iv.)

We next specify the way the subsets Ri(Zv), Cj(Zv), i, j ∈ [
√
m(v)] are formed.

Let n = m1/4. Partition the square to
√
m strips of real dimensions m1/2×n by n−1

lines parallel to one of the edges of the square. Order the n strips H1, H2, . . . , Hn in
one of the two natural orders (in other words, one of the long edges of the strip H1 is
one of the edges of the square; the strip H2 shares the long edge with the strip H1,
etc.). Do the same with respect to the other edge of the square, and order the strips
J1, J2, . . . , Jn. This way we partitioned the aligned segment Iv into

√
m subsegments

Iv(i, j) = Hi ∩ Jj , i, j ∈ [n], of real dimensions N1/6 ×N1/6 each.

Let Zv(i, j) denote the set of integer points of Iv(i, j); the set Zv(i, j) will be
referred to as the integer aligned (i, j)-subsegment of Zv. For an index i ∈ [

√
m], let

j(i) = ((i − 1) mod n) + 1 and
(i) = ((i − j)/n) + 1. For each index i ∈ [
√
m], we

define Ri(Zv) = Zv(
(i), j(i)). (In other words, each set Zv(
, j) becomes Ri(Zv) for
i−1 = (j−1)+(
−1) ·n, j−1 ∈ [(n)].) To define Cj(Zv) we do the following. Insert
into C1(Zv) one arbitrary element from each subset Zv(i, j). Insert into C2(Zv) one
arbitrary element from each Zv(i, j) that was not chosen for insertion into C1(Zv).
Keep forming disjoint subsets C1(Zv), C2(Zv), . . . , C√

m(Zv) this way. Note that Zv =⋃√
m

i=1 Ri(Zv) =
⋃√

m
j=1 Cj(Zv). Note also that |Ri(Zv) ∩ Cj(Zv)| = 1 for every pair of

indices i, j ∈ [
√
m].

To form the auxiliary trees τi(Zv) rooted in a source si(Zv), connect each vertex
of Ri(Zv) to si(Zv) via paths of length 2n

T 1/2 that use new auxiliary vertices. (See
Figure 8.) To form the auxiliary trees τ ′j(Z

′
v) rooted in the vertices s′j(Z

′
v) we di-

vide the set Cj(Z
′
v) into

√
m subsets H1(Cj(Z

′
v)), H2(Cj(Z

′
v)), . . . , Hn(Cj(Z

′
v)), with

Hi(Cj(Z
′
v)) = Hi ∩ Cj(Z

′
v) for each index i ∈ [n]. Note that each set Hi(Cj(Z

′
v))

contains precisely one element that belongs to the strip J� for each index
 ∈ [n].
Order the elements of Hi(Cj(Z

′
v)) such that its first element will belong to the strip

J1, its second element will belong to the strip J2, etc.; its nth element will belong to
the strip Jn.

Observe that the Euclidean distance between two consecutive elements of Hi(Cj(Z
′
v))

in this ordering is at most the diameter of the parallelogram with one edge of length
2n and the other of length n, that is, at most 3n.

Now for each pair of indices i, j ∈ [n], the tree τ ′ij(Z
′
v) is formed in almost the

same way as the tree τ ′j(Z
′
v) is formed in the two-dimensional construction. There are

the following differences:

1. The root s′ij(Z
′
v) is not a source, but rather an “ordinary” auxiliary vertex.

2. Each edge of the skeleton tree τ̂ is replaced with a path of length 20·2�(e) n
T 1/2 ,

and not 20 · 2�(e)
√
m

T 2/3 .
3. Its set of leaves is Hi(Cj(Z

′
v)).

4. The source s′j(Z
′
v) is now connected via paths of length 20n

T 1/2 to each of the
vertices s′ij(Z

′
v), i ∈ [n].

These paths are formed with new auxiliary vertices. This completes the construction
of the instance. (See Figure 9.)

Observe that, since for every pair of indices i, j ∈ [n], we have |Hi(Cj(Z
′
v))| = n

and
(e) ≤ log n, each tree τ ′ij(Z
′
v) contains O(n

2·logn
T 1/2) = O(m·logm

T 1/2) vertices. The star

rooted in the source s′j(Z
′
v) contributes additional O(

√
m/T 1/2) edges and vertices.

SPARSE SOURCEWISE DISTANCE PRESERVERS 493

�
�

�

�

�

�

�

�

�

�

�
�

�
�

�
�

�
�

�
�

	
	

	
	

	
	

	
	

	
	

�
�

�
�

�
�

�
�

�
�

�
�

�
�
	

	
	

	
	

	
	

	
	

	�
�

�
�

�
�

�
�

�
�
	

	
	

	
	

	
	

	
	

	

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

�
�

�
�
�

�
��

�
�

�
�

�
�

�
�

�
�

√
m

√
m

n

si(Zv)

Ri(Zv)

n

Fig. 8. The paths between the vertices of Ri(Zv) and the source si(Zv) are of length 2·n√
T

.

Ri(Zv) is the set of integer points of the square of real dimensions (Θ(n ·
√
T)) × (Θ(n ·

√
T)),

depicted in the middle. Hence, it has Θ(n) integer points lying along each of its edges.

�

�

�

�

�

�

�

�

�

�
�

�

�

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
	

	
	

	
	

	
	

	
	

	�
�

�
�

�
�

�
�

�
�
	

	
	

	
	

	
	

	
	

	

�
�

�
�

�

H2(Z
′
v)

H3(Z
′
v)

s′j(Z
′
v)

s′1j(Z
′
v)

s′2j(Z
′
v)

s′3j(Z
′
v)

H1(Z
′
v)

Fig. 9. The points of the set Cj(Z
′
v) are depicted by large black circles inside the square. Each

tree τ ′ij(Z
′
v) spans the set Hi(Z

′
v); specifically, the set Hi(Z

′
v) is the set of leaves of the tree τ ′ij(Z

′
v).

The roots of those trees, that is, the vertices s′ij(Z
′
v) for different indices i ∈ [n], are connected to

the source s′j(Z
′
v).

494 DON COPPERSMITH AND MICHAEL ELKIN

Hence, for every index j ∈ [n],

|V (τ ′j(Z
′
v))| =

(
n∑

i=1

|V (τ ′j(Z
′
v))|

)
+ O

(√
m

T 1/2

)

= O

(
n
√
m · logm

T 1/2

)
= O

(
m3/4 · logm

T 1/2

)
,

where for a tree τ , V (τ) stands for its vertex set. It is easy to see that for every index

i ∈ [n], |V (τi(Zv))| = O(m
3/4

T 1/2).

6.3. The analysis of the three-dimensional construction. We start by
analyzing the parameters of the instance.

Lemma 6.3. The number N ′ of the vertices in the graph G = (V,E) is O(N +
N5/6 · logN · T 15/8), the number of edges is |E| = O(N · T 3/2 +N5/6 · logN · T 15/8),
the number of sources is S = N1/3 · T 11/4.

Proof. By the same argument as in the proof of Lemma 5.5, the number of vertices
that are contained in

⋃
v∈V ′′(Bv ∪ B′

v) is O(N) (because they are all contained in a

three-dimensional ball of radius O(N1/3)).

Also, since by Lemma 6.1 each aligned segment has normal a of norm at most
||a|| = O(T 1/2), it follows that the set of integer points of each box Bv (or B′

v)
decomposes into a disjoint union of Θ(T 3/2) integer aligned segments, each of size

m = Θ(N
2/3

T 1/2) (as in the two-dimensional construction, this size depends on the vector

v, but for every v ∈ V ′′, m(v) = Θ(N
2/3

T 1/2)).

For each integer aligned segment, O(
√
m) auxiliary trees with O(

√
m · m1/4

T 1/2 ·
logm) = O(m

3/4

T 1/2 · logm) vertices each are formed, summing up to O(m
5/4

T 1/2 · logm)

vertices in each aligned segment. Since each box contains Θ(T 3/2) aligned segments,
it follows that there are O(m5/4 · T · logm) auxiliary vertices per box. Also, recall
that |V ′′| = O(T 3/2), and so there are O(T 3/2) different boxes. Hence, the overall

number of auxiliary vertices is O(m5/4 · T 5/2 · logm). Substituting m = Θ(N
2/3

T 1/2)

implies N ′ = O(N + N5/6 · T 15/8 · logN).

A similar argument shows that the number of sources is S = O(N1/3 ·T 11/4) and
the number of edges is |E| = O(N · T 3/2).

Observe that Lemma 6.3 implies the lower bound |E| = Ω(N9/11 ·S6/11), assuming

N ′ = O(N). The latter condition holds whenever T = O(N4/45

(logN)8/15). This lower

bound is superlinear in N + S2 whenever ω(N1/4) = S = o(N9/16). This happens

for T = o(N1/12) = O(N4/45

(logN)8/15). Hence, we obtain the lower bound of |E| =

Ω(N9/11 · S6/11) which provides a nontrivial lower bound on the number of edges for
ω(N1/4) = S = o(N9/16) (extending the range from S = o(N5/9) of Theorem 5.10).
The new lower bound also improves the one of Theorem 5.10 in the range ω(N1/2) =
S = o(N9/16).

To complete the proof, we need to argue that no edge can be removed from the
graph G without increasing the distance between at least one pair of sources from
S. To this end, observe that the auxiliary trees τi(Zv), τ

′
j(Z

′
v) that were formed as

part of the construction of the graph G do not create viable shortcuts between the
vertices that correspond to points of the Euclidean space. Given this observation, the
rest of the proof is completely analogous to the proof of Lemma 5.7, and is, therefore,

SPARSE SOURCEWISE DISTANCE PRESERVERS 495

omitted. (Similarly to the proof of Lemma 5.7, this proof uses Lemma 4.1 to argue
that short-cutting is impossible.)

6.4. Lower bound for weighted graphs. In this section we show a slightly
stronger lower bound on the size of the sourcewise preserver, that, however, applies
only to weighted graphs.

For a fixed sufficiently large positive integer parameter T , let Γ̂ be the set of
all pairs (
, k) of relatively prime integer numbers with absolute values between T/2
and T .

For another fixed integer parameter N > 10 · T 2, consider the set of integer
points of the disc of radius

√
N centered at the origin. For each vector v ∈ Γ̂ form

a rectangular box Bv of real dimensions (
√
N/2) × T and place it similarly to the

way it was done in the two-dimensional unweighted construction (see section 5.3).
Specifically, let Av = − v

||v||
√
N , and let Iv be the segment of length

√
N/2 that is

perpendicular to the vector v and has its center in Av. Let Ĩv be the segment Iv
displaced by the vector T · v

||v|| . The endpoints of these two segments Iv and I ′v form

the corners of the box Bv. (Note that the main difference between this location and
its location in the unweighted construction is that there, the long edge of the box
was parallel to the supporting line e(v), while here it is perpendicular to v.) Let
F = (

√
N/T) and B′

v = Bv + F · v (as in the unweighted construction).
Notice that unlike the unweighted construction, here it is obvious that the box

B′
v is contained in the disc of radius

√
N centered at the origin (while there we used

triangle inequality for a slightly weaker upper bound of 2
√
N on the radius).

Next, each vertex x ∈ Bv is connected to x′ ∈ B′
v by a path {x, x+v}, {x+v, x+

2v}, . . . , {x+ (F − 1) · v, x+F · v}, and each edge of this path is assigned weight ||v||.
The box Bv decomposes into Θ(T 2) integer aligned segments with Θ(

√
N
T) integer

points on each. For each integer aligned segment Zv, |Zv| = m(v), the sets Ri(Zv),
Cj(Zv), i, j ∈ [

√
m(v)], are formed exactly in the same way as in section 5.3. For

each index i ∈ [
√
m(v)] we form a source si(Zv), which is a new vertex, and connect

si(Zv) to each edge of Ri(Zv) via edges of weight N . Analogously, for each index
j ∈ [

√
m(v)] we form a source s′j(Z

′
v), and connect it to each vertex of the set Cj(Z

′
v)

via edges of weight N . Notice that these weighted stars replace the somewhat more
complicated construction of auxiliary trees τi(Zv), τ

′
j(Z

′
v) from section 5.3. Here the

freedom in setting the weights of the edges enables us to guarantee that these edges
will not enable shortcuts between pairs of vertices in the plane in this simple way.

Next, we analyze this construction. Observe that the number of vertices is O(N),
and the number of edges is Θ(N ·T 2) (since |Γ̂| = Θ(T 2)). For the number of sources
note that for each integer aligned segment of length m(v), O(

√
m(v)) sources are

formed. Note that as in the unweighted construction, the number of integer points
m = m(v) in an integer aligned segment Zv depends on v. However, for every v,

m(v) = Θ(
√
N
T). We denote the right-hand side of this equality by m.

Since there are Θ(T 2) integer aligned segments in each box, and Θ(T 2) different
boxes, it follows that S = Θ(

√
m · T 4) = Θ(N1/4 · T 7/2). (As S ≤ N , this implies the

constraint of T ≤ N3/14 on our construction.) The lower bound of |E| = Ω(N6/7·S4/7)
follows. This lower bound is superlinear in N + S2 for a wider range of values of S
than the lower bound of section 6.3, specifically, ω(N1/4) = S = o(N3/5). This lower
bound is also stronger than the aforementioned lower bound for every value of S
in which either of the lower bounds is superlinear in N + S2. (However, of course,
the new lower bound does not apply to unweighted graphs, while the lower bound of
section 6.3 does.)

496 DON COPPERSMITH AND MICHAEL ELKIN

To complete the proof we need only argue that no edge of the graph G can be
removed without increasing the distance between some pair of vertices.

Lemma 6.4. For every edge e ∈ E, there exists a pair of sources s, s′ ∈ S such
that distG\e(s, s

′) > distG(s, s′).
Proof. Let E1 be the set of edges that are not incident to any source vertex,

and E2 = E \ E1. We will prove the lemma for the case e ∈ E1. For the case
e ∈ E2 the proof is actually simpler and uses a similar argument (see also the proof
of Lemma 5.7).

The edge e ∈ E1 belongs to some path {x, x + v}, {x + v, x + 2v}, . . . , {x + (F −
1)v, x + F · v}. Let x ∈ V , v ∈ Γ̂ be the pair of vectors as above. Let i, j ∈ [

√
m(v)]

be the unique pair of indices such that x ∈ Ri(Zv) ∩ Cj(Zv). We will show that
distG\e(si(Zv), s

′
j(Z

′
v)) > distG(si(Zv), s

′
j(Z

′
v)). First note that distG(si(Zv), s

′
j(Z

′
v)) =

2N + distG(x, x′) = 2N + F · ||v||.
Observe that

distG\e(si(Zv), s
′
j(Z

′
v)) = 2N + min{distG\e(y, z

′) : y ∈ Ri(Zv), z ∈ Cj(Zv)}.

By construction, for any pair points y, z ∈ Zv, y �= z, the Euclidean distance between
the points y and z′, ||y−z′|| is strictly greater than F ·||v|| (because the integer aligned
segments Zv and Z ′

v are parallel to one another and perpendicular to the vector v).
Note also that for any two nonsource vertices of the graph G, the distance between

them in G is greater than or equal to the Euclidean distance between them (each
such vertex corresponds to a point in the plane). It follows that distG\e(y, z

′) ≥
distG(y, z′) ≥ ||y − z′|| > F · ||v|| for every pair of vertices y, z ∈ Zv, y �= z.

Since {x} = Ri(Zv) ∩ Cj(Zv), it remains to argue that distG\e(x, x
′) > F · ||v||.

The proof of this fact is analogous to the proof of Lemma 3.3.
Finally, we remark that all our lower bounds hold for every sufficiently large N ,

even though they were proven only for all values of N that belong to certain monotone
increasing infinite sequences of positive integers (such as the sequence of squares of
integers in the case of Corollary 3.4). To see it note that those sequences are all
sufficiently dense, and in particular, for every sufficiently large N not in the sequence
there is a number N ′ in the sequence such that N/2 ≤ N ′ < N . To derive the lower
bound for N , we use the construction for N ′ and add to it N −N ′ dummy isolated
vertices. Since N ′ ≥ N/2, the lower bound deteriorates only by a constant factor.

7. Upper bounds. In this section we present two upper bounds on the size of
pairwise distance preservers. We start with few definitions, an algorithm, and a few
lemmas that are used in both upper bounds.

Both our upper bounds are achieved by the same construction. The construction
is very simple. Assuming that the shortest paths in the graph G are unique, for every
pair {u,w} ∈ P we insert the shortest path between u and w. The uniqueness of
shortest paths can be assumed without loss of generality since one can always slightly
change the weights.

7.1. The construction. First, we need a few definitions.
Given an N -vertex weighted directed or undirected graph G = ((V,E),wt) and a

set P of ordered pairs of vertices, P ⊆ (V2), form the subgraph G′ = ((V,H),wt), H ⊆
E as follows. Order the edges and the pairs arbitrarily. (Generally, we will refer to the
elements of E as “edges” if the graph G is undirected and as “arcs” if it is directed.
Whenever the argument is applicable to both undirected and directed graphs, we will
use the term “edge” meaning either “edge” or “arc” depending on the context.) Write

SPARSE SOURCEWISE DISTANCE PRESERVERS 497

P = (p(1), p(2), . . . , p(P)), where P = |P|, and E = (e(1), e(2), . . . , e(m)), m = |E|.
Assign auxiliary weights wt(e(i)) = 1 + εi for the edges e(i) ∈ E. Choose the numbers
0 < ε1, . . . , εm < 1/N in a way that guarantees that the set {ε1, . . . , εm} is linearly
independent over the set Q of rational numbers [11]. (These numbers will be used
to perturb the weights in order to ensure a consistent ordering of shortest paths.)
Denote p(i) = (u(i), w(i)). Initialize the edgeset H of the subgraph G′ as an empty
set. Consider the following algorithm.

Algorithm (Paths).
For i = 1, 2, . . . , P do
Compute the path Πi that satisfies the following conditions, and add this path

to H:
1. Πi is one of the shortest paths from u(i) to w(i) with respect to the weight

function wt .
2. Among all such shortest paths Πi is the one with the smallest auxiliary weight∑

e∈Πi
wt(ei). (Observe that a rule for breaking the ties is unnecessary, as no

ties can possibly happen.)
Let Ei, i ∈ [P], be the set of new edges that were added to the edgeset H on the

ith iteration of Algorithm Paths (that is, they were not present in H before the ith

iteration). Let ei denote the cardinality of the set Ei. Obviously, |H| =
∑P

i=1 ei. Let

Hi denote the set H at the beginning of iteration i. Let Π̂ denote the sequence of
paths {Π1, . . . ,ΠP } that were computed by Algorithm Paths.

Definition 7.1. For a path Π ∈ Π̂ from u to w, Π = (u = x0, x1, . . . , x� = w),
and a pair of vertices x, y ∈ V (Π), we say that x <Π y if x is closer to u than y. Also,
for an index j ∈ {0, . . . ,
 − 1} (respectively, j ∈ {1, . . . ,
}), the vertex xj+1 (resp.,
xj−1) is called the successor (resp., predecessor) of the vertex xj in the path Π and
is denoted xj+1 = succΠ(xj) (resp., xj−1 = predΠ(xj)). The successor of x� and the
predecessor of x0 are formally defined as ⊥; for the sake of our arguments, ⊥ is not
a vertex and does not belong to V (Π). The vertex u = x0 (resp., w = x�) is called the
starting (resp., ending) vertex of the path Π, and both are called the endpoints of the
path Π.

Lemma 7.2. Every two distinct paths Π, Π′ in the graph G have different auxiliary
weights.

Proof. If |Π| = |Π′|, then
∑

{εi : e(i) ∈ Π} �=
∑

{εi : e(i) ∈ Π′}, since
the set {ε1, . . . , εm} is linearly independent over Q, and the paths Π and Π′ are
distinct.

We remark that one possible way to construct the linearly independent over Q

set {ε1, . . . , εm}, 0 < εi < 1/N , is by picking m distinct primes q1, . . . , qm, and for
every i ∈ [m], setting εi to be a rational multiple of

√
qi that satisfies 0 < εi < 1/N .

Lemma 7.3. For a pair of paths Π,Π′ ∈ Π̂, if x, y ∈ V (Π) ∩ V (Π′), and x <Π y,
x <Π′ y, then the paths Π and Π′ share the subpath that connects the vertex x to y.

Proof. For a path Π, and a pair of vertices z1, z2 ∈ V (Π) such that z1 <Π z2, let
Π(z1, z2) denote the subpath of Π that starts in z1 and ends in z2.

Let (u,w) (resp., (u′, w′)) be the pair of vertices for which the path Π (resp., Π′)
was computed. Note that Π = Π(u, x) ·Π(x, y) ·Π(y, w), and Π′ = Π′(u, x) ·Π′(x, y) ·
Π′(y, w), where · stands for concatenation. If Π(x, y) �= Π′(x, y), then by definition
of the auxiliary weight function wt , wt(Π(x, y)) �= wt(Π′(x, y)). Note that since both
Π and Π′ are the shortest paths between their endpoints (with respect to the weight
function wt), it follows that both Π(x, y) and Π′(x, y) are the shortest paths from x
to y, and, in particular, wt(Π(x, y)) = wt(Π′(x, y)).

498 DON COPPERSMITH AND MICHAEL ELKIN

Suppose without loss of generality that wt(Π(x, y)) < wt(Π′(x, y)). Consider the
path Π′′ = Π′(u′, x) · Π(x, y) · Π′(y, w′). Note that wt(Π′′) = wt(Π′), and wt(Π′′) <
wt(Π′). This is a contradiction to the assumption that Π′ is the shortest path from
u′ to w′ with the smallest (among the shortest paths) auxiliary weight.

7.2. The first upper bound. In this section we prove an upper bound of
H = O(N +

√
N · P).

Definition 7.4. A pair of distinct paths Π,Π′ ∈ Π̂ is said to branch in a vertex
v ∈ V if v ∈ V (Π) ∩ V (Π′), and either succΠ(v) �∈ V (Π′) or predΠ(v) �∈ V (Π′). The
vertex v as above is called a branching vertex of the paths Π and Π′.

Lemma 7.5. For an undirected (possibly weighted) graph G = ((V,E),wt), a

collection Π̂ of paths constructed by Algorithm Paths, and a pair {Π,Π′} ∈ (Π̂
2) of

paths, there are at most two branching vertices of the paths Π and Π′.

Proof. Consider the set Q of branching vertices of the paths Π and Π′, and
suppose that it contains two or more vertices (otherwise we are done). Order them
with respect to the order <Π induced by the path Π. Let v1 (resp., v2) be the smallest
(resp., the largest) vertex in Q with respect to <Π. If v1 <Π′ v2, then by Lemma 7.3,
the paths Π and Π′ share the entire subpath between v1 and v2.

Consider the case that v1 >Π′ v2. Let p = (u,w) (resp., p′ = (u′, w′)) be the
pair corresponding to the path Π (resp., Π′). Consider the collection of pairs P ′

formed by P ′ = P ∪ {(w′, u′)} \ {p′}. It is easy to see that on an undirected graph,
Algorithm Paths behaves identically when it accepts as input the collection P and
when it accepts as input the collection P ′. Hence, by Lemma 7.3 the paths Π and Π′

share the entire subpath between the vertices v1 and v2.

Consider a vertex v ∈ V (Π) such that v1 <Π v <Π v2. It follows that v ∈ V (Π′),
and furthermore, succΠ(v), predΠ(v), succΠ′(v), predΠ′(v) ∈ V (Π) ∩ V (Π′). Hence, v
is not a branching vertex of the paths Π and Π′. Hence, the paths Π and Π′ branch
in at most two vertices, proving the lemma.

Definition 7.6. For a pair of paths {Π,Π′} ∈ (Π̂
2) and a branching vertex v ∈ V

of this pair, the pair (v, {Π,Π′}) is called a branching event.

Let B denote the subset of vertices v with degH(v) ≥ 3.

Lemma 7.7. The number β of different branching events satisfies

∑
v∈B

(
1

2

)⌈
degH(v)

2

⌉(⌈
degH(v)

2

⌉
− 1

)
≤ β ≤ P (P − 1).

Proof. To prove the upper bound note that by Lemma 7.5 for every pair of paths

{Π,Π′} ∈ (Π̂
2), these two paths may participate together in at most two branching

events.

To prove the lower bound consider a vertex v ∈ V . Suppose first degH(v) ≥ 3.
Observe that each path Π that passes through v contains at most two edges that
are adjacent to v. Since for every edge e of the subgraph H, there exists a path

Π ∈ Π̂ that contains e, it follows that at least �degH(v)
2 � different paths Π ∈ Π̂ pass

through the vertex v, and, furthermore, for every pair of such different paths Π and
Π′, there is a branching event (v, {Π,Π′}). Hence, for every vertex v ∈ V there are at

least (1
2)�degH(v)

2 �(�degH(v)
2 � − 1) different branching events of the form (v, {Π,Π′})

for different pairs of paths {Π,Π′} ∈ (Π̂
2). Hence, the overall number of branching

SPARSE SOURCEWISE DISTANCE PRESERVERS 499

events β is at least

∑
v∈B

(
1

2

)⌈
degH(v)

2

⌉(⌈
degH(v)

2

⌉
− 1

)
,

proving the lemma.

For vertices v ∈ V of degree degH(v) ≤ 2, �degH(v)
2 � − 1 = 0. Note that those

vertices contribute at most O(N) edges that are adjacent to them in the subgraph H.

For vertices v of degree at least 3, �degH(v)
2 � − 1 ≥ degH(v)

4 , and hence it follows that
(1/16)

∑
v∈V (degH(v))2 ≤ P 2−P . By the Cauchy–Schwarz inequality, it follows that∑

v∈B degH(v) = O(
√
N · P).

Corollary 7.8. For a weighted undirected N -vertex graph G = ((V,E),wt),
and a set P ⊆ (V2) of P pairs of vertices P = {p(i) = (u(i), w(i)) : i ∈ [P]}, there
exists a subgraph G′ = ((V,H),wt), H ⊆ E, that preserves the distances from ui to
wi for every index i ∈ [P], and such that |H| = O(

√
N · P + N).

7.3. The second upper bound. The upper bound that we show in this section
applies to weighted directed graphs.

For each index i ∈ [P], we form the set Pi of ordered pairs of vertices in the
following way:

Pi = {(x, y) : (x, z), (v, y) ∈ Ei, x <Πi
z <Πi

v <Πi
y},

where the sets Ei are as defined in section 7.1.
Lemma 7.9. For a pair of indices i, j ∈ [P], Pi ∩ Pj = ∅.
Proof. Suppose for contradiction that there exists a pair of indices i < j, i, j ∈

[P], and a pair of vertices x, y ∈ V such that (x, y) ∈ Pi ∩ Pj . It follows that
x, y ∈ V (Πi) ∩ V (Πj) and x <Πi

y and x <Πj y. Hence, by Lemma 7.3,

Πi(x, y) = Πj(x, y).(12)

Let x, v ∈ V be the vertices such that (x, z), (v, y) ∈ Πi(x, y). Since j > i,
E(Πi(x, y)) ⊆ Hj . Hence, (x, z), (v, y) ∈ Hj . Note that (x, y) ∈ Pj implies that
there exist vertices z′, v′ ∈ V such that (x, z′), (v′, y) ∈ Ej that satisfy x <Πj

<
z′ <Πj

v′ <Πj
y. Hence, by (12) z′, v′ ∈ V (Πj(x, y)) = V (Πi(x, y)). Since Ej ⊆

E(Πj(uj , wj)), it follows that (x, z′), (v′, y) ∈ E(Πj(uj , wj)). Since x, y, z′, v′ ∈
V (Πj(x, y)), it follows that (x, z′), (v′, y) ∈ E(Πj(x, y)) = E(Πi(x, y)). It follows
that z = z′, v = v′. Hence, (x, z′) = (x, z), (v′y) = (v, y) ∈ Ej . Recall that
(x, z), (v, y) ∈ Hj . This is a contradiction because edges of Hj are never added to
Ej .

Note that by the definition of the set Pi, |Pi| = ei(ei − 1)/2. By Lemma 7.9,∑P
i=1 |Pi| ≤ N(N − 1), where N = |V | (because each ordered pair of vertices may

appear in at most one set Pi). Hence, 1
2

∑P
i=1(e

2
i − ei) ≤ N(N − 1). By the Cauchy–

Schwarz inequality, we conclude |H| =
∑P

i=1 ei = O(N ·
√
P), as required. (Those

indices for which ei ≤ 1 contribute together at most P , and for other indices i, e2
i−ei ≥

3
4e

2
i , and so the inequality is applicable. Since N ≥

√
P , P +O(N ·

√
P) = O(N ·

√
P)).

Corollary 7.10. For a weighted directed N -vertex graph G = ((V,E),wt), and
a set P ⊆ (V2) of P pairs of vertices P = {p(i) = (u(i), w(i)) : i ∈ [P]}, there exists a

subgraph G′ = ((V,H),wt), H ⊆ E, that preserves the distances from u(i) to w(i) for
every index i ∈ [P], and such that |H| = O(N ·

√
P).

500 DON COPPERSMITH AND MICHAEL ELKIN

We remark that by a simple probabilistic argument it is possible to show an upper
bound which is only by a factor of O(

√
log n) weaker than the bound |H| = O(

√
P ·N)

of Corollary 7.10. (However, we are not aware of a simpler argument than the one
described in section 7.2 for proving the upper bound of |H| = O(

√
N · P + N), or

anything close to it.) Specifically, set T = c · N√
P

√
logN for some constant c > 2, and

initialize H = ∅. For every pair (u,w) ∈ P, compute one of the shortest paths from
u to w. Let P1 denote the subset of pairs p = (u,w) of P for which the shortest path
from u to w contains T −1 or less internal (different from u and w) vertices. For each
pair p = (u,w) ∈ P1, insert the computed shortest path from u to w into the edgeset
H. Form a subset Q ⊆ V of vertices by inserting into it each vertex with probability
Θ(logN

T) independently at random. For each vertex v ∈ Q, insert the shortest-path
in- and out-arborescences rooted in v into the subgraph H. Observe that altogether
the expected number of inserted edges is O(N ·

√
P ·

√
logN). It is not hard to see that

with high probability (at least 1− 1
nc−2) the subgraph G′ = ((V,H),wt) preserves all

the distances from u to w for every pair (u,w) ∈ P. Hence, there exists a choice of
subset Q of size O(NT

√
logN) for which the subgraph G′ will satisfy these conditions.

Acknowledgments. The authors are grateful to the anonymous referees for
multiple remarks that helped to improve the presentation of this paper.

REFERENCES

[1] N. Alon, R. M. Karp, D. Peleg, and D. West, A graph-theoretic game and its application
to the k-server problem, SIAM J. Comput., 24 (1995), pp. 78–100.

[2] T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, Berlin, 1998.
[3] B. Awerbuch, B. Berger, L. Cowen, and D. Peleg, Near-linear time construction of sparse

neighborhood covers, SIAM J. Comput., 28 (1998), pp. 263–277.
[4] B. Awerbuch and D. Peleg, Network synchronization with polylogarithmic overhead, in Pro-

ceedings of the 31st Annual IEEE Symposium on Foundations of Computer Science, IEEE,
Piscataway, NJ, 1990, pp. 514–522.

[5] B. Awerbuch and D. Peleg, Routing with polynomial communication-space trade-off, SIAM
J. Discrete Math., 5 (1992), pp. 151–162.

[6] B. Awerbuch, D. Peleg, B. Patt-Shamir, and M. Saks, Adapting to asynchronous dynamic
networks with polylogarithmic overhead, in Proceedings of the 24th Annual ACM Sympo-
sium on Theory of Computing, ACM, New York, 1992, pp. 557–570.

[7] A. Balog and I. Barany, On the convex hull of the integer points in a disc, Discrete Comput.
Geom., 6 (1991), pp. 39–44.

[8] I. Barany and D. G. Larman, The convex hull of the integer points in a large ball, Math.
Ann., 312 (1998), pp. 167–181.

[9] S. Baswana, T. Kavitha, K. Mehlhorn, and S. Pettie, New constructions of (a, β)-spanners
and purely additive spanners, in Proceedings of the 16th Annual ACM-SIAM Symposium
on Discrete Algorithms, SIAM, Philadelphia, ACM, New York, 2005, pp. 672–681.

[10] S. Baswana and S. Sen, A simple linear time algorithm for computing a (2k − 1)-spanner of
O(n1+1/k) size in weighted graphs, in Proceedings of the 30th International Colloquium
on Automata, Languages and Computing (ICALP), Springer, Berlin, 2003, pp. 384–396.

[11] A. S. Besicovitch, On the linear independence of fractional powers of integers, J. London
Math. Soc., 15 (1940), pp. 3–6.

[12] B. Bollobás, D. Coppersmith, and M. Elkin, Sparse distance preservers and additive span-
ners, in Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms,
SIAM, Philadelphia, ACM, New York, 2003, pp. 414–423.

[13] J. Bourgain, On Lipschitz embedding of finite metric spaces in Hilbert space, Israel J. Math.,
52 (1985), pp. 46–52.

[14] E. Cohen, Fast algorithms for constructing t-spanners and paths of stretch t, in Proceedings of
the 34th Annual IEEE Symposium on Foundations of Computer Science, IEEE, Piscataway,
NJ, 1993, pp. 648–658.

SPARSE SOURCEWISE DISTANCE PRESERVERS 501

[15] D. Coppersmith and M. Elkin, Sparse source-wise and pair-wise distance preservers, in
Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM,
Philadelphia, ACM, New York, 2005, pp. 660–669.

[16] D. Dor, D. Halperin, and U. Zwick, All pairs almost shortest paths, in Proceedings of the
37th Annual IEEE Symposium on Foundations of Computer Science, IEEE, Piscataway,
NJ, 1997, pp. 452–461.

[17] M. Elkin, Computing almost shortest paths, in Proceedings of the 20th Annual ACM Sympo-
sium on Principles of Distributed Computing, ACM, New York, 2001, pp. 53–63.

[18] M. Elkin and D. Peleg, (1 + ε, β)-spanner constructions for general graphs, in Proceedings
of the 33rd Annual ACM Symposium on Theory of Computing, ACM, New York, 2001,
pp. 173–182.

[19] C. Gavoille, D. Peleg, S. Perennes, and R. Raz, Distance labeling in graphs, in Proceedings
of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia,
ACM, New York, 2001, pp. 210–219.

[20] P. Indyk and J. Matousek, Low distortion embeddings of finite metric spaces, in Handbook
of Discrete and Computational Geometry, 2nd ed., J. E. Goodman and J. O’Rourke, eds.,
Chapman & Hall/CRC, Boca Raton, FL, 2004, pp. 177–196.

[21] V. Jarnik, Uber Gitterpunkte und konvex Kurven, Math. Z., 24 (1925), pp. 500–518.
[22] W. B. Johnson and J. Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space,

Contemp. Math., 26 (1984), pp. 189–206.
[23] Y. Mansour and D. Peleg, An Approximation Algorithm for Minimum-Cost Network Design,

Technical Report CS94-22, The Weizmann Institute of Science, Rehovot, Israel, 1994.
Available online at http://wisdomarchive.wisdom.weizmann.ac.il:81/archive/00000021.

[24] J. Matousek, Lectures in Discrete Geometry, Graduate Texts in Math. 212, Springer, New
York, 2002.

[25] D. Peleg, Proximity-preserving labeling schemes, J. Graph Theory, 33 (2000), pp. 167–176.
[26] D. Peleg and A. Schäffer, Graph spanners, J. Graph Theory, 13 (1989), pp. 99–116.
[27] D. Peleg and E. Upfal, A trade-off between space and efficiency for routing tables, J. ACM,

36 (1989), pp. 510–530.
[28] L. Roditty, M. Thorup, and U. Zwick, Roundtrip spanners and roundtrip routing in directed

graphs, in Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms,
SIAM, Philadelphia, ACM, New York, 2002, pp. 844–851.

[29] M. Thorup and U. Zwick, Approximate distance oracles, in Proceedings of the 33rd Annual
ACM Symposium on Theory of Computing, ACM, New York, 2001, pp. 183–192.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 2, pp. 502–522

ON THE GREEDY SUPERSTRING CONJECTURE∗

MAIK WEINARD† AND GEORG SCHNITGER†

Abstract. We investigate the greedy algorithm for the shortest common superstring problem.
We show that the length of the greedy superstring is upper-bounded by the sum of the lengths of an
optimal superstring and an optimal cycle cover, provided the greedy algorithm happens to merge the
strings in a particular way. Thus, when restricting inputs correspondingly, we verify the well-known
greedy conjecture, namely, that the approximation ratio of the greedy algorithm is within a factor
of two of the optimum, and actually extend the conjecture considerably. We achieve this bound
by systematically combining known conditional inequalities about overlaps and period- and string-
lengths with a new familiy of string inequalities. We show that conventional systems of conditional
inequalities, including the Monge inequalities, are insufficient to obtain our result.

Key words. superstring, DNA fragment assembly, approximation, performance analysis

AMS subject classifications. 68W05, 68W25, 68W40

DOI. 10.1137/040619144

1. Introduction. We investigate the problem of finding a shortest common su-
perstring:

Given a set S = {s1, . . . , sn} of strings, determine a string of
minimum length which contains each si as a substring.

(Obviously, we may assume that no string in S contains another string in S.)
Apart from being an interesting problem in itself the shortest common superstring
problem models the sequence assembly problem in shotgun sequencing, a fundamental
problem in bioinformatics. Each string in S represents a sequenced DNA fragment
created by shotgun sequencing, and the assembly problem is to deduce the original
DNA string from its set S of sequenced fragments.

Blum et al. [3] show that the shortest common superstring problem is APX-
complete; hence polynomial time approximation schemes are not to be expected.

A simple greedy algorithm is the basis of the best known approximation algo-
rithms. The greedy algorithm repeatedly merges two strings with maximum overlap
until only one string remains. The overlap of two strings a and b is the length of the
largest suffix of a that is also a prefix of b.

The length of the greedy superstring in relation to the length of the optimal
superstring—the approximation ratio—has been the subject of a large body of re-
search. The following example [12] shows that the ratio is at least 2. In particular we
consider the three strings x = c(ab)n, y = (ab)nd, and z = (ba)n.

Overlap x = c(ab)n y = (ab)nd z = (ba)n

c(ab)n − 2n 2n− 1
(ab)nd 0 − 0
(ba)n 0 2n− 1 −

∗Received by the editors November 18, 2004; accepted for publication (in revised form) December
15, 2005; published electronically June 9, 2006. This research was partially supported by DFG grant
SCHN 503/2-1. A preliminary version of this paper appeared as [14].

http://www.siam.org/journals/sidma/20-2/61914.html
†Institut für Informatik, Johann Wolfgang Goethe–Universität Frankfurt am Main, Robert-Mayer-

Straße 11-15, 60054 Frankfurt am Main, Germany (weinard@thi.informatik.uni-frankfurt.de).

502

ON THE GREEDY SUPERSTRING CONJECTURE 503

The greedy algorithm first joins x and y and obtains c(ab)nd as a new string that
has zero overlap with z in both directions. Hence its second iteration delivers the
superstring c(ab)nd(ba)n or (ba)nc(ab)nd of length 4n + 2. Obviously the solution
c(ab)n+1d of length 2n + 4 is shorter, and the length ratio approaches 2.

Blum et al. [3] have shown that the greedy algorithm provides a 4-approximation
which was the first constant factor approximation achieved for the problem. In 2005
Kaplan and Shafrir [7] improved the upper bound to 3.5. Better upper bounds are
not known. However, there are no lower bounds larger than 2 for the greedy heuristic.
Therefore it is widely conjectured that the approximation ratio of the greedy algorithm
is in fact 2 [6, 3, 11]. This greedy conjecture is the main subject of our paper.

Also in [3] a modified version of the greedy algorithm achieving a 3-approximation
is introduced. Further improvements [13, 5, 8, 1, 2, 4] have led to the best known
result of a 2.5 approximation [11].

The greedy algorithm when allowed to close cycles (i.e., merge a string with
itself) determines a minimum length cycle cover [3]. We verify a stronger version
of the greedy conjecture, provided the greedy algorithm processes strings accord-
ing to a restricted class of orders. In particular we show that the length of the
superstring obtained by the greedy heuristic is upper-bounded by the length of an
optimal superstring plus the length of an optimal cycle cover whenever the input
strings cause the greedy heuristic to merge the strings in a manner that we will call
a linear order.

The rest of the paper is organized as follows. The greedy heuristic and our
stronger version of the greedy conjecture are described in section 2. In section 3
we introduce conditional inequalities on string-lengths and overlaps and define the
mice game, which allows us to analyze inequalities in a combinatorial fashion. In
particular we introduce the new Triple inequality, which is crucial for our result.
Section 4 completes the analysis. We show in section 5 that the established set of
string properties is insufficient to prove even the weaker classical greedy conjecture.
Our conclusion and open problems are given in section 6.

2. Superstrings and cycle covers. Crucial for the greedy heuristic is the
concept of overlaps defined as follows.

Definition 1. 1. Let a and b be strings. 〈a, b〉 denotes the longest proper suffix
of a which is also a proper prefix of b. The overlap of a and b, denoted by (a, b), is
the length of 〈a, b〉.

2. Let a and p be strings. We say that a is p-periodic or has period p iff a is a
substring of pk for some k ∈ N. If pa is a shortest string such that a is pa-periodic,
then pa is a minimum period of a.

Note that the self-overlap (a, a) is different from the length of the string since we
require proper prefixes and suffixes: the length of a is the sum of its self-overlap and
its period length.

GREEDY Algorithm.
1. INPUT: A set S of n strings
2. while |S| > 1

(a) choose a, b ∈ S such that a �= b and (a, b) is maximal,
(b) let c be the string of minimal length with a as prefix and b as suffix,
(c) set S = (S ∪ {c}) \ {a, b}.

3. OUTPUT: The greedy superstring, i.e., the one string left in S. /∗ since we
obtain a superstring in every merge in step 2(b) we output a superstring of
S. ∗/

504 MAIK WEINARD AND GEORG SCHNITGER

If we choose identical strings a and b in step 2(a) and insert the period of a into a
cycle cover rather than inserting c into S, then we obtain the cyclic greedy algorithm
which determines a cycle cover of minimum length [3].

Tarhio and Ukkonen [12] showed that the greedy heuristic achieves an approxi-
mation factor of 2 with respect to string compression: if the total length of the input
strings is M and the optimum superstring has a length of M − x, then the greedy
heuristic finds a superstring of length at most M − x

2 . This, however, does not imply
a bound on the ratio of the superstrings’ lengths.

Let S be a superstring of {s1, . . . , sn}, and let π be the permutation of {1, . . . , n}
such that in S the string sπ(i) starts before sπ(i+1). As we assume that no string is
a substring of another string, we know that sπ(i) also ends before sπ(i+1). Hence the
length of S is at least

l =
n∑

i=1

|si| −
n−1∑
i=1

(sπ(i), sπ(i+1)),

and, moreover, a superstring with order π and length l exists. Hence we may focus on
the n! superstrings that maximally exploit the overlaps of consecutive strings given
by their superstring order π.

Throughout this paper we assume without loss of generality that the greedy su-
perstring contains s1, . . . , sn in this order. Hence its length of the greedy superstring
is

L(GREEDY) =

n∑
i=1

|si| −
n−1∑
i=1

(si, si+1).

Depending on the strings s1, . . . , sn there are (n − 1)! greedy orders in which
GREEDY can merge the strings to produce (s1, . . . , sn), namely, all permutations
of the pairs {(s1, s2), . . . , (sn−1, sn)}. We call an order linear if GREEDY starts
with an arbitrary connection (si, si+1) and later on, when sj , sj+1, . . . , sk−1, sk are
already connected, picks either (sj−1, sj) or (sk, sk+1). Observe that GREEDY can
be compared to Kruskals’ algorithm for determining a minimum cost spanning tree:
GREEDY starts from a collection of strings and merges adjacent “intervals of strings”
according to a highest profit criterion until a superstring is obtained. If GREEDY
merges strings in a linear order, then it always grows the same “component,” and
hence it behaves like Prims’s algorithm.

Definition 2. Let s1, . . . , sn be strings. The length L∗(c) of a given cycle

c = (si1 , . . . , sik) is defined as L∗(c) =
∑k

j=1 |sij | −
∑k−1

j=1 (sij , sij+1
) − (sik , si1). A

cycle cover C of s1, . . . , sn decomposes the set of strings into disjoint cycles c1, . . . , cr.
The length of C is defined as L∗(C) =

∑r
i=1 L

∗(ci). L∗(GREEDY) is the length of
the greedy superstring after merging the last string sn with the first string s1; i.e.,
L∗(GREEDY) = L(GREEDY) − (sn, s1).

We compare the length L∗(GREEDY) of the cyclic superstring delivered by
GREEDY with the lengths L∗(C1), L

∗(C2) of any two cycle covers. However, we
require that C1 and C2 expand in the following sense: for any proper subset S′ of S,
C1 and C2 do not both contain a cycle cover of S′. This property is equivalent to the
fact that the directed graph induced by the two cycle covers is strongly connected.

Our main result is the following theorem.

ON THE GREEDY SUPERSTRING CONJECTURE 505

Theorem 1. If GREEDY determines a linear greedy order, then for any expand-
ing cycle covers C1 and C2

L∗(GREEDY) ≤ L∗(C1) + L∗(C2)

holds.
The remainder of this section as well as sections 3 and 4.1 are devoted to the

proof of Theorem 1. We conclude that for linear greedy orders

L∗(GREEDY) ≤ opt∗string + optcyclic(1)

holds, where opt∗string is the length of the cycle obtained by closing the shortest su-
perstring and optcyclic is the length of the shortest cycle cover. This follows since the
expansion property of Theorem 1 is fulfilled if C1 is a single cycle. In section 4.2 we
show the following corollary.

Corollary 1. If GREEDY determines a linear greedy order, then

L(GREEDY) ≤ optstring + optcyclic,

where optstring is the length of the shortest superstring and optcyclic is the length of
the shortest cycle cover.

Corollary 1 shows that the lengths of the greedy superstring and the optimal
superstring differ by at most the length of an optimal cycle cover. We hence obtain
a far-reaching extension of the original greedy conjecture, since a shortest cycle cover
will in general be considerably smaller than a shortest superstring. Although we are
not aware of any counterexample for the general case, our proof applies only to the
restricted case of linear greedy orders.

We may represent a cycle cover C as a union of disjoint cycles on the vertices
s1, . . . , sn. If E denotes the corresponding set of edges, then L∗(C) =

∑n
i=1 |si| −∑

(s,t)∈E(s, t), where we abuse notation as (s, t) denotes the overlap as well as the

edge. To show Theorem 1 we have to verify L∗(GREEDY) ≤ L∗(C1)+L∗(C2), which
is equivalent to

n∑
i=1

|si| −
n−1∑
i=1

(si, si+1) − (sn, s1) ≤ 2 ·
n∑

i=1

|si| −
∑

(s,t)∈E1

(s, t) −
∑

(s,t)∈E2

(s, t),

where Ei is the set of edges of Ci. Hence it suffices to verify the inequality

∑
(s,t)∈E1

(s, t) +
∑

(s,t)∈E2

(s, t) ≤
n∑

i=1

|si| +
n−1∑
i=1

(si, si+1) + (sn, s1).(2)

The terms appearing in our equation are string-lengths and overlaps; hence they
are not arbitrary numbers but are constrained by properties of strings. An obvious
example is the fact that an overlap cannot be longer than any of its strings, i.e.,
|a| ≥ (a, b). Another example is the inequality |a| + (b, c) ≥ (a, c) + (b, a) (as we will
see in Lemma 2). Of course we also need to exploit the fact that GREEDY proceeds
greedily: GREEDY connects strings a and b at a time when it could also connect c
and d, we conclude that (a, b) ≥ (c, d). Hence we obtain a partial order on the a priori
unknown overlaps—the greedy order.

We obtain a large class of conditional inequalities if we take the greedy order into
account. A first example is the famous class of Monge inequalities (cf. Lemma 3).

506 MAIK WEINARD AND GEORG SCHNITGER

Fig. 1. An example setup.

We introduce a second important class of inequalities with the Triple inequality of
Lemma 5. Thus we are led to a problem of linear programming conditioned on
the given greedy order, namely, to show that inequality (2) is enforced by a set of
linear inequalities relative to a given greedy order. A first principle analysis of the
corresponding family of linear programs seems impossible, and hence we introduce
a combinatorial perspective, namely, the mice game that we introduce in the next
section. Our results therefore suggest the following program to analyze the greedy
algorithm:

1. Formulate crucial string properties as (conditional) linear inequalities.
2. Analyze the resulting systems of inequalities via linear programming, respec-

tively, via combinatorial methods derived from linear programming.

Corollary 1 shows that this program can be carried out in the nontrivial case of
linear greedy orders. Subsequently, using the above program, our analysis has been
refined in [9] to cover the larger class of bilinear greedy orders.

3. The mice game. The mice game for n strings is played on a board of n× n
cells, as illustrated in Figure 1. The rectangle within the cell in row i and column
j represents the overlap (si, sj). In the case i = j the corresponding diagonal cell
has two components, namely, an ellipse representing the length of string si and the
rectangle representing the self-overlap (si, si). The overlaps (si, si+1) as well as the
string-lengths are shown shaded, and their locations are called holes. Observe that
the corresponding terms appear on the right-hand side of inequality (2).

The terms that appear on the left-hand side of inequality (2), namely, overlaps
between adjacent strings of the cycle covers C1 and C2, are the starting positions
of the mice. We therefore have 2n mice on the board, with exactly two mice in
each row and column. They are shown as black bullets. In Figure 1 we show the
mice placement for the two expanding cycle covers C1 = {(s1), (s2, s4, s3), (s5)} and
C2 = {(s1, s4, s3), (s2, s5)} that serve as a running example throughout this section.

The objective of the game is to move the mice from their starting positions into
their holes by a sequence of legal moves. We require that a hole can accomodate only
one mouse. A move is legal if the total value of terms represented by the mice does
not decrease. Hence a sequence of legal moves corresponds to a proof of inequality (2)
for the given instance.

3.1. Unconditional inequalities. We introduce a class of obvious inequalities
and see how they translate into legal moves in our game.

ON THE GREEDY SUPERSTRING CONJECTURE 507

Fig. 2. The application of one Diagonal Insertion and one Discarding of a Period. The moves
are justified by the inequalities (s3, s2) ≤ |s2| (resp., (s5, s5) ≤ |s5|).

Lemma 1. Let a, b be strings and let pa be a minimum period of a. Then

(a, b) < |a|, (a, b) < |b|, and (a, a) = |a| − |pa| < |a|.

As an immediate consequence we may move a mouse from cell (i, j) to the elliptic
diagonal hole of row i or column j. We call this move a Diagonal Insertion. In the case
of i = j we may move a mouse within a diagonal cell from the rectangle representing
the self-overlap to the elliptic hole. We call this special case Discarding a Period.
Figure 2 shows one application of each move.

Next we describe an easy version of the Monge inequality [10].
Lemma 2. Let a, b, and c be strings. Then the inequality

(b, a) + (a, c) ≤ |a| + (b, c)(3)

holds.
Proof. If |a| ≥ (b, a) + (a, c) holds, the claim is obvious. Otherwise we have the

following diagram:

The sum (b, a) + (a, c) exceeds |a| by the space between the dashed vertical lines.
This segment, however, is a suffix of b, which is also a prefix of c. Hence (b, c) is at
least as large.

The inequality of Lemma 2 justifies a move that involves two mice: of two mice,
located in cells (i, j) and (k, i) with k �= i and j �= i, one moves to the elliptic diagonal
hole in (i, i) and the other at the same time to the rectangle in (k, j). Figure 3 shows
two consecutive applications of this Diagonal Monge in our game.

Note that the moves introduced up to this point are independent of the greedy
order. Since we cannot analyze GREEDY without utilizing its properties, we need to
incorporate the greedy order into our argument.

3.2. Exploiting the greedy order. We fix an arbitrary greedy order. When
GREEDY chooses to merge two strings a and b by picking the pair (a, b), then the
options to pick (a, x), (x, b), or (b, a) are thereby eliminated for any third string x.
As GREEDY picks the maximum overlap over all possible choices, we know that the
off-diagonal cell (a, b) represents a value at least as large as the value of every cell
whose pair was still available at the time. We assign a rank of n − i to the cell that

508 MAIK WEINARD AND GEORG SCHNITGER

Fig. 3. The application of two Diagonal Monges. The moves are justified by the inequalities
(s4, s3) + (s3, s1) ≤ |s3| + (s4, s1) (resp., (s4, s3) + (s1, s4) ≤ |s4| + (s1, s3)).

Fig. 4. The ranks corresponding to the assumed greedy order and a Greedy Insertion. As the
greedy cell (s3, s4) has rank 4, we have (s3, s4) ≥ (s2, s4).

was picked in the ith iteration of GREEDY and to every cell thereby eliminated. We
refer to the cells on the off-diagonal as greedy cells, as they represent overlaps that
GREEDY picks.

Let us assume for our example that GREEDY chooses (s3, s4), (s2, s3), (s4, s5),
and (s1, s2) in that order. In Figure 4 the coordinates of the cells have been replaced
by their rank. Note that diagonal cells do not have a rank, since GREEDY may not
pick them at any time. We further show a Greedy Insertion, a simple move of just
one mouse to a greedy cell of not smaller rank.

The next inequality—like Lemma 2—goes back to Gaspard Monge [10].
Lemma 3. Let a, b, c, d be strings with (a, b) ≥ (a, d) and (a, b) ≥ (c, b). Then

(a, d) + (c, b) ≤ (a, b) + (c, d)(4)

holds.
Proof. The proof is rather similar to that of Lemma 2: if (a, b) ≥ (a, d) + (c, b)

holds, then the claim is obvious. Otherwise we get the following diagram reflecting
the overlaps (c, b), (a, b), (a, d) from top to bottom:

The sum of (c, b) and (a, d) exceeds the length of (a, b) by the section between the
dashed vertical lines. This segment, however, is a suffix of c which is also a prefix of
d. Hence (c, d) is at least as large.

ON THE GREEDY SUPERSTRING CONJECTURE 509

Fig. 5. A Greedy Monge in (s2, s3). Ranks indicate that (s2, s3) is at least as large as (s1, s3)
and (s2, s5). Thus the inequality (s2, s3) + (s1, s5) ≥ (s1, s3) + (s2, s5) holds.

We call the corresponding move a Greedy Monge since we mainly apply this move
if (a, b) corresponds to a greedy cell. Hence we can easily verify the legality of Greedy
Monges by consulting ranks. Figure 5 shows a Greedy Monge.

We conclude this section with further inequalities that we use in section 4.2.
Lemma 4. Let a, b, and c be strings.

1. If (a, b) ≥ (a, c), then (a, c) ≤ (b, c) + |pb|.
2. If (a, b) ≥ (b, c), then (b, c) ≤ (a, c) + |pb|.
3. If (a, b) ≥ (c, b), then (c, b) ≤ (c, a) + |pa|.
4. If (a, b) ≥ (c, a), then (c, a) ≤ (c, b) + |pa|.

Proof. We prove only the first two statements, since we obtain the other two by
simply interchanging rows and columns. Observe that substrings inherit the periods
of their superstrings: if α is a period of x, then α is also a period of every substring
of x. Moreover, given a string u with an α-periodic suffix of length r and a string v
with an α-periodic prefix of length s, we may conclude min{r, s} ≤ (u, v) + |α|.

For the first claim of the lemma the assumption (a, b) ≥ (a, c) guarantees that c
has a pb-periodic prefix of length (a, c). String b, of course, is pb-periodic. Hence
min{|b|, (a, c)} ≤ (b, c) + |pb|. The claim follows since |b| ≥ (a, b) ≥ (a, c).

For the second statement the assumption (a, b) ≥ (b, c) guarantees that a has a
pb-periodic suffix of length (b, c). String c clearly has a pb-periodic prefix of length
(b, c), and we get min{(b, c), (b, c)} ≤ (a, c) + |pb|. The claim follows.

Figure 6 shows two possible applications of these inequalities to our game, but
we do not execute any one of them since this would result in a dead end.

Using the moves we have established so far, we cannot proceed to win the game.
In fact we cannot win this game at all from the initial configuration with our current
set of moves. This can be checked by linear programming. The next section introduces
the Triple inequality. Its move wins this game and is crucial for proving that every
game can be won for linear greedy orders.

3.3. The Triple.
Lemma 5. Let a, b, c, d, and x be strings with

max{(a, x), (x, b)} ≥ (a, b), (x, d), (c, x).

Then

(a, b) + (c, x) + (x, d) ≤ (a, x) + (x, b) + (c, d) + |px|.

510 MAIK WEINARD AND GEORG SCHNITGER

Fig. 6. Two legal applications of Lemma 4 (3rd (resp., 4th) inequality). The ranks indicate
that the conditions are met. By moving a mouse from (s1, s1) to |s1|, the mouse gains the weight
|ps1 | (compare with Lemma 1).

Proof. We proceed by induction on (x, x). For (x, x) = 0 we have px = x. The
Monge inequality (3) gives us

(c, x) + (x, d) ≤ |x| + (c, d).

As we know that (a, b) is smaller than the maximum of (x, b) and (a, x), we conclude
that

(a, b) ≤ (a, x) + (x, b),

and we are done.
For the induction step assume that the claim is shown for all x with (x, x) ≤ k.

Let (x, x) = k + 1 and assume that the premise of the lemma is fulfilled. First we
eliminate the case max{(a, x), (x, b)} ≥ (x, x). We assume without loss of generality
that (a, x) ≥ (x, b). As (a, x) dominates (a, b), we obtain

(x, x) + (a, b) ≤ (a, x) + (x, b)(5)

with the Monge inequality (4). The Monge inequality also gives us

(c, x) + (x, d) ≤ |x| + (c, d).(6)

Adding inequalities (5) and (6) and subtracting (x, x) on both sides yields our claim.
Observe that we did not use the induction hypothesis.

Now we may assume (x, x) > (a, x), (x, b) and, since every overlap (a, b), (x, d),
and (c, x) is dominated by (a, x) or (x, b), we know that (x, x) also dominates these
overlaps. With this knowledge we may conclude (a, x) = (a, 〈x, x〉), (x, b) = (〈x, x〉, b),
(c, x) = (c, 〈x, x〉), and (x, d) = (〈x, x〉, d).

Assuming the premise of the lemma, we can infer that the larger of (a, 〈x, x〉) and
(〈x, x〉, b) dominates (a, b), (〈x, x〉, d), and (c, 〈x, x〉). Hence we can use the induction
hypothesis since (〈x, x〉, 〈x, x〉) < (x, x) to obtain

(a, b) + (〈x, x〉, d) + (c, 〈x, x〉) ≤ (a, 〈x, x〉) + (〈x, x〉, b) + (c, d) + |p〈x,x〉|,

which is equivalent to

(a, b) + (x, d) + (c, x) ≤ (a, x) + (x, b) + (c, d) + |p〈x,x〉|.

ON THE GREEDY SUPERSTRING CONJECTURE 511

Fig. 7. The Triple move. We distinguish the vertical and the horizontal Triple moves depending
on which of the overlaps (a, x) or (x, b) is maximal. The required dominations are indicated by the
sequence of arrow heads.

Fig. 8. A horizontal Triple move. The correspondence to Figure 7 (right diagram) is given by
x = s1, a = d = s5, b = s2, and c = s4.

Now we need only to observe that |p〈x,x〉| ≤ |px|, which clearly holds as 〈x, x〉 is a
substring of x.

This inequality is clearly not immediately appealing. Before using the Triple to
win our example game, we visualize the corresponding moves in Figure 7.

Finally, Figure 8 shows how to win the game by applying the Triple. As a con-
sequence we have shown inequality (2) for this particular greedy order and for these
two particular expanding cycle covers.

The next section describes a winning strategy for linear greedy orders which is
given in the form of a how-to-move-the-mice algorithm.

4. Winning strategies. Before defining our algorithm we introduce notation
for the game, in particular, for the board of the game.

Definition 3. 1. For I ⊆ {1, . . . , n} we define Board(I) as the set of cells with
coordinates in I: Board(I) = {(x, y)|x, y ∈ I}. We say that Board(I) is a subboard.

2. For B = Board(I) we define the set of cells {(x, y)|x ∈ I, y /∈ I} as the
horizontal frame of B and the set {(x, y)|x /∈ I, y ∈ I} as the vertical frame of B.
The union Frame(B) of the vertical and horizontal frames of B is called the frame
of B.

3. F rame(B) is called deserted iff no cell in Frame(B) contains a mouse.

Definition 4. We call a move of two mice rectangular if they are initially on
two opposite corners (a, b) and (c, d) of a rectangle and move to the other two corners
(c, b) and (a, d).

512 MAIK WEINARD AND GEORG SCHNITGER

A diagonal or Greedy Monge move is rectangular. A Triple move can be rep-
presented as two rectangular moves even though the moves are not individually
valid.

Lemma 6. Assume that every row and column of the board contains two mice.
Moreover, let B be a subboard. Then the following two statements hold:

1. The frame of B is nonempty iff the horizontal and the vertical frames are
nonempty.

2. A rectangular move can empty only the frame of B; if one of the participating
mice leaves the horizontal frame, the other leaves the vertical frame, and exactly one
of them enters B.

Proof. The proof is obvious.

4.1. The rank descending algorithm. We describe the rank descending al-
gorithm (RDA) which is defined on a board for a linear greedy order. RDA sys-
tematically grows a subboard B beginning with a single diagonal until the subboard
coincides with the entire board. The name RDA is assigned, since we move mice of
higher rank into the holes first. The algorithm is defined as follows.

The Rank Descending Algorithm.

(1) The input consists of two cycle covers C1, C2 and a linear greedy sequence.
(2) Preprocessing

(2a) Place a mouse in the rectangle of position (i, j), if string sj immedi-
ately follows si in C1 or in C2. If sj is the immediate successor of si
in both C1 and C2, then the rectangle of (i, j) receives two mice.

(2b) Let i be the row of the highest ranked greedy cell. Set I = {i}.
(2c) If (i, i) contains a mouse, then discard its period. Otherwise execute

a legal Diagonal Monge in (i, i).
(3) Main Loop.

RDA will establish Theorem 1. Crucial for our proof of correctness are the fol-
lowing four invariants:

I1. Every row and every column contains 2 mice.
I2. Every hole in B = Board(I) is filled.
I3. No elliptic diagonal hole outside of B = Board(I) holds a mouse.
I4. For all subboards B′ = Board(I ′) with ∅ ⊂ I ′ ⊂ {1, . . . , n} the frame of B′

is not deserted.

Observe that if I1 holds, I4 is equivalent to stating that all B′ = Board(I ′) contain
less than 2|I ′| mice.

We will call a move legal if it does not violate any of these four invariants. Before
going into detail we start with some motivating remarks about our invariants. I2
guarantees progress, since B will eventually be the entire board, and hence inequal-
ity (2) is verified. Observe that none of our moves is able to move a mouse out of
an elliptic diagonal hole, and hence I3 is necessary for mice outside of B to still be
mobile. Finally, if the frame of some Board B′ = Board(I ′) with ∅ ⊂ I ′ ⊂ {1, . . . , n}
is empty, it turns out that at least one mouse within B′ is stranded.

It turns out that the preservation of invariants I1, I2, and I3 is rather straightfor-
ward. Invariant I4, however, needs special attention. We start with two observations
about avoiding deserted frames.

Lemma 7. Assume I4 holds. If one of the starting locations for a rectangular
move contains more than one mouse, then I4 holds afterward as well.

Proof. The proof is obvious by Lemma 6.

ON THE GREEDY SUPERSTRING CONJECTURE 513

Lemma 8. Let invariants I1 and I4 hold in a given game configuration.
1. Assume that the cells (x1, y1), (x2, y2) as well as (x2, y3) contain one mouse

each. Then at least one of the two rectangular moves

(x1, y1), (x2, y2) → (x1, y2), (x2, y1),
(x1, y1), (x2, y3) → (x1, y3), (x2, y1)

does not violate I4.
2. Assume that the cells (x1, y1), (x2, y2) as well as (x3, y2) contain one mouse

each. Then at least one of the two rectangular moves

(x1, y1), (x2, y2) → (x1, y2), (x2, y1),
(x1, y1), (x3, y2) → (x1, y2), (x3, y1)

does not violate I4.
Proof. We prove only the first statement, as the second is obtained by simply

exchanging the roles of rows and columns.

We assume that the given game configuration has no deserted frames. Hence,
according to Lemma 6, I4 is in danger only if each of the two moves removes the
last two mice out of the frame of some subboard. Assume the first move causes
Frame(Board(I)) to be deserted and Frame(Board(J)) is deserted if the second move
is executed. Observe that for X = {1, . . . , n} \X

frame(X) = {(a, b)|a ∈ X, b /∈ X} ∪ {(a, b)|a /∈ X, b ∈ X}
= {(a, b)|a /∈ X, b ∈ X} ∪ {(a, b)|a ∈ X, b /∈ X}
= frame(X).

We may hence assume x1 ∈ I and x1 ∈ J without loss of generality. Lemma 6.2
ensures that a rectangular move can move only the last two mice out of the frame of
a board B if exactly one of the final positions is in B. Hence (x1, y2) is in Board(I)
and (x1, y3) is in Board(J). Consequently y2 ∈ I and y3 ∈ J hold.

As the starting positions of the first move need to be in the horizontal, respectively
vertical, frame of Board(I), we conclude that (x1, y1) is in the horizontal frame and
(x2, y2) is in the vertical frame. We thus have x2 /∈ I and y1 /∈ I. Similar arguments
for the second move yield x2 /∈ J and y1 /∈ J .

Assume y3 ∈ I. Since x2 /∈ I, the mouse on (x2, y3) is in the vertical frame of
Board(I) and Frame(Board(I)) is not deserted by the first move. Hence y3 /∈ I. A
similar argument for Board(J) yields y2 /∈ J .

In Figure 9 the board is partitioned into 16 segments. We may assume that the
frames of I and J do not hold any mice beyond the three mice explicitly mentioned in
the lemma. The frames of I and J are the shaded areas in the diagram. (The Frame
of Board(I) is shaded with horizontal lines, and the Frame of Board(J) is shaded
with vertical lines.) We now see that the vertical frame of Board(I ∩ J) is deserted,
while the horizontal frame is not. This in conjunction with Lemma 6.1 contradicts
the assumption that I1 is valid before the move.

514 MAIK WEINARD AND GEORG SCHNITGER

Fig. 9. The board broken down into 16 nonempty segments, reflecting the sets I and J and the
location of the three starting positions for the mice. The shaded areas belong to the frame of either
Board(I) or Board(J).

Lemma 9. Invariants I1, . . . , I4 hold before the main loop starts.

Proof. As to I1, observe that as C1 and C2 are cycle covers, every string gets two
successors assigned and is assigned twice as the successor of another string. Hence in
the initial placement every row and column contains two mice. Neither a Discard of
Period nor a Diagonal Monge changes the number of mice per row and column.

B = Board({i}) contains only one hole, the elliptic diagonal hole in cell (i, i),
which is filled either by a Discarding of a Period or by a Diagonal Monge. Hence I2
holds.

As to I3, if a cell (k, k) initially holds a mouse, this mouse is located in the
rectangle representing the self-overlap and not in the elliptic hole. If the Diagonal
Monge executed to fill the hole in (i, i) happens to be of the form (i, k), (k, i) →
(i, i)(k, k), then the mouse reaching cell (k, k) enters the rectangle for the self-overlap.
Hence I3 holds.

I4 holds in the initial configuration: assume Frame(Board(I)) is deserted; then in
C1 and C2 every string si with i ∈ I has a successor sj with j ∈ I. So both cycle covers
contain a cycle cover for the set {si|i ∈ I}, in violation of the expansion property.

If the move executed to fill the hole in (i, i) consists of Discarding of a Period,
I4 clearly remains valid. If cell (i, i) does not hold a mouse, the two mice in row i
and the two mice in column i are four distinct mice. If the two mice in row i are in
the same cell, Lemma 7 guarantees that I4 is preserved. The same holds if the two
mice in column i are in the same cell. If the mice are on four different cells, Lemma 8
guarantees that one of the possible Diagonal Monges does not violate I4 and is hence
legal.

We are now ready to introduce the main loop of our algorithm. The set I is
always a set of consecutive numbers. Therefore Frame(Board(I)) contains at most
two greedy cells:

(min(I)−1, min(I)) for min(I) > 1
and (max(I), max(I)+1) for max(I) < n.

Furthermore Frame(Board(I)) contains cell (n, 1) if either min(I) = 1 or max(I) = n
but not both.

ON THE GREEDY SUPERSTRING CONJECTURE 515

while I �= {1, . . . , n}
Let G be the highest ranked greedy cell in Frame(Board(I))

Let N = (k, k) be the diagonal cell adjacent to G and not in Board(I)

Does G contain a mouse?

yes no

Does N contain a mouse? Does N contain a mouse?

yes no no yes

(#1) (#3) (#4)

Discard a Greedy Is the Triple in G,N legal?
Period in N Monge no yes

in G Greedy Monge in G Triple

(#2) Discard a

Diagonal Monge in N Period in N

Set I = I ∪ {k}
We assume in the above description that only legal Diagonal and Greedy Monges are
executed. The subsequent analysis has to show that legal moves exist when required.

We first show that RDA maintains invariants I1, I2, and I3, provided that the
described moves exist. As we discard only periods and apply Monges or Triple moves,
all of which leave the number of mice per row and column unchanged, invariant I1
is automatically satisfied. Since we extend the subboard Board(I) only after filling
the two new holes, namely G and N , invariant I2 follows. I3 is valid since, if a mouse
moves into the diagonal cell (i, i) indirectly, that is, not by a Monge or Triple in (i, i),
then the mouse is to be placed in the rectangle representing the self-overlap.

The existence of the moves described and their accordance with I4 will now be
checked in a case-by-case study. The labels in the algorithm refer to the corresponding
observations. We assume without loss of generality that G = (max(I),max(I) + 1)
and hence k = max(I) + 1.

The Discard of a Period (#1) is executable as there is a mouse in cell N by case
assumption and by I3 this mouse is in the rectangle for the self-overlap. Furthermore,
the move cannot remove the last mouse from any frame since no mouse leaves its cell.
The Diagonal Monge (#2): Cell N = (k, k) does not hold a mouse, and hence the
two mice in row k and the two mice in column k are four distinct mice. One of the
mice in column k is in G and stays there.

The other mouse in column k can execute a Diagonal Monge with either of the two
mice in row k. If the two mice of row k are located in the same cell, Lemma 7
guarantees that I4 is maintained. Otherwise, if the two mice of row k are in two
distinct cells, Lemma 8.1 implies that one of the two Diagonal Monges does not
violate I4.

516 MAIK WEINARD AND GEORG SCHNITGER

Fig. 10. Location of cells higher ranked than G during the RDA.

The observations for scenario (#3) and (#4) are more involved as the issue of
dominance arises. For Greedy Monges as well as for Triple moves the greedy cell has
to dominate the starting positions of the mice involved; i.e., its rank must be at least
as high as that of the starting positions.

Let G = (k, k + 1). Figure 10 shows the location of cells with higher rank. Why?
Let I = {r, r + 1, . . . , k − 1, k}. A cell (x, y) has a rank higher than G if the overlap
(sx, sy) is no longer a legal choice for GREEDY. We have

rank(sx, sy) ≥ rank(sy−1, sy), rank(s, sx+1),

since at the latest, when sy receives a predecessor or sx receives a successor, the
choice of (sx, sy) is illegal. Hence, if GREEDY has already merged the strings
sr, sr+1, . . . , sk−1, sk, then cell (x, y) has a higher rank than G iff r + 1 ≤ y ≤ k,
r ≤ x ≤ k − 1, or (x = k and y = r), since in the latter case a cycle is closed.

Therefore, the cells with rank higher than G are all those between the two hori-
zontal dashed lines in Figure 10 as well as those between the two vertical dashed lines
and the cell marked X. As we assume that all holes in B hold a mouse, the two mice
in all of these rows and columns are accounted for. By I4 we also know that no mouse
can be in the cell marked X, since otherwise the frame of B = Board(I) is deserted.

Hence the greedy cell G has a sufficiently high rank to move every mouse that is
not yet in a hole and not in a diagonal cell. We can now address the two scenarios
(#3) and (#4).

The arguments for the Greedy Monge (#3) are now quite similar to those of
the Diagonal Monge in (#2): G itself does not hold a mouse, and hence the two mice
of its row and column are four distinct mice.

ON THE GREEDY SUPERSTRING CONJECTURE 517

One of the mice in the row of G is in a diagonal hole in B and stays there. The other
mouse may perform a Greedy Monge with either one of the two mice in the column
of G. As we have just seen, G is strong enough to move these mice and Lemma 8.2
or Lemma 7 guarantees that at least one of the two moves does not violate I4.

We conclude with the analysis of scenario (#4).

N holds a mouse, and by I3 this mouse is located in the rectangle for the self-overlap.
We also know that the rank of G is sufficiently high, so that G dominates cells
u, v, w, x, y, z.

Just for the sake of argument let us execute the unjustified move

N,x → G, u.

This move is not justified by an inequality; however, it does not violate I4, since one
participating mouse leaves a diagonal cell and a diagonal cell never belongs to a frame.

After this unjustified move, G is filled and we have mice located in z, u, and y. By
Lemma 8.1 (or Lemma 7 if x and y are in the same column) one of the two Diagonal
Monges

z, u → N, v,

z, y → N,w

must comply with I4. However, our unjustified first move followed by the first of these
Diagonal Monges corresponds to the Greedy Monge z, x → G, v followed by a Discard
of Period in N . The unjustified move combined with the second Diagonal Monge
corresponds to the Triple x, y, z → G, u,w. Hence, if the Triple in (#4) is illegal, we
know that the Greedy Monge followed by the Discard of Period is legal.

Lemma 10. Invariants I1 thru I4 hold after the main loop. At the end of the
main loop every hole is filled and one mouse resides in position (n, 1).

Proof. We have shown in Lemma 9 that the invariants hold before the main
loop. Our case-by-case analysis of the different branches within the main loop has
verified that the invariants stay intact. At the end of the main loop I = {1, . . . , n}
and Board(I) is the entire board. Each of the 2n− 1 holes is filled, since I2 is valid,
and because of I1 the only possible position for the last mouse is (n, 1).

Subsequent to [14] a refined extension of the RDA was introduced in [9]. It grows
two subboards in parallel and wins the game for as many as Θ(4n) greedy orders.

For the sake of clarity, let us cross-check how RDA wins our game of section 3.
Figures 11 and 12 show one of three possible sequences of moves.

4.2. Proof of Corollary 1. RDA provides a sequence of moves, transferring
the 2n mice representing the two cycle covers to the holes on the diagonal, the off-
diagonal, and cell (n, 1). If the input consists of a superstring sσ(1), . . . , sσ(n) and a
cycle cover, we have only 2n− 1 mice. In this case we insert an artificial extra mouse

518 MAIK WEINARD AND GEORG SCHNITGER

.

Fig. 11. The RDA at work.

into cell (σ(n), σ(1)) during preprocessing. Now, every row and every column contains
two mice again.

Correspondingly the overlap (n, 1) turning the greedy superstring into a cycle is
not to be used in Corollary 1.

What we need to show is that, given a sequence winning the game eventually,
occupying cell (n, 1), and with the artificial mouse starting in (σ(n), σ(1)), we can
obtain a sequence not involving the artificial mouse and not occupying cell (n, 1).

ON THE GREEDY SUPERSTRING CONJECTURE 519

Fig. 12. The RDA at work (continued).

Lemma 11. Assume that there is an initial configuration A of mice placed on the
board, as well as a final configuration F , where F can be reached from A by a sequence
of Greedy and Diagonal Monges, Triple moves, and Discards of Periods. Then for any
configuration A′ obtained by deleting one mouse from A there is a configuration F ′

obtained by deleting one mouse from F such that F ′ is reachable from A′.

Proof. It is sufficient to show that the lemma holds for one-step transitions.

If the artificial mouse is not participating in the move, then remove it from F to
obtain F ′, and the claim is obvious.

If the period of the artificial mouse is discarded, then remove the artificial mouse
from F to obtain F ′.

If the artificial mouse is part of a Diagonal or Greedy Monge, then insert the
other participating mouse into the diagonal or greedy cell and remove the artificial
mouse from F to obtain F ′.

For the Triple move we have to differentiate three cases. We concentrate on the
vertical version of the Triple move, i.e., (a, x) ≥ (x, b). Remember that the artificial
mouse participates in the move since we are done otherwise.

520 MAIK WEINARD AND GEORG SCHNITGER

Case 1. The artificial mouse sits on position (x, x). Remove (x, b) from F to
obtain F ′ and observe that F ′ can be reached by a Diagonal Monge in (x, x) and a
Greedy Insertion into (a, x).

Case 2. The artificial mouse sits on position (x, d) (resp., (c, x)). Remove (c, d)
from F to obtain F ′. To obtain F ′ perform a Greedy Insertion of the mouse from
(c, x) (resp., (x, d)) into (a, x). Then use Lemma 4, statement 1, to move the mouse
from (a, b) to (x, b), sacrificing the period in (x, x).

Case 3. The artificial mouse sits on cell (a, b). We remove cell (x, b) from F to
obtain F ′. Without loss of generality assume (x, d) is at least as big as (c, x). Hence
according to Lemma 4, statement 4, we may move (c, x) to (c, d), sacrificing the period
in (x, x). The mouse from (x, d) simply moves to (a, x) by a Greedy Insertion.

To complete the proof of Corollary 1 we need only to observe that cell (n, 1) has
rank 1. If the artificial mouse did not end up in (n, 1), we can just move the mouse
from (n, 1) into the vacant hole that the artificial mouse did end up in, either with a
Greedy Insertion or with a Greedy Insertion followed by a Diagonal Insertion.

5. Monge inequalities alone are insufficient. We say that a board of over-
laps is a “Monge Board” if the Monge inequalities hold throughout. For the linear
greedy order (1, 2), (2, 3), . . . , (n − 1, n) we found by extensive enumeration that the
length of the greedy superstring is within a factor of 2 of the minimum superstring
length, provided n ≤ 8.

However, the example of a 9 × 9 Monge Board in Figure 13 implies that the
introduction of the Triple move is necessary. In particular, we show that the length of
the superstring, defined as

∑n
i=1 |si| −

∑n−1
i=1 (si, si−1), exceeds the minimum length

by a factor of 21
3 . Observe that the Triple inequality, as a consequence of Corollary 1,

is necessarily violated.

We compare the linear greedy order (1, 2), (2, 3), . . . , (8, 9) with the adversarial
order (1, 9, 2, 6, 3, 8, 4, 7, 5). We show that the above board is a Monge Board for
sufficiently large m. In particular, we have to verify that the inequalities for Diagonal
and Greedy Insertions as well as for Greedy and Diagonal Monges hold.

The values on the diagonal are the highest in their row and column, and hence
the inequalities for Diagonal Insertions hold. Observe that (1, 2), . . . , (8, 9) is indeed
the greedy order, and therefore the inequalities for Greedy Insertions hold as well. A
complete case analysis shows that the inequalities for Diagonal and Greedy Monges
are also satisfied.

The length of the strings sums to 15m+44, and the overlaps picked by GREEDY
sum up to 8m + 20. Hence GREEDY delivers a solution of value 7m + 24. The
corresponding adversarial overlaps sum to 12m+12. Subtracting this from the length
of the strings, we obtain a solution of value 3m + 32. Hence the approximation ratio
is 7m+24

3m+32 , which approaches 21
3 as m tends to infinity.

ON THE GREEDY SUPERSTRING CONJECTURE 521

1 2 3 4 5 6 7 8 9

1 2m+5 2m+4 m 0 0 m 0 0 2m

2 0 3m+8 2m+4 m m 2m+3 m m 0

3 0 0 2m+8 m+4 m+1 m m+1 m+1 0

4 0 0 m m+7 m+4 m m+3 0 0

5 0 0 m 0 m+6 m+2 0 0 0

6 0 0 2m+2 m m 2m+5 m+2 m 0

7 0 0 m+1 0 m+2 m+1 m+4 0 0

8 0 0 m m+1 m+1 m m+1 m+1 0

9 0 2m m 0 0 m 0 0 2m

Fig. 13. A Monge board. Cell (i, j) contains the overlap (si, sj). Moreover, we set |si| = (si, si),
and hence all period lengths are zero.

Hence the Monge inequality—no matter in which sequence it is applied—is insuf-
ficient to prove the bound of 2 for the superstring problem. Subsequent to our work,
it was shown in [9] that the the basic inequalities, insertions and Monges, together
with the Triple inequality, are still insufficient to prove the general result. This was
done by providing a 10 × 10 Monge/Triple board, a greedy order, and an adversarial
order that achieves an approximation factor of 21

6 .

6. Conclusions and open problems. We have introduced the Triple inequal-
ity and have shown that conditional string inequalities are sufficient to settle the
greedy superstring conjecture for linear greedy orders. The conjecture is implied by
the stronger statement of Theorem 1, and it may be that this stronger version even-
tually turns out to be easier to verify. Moreover, we have shown that the Triple move
is indeed crucial.

Of course the verification of the superstring conjecture for all greedy orders is
the major open problem. In sharp contrast to the cyclic greedy algorithm that finds
optimal cycle covers for strings, the performance of the greedy heuristic for short
superstrings remains poorly understood. Intuitively speaking, previous research ap-
proaches have tried to transfer the optimality of the cyclic greedy heuristic to the
case of superstrings: the upper bound of four for the performance ratio is obtained
by carefully decomposing the cycles of a cycle cover and merging the pieces. Further
approximation algorithms have used the cyclic greedy heuristic as a basis.

One should expect that, according to this reasoning, results are harder to obtain
the more differently the cyclic greedy heuristic and the greedy heuristic for strings
behave on a given input: if the optimal cycle cover is one cycle, then the two algorithms
make exactly the same choices with the string algorithm stopping one iteration earlier.
Here the found superstring is optimal. Observe that our result also covers inputs for
which the algorithms behave completely differently right from the beginning. (If the
cyclic greedy heuristic picks (si, si) first, the two algorithms may not share a pair of
consecutive strings.)

522 MAIK WEINARD AND GEORG SCHNITGER

Our results suggest the following program to analyze the greedy algorithm.
1. Formulate crucial string properties as (conditional) linear inequalities.
2. Analyze the resulting systems of inequalities via linear programming or via

combinatorial methods derived from linear programming.
We have used linear programming extensively to isolate board configurations that

could not be solved with given sets of moves. The Triple move was found as a conse-
quence of this approach.

Acknowledgments. Many thanks to Uli Laube for carefully implementing the
mice game, allowing us to recognize several dead ends ahead of time. A description
of his software tool SINDBAD and how it supported our and further research can be
found in [9].

We furthermore thank Stefan Kirchner as well as the unknown referees for point-
ing out a gap in a proof in the original version and for many more helpful remarks
and suggestions.

REFERENCES

[1] C. Armen and C. Stein, Improved length bounds for the shortest superstring problem, in Pro-
ceedings of the 4th International Workshop on Algorithms and Data Structures (WADS),
S. G. Akl, F. Dehne, J.-R. Sack, and N. Santoro, eds., Lecture Notes in Comput. Sci. 955,
Springer-Verlag, New York, 1995, pp. 494–505.

[2] C. Armen and C. Stein, A 2 2
3

superstring approximation algorithm, Discrete Appl. Math., 88
(1998), pp. 29–57.

[3] A. Blum, T. Jiang, M. Li, J. Tromp, and M. Yannakakis, Linear approximation of shortest
superstrings, J. ACM, 41 (1994), pp. 630–647.

[4] D. Breslauer, D. Jiang, and Z. Jiang, Rotations of periodic strings and short superstrings,
J. Algorithms, 24 (1997), pp. 340–353.

[5] A. Czumaj, L. Gasieniec, W. Piotrow, and W. Rytter, Parallel and sequential approxima-
tions of shortest superstrings, J. Algorithms, 32 (2003), pp. 71–385.

[6] D. Gusfield, Algorithms on Strings, Trees and Sequences, Cambridge University Press, Cam-
bridge, UK, 1997.

[7] K. Kaplan and N. Shafrir, The greedy algorithm for shortest superstrings, Inform. Process.
Lett., 93 (2005), pp. 13–17.

[8] R. Kosaraju, J. Park, and C. Stein, Long tours and short superstrings, in Proceedings of
the 35th Annual IEEE Symposium on Foundations of Computer Science (FOCS), Santa
Fe, NM, 1994, IEEE Computer Society Press, Los Alamitos, CA, 1994, pp. 166–177.

[9] U. Laube and M. Weinard, Conditional inequalities and the shortest common superstring
problem, in Proceedings of the 4th Prague Stringology Conference, M. Šimánek and J.
Holub, eds., Vydavatelst́i ČVUT, Prague, 2004, pp. 124–138.

[10] G. Monge, Mémoire sur la théorie des déblais et des remblais, in Histoire de l’Academie Royale
des Sciences, Annés MDCCLXXXI, avec les Mémoires de Mathématique et de Physique,
pour la même Année, Tirés des Registres de cette Académie, 1781, pp. 666–704.

[11] Z. Sweedyk, A 2 1
2
-approximation algorithm for shortest superstring, SIAM J. Comput., 29

(1999), pp. 954–986.
[12] J. Tarhio and E. Ukkonen, A greedy approximation algorithm for constructing shortest com-

mon superstrings, Theoret. Comput. Sci., 57 (1988), pp. 131–134.
[13] S. Teng and F. Yao, Approximating a shortest superstring, in Proceedings of the 34th Annual

IEEE Symposium on Foundations of Computer Science (FOCS), Palo Alto, CA, 1993,
IEEE Computer Society Press, Los Alamitos, CA, 1993, pp. 158–165.

[14] M. Weinard and G. Schnitger, On the greedy superstring conjecture, in Proceedings of the
23rd Conference on Foundations of Software Technology and Theoretical Computer Science
(FST TCS), Mumbai, India, 2003, P. K. Pandya and J. Radhakrishnan, eds., pp. 387–398.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 2, pp. 523–528

A NOTE ON UNSATISFIABLE k-CNF FORMULAS WITH FEW
OCCURRENCES PER VARIABLE∗

SHLOMO HOORY† AND STEFAN SZEIDER‡

Abstract. The (k, s)-SAT problem is the satisfiability problem restricted to instances where
each clause has exactly k literals and every variable occurs at most s times. It is known that there
exists a function f such that for s ≤ f(k) all (k, s)-SAT instances are satisfiable, but (k, f(k)+1)-SAT
is already NP-complete (k ≥ 3). We prove that f(k) = O(2k · log k/k), improving upon the best
known upper bound O(2k/kα), where α = log3 4 − 1 ≈ 0.26. The new upper bound is tight up to a
log k factor with the best known lower bound Ω(2k/k).

Key words. unsatisfiable CNF formulas, NP-completeness, occurrence of variables

AMS subject classifications. 68R05, 68Q25, 05B99

DOI. 10.1137/S0895480104445745

1. Introduction. We consider propositional formulas in conjunctive normal
form (CNF) represented as sets of clauses, where each clause is a set of literals.
A literal is either a variable or a negated variable. Let k, s be fixed positive integers.
We denote by (k, s)-CNF the set of formulas F where every clause of F has exactly
k distinct literals and each variable occurs in at most s clauses of F . We denote the
set of satisfiable formulas by SAT.

It was observed by Tovey [7] that all formulas in (3, 3)-CNF are satisfiable, and
that the satisfiability problem restricted to (3, 4)-CNF is already NP-complete. This
was generalized in Kratochv́ıl, Savický, and Tuza [4], where it is shown that for every
k ≥ 3 there is some integer s = f(k) such that

1. all formulas in (k, s)-CNF are satisfiable, and
2. the satisfiability problem restricted to formulas in (k, s + 1)-CNF is already

NP-complete.
The function f can be defined for k ≥ 1 by the equation

f(k) := max{ s : (k, s)-CNF ⊆ SAT }.

Exact values of f(k) are known only for k ≤ 4. It is easy to verify that f(1) = 1 and
f(2) = 2. It follows from [7] that f(3) = 3 and f(k) ≥ k in general. Also, by [6], we
know that f(4) = 4.

Upper and lower bounds for f(k), k = 5, . . . , 9, have been obtained in [2, 6, 1, 3].
For larger values of k, the best known lower bound, a consequence of the Lovász local
lemma, is due to Kratochv́ıl, Savický, and Tuza [4]:

f(k) ≥
⌊

2k

ek

⌋
.(1)

∗Received by the editors August 25, 2004; accepted for publication (in revised form) January 28,
2006; published electronically June 9, 2006.

http://www.siam.org/journals/sidma/20-2/44574.html
†Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4,

Canada (shlomoh@cs.ubc.ca). This author’s research was supported in part by an NSERC grant
and by a PIMS postdoctoral fellowship.

‡Department of Computer Science, University of Durham, Durham DH1 3LE, UK (stefan.szeider@
durham.ac.uk).

523

524 SHLOMO HOORY AND STEFAN SZEIDER

Prior to this work, the best known upper bound has been by Savický and Sgall [5].
They constructed a family of unsatisfiable k-CNF formulas with 2k clauses and a
small number of occurrences per variable. Their construction yields

f(k) = O

(
2k

kα

)
,(2)

where α = log3 4 − 1 ≈ 0.26.
In this paper we asymptotically improve upon (2) and show that

f(k) = O

(
2k log k

k

)
.(3)

Our result reduces the gap between the upper and lower bounds to a log k factor.
It turns out that the construction yielding the upper bound (3) can be generalized.
We present a class of k-CNF formulas that is amenable to an exhaustive search using
dynamic programming. This enables us to calculate upper bounds on f(k) for values
up to k = 20000, improving upon the bounds provided by the constructions underlying
(2) and (3).

The remainder of the paper is organized as follows. In section 2 we start with
a simple construction that already provides an O(2k log2 k/k) upper bound on f(k).
In section 3 we refine our construction and obtain the upper bound (3). In the last
section we describe the more general construction and the results obtained using
computerized searching.

2. The first construction. We denote by K(x1, . . . , xk) the complete unsat-
isfiable k-CNF formula on the variables x1, . . . , xk. This formula consists of all 2k

possible clauses. Let K−(x1, . . . , xk) = K(x1, . . . , xk) \ {{x1, . . . , xk}}. The only sat-
isfying assignment for K−(x1, . . . , xk) is the all-False assignment. Also, for two CNF
formulas F1 and F2 on disjoint sets of variables, their product F1 × F2 is defined as
{c1 ∪ c2 : c1 ∈ F1 and c2 ∈ F2}. Note that the satisfying assignments for F1 × F2 are
assignments that satisfy F1 or F2. In what follows, log and ln denote logarithms to
the bases of 2 and e, respectively.

Lemma 2.1. f(k) < 2k · min1≤l≤k

(
(1 − 2−l)�k/l� + 2−l

)
.

Proof. We prove the lemma by constructing, for every l, an unsatisfiable (k, s)-CNF
formula F , where s = 2k · ((1 − 2−l)�k/l� + 2−l). Let k, l be two integers such that
1 ≤ l ≤ k, and let u = �k/l	 and v = k − l · u. Define the formula F as the union
F = F0 ∪ F1 ∪ · · · ∪ Fu, where

F0 = K(z1, . . . , zv) ×
u∏

i=1

K−(x
(i)
1 , . . . , x

(i)
l),

Fi = K(y
(i)
1 , . . . , y

(i)
k−l) × {{x(i)

1 , . . . , x
(i)
l }} for i = 1, . . . , u.

Therefore, F is a k-CNF formula with n variables and m clauses, where

n = k + u · (k − l) ≤ k2/l,(4)

m = 2v · (2l − 1)u + u · 2k−l = 2k ·
(
(1 − 2−l)�k/l� + �k/l	 · 2−l

)
.(5)

To see that F is unsatisfiable observe that any assignment satisfying F0 must set

all the variables x
(i)
1 , . . . , x

(i)
l to False for some i. On the other hand, any satisfying

assignment to Fi must set at least one of the variables x
(i)
1 , . . . , x

(i)
l to True.

UNSATISFIABLE CNF FORMULAS 525

To bound the number of occurrences of a variable note that the variables zj , y
(i)
j ,

and x
(i)
j occur |F0|, |Fi|, and |F0|+ |Fi| times, respectively. Since |F0| = 2v ·(2l−1)u =

2k · (1 − 2−l)�k/l� and |Fi| = 2k−l, we get the required result.
For k ≥ 4, let l be the largest integer satisfying 2l ≤ k · log e/ log2 k. It follows

that

(1 − 2−l)�k/l� ≤ exp(−2−l · �k/l) ≤ exp

(
− log2 k

k log e
·
(
k

l
− 1

))

≤ e · exp

(
− log2 k

l log e

)
≤ e · exp

(
− log k

log e

)
=

e

k
,

where the last two inequalities follow from the fact that for k ≥ 4 we have log2 k <
k log e and l ≤ log k. Therefore, by Lemma 2.1 there exists an unsatisfiable k-CNF
formula F where the number of occurrences of variables is bounded by

2k ·
(
e

k
+

2 log2 k

k log e

)
.

It may be of interest that, by (4) and (5), the number of clauses in F is O(2k · log k)
and the number of variables is O(k2/ log k). Thus, in comparison to the construction
in [5], we pay for the better bound on f(k) by an O(log k) factor in the number of
clauses.

Corollary 2.2. f(k) = O(2k · log2 k/k).

3. A better upper bound. To simplify the subsequent discussion, let us fix
a value of k. We will be concerned only with CNF formulas F that have clauses of
size at most k. We call a clause of size less that k an incomplete clause and denote
F ′ = {c ∈ F : |c| < k}. A clause of size k is a complete clause, and we denote
F ′′ = {c ∈ F : |c| = k}.

Lemma 3.1. f(k) < min{2k−l+1 : l ∈ {0, . . . , k} and l · 2l ≤ log e · (k − 2l)}.
Proof. Let l be in {0, . . . , k}, satisfying l · 2l ≤ log e · (k− 2l), and set s = 2k−l+1.

We will define a sequence of CNF formulas, F0, . . . , Fl. We require that (i) Fj is
unsatisfiable, (ii) F ′

j is a (k − l + j)-CNF formula, (iii) |F ′
j | ≤ 2k−l, and (iv) the

maximal number of occurrences of a variable in Fj is bounded by s. It follows that
Fl is an unsatisfiable (k, s)-CNF formula, implying the claimed upper bound.

Set dj = k − l + j and uj = �(k − l + j)/(l − j + 1)	. We proceed by induction
on j. For j = 0, we define F0 = K(x1, . . . , xk−l). It can be easily verified that F0

satisfies the above four requirements. For j > 0, assume there is a formula Fj−1 on the
variables y1, . . . , yn satisfying the requirements. We define the formula Fj =

⋃uj

i=0 Fj,i

as follows:

Fj,0 = K(z1, . . . , zdj−uj ·(l−j+1)) ×
uj∏
i=1

K−(x
(i)
1 , . . . , x

(i)
l−j+1),(6)

Fj,i = F ′
j−1(y

(i)
1 , . . . , y(i)

n) × {{x(i)
1 , . . . , x

(i)
l−j+1}} ∪ F ′′

j−1(y
(i)
1 , . . . , y(i)

n)(7)

for i = 1, . . . , uj .

It is easy to verify that F ′
j is a (k − l + j)-CNF formula. To see that Fj is

unsatisfiable, observe that any assignment satisfying Fj,0 must set all the variables

x
(i)
1 , . . . , x

(i)
l−j+1 to False for some i. On the other hand, for any satisfying assignment

to Fj,i, at least one of the variables x
(i)
1 , . . . , x

(i)
l−j+1 must be set to True.

526 SHLOMO HOORY AND STEFAN SZEIDER

Let us consider the number of occurrences of a variable in Fj . Consider first the
y-variables. These variables occur only in the uj duplicates of Fj−1 and therefore
occur the same number of times as in Fj−1, which is bounded by s by induction. The
number of occurrences of an x- or z-variable is |F ′

j−1| + |Fj,0| or |Fj,0|, respectively.

By induction, |F ′
j−1| ≤ 2k−l. Also,

|F ′
j | = |Fj,0| = 2dj−uj ·(l−j+1) · (2l−j+1 − 1)uj = 2dj · (1 − 2−l+j−1)uj

≤ 2k−l+j · exp(−2−l+j−1 · uj) ≤ 2k−l+j · exp(−2−l+j−1 · (k − 2l)/l).

Taking logarithms, we get

log |Fj,0| ≤ k − l + j − log e · 2−l+j−1 · (k − 2l)/l

≤ k − l + j − 2j−1 ≤ k − l.

Therefore, Fj satisfies the induction hypothesis. For j = l this implies that Fl is an
unsatisfiable (k, s)-CNF formula for s = 2k−l+1, as long as

l · 2l ≤ log e · (k − 2l).(8)

Let l be the largest integer satisfying 2l ≤ log e · k/(2 log k). Then (8) holds for
k ≥ 2, and we get the following corollary.

Corollary 3.2. f(k) < 2k · 8 ln k/k for k ≥ 2.

4. Further generalization and experimental results. One way to derive
better upper bounds on f(k) is to generalize the constructions of sections 2 and 3. To
this end, we first define a special way to compose CNF formulas capturing the essence
of these constructions.

Definition 4.1. Let G1, G2 be unsatisfiable CNF formulas that have clauses of
size at most k such that G′

i is a ki-CNF formula for i = 1, 2. Also, assume that
k1 ≤ k2 < k. Then the formula G1 ◦G2 is defined as⎛

⎝ ⋃
c∈K−(x1,...,xk−k2

)

G′
1,c × c ∪G′′

1,c

⎞
⎠ ∪G′

2 × {{x1, . . . , xk−k2}} ∪G′′
2 ,

where the formulas G1,c are copies of G1 on distinct sets of variables. We say that
G1 ◦ G2 is obtained by applying ◦G2 to G1, and we let G1 ◦q G2 denote the formula
obtained by applying ◦G2 to G1 q times.

It is not difficult to verify the following.
Lemma 4.2. Let G1, G2 be formulas as above, where the number of occurrences

of each variable is bounded by some number s satisfying s ≥ (2k−k2 − 1) · |G′
1|+ |G′

2|.
Then G = G1◦G2 is an unsatisfiable CNF formula where each variable occurs at most
s times. Furthermore, G′ is a (k1+k−k2)-CNF formula, and |G′| = (2k−k2−1)·|G′

1|.
Given k, s, we ask whether one can obtain a k-CNF formula using the following

derivation rules. We start with the unsatisfiable formula {∅} as an axiom (this formula
consists of one empty clause). For a set of derivable formulas, one can apply one of
the following rules:

1. If G is a derived formula such that s ≥ 2 · |G′|, then we can derive G′
x ×

{{x}}∪G′
x×{{x}}∪G′′

x ∪G′′
x, where x is a new variable and Gx, Gx are two

disjoint copies of G.
2. If G1, G2 are two derived formulas satisfying the conditions of Lemma 4.2,

then we can derive the formula G1 ◦G2.

UNSATISFIABLE CNF FORMULAS 527

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

18

20

log
2
(k)

(a)

(b)

(c)

(d)

Fig. 1. The bounds on f(k) · k/2k. (a) Lower bound of Kratochv́ıl, Savický, and Tuza [4], 1/e.
(b) Upper bound (3) obtained in section 3 of the present paper, 8 ln k. (c) Upper bound f2(k) · k/2k,
calculated by a computer program. (d) The line 0.5 log(k) + 0.23.

One can sometimes replace G1 ◦G2 in the second rule by a more compact formula
G1 ◦′ G2 that avoids duplicating G1—namely, the formula G′

1 ×K−(x1, . . . , xk−k2) ∪
G′′

1 ∪ G′
2 × {{x1, . . . , xk−k2

}} ∪ G′′
2 . Although this can never reduce the number of

occurrences of variables, this modification reduces the number of clauses and vari-
ables. The constructions presented in sections 2 and 3 are special cases of the above
derivation rule. Indeed, K(x1, . . . , xv) can be obtained by applying the first rule v
times to {∅}. The formula of section 2 is just

F = K(z1, . . . , zv) ◦′u K(y1, . . . , yk−l).

The formula of section 3 is inductively obtained by

F0 = K(z1, . . . , zk−l),

Fj = K(z1, . . . , zdj−uj ·(l−j+1)) ◦′uj
Fj−1 for j = 1, . . . , l.

Since any k-CNF formula obtained using the above procedure is an unsatisfiable
(k, s)-CNF, one can define f2(k) as the maximal value of s such that no k-CNF formula
can be obtained using the above procedure (clearly f(k) ≤ f2(k)). It turns out that
the function f2(k) is appealing from an algorithmic point of view. Given a value
for s, one can check if f2(k) is larger than s using a simple dynamic programming
algorithm. The algorithm keeps an array a0, . . . , ak, where eventually al contains the
minimal size of F ′ for a derivable formula F such that F ′ is an l-CNF formula.

Initialize a0 = 1, a1 = · · · = ak = ∞
Repeat until no more changes are made to a1, . . . , ak

For l = 0, . . . , k − 1
If s ≥ 2l then al+1 ← min(2al, al+1)

For k2 = 0, . . . , k − 1
For k1 = 0, . . . , k2

If s ≥ (2k−k2 − 1) ·ak1 +ak2 then ak1+k−k2 ← min((2k−k2 − 1) ·ak1 , ak1+k−k2)

If ak < ∞ then output “f2(k) ≤ s” else output “f2(k) > s”

This algorithm works well in practice, and we were able to calculate f2(k) for values
up to k = 20000 to get the results depicted by the graph in Figure 1.

528 SHLOMO HOORY AND STEFAN SZEIDER

The computed numerical values of f2(k) seem to indicate that

f2(k) · k/2k = 0.5 log(k) + o(log(k)),(9)

which is better than our upper bound by a constant factor of about 11. If (9) indeed
holds, then a better analysis of the function f2 may improve our upper bound by a
constant factor. However, such an approach cannot improve upon the logarithmic
gap left between the known upper and lower bounds on f(k).

REFERENCES

[1] P. Berman, M. Karpinski, and A. D. Scott, Approximation Hardness and Satisfiability of
Bounded Occurrence Instances of SAT, Technical report TR03-022, Electronic Colloquium
on Computational Complexity (ECCC), University of Trier, Trier, Germany, 2003.

[2] O. Dubois, On the r, s-SAT satisfiability problem and a conjecture of Tovey, Discrete Appl.
Math., 26 (1990), pp. 51–60.

[3] S. Hoory and S. Szeider, Computing unsatisfiable k-SAT instances with few occurrences per
variable, Theoret. Comput. Sci., 337 (2005), pp. 347–359.

[4] J. Kratochv́ıl, P. Savický, and Z. Tuza, One more occurrence of variables make satisfiability
jump from trivial to NP-complete, Acta Inform., 30 (1993), pp. 397–403.

[5] P. Savický and J. Sgall, DNF tautologies with a limited number of occurrences of every
variable, Theoret. Comput. Sci., 238 (2000), pp. 495–498.

[6] J. Stř́ıbrná, Between Combinatorics and Formal Logic, Master’s thesis, Department of Applied
Mathematics, Charles University, Prague, Czech Republic, 1994.

[7] C. A. Tovey, A simplified NP-complete satisfiability problem, Discrete Appl. Math., 8 (1984),
pp. 85–89.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 2, pp. 529–535

ON GRAPH ASSOCIATIONS∗

LANDON RABERN†

Abstract. We introduce a notion of vertex association and consider sequences of these associa-
tions. This allows for slick proofs of a few known theorems as well as showing that for any induced
subgraph H of G, χ(G) ≤ χ(H) + 1

2
(ω(G) + |G| − |H| − 1). As a special case of this, we have

χ(G) ≤ �ω(G)+τ(G)
2

� (here χ(G) denotes the chromatic number, ω(G) the clique number, and τ(G)
the vertex cover number), which is a generalization of the Nordhaus–Gaddum upper bound. In ad-

dition, this settles a conjecture of Reed that χ(G) ≤ �ω(G)+Δ(G)+1
2

� in the case when δ(G) ≤ ω(G).

Key words. graph coloring, Reed’s conjecture

AMS subject classifications. 05C15, 05C69

DOI. 10.1137/050626545

1. Definitions and basic properties. All graphs will be assumed finite and
simple. We let |G| denote the order of G, s(G) the size of G, χ(G) the chromatic
number, ω(G) the clique number, τ(G) the vertex cover number, Δ(G) the maximum
degree, δ(G) the minimum degree, dG(x) the degree of x in G, and NG(x) the set of
neighbors of x in G.

Definition 1.1. Given a graph G and nonadjacent vertices a and b, we write
G/[a, b] for the graph obtained from G by associating (i.e., identifying) a and b into
a single vertex [a, b] and discarding multiple edges.

Proposition 1.2. Let G be a graph and a, b, x ∈ V (G) with a �∈ NG(b). Then

dG/[a,b](x) =

⎧⎨
⎩

dG(x) − 1 if x ∈ NG(a) ∩NG(b),
dG(a) + dG(b) − |NG(a) ∩NG(b)| if x ∈ {a, b},

dG(x) otherwise.

Proof. The proof is immediate from the definitions.
The content of the following proposition is that the operations of vertex removal

and association commute.
Proposition 1.3. Let G be a graph. If a, b ∈ V (G) with a �∈ NG(b) and S ⊆

V (G) � {a, b}, then

(G � S)/[a, b] = G/[a, b] � S.

Proof. Again, this is immediate from the definitions.
Lemma 1.4. Let a and b be nonadjacent vertices in a graph G. Then
(i) χ(G) ≤ χ(G/[a, b]) ≤ χ(G) + 1, and
(ii) χ(G/[a, b]) = χ(G) if and only if there exists a coloring of G with χ(G) colors

in which a and b receive the same color.
Proof. (i) Since a and b are nonadjacent, any k-coloring of G/[a, b] lifts to a k-

coloring of G. This gives the first inequality. The second follows by noting that any
k-coloring of G induces a k-coloring of G/[a, b] � {[a, b]} and hence a (k + 1)-coloring
of G/[a, b] by introducing a new color.

∗Received by the editors March 10, 2005; accepted for publication (in revised form) January 25,
2006; published electronically June 21, 2006.

http://www.siam.org/journals/sidma/20-2/62654.html
†Department of Mathematics, UC Santa Barbara, Goleta, CA 93117 (landonr@math.ucsb.edu).

529

530 LANDON RABERN

(ii) Assume χ(G/[a, b]) = χ(G). Then we have a χ(G)-coloring of G/[a, b] and
lifting this to G gives a χ(G)-coloring of G in which a and b receive the same color.

For the converse, assume we have a χ(G)-coloring of G in which a and b receive
the same color. Then the induced χ(G)-coloring of G/[a, b] � {[a, b]} extends to a
χ(G)-coloring of G/[a, b] by coloring [a, b] the color that a and b share.

Proposition 1.5. Let a and b be nonadjacent vertices in a graph G. Then

χ(G) = min{χ(G/[a, b]), χ(G + ab)}.

Proof. If χ(G) = χ(G/[a, b]), then we are done since χ(G+ab) ≥ χ(G). Otherwise,
by Lemma 1.4(ii), a and b must receive different colors in every χ(G)-coloring of
G. Hence, any χ(G)-coloring of G extends to a χ(G)-coloring of G + ab. Thus
χ(G) = χ(G + ab), completing the proof.

2. Sequences of associations. We consider sequences of the form

G = H0 → H1 → · · · → Hr = Kt,

where each term is obtained from the previous one by associating two nonadjacent
vertices. The process clearly terminates at some complete graph Kt.

Lemma 2.1. Let G be a graph. If G is not complete, then there exist nonadjacent
vertices a and b which receive the same color in some χ(G)-coloring of G.

Proof. If not, then any given vertex must be colored differently from every other
vertex in any χ(G)-coloring of G. Hence, χ(G) = |G| and thus G is complete.

Proposition 2.2. The smallest t for which there exists a sequence

G = H0 → H1 → · · · → Hr = Kt

is t = χ(G).

Proof. The first inequality of Lemma 1.4(i) and the fact that χ(Kt) = t yield
t ≥ χ(G). We just need to show that Kχ(G) can be attained. If G is complete, then
we are done. Otherwise, by Lemma 2.1, we have two vertices a and b which receive
the same color in some χ(G)-coloring of G. By Lemma 1.4(ii), χ(G/[a, b]) = χ(G).
Since |G/[a, b]| < |G|, the result follows by induction.

Definition 2.3. We denote by ψ(G) the largest t for which there exists a sequence

G = H0 → H1 → · · · → Hr = Kt.

With a little thought, one can see that this is the same thing as the achromatic number
of G.

Loose upper bounds on ψ(G) can be easily obtained.

Proposition 2.4. Let G be a graph. Then

(i) ψ(G) ≤ |G|, and

(ii) ψ(G) ≤ 1+
√

1+8s(G)

2 .

Proof. Consider the sequence

G = H0 → H1 → · · · → Hr = Kψ(G).

As we move from left to right, both the order and the size of the graphs do not
increase; hence, |G| ≥ ψ(G) and s(G) ≥

(
ψ(G)

2

)
. The results follow.

ON GRAPH ASSOCIATIONS 531

3. Some slick proofs.
Lemma 3.1. If a and b are nonadjacent vertices in a graph G, then

χ(G) − 1 ≤ χ(G/[a, b]) ≤ χ(G).

Proof. Note that the chromatic number of G is the clique cover number of G.
Assume we have a partition of V (G) into n disjoint sets {K1, . . . ,Kn}, each of which
induces a clique. Since a and b are nonadjacent, they are in distinct cliques, say,
a ∈ Ki, b ∈ Kj with i �= j. We see that replacing Ki with Ki � {a} and Kj

with (Kj � {b}) ∪ {[a, b]} yields a covering of G/[a, b] with n cliques. This gives
the second inequality. To get the first, assume we have a partition of V (G/[a, b])
into n disjoint sets {K1, . . . ,Kn}, each of which induces a clique. Then [a, b] is in
one of the sets, say, [a, b] ∈ Ki. Let K

′

i = ((Ki � {[a, b]}) ∩ NG(a)) ∪ {a} and

K
′

n+1 = ((Ki � {[a, b]}) � K
′

i) ∪ {b}. Then {K1, . . . ,Ki−1,K
′

i ,Ki+1, . . . ,Kn,K
′

n+1}
is a partition of V (G) into n + 1 disjoint sets, each of which induces a clique.

Proposition 3.2 (see Harary and Hedetniemi [2]). Let G be a graph. Then

ψ(G) + χ(G) ≤ |G| + 1.

Proof. Consider the sequence

G = H0 → H1 → · · · → Hr = Kψ(G),(1)

where r = |G| − ψ(G). It follows from the first inequality of Lemma 3.1 that

χ(G) − (|G| − ψ(G)) = χ(G) − r ≤ χ(Kψ(G)) = 1,

so that ψ(G) + χ(G) ≤ |G| + 1 as required.
Corollary 3.3 (see Nordhaus and Gaddum [3]). Let G be a graph. Then

χ(G) + χ(G) ≤ |G| + 1.

Proof. Use χ(G) ≤ ψ(G) in Proposition 3.2.
Lemma 3.4. Let G be a graph. Then

χ(G) ≥ 2ψ(G) − |G|.

Proof. It follows from (1) and the second inequality of Lemma 1.4(i) that

ψ(G) = χ(Kψ(G)) ≤ χ(G) + r = χ(G) + |G| − ψ(G).

The result follows.
Proposition 3.5. Let G be a graph. Then

2ψ(G) + ψ(G) ≤ 2|G| + 1.

Proof. Lemma 3.4 applied to G yields χ(G) ≥ 2ψ(G)−|G|. Substituting this into
Proposition 3.2 gives 2ψ(G) + ψ(G) ≤ 2|G| + 1. Now substituting G for G gives the
result.

Corollary 3.6 (see Gupta [1]). Let G be a graph. Then

ψ(G) + ψ(G) ≤
⌈

4

3
|G|

⌉
.

532 LANDON RABERN

Proof. Applying Proposition 3.5 to G and G yields the inequalities

2ψ(G) + ψ(G) ≤ 2|G| + 1

and

ψ(G) + 2ψ(G) ≤ 2|G| + 1,

respectively. By adding these, we get

3(ψ(G) + ψ(G)) ≤ 4|G| + 2,

which is

ψ(G) + ψ(G) ≤ 4

3
|G| + 2

3
.

The result follows.

4. The main results.
Definition 4.1. Let G be a graph and I an independent set in G. We denote by

G/[I] the graph obtained from G by associating I down to a single vertex [I].
Lemma 4.2. Let f be a real-valued graph function such that, for any graph G,

f(G� {v}) ≥ f(G)− 1 for all v ∈ V (G). Then, for any graph G and independent set
I in G,

f(G/[I]) ≤ f(G � I) + 1.

Proof. Observe that G � I = G/[I] � {[I]}. But [I] is a single vertex; hence,
f(G � I) = f(G/[I] � {[I]}) ≥ f(G/[I]) − 1. The result follows.

Definition 4.3. We say that a graph G consists of an independent set attached
to a clique if V (G) can be partitioned into two disjoint sets I and K such that I is
independent and K induces a clique. We say that G consists of an independent set
strongly attached to a clique if there is such a partition in which each vertex of K is
adjacent to at least one vertex of I.

Lemma 4.4.

(a) If a graph G consists of an independent set I attached to a clique K, then G
consists of an independent set K attached to a clique I, and χ(G) = ω(G) =
|K| or |K| + 1 and χ(G) = ω(G) = α(G) = |I| or |I| + 1.

(b) If G consists of an independent set I strongly attached to a clique K, then
χ(G) = ω(G) = α(G) = |I|.

(c) If I is an independent set in a graph G, then G/[I] is complete if and only if
G consists of I strongly attached to a clique.

Proof. (a) Since I is independent, χ(G) ≤ |K|+1 and χ(G) = |K|+1 if and only
if there exists v ∈ I such that NG(v) = K; in this case, ω(G) = |K| + 1 as well. The
statements about G follow in a similar manner.

(b) Assume each vertex of K is adjacent in G to at least one vertex of I. Then,
in G, each vertex of K is nonadjacent to at least one vertex of I. Hence ω(G) = |I|.
The other equalities follow from (a).

(c) We have G/[I] complete if and only if NG/[I]([I]) = K. This happens if and
only if each vertex of K is adjacent to at least one vertex of I.

Lemma 4.5. Let

G = H0 → H1 → · · · → Hr−1 → Hr = Kt

ON GRAPH ASSOCIATIONS 533

be a sequence where each term is obtained from the previous one by associating two
nonadjacent vertices. If χ(Hr−1) = χ(Hr), then ω(Hr−1) = ω(Hr).

Proof. Since Hr is complete, Hr−1 is an independent set of size 2 strongly attached
to a clique; hence, by Lemma 4.4(a), ω(Hr−1) = χ(Hr−1) = χ(Hr) = ω(Hr).

Theorem 4.6. Let I1, . . . , Im be disjoint independent sets in a graph G. Then

χ(G) ≤ 1

2

⎛
⎝ω(G) + |G| −

m∑
j=1

|Ij | + 2m− 1

⎞
⎠ .(2)

Proof. Associate I1 through Im in turn to yield a sequence

G = H0 → H1 → · · · → Hm−1 → Hm = B,(3)

and let A = Hm−1, so that B is obtained from A by associating Im to a single vertex.
We distinguish two cases.

Case 1. B is complete, so that B = Kχ(B). Then, by Lemma 4.4(c), A consists
of Im strongly attached to a clique. By Corollary 3.3 and Lemma 4.4(b),

χ(A) ≤ |A| − χ(A) + 1 = |A| − |Im| + 1,

so that, since χ(A) = ω(A) by Lemma 4.4(a),

2χ(A) ≤ ω(A) + |A| − |Im| + 1.(4)

Since ω(G�{v}) ≥ ω(G)−1 for all v ∈ V (G), Lemma 4.2 tells us that associating
an independent set to a single point increases ω by at most one. Hence

ω(A) ≤ ω(G) + m− 1.(5)

Also, |G| − |A| =
∑m−1

j=1 (|Ij | − 1) =
∑m

j=1 |Ij | − |Im| −m + 1, so that

|A| − |Im| = |G| −
m∑
j=1

|Ij | + m− 1.(6)

Since χ(G) ≤ χ(A) by the first inequality of Lemma 1.4(i), substituting (5) and
(6) into (4) gives

2χ(G) ≤ 2χ(A) ≤ ω(G) + m− 1 + |G| −
m∑
j=1

|Ij | + m− 1 + 1

= ω(G) + |G| −
m∑
j=1

|Ij | + 2m− 1,

which is (2).
Case 2. B is not complete. Consider the sequence

B → · · · → C → Kχ(B),(7)

where each term is obtained from the previous one by associating two nonadjacent
vertices. Then, by the first inequality in Lemma 1.4(i),

χ(B) ≤ χ(C) ≤ χ(Kχ(B)) = χ(B).

534 LANDON RABERN

Hence χ(C) = χ(B) = χ(Kχ(B)), and we may apply Lemma 4.5 to conclude

ω(C) = ω(Kχ(B)) = χ(B).(8)

In addition, it is clear that

|C| = χ(B) + 1.(9)

Applying Lemma 4.2 as in (5), but this time to a combination of sequences (3)
and (7) between G and C, gives

ω(C) ≤ ω(G) + m + |B| − |C|,(10)

and |G| − |B| =
∑m

j=1 |Ij | −m, so that, by (8), (9), and (10),

2χ(B) = ω(C) + |C| − 1 ≤ ω(G) + m + |B| − 1

= ω(G) + m + |G| −
m∑
j=1

|Ij | + m− 1.

Since χ(G) ≤ χ(B), by the first inequality of Lemma 1.4(i), the theorem then
follows.

Since the vertex-set of an induced subgraph H of G can be partitioned into χ(H)
independent sets, the following is an equivalent formulation of Theorem 4.6.

Theorem 4.7. Let G be a graph. Then, for any induced subgraph H of G,

χ(G) ≤ χ(H) +
1

2
(ω(G) + |G| − |H| − 1).

Corollary 4.8. Let G be a graph. Then

χ(G) ≤
⌈
ω(G) + τ(G)

2

⌉
.

Proof. Apply Theorem 4.6 to a single independent set with ω(G) elements to get

χ(G) ≤ 1

2
(ω(G) + |G| − ω(G) + 1).(11)

Since S ⊆ V (G) is a vertex cover if and only if V (G) � S is an independent set,

τ(G) + ω(G) = |G|.

The result follows.
Note that this is a generalization of the Nordhaus–Gaddum upper bound since

replacing G by G in (11) and adding the two inequalities yields χ(G)+χ(G) ≤ |G|+1.
Conjecture 4.9 (see Reed [4]). Let G be a graph. Then

χ(G) ≤
⌈
ω(G) + Δ(G) + 1

2

⌉
.

Corollary 4.8 establishes this for all graphs G with τ(G) ≤ Δ(G) + 1 and, equiv-
alently, for all graphs with δ(G) ≤ ω(G). In particular, if δ(G) ≤ 2, then either

ON GRAPH ASSOCIATIONS 535

δ(G) ≤ 2 ≤ ω(G) or ω(G) = 1, and hence G is complete. Thus Reed’s conjecture
holds for any graph G with Δ(G) ≥ |G| − 3.

Corollary 4.10. Let G be a triangle-free graph. Then

χ(G) ≤ 2 +
1

2
δ(G).

Proof. Since G is triangle-free, ω(G) ≥ Δ(G). It follows from (11) that

χ(G) ≤ 1

2
(ω(G) + |G| − Δ(G) + 1) =

1

2
(ω(G) + δ(G) + 2) ≤ 1

2
(4 + δ(G)),

which is the required result.

REFERENCES

[1] R. P. Gupta, Bounds on the chromatic and achromatic numbers of complementary graphs, in
Recent Progress in Combinatorics, Proceedings of the 3rd Waterloo Conference in Com-
binatorics, Waterloo, 1968, W. T. Tutte, ed., Academic Press, New York, London, 1969,
pp. 229–235.

[2] F. Harary and S. Hedetniemi, The achromatic number of a graph, J. Combin. Theory, 8
(1970), pp. 154–161.

[3] E. A. Nordhaus and J. W. Gaddum, On complementary graphs, Amer. Math. Monthly, 63
(1956), pp. 175–177.

[4] B. Reed, ω, Δ, and χ, J. Graph Theory, 27 (1997), pp. 177–212.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 2, pp. 536–543

CONSTRUCTION OF LARGE GRAPHS WITH NO OPTIMAL
SURJECTIVE L(2, 1)-LABELINGS∗

DANIEL KRÁL’† , RISTE ŠKREKOVSKI‡ , AND MARTIN TANCER§

Abstract. An L(2, 1)-labeling of a graph G is a mapping c : V (G) → {0, . . . ,K} such that the
labels of two adjacent vertices differ by at least two and the labels of vertices at distance two differ by
at least one. A hole of c is an integer h ∈ {0, . . . ,K} that is not used as a label for any vertex of G.
The smallest integer K for which an L(2, 1)-labeling of G exists is denoted by λ(G). The minimum
number of holes in an optimal labeling, i.e., a labeling with K = λ(G), is denoted by ρ(G). Georges
and Mauro [SIAM J. Discrete Math., 19 (2005), pp. 208–223] showed that ρ(G) ≤ Δ, where Δ is
the maximum degree of G, and conjectured that if ρ(G) = Δ and G is connected, then the order of
G is at most Δ(Δ + 1). We disprove this conjecture by constructing graphs G with ρ(G) = Δ and

order � (Δ+1)2

4
�(Δ + 1) ≈ Δ3/4.

Key words. channel assignment problem, graph labeling with distance conditions

AMS subject classification. 05C15

DOI. 10.1137/050623061

1. Introduction. L(2, 1)-labelings of graphs form an important model for the
frequency assignment problem [9]. An L(2, 1)-labeling of a graph G is a labeling
c : V (G) → {0, . . . ,K} of the vertices of G such that the labels of any two adjacent
vertices differ by at least two and the labels of any two vertices at distance two are
different. The smallest K for which there exists a proper labeling of G is denoted by
λ(G).

One of the most studied problems on L(2, 1)-labelings is the famous Delta Square
Conjecture of Griggs and Yeh [8]: They conjectured that λ(G) ≤ Δ(G)2 for every
graph G with maximum degree Δ(G) ≥ 2. Though the conjecture has been verified
for several special classes of graphs, including graphs of maximum degree two, chordal
graphs [15] (see also [1, 12]), and Hamiltonian cubic graphs [10, 11], it remains widely
open. The original upper bound, λ(G) ≤ Δ(G)2 + 2Δ(G) by Griggs and Yeh [8], has
been improved to λ(G) ≤ Δ(G)2 +Δ(G) in [2] (an analogous bound in a more general
setting of the channel assignment problem was proved by McDiarmid [14]). A more
general result of the first two authors [13] yields λ(G) ≤ Δ(G)2 + Δ(G) − 1, and the
present record λ(G) ≤ Δ(G)2 + Δ(G)− 2 has been recently proven by Gonçalves [7].

∗Received by the editors January 21, 2005; accepted for publication (in revised form) January 30,
2006; published electronically June 21, 2006. This research was conducted as a part of the Czech-
Slovenian bilateral project MŠMT-07-0405 (Czech side) and SLO-CZ/04-05-002 (Slovenian side).

http://www.siam.org/journals/sidma/20-2/62306.html
†Institute for Mathematics, Technical University Berlin, Strasse des 17. Juni 136, D-10623 Berlin,

Germany. The author was a postdoctoral fellow at TU Berlin within the framework of the European
training network COMBSTRU from October 2004 to July 2005. Department of Applied Mathematics
and Institute for Theoretical Computer Science (ITI), Faculty of Mathematics and Physics, Charles
University, Malostranské náměst́ı 25, 118 00 Prague, Czech Republic (kral@kam.mff.cuni.cz). Insti-
tute for Theoretical Computer Science is supported by Ministry of Education of Czech Republic as
projects LN00A056 and 1M0545. At the present, the author is a Fulbright scholar at School of Mathe-
matics, Georgia Institute of Technology, 686 Cherry St., Atlanta, GA 30332 (kral@math.gatech.edu).

‡Department of Mathematics, University of Ljubljana, Jadranska 19, 1111 Ljubljana, Slovenia
(riste.skrekovski@fmf.uni-lj.si).

§Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University,
Malostranské náměst́ı 25, 118 00 Prague, Czech Republic (martin@atrey.karlin.mff.cuni.cz). The
work of this author was partially supported by Institute for Theoretical Computer Science (ITI).

536

GRAPHS WITH NO OPTIMAL SURJECTIVE L(2, 1)-LABELINGS 537

In this paper, we focus on surjective L(2, 1)-labelings that were first studied by
Fishburn and Roberts [3] under the name of full colorings, and further investigated
in [4, 5, 6]. If c is an L(2, 1)-labeling of G, then a number h, 0 ≤ h ≤ K, is a hole if
there is no vertex v of G with c(v) = h. The minimum number of holes in an L(2, 1)-
labeling of G with K = λ(G) is denoted by ρ(G). Georges and Mauro [5] established
that ρ(G) never exceeds the maximum degree Δ(G) of G. In [5], Georges and Mauro
also posed (among others) the following conjectures on L(2, 1)-labelings and holes.

Conjecture 1. If G is an r-regular graph and ρ(G) ≥ 1, then ρ(G) divides r.
Conjecture 2. If G is a connected graph with maximum degree Δ(G) and

ρ(G) = Δ(G), then the order of G does not exceed Δ(Δ + 1).
Conjecture 3. If G is a graph with λ(G) > 2Δ(G), then ρ(G) = 0. In other

words, if G is a graph with ρ(G) > 0, then λ(G) ≤ 2Δ(G).
In this paper, we focus on Conjecture 2. We provide a construction of connected

r-regular graphs G of order (r+1)� (r+1)2

4 � ≈ r3/4 with ρ(G) = r (Corollary 3.4). This
shows that Conjecture 2 does not hold for Δ ≥ 3. Note that Conjecture 2 trivially
holds for Δ = 1 since the only graph G satisfying the assumptions of the conjecture
is K2. In [5], it was shown that Conjecture 2 also holds for Δ = 2.

2. Previous results. In this section, we survey results obtained by Georges and
Mauro [5] on the structure of graphs G with ρ(G) = Δ(G). The following theorem
shows that the structure of such graphs is very restricted.

Theorem 2.1. If G is a graph with ρ(G) = Δ(G), then G is a Δ-regular graph
with λ(G) = 2Δ. Moreover, for every optimum L(2, 1)-labeling c, i.e., a labeling using
the labels 0, . . . , λ(G), the following hold:

• every odd integer between 0 and λ(G) is a hole of c;
• the cardinality of the preimage in c of every even number between 0 and λ(G)

is the same; and
• the subgraph of G induced by the preimages of any two even numbers is a

perfect matching (union of disjoint edges).
In particular, there exists an integer t > 0 such that the order of G is (Δ + 1)t.

In [5], Georges and Mauro constructed connected Δ-regular graphs G with ρ(G) =
Δ of order (Δ + 1)t for every t = 1, . . . ,Δ. They conjectured that the number t
(under the assumption that G is connected) cannot exceed Δ (this is equivalent to
Conjecture 2 stated in section 1).

We now recall a construction of an r-regular graph Ωr of order r(r + 1) from [5].
Consider a union of r vertex disjoint cliques of order r and number the vertices of
each clique from 1 to r. Add to the graph r new vertices and join the i-th of them to
the vertices of the cliques numbered with i. The resulting graph is Ωr. Clearly, Ωr is
a connected r-regular graph. It can be shown that λ(Ωr) = 2r and ρ(Ωr) = r.

In order to show that λ(Ωr) = 2r and ρ(Ωr) = r for the graph Ωr, Georges
and Mauro [5] showed that Ωr has a special property which we call the neighborhood
property in this paper. Assume that G is a connected r-regular graph of order (r+1)t.
We say that G has the t-neighborhood property if the following holds for any two
(disjoint) sets V and W of vertices of G: If neither V nor W contains two vertices
at distance at most two and no vertex of V is adjacent to a vertex of W , then
|V | + |W | ≤ t.

We finish this section with the following proposition whose proof is implicitly
contained in [5]. We include its short proof for the sake of completeness.

Proposition 2.2. If G is a connected r-regular graph of order (r + 1)t with
λ(G) ≤ 2r that has the t-neighborhood property, then λ(G) = 2r and ρ(G) = r.

538 DANIEL KRÁL’, RISTE ŠKREKOVSKI, AND MARTIN TANCER

Proof. Let us consider an L(2, 1)-labeling of G with 0, . . . , 2r and let Vi, i =
0, . . . , 2r, be the set of the vertices labeled with i. Since G has the t-neighborhood
property, it holds that

|Vi| + |Vi+1| ≤ t(2.1)

for every i = 0, . . . , 2r − 1.
First, we show that Vi = ∅ for all odd i’s. Let i0 be an odd integer between 0 and

2r and let μ = |Vi0 |. We now bound the sum |V0| + · · · + |V2r| using (2.1):

2r∑
i=0

|Vi| =

(i0−1)/2∑
i=0

(|V2i| + |V2i+1|) +

r∑
i=(i0+1)/2

(|V2i−1| + |V2i|) − |Vi0 | ≤ (r + 1)t− μ .

Since the sets V0, . . . , V2r partition the vertex set of G, the sum of their sizes is (r+1)t.
Therefore, μ = 0. Since the choice of i0 was arbitrary, Vi = ∅ for all odd i’s as claimed.

Note that |Vi| ≤ t for every i = 0, . . . , 2r by (2.1). Since the sum |V0|+ · · ·+ |V2r|
is equal to (r+1)t and the set Vi is empty for every odd i, it must hold that |Vi| = t for
every i = 0, 2, 4, . . . , 2r. The statement of the proposition now readily follows.

3. Construction. In this section, we present our construction of graphs of order
Θ(Δ3) with ρ = Δ (the exact parameters of the constructed graphs can be found in
Theorem 3.3). First, we describe the considered graphs in subsection 3.1. In subsec-
tion 3.2, we analyze their properties. Finally, we slightly generalize our construction
to obtain additional graphs with similar properties in subsection 3.3.

3.1. The graph. In this subsection, we construct an (α + β − 1)-regular con-
nected graph Γα,β of order (α+β)αβ with ρ(Γα,β) = Δ(Γα,β) = α+β−1. The vertex
set of Γα,β is composed of two sets Vg and Vr:

Vg = {[a, b, a] | 1 ≤ a ≤ α, 1 ≤ b ≤ β and 1 ≤ a ≤ α} and

Vr = {[a, b, b] | 1 ≤ a ≤ α, 1 ≤ b ≤ β and 1 ≤ b ≤ β}.

Note that |Vg| = α2β and |Vr| = αβ2. The vertices of Vg are later referred to as green
and those of Vr as red.

We now describe the edge set of Γα,β . Two distinct green vertices [a, b, a] and
[a′, b′, a′] are joined by an edge if b = b′ and a = a′. Similarly, two distinct red vertices

[a, b, b] and [a′, b′, b
′
] are joined by an edge if a = a′ and b = b

′
. A green vertex [a, b, a]

and a red vertex [a′, b′, b
′
] are joined by an edge if a = a′ and b = b′.

Notice the following: The subgraph of Γα,β induced by the green vertices is
composed of αβ cliques of order α, the subgraph induced by the red vertices of αβ
cliques of order β, and the spanning subgraph containing edges between the red and
green vertices is composed of αβ complete bipartite graphs isomorphic to Kα,β . It is
not hard to verify that the graph Γα,β is connected, that its order is (α + β)αβ, and
that it is (α + β − 1)-regular. Examples of graphs Γα,β for some (small) values of α
and β are given in Figure 3.1. Note that the graph Γα,1 is isomorphic to the graph
Ωα. Also note that the graphs Γα,β and Γβ,α are isomorphic for all α, β ≥ 1.

3.2. Analysis. In this subsection, we analyze properties of the graphs Γα,β .
First, we show an upper bound on λ(Γα,β).

Proposition 3.1. For every α, β ≥ 1, the number λ(Γα,β) does not exceed
2α + 2β − 2.

GRAPHS WITH NO OPTIMAL SURJECTIVE L(2, 1)-LABELINGS 539

Fig. 3.1. The graphs Γ1,4 and Γ2,3. Green vertices are depicted by empty circles and red
vertices by full ones.

Proof. We partition green vertices into α independent sets V1, . . . , Vα and red
vertices into β independent sets W1, . . . ,Wβ . A green vertex [a, b, a] is contained in
the set Vi, where i is congruent to a + a modulo α. A red vertex [a, b, b] is contained
in the set Wi, where i is congruent to b + b modulo β.

Clearly, the sets V1, . . . , Vα and W1, . . . ,Wβ are independent. We claim that the
distance between any two vertices contained in the same set is at least three. Assume
the opposite. By symmetry, it is enough to consider the case when V1 contains two
distinct green vertices [a, b, a] and [a′, b′, a′] at distance two. If the common neighbor
of [a, b, a] and [a′, b′, a′] is a green vertex, then b = b′ and a = a′. By the definition of
V1, it follows that a = a′ and the vertices [a, b, a] and [a′, b′, a′] are not distinct. On
the other hand, if their common neighbor is a red vertex, then a = a′ and b = b′. The
definition of V1 now yields that a = a′, and the vertices [a, b, a] and [a′, b′, a′] are not
distinct as supposed.

We now construct an L(2, 1)-labeling of Γα,β . Label the vertices of Vi, i = 1, . . . , α,
by the number 2i− 2 and the vertices of Wi, i = 1, . . . , β, by the number 2α+ 2i− 2.
The obtained labeling is a proper L(2, 1)-labeling of Γα,β . In particular, λ(Γα,β) ≤
2α + 2β − 2.

In the next lemma, we present the key property of graphs Γα,β .

Lemma 3.2. For every α, β ≥ 1, the graph Γα,β has the αβ-neighborhood prop-
erty.

Proof. Fix α ≥ 1 and β ≥ 1 and let us consider two sets V1 and V2 of vertices of
Γα,β . Assume that V1 contains no two vertices at distance at most two, V2 contains
no two vertices at distance at most two, and no two vertices of V1 and V2 are adjacent.
We show that |V1| + |V2| ≤ αβ. The statement of the lemma would then follow.

Let us construct two auxiliary matrices Mg and Mr of type α×β. For a, 1 ≤ a ≤
α, and b, 1 ≤ b ≤ β, the entry Mg[a, b] is the number of green vertices of the form
[a, b, a], 1 ≤ a ≤ α, contained in V1 ∪ V2. Similarly, the entry Mr[a, b] is the number
of red vertices of the form [a, b, b], 1 ≤ b ≤ β, contained in V1 ∪ V2. Next, several
properties of the matrices Mg and Mr are established. We formulate the properties
as a series of claims.

Claim 3.2.1. All the entries of the matrices Mg and Mr are integers 0, 1, or 2.

For fixed numbers a, 1 ≤ a ≤ α, and b, 1 ≤ b ≤ β, all the green vertices
[a, b, a], 1 ≤ a ≤ α, of Γα,β are at distance two. In particular, at most one of them
is contained in the set V1 and at most one of them in V2. Hence, Mg[a, b] ≤ 2. A

540 DANIEL KRÁL’, RISTE ŠKREKOVSKI, AND MARTIN TANCER

symmetric argument applies to Mr.
Claim 3.2.2. For every a, 1 ≤ a ≤ α, and b, 1 ≤ b ≤ β, at most one of the

entries Mg[a, b] and Mr[a, b] is nonzero.
If Mg[a, b] > 0, then there is a green vertex [a, b, a], 1 ≤ a ≤ α, that is contained

in V1 ∪ V2. Since every red vertex [a, b, b], 1 ≤ b ≤ β, is adjacent to the green vertex
[a, b, a] contained in V1 ∪V2, no red vertex of the form [a, b, b], 1 ≤ b ≤ β, is contained
in V1 ∪ V2. Hence, Mr[a, b] is equal to zero. An analogous argument yields that if
Mr[a, b] > 0, then Mg[a, b] = 0.

Claim 3.2.3. If Mg[a, b] = 2 for a, 1 ≤ a ≤ α, and b, 1 ≤ b ≤ β, then
Mr[a

′, b] = Mr[a, b
′] = 0 for every a′, 1 ≤ a′ ≤ α, and b′, 1 ≤ b′ ≤ β.

Let a1 and a2, 1 ≤ a1, a2 ≤ α, be two distinct integers such that both green
vertices [a, b, a1] and [a, b, a2] are contained in V1∪V2. Since the distance between the
vertices [a, b, a1] and [a, b, a2] is two, one of them is contained in V1 and the other in
V2. By symmetry, we can assume that [a, b, a1] ∈ V1 and [a, b, a2] ∈ V2.

Let us consider integers a′, 1 ≤ a′ ≤ α, and b, 1 ≤ b ≤ β. If a = a′, then
Mr[a

′, b] = 0 by Claim 3.2.2. In the rest, we consider the case a �= a′. The green
vertices [a′, b, a1] and [a′, b, a2] are neighbors of the green vertices [a, b, a1] and [a, b, a2],
respectively. Since the red vertex [a′, b, b] is a neighbor of both the green vertices
[a′, b, a1] and [a′, b, a2], the vertex [a′, b, b] can be included in neither V1 nor V2. Since
the choice of b was arbitrary, Mr[a

′, b] must be equal to zero for every a′ �= a, 1 ≤ a ≤
α. A symmetric argument yields that Mr[a, b

′] = 0 for every b′, 1 ≤ b′ ≤ β.
Claim 3.2.4. If Mr[a, b] = 2 for a, 1 ≤ a ≤ α, and b, 1 ≤ b ≤ β, then

Mg[a
′, b] = Mg[a, b

′] = 0 for every a′, 1 ≤ a′ ≤ α, and b′, 1 ≤ b′ ≤ β.
The proof is analogous to the proof of Claim 3.2.3.
Claim 3.2.5. For every a, 1 ≤ a ≤ α, the sum of the entries of Mr on the ath

row is at most β.
For every b, 1 ≤ b ≤ β, the vertices [a, b, b], 1 ≤ b ≤ β, form a clique in Γα,β .

Hence, at most one of them can be contained in V1 ∪ V2. Since there are β possible
choices of b, there are at most β red vertices with the first coordinate equal to a in
V1 ∪ V2.

Claim 3.2.6. For every b, 1 ≤ b ≤ β, the sum of the entries of Mg on the bth
column is at most α.

The proof is analogous to the proof of Claim 3.2.5.
We now continue the main part of the proof of Lemma 3.2. Let Ag be the set of

all integers a such that Mg[a, b] = 2 for some b. Similarly, Bg is the set of all b’s such
that Mg[a, b] = 2 for some a. Analogously, Ar and Br are sets of all integers a and b,
respectively, such that Mr[a, b] = 2. In addition, let M be the matrix that is the sum of
the matrices Mr and Mg, i.e., M = Mr+Mg. Note that the sum of all the entries of M
is |V1|+|V2|. By Claims 3.2.3 and 3.2.4, it holds that Mg[a, b] = Mr[a, b] = M [a, b] = 0
for all [a, b] ∈ Ar ×Bg and [a, b] ∈ Ag ×Br. On the other hand, by the definitions of
the sets Ag, Bg, Ar and Br, if [a, b] �∈ (Ag∪Ar)×(Bg∪Br), Mg[a, b] ≤ 1, Mr[a, b] ≤ 1,
and at most one of Mg[a, b] and Mr[a, b] is nonzero by Claim 3.2.2. We conclude that
M [a, b] = Mg[a, b] + Mr[a, b] ≤ 1 for every [a, b] �∈ (Ag ∪Ar) × (Bg ∪Br).

In order to finish the proof, we distinguish three cases according to the cardinal-
ities of the sets Ag, Bg, Ar and Br:

• |Bg| ≤ |Br|
For a ∈ Ar, all the entries of Mg on the ath row are zero by Claim 3.2.4. In
particular, the entries of M and Mr on the ath row coincide. Hence, the sum
of the entries of the matrix M in the rows a ∈ Ar is at most |Ar|β by Claim
3.2.5. The sum of the entries M [a, b] with [a, b] ∈ Ag × (Bg ∪Br) is at most

GRAPHS WITH NO OPTIMAL SURJECTIVE L(2, 1)-LABELINGS 541

2|Ag||Bg| ≤ |Ag|(|Bg| + |Br|) by Claims 3.2.2, 3.2.3, and 3.2.4. Finally, all
the remaining entries of M are at most one. We infer that the sum of all the
entries of M does not exceed αβ.

• |Ag| ≥ |Ar|
An argument that is similar to that in the previous case and that involves
Claim 3.2.6 applies.

• |Ag| ≤ |Ar| and |Bg| ≥ |Br|
Observe first that the following holds:

|Br| ≤ |Bg|,
|Br|(|Ar| − |Ag|) ≤ |Bg|(|Ar| − |Ag|),

|Ag||Bg| + |Ar||Br| ≤ |Ag||Br| + |Ar||Bg|.(3.1)

By Claim 3.2.1, it holds that M [a, b] ≤ 2 for every [a, b] ∈ (Ag ×Bg)∪ (Ar ×
Br). Since M [a, b] = 0 for all [a, b] ∈ (Ag × Br) ∪ (Ar × Bg), the sum of the
entries M [a, b] for [a, b] ∈ (Ag ∪Ar)× (Bg ∪Br) is at most the following (the
first inequality follows from (3.1)):

2(|Ag||Bg| + |Ar||Br|) ≤ |Ag||Bg| + |Ar||Br| + |Ag||Br| + |Ag||Br|
≤ (|Ag| + |Ar|)(|Bg| + |Br|).

Since M [a, b] ≤ 1 for every [a, b] �∈ (Ag ∪ Ar) × (Bg ∪ Br), the sum of the
entries of the matrix M is at most αβ as desired.

Since the sum of the entries of M is equal to |V1|+ |V2|, we conclude that |V1|+ |V2| ≤
αβ.

The following theorem now readily follows from Propositions 2.2 and 3.1 and
Lemma 3.2.

Theorem 3.3. For every α, β ≥ 1, the graph Γα,β has the following properties:
• the order of Γα,β is (α + β)αβ;
• the graph Γα,β is connected;
• the graph Γα,β is (α + β − 1)-regular; and
• its hole number ρ(Γα,β) is α + β − 1.

An immediate corollary of Theorem 3.3 follows.
Corollary 3.4. For every r ≥ 1, there exists an r-regular connected graph G of

order (r + 1)� (r+1)2

4 � ≈ r3/4 with ρ(G) = r.
Proof. Set α = �r/2�+ 1 and β = �r/2
, and consider the graph Γα,β . Note that

αβ(α + β) = (r + 1)� (r+1)2

4 �.
3.3. Generalization. In this subsection, we slightly generalize our construction.

If G is a graph with the vertex set V (G), then G[s] is the graph whose vertex set is
V (G) × {1, . . . , s} and two distinct vertices [v, i] and [v′, i′] of G[s] are joined by an
edge if v = v′ or v �= v′ and vv′ is an edge of G. Clearly, if G is an r-regular graph of
order n, then G[s] is an (rs + s− 1)-regular graph of order ns. Note that G[s] is the
lexicographic product of G and the complete graph of order s.

We now formulate the following lemma.
Lemma 3.5. Let G be a connected r-regular graph of order (r + 1)t. If G has

the t-neighborhood property, then G[s] has also the t-neighborhood property for every
s ≥ 1.

Proof. Let V and W be two disjoint sets of vertices of G[s] such that the distance
between any two vertices in each of the sets is at least two and no vertex of V is

542 DANIEL KRÁL’, RISTE ŠKREKOVSKI, AND MARTIN TANCER

adjacent to a vertex of W . Let V ′ be the set of vertices v of G such that [v, i] ∈ V
for some i, 1 ≤ i ≤ s. Similarly, W ′ is the set of vertices w such that [w, i] ∈ W .
Note that the sets V ′ and W ′ are disjoint, |V | = |V ′|, and |W | = |W ′|. Moreover,
V ′ and W ′ do not contain any two vertices at distance two and no vertex of V ′ is
adjacent to a vertex of W ′. Since G has the t-neighborhood property, |V ′|+ |W ′| ≤ t.
Hence, |V | + |W | ≤ t. Because the choice of V and W was arbitrary, G[s] has the
t-neighborhood property.

Fix α, β ≥ 1 and s ≥ 2. Consider the labeling of Γα,β with the labels 0, 2, . . . , 2α+

2β − 2 constructed in Proposition 3.1. We now construct an L(2, 1)-labeling of Γ
[s]
α,β .

If v is a vertex of Γα,β that is labeled with γ, then a vertex [v, i], i = 1, . . . , s, of Γ
[s]
α,β

is labeled with γ + 2(i− 1)(α+ β). The obtained labeling is a proper L(2, 1)-labeling

of Γ
[s]
α,β . Hence, λ(Γ

[s]
α,β) ≤ 2s(α + β) − 2.

The following theorem readily follows from Lemmas 3.2 and 3.5.

Theorem 3.6. For every α, β, s ≥ 1, the graph Γ
[s]
α,β has the following properties:

• the order of Γ
[s]
α,β is (α + β)αβs;

• the graph Γ
[s]
α,β is connected;

• the graph Γ
[s]
α,β is ((α + β)s− 1)-regular; and

• its hole number ρ(Γ
[s]
α,β) is (α + β)s− 1.

Note that Theorem 3.6 yields a construction of connected r-regular graphs G of

order (r + 1)t for some (but not all) numbers t between r and � (r+1)2

4 �.

4. Conclusion. We conclude the paper with several problems in the spirit of
Conjecture 2. The first problem that comes to mind is the following.

Problem 1. Is it true that there exists a function f(r) with the following property:
If G is a connected r-regular graph of order (r + 1)t with ρ(G) = r, then t ≤ f(r)?
Does there exist a polynomial f(r) with this property?

Georges and Mauro [5] constructed connected r-regular graphs of order (r + 1)t
for every t = 1, . . . , r. We constructed such graphs for some numbers t larger than r,

but we were not able to construct such graphs for all t = 1, . . . , � (r+1)2

4 �. This leads
us to the following problem.

Problem 2. Assume that G is a connected r-regular graph of order (r + 1)t0
with ρ(G) = r. Is it true that for every t = 1, . . . , t0, there exists a connected r-regular

graph of order (r + 1)t with ρ(G) = r? In particular, is this true for t0 = � (r+1)2

4 �?
In the case of cubic graphs, we are aware of constructions of connected cubic

graphs G of orders 4, 8, 12, and 16 with ρ(G) = 3. We have a computer-assisted
proof that there is no such cubic graph of order 20. If the answer to Problem 2 were
positive, then the answer to the following problem would also be positive.

Problem 3. Is it true that there is no connected cubic graph G with ρ(G) = 3
whose order is at least 20?

REFERENCES

[1] G. J. Chang, W.-T. Ke, D. D.-F. Liu, and R. K. Yeh, On L(d, 1)-labellings of graphs,
Discrete Math., 3 (2000), pp. 57–66.

[2] G. J. Chang and D. Kuo, The L(2, 1)-labeling problem on graphs, SIAM J. Discrete Math., 9
(1996), pp. 309–316.

[3] P. C. Fishburn and F. S. Roberts, Full Color Theorems for L(2, 1)-Colorings, DIMACS
Technical Report 2000-08, 2000.

GRAPHS WITH NO OPTIMAL SURJECTIVE L(2, 1)-LABELINGS 543

[4] P. C. Fishburn and F. S. Roberts, No-hole L(2, 1)-colorings, Discrete Appl. Math., 130
(2003), pp. 513–519.

[5] J. P. Georges and D. W. Mauro, On the structure of graphs with non-surjective L(2, 1)-
labelings, SIAM J. Discrete Math., 19 (2005), pp. 208–223.

[6] J. P. Georges and D. W. Mauro, A note on collections of graphs with non-surjective lambda
labelings, Discrete Appl. Math., 146 (2005), pp. 92–98.

[7] D. Gonçalves, On the L(p, 1)-labelling of graphs, Discrete Math. Theoret. Comput. Sci., AE
(2005), pp. 81–86.

[8] J. R. Griggs and R. K. Yeh, Labeling graphs with a condition at distance 2, SIAM J. Discrete
Math., 5 (1992), pp. 586–595.

[9] W. K. Hale, Frequency assignment: Theory and applications, Proc. IEEE, 68 (1980), pp.
1497–1514.

[10] J.-H. Kang, L(2, 1)-labeling of 3-regular Hamiltonian graphs, SIAM J. Discrete Math., sub-
mitted.

[11] J.-H. Kang, L(2, 1)-Labelling of 3-Regular Hamiltonian Graphs, Ph.D. thesis, University of
Illinois, Urbana-Champaign, IL, 2004.

[12] D. Král’, Coloring powers of chordal graphs, SIAM J. Discrete Math., 18 (2004), pp. 451–461.
[13] D. Král’ and R. Škrekovski, A theorem about the channel assignment problem, SIAM J.

Discrete Math., 16 (2003), pp. 426–437.
[14] C. McDiarmid, On the span in channel assignment problems: Bounds, computing and count-

ing, Discrete Math., 266 (2003), pp. 387–397.
[15] D. Sakai, Labeling chordal graphs: Distance two condition, SIAM J. Discrete Math., 7 (1994),

pp. 133–140.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 545–563

ON PREEMPTIVE RESOURCE CONSTRAINED SCHEDULING:
POLYNOMIAL-TIME APPROXIMATION SCHEMES∗

KLAUS JANSEN† AND LORANT PORKOLAB‡

Abstract. We study resource constrained scheduling problems where the objective is to compute
feasible preemptive schedules minimizing the makespan and using no more resources than what are
available. We present approximation schemes along with some inapproximability results showing
how the approximability of the problem changes in terms of the number of resources. The results
are based on linear programming formulations (though with exponentially many variables) and some
interesting connections between resource constrained scheduling and (multidimensional, multiple-
choice, and cardinality constrained) variants of the classical knapsack problem. In order to prove
the results we generalize a method by Grigoriadis et al. for the max-min resource sharing problem
to the case with weak approximate block solvers (i.e., with only constant, logarithmic, or even worse
approximation ratios). Finally, we present applications of the above results in fractional graph
coloring and multiprocessor task scheduling.

Key words. scheduling, linear programming, approximation algorithms

AMS subject classifications. 68W25, 68W40, 90C05, 90C27

DOI. 10.1137/S0895480101396949

1. Introduction. In this paper we consider the general preemptive resource
constrained scheduling problem denoted by P |res . . . , pmtn|Cmax: There are given n
tasks T = {T1, . . . , Tn}, m identical machines, and s resources such that each task
Tj ∈ T is processed by one machine requiring pj units of time and rij units of resource
i, i = 1, . . . , s, from which only ci units are available at each time. One may assume
w.l.o.g. that rij ∈ [0, 1] and ci ≥ 1. The objective is to compute a preemptive schedule
of the tasks minimizing the maximum completion time Cmax. The three dots in the
notation indicate that there are no restrictions on the number of resources s, the
largest possible capacity o, and resource requirement r values, respectively. If any
of these is limited, the corresponding fixed limit replaces the corresponding dot in
the notation (e.g., if s ≤ 1, then P |res1.., pmtn|Cmax is used, or if rij ≤ r, then
P |res ..r, pmtn|Cmax is used).

Let A(I) denote the schedule length produced by algorithm A on I, and let
OPT (I) denote the minimum schedule length. We say that A is a ρ-approximation
algorithm for the scheduling problem (where ρ ≥ 1) if it generates in polynomial
time a schedule with length A(I) ≤ ρOPT (I) for any instance I. A polynomial-time
approximation scheme (PTAS) is a family of approximation algorithms {Aε|ε > 0}
such that Aε(I) ≤ (1 + ε)OPT (I). A fully polynomial-time approximation scheme
(FPTAS) is an approximation scheme {Aε|ε > 0} where each algorithm Aε runs in
time polynomial in the length of I and 1/ε. We will study different variants of the

∗Received by the editors October 25, 2001; accepted for publication (in revised form) November
18, 2005; published electronically June 30, 2006. This research was supported in part by EU-
Project APPOL, Approximation and Online Algorithms, IST-1999-14084 and IST-2001-30012, and
by EU-Project CRESCCO, Critical Resource Sharing for Cooperation in Complex Systems, IST-
2001-33135. An extended abstract of this paper appeared in Integer Programming and Combinatorial
Optimization, Lecture Notes in Comput. Sci. 2337, Springer-Verlag, Berlin, 2002, pp. 329–349.

http://www.siam.org/journals/sidma/20-3/39694.html
†Institut für Informatik und Praktische Mathematik, Universität zu Kiel, Kiel, Germany

(kj@informatik.uni-kiel.de).
‡Department of Computing, Imperial College, London, UK (lorant.porkolab@doc.ic.ac.uk).

545

546 KLAUS JANSEN AND LORANT PORKOLAB

problem and their applications in multiprocessor task scheduling and fractional graph
coloring.

1.1. Related results. Resource constrained scheduling is one of the classical
scheduling problems. Garey and Graham [20] proposed approximation algorithms for
the nonpreemptive variant P |res . . . |Cmax with approximation ratios s+1 (when the
number of machines is unbounded, m ≥ n) and min(m+1

2 , s+2− 2s+1
m) (when m ≥ 2).

Further results are known for some special cases: Garey et al. [21] proved that
when m ≥ n and each task Tj has unit-execution time, i.e., pj = 1, the problem
(denoted by P∞|res . . . , pj = 1|Cmax) can be solved by First Fit and First Fit De-
creasing heuristics providing asymptotic approximation ratio s + 7

10 and a ratio be-
tween s+((s− 1)/s(s+1)) and s+ 1

3 , respectively. Fernandez de la Vega and Lueker
[18] gave a linear-time algorithm with asymptotic approximation ratio s + ε for each
fixed ε > 0. Further results and improvements for nonpreemptive variant are given in
[3, 5, 10, 54, 55].

For the preemptive variant substantially fewer results are known: Blazewicz,
Lenstra, and Rinnooy Kan [6] proved that when m is fixed, the scheduling problem
Pm|res . . . , pmtn|Cmax (with identical machines) and even the variant Rm|res . . . ,
pmtn|Cmax (with unrelated machines) can be solved in polynomial time. Krause,
Shen, and Schwetman [38, 39] studied P |res1.., pmtn|Cmax, i.e., where there is only
one resource (s = 1) and proved that both First Fit and First Fit Decreasing heuristics
can guarantee a 3 − 3/n asymptotic approximation ratio.

A related problem is multiprocessor task scheduling, where a set T of n tasks has
to be executed by m processors such that each processor can execute at most one task
at a time and each task must be processed by several processors in parallel. In the
parallel (nonmalleable) model P |sizej |Cmax, there is a value sizej ∈ M = {1, . . . ,m}
given for each task Tj indicating that Tj can be processed on any subset of processors of
cardinality sizej [1, 2, 4, 13, 14, 29, 35, 50, 56]. In the malleable variant P |fctn|Cmax,
each task can be executed on an arbitrary subset of processors, and the execution time
pj(�) depends on the number � of processors assigned to it [41, 45, 57]. Regarding the
complexity, it is known [13, 14] that the preemptive variant P |sizej , pmtn|Cmax is
NP-hard. In [30], focusing on computing optimal solutions, we presented an algorithm
for solving the problem P |sizej , pmtn|Cmax and showed that this algorithm runs in
O(n) + poly(m) time, where poly(.) is a univariate polynomial. Furthermore, we
extended this algorithm also to malleable tasks with running time polynomial in m
and n. These results are based on methods by Grötschel, Lovász, and Schrijver [26]
and use the ellipsoid method.

Another related problem is fractional graph coloring; see, e.g., [15, 17, 25, 36,
42, 44, 46, 51, 52]. Grötschel, Lovász, and Schrijver [25] proved that the weighted
fractional coloring problem is NP-hard for general graphs but can be solved in poly-
nomial time for perfect graphs. They have proved the following interesting result:
For any graph class G, if the problem of computing α(G,w) (the weight of the largest
weighted independent set in G) for graphs G ∈ G is NP-hard, then the problem of de-
termining the weighted fractional chromatic number χf (G,w) is also NP-hard. This
gives a negative result of the weighted fractional coloring problem even for planar cu-
bic graphs. Furthermore, if the weighted independent set problem for graphs in G is
polynomial-time solvable, then the weighted fractional coloring problem for G can also
be solved in polynomial time. The first inapproximability result for the unweighted
version of the problem (i.e., where wv = 1 for each vertex v ∈ V) was obtained by
Lund and Yannakakis [42] who proved that there exists a δ > 0 such that there is no

PREEMPTIVE RESOURCE CONSTRAINED SCHEDULING 547

polynomial-time approximation algorithm for the problem with approximation ratio
nδ, unless P = NP. Feige and Kilian [17] showed that the fractional chromatic number
χf (G) cannot be approximated within Ω(|V |1−ε) for any ε > 0, unless ZPP = NP.
Recently, the authors [31] proved that fractional coloring is NP-hard even for graphs
with χf (G) = 3 and constant degree 4. Similarly, as was shown by Gerke and McDi-
armid [22], the problem remains NP-hard even for triangle-free graphs. Regarding the
approximability of the fractional chromatic number, Matsui [44] gave a polynomial-
time 2-approximation algorithm for unit disk graphs.

1.2. New results. The results presented in this paper are based on linear pro-
gramming formulations. They are typically of the following form:

min
∑

h∈H xh

s.t.
∑

h∈H:a∈h xh ≥ wa ∀a ∈ A,
xh ≥ 0 ∀h ∈ H,

(1.1)

where A is a finite set (usually the set of all tasks), and H ⊆ 2A is a set consisting of
subsets of A satisfying some combinatorial property (usually each contains tasks that
can be scheduled together at the same time). These linear programs will, in general,
have exponentially many variables but special underlying structures allowing efficient
approximations. A linear program of form (1.1) can be solved (approximately) by
using binary search on its optimum and computing at each stage an approximate
solution of a special max-min resource sharing problem of the following type:

λ∗ = max λ
s.t. fi(x1, . . . , xN) ≥ λ, i = 1, . . . ,M,

(x1, . . . , xN) ∈ P,
(1.2)

where fi : P → R
+, i = 1, . . . ,M , are, in general, nonnegative concave functions

defined on a nonempty convex set P ⊆ R
N . Furthermore, approximate solutions for

problem (1.2) can be computed by an iterative procedure that requires in each itera-

tion for a given M -vector (p1, . . . , pM) the approximate maximization of
∑M

i=1 pifi(x)
over all x = (x1, . . . , xN) ∈ P . Interestingly, these subproblems for different variants
of resource constrained scheduling turn out to be knapsack-type problems (multiple-
choice, multidimensional, and cardinality constrained knapsack) with efficient approx-
imation algorithms. For fractional graph coloring the subproblem is the well-known
maximum weighted independent set problem.

In section 2 we describe the methodology used for solving the max-min resource
sharing problem. Let f(x) = (f1(x), . . . , fM (x)) and Λ(p) = maxx∈P pT f(x). Based
on the paper of Grigoriadis et al. [24], we derive the following result extending some
of the previous works on computing approximate solutions for fractional covering
problems [24, 47, 58]: If there exists a polynomial-time approximation algorithm with
approximation ratio c for the subproblem, i.e., for finding a vector x̂(p) ∈ P such that
pT f(x̂) ≥ 1

cΛ(p), then there is also a polynomial-time approximation algorithm for the
max-min resource sharing problem that computes a feasible solution with objective
function value 1−ε

c λ∗. Interestingly, the number of iterations (hence also the number
of calls to the solver for the subproblem) is bounded by O(M(lnM + ln cε−3 + ε−2)),
independently of the width [47] of P and the number of variables. If, in particular,
there is an (F)PTAS for the subproblem, one also gets an (F)PTAS for the original
problem and the number of iterations is at most O(M(lnM + ε−2)) [24]. This fact
can be particularly useful for models with exponentially many variables.

548 KLAUS JANSEN AND LORANT PORKOLAB

In section 3 we describe a linear programming approach for the preemptive re-
source constrained scheduling problem, where there are no assumptions on s or m ≥ n;
they are arbitrary numbers and parts of the input. We show by using the linear pro-
gramming formulation that there is an approximation algorithm for our scheduling

problem with approximation ratio O(s
1

cmin), where the minimum resource capacity
cmin = mini ci ≥ 1. Furthermore, we argue that if for each resource i, capacity
ci ≥ 12

ε2 log(2s), then there is a polynomial-time (1 + ε)-approximation algorithm.
Then with the aim of obtaining stronger approximation results we study restricted

variants, where s is fixed. In particular, we show that for any constant s ≥ 2, there
exists a PTAS computing an ε-approximate preemptive schedule satisfying the s re-
source constraints. In fact this is the best one can expect regarding approximation,
since as we show it, this variant even with s = 2 cannot have an FPTAS unless
P = NP. However, if we assume that s = 1 (i.e., the number of resources is pushed to
its lower extreme), the problem possesses an FPTAS. Next, we apply our approach to
the case where there is only a limited number of processors. We give an FPTAS for the
variant of the problem with one resource improving the previously known best (3− 1

n)-
approximation algorithm by Krause, Shen, and Schwetman [38]. The method can be
used to obtain a PTAS for a more general variant with a fixed number of resources,
where the input also contains release and delivery times for each task. In section 5
we study the preemptive multiprocessor task scheduling problem P |sizej , pmtn|Cmax

and its generalization P |fctnj , pmtn|Cmax to malleable tasks. We show the existence
of FPTASs for both problems.

Finally, we apply our linear programming based approach, initially introduced
for preemptive resource constrained scheduling, to the problem of computing the
fractional weighted chromatic number. We prove an approximation analogue of the
above-mentioned classical result of Grötschel, Lovász, and Schrijver [25] on the equiv-
alence between polynomial-time (exact) computations of α(G,w) and χf (G,w): If for
a graph class G there exists a polynomial-time 1

c -approximation algorithm for com-
puting α(G,w), then there is also a polynomial-time c(1+ε)-approximation algorithm
for computing χf (G,w) for graphs in G. By applying this general result for intersec-
tion graphs of disks in the plane, we also obtain a PTAS for the fractional coloring
problem providing a substantial improvement on Matsui’s result [44].

2. Approximate max-min resource sharing. In this section we will follow
the presentation of [24] and use the notation introduced there. Let f : B → R

M
+ be a

vector with M nonnegative, continuous, concave functions fm, block B a nonempty,
convex, compact set, and eT = (1, . . . , 1) ∈ R

M
+ . Consider the optimization problem

(P) λ∗ = max { λ : f(x) ≥ λe, x ∈ B },

and assume w.l.o.g. that λ∗ > 0. Let λ(f) = min1≤m≤M fm for any given function f .
Here we are interested in computing a (c, ε)-approximate solution for (P); i.e., for an
approximation guarantee c = c(M) > 1 and an additional error tolerance ε ∈ (0, 1)
we want to solve the following problem:

(Pc,ε) compute x ∈ B such that f(x) ≥
[
1

c
(1 − ε)λ∗

]
e.

In order to solve this resource sharing problem we study the subproblem

Λ(p) = max { pT f(x) : x ∈ B }

PREEMPTIVE RESOURCE CONSTRAINED SCHEDULING 549

for p ∈ P = {p ∈ R
M :

∑M
i=1 pi = 1, pi ≥ 0}. Here we use an approximate block

solver (ABS) that solves the following subproblem:

ABS(p, c) compute x̂ = x(p) ∈ B such that pT f(x̂) ≥ 1

c
Λ(p).

By duality we have λ∗ = maxx∈B minp∈P pT f(x) = minp∈P maxx∈B pT f(x). This
implies that λ∗ = min{Λ(p) : p ∈ P}. Based on this equality, one can naturally
define the problem of finding a (c, ε)-approximate dual solution:

(Dc,ε) compute p ∈ P such that Λ(p) ≤ c(1 + ε)λ∗.

Then the following result holds.
Theorem 2.1. If there exists a polynomial-time block solver ABS(p, c) for some

c ≥ 1 and any p ∈ P , then there is an approximation algorithm for the resource
sharing problem that computes a solution whose objective function value is at least
1
c (1 − ε)λ∗.

The running time of the approximation algorithm depends only on c, M , and 1
ε .

In particular, if there is an (F)PTAS for the block problem computing an x̂ ∈ B such
that pT f(x̂) ≥ (1 − ε)Λ(p) for any constant ε > 0, then there is an (F)PTAS for the
resource sharing problem [24].

The algorithm uses the logarithmic potential function

Φt(θ, f) = ln θ +
t

M

M∑
m=1

ln(fm − θ),

where θ ∈ R, f = (f1, . . . , fM) are variables associated with the coupling constraints
fm ≥ λ, 1 ≤ m ≤ M and t > 0 is a tolerance (that depends on ε). For θ ∈ (0, λ(f)),
the function Φt is well defined. The maximizer θ(f) of function Φt(θ, f) is given by
the first order optimality condition

tθ

M

M∑
m=1

1

fm − θ
= 1.(2.1)

This has a unique root since g(θ) = tθ
M

∑M
m=1

1
fm−θ is a strictly increasing function of

θ. The logarithmic dual vector p = p(f) for a fixed f is defined by

pm(f) =
t

M

θ(f)

fm − θ(f)
.(2.2)

By (2.1), we have p(f) ∈ P . We will also use the following properties [24].
Proposition 2.2.

(a) p(f)T f = (1 + t)θ(f).

(b) λ(f)
1+t ≤ θ(f) ≤ λ(f)

1+t/M .

Now define parameter v = v(x, x̂) by

v(x, x̂) =
pT f̂ − pT f

pT f̂ + pT f
,(2.3)

where p ∈ P , f = f(x), f̂ = f(x̂), and x̂ ∈ B is an approximate block solution
produced by ABS(p, c). The following lemma provides a generalization of a useful
result in [24].

550 KLAUS JANSEN AND LORANT PORKOLAB

Lemma 2.3. Suppose ε ∈ (0, 1) and t = ε/5. For a given x ∈ B, let p ∈ P be
computed from (2.2) and x̂ be computed by ABS(p, c). If v(x, x̂) ≤ t, then the pair
(x, p) solves (Pc,ε) and (Dc,ε), respectively.

Proof. First rewrite condition v ≤ t by using (2.3): pT f̂(1−t) ≤ pT f(1+t). Then

use that pT f̂ ≥ 1
cΛ(p), pT f = (1 + t)θ, and θ(f) < λ(f) by Proposition 2.2. This

gives

Λ(p) ≤ cpT f̂ ≤ c
(1 + t)

(1 − t)
pT f = c

(1 + t)2

(1 − t)
θ(f) < c

(1 + t)2

(1 − t)
λ(f) ≤ c(1 + ε)λ(f).

Using λ∗ ≤ Λ(p) ≤ c(1 + ε)λ(f), one has λ(f) ≥ 1
c

1
1+ελ

∗ > 1
c (1 − ε)λ∗ for any ε > 0,

which gives (Pc,ε). Using λ(f) ≤ λ∗, one gets Λ(p) ≤ c(1+ ε)λ(f) ≤ c(1+ ε)λ∗, which
is (Dc,ε).

The main algorithm works as follows.
Algorithm. Improve(f,B, ε, x).

(1) set t := ε/5; v := t + 1;
(2) while v > t do

(2.1) compute θ(f) and p ∈ P ;
(2.2) set x̂ := ABS(p, c);
(2.3) compute v(x, x̂);
(2.4) if v > t then set x = (1 − τ)x + τ x̂, where τ ∈ (0, 1) is an appropriate

step length
end

(3) return(x, p).

The step length can be defined by τ = tθv
2M(pT f̂+pT f)

. Notice that θ < pT f̂ + pT f

(by Proposition 2.2), and therefore τ ∈ (0, 1). Furthermore, v > t > 0 implies that

τ > 0. For the initial solution, let x0 = 1
M

∑M
m=1 x̂

(m), where x̂(m) is the solution
given by ABS(em, c) obtained for unit vector em with all zero coordinates except for
its mth component which is 1. The next lemma provides a bound on f(x0).

Lemma 2.4. For each p ∈ P , λ∗ ≤ Λ(p) ≤ cMpT f(x0). Furthermore, fm(x0) ≥
1
M

1
cλ

∗ for each m = 1, . . . ,M .
Proof. The first inequality follows from duality. For the second inequality,

Λ(p) = max{pT f(x) : x ∈ B} = max

{
M∑

m=1

pmfm(x) : x ∈ B

}

≤
M∑

m=1

pm max{fm(x) : x ∈ B},

where max{fm(x) : x ∈ B} = Λ(em). Since x̂(m) is the solution computed by
ABS(em, c), fm(x̂(m)) ≥ 1

cΛ(em) implying that Λ(em) ≤ cfm(x(m)). Therefore,

Λ(p) ≤ c
∑M

m=1 pmfm(x̂(m)). Using the concavity of fm we get

fm(x̂(m)) ≤
M∑
�=1

fm(x̂(�)) ≤ Mfm

(
1/M

M∑
�=1

x̂(�)

)
= Mfm(x0).

Combining the two inequalities, we obtain

Λ(p) ≤ c

M∑
m=1

pmfm(x̂(m)) ≤ cM

M∑
m=1

pmfm(x0) = cMpT f(x0).

PREEMPTIVE RESOURCE CONSTRAINED SCHEDULING 551

Finally, fm(x0) ≥ 1
M fm(x̂(m)) ≥ 1

M
1
cΛ(em) ≥ 1

M
1
cλ

∗.
Let φt(f) = Φt(θ(f), f), which is called the reduced potential function. The

following two lemmas proved in [24] are used here to bound the number of iterations.
Lemma 2.5. For any two consecutive iterates x and x′ of Algorithm Improve, it

holds that φt(f
′) − φt(f) ≥ tv2/4M .

Lemma 2.6. For any two points x′ ∈ B and x ∈ B with λ(f) > 0, φt(f
′) −

φt(f) ≤ (1 + t) ln Λ(p)
pT f

, where p is the vector defined by (2.2).

Theorem 2.7. Algorithm Improve solves (Pc,ε) and (Dc,ε) in O(M lnM
ε + M

ε2 +
M ln c

ε3) iterations.
Proof. Let N0 be the number of iterations to reach an iterate x1 with correspond-

ing error v ≤ 1/2 starting from our initial solution x0. For all iterations with v ≥ 1/2,
each iteration increases the potential by at least tv2/4M ≥ t/16M (see Lemma 2.5).

By Lemma 2.6, the total increase is bounded by φt(f
1) − φt(f

0) ≤ (1 + t) ln Λ(p0)
p0T f0 .

Since t = ε/5 and Λ(p0) ≤ cMp0T f0 (by Lemma 2.4), we obtain that

N0 ≤ (1 + ε/5)16M ln(cM)

ε/5
= O

(
M ln(cM)

ε

)
.

Now suppose that the error v� ≤ 1/2� for iterate x� ∈ B, and let N� be the number

of iterations to halve this error. We get φt(f
�+1) − φt(f

�) ≥ N�tv
2
�+1

4M =
N�tv

2
�

16M . On

the other hand, the definition of v� implies p�T f̂ �(1 − v�) = p�T f �(1 + v�). Using

ABS(p�, c), we get a solution x̂� with p�T f̂ � ≥ 1
cΛ(p�). Combining the two inequalities,

Λ(p�)

p�T f �
≤ c(1 + v�)

(1 − v�)
≤ c(1 + 4v�).

The last inequality holds since v� ≤ 1/2. Since d ≥ 0, Lemma 2.6 implies that

φt(f
�+1) − φt(f

�) ≤ (1 + t)(ln c + ln(1 + 4v�)) ≤ (1 + t)(ln c + 4v�).

This gives now an upper bound

N� ≤ 16M(1 + t)(ln c + 4v�)

tv2
�

= O

(
M(ln c + v�)

εv2
�

)
.

One gets the total number of iterations by summing N� over all � = 0, 1, . . . , 	ln(1
t)
.

Therefore, the total number of iterations is bounded by

N0+O

⎛
⎝M ln c

ε

�ln(1
t)�∑

�=1

22� +
M

ε

�ln(1
t)�∑

�=1

2�

⎞
⎠ ≤ O

(
M ln(cM)

ε
+

M ln c

ε3
+

M

ε2

)
.

The total number of iterations can be improved by the scaling method used in
[47, 24]. The idea is to reduce the parameter t step by step to the desired accuracy. In
the sth scaling phase we set εs = εs−1/2 and ts = εs/5 and use the current approximate
point xs−1 as its initial solution. For phase s = 0, we use the initial point x0 ∈ B.
For this point we have pT f(x0) ≥ 1

cM Λ(p). We set ε0 = (1−1/M). Using Lemma 2.3,
fm(x0) ≥ 1

M
1
cλ

∗. This implies fm(x0) ≥ 1
cM λ∗ = 1

c (1 − 1 + 1
M)λ∗ = 1

c (1 − ε0)λ
∗ for

each m = 1, . . . ,M .

552 KLAUS JANSEN AND LORANT PORKOLAB

Theorem 2.8. For any accuracy ε > 0, the error scaling implementation com-
putes solutions x and p of (Pc,ε) and (Dc,ε), respectively, in

N = O(M lnM + M ln c/ε3 + M/ε2)

iterations.
Proof. To reach the first ε0 ∈ (1/2, 1) in the primal and dual problem we need

O(M(ln c+lnM)) iterations (by Theorem 2.7). Let Ns be the number of iterations in
phase s to reach εs for s ≥ 1. By Lemma 2.5, each iteration of phase s increases the
potential function by at least t3s/4M = θ(ε3s/M). Lemma 2.6 implies that for x = xs

and x′ = xs+1,

φts(f
s+1) − φts(f

s) ≤ (1 + ts) ln
Λ(ps)

psT fs
.

Note that xs is an εs−1 = 2εs solution of (Pc,εs−1), and therefore f(xs) ≥ (1−2εs)
1
cλ

∗e.

Furthermore, since Λ(ps) ≤ c(1 + 2εs)λ
∗, Λ(ps) ≤ c2 1+2εs

1−2εs
λ(fs) ≤ c2 1+2εs

1−2εs
psT fs,

implying that Λ(ps)
psT fs ≤ c2(1 + 8εs). Then one can bound Ns by O(M(ln c + εs)/ε

3
s),

and as before, the overall number of iterations is bounded by

N0 +
∑
s≥1

Ns ≤ O(M(ln c + lnM)) + O

(
M ln c

ε3

)
+ O

(
M

ε2

)

= O

(
M lnM +

M ln c

ε3
+

M

ε2

)
.

Remark. The root θ(f) can often be computed only approximately, but an ac-
curacy of O(ε2/M) for θ(f) is sufficient such that the iteration bounds remain valid.

With this required accuracy, the number of evaluations of the sum
∑M

m=1
1

fm−θ is

bounded by O(ln(M/ε)). This gives O(M(lnM/ε)) arithmetic operations to deter-
mine θ(f) approximately. The overhead can be further improved by using Newton’s
method to O(M(ln ln(M/ε))) [23, 24].

3. General linear programming approach. In this section we study the pre-
emptive resource constrained scheduling problem. First we consider the case with an
unlimited number of machines m ≥ n. In fact, if m ≤ n, the machines can be handled
as the (s+ 1)st resource with requirement rs+1,j = 1 and capacity cs+1 = m. For our
scheduling problem, a configuration is a compatible (or feasible) subset of tasks that
can be scheduled simultaneously. Let F be the set of all configurations, and for every
f ∈ F , let xf denote the length (in time) of configuration f in the schedule. Clearly,
f ∈ F iff

∑
j∈f rij ≤ ci for i = 1, . . . , s.

By using these variables, the problem of finding a preemptive schedule of the tasks
with smallest makespan value (subject to the resource constraints) can be formulated
as the following linear program [30]:

min
∑

f∈F xf

s.t.
∑

f∈F :j∈f xf ≥ pj , j = 1, . . . , n,

xf ≥ 0 ∀f ∈ F.

(3.1)

One can solve (3.1) by using binary search on the optimum value and testing at each
stage the feasibility of the following linear system for a given r ∈ [pmax, npmax]:∑

f∈F :j∈f

xf ≥ pj , j = 1, . . . , n, (xf)f∈F ∈ P,

PREEMPTIVE RESOURCE CONSTRAINED SCHEDULING 553

where

P =

⎧⎨
⎩ (xf)f∈F :

∑
f∈F

xf = r, xf ≥ 0, f ∈ F

⎫⎬
⎭ .

This can be done approximately (hence leading to an approximate decision procedure)
by computing an approximate solution for the following max-min resource sharing
problem:

λ∗ = max

⎧⎨
⎩ λ :

∑
f∈F :j∈f

1

pj
· xf ≥ λ, j = 1, . . . , n, (xf)f∈F ∈ P

⎫⎬
⎭ .(3.2)

The latter problem can also be viewed as a fractional covering problem with
one block P , and n coupling constraints. Let the coupling (covering) constraints be
represented by Ax ≥ λe. By using the approach presented in section 2, problem (3.2)
can be solved approximately in O(n(δ−2 + δ−3 ln c + lnn)) iterations (coordination
steps), each requiring for a given n-vector y = (y1, . . . , yn) a 1

c -approximate solution
of the problem

Λ(y) = max { yTAx : x ∈ P }.(3.3)

Since P in (3.3) is just a simplex, the optimum of this linear program is also
attained at a vertex x̃ of P corresponding to a (single) configuration f̃ . A similar
argument was used for the bin packing problem by Plotkin, Shmoys, and Tardos [47].
At this vertex x̃f̃ = r and x̃f = 0 for f �= f̃ . Therefore, it suffices to find a subset f̃
of tasks that can be executed in parallel and has the largest associated profit value
cf̃ in the profit vector cT = yTA. But for given multipliers y1, . . . , yn, this problem
can also be formulated as

max

⎧⎨
⎩
∑
j∈f

yj
pj

: f ∈ F

⎫⎬
⎭ ,

or, equivalently, as a general s-dimensional knapsack problem (sD-KP) or packing
integer program (PIP),

max
∑n

j=1
yj

pj
xj

s.t.
∑n

j=1 rijxj ≤ ci, i = 1, . . . , s,

xj ∈ {0, 1}, j = 1, . . . , n.

(3.4)

Let K(n, s, c) denote the time required (in the worst case) to compute a 1
c -approximate

solution for (3.4). At each iteration, in addition to solving (3.4) (approximately), we
also need to compute the new y vector based on Ax for the current x. Though the
dimension of x is exponential, the computation requires only updating the previous Ax
value, since the current x is (1 − τ)x + τ x̂ (for an appropriate step length τ ∈ (0, 1]),
where x̂ is the vertex of P corresponding to the solution of (3.4) at the current
iteration. Thus the number of nonzero components of x can increase by at most one
at each iteration, and each update of Ax takes O(n) operations.

Initially, x0 has at most n nonzero components obtained from solving n subprob-
lems (one for each n-dimensional unit vector as y) requiring O(nK(n, s, c)) time, and

554 KLAUS JANSEN AND LORANT PORKOLAB

computing the initial y0 in O(n2) time. Approximating the root and determining the
next price vector p can be done in O(n ln ln n

δ) = O(n2) time (for, e.g., δ ≥ 1/n).
Later each update of Axk can be done in O(n) time. For any fixed r, the algorithm
requires O(n(δ−2 + δ−3 ln c + lnn)(K(n, s, c) + n ln ln(nδ−1))) time.

By binary search on r one can obtain a solution (xf)f∈F with
∑

f∈F xf =

(1 + ε/4)r∗ and
∑

f∈F :j∈f xf ≥ 1
c (1 − δ)pj , where r∗ is the length of an opti-

mal schedule. Now one can define x̃f = xfc(1 + 4δ) and obtain
∑

f∈F :j∈f x̃f ≥
(1 − δ)(1 + 4δ)pj = (1 + 3δ − 4δ2)pj ≥ pj for δ ≤ 3/4. In this case the length of the
generated schedule is at most cr∗(1+4δ)(1+ε/4) = cr∗(1+4δ+ε/4+δε) ≤ cr∗(1+ε)
by choosing ε ≤ 1 and δ ≤ 3ε/20. Since the optimum of (3.1) lies within in-
terval [pmax, npmax], the overall complexity of the algorithm can be bounded by
O(n ln n

ε (ε−2 + ε−3 ln c + lnn)(K(n, s, c) + n ln ln(nε−1))) time. For K(n, s, c) ≥
O(n ln ln n

ε) we obtain O(n ln(nε−1)(ε−2 + ε−3 ln c + lnn)K(n, s, c)) time.
The number of iterations can be improved by computing an approximate non-

preemptive schedule with a greedy algorithm. The main idea is to use a modified
list scheduling algorithm. The classical list scheduling algorithm is defined as follows.
First consider the tasks in any fixed order L = (Ti1 , . . . , Tin). At any time if there
are positive quantities available from all resources, the algorithm scans L from the
beginning and selects the first task Tk (if there is any) which may validly be executed
and which has not been already (or is not currently) executed. If a task is finished, it
will be removed from the list. Garey and Graham [20] showed that this list scheduling
algorithm for nonpreemptive tasks gives an (s + 1)-approximation ratio (comparing
the length of the produced schedule and the optimum nonpreemptive schedule). To
compare this with the optimal preemptive makespan C∗

max, we allow overpacking of
the resources with one task at each time. Let Cmax(H) be the length of this (infeasible)
pseudoschedule and consider a task Tk that is finished at time Cmax(H). Then for
each time t ∈ [0, Cmax(H)− pk) at least one resource is completely used by the tasks.
Let l(i) be the total length of intervals where resource i is overpacked. Clearly, we
have l(i) ≤ C∗

max and pk ≤ pmax ≤ C∗
max. The length of the pseudoschedule is at

most
∑s

i=1 l(i) + pk ≤ (s + 1)C∗
max. By replacing the overpacked tasks at the end

we obtain a feasible schedule of length C
(MLS)
max ≤ (2s + 1)C∗

max. This implies that

C∗
max ≤ C

(MLS)
max ≤ (2s + 1)C∗

max, i.e., 1/(2s + 1)C
(MLS)
max ≤ C∗

max ≤ C
(MLS)
max . Hence

the binary search for the optimum of (3.1) requires only O(ln s
ε) steps (instead of

O(ln n
ε)) improving the previous running time to

O
(
n
(
K(n, s, c) + n ln ln

n

ε

)
min(ln(sε−1), ln(nε−1))(ε−2 + ε−3 ln c + lnn)

)
.

If the block problem possesses an approximation scheme, then the factor ε−3 ln c can
be removed. As main result we obtain the following theorem.

Theorem 3.1. Let I be a set of instances of the preemptive resource constrained
scheduling problem. If there is a polynomial-time approximation algorithm for the
corresponding s-dimensional knapsack instance with ratio c, then for any ε > 0 there is
a polynomial-time algorithm for preemptive resource constrained scheduling restricted
to I with approximation ratio c(1 + ε).

The number of configurations in the final solution can be reduced from O(n(ε−2+
ε−3 ln c + lnn)) to O(n) within O(n(ε−2 + ε−3 ln c + lnn)M(n)) time, where M(n)
is the time to invert an (n × n) matrix. The main idea is to consider iteratively
systems of equalities with n+1 variables and n equalities and to eliminate one variable
in each iteration. The maximum number of tasks per configuration is bounded by

PREEMPTIVE RESOURCE CONSTRAINED SCHEDULING 555

t = min(n,mins
i=1

ci
minjrij

). Therefore, the number of preemptions can be bounded

by O(nt).

4. Approximability as a function of the number of resources. As we
have seen in the previous section, the sD-KP is a key subproblem in our approach
whose solution (for various inputs) is required repeatedly. It is well known that
the approximability of this problem varies with the dimension s. Therefore in this
section we will specialize the above general result by making different assumptions
on s and using different approximation algorithms for the sD-KP. In particular, we
will obtain a sequence of approximation results for our scheduling problem where the
approximation will improve (constant, PTAS, and then FPTAS) as we move from
an arbitrary to a fixed number of resources and eventually to the case with a single
resource. To contrast these approximation algorithms, we will also present some
inapproximability results for the first two variants.

4.1. Arbitrary number of resources. In this section we consider the case
when s is arbitrary, i.e., when it is part of the input. First we give the presentation
of our approximation algorithms, and then we briefly discuss some simple inapprox-
imability results.

4.1.1. Approximation algorithms. It is known [48, 53] that for general s, the
sD-KP or, equivalently, the PIP has an Ω(1/s1/cmin) approximation algorithm when
all rij ∈ [0, 1], cmin = mini ci ≥ 1, and

yj

pj
≥ 0. This implies the following result.

Theorem 4.1. For any number s of resources, there is a polynomial-time ap-

proximation algorithm with performance ratio O(s
1

cmin) for the preemptive resource
constrained scheduling problem.

This result can be further improved by using the algorithm by Srinivasan [53].
Furthermore, Srivastav and Stangier [54, 55] showed that if cmin ≥ 16

ε2 log(2s) and
OPT ≥ 12/ε2 (where OPT is the optimum value of the linear relaxation of (3.4)), an
ε-approximate solution for the sD-KP can be computed in polynomial time. The run-
ning time of the algorithm is bounded by O(Kr(n, s, 1)+sn2 ln(sn)), where Kr(n, s, 1)
is the time required to solve (exactly) the linear programming relaxation of (3.4).
Combining these with our approach presented in the previous section and extending
the algorithm to arbitrary OPT , we obtain the following.

Theorem 4.2. For any ε > 0 and any number s of resources, if ci ≥ 12
ε2 log(2s)

and rij ∈ [0, 1] for each i and j, there is a polynomial-time approximation algorithm
that computes a (1 + ε)-approximate solution for the preemptive resource constrained
scheduling problem.

The last two results can also be generalized to P |res . . . , pmtn|Cmax with a limited
number of machines, i.e., when m ≤ n. Note that Theorems 4.1 and 4.2 hold only
under some special conditions on resource capacities and requirements. Therefore
it is natural to ask whether they can be eliminated at least when s is fixed. After
presenting some inapproximability results, we will show in section 4.2 that if s is
fixed, though the problem remains NP-hard, approximating its optimum becomes
much easier. In particular we prove that for any fixed s the general problem has a
PTAS.

4.1.2. Inapproximability. For any graph G = (V,E) one can construct a re-
source constrained scheduling problem with n = |V | tasks and s = |E| resources
[6, 49], where vertices correspond to tasks and edges to resources in the following
way: The resource capacities are all 1, i.e., ce = 1 for each e ∈ E, while the resource

556 KLAUS JANSEN AND LORANT PORKOLAB

requirement rev = 1, if v ∈ e, and 0 otherwise. Independent sets of vertices corre-
spond to sets of tasks that can be executed together at the same time; therefore the
(fractional) coloring problem for graphs can be viewed as a special case of (preemp-
tive) resource constrained scheduling. Hence the inapproximability results in [42, 17]
imply the following.

Theorem 4.3. For any δ > 0, the preemptive resource constrained scheduling
problem with n tasks and s resources has no polynomial-time approximation algorithm
with approximation ratio n1−δ, neither for some δ > 0, unless P = NP , nor for any
δ > 0, unless ZPP = NP .

Note that this negative result holds even for the restricted case when each pro-
cessing time is of unit length, and all capacities and resource requirements are either
0 or 1. This shows that for arbitrary s not only is the problem hard, but even ap-
proximating its optimum is difficult. Using that s ≤ n2 in the special case above we
get the following corollary.

Corollary 4.4. The preemptive resource constrained scheduling problem with n
tasks and s resources has no polynomial-time approximation algorithm with approx-
imation ratio s1/2−δ, neither for some δ > 0, unless P = NP , nor for any δ > 0,
unless ZPP = NP .

4.2. Fixed number of resources—PTAS. In this section we study how the
approximability of the problem changes under a restricting assumption on the number
of resources. We consider here the case when s ≥ 1 is a fixed constant larger than
one. As we argue below, this restriction allows us to prove a substantially better
approximation result than the one above. Namely, we will show that under the
discussed assumption, the problem possesses a PTAS, and then we will also prove
that, in fact, this is the best one can expect (unless P = NP).

4.2.1. Approximation algorithms. It is known [43, 19] that for any fixed
s, the sD-KP has a PTAS. Let K(n, s, δ) denote the time required (in the worst
case) to compute a δ-approximate solution for the sD-KP. Using that s is con-
stant, the running time of our scheduling algorithm is bounded by O((K(n, s, c) +
n ln ln(nε−1))n ln(ε−1)(ε−2+lnn)). The currently known best bound for K(n, s,Θ(ε))
is O(n
 s

ε �−s) = nO(s
ε) [7]. By using this bound and the above argument, we obtain

the following result.
Theorem 4.5. For any fixed number s of resources, there is a PTAS for the

preemptive resource constrained scheduling problem with running time nO(s
ε).

Notice that for fixed s, there is also an O(n) time (s+1)-approximation algorithm
for the sD-KP [7], which implies the following.

Corollary 4.6. There is an (s+1)(1+ ε)-approximation algorithm for the pre-
emptive resource constrained scheduling problem with running time O((n2 ln ln(nε−1))·
ln(ε−1)(ε−2 + lnn)).

4.2.2. Inapproximability. The running time of the previously described al-
gorithm depends exponentially on the accuracy, and as the next result shows this
dependence cannot be improved to polynomial unless P = NP.

Theorem 4.7. For any s ≥ 2, there is no FPTAS for the preemptive resource
constrained scheduling problem with s resources unless P = NP .

Proof. We use a reduction from the NP-complete partition problem: Given a set
A and a size s(a) ∈ N for each a ∈ A, where n = |A| is assumed to be even, decide
whether there is a subset I of A such that |I| = n/2 and

∑
a∈I s(a) = 1

2

∑
a∈A s(a).

W.l.o.g. we may assume that s(a′) ≤ 1
2

∑
a∈A s(a) for any a′ ∈ A. Let smax =

PREEMPTIVE RESOURCE CONSTRAINED SCHEDULING 557

maxa∈As(a). Now construct n tasks and two resources with capacities 1
2

∑
a∈A s(a)

and 1
2

∑
a∈A(smax − s(a)), where each task a ∈ A requires (s(a), smax − s(a)) of

the two resources and has processing time pa = 1. If there is a solution I of the
partition problem, then |I| = n/2,

∑
a∈I s(a) = 1

2

∑
a∈A s(a), and

∑
a∈I(smax −

s(a)) = 1
2

∑
a∈A(smax − s(a)). This means that set I can be executed in parallel on

both resources. Furthermore, the set A \ I is also a solution for the partition problem
and can be executed also parallel on both resources. Therefore, one can schedule all
tasks in two phases in a nonpreemptive way: in one phase all tasks are in I (of length
1), and in the other phase all tasks are in A\I (also of length 1). This gives a schedule
with makespan Cmax = 2 and the minimum makespan is C∗

max = 2 (by using an
argument based on the required minimum area for all tasks). If there is no solution of
the partition problem, then we can still split the set in three parts I1, . . . , I3 according
to resource 1 such that

∑
a∈Ij

s(a) ≤ 1
2

∑
a∈A s(a). Now only one of these parts can

have
∑

a∈Ij
(smax − s(a)) > 1

2

∑
a∈A(smax − s(a)). By splitting this set (according

to resource 2) into three parts, we obtain a feasible nonpreemptive schedule of length
Cmax ≤ 5. This implies that C∗

max ≤ 5. Assume now that there is an FPTAS for the
preemptive 2-resource constrained scheduling problem and then show that this leads
to a contradiction. The FPTAS gives for each ε > 0 a poly(n, 1/ε) time algorithm to
obtain a schedule with length ≤ C∗

max(1+ε) ≤ C∗
max+5ε. If we choose ε = 1/5n, then

we obtain in poly(n) time a preemptive schedule with length ≤ C∗
max+1/n. The length

of the preemptive schedule (given by the FPTAS with ε = 1/5n) is larger than 2+1/n
iff the partition problem has no solution. If the length of the schedule is larger than
2+1/n, then C∗

max > 2 implying that we have a no-instance of the partition problem.
Consider the other direction: For each time step t there are at least n/2+1 tasks which
are not executed at step t; otherwise we have a solution of the partition problem. To
see this consider a set I of n/2 tasks executed at one time step. This implies that∑

a∈I s(a) ≤ 1/2
∑

a∈A s(a) and
∑

a∈I(smax− s(a)) ≤ 1
2

∑
a∈A(smax− s(a)). Both of

these inequalities can be transformed into

(n/2)smax−
∑
a∈I

s(a) ≤
∑
a∈I

(smax−s(a)) ≤ 1

2

∑
a∈A

(smax−s(a)) = (n/2)smax−
∑
a∈I

s(a).

Then,
∑

a∈I s(a) = 1
2

∑
a∈A s(a) and

∑
a∈I(smax − s(a)) = 1

2

∑
a∈A(smax − s(a)).

Therefore, I is a solution of the partition problem.
Let ne(i) be the total length in interval [0, 2] where task Ti is not executed. Using

the property above,
∑n

j=1 ne(i) ≥ 2(n/2 + 1) = n + 2. This implies that at least one
task Tk has ne(k) ≥ 1 + 2/n. Therefore, this task is executed at most 1 − 2/n in
interval [0, 2] and the schedule length is at least 2 + 2/n. This argument implies that
we can test (using the FPTAS) the existence of a solution for the partition problem
in polynomial time, which is impossible unless P = NP.

In the proof above we have used an idea of Korte and Schrader [37]. They proved
that there is no FPTAS for the sD-KP with s = 2 unless P = NP. Since it was
essential in the proof of Theorem 4.7 that s is (at least) 2, it is natural to ask again
what happens when s = 1. In this case, as will be demonstrated in the next section,
there is an FPTAS for the problem, and hence the negative result of Theorem 4.7 no
longer holds.

4.3. Single resource—FPTAS. Clearly, the general approach presented in
section 4.2 can also be used for the special case when there is only one resource.
Note that the number of iterations in computing an approximate solution for (3.1)

558 KLAUS JANSEN AND LORANT PORKOLAB

is independent of s, so it remains O(n(δ−2 + lnn)), as above. The only difference is
that the subproblem one has to solve (approximately) at each iteration becomes the
classical (one-dimensional) knapsack problem (instead of the s-dimensional variant).
This can be solved approximately with any Θ(δ) accuracy in O(nmin(lnn, ln(1/δ))+
1/δ2 min(n, 1/δ ln(1/δ))) = O(nδ−2) time [34]. In addition, we have to count the
overhead of O(n ln ln(nε−1)) operations in each iteration (i.e., the computation of the
root and the new price vector). Hence the previous bound can be substituted for
K(n, s,Θ(δ)) in the analysis above in section 4.2, and therefore for any fixed r the
procedure requires O(n2 max(δ−2, ln ln(nδ−1))(δ−2 + lnn)) time (including also the
overheads arising from computing the initial solution).

Similarly to the discussion in section 4.2, one can use binary search on r to
find a good approximation for the optimum of (3.1). The initial interval for r can
be determined by a strip packing algorithm (called longest task first) [8, 57] that
computes a nonpreemptive schedule of length at most three times the length of the
an optimal preemptive schedule. These all imply the following.

Theorem 4.8. If there is only one resource, the resource constrained scheduling
problem has an FPTAS which runs in O(n2 ln(ε−1) max(ε−2, ln ln(nε−1))(ε−2 + lnn))
time.

So far we have assumed that m is sufficiently large (e.g., m ≥ n), or otherwise
processors can be treated as an extra resource. But having seen above the dividing
line (regarding approximability) between instances with one and two resources, one
may naturally ask how easy or difficult it is to compute approximate solutions for
the problem when there is one resource and a limited number of machines. Krause,
Shen, and Schwetman [38] gave a polynomial-time (3 − 1

n)-approximation algorithm
for the problem. This can be substantially improved by following our approach and
extending Theorem 4.8 to this variant. First formulate it as a restricted preemptive 2-
resource constrained scheduling problem, where the m identical machines correspond
to the second resource with r2j = 1 for each task j and capacity c2 = m. It is easy
to check that the subproblem in this case is the cardinality constrained (

∑n
j=1 xj ≤

m) knapsack problem, which has an FPTAS with running time O(nm2ε−1) [7]. In
addition, the initial interval for the binary search on r can be bounded as for s = 2
resources. Hence the following holds.

Theorem 4.9. There is an FPTAS of running time O(n2 ln(ε−1) max(m2ε−1,
ln ln(nε−1)(ε−2 + lnn))) for P |res1.., pmtn|Cmax.

This result can also be extended to the variant P |res 1.., rj , pmtn|Lmax, where
the input contains release rj dates and delivery qj dates for each task Tj , and the
objective is to find a schedule minimizing the maximum delivery completion time
Lmax = maxjCj + qj [27].

Theorem 4.10. There is an FPTAS for P |res 1.., rj , pmtn|Lmax that runs in
poly(n, 1/ε) time.

5. Multiprocessor task scheduling. In this section we address preemptive
multiprocessor task scheduling problems [13], where a set T = {T1, . . . , Tn} of n tasks
has to be executed by m processors such that each processor can execute at most one
task at a time and a task must be processed simultaneously by several processors.

Since we consider here the preemptive model, each task can be interrupted any
time at no cost and restarted later possibly on a different set of processors. We will
focus on those preemptive schedules where migration is allowed, that is, where each
task may be assigned to different processor sets during different execution phases [4,
13, 14]. The malleable variant of multiprocessor task scheduling, P |fctnj , pmtn|Cmax,

PREEMPTIVE RESOURCE CONSTRAINED SCHEDULING 559

can be formulated as the following linear program [30], where Mj denotes the set of
different cardinalities that processor sets executing task Tj can have:

min
∑

f∈F xf

s.t.
∑

�∈Mj

1
pj(�)

∑
f∈F :|f−1(j)|=�, xf ≥ 1, j = 1, . . . , n,

xf ≥ 0 ∀f ∈ F.

(5.1)

Here the goal is to find for a given r a vector x ∈ P = {(xf) :
∑

f∈F xf = r, xf ≥
0, f ∈ F} that satisfies all the other constraints in (5.1). This corresponds to a vector
x ∈ P such that Ax ≥ 1− δ. Again, we get a subroutine to find a vertex x̃ in P such
that cT x̃ ≥ cTx for all x ∈ P , where c = yTA. For each task Tj we have now different
values in Mj and hence in the corresponding knapsack problem the profit yj/pj(�)
depends on the cardinality � ∈ Mj , while the capacity of the knapsack remains m,
as before. The subroutine corresponds now to a generalized knapsack problem with
different choices for tasks (items). The problem we have to solve (approximately) for
a given n-vector (y1, . . . , yn) can be formulated as follows:

max
∑n

j=1

∑
�∈Mj

yj

pj(�)
· xj�

s.t.
∑n

j=1

∑
�∈Mj

� · xj� ≤ m,∑
�∈Mj

xj� ≤ 1, j = 1, . . . , n,

xj� ∈ {0, 1}, � ∈ Mj , j = 1, . . . , n.

(5.2)

In fact, this is the multiple-choice knapsack problem. For this problem, Lawler [40]
showed that an ε-approximate solution can be computed in O(

∑
j |Mj | ln |Mj | +∑

j |Mj |n/ε) = O(nm lnm+ n2m/ε) time. In order to obtain a lower bound, one can
compute dj = min1≤�≤m pj(�) and dmax = maxj dj . Then dmax ≤ OPT ≤ ndmax. In
this case, the overhead O(n ln ln(n/ε)) = O(n ln lnn + n ln ln(1/ε)) = O(n2 + nε−1)
is less than the running time required by the knapsack subroutine. Hence by using
an argument similar to the one in the previous section, one can obtain the following
result.

Theorem 5.1. There exists an FPTAS for P |fctnj , pmtn|Cmax whose running
time is bounded by O(n(ε−2 + lnn) ln(nε−1)(nm lnm + n2mε−1)).

Other variants of P |fctnj , pmtn|Cmax concern preemptive scheduling on parallel
processors, where the underlying interconnection network is not completely disre-
garded [11, 50, 59]. (Note that in the original formulation, we assumed nothing about
the network architecture.) Based on the above results and a few other ideas (such as
strip packing as a scheduling problem with consecutive processors and greedy packing
of tasks on hypercubes) the following can be shown.

Theorem 5.2. If the processors are arranged in a line or hypercube network,
P |fctnj , pmtn|Cmax has an FPTAS that runs in O(n(ε−2 + lnn) ln(nε−1)(nm lnm+
n2mε−1)) time.

6. Weighted fractional coloring. Let G = (V,E) be a graph with a positive
weight wv for each vertex v ∈ V . Let I be the set of all independent sets of G. The
weighted fractional coloring problem consists of assigning a nonnegative real value xI

to each independent set I of G such that each vertex v ∈ V is completely covered by
independent sets containing v (i.e., the sum of their values is at least wv) and the total
value

∑
I xI is minimized. This problem can also be formulated as a linear program of

the form (3.1). Similarly to section 3, this linear program can be solved approximately
by using binary search on the optimum value r∗ and computing at each stage for the

560 KLAUS JANSEN AND LORANT PORKOLAB

current r an approximate solution for a fractional covering problem of form (3.2). Let
wmax = maxv∈V wv be the maximum weight of a vertex. By binary search, one can
obtain a solution (xI)I∈I with

∑
I∈I xI = (1+ε/4)r∗ and

∑
I∈I:v∈I xI ≥ 1/c(1−δ)wv.

Now one can define x̃I = xIc(1 + 4δ) and obtain
∑

I∈I:v∈I x̃I ≥ (1 − δ)(1 + 4δ)wv =
(1 + 3δ − 4δ2)pj ≥ pj for δ ≤ 3/4. In this case, the length of the generated fractional
coloring is at most cr∗(1+4δ)(1+ε/4) = cr∗(1+4δ+ε/4+δε) ≤ cr∗(1+ε) by choosing
ε ≤ 1 and δ ≤ 3ε/20. Since the optimum lies within the interval [wmax, nwmax],
the overall complexity of the algorithm can be bounded by O((n lnn + n ln c/ε3 +
n/ε2)(WIS(G,n, c, d)+n ln ln(n/ε)) ln(nε−1)), where WIS(n, c, d) is the time required
to compute an approximate weighted independent set for a weighted graph (G,w).
The above arguments imply the following result.

Theorem 6.1. Let G be a graph class. If there is a polynomial-time algorithm for
the weighted independent set problem restricted to graphs G ∈ G with approximation
ratio 1/c for c ≥ 1, then for any ε > 0 there is a polynomial-time algorithm for the
fractional weighted coloring problem restricted to G with approximation ratio c(1+ε).

Corollary 6.2. Let G be a graph class. If there is an (F)PTAS for the com-
putation of the weighted independent set in a graph G ∈ G and weights w, then we
obtain an (F)PTAS for the fractional weighted coloring problem for graphs G ∈ G.

Using a recent result [16] for computing the maximum weighted independent set
in intersection graphs of disks in the plane, we obtain the following.

Corollary 6.3. There is a PTAS for the computation of the fractional weighted
chromatic number for intersection graphs of disks in the plane.

Since this graph class contains planar graphs and unit disk graphs, Corollary 6.2
implies the following result which also provides a substantial improvement on Matsui’s
polynomial-time 2-approximation algorithm [44] for unit disk graphs.

Corollary 6.4. There is a PTAS for the computation of the fractional weighted
chromatic number for planar and unit disk graphs.

7. Conclusion. In this paper we have studied preemptive variants of resource
constrained scheduling and the closely related fractional coloring problem. The ap-
proach we presented is based on linear programming formulations with exponentially
many variables but with special structures allowing efficient approximations. The
linear programs are solved (approximately) in an iterative way as covering problems,
where at each iteration subproblems of the same type have to be solved. Interestingly,
for resource constrained scheduling these subproblems turned out to be knapsack-type
problems (multiple-choice, multidimensional, and cardinality constrained knapsack)
with efficient approximation algorithms. For fractional coloring, it is the well-known
maximum weighted independent set problem.

For some of the subproblems we have encountered, there are only relatively weak
polynomial-time approximation results (i.e., with constant, logarithmic, or even worse
approximation ratios). To handle these cases, too, we have extended some of the
methods in [24, 47, 58] to the case where the subproblem can be solved only ap-
proximatively. The underlying algorithm is independent from the width [47] and the
number of variables. We note that by using other techniques [32] (via the ellipsoid
method and approximate separation) with higher running time the ratio c(1 + ε) in
Theorems 3.1 and 6.1 can be improved to ratio c. Recently, Jansen [33] proposed
an improved algorithm for the max-min resource sharing problem that needs at most
O(M(lnM + ln(1/ε)/ε2)) iterations.

We mention in closing that by using the same approach, similar approximation
results can be expected for various other preemptive scheduling and fractional graph

PREEMPTIVE RESOURCE CONSTRAINED SCHEDULING 561

problems, e.g., for fractional path coloring, call scheduling, bandwidth allocation, and
scheduling multiprocessor tasks on dedicated processors, as well as open, flow, and
job shop scheduling.

Acknowledgments. The authors thank R. Schrader and A. Srivastav for help-
ful comments on the complexity of the two-dimensional knapsack problem and the
approximation of sD-KP, respectively.

REFERENCES

[1] A. K. Amoura, E. Bampis, C. Kenyon, and Y. Manoussakis, Scheduling independent mul-
tiprocessor tasks, Algorithmica, 32 (2002), pp. 247–261.

[2] B. S. Baker, E. G. Coffman, Jr., and R. L. Rivest, Orthogonal packings in two dimensions,
SIAM J. Comput., 9 (1980), pp. 846–855.

[3] J. Blazewicz, W. Cellary, R. Slowinski, and J. Weglarz, Scheduling under Resource
Constraints—Deterministic Models, Ann. Oper. Res. 7, Baltzer, Basel, 1986.

[4] J. Blazewicz, M. Drabowski, and J. Weglarz, Scheduling multiprocessor tasks to minimize
schedule length, IEEE Trans. Computers, 35 (1986), pp. 389–393.

[5] J. Blazewicz, K. H. Ecker, E. Pesch, G. Schmidt, and J. Weglarz, Scheduling in Com-
puter and Manufacturing Systems, Springer-Verlag, Berlin, 1996.

[6] J. Blazewicz, J. K. Lenstra, and A. H. G. Rinnooy Kan, Scheduling subject to resource
constraints: Classification and complexity, Discrete Appl. Math., 5 (1983), pp. 11–24.

[7] A. Caprara, H. Kellerer, U. Pferschy, and D. Pisinger, Approximation algorithms
for knapsack problems with cardinality constraints, European J. Oper. Res., 123 (2000),
pp. 333–345.

[8] E. G. Coffman, Jr., M. R. Garey, D. S. Johnson, and R. E. Tarjan, Performance
bounds for level-oriented two-dimensional packing algorithms, SIAM J. Comput., 9 (1980),
pp. 808–826.

[9] A. K. Chandra, D. S. Hirschberg, and C. K. Wong, Approximate algorithms for some
generalized knapsack problems, Theoret. Comput. Sci., 3 (1976), pp. 293–304.

[10] C. Chekuri and S. Khanna, On multidimensional packing problems, SIAM J. Comput., 33
(2004), pp. 837–851.

[11] G. I. Chen and T. H. Lai, Scheduling independent jobs on hypercubes, in Proceedings of the
5th Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Comput.
Sci. 294, Springer-Verlag, New York, 1988, pp. 273–280.

[12] M. Drozdowski, On the complexity of multiprocessor task scheduling, Bull. Polish Acad. Sci.,
43 (1995), pp. 381–392.

[13] M. Drozdowski, Scheduling multiprocessor tasks—an overview, European J. Oper. Res., 94
(1996), pp. 215–230.

[14] J. Du and J. Y.-T. Leung, Complexity of scheduling parallel task systems, SIAM J. Discrete
Math., 2 (1989), pp. 473–487.

[15] T. Erlebach and K. Jansen, Conversion of coloring algorithms into maximum weight inde-
pendent set algorithms, Discrete Appl. Math., 148 (2005), pp. 107–125.

[16] T. Erlebach, K. Jansen, and E. Seidel, Polynomial-time approximation schemes for geo-
metric intersection graphs, SIAM J. Comput., 34 (2005), pp. 1302–1323.

[17] U. Feige and J. Kilian, Zero knowledge and the chromatic number, J. Comput. System Sci.,
57 (1998), pp. 187–199.

[18] W. Fernandez de la Vega and G. S. Lueker, Bin packing can be solved within 1 + ε in
linear time, Combinatorica, 1 (1981), pp. 349–355.

[19] A. M. Frieze and M. R. B. Clarke, Approximation algorithms for the m-dimensional 0 − 1
knapsack problem, European J. Oper. Res., 15 (1984), pp. 100–109.

[20] M. R. Garey and R. L. Graham, Bounds for multiprocessor scheduling with resource con-
straints, SIAM J. Comput., 4 (1975), pp. 187–200.

[21] M. R. Garey, R. L. Graham, D. S. Johnson, and A. C.-C. Yao, Resource constrained
scheduling as generalized bin packing, J. Combin. Theory A, 21 (1976), pp. 251–298.

[22] S. Gerke and C. McDiarmid, Graph imperfection, J. Combin. Theory B, 83 (2001), pp. 58–78.
[23] M. D. Grigoriadis and L. G. Khachiyan, Coordination complexity of parallel price-directive

decomposition, Math. Oper. Res., 21 (1996), pp. 321–340.
[24] M. D. Grigoriadis, L. G. Khachiyan, L. Porkolab, and J. Villavicencio, Approximate

max-min resource sharing for structured concave optimization, SIAM J. Optim., 11 (2001),
pp. 1081–1091.

562 KLAUS JANSEN AND LORANT PORKOLAB

[25] M. Grötschel, L. Lovász, and A. Schrijver, The ellipsoid method and its consequences in
combinatorial optimization, Combinatorica, 1 (1981), pp. 169–197.

[26] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Combinatorial
Optimization, Springer-Verlag, Berlin, 1988.

[27] L. Hall and D. Shmoys, Jackson’s rule for single machine scheduling: Making a good heuristic
better, Math. Oper. Res., 17 (1992), pp. 22–35.

[28] O. H. Ibarra and C. E. Kim, Fast approximation algorithms for the knapsack and sum of
subset problem, J. ACM, 22 (1975), pp. 463–468.

[29] K. Jansen and L. Porkolab, Linear-time approximation schemes for scheduling malleable
parallel tasks, Algorithmica, 32 (2002), pp. 507–520.

[30] K. Jansen and L. Porkolab, Computing optimal preemptive schedules for parallel tasks:
Linear programming approaches, Math. Program., 95 (2003), pp. 617–630.

[31] K. Jansen and L. Porkolab, Preemptive scheduling on dedicated processors: Applications of
fractional graph coloring, J. Sched., 7 (2004), pp. 35–48.

[32] K. Jansen, Approximate strong separation with application in fractional graph coloring and
preemptive scheduling, Theoret. Comput. Sci., 302 (2003), pp. 239–256.

[33] K. Jansen, An approximation algorithm for the general max-min resource sharing problem,
Math. Program., 106 (2006), pp. 547–566.

[34] H. Kellerer and U. Pferschy, A new fully polynomial approximation scheme for the knap-
sack problem, J. Combin. Optim., 3 (1999), pp. 59–71.

[35] C. Kenyon and E. Remila, A near-optimal solution to a two-dimensional cutting stock prob-
lem, Math. Oper. Res., 25 (2000), pp. 645–656.

[36] K. Kilakos and O. Marcotte, Fractional and integral colourings, Math. Programming, 76
(1997), pp. 333–347.

[37] B. Korte and R. Schrader, On the existence of fast approximation schemes, in Nonlinear
Programming 4, Academic Press, New York, 1981, pp. 415–437.

[38] K. L. Krause, V. Y. Shen, and H. D. Schwetman, Analysis of several task scheduling algo-
rithms for a model of multiprogramming computer systems, J. ACM, 22 (1975), pp. 522–
550.

[39] K. L. Krause, V. Y. Shen, and H. D. Schwetman, Errata: “Analysis of several task schedul-
ing algorithms for a model of multiprogramming computer systems,” J. ACM, 24 (1977),
p. 527.

[40] E. Lawler, Fast approximation algorithms for knapsack problems, Math. Oper. Res., 4 (1979),
pp. 339–356.

[41] W. Ludwig and P. Tiwari, Scheduling malleable and nonmalleable parallel tasks, in Proceed-
ings of the 5th ACM–SIAM Symposium on Discrete Algorithms, ACM, New York, SIAM,
Philadelphia, 1994, pp. 167–176.

[42] C. Lund and M. Yannakakis, On the hardness of approximating minimization problems, J.
ACM, 41 (1994), pp. 960–981.

[43] O. Oguz and M. J. Magazine, A Polynomial Time Approximation Algorithm for the Multi-
dimensional 0 − 1 Knapsack Problem, Working paper, University of Waterloo, Waterloo,
Ontario, Canada, 1980.

[44] T. Matsui, Approximation algorithms for maximum independent set problems and fractional
coloring problems on unit disk graphs, in Proceedings of the Symposium on Discrete and
Computational Geometry, Lecture Notes in Comput. Sci. 1763, Springer-Verlag, New York,
2000, pp. 194–200.

[45] G. Mounie, C. Rapine, and D. Trystram, Efficient approximation algorithms for scheduling
malleable tasks, in Proceedings of the ACM Symposium on Parallel Algorithms, ACM,
New York, 1999, pp. 23–32.

[46] T. Niessen and J. Kind, The round-up property of the fractional chromatic number for proper
circular arc graphs, J. Graph Theory, 33 (2000), pp. 256–267.

[47] S. A. Plotkin, D. B. Shmoys, and E. Tardos, Fast approximation algorithms for fractional
packing and covering problems, Math. Oper. Res., 20 (1995), pp. 257–301.

[48] P. Raghavan and C. D. Thompson, Randomized rounding: A technique for provably good
algorithms and algorithmic proofs, Combinatorica, 7 (1987), pp. 365–374.

[49] M. W. Schäffter, Scheduling with forbidden sets, Discrete Appl. Math., 72 (1997), pp. 155–
166.

[50] I. Schiermeyer, Reverse-Fit: A 2-optimal algorithm for packing rectangles, in Proceedings of
the 2nd European Symposium of Algorithms, Lecture Notes in Comput. Sci. 855, Springer-
Verlag, New York, 1994, pp. 290–299.

[51] E. R. Schreinerman and D. H. Ullman, Fractional Graph Theory: A Rational Approach to
the Theory of Graphs, Wiley Interscience Series in Discrete Mathematics, John Wiley, New
York, 1997.

PREEMPTIVE RESOURCE CONSTRAINED SCHEDULING 563

[52] P. D. Seymour, Colouring series-parallel graphs, Combinatorica, 10 (1990), pp. 379–392.
[53] A. Srinivasan, Improved approximation guarantees for packing and covering integer programs,

SIAM J. Comput., 29 (1999), pp. 648–670.
[54] A. Srivastav and P. Stangier, Algorithmic Chernoff-Hoeffding inequalities in integer pro-

gramming, Random Structures Algorithms, 8 (1996), pp. 27–58.
[55] A. Srivastav and P. Stangier, Tight approximations for resource constrained scheduling and

bin packing, Discrete Appl. Math., 79 (1997), pp. 223–245.
[56] A. Steinberg, A strip-packing algorithm with absolute performance bound 2, SIAM J. Comput.,

26 (1997), pp. 401–409.
[57] J. Turek, J. Wolf, and P. Yu, Approximate algorithms for scheduling parallelizable tasks, in

Proceedings of the 4th ACM Symposium on Parallel Algorithms and Architectures, ACM,
New York, 1992, pp. 323–332.

[58] N. E. Young, Randomized rounding without solving the linear program, in Proceedings of the
6th ACM–SIAM Symposium on Discrete Algorithms, ACM, New York, SIAM, Philadel-
phia, 1995, pp. 170–178.

[59] Y. Zhu and M. Ahuja, On job scheduling on a hypercube, IEEE Trans. Parallel Distributed
Systems, 4 (1993), pp. 62–69.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 564–567

MULTICOLORED PARALLELISMS OF ISOMORPHIC SPANNING
TREES∗

S. AKBARI† , A. ALIPOUR† , H. L. FU‡ , AND Y. H. LO‡

Abstract. A subgraph in an edge-colored graph is multicolored if all its edges receive distinct
colors. In this paper, we prove that a complete graph on 2m (m �= 2) vertices K2m can be properly
edge-colored with 2m − 1 colors in such a way that the edges of K2m can be partitioned into m
multicolored isomorphic spanning trees.

Key words. complete graph, multicolored tree, parallelism

AMS subject classifications. 05B15, 05C05, 05C15, 05C70

DOI. 10.1137/S0895480104446015

A spanning subgraph of a graph G is a subgraph H with V (H) = V (G). A proper
k-edge coloring of a graph G is a mapping from E(G) into a set of colors {1, . . . , k}
such that incident edges of G receive distinct colors. An h-total-coloring of a graph G
is a mapping from V (G) ∪ E(G) into a set of colors {1, . . . , h} such that (i) adjacent
vertices in G receive distinct colors, (ii) incident edges in G receive distinct colors,
and (iii) any vertex and its incident edges receive distinct colors. The edge chromatic
number of a graph G is the minimum number k for which G has a proper k-edge
coloring. Throughout this paper Km and Km,n denote the complete graph of order
m and the complete bipartite graph with partite sets of sizes m and n, respectively.
It is well known that the edge chromatic number of Km is m if m is odd, and m− 1
if m is even [7, p. 15]. Assume that m is a natural number. For any integer i we
denote the residue of i modulo m in the set {1, . . . ,m} by [i]m. The following result
is known.

Lemma 1 (see [7, p. 16]). If m is an odd positive integer, then Km has an m-total
coloring.

A Latin square of order m is an m×m array of m symbols in which every symbol
occurs exactly once in each row and column of the array. A Room square of side
2m− 1 is a (2m− 1)× (2m− 1) array whose cells are empty or contain an unordered
pair of distinct integers chosen from R = {1, . . . , 2m}, such that the entries of a given
row contain every member of R precisely once, and similarly for columns, and the
array contains every unordered pair of members of R precisely once. Room squares
have been found for all odd 2m− 1 ≥ 7 [2, p. 239]. An example of a Room square of
side 7 is shown in Table 1.

A subgraph in an edge-colored graph is said to be multicolored if no two edges
have the same color. Using a Room square of side 2m − 1 one may obtain a proper

∗Received by the editors September 12, 2004; accepted for publication (in revised form) January
31, 2006; published electronically June 30, 2006.

http://www.siam.org/journals/sidma/20-3/44601.html
†Institute for Studies in Theoretical Physics and Mathematics, Tehran, Iran, and Department

of Mathematical Sciences, Sharif University of Technology, P.O. Box 11365-9415, Tehran, Iran
(s akbari@sharif.edu, alipour@mehr.sharif.edu). The research of the first and second authors was
supported by the Institute for Studies in Theoretical Physics and Mathematics (IPM). The research
of the first author was in part supported by a grant from IPM (83050211).

‡Department of Applied Mathematics, National Chiao Tung University, Hsinchu, Taiwan 30050
(hlfu@math.nctu.edu.tw, yhlo.am93g@nctu.edu.tw). The research of the third and fourth authors
was supported by NSC grant 93-2115-M-009-002.

564

MULTICOLORED PARALLELISMS OF ISOMORPHIC SPANNING TREES 565

Table 1

35 17 28 46
26 48 15 37
13 57 68 24

47 16 38 25
58 23 14 67
12 78 56 34
36 45 27 18

edge coloring of K2m with 2m − 1 colors in which all edges can be partitioned into
2m − 1 multicolored perfect matchings. For example, using the rows of Table 1 we
give a proper edge coloring of K8 with 7 colors. We denote the vertices of K8 by
1, . . . , 8. In Table 1, if rs appears in the ith row, then we color the edge rs with
color i. For instance, the edges 47, 16, 38, 25 are colored with color 4. Each column
in Table 1 corresponds to a multicolored perfect matching of K8. In a recent paper
[1] the existence of the multicolored matchings in an arbitrary edge-colored complete
graph has been studied. A Latin square of order m corresponds to a proper edge
coloring of Km,m with m colors. Indeed if L = (Lij) is a Latin square of order m
and {u1, . . . , um} and {v1, . . . , vm} are two parts of Km,m, then we color the edge
uivj with Lij . Since L has m symbols, we have an m-edge coloring of Km,m, and
since every symbol occurs exactly once in each row and each column of L, the edge
coloring is proper. Also the existence of two orthogonal Latin squares of order m
corresponds to a proper edge coloring of Km,m with m colors for which all edges can
be partitioned into m multicolored perfect matchings. For example, suppose that
L = (Lij) and R = (Rij) are two orthogonal Latin squares of order m with symbols
of the set {1, . . . ,m}, and {u1, . . . , um} and {v1, . . . , vm} are two parts of Km,m. As
we saw before, the function c, where c(uivj) = Lij , is a proper m-edge coloring of
Km,m. For any r, 1 ≤ r ≤ m, let Mr be the set of all edges uivj such that Rij = r.
Obviously {M1, . . . ,Mn} is an edge partition of E(Km,m). Since the symbol r occurs
exactly once in each row and each column of R, Mr is a perfect matching, and since L
and R are orthogonal, if Rij = r, then the symbols Lij are distinct and we conclude
that Mr is multicolored. There is a classic result which says that for any natural
number m, m �= 2, 6, there exist two orthogonal Latin squares of order m; see [3].

We say that the complete graph K2m admits a multicolored tree parallelism (MTP)
if there exists a proper edge coloring of K2m with 2m − 1 colors for which all edges
can be partitioned into m isomorphic multicolored spanning trees. It is clear that the
complete graph K4 does not admit an MTP. We note here that such a partition of
the edges of K2m can be viewed as a parallelism as defined in [5] by Cameron, with an
additional property due to edge colors. In fact, finding a partition as obtained above
corresponds to an arrangement of the edges of K2m into an array of 2m− 1 rows and
m columns such that each row contains the edges with the same color which form
a perfect matching and the edges in each column form a multicolored spanning tree
of K2m; moreover, all the m spanning trees are isomorphic. Therefore, the partition
creates a double parallelism of K2m, one from the rows of the perfect matchings
and the other from the columns of the edge disjoint isomorphic spanning trees. The
following result has been proven in [6].

Theorem A (see [6]). If m �= 1, 3 and K2m admits an MTP, then for any r ≥ 1,
K2rm admits an MTP.

There exist three interesting conjectures on the edge partitioning of the complete
graphs into multicolored spanning trees.

566 S. AKBARI, A. ALIPOUR, H. L. FU, AND Y. H. LO

Table 2

T1 T2 T3

c1 35 46 12
c2 24 15 36
c3 25 34 16
c4 26 13 45
c5 14 23 56

�

�

�

�

� �

�

�

�

�

� �

�

� �

�

� �

5

2

4

6

3 1

1

3

4

2

5 6

5

6

1

3

4 2

T1 T2 T3

Fig. 1.

Constantine’s Conjecture (weak version; see [6]). For any natural number
m, m > 2, K2m admits an MTP.

Brualdi–Hollingsworth Conjecture (see [4]). If m > 2, then in any proper
edge coloring of K2m with 2m − 1 colors, all edges can be partitioned into m multi-
colored spanning trees.

In [4] it was proved that in any proper edge coloring of K2m (m > 2) with 2m−1
colors there are at least two edge disjoint multicolored spanning trees.

Constantine’s Conjecture (strong version; see [6]). If m > 2, then in any
proper edge coloring of K2m with 2m − 1 colors, all edges can be partitioned into m
isomorphic multicolored spanning trees.

The main goal of this paper is to prove the first conjecture.
Example 1. The complete graph K6 admits an MTP. To see this consider the

complete graph K6 with the vertex set {1, . . . , 6}. Table 2 gives a proper edge coloring
of K6 with colors c1, . . . , c5 as well as an MTP for it. The ith row of this table is
the set of all edges with color ci. Each column denotes the edges of a multicolored
spanning tree. Figure 1 shows that the spanning trees T1, T2, T3 are isomorphic.

In [6] it has been shown that K8 admits an MTP.
Using the software Gap, Peter Cameron found a decomposition of K6,6 into six

isomorphic multicolored graphs K1,3∪3K2∪2K1. In the next lemma, using Cameron’s
decomposition we find an MTP for K12.

Lemma 2. The complete graph K12 admits an MTP.
Proof. Consider the complete graph K12 with the vertex set {u1, . . . , u6, v1, . . . , v6}.

Table 3 gives a proper edge coloring of K12 with colors c1, . . . , c11 as well as an MTP
for it. The ith row of this table is the set of all edges with color ci. Each column
denotes the edges of a multicolored spanning tree. Note that the first six rows of the
table determine a decomposition of K6,6 into six multicolored subgraphs isomorphic
to K1,3 ∪ 3K2 ∪ 2K1.

Now, we are ready to prove our main result.
Theorem. For m �= 2, K2m admits an MTP.
Proof. First suppose that m is an odd integer. Consider the complete graph

K2m defined on the set A ∪ B where A = {a1, . . . , am} and B = {b1, . . . , bm}. For

MULTICOLORED PARALLELISMS OF ISOMORPHIC SPANNING TREES 567

Table 3

T1 T2 T3 T4 T5 T6

c1 u2v5 u1v6 u6v1 u3v2 u4v3 u5v4

c2 u2v3 u5v2 u6v6 u4v5 u3v4 u1v1

c3 u4v1 u3v3 u6v4 u1v2 u5v5 u2v6

c4 u1v4 u3v5 u5v3 u6v2 u2v1 u4v6

c5 u2v2 u4v4 u1v5 u5v1 u6v3 u3v6

c6 u5v6 u3v1 u4v2 u2v4 u1v3 u6v5

c7 u3u5 u4u6 u1u2 v3v5 v4v6 v1v2

c8 u2u4 u1u5 u3u6 v2v4 v1v5 v3v6

c9 u2u5 u3u4 u1u6 v2v5 v3v4 v1v6

c10 u2u6 u1u3 u4u5 v2v6 v1v3 v4v5

c11 u1u4 u2u3 u5u6 v1v4 v2v3 v5v6

convenience, let G and H be the complete graphs on the sets A and B, respectively.
Since m is odd, G has a total coloring π which uses m colors, 1, . . . ,m. Now, define
an edge-coloring c of K2m as follows:

(a) For each edge ajak ∈ E(G), let c(ajak) = π(ajak).
(b) For each edge bjbk ∈ E(H), let c(bjbk) = π(ajak).
(c) For each edge aibi, 1 ≤ i ≤ m, let c(aibi) = π(ai).
(d) For each edge ajbk, j �= k, let c(ajbk) = [k − j]m + m.

Clearly, c is a proper (2m − 1)-edge-coloring of K2m. It is left to decompose K2m

into m multicolored isomorphic spanning trees. First, for each i ∈ {1, . . . ,m}, let
Ti be defined on the set A ∪ B and E(Ti) = {aia[i+2t]m , bib[i+2t−1]m , bia[i+2t−1]m ,

a[i+1]mb[i+2t]m | t = 1, 2, . . . , m−1
2 } ∪ {aibi}. It is easy to check that each Ti is a

multicolored spanning tree, and all the Ti’s are isomorphic.
Now, if m is not an odd integer, then 2m = 2tm′ where t ≥ 2 and m′ is odd.

In the case where m′ = 1, t must be at least 3. Then it is a direct consequence of
Theorem A. Assume m′ ≥ 3. Thus K2tm′ admits an MTP by Theorem A except
when m′ = 3 and t = 2. Since this case can be handled by Lemma 2, we conclude the
proof.

Acknowledgments. The first two authors are very grateful to professor Peter
Cameron for his fruitful discussions, and we appreciate the helpful comments of the
referees.

REFERENCES

[1] S. Akbari and A. Alipour, Transversals and multicolored matchings, J. Combin. Des., 12
(2004), pp. 325–332.

[2] I. Anderson, Combinatorial Designs: Construction Methods, Ellis Horwood Limited, Chi-
chester, UK, 1990.

[3] R. C. Bose, S. S. Shrikhande, and E. T. Parker, Further results on the construction of
mutually orthogonal Latin squares and the falsity of Euler’s conjecture, Canad. J. Math.,
12 (1960), pp. 189–203.

[4] R. A. Brualdi and S. Hollingsworth, Multicolored trees in complete graphs, J. Combin.
Theory Ser. B, 68 (1996), pp. 310–313.

[5] P. J. Cameron, Parallelisms of Complete Designs, London Math. Soc. Lecture Notes Series 23,
Cambridge University Press, Cambridge, UK, 1976.

[6] G. M. Constantine, Multicolored parallelisms of isomorphic spanning trees, Discrete Math.
Theor. Comput. Sci., 5 (2002), pp. 121–125.

[7] H. P. Yap, Total Colourings of Graphs, Lecture Notes in Math. 1623, Springer-Verlag, Berlin,
1996.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 568–577

AUTOCORRELATIONS OF MAXIMUM PERIOD FCSR SEQUENCES∗

HONG XU† AND WEN-FENG QI†

Abstract. Let a be a maximum period feedback with carry shift register sequence (l-sequence)
with connection integer q = pe and period T = pe−1(p− 1). It is shown that the expected value of
its autocorrelations is 0, and its variance is O(q ln4 q). Thus when q is sufficiently large, with high
probability, the autocorrelations are low. Furthermore, it is shown that when e ≥ 2, for any integer
i, 1 ≤ i ≤ e/2, when the shift is a multiple of T/2pi, the absolute value of the autocorrelations of a
is T/p2i−1, and the sign relies on the parity of the multiple.

Key words. feedback with carry shift register, l-sequences, 2-adic numbers, autocorrelations,
exponential sum

AMS subject classifications. 11A07, 11B50, 11L07, 11T23, 94A55, 94A60

DOI. 10.1137/050633974

1. Introduction. Pseudorandom sequences are important in many areas of com-
munications and computing such as cryptography, spread spectrum communications,
error correcting codes, and quasi-Monte Carlo integration. In the study of pseudoran-
dom sequences, we are often interested in the correlation properties of the sequences.
These properties not only are important measures of randomness [4] but also have
practical applications in spread spectrum communication systems, radar systems,
cryptanalysis, and so on.

Feedback with carry shift register (FCSR) sequences, especially the l-sequences,
have many fine pseudorandom properties analogous to those of m-sequences. Let
q = pe, with p an odd prime integer and e ≥ 1, and let 2 be a primitive root modulo
q. The class of binary sequences known as l-sequences can be described in several
ways [8], [9]. An l-sequence is the output sequence from a maximum period FCSR
with connection number q. It is the 2-adic expansions of a rational number r/q,
where gcd(r, q) = 1, and it is the sequence an = (A · 2−n(mod q))(mod 2), where
gcd(A, q) = 1.

Up to now, research has been done on the distribution properties and linear
complexity of l-sequences [5], [6], [7], [8], [9], [13], [14]. The lattice test on such
sequences has also been done by Couture and L’Ecuyer [1], [2], [3] and L’Ecuyer [10],
[11]. Their ordinary autocorrelations have not been studied, although their arithmetic
autocorrelations have been shown to be zero [5].

The autocorrelation function of a binary periodic sequence a = (a0, a1, a2, . . .)

with period T is defined as Ca(τ) =
∑T−1

n=0 (−1)an+an+τ for 0 ≤ τ ≤ T − 1. The se-
quence a is said to have “good” autocorrelation properties if, for all τ �= 0, the absolute
value of Ca(τ) is very small compared to T . Concerning the arithmetic autocorrela-
tion, it can be thought of as a “with carry” analogue of the usual autocorrelation;
see [5].

∗Received by the editors June 19, 2005; accepted for publication (in revised form) November 30,
2005; published electronically August 7, 2006. This work was supported by the NSF of China under
grant 60373092.

http://www.siam.org/journals/sidma/20-3/63397.html
†Department of Applied Mathematics, Zhengzhou Information Engineering University,

P.O. Box 1001-745, Zhengzhou 450002, People’s Republic of China (xuhong0504@hotmail.com,
wenfeng.qi@263.net).

568

AUTOCORRELATIONS OF MAXIMUM PERIOD FCSR SEQUENCES 569

By use of the rational expression of l-sequences, their arithmetic autocorrelations
can be easily calculated, while for the usual autocorrelations, it is far more difficult [5].
In this paper, the usual autocorrelations of l-sequences are discussed.

Let a be an l-sequence generated by an FCSR with connection integer q = pe and
period T = pe−1(p − 1). Since the l-sequences are all balanced, it is trivial that the
expected autocorrelations of a are 0. In section 2, by evaluating certain exponential
sums, we show that the variance of autocorrelations of a satisfies

Var (Ca(τ)) ≤ 256q ·
(

ln q

π
+

1

5

)4

·
(

1 − q−1/2

1 − p−1/2

)2

.

This means that when q is sufficiently large, with high probability, the autocorrelations
of l-sequences are low.

For e ≥ 2, the exact autocorrelation value of a for certain shift τ is given in
section 3. It is shown that for any integer i, 1 ≤ i ≤ e/2, when the shift τ is a
multiple of T/2pi, the autocorrelations of a satisfy

Ca(kT/2p
i) =

{
−T/p2i−1 if 2 | k,
T/p2i−1 if 2 � k,

where 1 ≤ k ≤ 2pi − 1 and gcd(k, p) = 1. The above two results also hold for the
decimations of l-sequences.

2. Expectation and variance of the autocorrelations of l-sequences. For
convenience, we first give the definition of l-sequences and show some of their impor-
tant properties.

Definition 2.1 (see [8], [9]). The maximum period sequence generated by an
FCSR with connection integer q is called an l-sequence. In this case, 2 is a primitive
root modulo q. Thus q is of the form q = pe, where p is an odd prime, e ≥ 1, and the
sequence has period T = pe−1(p− 1).

Definition 2.2. Let a = (a0, a1, a2, . . .) be a binary periodic sequence of pe-
riod T . The d-fold decimation of a is defined as a(d) = (a0, ad, a2d, . . .), where d is
relatively prime to T .

Let a = (a0, a1, a2, . . .) be an l-sequence generated by an FCSR with connection
integer q = pe and period T = pe−1(p − 1). From [5], we know that the number of
ones and the number of zeros in a period of a or its decimations are equal.

For any positive integer N , let Z/(N) = {0, 1, 2, . . . , N−1} be the ring of integers
modulo N and (Z/(N))∗ its multiplicative group. Throughout the article, we use the
notation (modN) for the operator that reduces an integer modulo N to give a number
between 0 and N − 1.

With these notations, we can give the exponential representation of l-sequences
as follows.

Lemma 2.3 (see [9]). Let a = (a0, a1, a2, . . .) be an l-sequence generated by an
FCSR with connection integer q = pe. Then there exists A ∈ (Z/(q))∗ such that

an = (A · 2−n(mod q))(mod 2), n = 0, 1,

For s ∈ {0, 1}, denote Hs = |{y ∈ Z/(q)|y(mod 2) = s}|. Obviously, H0 =
(q + 1)/2 equals the number of evens in Z/(q) and H1 = (q− 1)/2 equals the number
of odds in Z/(q).

570 HONG XU AND WEN-FENG QI

For any integer u ∈ {0, 1, . . . , q−1}, there exists a unique pair (v, y) with v ∈ {0, 1}
and y ∈ {0, 1, . . . , Hv − 1} such that u = 2y + v. On the other hand, for any pair
(v, y) with v ∈ {0, 1} and y ∈ {0, 1, . . . , Hv − 1} we have 2y + v ∈ {0, 1, . . . , q − 1}.

Let q = pe as above. Suppose that g is a primitive root modulo q and un =
A ·gn(mod q). Then u = (u0, u1, u2, . . .) over Z/(q) is a periodic sequence with period
T = pe−1(p − 1). Set an = un(mod 2). Then a = (a0, a1, a2, . . .) is an l-sequence or
its decimation.

For any positive integer a, denote eq(a) = e2πia/q. For fixed 0 ≤ n, τ ≤ T − 1 and
s, t ∈ {0, 1}, define

N(an = s, an+τ = t) =

{
1 if an = s and an+τ = t,
0 else.

Then the autocorrelation Ca(τ) of a with shift τ (0 ≤ τ ≤ T − 1) can be represented
as

Ca(τ) =

T−1∑
n=0

(−1)an+an+τ =

1∑
s,t=0

(−1)s+t ·
T−1∑
n=0

N(an = s, an+τ = t)

=

1∑
s,t=0

(−1)s+t ·
(

T−1∑
n=0

(
Hs−1∑
x=0

1

q

q−1∑
b=0

eq(b(un − 2x− s))

)

·
(

Ht−1∑
y=0

1

q

q−1∑
c=0

eq(c(un+τ − 2y − t))

))

=
1

q2

q−1∑
b,c=0

(
T−1∑
n=0

eq(bun + cun+τ)

)
·
(

1∑
s=0

(−1)seq(−bs)

Hs−1∑
x=0

eq(−2bx)

)

·
(

1∑
t=0

(−1)teq(−ct)

Ht−1∑
y=0

eq(−2cy)

)

=
1

q2

q−1∑
b,c=0

Sτ (b, c)P (b)Q(c),

where

Sτ (b, c) =

T−1∑
n=0

eq(bun + cun+τ),

P (b) =

1∑
s=0

(−1)seq(−bs)

Hs−1∑
x=0

eq(−2bx),

and

Q(c) =
1∑

t=0

(−1)teq(−ct)

Ht−1∑
y=0

eq(−2cy).

Then we have Sτ (0, 0) = T , P (0) =
∑1

s=0(−1)sHs = 1, and Q(0) =
∑1

t=0(−1)tHt =

AUTOCORRELATIONS OF MAXIMUM PERIOD FCSR SEQUENCES 571

1. Using the property that the number of ones and the number of zeros in a period
of a are equal, we can show that

1

q2

q−1∑
c=0

Sτ (0, c)P (0)Q(c) = 0 and
1

q2

q−1∑
b=0

Sτ (b, 0)P (b)Q(0) = 0.

So we get

Ca(τ) =
1

q2

q−1∑
b,c=0

Sτ (b, c)P (b)Q(c) = − T

q2
+

1

q2

q−1∑
b,c=1

Sτ (b, c)P (b)Q(c).(2.1)

Using this equation, based on some evaluation on certain exponential sums (given
as lemmas below), we can calculate the expectation and variance of Ca(τ).

Lemma 2.4. Let 0 �= b, c ∈ Z/(q) and Sτ (b, c) be defined as above. Then

T−1∑
τ=0

|Sτ (b, c)|2 ≤ qT · gcd(c, q).

Proof. As un = A · gn(mod q) and g is a primitive root modulo q, we have

T−1∑
τ=0

|Sτ (b, c)|2 =

T−1∑
τ=0

∣∣∣∣∣
T−1∑
n=0

eq((b + cgτ)un)

∣∣∣∣∣
2

≤
q−1∑
γ=0

∣∣∣∣∣
T−1∑
n=0

eq((b + cγ)un)

∣∣∣∣∣
2

=

T−1∑
m,n=0

eq(b(un − um)) ·
q−1∑
γ=0

eq(cγ(un − um))

≤
T−1∑

m,n=0

∣∣∣∣∣
q−1∑
γ=0

eq(cγ(un − um))

∣∣∣∣∣ = q · |Ω|,

where Ω = {(m,n)|0 ≤ m,n ≤ T − 1 and q|(c(un − um))} and |Ω| is the number of
elements in Ω. Similar to the proof of Lemma 5 in [13], we can get |Ω| ≤ gcd(c, q) ·T .
Thus

T−1∑
τ=0

|Sτ (b, c)|2 ≤ qT · gcd(c, q).

This completes the proof of Lemma 2.4.

572 HONG XU AND WEN-FENG QI

Lemma 2.5 (see [12]). For any positive integers m and H,

m−1∑
a=1

∣∣∣∣∣
H−1∑
x=0

em(ax)

∣∣∣∣∣ < 2m

(
lnm

π
+

1

5

)

holds, where ln is the natural logarithm.

Using Lemma 2.5, we get the following.

Lemma 2.6. Let p be an odd prime, q = pe, and e ≥ 1. Then for any positive
integer H, we have

q−1∑
a=1

gcd(a, q)1/2 ·
∣∣∣∣∣
H−1∑
x=0

eq(−2ax)

∣∣∣∣∣ ≤ 2q ·
(

ln q

π
+

1

5

)
·
(

1 − q−1/2

1 − p−1/2

)
.

Using these three lemmas, together with (2.1), we can reach the following conclu-
sions.

Theorem 2.7. Let g be a primitive root modulo q = pe (e ≥ 1) and a =
(a0, a1, a2, . . .) be a binary periodic sequence defined by an = (A · gn(mod q))(mod 2)
with period T = pe−1(p−1). Then the expectation of its autocorrelations is E[Ca(τ)] =
0, and the variance of its autocorrelations satisfies

Var(Ca(τ)) ≤ 256q ·
(

ln q

π
+

1

5

)4

·
(

1 − q−1/2

1 − p−1/2

)2

.

Proof. The first result follows from the fact that for any sequence a, E[Ca(τ)] =
I(a)2/T , where I(a) is the imbalance of a, that is, the number of zeros minus the
number of ones.

Concerning the second result, we first evaluate E
[(
Ca(τ) + T

q2

)2]
:

E

[(
Ca(τ) +

T

q2

)2
]

=
1

T

T−1∑
τ=0

⎛
⎝ 1

q2

q−1∑
b,c=1

Sτ (b, c)P (b)Q(c)

⎞
⎠

2

=
1

q4T

q−1∑
b1,c1,b2,c2=1

(
T−1∑
τ=0

Sτ (b1, c1)Sτ (b2, c2)

)
· P (b1)P (b2)Q(c1)Q(c2)

≤ 1

q4T

q−1∑
b1,c1,b2,c2=1

(
T−1∑
τ=0

|Sτ (b1, c1)Sτ (b2, c2)|
)

· |P (b1)P (b2)Q(c1)Q(c2)| .

Set g = 2−1(mod q) in Lemma 2.4. Then by Cauchy’s inequality we can get

T−1∑
τ=0

|Sτ (b1, c1)Sτ (b2, c2)| ≤
(

T−1∑
τ=0

|Sτ (b1, c1)|2
)1/2

·
(

T−1∑
τ=0

|Sτ (b2, c2)|2
)1/2

≤ qT · gcd(c1, q)
1/2 · gcd(c2, q)

1/2.

AUTOCORRELATIONS OF MAXIMUM PERIOD FCSR SEQUENCES 573

Then from Lemmas 2.5 and 2.6, we have

E

[(
Ca(τ) +

T

q2

)2
]

≤ 1

q4T

q−1∑
b1,c1,b2,c2=1

qT · gcd(c1, q)
1/2 · gcd(c2, q)

1/2 · |P (b1)P (b2)Q(c1)Q(c2)|

≤ q−3 ·
(

q−1∑
b1=1

|P (b1)|
)

·
(

q−1∑
b2=1

|P (b2)|
)

·
(

q−1∑
c1=1

gcd(c1, q)
1/2 · |Q(c1)|

)

·
(

q−1∑
c2=1

gcd(c2, q)
1/2 · |Q(c2)|

)

≤ q−3 ·
(

4q ·
(

ln q

π
+

1

5

))2

·
(

4q ·
(

ln q

π
+

1

5

)(
1 − q−1/2

1 − p−1/2

))2

= 256q ·
(

ln q

π
+

1

5

)4

·
(

1 − q−1/2

1 − p−1/2

)2

.

Thus

Var(Ca(τ)) = Var

(
Ca(τ) +

T

q2

)
≤ E

[(
Ca(τ) +

T

q2

)2
]

≤ 256q ·
(

ln q

π
+

1

5

)4

·
(

1 − q−1/2

1 − p−1/2

)2

,

which completes the proof of Theorem 2.7.
Remark 2.8. Chebyshev’s inequality says that for any random variable X and

ε > 0, Pr(|X − E[X]| ≥ ε) ≤ Var(X)/ε2, where E[X] denotes the expectation of X
and Var(X) denotes the variance of X. So, for fixed δ > 0, we have

Pr
(
|Ca(τ)| ≥ T (1+δ)/2

)
≤ 256qT−(1+δ) ·

(
ln q

π
+

1

5

)4

·
(

1 − q−1/2

1 − p−1/2

)2

.

Note that
(

1−q−1/2

1−p−1/2

)2
is less than 6 (and less than 4 if p > 3). The probability

approaches 0 as q tends to infinity, which shows that when q is sufficiently large, most
autocorrelations of l-sequences are small.

Corollary 2.9. Let a be an l-sequence with connection integer q = pe (e ≥ 1)
and period T = pe−1(p−1). Then the expectation of its autocorrelations is E[Ca(τ)] =
0, and the variance of its autocorrelations satisfies

Var(Ca(τ)) ≤ 256q ·
(

ln q

π
+

1

5

)4

·
(

1 − q−1/2

1 − p−1/2

)2

.

3. Autocorrelations of l-sequences with certain shifts. In this section,
we will calculate the exact autocorrelation values of l-sequences with certain shifts.
Before showing the main result, we first give a lemma.

Lemma 3.1. Let p be an odd prime and i ≥ 1. Set

Λ0 = {(m,n) ∈ (Z/(pi))∗ × (Z/(pi))|(m + n(mod pi))(mod 2) = n(mod 2)},
Λ1 = {(m,n) ∈ (Z/(pi))∗ × (Z/(pi))|(m + n(mod pi))(mod 2) �= n(mod 2)}.

574 HONG XU AND WEN-FENG QI

Then

|Λ0| − |Λ1| = −(p− 1).

Proof. As |Λ0|+|Λ1| = p2i−1(p−1), we need only to calculate |Λ0|, the cardinality
of Λ0. For any (m,n) ∈ Λ0, obviously we have 0 < m + n < 2pi, and the cardinality
of Λ0 can be calculated according to the parity of m.

(1) If m is odd, then

(m + n(mod pi))(mod 2) = n(mod 2) if and only if m + n ≥ pi.

Since 0 ≤ n ≤ pi − 1, the number of n satisfying pi −m ≤ n ≤ pi − 1 is m.
(2) If m is even, then

(m + n(mod pi))(mod 2) = n(mod 2) if and only if 0 < m + n < pi.

Since 0 ≤ n ≤ pi − 1, the number of n satisfying 0 ≤ n ≤ pi − 1 −m is pi −m.
From above we know that

|Λ0| =
∑

m∈(Z/(pi))∗, 2�m

m +
∑

m∈(Z/(pi))∗, 2|m
(pi −m)

=
∑

m∈(Z/(pi))∗, 2|m
pi +

∑
m∈(Z/(pi))∗

m− 2
∑

m∈(Z/(pi))∗, 2|m
m

= [p2i−1(p− 1) + p2i−1(p− 1) − (p2i−1 + 1)(p− 1)]/2

= [p2i−1(p− 1) − (p− 1)]/2.

Thus

|Λ0| − |Λ1| = p2i−1(p− 1) − 2|Λ0| = −(p− 1).

So the lemma follows.
Using the same notation as in section 2, let g be a primitive root modulo q and

an = (A · gn(mod q))(mod 2). Then a = (a0, a1, a2, . . .) refers to an l-sequence or its
decimation. The autocorrelation of a with shift τ can be represented as

Ca(τ) =

T−1∑
n=0

(−1)an+an+τ = N0 −N1,

where N0 =
∑T−1

n=0 N(an = an+τ) is the number of n satisfying an = an+τ , N1 =∑T−1
n=0 N(an �= an+τ) is the number of n satisfying an �= an+τ , and

N(an = an+τ) =

{
1 if an = an+τ ,
0 else,

N(an �= an+τ) =

{
1 if an �= an+τ ,
0 else

for fixed n, τ , 0 ≤ n, τ ≤ T − 1.
Next we will calculate the difference between N0 and N1. Set

Ω0 = {A ∈ (Z/(pe))∗|(A · gτ (mod pe))(mod 2) = A(mod 2)},
Ω1 = {A ∈ (Z/(pe))∗|(A · gτ (mod pe))(mod 2) �= A(mod 2)}.

AUTOCORRELATIONS OF MAXIMUM PERIOD FCSR SEQUENCES 575

Obviously, we have N0 = |Ω0|, N1 = |Ω1|. Thus Ca(τ) = |Ω0| − |Ω1|.
When the shift τ is of the form k · T/pi (1 ≤ i ≤ e − 1, gcd(k, p) = 1), from the

primitivity of g we know that

gτ (mod pe−i) = 1, whereas gτ (mod pe−i+1) �= 1.

Thus we can set gτ (mod pe) = 1+k0p
e−i +k1p

e−i+1 + · · ·+ki−1p
e−1, where 0 ≤ kj ≤

p− 1, j = 0, 1, . . . , i− 1, and k0 �= 0. It is easy to check that when k runs through all
elements in (Z/(pi))∗, kj also runs through all elements in Z/(p). That is,

{1 + k0p
e−i + k1p

e−i+1 + · · · + ki−1p
e−1|0 ≤ kj ≤ p− 1, j = 0, 1, . . . , i− 1, and k0 �= 0}

= {gk·T/pi

(mod pe)|1 ≤ k ≤ pi − 1 and gcd(k, p) = 1}.

For this kind of τ , we can reach the following conclusion.
Theorem 3.2. Let g be a primitive root modulo q = pe (e ≥ 2) and a =

(a0, a1, a2, . . .) be a binary periodic sequence defined by an = (A · gn(mod q))(mod 2)
with period T = pe−1(p − 1). Then for any positive integer i, 1 ≤ i ≤ e/2, the
autocorrelation of a with shift τ satisfies

Ca(k · T/pi) = −T/p2i−1,

where 1 ≤ k ≤ pi − 1 and gcd(k, p) = 1.
Proof. From the above analysis, we know that for any τ = k ·T/pi, 1 ≤ k ≤ pi−1,

gcd(k, p) = 1, gτ is of the form

gτ (mod pe) = 1 + k0p
e−i + k1p

e−i+1 + · · · + ki−1p
e−1,

where 0 ≤ kj ≤ p− 1, j = 0, 1, . . . , i− 1, and k0 �= 0. Next we will show that, for this
kind of τ , Ca(τ) = −T/p2i−1.

Using the same notation as above, we have Ca(τ) = |Ω0| − |Ω1|.
For any A ∈ (Z/(q))∗, let A = A0 +A1p+ · · ·+Ae−1p

e−1 be the p-adic expansion
of A, 0 ≤ Aj ≤ p− 1, j = 0, 1, . . . , e− 1, and A0 �= 0. Then we have

A · gτ (mod pe)

= (A0 + A1p + · · · + Ae−1p
e−1)(1 + k0p

e−i + k1p
e−i+1 + · · · + ki−1p

e−1)(mod pe)

= (A0 + A1p + · · · + Ae−i−1p
e−i−1) + (A0k0 + Ae−i)p

e−i

+ (A0k1 + A1k0 + Ae−i+1)p
e−i+1 + · · ·

+ (A0ki−1 + A1ki−2 + · · · + Ai−1k0 + Ae−1)p
e−1(mod pe)

= (A0 + A1p + · · · + Ae−i−1p
e−i−1) + pe−i · (Ae−i + pAe−i+1 + · · · + Ae−1p

i−1)

+ pe−i · (A0k0 + (A0k1 + A1k0) + · · ·
+ (A0ki−1 + A1ki−2 + · · · + Ai−1k0)p

i−1)(mod pe).

Set

m = (A0k0 + (A0k1 + A1k0) + · · · + (A0ki−1 + A1ki−2 + · · · + Ai−1k0)p
i−1)(mod pi),

n = (Ae−i + pAe−i+1 + · · · + Ae−1p
i−1)(mod pi).

Then

A · gτ (mod pe) = ((A0 + A1p + · · · + Ae−i−1p
e−i−1) + (m + n)pe−i)(mod pe),

A = ((A0 + A1p + · · · + Ae−i−1p
e−i−1) + npe−i)(mod pe).

576 HONG XU AND WEN-FENG QI

Thus (A · gτ (mod pe))(mod 2) = A(mod 2) if and only if (m + n(mod pi))(mod 2) =
n(mod 2).

If 1 ≤ i ≤ e/2, then the indices of A0, A1, . . . , Ai−1, Ae−i, Ae−i+1, . . . , Ae−1 are
pairwise distinct and can be evaluated independently. Thus when they run through
all elements in Z/(p), m and n run through all elements in (Z/(pi))∗ and (Z/(pi)),
respectively. From Lemma 3.1 we know that

|Λ0| − |Λ1| = −(p− 1),

where Λ0,Λ1 are defined as in Lemma 3.1.
Since the other e− 2i elements of A can be chosen arbitrarily from Z/(p),

Ca(τ) = |Ω0| − |Ω1| = −pe−2i(p− 1) = −T/p2i−1

holds.
Remark 3.3. If τ = (2k− 1) ·T/2pi, 1 ≤ 2k− 1 ≤ 2pi− 1, and gcd(2k− 1, p) = 1,

then gτ (mod pe−i) = −1(mod pe−i). Similarly, we can get Ca(τ) = T/p2i−1.
Especially for l-sequences, the following result holds.
Corollary 3.4. Let q = pe (e ≥ 2) be the connection integer of an FCSR that

generates an l-sequence a, and T = pe−1(p− 1). Then for any positive integers i and
k, 1 ≤ i ≤ e/2, 1 ≤ k ≤ 2pi − 1, and gcd(k, p) = 1, we have

Ca(kT/2p
i) =

{
−T/p2i−1 if 2 | k,
T/p2i−1 if 2 � k.

4. Conclusions. Experiments show that there do exist some shifts such that
the corresponding autocorrelations are high, although most autocorrelations of l-
sequences and their decimations are low. How to further evaluate all the autocor-
relations and pick up those shifts with high correlations is still an open problem.

Acknowledgment. The authors are grateful to the two anonymous referees for
their valuable comments and suggestions.

REFERENCES

[1] R. Couture and P. L’Ecuyer, On the lattice structure of certain linear congruential sequences
related to AWC/SWB generators, Math. Comp., 62 (1994), pp. 799–808.

[2] R. Couture and P. L’Ecuyer, Linear recurrences with carry as uniform random number
generators, in Proceedings of the 27th Conference on Winter Simulation, ACM, New York,
1995, pp. 263–267.

[3] R. Couture and P. L’Ecuyer, Distribution properties of multiply-with-carry random number
generators, Math. Comp., 66 (1997), pp. 591–607.

[4] S. Golomb, Shift Register Sequences, Aegean Park, Laguna Hills, CA, 1982.
[5] M. Goresky and A. Klapper, Arithmetic crosscorrelations of feedback with carry shift register

sequences, IEEE Trans. Inform. Theory, 43 (1997), pp. 1342–1345.
[6] M. Goresky, A. Klapper, and R. Murty, On the distinctness of decimations of l-sequences,

in Sequences and Their Applications—SETA 01, T. Helleseth, P. V. Kumar, and K. Yang,
eds., Springer-Verlag, New York, 2001, pp. 197–208.

[7] M. Goresky, A. Klapper, R. Murty, and I. Shparlinski, On decimations of l-sequences,
SIAM J. Discrete Math., 18 (2004), pp. 130–140.

[8] A. Klapper and M. Goresky, Large period nearly deBruijn FCSR sequences, in Advances
in Cryptology—Eurocrypt 1995, Lecture Notes in Comput. Sci. 921, Springer-Verlag, New
York, 1995, pp. 263–273.

[9] A. Klapper and M. Goresky, Feedback shift registers, 2-adic span, and combiners with mem-
ory, J. Cryptology, 10 (1997), pp. 111–147.

AUTOCORRELATIONS OF MAXIMUM PERIOD FCSR SEQUENCES 577

[10] P. L’Ecuyer, Uniform random number generators: A review, in Proceedings of the 29th
Conference on Winter Simulation, ACM, New York, 1997, pp. 127–134.

[11] P. L’Ecuyer, Uniform random number generators, in Proceedings of the 30th Conference on
Winter Simulation, IEEE Computer Society Press, Los Alamitos, CA, 1998, pp. 97–104.

[12] R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia Math. Appl. 20, Cambridge Uni-
versity Press, Cambridge, UK, 1983.

[13] W. Qi and H. Xu, Partial period distribution of FCSR sequences, IEEE Trans. Inform. Theory,
49 (2003), pp. 761–765.

[14] C. Seo, S. Lee, Y. Sung, K. Han, and S. Kim, A lower bound on the linear span of an FCSR,
IEEE Trans. Inform. Theory, 46 (2000), pp. 691–693.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 578–587

A SPLITTER THEOREM FOR INTERNALLY 4-CONNECTED
BINARY MATROIDS∗

JIM GEELEN† AND XIANGQIAN ZHOU†

Abstract. We prove that if N is an internally 4-connected minor of an internally 4-connected
binary matroid M with E(N) ≥ 4, then there exist matroids M0,M1, . . . ,Mn such that M0

∼= N ,
Mn = M , and, for each i ∈ {1, . . . , i}, Mi−1 is a minor of Mi, |E(Mi−1)| ≥ |E(Mi)| − 2, and Mi is
4-connected up to separators of size 5.

Key words. binary matroids, Splitter Theorem, 4-connectivity

AMS subject classification. 05B35

DOI. 10.1137/050629124

1. Introduction. We prove the following theorem.
Theorem 1.1 (main theorem). Let M be a binary matroid that is 4-connected

up to separators of size 5 and let N be an internally 4-connected proper minor of M .
If |E(N)| ≥ 10, then either

• there exists e ∈ E(M) such that M \e or M/e is 4-connected up to separators
of size 5 and contains an N -minor, or

• M has a fan (e1, e2, e3, e4, e5) such that M/e3 \e4 or M \e3/e4 is 4-connected
up to separators of size 5 and contains an N -minor.

A matroid M is 4-connected up to separators of size k if M is 3-connected and
for each 3-separation (A,B) of M either |A| ≤ k or |B| ≤ k. A matroid is internally
4-connected if it is 4-connected up to separators of size 3. A sequence (e1, . . . , ei) of
distinct elements of a matroid M is called a fan if the sets {e1, e2, e3}, {e2, e3, e4}, . . . ,
{ei−2, ei−1, ei} are alternately triangles and triads. For other notation and terminol-
ogy we follow Oxley [6], except we use si(M) and co(M) to denote the simplification
and cosimplification, respectively, of a matroid M . Recall that M having an N -minor
means that M has a minor isomorphic to N .

We remark that the bound |E(N)| ≥ 10 in Theorem 1.1 is included only to
simplify the proof; the result holds under the weaker hypothesis that |E(M)| ≥ 7.
(Thus we do not require a lower bound on |E(N)|.)

Seymour’s Splitter Theorem [7] is a well-known inductive tool for studying 3-
connected matroids.

Theorem 1.2 (the Splitter Theorem). Let M be a 3-connected matroid with
|E(M)| ≥ 4 and let N be a 3-connected proper minor of M . If M is not a wheel or a
whirl, then there exists e ∈ E(M) such that M \ e or M/e is 3-connected and has an
N -minor.

The Splitter Theorem allows a 3-connected matroid to be built one element at
a time from a given 3-connected minor so that the intermediate matroids are all 3-
connected. Theorem 1.1 provides a similar result for internally 4-connected binary
matroids.

∗Received by the editors April 13, 2005; accepted for publication (in revised form) December 13,
2005; published electronically August 7, 2006. This research was partially supported by grants from
the Natural Sciences and Engineering Research Council of Canada and the Sloan Foundation.

http://www.siam.org/journals/sidma/20-3/62912.html
†Department of Combinatorics and Optimization, University of Waterloo, Waterloo, ON, N2L

3G1, Canada.

578

INTERNALLY 4-CONNECTED BINARY MATROIDS 579

Corollary 1.3. Let N be an internally 4-connected minor of an internally
4-connected binary matroid M , where |E(N)| ≥ 4. Then there exists a sequence
M0,M1, . . . ,Mk of matroids such that M0

∼= N , Mk = M , and, for each i ∈ {1, . . . , k},
Mi−1 is a minor of Mi, |E(Mi−1)| ≥ |E(Mi)| − 2, and Mi is 4-connected up to sepa-
rators of size 5.

We rely heavily on results of Hall [4], who proved the following analogue of Tutte’s
Wheels and Whirls Theorem.

Theorem 1.4 (Hall [4]). If M is 4-connected up to separators of size 5 and
|E(M)| ≥ 5, then either

• there exists e ∈ E(M) such that M \e or M/e is 4-connected up to separators
of size 5, or

• M has a fan (e1, e2, e3, e4, e5) such that M/e3 \e4 or M \e3/e4 is 4-connected
up to separators of size 5.

Note that Hall’s theorem holds for all matroids, while Theorem 1.1 is only for
binary matroids. The main reason is simply that this is what we could prove. There
is a very useful lemma (Lemma 4.3) that is particular to binary matroids. We expect
that there is a reasonable analogue of the Splitter Theorem for matroids that are 4-
connected up to separators of size 5—not just for binary matroids. The applicability of
Theorem 1.1 (discussed below) stems from the fact that the class of binary matroids
is closed under 3-sums. As there is no reasonable analogue of a 3-sum for general
matroids, the proposed generalization may be of only academic interest.

It is a shortcoming of Corollary 1.3 that the intermediate matroids are only 4-
connected up to separators of size 5; it would be preferable if this could be strength-
ened to internally 4-connected. There are, however, numerous obstacles to obtaining
such a theorem, even for graphs; see Johnson and Thomas [5]. They proved that if H
is an internally 4-connected minor of an internally 4-connected graph G, then either
H and G belong to a family of exceptional graphs, or G can be built from H by means
of four possible constructions. Their intermediate graphs are “almost” internally 4-
connected. Below we give some justification that, other than causing additional case
analysis, Corollary 1.3 provides a satisfactory inductive tool for internally 4-connected
binary matroids.

First we will outline how one might use Corollary 1.3 to prove Seymour’s decom-
position of regular matroids [7]. Seymour showed that every regular matroid can be
obtained from graphic matroids, cographic matroids, and copies of R10 via 1-, 2-, and
3-sums. Equivalently, every internally 4-connected regular matroid is either graphic
or cographic or is isomorphic to R10. It would suffice to prove the following claim:
If M is a regular matroid that is 4-connected up to separators of size 5 and M has
an M∗(K3,3)-minor, then either M is graphic or M is isomorphic to R10. This claim
reduces easily to the case that M is internally 4-connected. Therefore, one could at-
tempt to prove the result inductively by using Corollary 1.3. Here we see that relaxing
the connectivity condition slightly (from internally 4-connected to 4-connected up to
separators of size 5) facilitates the use of induction.

Let M be a minor-closed class of binary matroids. Recall that a matroid N ∈ M
is a splitter for M if there is no 3-connected matroid in M that contains N as a proper
minor. Determining whether a 3-connected matroid N is a splitter for M reduces to
a finite case analysis via Seymour’s Splitter Theorem. Analogously we could call N
a 4-splitter if there is no internally 4-connected matroid in M that contains N as
a proper minor. It is a straightforward exercise to prove that, if N is internally 4-
connected with |E(N)| ≥ 9 and N is a 4-splitter for M, then there are only finitely

580 JIM GEELEN AND XIANGQIAN ZHOU

many matroids in M that are 4-connected up to separators of size 5 and that contain
N as a minor. It follows that, using Corollary 1.3, we can test whether or not N is a
4-splitter via a finite case check.

2. Small matroids. When |E(N)| ≥ 10 it is clear that Theorem 1.1 implies
Corollary 1.3. In this section we address the problems that arise for smaller matroids.
There are only a few internally 4-connected binary matroids with |E(N)| ≤ 9. The
following result can be easily verified by the reader.

Lemma 2.1. If N is an internally 4-connected binary matroid with |E(N)| ≤ 9,
then either N is a uniform matroid with at most three elements or N is isomorphic
to one of the following matroids: M(K4), F7, F

∗
7 , M(K3,3), or M∗(K3,3).

It follows from Tutte’s Wheels and Whirls Theorem that if M is a 3-connected
binary matroid with |E(M)| ≥ 4, then M has an M(K4)-minor. Thus, when N =
M(K4), Corollary 1.3 is an immediate corollary of Theorem 1.4.

Using the Splitter Theorem and “blocking sequences,” Zhou [9] studied internally
4-connected binary matroids with an F7-minor.

Lemma 2.2 (see Zhou [9]). If M is an internally 4-connected binary matroid with
a proper F7-minor, then M has an internally 4-connected minor N with an F7-minor
and with 10 ≤ |E(N)| ≤ 11.

Let M be an internally 4-connected matroid with F7 as a proper minor. By
Lemma 2.2, M has an internally 4-connected minor N with 10 ≤ |E(N)| ≤ 12 and
with an F7-minor. By the Splitter Theorem, there exists a sequence of 3-connected
matroids M0,M1, . . . ,Mj such that M0

∼= F7, Mj = N , and, for each i ∈ {1, . . . , j},
there exists e ∈ E(Mi) such that Mi−1 = Mi \ e or Mi−1 = Mi/e. Since M0, . . . ,Mj

have at most 11 elements, they are 4-connected up to separators of size 5. Now,
applying Theorem 1.1 to N , we can prove Corollary 1.3 in the case that N = F7. By
duality, Corollary 1.3 holds when N = F ∗

7 .
There are exactly three 10-element binary matroids that are internally 4-connected

and that contain an M(K3,3)-minor; these matroids, named R10, N10, and K̃5
∗
, are

defined in [7, 9]. The same techniques used by Zhou [9] in proving Lemma 2.2 can be
used to prove the following result; we omit the straightforward but lengthy details.

Lemma 2.3. Let M be an internally 4-connected binary matroid with a proper
M(K3,3)-minor. Then M has a minor isomorphic to R10, N10, K̃5

∗
, or to the cycle

matroid of one of the graphs in Figure 1.
Now, considering each of the graphs in Figure 1, we can prove Corollary 1.3 when

N = M(K3,3) and N = M(K3,3)
∗.

3. Basic lemmas on separations. In this section, we present some basic lem-
mas on separations that will be used in later sections.

Let M = (E, r) be a matroid, where r is the rank function. For A ⊆ E, we
let λM (A) denote r(A) + r(E\A) − r(M). Then A is k-separating if and only if
λM (A) ≤ k − 1. We refer to λM as the connectivity function of M . Tutte [8] proved
that the connectivity function is submodular; that is, if X,Y ⊆ E(M), then

λM (X) + λM (Y) ≥ λM (X ∩ Y) + λM (X ∪ Y).

The next lemma follows easily.
Lemma 3.1. Let X and Y be k-separating sets of M . If X ∩ Y is not (k − 1)-

separating in M , then X ∪ Y is k-separating in M .
The coclosure of a set X ⊆ E(M) is the closure of X in M∗. Clearly, an element

x ∈ E(M)\X belongs to the coclosure of X if and only if x does not belong to the

INTERNALLY 4-CONNECTED BINARY MATROIDS 581

Fig. 1. Internally 4-connected graphs.

closure of E(M)\(X ∪ {x}). A set X ⊆ E(M) is coclosed if the coclosure of X is the
set X itself. We say X is fully closed if X is both closed and coclosed.

Let (A,B) be a k-separation of the matroid M . Following the terminology of [3],
an element x ∈ E(M) is in the guts of (A,B) if x belongs to the closure of both A
and B. Dually, x is in the coguts of (A,B) if x belongs to the coclosure of both A
and B. We say that (A,B) is an exact k-separation or A is exactly k-separating if
λM (A) = k − 1. The next lemma follows easily from definitions.

Lemma 3.2. Let (A,B) be an exact k-separation of matroid M and let x ∈ B.
Then

• A∪ {x} is exactly k-separating if x belongs to either the guts or the coguts of
(A,B) but not both;

• A ∪ {x} is exactly (k − 1)-separating if x belongs to both the guts and the
coguts of (A,B);

• A ∪ {x} is exactly (k + 1)-separating if x belongs to neither the guts nor the
coguts of (A,B).

Suppose x is an element of the matroid M and let (A,B) be a k-separation of
M\x. Then x blocks (A,B) if neither (A∪ {x}, B) nor (A,B ∪ {x}) is a k-separation
of M . Now let (A,B) be a k-separation of M/x. Then x coblocks (A,B) if neither
(A∪{x}, B) nor (A,B∪{x}) is a k-separation of M . The following lemma also follows
easily from definitions.

Lemma 3.3. Let M be a matroid and let {A,B, {x}} be a partition of E(M).
Then the following hold:

• If (A,B) is an exact k-separation of M\x, then x blocks (A,B) if and only if
x is not a coloop of M , x /∈ clM (A), and x /∈ clM (B).

• If (A,B) is an exact k-separation of M/x, then x coblocks (A,B) if and only
if x is not a loop, x ∈ clM (A), and x ∈ clM (B).

Suppose that X1, X2, Y1, and Y2 are sets. The pairs (X1, Y1) and (X2, Y2) are
said to cross if all four sets X1 ∩ X2, X1 ∩ Y2, Y1 ∩ X2, and Y1 ∩ Y2 are nonempty.
We omit the proof of the next lemma, which is a standard rank argument.

582 JIM GEELEN AND XIANGQIAN ZHOU

Lemma 3.4. Let e be an element of a 3-connected matroid M . Now, let (Xd, Yd)
be a 3-separation of M\e that is blocked by e, and let (Xc, Yc) be a 3-separation of
M/e that is coblocked by e. Then (Xd, Yd) and (Xc, Yc) cross. Moreover,

• one of Xd ∩Xc and Yd ∩ Yc is 3-separating in M , and
• one of Xd ∩ Yc and Yd ∩Xc is 3-separating in M .

A matroid M is internally 3-connected if it is connected and, for each 2-separation
(A,B) of M , either |A| = 2 or |B| = 2. The following result is due to Bixby [1].

Lemma 3.5 (Bixby’s lemma). If e is an element of a 3-connected matroid M ,
then M \ e or M/e is internally 3-connected.

Lemma 3.6. Let (A,B) be a 3-separation of a 3-connected matroid M , where A
is coclosed and |A| ≥ 4. If e ∈ A is in the guts of the separation (A,B), then M \ e
is 3-connected.

Proof. Note that M/e is not internally 3-connected. Therefore, by Bixby’s lemma,
M \ e is internally 3-connected. If M \ e is not 3-connected, then there is a triad T
of M with e ∈ T . Since e ∈ clM (B) and e ∈ clM (A − {e}), we have T ∩ B 	= ∅ and
T ∩ (A− {e}) 	= ∅. However, this contradicts the fact that A is coclosed.

For disjoint sets X,Y ⊆ E(M), we let κM (X,Y) = min{λM (S) : X ⊆ S ⊆
E(M) \ Y }. It is clear that the function κM is minor monotone; that is, if N is a
minor of M with X ∪ Y ⊆ E(N), then κN (X,Y) ≤ κM (X,Y). The following is due
to Tutte [8].

Theorem 3.7 (Tutte’s Linking Theorem). Let M be a matroid and let X and Y
be disjoint subsets of E(M). Then there exists a minor N of M with E(N) = X ∪ Y
and λN (X) = κM (X,Y).

The next lemma is due to Geelen, Gerards, and Whittle [2, Lemma 4.11].
Lemma 3.8. Let M be a matroid and let X,Y ⊆ E(M) be disjoint sets with

κM (X,Y) ≥ k. If E(M)\(X ∪ Y) 	= ∅, then either
• there exists an element g ∈ E(M)\(X∪Y) such that κM/g(X,Y) = κM\g(X,Y) =
κM (X,Y), or

• λM (X) = k and there exists an ordering b1, b2, . . . , bm of elements in E(M)\(X∪
Y) such that for 1 ≤ i ≤ m, λM (X ∪ {b1, . . . , bi}) = k.

4. Binary matroids and minors. We require the following lemma.
Lemma 4.1. Let (A,B) be a 3-separation of a matroid M , and let C ⊆ B be

a circuit of M with κM (A,C) = 2. Then there exists a minor N of M such that
A ⊆ E(N) ⊆ A ∪ C, C ∩ E(N) is a triangle of N , and λN (A) = 2.

Proof. We start with the following claim.
4.2. There exists a minor M ′ of M such that E(M ′) = A∪C, λM ′(A) = 2, and

C is a circuit of M ′.
Subproof. Suppose that M ′ is a minor of M such that A∪C ⊆ E(M), κM ′(A,C) =

2, and C is a circuit of M ′. The proof is by induction on |E(M ′)−(A∪C)|. The result
is trivial if |E(M ′) − (A ∪ C)| = 0; suppose otherwise, and let e ∈ E(M ′) − (A ∪ C).
If κM ′\e(A,C) = 2, then the result follows inductively; we may assume otherwise.
Therefore, e is in the coguts of a 3-separation (Z1, Z2), where A ⊆ Z1 and C ⊆ Z2.
It follows that e 	∈ clM ′(C) and, hence, that C is a circuit in M ′/C. Moreover, by
Tutte’s Linking Theorem, κM ′/e(A,C) = 2. Now, considering M ′/e, the result follows
inductively.

Let M ′ be as given in the claim. The proof now proceeds by induction on |C|.
If |C| = 3, then the result is immediate. Thus we may assume that |C| ≥ 4. Since
λM ′(A) = 2 < rM ′(C), there exists e ∈ C − clM ′(A). Thus e is not in the guts of the
3-separation (A,C) of M ′. Therefore, λM ′/e(A) = 2. Moreover, C − {e} is a circuit
of M ′/e; thus the result follows inductively.

INTERNALLY 4-CONNECTED BINARY MATROIDS 583

Lemma 4.3. Let N be an internally 4-connected minor of a binary matroid M
and let (A,B) be a 3-separation of M with |B ∩ E(N)| ≤ 3. If M ′ is a minor of M
with A ⊆ E(N), |E(M ′)∩B| ≥ 4, and λM ′(X) ≥ min(2, |X|) for all X ⊆ E(M ′)∩B,
then M ′ has an N -minor.

Proof. Let B′ = B∩E(M ′). By duality, we may assume that either |E(N)∩B| ≤ 2
or that E(N)∩B is a triangle of N . Since M ′ is binary and |B′| ≥ 4, B′ cannot be a
line in M ′∗; thus, r∗M ′(B′) ≥ 3. Then B′ 	⊆ cl∗M ′(A) and, hence, B′ contains a circuit
C of M ′. By Lemma 4.1, M ′ has a minor M ′′ such that A ⊆ E(M ′′), λM ′(A) = 2,
and B ∩E(M) is a triangle of M ′′. Evidently N is isomorphic to a minor of M ′′ and,
hence, also of M ′.

Lemma 4.4. Let N be an internally 4-connected minor of a 3-connected binary
matroid M and let (A,B) be a 3-separation of M with |A|, |B| ≥ 5. If e is in the guts
of (A,B), then M \ e has an N -minor.

Proof. By symmetry we may assume that |E(N) ∩ B| ≤ 3. Since e is in the
guts of the 3-separation (A,B), M/e is not internally 3-connected. Therefore, by
Bixby’s lemma, M \e is internally 3-connected. Thus, co(M \e) is 3-connected. Since
e ∈ clM (A), there is no series-pair of M \ e contained in B. Therefore, λM ′(X) ≥
min(2, |X|) for all X ⊆ B − {e}. Then, by Lemma 4.3, M \ e has an N -minor.

Lemma 4.5. Let N be an internally 4-connected minor of a 3-connected binary
matroid M and let (A,B) be a 3-separation of M with |B| ≥ 5 and |E(N) ∩ B| ≤ 3.
If A is fully closed, then there exists e ∈ B such that M \ e and M/e both contain an
N -minor.

Proof. Assume by way of contradiction that the result is false. Let b ∈ B. By
duality we may assume that M/b does not have an N -minor. Then, by Lemma 4.3,
there exists a 2-separating set Y ⊆ B − {b} of M/b with |Y | ≥ 2. Let X = Y ∪ {b}.
Then X ⊆ B is a 3-separating set of M .

By Lemma 3.8 and the fact that A is fully closed, there exists e ∈ B − X such
that κM\e(A,X) = κM/e(A,X) = 2. If |X| ≥ 4, then the result follows easily from
Lemma 4.3. Thus we may assume that |X| = 3. Since Y is 2-separating in M/b, X is
a triangle of M . Let M ′ ∈ {M \e,M/e}. Thus, it suffices to prove that M ′ has an N -
minor. Since A is fully closed in M , X 	⊆ clM ′(A). By Tutte’s Linking Theorem there
exists a partition (D,C) of E(M) − (A ∪X) such that λM ′\D/C(A) = 2; we choose
such D and C so that |C| is minimal. Note that X ⊆ clM ′\D/C(A) but X 	⊆ clM ′(A).
Thus C 	= ∅; choose f ∈ C. Now, let M ′′ = M ′ \D/(C − {f}). By the minimality of
C, we have λM ′′\f (A) = 1 and λM ′′/f (A) = 2. Thus (A,X ∪ {f}) is a 3-separation
of M ′′ consisting of a triangle X with a point f in the coguts. Then, by Lemma 4.3,
M ′′ has an N -minor. Therefore, M ′ has an N -minor, as required.

5. The internally 4-connected case. The goal of this section is to prove the
following theorem.

Theorem 5.1. Let N be an internally 4-connected proper minor of an internally
4-connected binary matroid M with |E(M)| ≥ 7. Then there exists e ∈ E(M) such
that either M\e or M/e is 4-connected up to separators of size 5 and has an N -minor.

We will make use of the following lemma of Hall [4, Theorem 3.1].
Lemma 5.2. Let M be an internally 4-connected binary matroid and {a, b, c} be

a triangle of M . Then at least one of M\a, M\b, and M\c is 4-connected up to
separators of size 5.

Note that, by Lemma 5.2, if we find a triangle of M such that each of the three
elements can be deleted to keep the N -minor, then Theorem 5.1 holds. Such a triangle
will be called an N -deletable triangle. Similarly, an N -contractible triad is a triad with

584 JIM GEELEN AND XIANGQIAN ZHOU

the property that any one of its elements can be contracted to keep an N -minor.

Suppose M is an internally 4-connected binary matroid and M ′ is a minor of M .
We call M ′ a TT-connected minor of M if the following hold:

• M ′ is internally 3-connected.
• If (X,Y) is a 3-separation of M ′, then either |X| ≤ 6 or |Y | ≤ 6.
• If (X,Y) is a 3-separation of M ′ with min(|X|, |Y |) = 6, then one of X and

Y can be partitioned into two disjoint subsets of size 3, each of which is a
triangle or triad of M .

Lemma 5.3. Let M be an internally 4-connected binary matroid and let e ∈
E(M). Then at least one of M\e and M/e is a TT-connected minor of M .

Proof. Since M is internally 4-connected, M\e and M/e are both internally 3-
connected. Either the lemma holds or there exist 3-separations (Xd, Yd) and (Xc, Yc)
of M\e and M/e, respectively, such that the four sets Xd, Yd, Xc, and Yc all have size
at least 6 and none of them is the union of two 3-separating sets in M . By Lemma
3.4, one of Xd ∩Xc and Yd ∩Yc is 3-separating in M , and one of Xd ∩Yc and Yd ∩Xc

is 3-separating in M . By duality, we may assume that Xd ∩ Xc and Xd ∩ Yc are
3-separating in M . Therefore Xd is the union of two 3-element 3-separating sets of
M , which is a contradiction.

Lemma 5.4. Let M be an internally 4-connected binary matroid and let N be an
internally 4-connected minor of M with E(N) ≥ 10. If M\e is a 3-connected TT-
connected minor of M and has an N -minor, then there exists f ∈ E(M) such that
either M\f or M/f is 4-connected up to separators of size 5 and has an N -minor.

Proof. Assume that M\e is not 4-connected up to separators of size 5. Then there
exists a 3-separation (X,Y) of M\e with |X| = 6, |Y | ≥ 6, and X is a disjoint union
of two 3-element 3-separating sets, T1 and T2 of M . Since N is internally 4-connected
and E(N) ≥ 10, we must have |E(N) ∩X| ≤ 3. Up to symmetry, we have two cases.

Case 1. T1 is a triangle, and T2 is a triad of M .

Since M is internally 4-connected, T2 is closed in M and, hence, also in M \ e.
Then, since M is binary, we must have rM (T1 ∪ T2) = 5. So r∗M\e(T1 ∪ T2) =

6 − (r(M) − rM (Y)) = 6 + λM\e(X) − rM (X) = 3. Now T1 ∪ T2 is a rank-3 3-
separating set in (M \ e)∗, and T1 is a triad in (M \ e)∗. Therefore, T2 ⊆ cl(M\e)∗(Y).
Thus, by Lemma 4.4, T2 is an N∗-deletable triangle in (M \ e)∗. Hence, T2 is an
N -contractible triad in M , proving the result.

Case 2. T1 and T2 are both triangles or both triads of M .

Choose (M ′, N ′) ∈ {(M\e,N), ((M\e)∗, N∗)} such that T1 and T2 are both triads
of M ′. Since M ′∗ has no parallel pairs and since M ′∗ is binary, we have rM ′∗(T1∪T2) =
4. It follows that rM ′(T1 ∪ T2) = 4. Thus, considering a geometric representation of
M ′, T1 and T2 are triads spanning a common line. Now, by Lemma 4.3, we see that
T1 is an N ′-contractible triad of M ′. Hence, T1 is either an N -contractible triad or
an N -deletable triangle of M , proving the result.

Lemma 5.5. Let M be an internally 4-connected binary matroid and let N be an
internally 4-connected minor of M with E(N) ≥ 10. Let e ∈ E(M) such that both
M\e and M/e have an N -minor. Then there exists f ∈ E(M) such that either M\f
or M/f is 4-connected up to separators of size 5 and has an N -minor.

Proof. First assume e belongs to a triangle (or a triad) T of M . Since both M\e
and M/e have an N -minor, T is an N -deletable triangle (or an N -contractible triad)
of M . So the lemma follows from Lemma 5.2. Now we assume that e is not in a
triangle or triad of M . Hence both M\e and M/e are 3-connected. So the result
follows from Lemmas 5.3 and 5.4.

INTERNALLY 4-CONNECTED BINARY MATROIDS 585

Proof of Theorem 5.1. By the discussion in section 2, we may assume that
|E(N)| ≥ 10. By the Splitter Theorem, there exists e ∈ E(M) and M ′ ∈ {M \e,M/e}
such that M ′ is 3-connected and has an N -minor. Now, by Lemma 5.4, we can assume
that M ′ is not a TT-connected minor of M . Let (A,B) be a 3-separation of M ′, where
|A|, |B| ≥ 6 and neither A nor B is a disjoint union of two 3-element 3-separating sets
of M ′. We may assume that |E(N) ∩ B| ≤ 3. Since |E(N)| ≥ 10, |A ∩ E(N)| ≥ 7.
Now, we may further assume that B is fully closed in M ′.

By Lemma 5.5, we may assume that there is no element f ∈ B such that M ′ \ f
and M ′/f both have an N -minor. Then, by Lemma 4.5, there exists an element f ∈ B
that is in the closure or the coclosure of A in M ′. By duality we may assume that
f ∈ clM ′(A). By Lemma 4.4, M ′ \ f has a minor N ′ isomorphic to N .

Let B′ = B ∪ {e} − {f}. Note that (A,B − {f}) is a 2-separation of M ′/f and,
hence, (A,B′) is a 3-separation of M/f . By Lemma 3.6, M ′\f is 3-connected. Now it
is easy to verify that e either blocks or coblocks the 3-separation (A,B−{f}) in M ′\f
and, hence, M \ f is also 3-connected. By Lemma 5.4, we may assume that M ′ \ f is
not a TT-connected minor of M . Therefore, by Lemma 5.3, M ′/f is a TT-connected
minor of M . Now (A,B′) is a 3-separation of M and |A| ≥ 7. Therefore, |B′| = 6
and B′ is the union of two 3-separating sets of M . Therefore there exists a triangle
or triad T ⊆ B′ of M that contains e. First we consider the case that T is a triangle.
Then, since M ′ is 3-connected, we have M ′ = M \ e. However, T − {e} ⊆ B, which
contradicts the fact that e blocks the 3-separation (A,B) in M ′. Now suppose that T
is a triad. Then, since M ′ is 3-connected, we have M ′ = M/e. However, T −{e} ⊆ B,
which contradicts the fact that e coblocks the 3-separation (A,B) in M ′.

6. Proof of the main theorem. In this section we complete the proof of The-
orem 1.1. We break the proof into two cases depending on whether or not M is
4-connected up to separators of size 4.

Lemma 6.1. Let M be a binary matroid that is 4-connected up to separators of size
4 and let N be an internally 4-connected proper minor of M with |E(N)| ≥ 8. Then
there exists e ∈ E(M) such that either M\e or M/e is 4-connected up to separators
of size 5 and has an N -minor.

Proof. By Theorem 5.1, we may assume that M has a 4-element 3-separating set
X = {a, b, c, d}. Let Y = E(M) −X. By the Splitter Theorem, we may assume that
|E(M)| ≥ 13. Since M is binary, it suffices to consider the following two cases.

Case 1. (a, b, c, d) is a fan of M .
By symmetry we may assume that {a, b, c} is a triangle. Note that N is a minor

of either M \ a or M/d. By duality we may assume that N is a minor of M \ a.
Since M is 4-connected up to separators of size 4, X is fully closed in M . Then, by
Lemma 3.6, M \a is 3-connected. Suppose that (A,B) is a 3-separation of M \a with
|A∩{b, c, d}| ≥ 2. Then A∪{b, c, d} is 3-separating in M \a and, since a ∈ clM ({b, c}),
A ∪X is 3-separating in M . It follows that M \ a is 4-connected up to separators of
size 5, as required.

Case 2. X is both a circuit and a cocircuit of M .
Since |E(N)| ≥ 8 and N is internally 4-connected, we have |E(N) ∩ B| ≤ 3.

By duality and symmetry, we may assume that N is a minor of M \ a. We claim
that M \ a is 4-connected up to separators of size 5. Since X is coclosed in M ,
M \ a is cosimple. Suppose that (A,B) is a 2- or a 3-separation in M \ a with
|A∩{b, c, d}| ≥ 2. Then, since a ∈ clM ({b, c, d}) and since {b, c, d} is a triad in M \ a,
λM (B−X) = λM (A∪X) = λM\a(A∪ {b, c, d}) = λM\a(A). Now |B−X| ≥ |B| − 1.
Thus if (A,B) is a 2-separation in M \ a, then, since M is 3-connected, |B| ≤ 2.

586 JIM GEELEN AND XIANGQIAN ZHOU

b

Type 1 Type 2

a

c

d

e

b

a

c

d

e

Fig. 2. 3-separating sets of size 5.

Since M \ a is cosimple, |B| ≤ 1 and, hence, M \ a is 3-connected. Thus if (A,B)
is a 3-separation in M \ a, then, since M is 4-connected up to separators of size 4,
|B| ≤ 5. Thus, M \ a is 4-connected up to separators of size 5.

Suppose that M is a binary matroid that is 4-connected up to separators of size
5 and that (X,Y) is a 3-separation of M with |X| = 5. Note that rM (X) + r∗M (X) =
rM (X) + |X| − (r(M) − rM (Y)) = |X| + λM (X) = 7. Moreover, since M is binary,
rM (X), r∗M (X) ≥ 3. By duality we may assume that rM (X) = 3. Now, since M
is 3-connected and binary, there are either one or two elements of X in the guts of
(X,Y). Thus, X = {a, b, c, d, e} is of one of the following two types:

Type 1. {a, b, d, e} is both a circuit and a cocircuit of M , and {a, b, c} and {c, d, e}
are both triangles of M .

Type 2. (a, b, c, d, e) is a fan where {a, b, c} is a triangle.

These two types of separations are depicted in Figure 2. The next lemma can be
found in Hall [4].

Lemma 6.2. Let M be a matroid that is 4-connected up to separators of size 5
and let (X,Y) be a 3-separation of M with X = {a, b, c, d, e}.

• If X is a separation of Type 1, then one of M\a, M\b, and M\c is 4-connected
up to separators of size 5.

• If X is a separation of Type 2, then one of M \ a, M \ e, and co(M \ c) is
4-connected up to separators of size 5.

Lemma 6.3. Let M be a binary matroid that is 4-connected up to separators of
size 5 and let N be an internally 4-connected proper minor of M with |E(N)| ≥ 8. If
X = {a, b, c, d, e} is a 3-separating set of Type 1, then there exists f ∈ X such that
M \ f is 4-connected up to separators of size 5 and has an N -minor.

Proof. Since |E(N)| ≥ 8, |E(N) ∩X| ≤ 3. By Lemma 4.3, each of M \ a, M \ c,
and M \ e has an N -minor. So the theorem follows from Lemma 6.2.

Lemma 6.4. Let M be a binary matroid that is 4-connected up to separators of
size 5 and let N be an internally 4-connected proper minor of N with |E(N)| ≥ 7.
If X = {a, b, c, d, e} is a 3-separating set of Type 2, then one of M \ a, M \ e, and
M \ c/d is 4-connected up to separators of size 5 and has an N -minor.

Proof. Since X is a fan and N is internally 4-connected, |E(N) ∩ X| ≤ 3. By
Lemma 4.3, both M \ a and M \ e have an N -minor. So we may assume that neither
M \ a nor M \ e is 4-connected up to separators of size 5. So, by Lemma 6.2, M \ c/d
is 4-connected up to separators of size 5. Thus we may assume that M \ c/d has no
N -minor. It follows that |E(N) ∩X| = 3, that E(N) ∩X is a triad of N , and that

INTERNALLY 4-CONNECTED BINARY MATROIDS 587

none of M/b, M/c, and M/d has an N -minor.
6.5. M \ a is 3-connected and there exists a 3-separation (A,B) in M \ a with

|A|, |B| ≥ 6 and with b or c in its coguts.
Subproof. By Lemma 3.6, M \a is 3-connected. However, M \a is not 4-connected

up to separators of size 5. So there exists a 3-separation (A,B) of M \a with |A|, |B| ≥
6. By symmetry we may assume that |{b, c, d} ∩ A| ≥ 2. Since a ∈ clM ({b, c}) and
since a blocks the separation (A,B), we have |B ∩ {b, c}| = 1. Let f ∈ {b, c} ∩ B.
Since {b, c, d} is a triad, f is in the coguts of (A,B).

Let (A,B) be the 3-separation of M \ a mentioned above and let f ∈ {b, c} be in
its coguts. By Lemma 4.4, M \ a/f has an N -minor. But this contradicts the fact
that M/f has no N -minor.

REFERENCES

[1] R. E. Bixby, A simple theorem on 3-connectivity, Linear Algebra Appl., 45 (1982), pp. 123–126.
[2] J. F. Geelen, A. M. H. Gerards, and G. Whittle, Excluding a Planar Graph from GF (q)-

Representable Matroids, manuscript.
[3] J. F. Geelen and G. Whittle, Matroid 4-connectivity: A deletion-contraction theorem, J.

Combin. Theory Ser. B, 83 (2001), pp. 15–37.
[4] R. Hall, A chain theorem for 4-connected matroids, J. Combin. Theory Ser. B, 93 (2005),

pp. 45–66.
[5] T. Johnson and R. Thomas, Generating internally four-connected graphs, J. Combin. Theory

Ser. B, 85 (2002), pp. 21–58.
[6] J. G. Oxley, Matroid Theory, Oxford University Press, New York, 1992.
[7] P. D. Seymour, Decomposition of regular matroids, J. Combin. Theory Ser. B, 28 (1980),

pp. 305–359.
[8] W. T. Tutte, Connectivity in matroids, Canad. J. Math., 18 (1966), pp. 1301–1324.
[9] X. Zhou, On internally 4-connected non-regular binary matroids, J. Combin. Theory Ser. B, 91

(2004), pp. 327–343.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 588–596

MATROID T -CONNECTIVITY∗

JIM GEELEN† , BERT GERARDS‡ , AND GEOFF WHITTLE§

Abstract. We introduce a new generalization of the maximum matching problem to matroids;
this problem includes Gallai’s T -path problem for graphs.

Key words. matroids, Gallai’s T -paths theorem, paths, connectivity, matching

AMS subject classification. 05B35

DOI. 10.1137/050634190

1. Introduction. Let G = (V,E) be a simple graph and let T ⊆ V . A T -path
is a path in G connecting two vertices in T . Let νG(T) denote the maximum number
of vertex disjoint T -paths in G. This parameter was introduced by Gallai [2], who
showed that determining νG(T) is equivalent to the maximum matching problem.
(Note that νG(V) is the size of a maximum matching in G.) As a consequence of an
exact min-max theorem for νG(T), Gallai [2] proved the following theorem.

Theorem 1.1 (Gallai [2]). Let G = (V,E) be a graph and T ⊆ V . Then there
exists a set X ⊆ V that hits every T -path such that |X| ≤ 2νG(T).

Note that if X ⊆ V hits each T -path, then νG(T) ≤ |X|. Gallai’s theorem
shows that this natural upper bound for νG(T) is within a factor of 2 of being tight.
We consider a matroidal generalization of νG(T) and prove analogous upper bounds.
This problem arose naturally in proving structural results on minor-closed classes of
matroids represented over finite fields. The main result presented here is needed as a
lemma in that project.

Let M be a matroid. For X ⊆ E(M) we let

λM (X) = rM (X) + rM (E(M) −X) − r(M).

For disjoint sets S, T ⊆ E(M), we let

κM (S, T) = min(λM (X) : S ⊆ X ⊆ E(M) − T).

Then, for a set T ⊆ E(M), we let

νM (T) = max(κM (X,T −X : X ⊆ T);

we call νM (T) the T -connectivity of M . It is straightforward to verify that λM (X) =
λM∗(X). Therefore κM (S, T) = κM∗(S, T) and, hence, νM (T) = νM∗(T). We will
consider a slightly more general parameter. Let T be a collection of disjoint subsets

∗Received by the editors June 21, 2005; accepted for publication (in revised form) February 2,
2006; published electronically August 7, 2006. This research was partially supported by grants from
the Natural Sciences and Engineering Research Council of Canada and the Marsden Fund of New
Zealand.

http://www.siam.org/journals/sidma/20-3/63419.html
†Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada

(jfgeelen@uwaterloo.ca).
‡CWI, Amsterdam and Department of Mathematics and Computer Science, Eindhoven University

of Technology, The Netherlands (bert.gerards@cwi.nl).
§School of Mathematical and Computing Sciences, Victoria University, Wellington, New Zealand

(geoff.whittle@mcs.vuw.ac.nz).

588

MATROID T -CONNECTIVITY 589

of E(M). Then we define νM (T) to be the maximum of κM (X,Y), where X = ∪T1

and Y = ∪T2 for a partition (T1, T2) of T . Thus, if T is a partition of a set T ⊆ E(M)
into singletons, then νM (T) = νM (T). We also call νM (T) the T -connectivity of M .

Let G = (V,E) be a simple graph. We can construct a matroid M on V ∪E such
that V is a basis of M and, for each edge e = uv of G, the element e is placed freely
on the line through u and v. Note that if P is a nontrivial (u, v)-path in G, then
{u, v} ∪ E(P) is a circuit of M . Now it is a straightforward application of Menger’s
theorem to prove that for any two disjoint subsets S and T of vertices of G, κM (S, T)
is equal to the maximum number of vertex disjoint (S, T)-paths in G. Now it is easy
to see that, for any T ⊆ V , we have νM (T) = νG(T).

Let T be a collection of disjoint subsets of V . Let νG(T) denote the maxi-
mum, taken over all partitions (T1, T2) of T , of the connectivity between ∪T1 and
∪T2 in G. Thus νG(T) = νM (T). A T -path is a path whose ends are in dis-
tinct parts of T . Mader [5] considered the related problem of finding the maxi-
mum number, μG(T), of vertex disjoint T -paths. It is straightforward to show that
νM (T) ≤ μG(T) ≤ 2νM (T). (Indeed, the first inequality is trivial and the second
comes from the fact that when taking a random partition (T1, T2) of T we expect
half of Mader’s T -paths to connect ∪T1 and ∪T2.) This bound is interesting since
μG(T) can be computed efficiently (see Lovász [4] or Chudnovsky, Cunningham, and
Geelen [1]), while computing νG(T) is NP-hard. Indeed, suppose that G is a graph
consisting of a perfect matching, T is a partition of V (G), and G′ is obtained from G
by shrinking each part of T to a single vertex. Then νG(T) is the size of a maximum
cut in G′. Therefore computing νG(T) is NP-hard, as claimed. Moreover, this implies
that computing νM (T) is NP-hard.

Let M1 and M2 be matroids on a common ground set E. We say that M2 is
obtained by an elementary transformation on M1 if there exists a matroid N on
E ∪ {e} such that either M1 = N \ e and M2 = N/e or M1 = N/e and M2 = N \ e.
We define dist(M1,M2) to be the minimum number of elementary transformations
required to transform M1 into M2. The following properties are straightforward to
verify; the last of these properties shows that dist(M1,M2) is well defined:

• dist(M1,M2) = dist(M2,M1).
• dist(M∗

1 ,M
∗
2) = dist(M1,M2).

• If M ′ is the rank-zero matroid on E, then dist(M1,M
′) = r(M1).

• If M3 is a matroid on E, then dist(M1,M3) ≤ dist(M1,M2) + dist(M2,M3).
• dist(M1,M2) ≤ |E|.

We use the following lemma.
Lemma 1.2. Let M1 and M2 be matroids on a common ground set E and let T

be a collection of disjoint subsets of E. Then νM1(T) ≤ νM2(T) + dist(M1,M2).
Proof. By a simple inductive argument we may assume that dist(M1,M2) = 1.

Moreover, by duality we may assume that M1 = N \ e and M2 = N/e. Now it is easy
to check that νM1(T) ≤ νN (T) ≤ νM2

(T) + 1, as required.
Note that νM (T) = 0 if and only if no component of M contains elements from

two distinct parts of T . Let T = ∪T and let δM (T) = max(κM (X,T −X) : X ∈ T).
Note that δM (T) ≤ νM (T) and, when T contains only singletons, δM (T) ≤ 1. The
main result of this paper is the following.

Theorem 1.3. Let M be a matroid and let T be a collection of disjoint subsets of
E(M). Then there exists a matroid M ′ on the ground set E(M) such that νM ′(T) = 0
and dist(M,M ′) ≤ 2(δM (T) + 1)νM (T).

The next result is an easy consequence of Theorem 1.3. We say that a partition

590 JIM GEELEN, BERT GERARDS, AND GEOFF WHITTLE

P of E(M) encloses T if each set in T is contained in some set in P and no set in P
contains two or more sets in T . The order of P, denoted by ordM (P), is defined as
max(λM (∪Q) : Q ⊆ P). Note that if P encloses T , then ordM (P) ≥ νM (T).

Corollary 1.4. Let M be a matroid and let T be a collection of disjoint subsets
of E(M). Then there exists a partition P of E(M) enclosing T where ordM (P) ≤
2(δM (T) + 1)νM (T).

While Corollary 1.4 does follow from Theorem 1.3, we will not include the easy
proof since Corollary 1.4 is an immediate consequence of Theorem 4.1.

We conclude the introduction by stating some open problems.
Problem 1.5. Can the bound of 2(δM (T)+1)νM (T) in Theorem 1.3 be improved

to cνM (T) for some constant c?
Problem 1.6. In the case that each element of T is a singleton, can the bound

of 2(δM (T) + 1)νM (T) in Theorem 1.3 be improved to 2νM (T)?
We now turn to the problem of finding a tight bound on T -connectivity. If M ′ is

a matroid on the ground set E(M), then it is straightforward to prove that

νM (T) ≤ dist(M,M ′) +
∑(⌊

|T ∩ F |
2

⌋
: F a component of M ′

)
.

Problem 1.7. Is there always a matroid M ′ for which equality is attained?
Recall that computing νM (T) is NP-hard. The final problems concern the com-

plexity of determining νM (T); as usual we assume that the matroid is given by its
rank oracle.

Problem 1.8. Is there a polynomial-time algorithm for computing νM (T)?
It is straightforward to show that νM (E(M)) is the size of a maximum common

independent set of M and M∗. So we can compute νM (E(M)) efficiently via matroid
intersection. The following special case of Problem 1.8 contains the matching problem.

Problem 1.9. Is there a polynomial-time algorithm for computing νM (B) where
B is a basis of M?

The above problems are all open for the class of representable matroids.

2. Submodular functions. This section contains notation, definitions, and el-
ementary results on submodular functions.

A set function on a set E is an integer valued function defined on the collection
of subsets of E. Let λ be a set function on E. Then

• λ is submodular if λ(X) + λ(Y) ≥ λ(X ∩ Y) + λ(X ∪ Y) for each X,Y ⊆ E;
• λ is nonnegative if λ(X) ≥ 0 for each X ⊆ E;
• λ is symmetric if λ(X) = λ(E −X) for each X ⊆ E.

We call K = (E, λ) a connectivity system if λ is a symmetric, submodular, nonneg-
ative set function on a finite set E. For a matroid M we define K(M) = (E(M), λM);
K(M) is readily seen to be a connectivity system. Let K = (E, λ) be a connectivity
system and let S and T be disjoint subsets of E. Now let κK(S, T) = min(λ(X) :
S ⊆ X ⊆ E − T). Finally, for a collection T of disjoint subsets of E, we let
νK(T) = maxκK(X,Y) where the maximum is taken over all partitions (X,Y) of
∪T where X is the union of a subcollection of T . When T is a partition of a set
T ⊆ E into singletons, then we let νM (T) = νM (T). In section 4 we provide upper
bounds on νK(T). In the remainder of this section we consider preliminary results.

A set function r on E is nondecreasing if r(X) ≤ r(Y) whenever X ⊆ Y .
Lemma 2.1. Let K = (E, λ) be a connectivity system, let T ⊆ E, and let

r(S) = κK(S, T) for each S ⊆ E − T . Then r is a nondecreasing, submodular,
nonnegative set function on E − T .

MATROID T -CONNECTIVITY 591

Proof. It is clear that r is nondecreasing and nonnegative. Let S1, S2 ⊆ E − T .
Then, for i ∈ {1, 2}, there exists a set Xi such that Si ⊆ Xi ⊆ E − T and λ(Xi) =
κK(Si, T) = r(Si). Note that S1 ∩ S2 ⊆ X1 ∩X2 ⊆ E − T and S1 ∪ S2 ⊆ X1 ∪X2 ⊆
E − T . Therefore λ(X1 ∩ X2) ≥ κK(S1 ∩ S2, T) = r(S1 ∩ S2) and λ(X1 ∪ X2) ≥
κK(S1 ∪ S2, T) = r(S1 ∪ S2). Hence

r(S1) + r(S2) = λ(X1) + λ(X2)

≥ λ(X1 ∩X2) + λ(X1 ∪X2)

≥ r(S1 ∩ S2) + r(S1 ∪ S2).

Therefore r is submodular, as required.
The following result is well known in the context of polymatroids.
Lemma 2.2. Let r be a nondecreasing, submodular set function on a finite set E.

If X ⊆ Y ⊆ E and r(X ∪ {e}) = r(X) for each e ∈ Y −X, then r(X) = r(Y).
Proof. Suppose otherwise and choose Y ′ minimal such that X ⊆ Y ′ ⊆ Y and

r(Y ′) > r(X). Clearly |Y ′| ≥ |X| + 2. Let e ∈ Y ′ − X. By our choice of Y ′,
r(Y ′ − {e}) = r(X) and r(X ∪ {e}) = r(X). Now, by submodularity, r(X ∪ {e}) +
r(Y ′−{e}) ≥ r(X)+ r(Y ′). But then r(Y ′) ≤ r(Y ′−{e}) = r(X); this contradiction
completes the proof.

Lemma 2.3. Let K = (E, λ) be a connectivity system and let S and T be disjoint
subsets of E. Then there exist sets S′ ⊆ S and T ′ ⊆ T such that κK(S′, T ′) =
κK(S, T) and |S′|, |T ′| ≤ κK(S, T).

Proof. Choose S′ ⊆ S maximal such that κK(S′, T) ≥ |S′|. Note that this is well
defined since κK(∅, T) ≥ 0. By the definition of S′ we have κK(S′ ∪ {e}) = κK(S′)
for all e ∈ S − S′. Therefore, by Lemmas 2.1 and 2.2, κK(S′, T) = κK(S, T). Now
choose T ′ ⊆ T maximal such that κK(S′, T ′) ≥ |T ′|. As above we get κK(S′, T ′) =
κK(S′, T) = κK(S, T), as required.

Lemma 2.4. Let K = (E, λ) be a connectivity system, let S and T be disjoint
subsets of E with κK(S, T) = k, and let S = {X : S ⊆ X ⊆ E − T and λ(X) = k}.
If X,Y ∈ S, then X ∩ Y,X ∪ Y ∈ S.

Proof. Note that S ⊆ X∩Y ⊆ X∪Y ⊆ E−T . Then, since κK(S, T) = k we have
λ(X ∩ Y), λ(X ∪ Y) ≥ k. Moreover, by submodularity, we have 2k = λ(X) + λ(Y) ≥
λ(X∩Y)+λ(X∪Y) ≥ 2k. It follows that λ(X∩Y) = k and λ(X∪Y) = k. Therefore
X ∩ Y,X ∪ Y ∈ S, as required.

3. Homomorphisms. Let K = (E, λ) be a connectivity system and let X ⊆ E.
We define a set function λ′ on (E − X) ∪ {eX} such that for each Y ⊆ E − X,
λ′(Y) = λ(Y) and λ′(Y ∪ {eX}) = λ(Y ∪X). Now let K ◦X = ((E −X)∪ {eX}, λ′).
It is easy to verify that K ◦X is a connectivity system; we say that K ◦X is obtained
from K by identifying X. If T is a collection of disjoint subsets of E, then we let
K ◦ T denote the connectivity system obtained by identifying each set in T .

Remark. If K = (E, λ) is a connectivity system and T is a collection of disjoint
subsets of E, and if T = {eX : X ∈ T }, then νK(T) = νK◦T (T).

By the above remark, we can reduce the problem of computing νK(T) to the
apparently easier problem of computing νK(T).

Theorem 3.1. Let K = (E, λ) be a connectivity system and let T = {T1, . . . , Tl}
be a partition of T ⊆ E. Then there exists a collection T ′ = {T ′

1, . . . , T
′
l } of disjoint

sets such that νK(T ′) = νK(T) and, for each i ∈ {1, . . . , l}, Ti ⊆ T ′
i and λ(T ′

i) =
κK(Ti, T − Ti).

Note that Theorem 3.1 is an immediate corollary of the following lemma.

592 JIM GEELEN, BERT GERARDS, AND GEOFF WHITTLE

Lemma 3.2. Let K = (E, λ) be a connectivity system, let A, B, and C be
disjoint subsets of E, and let X be any set satisfying A ⊆ X ⊆ E − (B ∪ C) and
λ(X) = κK(A,B ∪ C). Then νK({A,B,C}) = νK({X,B,C}).

Proof. Note that by symmetry it suffices to prove that κK(B,A∪C) = κK(B,X∪
C). Let Y be a set satisfying B ⊆ Y ⊆ E− (A∪C) and λ(Y) = κK(B,A∪C). Since
A ⊆ X−Y ⊆ E− (B ∪C) and B ⊆ Y −X ⊆ E− (A∪C), we have λ(Y) ≤ λ(Y −X)
and λ(X) ≤ λ(X − Y). However, by submodularity and symmetry, we have

λ(Y) + λ(X) ≥ λ(Y −X) + λ(X − Y).

Therefore λ(Y) = λ(Y − X) and λ(X) = λ(X − Y). Then, since B ⊆ Y − X ⊆
E − (X ∪ C), we have κK(B,X ∪ C) = κK(B,A ∪ C), as required.

4. Connectivity systems. Let K = (E, λ) be a connectivity system and let T
be a collection of disjoint subsets of E. Now let P be a partition of E. The order
of P, denoted ordK(P), is max(λ(∪S) : S ⊆ P). Note that if P encloses T , then
νK(T) ≤ ordK(P). Let T = ∪T and let δK(T) = max(κK(X,T −X) : X ∈ T). One
of the main results of this section is the following.

Theorem 4.1. Let K = (E, λ) be a connectivity system and let T be a collection
of disjoint subsets of E. Then there exists a partition P of E enclosing T with
ordK(P) ≤ 2(1 + δK(T))νK(T).

We conjecture that this bound can be sharpened from 2(1 + δK(T))νK(T) to
2νK(T).

The problem of computing ordK(P) is easily seen to contain the max-cut problem
and is therefore NP-hard. We will introduce another notion, a (T, k)-dissection, that
also provides an upper bound on νK(T). However, the key properties of a (T, k)-
dissection can be verified efficiently.

A triple (A,B,P) is a (T, k)-dissection if it satisfies the following:
• P ∪ {A,B} is a partition of E.
• |A ∩ T |, |B ∩ T | ≤ k and |P ∩ T | = 1 for each P ∈ P.
• κK(A,B) = k.
• λ(A ∪ P) = k for each P ∈ P.

Note that the third property above is the only property that is nontrivial to verify.
However, we can compute κK(A,B) efficiently via submodular function minimization
(see Iwata, Fleischer, and Fujishige [3] or Schrijver [7]). Therefore we can efficiently
verify that a triple is a (T, k)-dissection.

Theorem 4.2. Let K = (E, λ) be a connectivity system and let T ⊆ E where
νK(T) = k. Then K admits a (T, k)-dissection.

Proof. Let (T1, T2) be a partition of T such that κK(T1, T2) = k. By Lemma 2.3,
there exists A′ ⊆ T1 and B′ ⊆ T2 such that κK(A′, B′) = k and |A′|, |B′| ≤ k. Let
A = {X : A′ ⊆ X ⊆ E − B′ and λ(X) = k}. By Lemma 2.4, A is closed under
intersections and unions.

For each set Z ⊆ T with A′ ⊆ Z ⊆ T −B′, we have κK(Z, T −Z) = k. Therefore
there exists X ∈ A such that X ∩ T = Z. Choose a set A ∈ A as large as possible
such that A ∩ T = A′. Now, for each element e ∈ T − (A′ ∪ B′), choose a set
Ae ∈ S as large as possible such that Ae ∩ T = A′ ∪ {e}. Note that A ∪ Ae ∈ A and
(A ∪Ae) ∩ T = A′ ∪ {e}. Therefore, by the maximality of Ae, we have A ⊆ Ae. Now
consider two distinct elements e, f ∈ T − (A′ ∪B′). Note that A ⊆ Ae ∩Af ∈ A and
(Ae ∩Af) ∩ T = A′. Therefore, by the maximality of A, we have Ae ∩Af = A. Now
let B = E − ∪(Ae : e ∈ T − (A′ ∪ B′)) and let P = (Ae − A : e ∈ T − (A′ ∪ B′)).
Then (A,B,P) is a (T, k)-dissection.

MATROID T -CONNECTIVITY 593

For T ⊆ E we let ΔK(T) = max(λ({e} : e ∈ T)).
Theorem 4.3. Let K = (E, λ) be a connectivity system, let T ⊆ E, let T be the

partition of T into singletons, and let (A,B,P) be a (T, k)-dissection. Then there exist
partitions A of A and B of B such that A∪B∪P encloses T and ordK(A∪B∪P) ≤
2(1 + ΔK(T))k. Hence νK(T) ≤ 2(1 + ΔK(T))k.

Proof. Let A = {A− T} ∪ {{e} : e ∈ A ∩ T}, B = {B − T} ∪ {{e} : e ∈ B ∩ T},
and C = A ∪ B ∪ P. Note that C encloses T ; it remains to prove that ord(C) ≤
2(1 + ΔK(T))k.

4.3.1. ordK(P ∪ {A,B}) ≤ 2k.
Subproof. By definition, λ(A∪P) = k for each P ∈ P. Therefore, by Lemma 2.4,

λ(A ∪ (∪Q)) = k for each Q ⊆ P. By symmetry, λ(B ∪ (∪Q)) = k for each Q ⊆ P.
Now, by submodularity, λ(∪Q) + λ(A ∪ B ∪ (∪Q)) ≤ λ(A ∪ (∪Q)) + λ(B ∪ (∪Q)) =
2k for each Q ⊆ P. Therefore λ(∪Q) ≤ 2k and λ(A ∪ B ∪ (∪Q)) ≤ 2k. Thus
ordK(P ∪ {A,B}) ≤ 2k, as required.

Consider a set Q ⊆ C. Let X = ∪Q and let Y = E − X. Note that either
|X ∩ A| ≤ k or |Y ∩ A| ≤ k. By symmetry we may assume that |X ∩ A| ≤ k.
Similarly, either |X ∩ B| ≤ k or |Y ∩ B| ≤ k. Consider the case that |X ∩ B| ≤ k.
Then, by submodularity and statement 4.3.1, λ(X) ≤ 2kΔK(T) + λ(X − (A ∪B)) ≤
2kΔK(T) + 2k. Finally, consider the case that |Y ∩ B| ≤ k. By submodularity and
statement 4.3.1, λ(X) ≤ 2kΔK(T) + λ((X − A) ∪ B) ≤ 2kΔK(T) + 2k. Therefore
ordK(A ∪ B ∪ P) ≤ 2(1 + ΔK(T))k, as required.

We can now put these results together to prove Theorem 4.1. By Theorem 3.1
we may assume that λ(X) ≤ δK(T) for each X ∈ T . Then, by possibly applying a
homomorphism, we may assume that each part of T is a singleton. Now Theorem 4.1
is an immediate consequence of Theorems 4.2 and 4.3.

5. Back to matroids.
Lemma 5.1. Let (S,A1, A2, T) be a partition of the elements of a matroid M such

that λM (S ∪A1)+λM (S ∪A2) = λM (S)+λM (S ∪A1 ∪A2). Then λM/S\T (A1) = 0.
Proof. We have

0 = λM (S ∪A1) + λM (S ∪A2) − λM (S) − λM (S ∪A1 ∪A2)

= (rM (S ∪A1) + rM (T ∪A2) − rM (E))

+(rM (S ∪A2) + rM (T ∪A1) − rM (E))

−(rM (S) + rM (T ∪A1 ∪A2) − rM (E))

−(rM (S ∪A1 ∪A2) + rM (T) − rM (E))

= (rM (S ∪A1) + rM (S ∪A2) − rM (S) − rM (S ∪A1 ∪A2))

+(rM (T ∪A1) + rM (T ∪A2) − rM (T) − rM (T ∪A1 ∪A2))

= (rM/S(A1) + rM/S(A2) − rM/S(A1 ∪A2))

+(rM/T (A1) + rM/T (A2) − rM/T (A1 ∪A2))

= λM/S\T (A1) + λM\S/T (A1).

Therefore, since the last expression is the sum of two nonnegative values, we get
λM/S\T (A1) = 0 and λM\S/T (A1) = 0, as required.

Lemma 5.2. Let (S,A1, . . . , Al, T) be a partition of the elements of a matroid
M such that κM (S, T) = k and, for each i ∈ {1, . . . , l}, λM (S ∪ Ai) = k. Then
λM/S\T (Ai) = 0 for all i ∈ {1, . . . , l}.

594 JIM GEELEN, BERT GERARDS, AND GEOFF WHITTLE

Proof. By Lemma 2.4, λM (S ∪ (∪i∈XAi)) = k for all X ⊆ {1, . . . , l}. Let A′
2 =

A2 ∪ · · · ∪ Al. Applying Lemma 5.1 to (S,A1, A
′
2, T) we see that λM/S\T (A1) = 0.

Then, by symmetry, λM/S\T (Ai) = 0 for all i ∈ {1, . . . , l}.
The following result is an immediate corollary of Lemma 5.2 and Theorem 4.2.
Lemma 5.3. Let M =(E, r) be a matroid and let T be a collection of disjoint sub-

sets of E(M) with νM (T)=k. Then there exist disjoint sets A,B ⊆ E(M) such that
• each set T ∈ T is contained in A, B, or E − (A ∪B);
• A and B each contain at most k sets from T ;
• λM (A) ≤ k, λM (B) ≤ k;
• if T ′ is the collection of sets in T disjoint from A∪B, then νM/A\B(T ′) = 0.

We need the following lemma. (Note that the proof is not self-contained; we use
Theorem 6.1 from the next section.)

Lemma 5.4. Let M be a matroid and let (A,B) be a partition of E(M). Then
there exists a matroid M ′ on E(M) such that dist(M,M ′) = λM (A), λM ′(A) = 0,
M/B = M ′/B, and M/A = M ′/A.

Proof. The result is vacuous when λM (A) = 0, so suppose that λM (A) > 0. By
Theorem 6.1, there exists a matroid N on ground set E(M)∪{e} such that M = N \e,
e ∈ clN (A), e ∈ clN (B), and e is not a loop of N . Let M ′′ = N/e. Note that e is a loop
in both N/A and N/B. Therefore M ′′/A = (N/e)/A = (N/A)/e = (N/A) \ e = M/A
and, similarly, M ′′/B = M/B. Also note that λM ′′(A) = λM (A) − 1 and that
dist(M,M ′′) = 1. The result now follows by an easy inductive argument.

We are now ready to prove our main result, which we restate here for convenience.
Theorem 5.5. Let M = (E, r) be a matroid and let T be a collection of disjoint

subsets of E(M). Then there exists a matroid M ′ on ground set E(M) such that
νM ′(T) = 0 and dist(M,M ′) ≤ 2(δM (T) + 1)νM (T).

Proof. Suppose that T = {T1, . . . , Tl} and let k = νM (T). By Theorem 3.1, there
exists a collection S = {S1, . . . , Sl} of disjoint subsets of E(M) such that νM (S) = k
and, for each i ∈ {1, . . . , l}, Ti ⊆ Si and λM (Si) ≤ δM (T). Then, by Lemma 5.3,
there exist disjoint subsets A and B of E(M) such that

• each set S ∈ B is contained in A, B, or E(M) − (A ∪B);
• A and B each contain at most k sets from S;
• λM (A) ≤ k, λM (B) ≤ k;
• if S ′ is the collection of sets in S disjoint from A ∪B, then νM/A\B(S ′) = 0.

By Lemma 5.4 and duality, there exists a matroid M ′ on ground set E(M) such that
dist(M,M ′) ≤ 2k, λ′

M (A) = λ′
M (B) = 0, and M ′/A \ B = M/A \ B. Note that, for

each S ∈ S − S ′, we have λM ′(S) ≤ δM (T). Therefore, by Lemma 5.4, there exists
a matroid M ′′ such that dist(M ′,M ′′) ≤ 2kδM (T), and νM ′′(S) = 0. Then, since
Ti ⊆ Si for each i ∈ {1, . . . , l}, we have νM ′′(T) = 0, as required.

6. Modular cuts. In this section we prove the following theorem.
Theorem 6.1. Let M be a matroid and let (A,B) be a partition of E(M). If

λM (A) > 0, then there exists a matroid M ′ on ground set E(M) ∪ {e} such that
M = M ′ \ e, e ∈ clM ′(A), e ∈ clM ′(B), and e is not a loop of M ′.

Note that Theorem 6.1 is trivial for representable matroids.
Let X,Y ⊆ E(M). We call (X,Y) a modular pair if rM (X) + rM (Y) = rM (X ∩

Y) + rM (X ∪ Y). A collection F of subsets of E(M) is called a modular cut of M if
it satisfies the following three conditions:

1. If X ⊆ Y ⊆ E(M) and X ∈ F , then Y ∈ F .
2. If X,Y ∈ F and (X,Y) is a modular pair, then X ∩ Y ∈ F .
3. If Y ∈ F and X ⊆ Y with rM (X) = rM (Y), then X ∈ F .

MATROID T -CONNECTIVITY 595

The following theorem is well known; see, for example, Oxley [6, Theorem 7.2.2].
Theorem 6.2. Let F be a modular cut in a matroid M . Then there exists a

matroid N on ground set E(M)∪{e} such that N \ e = M and, for each X ⊆ E(M),
rN (X ∪ {e}) = rM (X) if and only if X ∈ F .

Lemma 6.3. Let M be a matroid, let (A,B) be a partition of E(M), and let F
be the collection of all sets X ⊆ E(M) such that λM/X(A − X) = 0. Then F is a
modular cut of M .

Proof. Note that F clearly satisfies the first condition.
6.3.1. For any X ⊆ E(M), X ∈ F if and only if (A ∪X,B ∪X) is a modular

pair in M .
Subproof. Note that λM/X(A−X) = rM/X(A−X)+ rM/X(B−X)− r(M/X) =

rM (A ∪ X) + rM (B ∪ X) − r(M) − rM (X). Thus λM/X(A − X) = 0 if and only if
(A ∪X,B ∪X) is a modular pair.

Now consider the third condition. Suppose that Y ∈ F and X ⊆ Y with rM (X) =
rM (Y). By the claim, (A∪ Y,B ∪ Y) is a modular pair. Moreover, since X ⊆ Y with
rM (X) = rM (Y), we have rM (A ∪ Y) = rM (A ∪ X), rM (B ∪ Y) = rM (B ∪ X),
rM ((A ∪ Y) ∩ (B ∪ Y)) = rM ((A ∪ X) ∩ (B ∪ X)), and rM ((A ∪ Y) ∪ (B ∪ Y)) =
rM ((A ∪X) ∪ (B ∪X)). Therefore (A ∪X,B ∪X) is a modular pair and hence, by
the claim, X ∈ F . This verifies the third condition.

Finally consider the second condition. Let X1, X2 ∈ F such that (X1, X2) is a
modular pair. By the definition of F , X1 ∪X2 ∈ F . Then, by statement 6.3.1, each
of (A ∪X1, B ∪X1), (A ∪X2, B ∪X2), (A ∪ (X1 ∪X2), B ∪ (X1 ∪X2)) is a modular
pair. Now

rM (A ∪ (X1 ∩X2)) + rM (B ∪ (X1 ∩X2))

= rM ((A ∪X1) ∩ (A ∪X2)) + rM ((B ∪X1) ∩ (B ∪X2))

≤ (rM (A ∪X1) + rM (A ∪X2) − rM (A ∪X1 ∪X2))

+ (rM (B ∪X1) + rM (B ∪X2) − rM (B ∪X1 ∪X2))

= (rM (A ∪X1) + rM (B ∪X1))

+ (rM (A ∪X2) + rM (B ∪X2))

− (rM (A ∪X1 ∪X2) + rM (B ∪X1 ∪X2))

= (rM (X1) + r(M)) + (rM (X2) + r(M))

− (rM (X1 ∪X2) + r(M))

= (rM (X1) + rM (X2) − rM (X1 ∪X2)) + r(M)

= rM (X1 ∩X2)) + r(M).

So (A ∪ (X1 ∩ X2), B ∪ (X1 ∩ X2)) is a modular pair. Then, by statement 6.3.1,
X1 ∩X2 ∈ F . Hence F is a modular cut, as required.

Now Theorem 6.1 is an immediate consequence of Theorem 6.2 and Lemma 6.3.

Acknowledgment. We thank the referee for carefully reading the manuscript
and for correcting a significant error in our definition of a modular cut.

REFERENCES

[1] M. Chudnovsky, W. H. Cunningham, and J. Geelen, An Algorithm for Packing Non-zero
A-Paths in Group-Labelled Graphs, preprint.

596 JIM GEELEN, BERT GERARDS, AND GEOFF WHITTLE

[2] T. Gallai, Maximum-minimum Sätze und verallgemeinerte Faktoren von Graphen, Acta. Math.
Acad. Sci. Hung., 12 (1961), pp. 131–173.

[3] S. Iwata, L. Fleischer, and S. Fujishige, A combinatorial strongly polynomial algorithm for
minimizing submodular functions, J. ACM, 48 (2001), pp. 761–777.

[4] L. Lovász, Matroid matching and some applications, J. Combin. Theory Ser. B, 28 (1980),
pp. 208–236.

[5] W. Mader, Über die Maximalzahl kreuzungsfreier H-Wege, Arch. Math. (Basel), 31 (1978),
pp. 382–402.

[6] J. G. Oxley, Matroid Theory, Oxford University Press, New York, 1992.
[7] A. Schrijver, A combinatorial algorithm minimizing submodular functions in strongly polyno-

mial time, J. Combin. Theory Ser. B, 80 (2000), pp. 346–355.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 597–602

A NOTE ON QUASI-TRIANGULATED GRAPHS∗

ION GORGOS† , CHÍNH T. HOÀNG‡ , AND VITALY VOLOSHIN§

Abstract. A graph is quasi-triangulated if each of its induced subgraphs has a vertex which is
either simplicial (its neighbors form a clique) or cosimplicial (its nonneighbors form an independent
set). We prove that a graph G is quasi-triangulated if and only if each induced subgraph H of G
contains a vertex that does not lie in a hole, or an antihole, where a hole is a chordless cycle with at
least four vertices, and an antihole is the complement of a hole. We also present an algorithm that
recognizes a quasi-triangulated graph in O(nm) time.

Key words. triangulated graphs, chordal graphs, quasi-triangulated graphs

AMS subject classifications. 05C75, 05C85

DOI. 10.1137/S0895480104444399

1. Introduction. In a graph G, a vertex x is simplicial if its neighborhood
N(x) induces a complete subgraph of G. A graph is triangulated (chordal) if it
does not contain a chordless cycle of length at least four (a hole) as an induced
subgraph. A famous theorem of Dirac [3] states that every triangulated graph has
a simplicial vertex. Actually, Dirac proved more: every triangulated graph different
from a clique contains two nonadjacent simplicial vertices. Let us say that a vertex
is cosimplicial if its nonneighbors form an independent subset of vertices and that
a graph is cotriangulated if it does not contain the complement of a chordless cycle
on at least four vertices (an antihole). Dirac’s theorem says equivalently that every
cotriangulated graph has a cosimplicial vertex. Our purpose is to investigate the larger
class of graphs which are called quasi-triangulated graphs (QT for short), defined as
follows: a graph G is in class QT if and only if every induced subgraph H of G has a
vertex which is either simplicial or cosimplicial in H. Quasi-triangulated graphs have
been introduced by the third author in [9, 11] as a generalization of chordal graphs.
The problem of characterizing the class QT was raised in [9] and, independently, in
[7] (where they are called good). The reader is referred to [1] for more information on
the class QT .

Following [7], we say that an order v1 < v2 < · · · < vn on a graph G is good if, for
any induced subgraph H of G, either the largest vertex of (H,<) is simplicial or the
smallest vertex of (H,<) is cosimplicial. Good orders are perfect in the sense of [2].

Simplicial vertices cannot lie in a hole; and cosimplicial vertices cannot lie in an
antihole. A graph with each vertex belonging to some hole and some antihole is called
latticed.

The third author conjectured (unpublished) and the first author proved in [4, 5]
the following.

∗Received by the editors June 10, 2004; accepted for publication (in revised form) November 9,
2005; published electronically August 25, 2006.

http://www.siam.org/journals/sidma/20-3/44439.html
†Academy of Economic Studies of Moldova, 61 Banulescu-Bodoni str. MD-2005, Chisinau,

Moldova.
‡Department of Physics and Computer Science, Wilfrid Laurier University, 75 University Ave. W.,

Waterloo, ON N2L 3C5, Canada (choang@wlu.ca). This author’s research was supported by the
NSERC.

§Department of Mathematics and Physics, Troy University, Troy, AL 36082 (vvoloshin@troy.edu).
This author’s research was partially supported by a Troy University research grant.

597

598 ION GORGOS, CHÍNH T. HOÀNG, AND VITALY VOLOSHIN

Theorem 1. For a graph G, the following three conditions are equivalent:

(i) G is quasi-triangulated.
(ii) G does not contain a latticed subgraph as an induced subgraph.
(iii) G admits a good order.

As usual, n (respectively, m) denote the number of vertices (respectively, edges) of
the input graph. For the quasi-triangulated graph recognition problem, the third au-
thor [10] proposed an O(n4) algorithm, Spinrad [12] proposed an O(n2.77) algorithm,
and the second author [6] independently proposed an O(nm) algorithm.

Theorem 2. There is an O(nm)-time O(n2)-space algorithm to recognize a quasi-
triangulated graph.

Theorems 1 and 2 are known by researchers in the field and have been referred
to in the literature, but their proofs have never been published. The purpose of this
paper is to provide the proofs of these two theorems.

2. Proof of Theorem 1. To prove Theorem 1, we will need the following lemma,
which was included in the original proof in [4] and was rediscovered independently in
[8].

Lemma 1. Let G be a graph and x be a vertex of G that does not lie in a hole.
Then any minimal cutset C of G which is contained in the neighborhood N(x) of x is
a clique.

Proof of Lemma 1. Define G, x,C as in the lemma. Let Y be a component of
G− C that does not contain x. We may assume that there are nonadjacent vertices
u, v in C, for otherwise we are done. Since C is a minimal cutset, each of u and v
has a neighbor in Y . It follows that there is a chordless path of length at least two
joining u to v whose interior vertices lie in Y . This path together with x forms a hole,
a contradiction to our assumption on x.

Proof of Theorem 1. It is easy to see that (i) and (iii) are equivalent, and (i)
implies (ii). So, we need only to prove that (ii) implies (i). We shall prove this by
induction on the number of vertices. Let G be a graph satisfying (ii). We may assume
G contains no simplicial vertex and no cosimplicial vertex, for otherwise we are done
by the induction hypothesis. If G is disconnected, then each component of G contains
a hole (for otherwise, it is triangulated and contains a simplicial vertex that remains
simplicial in G); thus, G contains the union of two disjoint holes, a contradiction to
(ii). So, G must be connected.

By replacing G by its complement G if necessary, we may assume that G contains
a vertex that does not lie in a hole.

Define X = {x | x does not lie in a hole of G}.
Our assumption on G implies that X �= ∅. Let G′ = G−X. G′ is nonempty, for

otherwise G is triangulated and thus contains a simplicial vertex by Dirac’s theorem.
By the induction hypothesis, G′ contains a simplicial or cosimplicial vertex y. Since
every vertex of G′ lies in a hole, y is cosimplicial. We shall prove that y is adjacent
to all vertices of X (this will imply y is cosimplicial in G, a contradiction).

Let x be a vertex in X. Since G is connected and x is not cosimplicial (by
assumption), there is a nonempty set C of vertices in N(x) that is a minimal cutset
of G. By Lemma 1, C is a clique. Let G1, G2 be induced subgraphs of G such that
G = G1 ∪G2, G1 ∩G2 = C, and there is no edge between G1 − C and G2 − C.

Suppose G1 is triangulated. We claim that there is a simplicial vertex s in G1−C.
If G1 is a clique, then the claim obviously holds; otherwise, by Dirac’s theorem, G1

contains two nonadjacent simplicial vertices, one of which must lie in G1 −C since C

A NOTE ON QUASI-TRIANGULATED GRAPHS 599

is a clique. But s remains a simplicial vertex of G, a contradiction to our assumption
on G. Thus G1, and similarly G2, cannot be triangulated.

Therefore, G1 contains a hole. Since C is a clique, one edge, say e1, of this hole
lies completely in G1 − C. Similarly, there is an edge, say e2, that lies completely in
G2 −C and belongs to a hole. Since y is cosimplicial in G′ and all endpoints of e1, e2

are in G′, y must be in C, and therefore adjacent to x, as desired.

3. A recognition algorithm for quasi-triangulated graphs. In this section,
we prove Theorem 2 by describing an algorithm that recognizes a quasi-triangulated
graph in O(nm) time using O(n2) space.

For a vertex x, an S-obstruction is a triple (a, b, x) that induces a P3 with x being
the interior vertex of the path; a C-obstruction is a triple (a, b, x) that induces an
S-obstruction (a, b, x) in the complement.

A straightforward algorithm to recognize quasi-triangulated graphs proceeds as
follows. First, for all vertices x, list all S- and C-obstructions. Then find a vertex y
with no S- or C-obstructions; if no such vertex exists, then the graph is not quasi-
triangulated. Remove y and update the lists of obstructions for the remaining vertices.
Repeat this process to eliminate all vertices. If all vertices can be eliminated in this
way, then the graph is quasi-triangulated; otherwise, it is not.

Since a vertex has O(n2) obstructions, we will need a data structure to store
O(n3) obstructions of the graph. Thus the algorithm runs in O(n3) time using O(n3)
space. We are going to show that the algorithm can be refined to run in time O(nm)
using O(n2) space.

Proof of Theorem 2. We may suppose there is a total order < on the vertices of a
given graph G. We say that (a, b, x) is less than (c, d, x), denoted by (a, b, x) < (c, d, x),
if a < c, or a = c and b < d. To achieve the O(nm) time bound, we will list only the
smallest S-obstruction and C-obstruction for each vertex. When removing a vertex y,
if a vertex x loses an obstruction, then we will find a smallest obstruction for x in the
remaining graph. We shall show that, over the life of the algorithm, the time needed
to list the (currently) smallest obstructions for a vertex x is O(m). The outline of our
algorithm is as follows.

Outline of algorithm. We begin with the input graph G and proceed to elimi-
nate vertices one by one using the following steps.

1. For each vertex x of graph G, list a smallest S-obstruction (a, b, x) and a
smallest C-obstruction (g, d, x).

2. If every remaining vertex has an S-obstruction and a C-obstruction, then G is
not quasi-triangulated.

3. If a vertex z has no S-obstruction or no C-obstruction, eliminate z from G, and
for each remaining vertex x that loses an S-obstruction (respectively, C-obstruction),
generate a new smallest S-obstruction (respectively, C-obstruction). Replace G by
G− z, and repeat step 2.

The graph G is quasi-triangulated if and only if recursive applications of step 3
eliminate all vertices. To anticipate, our algorithm lists the S-obstructions in O(nm)
time using O(n+m) space and the C-obstructions in O(nm) time using O(n2) space.

Let N(x) be the adjacency list of vertex x. Without loss of generality, we may
assume for all x that the lists N(x) are sorted in increasing order.

Listing the smallest S-obstruction for a vertex x. For each vertex x,
we use two pointers, α(x) and β(x). Initially α(x) points to the first vertex α in
N(x) and β(x) points to the immediate successor β of α in N(x) (for simplicity, we
let α (respectively, β) denote the name of the vertex pointed to by the pointer α(x)

600 ION GORGOS, CHÍNH T. HOÀNG, AND VITALY VOLOSHIN

(respectively, β(x)). If α(x) or β(x) cannot be initialized, then x has no S-obstruction.
We simply advance β(x) on N(x) until we find that α and β are nonadjacent. When
β(x) reaches the end of N(x) (i.e., it has value null), we advance α(x) in N(x) and
initialize β(x) (making β(x) point to the immediate successor of α(x) in N(x)). If
α(x) = null, then x has no S-obstruction, and a message “No S-obstruction” is
produced. We can summarize this process as follows. (In the following procedure, the
function IsEdge(a, b) returns true if and only if ab is an edge.)

Procedure ListSmallest-S-Obstruction(x).
while true

{ if α(x) = null
then return “no S-obstruction for x”

if IsEdge(α, β) = true
then advance β(x) in N(x)

else
return (α, β, x)

while ((α(x) �= null) and β(x) = null))
{ advance α(x) in N(x)

initialize β(x)
}

}
Suppose we eliminate a vertex z and x loses its S-obstruction (a, b, x) (because a = z or
b = z). If b (respectively, a) is eliminated, then we advance β(x) (respectively, α(x))
and call Procedure ListSmallest-S-Obstruction(x) to get the smallest S-obstruction
for x. The number of movements of the pointers α(x), β(x) in N(x) is proportional to
O(n+m) since we advance β(x) only in the presence of an edge, and α(x) is reset at
most the degree of x times. If we have the incidence matrix of G at our disposal, then
each call to Procedure IsEdge takes only constant time, but this method needs O(n2)
space. We are going to show that for each vertex x we can implement Procedure
IsEdge in O(n + m) time using only the adjacency lists of G (O(n + m) space).

Now we describe Procedure IsEdge(α, β), which returns true if and only if αβ is
an edge. For a vertex x, there is a pointer p(x) which initially points to the first vertex
in N(α) (recall that α(x) is the pointer associated with vertex x). If p(x) cannot be
initialized, then αβ is not an edge. Pointer p(x) is advanced in N(α) until it points
to either (i) β (αβ is an edge) or (ii) the smallest vertex in N(α) that is greater than
β (αβ is not an edge). The vertex pointed to by p(x) is denoted by p.

Procedure IsEdge(α, β).

while true
{ if p(x) = null

return false
if p < β

advance p(x) in N(α)
else if p = β

return true
else if p > β

return false
}

For each vertex x and each α(x), p(x) scans N(α) only once. Thus, for each x, the
cost of testing for all edges αβ is O(n + m).

A NOTE ON QUASI-TRIANGULATED GRAPHS 601

Listing the smallest C-obstruction for a vertex x. Assume that the vertices
are numbered 1, 2, . . . , n. For each vertex x, we maintain an integer variable counter
γ(x) that refers to the smallest nonneighbor of x. We need to generate the smallest
C-obstruction of the form (γ, δ, x) for some vertex δ (that must be adjacent to γ and
nonadjacent to x). This can be done as follows.

For each vertex x, we maintain a 0-1 characteristic vector I(x) of size n to rep-
resent the neighborhood of x (the jth entry of I(x) is 1 if and only if vertex j is a
neighbor of x; in other words, I(x) is the xth row of the incidence matrix of G). This
is necessary so that testing of an edge of the form xy can be done in constant time.
Given γ(x), we find the smallest neighbor δ of γ (the vertex referred to by γ(x)) such
that γ < δ and δ is nonadjacent to x by scanning the list N(γ) and, for each vertex
y in this list, testing whether yx is an edge. We use a pointer δ(x) to point to the
location of δ in N(γ). If δ(x) cannot be initialized, then there is no C-obstruction of
the form (γ, δ, x); in this case, we increase γ(x) by one and repeat the process (the
initial value of γ(x) is one). This is summarized in the following procedure (we leave
the pointer initialization problem to the reader).

Procedure ListSmallest-C-Obstruction(x).

while true
{ if δ(x) = null

repeat
increase γ(x) by one
if (γ > n)

return “No C-obstruction for x”
let δ(x) point to the first vertex in N(γ)

until (xγ is not an edge) and δ(x) is not null
if (xδ is not an edge) and (γ < δ)

return the C-obstruction (γ, δ, x)
advance δ(x) in N(γ)

}
Suppose we eliminate a vertex z and x loses its C-obstruction (g, d, x) (because g = z
or d = z). If d is eliminated, then we advance δ(x) in N(γ(x)) and call Procedure
ListSmallest-C-Obstruction. If g is eliminated, then we repeatedly increase γ(x) by
one until we get the next smallest nonneighbor of x and call Procedure ListSmallest-
C-Obstruction.

For each vertex x and each γ(x), the list N(γ(x)) is scanned at most once. Thus,
for each x, we can list the smallest C-obstruction in O(n + m) time over the life of
the algorithm. This method requires O(n2) space.

In the case of listing the C-obstructions, we do not know how to implement our
algorithm in O(nm) time using linear space. We leave this as an open problem. We
note Spinrad’s algorithm [12] uses O(n2) space since it relies on matrix multiplications.

REFERENCES

[1] A. Brandstädt, V. B. Le, J. P. Spinrad, Graph Classes: A Survey, SIAM Monogr. Discrete
Math. Appl. 3, SIAM, Philadelphia, 1999.

[2] V. Chvátal, Perfectly ordered graphs, in Topics on Perfect Graphs, C. Berge and V. Chvátal,
eds., Ann. Discrete Math. 21, North–Holland, Amsterdam, 1984, pp. 63–65.

[3] G. A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg, 25 (1961), pp. 71–76.
[4] I. M. Gorgos, A Characterization of Quasi-triangulated Graphs, Preprint 11B494, Kishinev

State University, Kishinev, Moldova, 1984 (in Russian).

602 ION GORGOS, CHÍNH T. HOÀNG, AND VITALY VOLOSHIN

[5] I. M. Gorgos, Method of Alternating Chains and Its Applications, Ph.D. Thesis, Kishinev
State University, Kishinev, Moldova, 1985 (in Russian).

[6] C. T. Hoàng, Recognizing Quasi-triangulated Graphs in O(nm) Time, manuscript.
[7] C. T. Hoàng and N. V. R. Mahadev, A note on perfect orders, Discrete Math., 74 (1989),

pp. 77–84.
[8] C. T. Hoàng, S. Hougardy, F. Maffray, and N. V. R. Mahadev, On simplicial and co-

simplicial vertices in graphs, Discrete Appl. Math., 138 (2004), pp. 117–132.
[9] V. I. Voloshin, Quasi-triangulated Graphs, Preprint 5569-81, Kishinev State University,

Kishinev, Moldova, 1981 (in Russian).
[10] V. I. Voloshin, Quasi-triangulated Graphs Recognition Program, Algorithms and Programs

P006124, Moscow, Russia, 1983 (in Russian).
[11] V. I. Voloshin, Triangulated Graphs and Their Generalizations, Ph.D. Thesis, Kishinev State

University, Kishinev, Moldova, 1983 (in Russian).
[12] J. Spinrad, Recognizing quasi-triangulated graphs, Discrete Appl. Math., 138 (2004), pp. 203–

213.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 603–609

CYCLE DECOMPOSITIONS OF Kn,n − I∗

JUN MA† , LIQUN PU† , AND HAO SHEN†

Abstract. Let Kn,n denote the complete bipartite graph with n vertices in each bipartition set
and Kn,n − I denote Kn,n with a 1-factor removed. An m-cycle system of Kn,n − I is a collection
T of m-cycles such that each edge of Kn,n − I is contained in a unique m-cycle of T . In this paper,
it is proved that the necessary and sufficient conditions for the existence of an m-cycle system of
Kn,n − I are n ≡ 1 (mod 2), m ≡ 0 (mod 2), 4 ≤ m ≤ 2n, and n(n− 1) ≡ 0 (mod m).

Key words. decomposition, cycle, complete bipartite graph, 1-factor

AMS subject classification. 05C38

DOI. 10.1137/050626363

1. Introduction. Let G be a graph with vertex set V (G) and edge set E(G).
An m-cycle system of G is a collection T of m-cycles such that each edge of G is
contained in a unique m-cycle of T . It is natural to ask when there exists an m-cycle
system of G.

It is not difficult to verify that the following conditions are necessary for the ex-
istence of an m-cycle system of G:⎧⎨

⎩
3 ≤ m ≤ |V (G)|,
|E(G)| ≡ 0 (mod m),
d(u) ≡ 0 (mod 2) for each u ∈ V (G),

where d(u) denotes the number of edges incident with u in G.

Let Kv denote a complete graph of order v, Kv − I denote Kv with a 1-factor
removed, and Kx,y denote a complete bipartite graph with partite sets of sizes x and
y. When G is Kv, Kv − I, or Kx,y, the existence problem of m-cycle systems of G
has been completely settled [2, 3, 4].

Theorem 1 (see [3, 4]). Let m and v be positive integers. Then there exists an
m-cycle system of Kv if and only if v ≡ 1 (mod 2), 3 ≤ m ≤ v, and v(v − 1) ≡
0 (mod 2m).

Theorem 2 (see [3, 4]). Let m and v be positive integers. Then there exists an
m-cycle system of Kv − I if and only if v ≡ 0 (mod 2), 3 ≤ m ≤ v, and v(v − 2) ≡
0 (mod 2m).

Theorem 3 (see [2]). Let m ≡ 0 (mod 2) and m ≥ 4. Then there exists
an m-cycle system of Kx,y if and only if x, y ≥ 1

2m, x ≡ y ≡ 0 (mod 2), and
xy ≡ 0 (mod m).

In this paper, we consider the case when G is Kx,y − I, where Kx,y − I denotes
Kx,y with a 1-factor removed.

Obviously if Kx,y has a 1-factor, then necessarily we have x = y. Let x = y = n.
Simple counting gives the following necessary conditions.

∗Received by the editors March 9, 2005; accepted for publication (in revised form) February 23,
2006; published electronically August 25, 2006. This project was supported by National Natural
Science Foundation of China under grant 10471093.

http://www.siam.org/journals/sidma/20-3/62636.html
†Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic

of China (mj904@sjtu.edu.cn, sarah 009@sjtu.edu.cn, haoshen@sjtu.edu.cn).

603

604 JUN MA, LIQUN PU, AND HAO SHEN

Lemma 4. If there exists an m-cycle system of Kn,n − I, then n ≡ 1 (mod 2),
m ≡ 0 (mod 2), 4 ≤ m ≤ 2n, and n(n− 1) ≡ 0 (mod m).

It was proved [5] that m-cycle systems of Kn,n−I exist in the special case m = 2n.
The following theorem was obtained by Archdeacon et al. [1].

Theorem 5. Let m ≡ 0 (mod 2), m ≥ 4, and n ≡ 1 (mod 2). If m ≡ 0 (mod 4)
and m < n, or if m ≡ 2 (mod 4) and m < 2n, then there exists an m-cycle system of
Kn,n − I if and only if n(n− 1) ≡ 0 (mod m).

But, it is still not known whether m-cycle systems of Kn,n − I exist when n ≡
1 (mod 2), n ≥ 3, m ≡ 0 (mod 4), n < m < 2n, and n(n− 1) ≡ 0 (mod m).

The main purpose of this paper is to determine the existence of m-cycle systems
of Kn,n − I for the open case in Theorem 5. In fact, we will give a unified and simple
proof to the following theorem.

Theorem 6. Let m and n be positive integers. Then there exists an m-cycle
system of Kn,n − I if and only if

⎧⎨
⎩

n ≡ 1 (mod 2),
m ≡ 0 (mod 2) and 4 ≤ m ≤ 2n,
n(n− 1) ≡ 0 (mod m).

2. Cycle decomposition of Kn,n − I with 1
2
m ≤ n ≤ 3

2
m. A cycle on m

vertices is denoted by Cm. If a graph G is the edge-disjoint union of m-cycles, then
we say that G is Cm-decomposable. We shall also write Cm | G.

In [1], Archdeacon et al. skillfully proved the following lemma.

Lemma 7. Let m ≡ 2(mod 4), n ≡ 1(mod 2), and 6 ≤ m ≤ 2n. Then Cm |
Kn,n − I if and only if m|n(n− 1).

By Lemma 7, we obtain the following corollary immediately.

Corollary 8. Let m ≡ 2 (mod 4) and m ≥ 6. If n ∈ { 1
2m, 3

2m}, then Cm |
Kn,n − I.

Now, for a positive integer n, let D ⊆ Zn and X(n;D) be a graph with vertex
set Zn × Z2 and edge set {{i0, (i + d)1} | d ∈ D, i ∈ Zn}. Clearly, Kn,n can be
viewed as X(n;Zn). The elements of D are called (0,1)-mixed differences. We say
that {i0, (i + d)1} is an edge of difference d.

Suppose that C = ((i1)0, (i2)1, . . . , (im−1)0, (im)1) is a Cm in X(n;D). For x ∈
Zn, let C + x = ((i1 + x)0, (i2 + x)1, . . . , (im−1 + x)0, (im + x)1). Obviously, C + x is
still a Cm. Let (C) = {C + x|x ∈ Zn}. Here, (C) is called the orbit generated by C,
and C is called a base cycle of (C).

For any integer x, let

ε(x) =

{
0 if x ≡ 0 (mod 2),
1 if x ≡ 1 (mod 2).

We use the difference method to give constructions of m-cycle systems of X(n;D)
which we need in this paper.

Lemma 9. Let m be a positive integer. If m ≡ 0 (mod 2) and m ≥ 4, then
Cm | Km+1,m+1 − I.

Proof. We view Km+1,m+1 as X(m + 1;Zm+1). For r = 0, 1, . . . ,m, define

CYCLE DECOMPOSITIONS OF Kn,n − I 605

dr ∈ Zm+1 as

dr =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if r = 0,
1 − ε(1

2m) if r = 1,
r if 2 ≤ r ≤ 1

2m− ε(1
2m),

r + 1 if 1
2m + 1 − ε(1

2m) ≤ r ≤ m− 1,
1
2m + 1 − ε(1

2m) if r = m.

Let ek =
∑k

r=0(−1)rdr for 0 ≤ k ≤ m.
Let

θ =

{
0 if k < 1

2m + 1 − ε(1
2m),

1 if k ≥ 1
2m + 1 − ε(1

2m).

Then

ek =

⎧⎨
⎩

0 if k = 0 or m,
1
2k + ε(1

2m) if k ≡ 0 (mod 2) and 2 ≤ k ≤ m− 2,
− 1

2 (k + 1) − θ + ε(1
2m) if k ≡ 1 (mod 2).

Let C be the following closed trail:

(e0)1, (e1)0, (e2)1, (e3)0, . . . , (em−2)1, (em−1)0, (em)1.

The differences used in C are d1, d2, . . . , dm.
Since

0 = e0 < e2 < e4 < · · · < em−2 =
1

2
m− 1 + ε

(
1

2
m

)

and

m + ε

(
1

2
m

)
= e1 + m + 1 > e3 + m + 1 > e5 + m + 1 > · · · > em−1 + m + 1

=
1

2
m + ε

(
1

2
m

)
,

then C is an m-cycle.
Let T = (C) and I = {{(i)0, (i + ε(1

2m))1} | i ∈ Zm+1}. Then I is a 1-factor in
Km+1,m+1, T is an m-cycle system of Km+1,m+1 − I, and Cm | Km+1,m+1 − I.

Lemma 10. Let u be an integer and let m ≡ 0 (mod 2), m ≥ 4, n ≡ 1 (mod 2),
m < 2n, g = gcd(m,n) > 1, and 1 ≤ h ≤ m

g . For r = 1, 2, . . . , m
g , define dr ∈ Zn as

dr =

⎧⎨
⎩

um
g + r if 1 ≤ r ≤ h− 1,

um
g + r + 1 if h ≤ r ≤ m

g − 1,

um
g + m

2g + ε(h) + n
g if r = m

g .

Let D = {d1, d2, . . . , dm
g
}. Then Cm | X(n;D).

Proof. Let d0 = 0 and ek =
∑k

r=0(−1)rdr for 0 ≤ k ≤ m
g .

Let

θ =

{
0 if k < h,
1 if k ≥ h.

606 JUN MA, LIQUN PU, AND HAO SHEN

Then

ek =

⎧⎨
⎩

1
2k + θ(1 − ε(h)) if k ≡ 0 (mod 2) and 0 ≤ k ≤ m

g − 2,

−um
g − 1

2 (k + 1) − θε(h) if k ≡ 1 (mod 2),
n
g if k = m

g .

Let P be the following trail:

(e0)1, (e1)0, (e2)1, (e3)0, . . . , (em
g −2)1, (em

g −1)0, (em
g
)1.

The differences used in P are d1, d2, . . . , dm
g
.

Since

0 = e0 < e2 < e4 < · · · < em
g −2 =

m

2g
− ε(h)

and

−u
m

g
− 1 − θε(h) = e1 > e3 > e5 > · · · > em

g −1 = −u
m

g
− m

2g
− θε(h),

P is a path. Moreover, the first and last vertices are the only ones which are congruent
modulo n

g . It follows that

C = P
⋃(

P +
n

g

)⋃(
P +

2n

g

)⋃
· · ·

⋃(
P +

(g − 1)n

g

)

is an m-cycle. In C, each difference in D occurs exactly g times, and for each j ∈ Z2,
if vertices (i1)j and (i2)j are both incident with edges of difference d, then i1 ≡
i2(mod n

g). Let T = (C). It follows that T is an m-cycle system of X(n;D) and

Cm | X(n;D).
Lemma 11. Let m ≡ 0 (mod 2), m ≥ 4, n ≡ 1 (mod 2), m < 2n, g = gcd(m,n) >

1, h ≡ 1 (mod 2), and 2 ≤ h ≤ m
g . For r = 1, 2, . . . , m

g , define dr ∈ Zn as

dr =

⎧⎪⎪⎨
⎪⎪⎩

0 if r = 1,
r if 2 ≤ r < h,
r + 1 if h ≤ r ≤ m

g − 1,
m
2g + n

g if i = m
g .

Let D = {d1, d2, . . . , dm
g
}. Then Cm | X(n;D).

Proof. Let d0 = 0 and ek =
∑k

r=0(−1)rdr for 1 ≤ k ≤ m
g . Furthermore, let

θ =

{
0 if k < h,
1 if k ≥ h.

Then

ek =

⎧⎪⎪⎨
⎪⎪⎩

0 if k = 0,
1
2k + 1 if k ≡ 0 (mod 2) and 2 ≤ k ≤ m

g − 2,

− 1
2 (k − 1) − θ if k ≡ 1 (mod 2),

n
g if k = m

g .

Let P be the following trail:

(e0)1, (e1)0, (e2)1, (e3)0, . . . , (em
g −2)1, (em

g −1)0, (em
g
)1.

CYCLE DECOMPOSITIONS OF Kn,n − I 607

The differences used in P are d1, d2, . . . , dm
g
.

Since

0 = e0 < e2 < e4 < · · · < em
g −2 =

m

2g
≤ n

g
− 1

and

0 = e1 > e3 > e5 > · · · > em
g −1 = −m

2g
+ 1 − θ ≥ −

(
n

g
− 1

)
,

P is a path. Moreover, the first and last vertices are the only ones which are congruent
modulo n

g . It follows that

C = P
⋃(

P +
n

g

)⋃(
P +

2n

g

)⋃
· · ·

⋃(
P +

(g − 1)n

g

)

is an m-cycle. In C, each difference in D occurs exactly g times, and for each j ∈ Z2,
if vertices (i1)j and (i2)j are both incident with edges of difference d, then i1 ≡
i2(mod n

g). Let T = (C). It follows that T is an m-cycle system of X(n;D) and

Cm | X(n;D).
With the above preparations, we now prove the following theorem.
Theorem 12. Let m and n be positive integers. If m ≡ 0 (mod 2), m ≥ 4,

n ≡ 1 (mod 2), 1
2m < n < 3

2m, and n(n− 1) ≡ 0 (mod m), then Cm | Kn,n − I.
Proof. When g = gcd(m,n) = 1, n = m + 1 since n(n − 1) ≡ 0 (mod m). So,

Cm | Km+1, m+1 − I by Lemma 9.
If n �= m+1, then g > 1. Since n(n−1) ≡ 0 (mod m), we have n−1 ≡ 0 (mod m

g).

Let s = (n−1)g
m .

We view Kn,n as X(n;Zn). For t = 0, 1, . . . , s− 1, let

Dt =

{ {0, 1, . . . , m
g } if t = 0,

{tmg + 1, tmg + 2, . . . , tmg + m
g } if 1 ≤ t ≤ s− 1.

Let δ = 1 − ε(s)[1 − ε(1
2m)]. For t = 0, 1, . . . , s− 1, define ht as

ht =

{
tmg + m

2g + ε(t)[1 − ε(1
2m)] + n

g if 0 ≤ t ≤ s− 2,
n
g − m

2g − 1 + δ − ε(1
2m) if t = s− 1.

Observe that ht ∈ Dt+1 for 0 ≤ t ≤ s− 2, hs−1 ∈ D0, and hs−1 ≥ δ.
Thus, we let

D̂0 =

{
(D0 ∪ {h0})\{hs−1, δ} if hs−1 > δ,
(D0 ∪ {h0})\{hs−1, d} if hs−1 = δ,

where d ∈ D0\{δ} and ε(d) = δ.
For 1 ≤ t ≤ s− 1, let

D̂t = (Dt\{ht−1}) ∪ {ht}.

When t = 0, h0 = m
2g + n

g . Since δ = 0 or 1, there are the following two cases.
Case 1. δ = 0.

608 JUN MA, LIQUN PU, AND HAO SHEN

Then hs−1 = n
g − m

2g − 1 − ε(1
2m). It is easy to check that ε(hs−1) = 0. We take

u = 0 and

h =

{
hs−1 if hs−1 > 0,
d if hs−1 = 0.

Clearly, h0 = m
2g + n

g + ε(h). By Lemma 10, we have Cm | X(n; D̂0).
Case 2. δ = 1.
Then hs−1 = n

g − m
2g − ε(1

2m). It is easy to check that ε(hs−1) = 1. We take
u = 0 and

h =

{
hs−1 if hs−1 > 1,
d if hs−1 = 1.

Clearly, h ≥ 2. By Lemma 11, we have Cm | X(n; D̂0).
For each t = 1, 2, . . . , s− 1, we take u = t and h = ht−1 − tmg . It is easy to check

that ht = um
g + m

2g + ε(h) + n
g . By Lemma 10, we have Cm | X(n; D̂t).

Clearly,

s−1⋃
t=0

D̂t =

{
Zn\{δ} if hs−1 > δ,
Zn\{d} if hs−1 = δ,

and

D̂t ∩ D̂r = φ for t �= r.

Suppose that Tt is an m-cycle system of X(n; D̂t) for 0 ≤ t ≤ s − 1. Let T =⋃s−1
t=0 Tt and

I =

{
{{i0, (i + δ)1} | i ∈ Zn} if hs−1 > δ,
{{i0, (i + d)1} | i ∈ Zn} if hs−1 = δ.

Then T is an m-cycle system of Kn,n − I and Cm | Kn,n − I.

3. The proof of Theorem 6. Now, we are in a position to prove the main
theorem of this paper.

Proof of Theorem 6. For 1
2m ≤ n ≤ 3

2m, we have Cm | Kn,n − I by Corollary 8
and Theorem 12.

If n > 3
2m, then we may write n = qm + r with 1

2m < r ≤ 3
2m and q ≥ 1.

Since

n ≡ 1 (mod 2) and n(n− 1) ≡ 0 (mod m),

we have

r ≡ 1 (mod 2) and r(r − 1) ≡ 0 (mod m).

Suppose the vertex set of Kn,n is {v0, v1, . . . , vqm+r−1} ∪ {u0, u1, . . . , uqm+r−1}
and I = {{ui, vi} | 0 ≤ i ≤ qm + r − 1} is a 1-factor in Kn,n.

For 1 ≤ i ≤ q, let Vi = {v(i−1)m+j | 1 ≤ j ≤ m} and Ui = {u(i−1)m+j | 1 ≤ j ≤
m}. Let Vq+1 = {vqm+j | 1 ≤ j ≤ r − 1} and Uq+1 = {uqm+j | 1 ≤ j ≤ r − 1}.

CYCLE DECOMPOSITIONS OF Kn,n − I 609

For 1 ≤ i ≤ q + 1, let Hi,i be the subgraph of Kn,n − I induced by (Vi ∪ {v0}) ∪
(Ui∪{u0}). By Corollary 8 and Theorem 12, Cm | Hi,i. Let Ti,i be an m-cycle system
of Hi,i.

For 1 ≤ i, j ≤ q + 1 and i �= j, let Hi,j be the subgraph of Kn,n − I induced by
Vi ∪ Uj . By Theorem 3, Cm | Hi,j . Let Ti,j be an m-cycle system of Hi,j .

Let T =
⋃

1≤i,j≤q+1 Ti,j . Then T is an m-cycle system of Kn,n − I and Cm |
Kn,n − I. This completes the proof.

Acknowledgment. The authors are thankful to the referees for their helpful
comments to improve the paper.

REFERENCES

[1] D. Archdeacon, M. Debowsky, J. Dinitz, and H. Gavlas, Cycle systems in the complete
bipartite graph minus a one-factor, Discrete Math., 284 (2004), pp. 37–43.

[2] D. Sotteau, Decompositions of Km,n(K∗
m,n) into cycles (circuits) of length 2k, J. Combin.

Theory Ser. B, 29 (1981), pp. 75–81.
[3] B. Alspach and H. Gavlas, Cycle decompositions of Kn and Kn − I, J. Combin. Theory Ser.

B, 81 (2001), pp. 77–99.
[4] M. Šajna, Cycle decompositions, III: Complete graphs and fixed length cycles, J. Combin. Des.,

10 (2002), pp. 27–78.
[5] R. Laskar and B. Auerbach, On decomposition of r-partite graphs into edge-disjoint Hamilton

circuits, Discrete Math., 14 (1976), pp. 265–268.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 610–622

SHORTEST PATHS IN THE TOWER OF HANOI GRAPH AND
FINITE AUTOMATA∗

DAN ROMIK†

Abstract. We present efficient algorithms for constructing a shortest path between two config-
urations in the Tower of Hanoi graph and for computing the length of the shortest path. The key
element is a finite-state machine which decides, after examining on the average only a small number
of the largest discs (asymptotically, 63

38
≈ 1.66), whether the largest disc will be moved once or twice.

This solves a problem raised by Andreas Hinz and results in a better understanding of how the
shortest path is determined. Our algorithm for computing the length of the shortest path is typically
about twice as fast as the existing algorithm. We also use our results to give a new derivation of the
average distance 466

885
between two random points on the Sierpiński gasket of unit side.

Key words. Tower of Hanoi, finite automata, Sierpiński gasket

AMS subject classifications. 68R05, 28A80

DOI. 10.1137/050628660

1. Introduction. The Tower of Hanoi puzzle, invented in 1883 by the French
mathematician Edouard Lucas, has become a classic example in the analysis of algo-
rithms and discrete mathematical structures (see, e.g., [4, section 1.1]). The puzzle
consists of n discs, no two of the same size, stacked on three vertical pegs, in such a
way that no disc lies on top of a smaller disc. A permissible move is to take the top
disc from one of the pegs and move it to one of the other pegs, as long as it is not
placed on top of a smaller disc. The set of configurations of the puzzle, together with
the permissible moves, thus forms a graph in a natural way. The number of vertices
in the n-disc Hanoi graph is 3n.

The main question of interest is to find shortest paths in the configuration graph,
i.e., shortest sequences of moves leading from a given initial configuration to a given
terminal configuration. The simplest and most well known case is that in which it
is required to move all the discs from one of the pegs to another, i.e., where the
initial and terminal configurations are two of the three “perfect” configurations with
all the discs on the same peg. This is very easy, and can be shown to take exactly
2n − 1 moves. More difficult is to get from a given arbitrary initial configuration to
one of the perfect configurations—Hinz [6] calls this the “p1” problem. This takes
2n − 1 moves in the worst case (which is, for example, when the initial configuration
is another perfect configuration), and on the average 2

3 ·(2n−1) moves for a randomly
chosen initial configuration [3]. Moreover, there is a simple and efficient algorithm to
compute the shortest path in this case.

In the most general case of arbitrary initial and terminal configurations, however,
the question of computing the shortest path and its length (the “p2” problem [6])
in the most efficient manner has not been completely resolved so far. (The worst-
case behavior is still 2n − 1 moves, and the average number of moves for random
initial and terminal configurations has been shown [2], [5] to be asymptotically (1 +
o(1)) 466

885 · 2n.) The main obstacle in the understanding of the behavior of the shortest

∗Received by the editors April 6, 2005; accepted for publication (in revised form) January 30,
2006; published electronically August 29, 2006.

http://www.siam.org/journals/sidma/20-3/62866.html
†Department of Statistics, University of California, 367 Evans Hall, Berkeley, CA 94720-3860

(romik@stat.berkeley.edu).

610

SHORTEST PATHS IN THE TOWER OF HANOI GRAPH 611

path has been the behavior of the largest disc that “separates” the initial and terminal
configurations, i.e., the largest disc which is not on the same peg in both configurations
(trivially, any larger discs may simply be ignored). It is not difficult to see [6] that
in a shortest path, this disc will be moved either once (from the source peg to the
target peg) or twice (from the source to the target, via the third peg). The problem
is to decide which of the two alternatives is the correct one. Once this is settled, the
path may be constructed by two applications of the algorithm for the p1 problem.
Hinz [6] proposed an algorithm for the computation of the shortest path based on this
idea. The algorithm consists essentially of computing the length of the path for both
alternatives and choosing the shorter of the two.

In this paper, we propose a more thorough explanation of the process whereby
it is decided which of the two paths is the shortest. We show that it is possible to
keep track of the relevant information using a finite-state machine, which at each step
reads the locations of the next-smaller disc in the initial and terminal configurations
and changes its internal state accordingly. Eventually, the machine reaches a terminal
state, whereupon it pronounces which of the two paths is the shorter. For a random
input, its expected stopping time is computed to be 63

38 , asymptotically when the
number of discs grows to infinity. In other words, after observing on the average the
locations of just the ≈ 1.66 largest discs in the initial and terminal configurations,
we will know which of the paths to choose, and we will be able to continue using the
algorithm for the p1 problem. If one is interested just in the length of the shortest
path, then our algorithm is typically about twice as fast as the algorithm proposed
by Hinz [6] (with a small constant overhead due to the initial 1.66 discs), since it
overrides the need to compute both the distance for the path that moves the largest
disc once and the path that moves it twice.

The paper is organized as follows: In the next section, we define the discrete
Sierpiński gasket graph, a graph which is isomorphic to the Tower of Hanoi configu-
ration graph, but for which the labeling of the vertices is simpler to understand. In
section 3, we present the main ideas for the discrete Sierpiński gasket graph, and then
in section 4 show how to translate the results to the Hanoi graph by a relabeling of the
vertices. In section 5 we perform a probabilistic analysis of the finite-state machine,
to compute the average number 63

38 of discs that need to be read in order to decide
whether the largest disc will be moved once or twice, and to give a new derivation of
the asymptotic value (1 + o(1)) 466

885 · 2n for the average distance between two random
configurations in the n-disc Hanoi graph, or equivalently of the statement that the
average shortest-path distance between two random points in the Sierpiński gasket of
unit side is equal to 466

885 . In section 6 we discuss extensions and some open problems.
For an extensive bibliography of papers related to the Tower of Hanoi, we refer the
interested reader to [13].

2. The discrete Sierpiński gasket. We now define a family of graphs called
discrete Sierpiński gaskets. These graphs are finite versions of the famous fractal
constructed by the Polish mathematician Waclaw Sierpiński in 1915. The connection
between the Tower of Hanoi problem and the Sierpiński gasket was first observed
by Stewart [12] and was later used by Hinz and Schief [9] in their calculation of the
average distance between points on the Sierpiński gasket. The discrete Sierpiński
gasket graphs that we define are identical to the graphs S(n, 3) defined by Klavzar
and Milutinovic in [10], and similar (although this requires proof) to the graphs Sn

defined in [9], so some of the discussion below parallels the discussion in those papers.

The nth discrete Sierpiński gasket graph, which we denote by SGn, consists of

612 DAN ROMIK

Fig. 1. The graph SG4.

the vertex set V (SGn) = {T,L,R}n (the symbols T,L,R indicate “top,” “left,”
and “right,” respectively), with the edges defined as follows: First, for each x =
an−1an−2 . . . a1a0 ∈ V (SGn) (for reasons that will become apparent below, this will
be our standard indexing of the coordinates of the vertices of SGn) we have edges
connecting x to

an−1an−2 . . . a1β, β ∈ {T,L,R} \ {a0}.

Second, define the tail of x = an−1an−2 . . . a0 as the suffix akak−1 . . . a1a0 of x, where
k is maximal such that ak = ak−1 = · · · = a0. If x has a tail of length k+1 < n, then
x is of the form an−1an−2 . . . ak+2βαα . . . α, in which case connect x with an edge to
the vertex

an−1an−2 . . . ak+2αββ . . . β.

One possible embedding of SGn in the plane is illustrated in Figure 1. This
embedding makes clear the meaning of the labeling of the vertices: The first letter
(the “most significant digit”) signifies whether the vertex is in the top, left, or right
triangles inside the big triangle; the next letter locates the vertex within the top, left,
or right thirds of that triangle, etc.

It will be shown in section 4 that SGn is isomorphic, in a computationally straight-
forward way, to the n-disc Hanoi graph. (The same was shown in [10], with less em-
phasis on explicit computation of the isomorphism.) Thus, the problem of shortest

SHORTEST PATHS IN THE TOWER OF HANOI GRAPH 613

paths on the Hanoi graph reduces to that of shortest paths in the discrete Sierpiński
gasket. We tackle this problem in the next section.

3. Shortest paths in SGn. For vertices x, y ∈ V (SGn), we define the distance
d(x, y) to be the length of a shortest path from x to y. Our goal is to write down a
recursion equation for this distance, which is at the heart of the finite-state machine
we will construct to compute d(x, y). First, let us review briefly some of the known
facts about d(x, y) in the simple case when y is one of the “perfect” configurations
LLL . . . L,RR . . . R, TT . . . T . For concreteness, assume that y = LLL . . . L, and let
x = an−1an−2 . . . a1a0 ∈ V (SGn) as before. Then it is known that

d(x, y) =
∑
ak �=L

2k.

A simple algorithm exists for computing a shortest path from x to y in this case.
In the Hanoi labeling of the graph, the algorithm is described in [6]. In the current
labeling, the algorithm is even simpler and is based on the binary number system: if
one identifies the symbol L with 0 and the symbols R and T with 1, then traversing the
edges of the graph becomes equivalent to the operations of subtraction or addition of
1 in binary notation. The number of steps to reach LL . . . L ≡ 00 . . . 0 is then clearly
the right-hand side in the above equation.

With these preparatory remarks, we now attack the problem of general x =
an−1an−2 . . . a0, y = bn−1bn−2 . . . b0. First, observe that we may assume that an−1 �=
bn−1, since otherwise we may simply consider x and y as vertices in the graph SGn−1

(note the self-similar structure in the definition of the graph, also apparent in the
Tower of Hanoi puzzle when one ignores the largest disc). For concreteness, we begin
by analyzing in detail the case where an−1 = T, bn−1 = R. Referring to Figure 1 for
convenience, we see that

d(x, y) = min

(
1 + d(x, TRRR . . . R) + d(y,RTT . . . T),

1 + 2n−1 + d(x, TLLL . . . L) + d(y,RLL . . . L)

)
,

since in a shortest path from x to y, one must go from the top triangle to the right
triangle either through the edge {TRR . . . R,RTT . . . T} (we call this Alternative
1; see Theorem 1 below) or through a shortest path from LTT . . . T to LRR . . . R
(Alternative 2). In the Tower of Hanoi language, this is an indication of the fact that
in a shortest sequence of moves the largest disc must move either once or twice; see
[6].

To simplify the next few equations, introduce the following notation: if u =
cn−1cn−2 . . . c0 ∈ {T,L,R}n, let u′ = cn−2cn−3 . . . c0, and define for any α ∈ {L, T,R}

fα(u) =
∑
ck �=α

2k.

Then we have

d(x, y) = 1 + min

(
fR(x′) + fT (y′), 2n−1 + fL(x′) + fL(y′)

)
.

The recursion equations which will enable us to construct our finite-state machine
and compute d(x, y) are now given by the following theorem.

614 DAN ROMIK

Theorem 1 (the finite-state machine). For u = cn−1cn−2 . . . c0, v = dn−1dn−2

. . . d0 ∈ {T,L,R}n, define the functions

p(u, v) = min

(
fR(u) + fT (v), 2n + fL(u) + fL(v)

)
,

q(u, v) = min

(
2n + fR(u) + fT (v), fL(u) + fL(v)

)
,

r(u, v) = min

(
fR(u) + fT (v), fL(u) + fL(v)

)
.

(Note that p, q, r depend implicitly on the length n of the strings.) Then we have the
equations

p(u, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fR(u) + fT (v)

cn−1 = R, dn−1 = T or
cn−1 = R, dn−1 = L or
cn−1 = R, dn−1 = R or
cn−1 = L, dn−1 = T or
cn−1 = T, dn−1 = T or
cn−1 = T, dn−1 = R,

(Alternative 1)

2n + p(u′, v′)
cn−1 = T, dn−1 = L or
cn−1 = L, dn−1 = R,

2n + r(u′, v′) cn−1 = L, dn−1 = L,

q(u, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fL(u) + fL(v)

cn−1 = L, dn−1 = L or
cn−1 = L, dn−1 = T or
cn−1 = L, dn−1 = R or
cn−1 = R, dn−1 = L or
cn−1 = T, dn−1 = L or
cn−1 = T, dn−1 = R,

(Alternative 2)

2n + q(u′, v′)
cn−1 = T, dn−1 = T or
cn−1 = R, dn−1 = R,

2n + r(u′, v′) cn−1 = R, dn−1 = T,

r(u, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fR(u) + fT (v) cn−1 = R, dn−1 = T, (Alternative 1)

fL(u) + fL(v) cn−1 = L, dn−1 = L, (Alternative 2)

2n−1 + r(u′, v′)
cn−1 = L, dn−1 = T or
cn−1 = R, dn−1 = L,

2n + r(u′, v′) cn−1 = T, dn−1 = R,

2n−1 + p(u′, v′)
cn−1 = R, dn−1 = R or
cn−1 = T, dn−1 = T,

2n−1 + q(u′, v′)
cn−1 = T, dn−1 = L or
cn−1 = L, dn−1 = R.

SHORTEST PATHS IN THE TOWER OF HANOI GRAPH 615

Alternatives 1 and 2 in the parentheses signify whether the minimum is attained by
its first or second arguments, respectively. These equations will hold even for n = 1
if one sets trivially for u, v = ∅ ∈ {T,L,R}0 = {∅}:

fα(u) = 0,

p(u, v) = 0 (Alternative 1),(1)

q(u, v) = 0 (Alternative 2),(2)

r(u, v) = 0 (tie).(3)

Proof. First, note that if α ∈ {T,L,R} and w ∈ {T,L,R}n, then trivially fα(w) ≤
2n − 1.

Here is the proof of the equation for p(u, v) in several sample cases; the full proof
is a slightly tedious case-by-case verification and consists of similar computations, so
we omit it.

Sample case 1. Assume that (cn−1, dn−1) = (R, T). In that case, we have

p(u, v) = min

(
fR(u′) + fT (v′), 2n + 2n−1 + 2n−1 + fL(u′) + fL(v′)

)

= min

(
fR(u′) + fT (v′), 2n+1 + fL(u′) + fL(v′)

)
= fR(u′) + fT (v′) = fR(u) + fT (v),

since fR(u′) + fT (v′) ≤ 2n−1 − 1 + 2n−1 − 1 < 2n+1, so the minimum can only be
attained by the first argument.

Sample case 2. Assume that (cn−1, dn−1) = (R,L). Then we have

p(u, v) = min

(
2n−1 + fR(u′) + fT (v′), 2n + 2n−1 + fL(u′) + fL(v′)

)

= 2n−1 + min

(
fR(u′) + fT (v′), 2n + fL(u′) + fL(v′)

)
= 2n−1 + fR(u′) + fT (v′) = fR(u) + fT (v),

again since fR(u′) + fT (v′) ≤ 2n − 2 < 2n, so again Alternative 1 must hold.
Sample case 3. Assume that (cn−1, dn−1) = (T,L). Then

p(u, v) = min

(
2n−1 + 2n−1 + fR(u′) + fT (v′), 2n + 2n−1 + fL(u′) + fL(v′)

)

= 2n + min

(
fR(u′) + fT (v′), 2n−1 + fL(u′) + fL(v′)

)
= 2n + p(u′, v′).

Note that the order of the arguments in the minimum is preserved, so that once the
correct alternative for p(u′, v′) is determined, this is propagated back to p(u, v).

Sample case 4. Assume that (cn−1, dn−1) = (L,L). Then

p(u, v) = min

(
2n−1 + 2n−1 + fR(u′) + fT (v′), 2n + fL(u′) + fL(v′)

)
= 2n + r(u′, v′).

616 DAN ROMIK

��

��

��

��

��

��

�

�

�

�

� � �

�
�

�
�

�
���

�
�

�
�

�
���

�
�

�
�

�
���

�
�

�
�

�
���RT

RL
RR

LT
TT

TR

LL
LT
LR
RL
TL
TR

LL

RR, TT

TL, LR

RT

TL,
LR

TT,
RR

LT
RL
TR

RT LL

START

(Alt. 1) (tie) (Alt. 2)

STOP

Alt. 1

STOP

Alt. 2

Fig. 2. The finite-state machine: deciding between Alternatives 1 and 2. The two letters signify
the two inputs from x and y, reading at each step the next-most-significant symbol. The parentheses
in the nonterminal states indicate that if the input terminates without a decision, then in the START
state Alternative 1 wins, in the rightmost state Alternative 2 wins, and in the middle state there is
a tie, meaning that the shortest path is not unique and both alternatives are valid. (Termination of
the input corresponds to the recursion equations leading to an evaluation of either p(u, v), q(u, v),
or r(u, v) with u = v = ∅, so the above claim follows from equations (1), (2), (3) together with the
fact mentioned in the proof of Theorem 1 that the order of the arguments is propagated throughout
the recursion.)

A schematic representation of the finite-state machine is shown in Figures 2 and
3. We present two variants of the machine: the machine in Figure 2 only decides
between Alternatives 1 and 2, in the case in which x begins with the symbol T and y
begins with R. The machine in Figure 3, which has auxiliary counters for the distance
and for the variable n (so strictly speaking it is not really a finite-state automaton),
actually computes d(x, y), and it is designed to treat the general case of any two
configurations x, y ∈ V (SGn). This is done by including an initial component that
discards the first few symbols which are identical for x and y, and another component
that permutes the symbols T,L,R to fit the design of the basic machine in Figure 2.

4. Translating between the Hanoi graph and SGn. We now define the
graph of configurations in the n-disc Tower of Hanoi puzzle and show that it is iso-
morphic to SGn. The isomorphism may be computed by reading sequentially the
locations of the discs, starting with the largest one (which corresponds to the most
significant digit in the Sierpiński gasket labeling), and following a diagram of per-
mutations translating the labels of the three pegs into the symbols T,L,R (another
finite-state machine!). Together with the results of the previous section, this will give
an effective means of computing the length of the shortest path between any two
vertices in the Hanoi graph, and of deciding whether the largest disc will be moved
once or twice in a shortest path. After that, we describe briefly an algorithm for ac-
tually constructing the shortest path, based on the algorithm for getting to a perfect
configuration.

Label the three pegs in the Tower of Hanoi with the symbols 0, 1, 2. Since in a

SHORTEST PATHS IN THE TOWER OF HANOI GRAPH 617

��

��

��

��

��

��

�

�

�

�

� � � �

�
�

�
�

�
���

�
�

�
�

�
���

�
�

�
�

�
���

�
�

�
�

�
���CA

CB
CC

BA
AA

AC

BB
BA
BC
CB
AB
AC

BB

CC, AA

AB, BC

CA

AB,
BC

AA,
CC

BA
CB AC

CA BB

STOP

Alt. 1

STOP

Alt. 2

2n

2n−1 2n

2n
2n−1

2n−1
2n

2n

fC (x) + fA(y) fB(x) + fB(y)

��

��

�

START

d = 0

TT
LL
RR

A = T
B = L
C = R

A = R
B = L
C = T

A = L
B = T
C = R

A = R
B = T
C = L

A = T
B = R
C = L

A = L
B = R
C = T

��

�	

��

�	

��

�	

��

�	

��

�	

��

�	

					

������

�
�

�

��
��

��
��

��
��

�

�

RL

TR

TL

RT

LT

LR

d = 1
deterministic

transition

(no input read)

(Alt. 1) (tie) (Alt. 2)

Fig. 3. The finite-state machine: computing d(x, y), the general case. Add to d the number
on each edge traversed, decrease n by 1, and replace x by x′ and y by y′. For the deterministic
transition, do not read input or decrease n.

legal configuration, on each of the pegs the discs are arranged in increasing size from
top to bottom, a configuration is described uniquely by specifying, for any disc, the
label of its peg. Thus, we define Hn, the nth Hanoi graph, to be the graph whose
vertex set is the set V (Hn) = {0, 1, 2}n (with the coordinates of the vectors specifying,
from left to right, the labels of the pegs of the largest disc, second-largest disc, etc.),
and where edges between configurations correspond to permissible moves. Figure 4
shows the graph H4.

The isomorphism between Hn and SGn is now described by the following theorem.

Theorem 2. Hn and SGn are isomorphic graphs. The finite-state machine
shown in Figure 5 translates a Hanoi configuration s ∈ {0, 1, 2}n into a Sierpiński
gasket labeling z ∈ {T,L,R}n by reading the digits from left to right and outputting
the symbols T,L,R at each step according to the identifications in its internal state,
then changing the internal state according to the input.

Proof. This is Theorem 2 in [10]. There it was claimed simply that Hn and

618 DAN ROMIK

Fig. 4. The graph H4.

SGn are isomorphic, but the proof, which is by induction, actually describes how
to compute the isomorphism, and this is easily seen to be equivalent to our finite-
state machine formulation. (A similar argument is used in the proof of Lemma 2 in
[9], which constructs an isomorphism between Hn and a different “discrete Sierpiński
graph,” defined in a geometrical way which is not obviously related to the current
SGn graph.)

Summary. By running the machines of Figures 3 and 5 in parallel, we now have an
algorithm for computing d(x, y) for two arbitrary configurations in the Hanoi graph,
and for solving the decision problem for the largest disc, i.e., to decide whether the
largest disc which it is necessary to move will move once or twice. As we will show
in the next section, when x and y are randomly chosen configurations, the expected
stopping time of the machine is 63

38 . (This random variable even has an exponential tail
distribution, so with very high probability only a small number of discs will need to be
read to solve the decision problem.) Having solved the decision problem, the shortest
path may now be computed in a straightforward manner, as described in [6], using
the algorithm for getting to a perfect configuration (use the algorithm described in
[6], or the algorithm for the Sierpiński gasket described in section 3 together with the
machine of Figure 5—which incidentally leads to an algorithm for getting to perfect
configurations which we have not found in the literature).

SHORTEST PATHS IN THE TOWER OF HANOI GRAPH 619

0 = T
1 = L
2 = R

��

�	START

��

�	

0 = L
1 = T
2 = R

�
���

�

��

�	

0 = T
1 = R
2 = L

�
���

�

��

�	

0 = L
1 = R
2 = T

��

�	

0 = R
1 = T
2 = L

��

�	

0 = R
1 = L
2 = T

�
���

�

�
���

�

��

��

��

�
�

�
�

�
�

���

�

�
�

�
�

�
�

���

�0 2

2 0

1

2 0

1

1

Fig. 5. Computing the isomorphism between Hn and SGn.

5. The case of random inputs.

5.1. How many discs must be read to solve the decision problem?. In
this section, we calculate the average number of discs that must be read in order to
decide whether in a shortest path the largest disc will be moved once or twice. Let x =
an−1an−2 . . . a0 ∈ V (Hn), y = bn−1bn−2 . . . b0 ∈ V (Hn). Assume that we have already
discarded the largest discs which for x and y were on the same peg, so that an−1 �=
bn−1. The algorithm for solving the decision problem then tells us to run the machines
of Figures 3 and 5 until they reach a terminal state (or we run out of input). Since
we have already initialized by discarding irrelevant discs, we will really be using the
machine of Figure 2 (keeping track of the correct identification of the symbols L, T,R
with the pegs 0, 1, 2). Since we are dealing with random inputs, what we are really
interested in is the absorption time of the Markov chain whose transition matrix is

1
2
3
4
5

⎛
⎜⎜⎜⎜⎝

2/9 1/9 0 2/3 0
2/9 1/3 2/9 1/9 1/9
0 1/9 2/9 0 2/3
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

into the terminal states 4 and 5. We may identify these two states to get the simpler
matrix

1
2
3
(45)

⎛
⎜⎜⎝

2/9 1/9 0 2/3
2/9 1/3 2/9 2/9
0 1/9 2/9 2/3
0 0 0 1

⎞
⎟⎟⎠ .

For i = 1, 2, 3, denote by ti the expected time to get to state (45), starting from state
i. Then clearly we have the equations

t1 = 1 +
2

9
t1 +

1

9
t2,

t2 = 1 +
2

9
t1 +

1

3
t2 +

2

9
t3,

t3 = 1 +
1

9
t2 +

2

9
t3.

620 DAN ROMIK

It may easily be verified that the solution to this system of equations is

t1 =
63

38
, t2 =

99

38
, t3 =

63

38
.

The value t1 = 63
38 is our expected stopping time, since i = 1 corresponds to the initial

state. Note that this value is the limit as n → ∞ of the average number of discs that
must be read; in reality, for finite n the value will be slightly smaller since after n
steps we run out of input and the machine terminates even if it has not reached a
terminal state. We summarize in the following theorem.

Theorem 3. The decision problem for shortest paths can be solved in average
time O(1). Specifically, the average number of disc pairs that our algorithm must read,
once identical discs have been discarded, is bounded from above by, and converges as
n → ∞ to, 63

38 .

5.2. The average distance between points on the Sierpiński gasket. Hinz
and Schief [9] computed the average length 466

885 of a shortest path between two random
points on the infinite Sierpiński gasket of unit side. An equivalent result of Hinz [5]
and of Chan [2], in terms of the Tower of Hanoi, is that the average number of moves
in a shortest path between two random configurations in the n-disc Tower of Hanoi
is asymptotically (1 + o(1))(466

885) · 2n as n → ∞.
Without going into too much detail, we show that it is possible to obtain the value

of 466
885 just by looking at the finite-state machine of Figure 3. Since we are dealing

with the infinite gasket, we start with n = 0 and, as before, decrease the value of n
after each step, so that n will go into the negative integers. Let d1, d2, d3, d4 be the
expected accumulated values of the variable d if one starts the machine, with initial
values n = 0, d = 0, at either of the four nonterminal states, in order of their distance
from the state START (so d1 is the total distance; d2 is the distance after discarding
identical most-significant digits of x and y, etc.). Then we have the equations

d1 =
1

3
· 1

2
d1 +

2

3
· 1

2
d2,

d2 =
2

9
·
(

1 +
1

2
d2

)
+

1

9
·
(

1 +
1

2
d3

)
+

2

3
·
(

1

2
+

2

3

)
,

d3 =
2

9
·
(

1

2
+

1

2
d2

)
+

2

9
·
(

1

2
+

1

2
d3

)
+

1

9
·
(

1 +
1

2
d3

)

+
2

9
·
(

1

2
+

1

2
d4

)
+

2

9
· 2

3
,

d4 =
1

9
·
(

1 +
1

2
d3

)
+

2

9
·
(

1 +
1

2
d4

)
+

2

3
·
(

1

2
+

2

3

)
.

The value (1
2 + 2

3) in the second and fourth equations is the expected value of
fC(x) + fA(y) (respectively, fB(x) + fB(y)), given that the first pair of inputs in
the lower part of Figure 3 is one of the six values AC,AA,BA,CC,CB,CA (respec-
tively, BB,BA,BC,CB,AB,AC).

Again, it may be verified that the solution to this system of equations is

d1 =
466

885
, d2 =

233

177
, d3 =

188

177
, d4 =

233

177
,

which gives our claimed value for d1.

SHORTEST PATHS IN THE TOWER OF HANOI GRAPH 621

6. Extensions and open problems. We mention possible connections of our
work to other questions related to the Tower of Hanoi and to the study of fractal
structures similar to the Sierpiński gasket.

• Higher-dimensional Sierpiński gaskets and other fractals. For each n ≥ 2,
there is a fractal known as the Sierpiński gasket in R

n analogous to the
Sierpiński gasket in R

2. Bandt and Kuschel [1] showed that the average
distance between two points in the Sierpiński gasket in R

n is equal to

n

(2n + 1)(n + 1)

(
2n− n2 − 1

n3 + 7n2 + 7n + 9

)
.

In this case, the problem is again one of determining which of several parts
of the gasket a shortest path between two given points should pass through.
It seems very likely that one can construct a finite-state machine to solve
this problem, and that the result of Bandt and Kuschel can be re-proved
using this method. More generally, one can ask similar questions for the class
of postcritically finite fractals (see [1] for the definition), and it would be
interesting to characterize the family of such fractals for which one can solve
the shortest path problem using a finite-state machine, and to give a general
method for constructing such a machine given the symmetries of the fractal.
As an example, we have computed the average distance between two points
in the modified Sierpiński gasket (in R

2) which has side lengths 2, 2, and 1.
It is equal to

147644401107013

168923515522320
≈ 0.955.

We omit the computation, which is somewhat tedious and uses basically the
same ideas as the ones presented here.

• Nonunique shortest paths in Hn. In a recent paper [8], Hinz et al. proved the
following formula for the number an of pairs (x, y) of vertices in the Tower of
Hanoi graph Hn for which there are two shortest paths connecting x and y:

an =
3

4
√

17

[(√
17 + 1

)(
5 +

√
17

2

)n

− 2
√

17 · 3n

+

(√
17 − 1

)(
5 −

√
17

2

)n]
.

Their proof of this formula makes use of Stern’s diatomic sequence. However,
as the authors point out, this formula can also be proved using our finite
automaton, since basically an counts the number of paths in the graph of
states of the automaton in Figure 3 leading from the state START to the
state (tie). By writing down the adjacency matrix of the graph of states and
diagonalizing, one can obtain the formula above.
A related result, not mentioned in [8] but easily seen to follow from the same
ideas, is the following: Let S be the Sierpiński gasket fractal in R

2. Let A
be the subset of S × S consisting of all pairs (x, y) of points in S for which
there are two shortest paths connecting x and y in S. Then the Hausdorff
dimension of A is log[(5 +

√
17)/2]/ log 2.

622 DAN ROMIK

REFERENCES

[1] C. Bandt and T. Kuschel, Self-similar sets VIII. Average interior distance in some fractals,
Measure Theory (Oberwolfach, 1990), Rend. Circ. Mat. Palermo (2) Suppl., 28 (1992), pp.
307–317.

[2] T. Chan, A statistical analysis of the Towers of Hanoi problem, Internat. J. Comput. Math.,
28 (1988), pp. 543–623.

[3] M. C. Er, An analysis of the generalized Towers of Hanoi problem, BIT, 23 (1983), pp. 429–
435.

[4] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, 2nd ed., Addison-
Wesley, Reading, MA, 1994.

[5] A. Hinz, The Tower of Hanoi, Enseign. Math., 35 (1989), pp. 289–321.
[6] A. Hinz, Shortest paths between regular states of the Tower of Hanoi, Inform. Sci., 63 (1992),

pp. 173–181.
[7] A. Hinz, The Tower of Hanoi, in Algebras and Combinatorics (ICAC’97, Hong Kong), Springer,

Singapore, 1999, pp. 277–289.
[8] A. Hinz, S. Klavzar, U. Milutinovic, D. Parisse, and C. Petr, Metric properties of the

Tower of Hanoi graphs and Stern’s diatomic sequence, European J. Combin., 26 (2005),
pp. 693–708.

[9] A. Hinz and A. Schief, The average distance on the Sierpiński gasket, Probab. Theory Related
Fields, 87 (1990), pp. 129–138.

[10] S. Klavzar and U. Milutinovic, Graphs S(n, k) and a variant of the Tower of Hanoi problem,
Czechoslovak Math. J., 47 (1997), pp. 95–104.

[11] S. Klavzar, U. Milutinovic, and C. Petr, On the Frame-Stewart algorithm for the multi-peg
Tower of Hanoi problem, Discrete Appl. Math., 120 (2002), pp. 141–157.

[12] I. Stewart, Le lion, le lama et la laitue, Pour la Science, 142 (1989), pp. 102–107.
[13] P. K. Stockmeyer, The Tower of Hanoi: A Historical Survey and Bibliography, version 0.2,

preprint, 2001. Available online from http://www.cs.wm.edu/~pkstoc/h papers.html.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 623–627

DENSE ARRANGEMENTS ARE LOCALLY VERY DENSE. I∗

JÓZSEF SOLYMOSI†

Abstract. The Szemerédi–Trotter theorem [Combinatorica, 3 (1983), pp. 381–392] gives a
bound on the maximum number of incidences between points and lines on the Euclidean plane. In
particular it says that n lines and n points determine O(n4/3) incidences. Let us suppose that an
arrangement of n lines and n points defines cn4/3 incidences, for a given positive c. It is widely
believed that such arrangements have special structure, but no results are known in this direction.
Here we show that for any natural number, k, one can find k points of the arrangement in general
position such that any pair of them is incident to a line from the arrangement, provided by n ≥ n0(k).
In a subsequent paper we will establish a similar statement for hyperplanes.

Key words. point-line incidences, Szemerédi–Trotter theorem, regularity lemma

AMS subject classifications. 52C10, 52C30, 52C45

DOI. 10.1137/05062826X

1. Introduction. The celebrated Szemerédi–Trotter theorem [21] states that for
n points on the plane, the number of m-rich lines cannot exceed

O(n2/m3 + n/m),(1.1)

and this bound is tight in the worst case. This result has numerous applications
not only in geometry [11, 22] but also in number theory [4]. The Szemerédi–Trotter
theorem has various proofs; the most elegant is the one by Székely [22]. However,
the proofs provide very limited insight into the view of the structure of extremal
arrangements. It is widely believed that a point-line arrangement which defines many
incidences has a special, somehow rigid structure. For example, let us mention here a
question of Elekes. Is it true that for every c > 0 there is a c′ > 0 such that if a set of
n points on the plane contains at least cn2 collinear triples, then at least nc′ points
are along an algebraic curve of degree d, where d is a universal constant?

The main purpose of this paper is to show that any arrangement with close to the
maximum number of incidences is locally a collection of complete geometric graphs.
For the sake of simplicity we state the theorem for the balanced case, when the number
of lines equals the number of points, but it is quite straightforward to see the similar
statement for unbalanced cases as well.

Recent work of Gowers [6] and Nagle, Rödl, Schacht, and Skokan (see [9, 12, 13])
has established a hypergraph removal lemma, which in turn implies similar results
to hyperplanes; however, a slightly different approach is needed, mainly because the
higher dimensional extensions of the Szemerédi–Trotter theorem are not as well de-
fined as in the planar case. To obtain sharp bounds one needs certain restrictions on
the arrangements. Therefore the corresponding structure theorems will appear in a
subsequent paper.

∗Received by the editors April 1, 2005; accepted for publication (in revised form) February 27,
2006; published electronically August 29, 2006. This research was supported by OTKA and NSERC
grants.

http://www.siam.org/journals/sidma/20-3/62826.html
†Department of Mathematics, University of British Columbia, Vancouver, BC, Canada V6T 1Z2

(solymosi@math.ubc.ca).

623

624 JÓZSEF SOLYMOSI

A point set or a set of lines is in general position if no three of the elements are
collinear or concurrent.

Theorem 1.1. For every natural number k and real c > 0 there is a threshold
n0 = n0(k, c) such that if an arrangement of n ≥ n0 lines and n points defines at least
cn4/3 incidences, then one can always find k points of the arrangement in general
position, such that any pair of them is incident to a line from the arrangement.

As we will see from the proof, the complete k-tuple is “local” in the sense that for
any pair of points of the k-tuple, p1 and p2, the number of points from the arrange-
ment, incident to the line segment (p1, p2), is less than k.

2. Proof of Theorem 1.1. The main tool of the proof is Szemerédi’s regularity
lemma [19, 20]. We will use its counting lemma form, because it is easier to extend to
hypergraphs which we will need for the higher dimensional extensions. Let us prove
first the simplest case, to show that there is always a triangle. This “simplest case” is
interesting in its own right; the statement of Lemma 2.1 implies Roth’s theorem [14]
about arithmetic progressions on dense subsets of integers. For the details we refer
to [16, 17].

Lemma 2.1. For every c > 0 there is a threshold n0 = n0(c) and a positive
δ = δ(c) such that, for any set of n ≥ n0 lines L and any set of m ≥ cn2 points P ,
if every point is incident to three lines, then there are at least δn3 triangles in the
arrangement. (A triangle is a set of three distinct points from P such that any two
are incident to a line from L.)

This lemma follows the following theorem of Ruzsa and Szemerédi [15], which is
also called the triangle removal lemma or the counting lemma for triangles.

Theorem 2.2 (see [15]). Let G be a graph on n vertices. If G is the union of
cn2 edge-disjoint triangles, then G contains at least δn3 triangles, where δ depends on
c only.

The same theorem from a different angle is the following.
Theorem 2.3. Let G be a graph on n vertices. If G contains o(n3) triangles,

then one can remove o(n2) edges to make G triangle-free.
To prove Lemma 2.1, let us construct a graph where L is the vertex set and two

vertices are adjacent if and only if the corresponding lines cross at a point of P . This
graph is the union of cn2 disjoint triangles; every point of P defines a unique triangle,
so we can apply Theorem 2.2.

To determine the number of triangles in any arrangement of lines and points
seems to be a hard task. A related conjecture of de Caen and Székely [1] is that n
points and m lines cannot determine more than nm triangles.

One can repeat the same argument, now with k instead of 3. The corresponding
counting lemma can be proven using Szemerédi’s regularity lemma. The proof is
analogous to the Ruzsa–Szemerédi theorem. There are slightly different ways to state
the regularity lemma; for our purposes the so-called degree form is convenient. For
the notations and proofs we refer to the survey paper of Komlós and Simonovits [7].

Theorem 2.4 (regularity lemma). For every ε > 0 there is an M = M(ε) such
that if G = (V,E) is any graph and d ∈ (0, 1] is any real number, then there is a
partition of the vertex set V into k+ 1 clusters V0, V1, . . . , Vk, and there is a subgraph
G′ ⊂ G with the following properties:

• k ≤ M,
• |V0| ≤ ε|V |,
• all clusters Vi, i ≥ 1, are of the same size m ≤ �ε|V |�,
• degG′(v) > degG(v) − (d + ε)|V | for all v ∈ V,

DENSE ARRANGEMENTS 625

• e(G′(Vi)) = 0 for each i ≥ 1,
• all pairs G′(Vi, Vj) (1 ≤ i < j ≤ k) are ε-regular, each with a density either 0

or greater than d.

Armed with the regularity lemma we are ready to prove the following statement,
which is crucial in the proof of Theorem 1.1.

Lemma 2.5. For every c > 0 there is a threshold n0 = n0(c) and a positive
δ = δ(c) such that, for any set of n ≥ n0 lines L and any set of m ≥ cn2 points P , if
every point is incident to k lines, then there are at least δnk complete k-tuples in the
arrangement. (A complete k-tuple is a set of k distinct lines in general position from
L such that any two intersect in a point from P.)

Proof. To avoid having too many degenerate k-tuples, we remove some points
from P which have many lines incident to them. Let P ′, which is the subset of P,
consist of points incident to at most 100/c lines from L. We can apply (1.1) to see
that P ′ is a large subset of P , say 2|P ′| > |P |. Let us construct a graph G where
L is the vertex set and two vertices are adjacent if and only if the corresponding
lines cross at a point of P ′. This graph, G, is the union of at least c

2n
2 edge-disjoint

Kks. Find a subgraph, G′, provided by Theorem 2.4 with ε � c. In G′ we still have
some complete Kks (when going from G to G′ we removed (ε + d)n2 edges, much
less than cn2). The edges of such a complete graph are connecting Vis such that
the bipartite graphs between them are dense and regular. This already implies the
existence of many complete subgraphs, Kks, as the following lemma, quoted from
[7], shows.

Lemma 2.6. Given d > ε > 0, a graph R on k vertices, and a positive integer m,
let us construct a graph G by replacing every vertex of R by m vertices, and replacing
the edges of R with ε-regular pairs of density at least d. Then G has at least αmk

copies of R, where α depends on ε, d, and k but not on m.

Most of the complete k-vertex subgraphs of graph G′ define a complete k-tuple
in the arrangement; i.e., the corresponding lines are in general position. To see this,
let us count the “degenerate” k-tuples, where at least one triple is concurrent. The
number of concurrent triples is at most cn2

(
100/c

3

)
≤ c′n2. For every concurrent triple

one can select k−3 lines to get a degenerate k-tuple. The expression c′nk−1 is clearly
an upper bound on the degenerate k-tuples; therefore most of the complete graphs on
k vertices in G′ are complete k-tuples if n is large enough, n ≥ n0 = n0(c).

The final step of the proof of Theorem 1.1 is to show that arrangements with
many incidences always have a substructure where one uses Lemma 2.1. We divide
the arrangement into smaller parts where we apply the dual of Lemma 2.1. The
common technique to do that is so-called cutting, which was introduced by Chazelle
(see in [2] or in [10]) about 20 years ago. Here we use a more general result, a theorem
of Matoušek [8].

Lemma 2.7. Let P be a point set, P ⊂ Rd, |P | = n, and let r be a parameter,
1 � r � n. Then the set P can be partitioned into t sets Δ1,Δ2, . . . ,Δt, in such
a way that n/r ≤ |Δi| ≤ 2n/r for all i, and any hyperplane crosses no more than
O(r1−1/d) sets, where t = O(r).

One can use the d = 2 case and we choose the value r = βkn
2/3, where βk is a

constant that depends on k and which we will specify later. Let us count the number
of incidences along the lines of L, according to the partition of P. For a given line
ξ ∈ L, we count the sum

∑t
i=1	|Δi

⋂
ξ|/k
, which is not much smaller than the

number of incidences on ξ over k if ξ is rich of incidences, say, incident to much more
than r1/2k points of P. From the condition of Theorem 1.1 and the properties of the

626 JÓZSEF SOLYMOSI

partition we have the following inequality:

c

k
n4/3 ≤

∑
ξ∈L

t∑
i=1

⌊
|Δi

⋂
ξ|

k

⌋
+ |L|r1/2.

Choosing βk = c
2k , the inequality becomes

cn4/3

2k
= ckn

4
3 ≤

∑
ξ∈L

t∑
i=1

⌊
|Δi

⋂
ξ|

k

⌋
=

t∑
i=1

∑
ξ∈L

⌊
|Δi

⋂
ξ|

k

⌋
.

Therefore there is an index i, such that

ckn
2/3 ≤

∑
ξ∈L

⌊
|Δi

⋂
ξ|

k

⌋
.

If s = 	 |Δi∩ξ|
k
, then we can partition the points incident to ξ into s consecutive

k-tuples. We can break the line into s k-rich line segments and consider them as
separate lines. Our combinatorial argument in Lemma 2.5 is robust enough to allow
such modifications. Then we have some c′n2/3 k-rich lines on |Δi| = c′′n1/3 points.
(Another possible way to show that there are at least c′n2/3 k-rich lines is to apply
the Szemerédi–Trotter theorem, (1.1), to show that most of the lines are not “very
rich.”) To complete the proof of Theorem 1.1, we apply the dual statement of Lemma
2.5.

REFERENCES

[1] D. de Caen and L. A. Székely, On dense bipartite graphs of girth eight and upper bounds for
certain configurations in planar point-line systems, J. Combin. Theory Ser. A., 77 (1997),
pp. 268–278.

[2] B. Chazelle, The Discrepancy Method, Cambridge University Press, Cambridge, UK, 2000.
[3] K. L. Clarkson, H. Edelsbrunner, L. J. Guibas, M. Sharir, and E. Welzl, Combinatorial

complexity bounds for arrangements of curves and spheres, Discrete Comput. Geom., 5
(1990), pp. 99–160.

[4] Gy. Elekes, SUMS versus PRODUCTS in number theory, algebra and Erdős geometry, in
Paul Erdos and His Mathematics II, Bolyai Soc. Math. Stud. 11, János Bolyai Math. Soc.,
Budapest, 2002, pp. 241–290.

[5] Gy. Elekes and Cs. D. Tóth, Incidences of not-too-degenerate hyperplanes, in Proceedings of
the 21st ACM Symposium in Computer Geometrics (Pisa, 2005), ACM Press, New York,
pp. 16–21.

[6] W. T. Gowers, Hypergraph Regularity and the Multidimensional Szemerédi Theorem, preprint.
[7] J. Komlós and M. Simonovits, Szemerédi’s regularity lemma and its applications in graph

theory, in Combinatorics, Paul Erdős is eighty, Vol. 2 (Keszthely, 1993), Bolyai Soc. Math.
Stud. 2, János Bolyai Math. Soc., Budapest, 1996, pp. 295–352.

[8] J. Matoušek, Efficient partition trees, Discrete Comput. Geom., 8 (1992), pp. 315–334.
[9] B. Nagle, V. Rödl, and M. Schacht, The counting lemma for regular k-uniform hypergraphs,

Random Structures Algorithms, 28 (2006), pp. 113–179.
[10] J. Pach and P. K. Agarwal, Combinatorial Geometry, John Wiley, New York, 1995.
[11] J. Pach and M. Sharir, Geometric incidences, in Towards a Theory of Geometric Graphs,

Contemp. Math. 342, AMS, Providence, RI, 2004, pp. 185–223.
[12] V. Rödl and J. Skokan, Regularity lemma for k-uniform hypergraphs, Random Structures

Algorithms, 25 (2004), pp. 1–42.
[13] V. Rödl and J. Skokan, Applications of the regularity lemma for uniform hypergraphs, Ran-

dom Structures Algorithms, 28 (2006), pp. 180–194.
[14] K. F. Roth, On certain sets of integers, J. London Math. Soc., 28 (1953), pp. 245–252.
[15] I. Ruzsa and E. Szemerédi, Triple systems with no six points carrying three triangles, Colloq.

Math. Soc. Janos Bolyai, 18 (1978), pp. 939–945.

DENSE ARRANGEMENTS 627

[16] J. Solymosi, Note on a generalization of Roth’s theorem, in Discrete and Computational Ge-
ometry, Algorithms Combin. 25, Springer-Verlag, Berlin, 2003, pp. 825–827.

[17] J. Solymosi, A note on a question of Erdős and Graham, Combin. Probab. Comput., 13 (2004),
pp. 263–267.

[18] J. Solymosi and Cs. D. Tóth, Distinct distances in the plane, Discrete Comput. Geom., 25
(2001), pp. 629–634.

[19] E. Szemerédi, On sets of integers containing no four elements in arithmetic progression, Acta
Math. Acad. Sci. Hungar., 20 (1969), pp. 89–104.

[20] E. Szemerédi, Regular partitions of graphs, in Problèmes Combinatoires et Théorie des
Graphes, Proc. Colloque Inter. CNRS, J.-C. Bermond, J.-C. Fournier, M. Las Vergnas,
and D. Sotteau, eds., CNRS, Paris, 1978, pp. 399–401.

[21] E. Szemerédi and W. T. Trotter, Jr., Extremal problems in discrete geometry, Combina-
torica, 3 (1983), pp. 381–392.

[22] L. A. Székely, Crossing numbers and hard Erdős problems in discrete geometry, Combin.
Probab. Comput., 6 (1997), pp. 353–358.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 628–648

COMPARING PARTIAL RANKINGS∗

RONALD FAGIN† , RAVI KUMAR‡ , MOHAMMAD MAHDIAN§ , D. SIVAKUMAR¶, AND

ERIK VEE†

Abstract. We provide a comprehensive picture of how to compare partial rankings, that is,
rankings that allow ties. We propose several metrics to compare partial rankings and prove that
they are within constant multiples of each other.

Key words. partial ranking, bucket order, permutation, metric

AMS subject classifications. 06A06, 68R99

DOI. 10.1137/05063088X

1. Introduction. The study of metrics on permutations (i.e., full rankings) is
classical and several well-studied metrics are known [10, 22], including the Kendall tau
distance and the Spearman footrule distance. The rankings encountered in practice,
however, often have ties (hence the name partial rankings), and metrics on such
rankings are much less studied.

Aside from its purely mathematical interest, the problem of defining metrics on
partial rankings is valuable in a number of applications. For example the rank aggre-
gation problem for partial rankings arises naturally in multiple settings, including in
online commerce, where users state their preferences for products according to various
criteria, and the system ranks the products in a single, cohesive way that incorporates
all the stated preferences, and returns the top few items to the user. Specific instances
include the following: selecting a restaurant from a database of restaurants (where
the ranking criteria include culinary preference, driving distance, star rating, etc.), se-
lecting an air-travel plan (where the ranking criteria include price, airline preference,
number of hops, etc.), and searching for articles in a scientific bibliography (where the
articles may be ranked by relevance of subject, year, number of citations, etc.). In all
of these scenarios, it is easy to see that many of the ranking criteria lead to ties among
the underlying set of items. To formulate a mathematically sound aggregation prob-
lem for such partially ranked lists (as has been done successfully for fully ranked lists
[12] and “top k lists” [16]), it is sometimes necessary to have a well-defined distance
measure (preferably a metric) between partial rankings.

In this paper we focus on four metrics between partial rankings. These are ob-
tained by suitably generalizing the Kendall tau distance and the Spearman footrule
distance on permutations in two different ways. In the first approach, we associate

∗Received by the editors May 6, 2005; accepted for publication (in revised form) February 7, 2006;
published electronically September 5, 2006. This paper is an expansion of a portion of the paper
[14].

http://www.siam.org/journals/sidma/20-3/63088.html
†IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120 (fagin@almaden.ibm.com,

vee@almaden.ibm.com).
‡Yahoo! Research, 701 First Ave., Sunnyvale, CA 94089 (ravikumar@yahoo-inc.com). This au-

thor’s work was done at the IBM Almaden Research Center.
§Microsoft Research, Redmond, WA 98052 (mahdian@microsoft.com). Part of this author’s work

was supported by NSF grant CCR-0098066. Part of this work was done while the author was visiting
the IBM Almaden Research Center.

¶Google, Inc., 1600 Amphitheatre Parkway, Mountain View, CA 94043 (siva@google.com). This
author’s work was done at the IBM Almaden Research Center.

628

COMPARING PARTIAL RANKINGS 629

with each partial ranking a “profile vector” and we define the distance between the
partial rankings to be the L1 distance between the corresponding profile vectors. In
the second approach, we associate with each partial ranking the family of all full rank-
ings that are obtained by breaking ties in all possible ways. The distance between
partial rankings is then taken to be the Hausdorff distance between the correspond-
ing sets of full rankings.1 In addition to the four metrics we obtain by extending the
Kendall tau distance and the Spearman footrule distance using these two approaches,
we consider a method obtained by generalizing the Kendall tau distance where we
vary a certain parameter. For some choices of the parameter, we obtain a metric, and
for one natural choice, we obtain our Kendall profile metric. All the metrics we define
admit efficient computation. These metrics are defined and discussed in section 3.

Having various metrics on partial rankings is good news, but exactly which one
should a practitioner use to compare partial rankings? Furthermore, which one is best
suited for formulating an aggregation problem for partial rankings? Our summary
answer to these questions is that the exact choice does not matter much. Namely,
following the lead of [16], we define two metrics to be equivalent if they are within
constant multiples of each other. This notion was inspired by the Diaconis–Graham
inequality [11], which says that the Kendall tau distance and the Spearman footrule
distance are within a factor of two of each other. Our main theorem says that all of
our metrics are equivalent in this sense. The methods where we generalize the Kendall
tau distance by varying a certain parameter are easily shown to be equivalent to each
other, and in particular to the profile version of the Kendall tau distance (since one
choice of the parameter leads to the profile version). It is also simple to show that the
Hausdorff versions of the Kendall tau distance and the Spearman footrule distance are
equivalent and that the Hausdorff and the profile versions of the Kendall tau metric
are equivalent. Proving equivalence for the profile metrics turns out to be rather
tricky and requires us to uncover considerable structure inside partial rankings. We
present these equivalence results in section 4.

Related work. The Hausdorff versions of the Kendall tau distance and the Spear-
man footrule distance are due to Critchlow [9]. Fagin, Kumar, and Sivakumar [16]
studied a variation of these for top k lists. Kendall [23] defined two versions of the
Kendall tau distance for partial rankings; one of these versions is a normalized version
of our Kendall tau distance through profiles. Baggerly [5] defined two versions of the
Spearman footrule distance for partial rankings; one of these versions is similar to
our Spearman footrule metric through profiles. However, neither Kendall nor Bag-
gerly proceeded significantly beyond simply providing the definition. Goodman and
Kruskal [20] proposed an approach for comparing partial rankings, which was recently
utilized [21] for evaluating strategies for similarity search on the Web. A serious dis-
advantage of Goodman and Kruskal’s approach is that it is not always defined (this
problem did not arise in the application of [21]).

Rank aggregation and partial rankings. As alluded to earlier, rank aggregation is
the problem of combining several ranked lists of objects in a robust way to produce
a single consensus ranking of the objects. In computer science, rank aggregation has
proved to be a useful and powerful paradigm in several applications including meta-
search [4, 12, 24, 25, 26, 29], combining experts [8], synthesizing rank functions from
multiple indices [15], biological databases [28], similarity search [17], and classification
[17, 24].

1The Hausdorff distance between two point sets A and B in a metric space with metric d(·, ·) is
defined as max{maxγ1∈A minγ2∈B d(γ1, γ2),maxγ2∈B minγ1∈A d(γ1, γ2)}.

630 FAGIN, KUMAR, MAHDIAN, SIVAKUMAR, AND VEE

There has been an extensive body of work in economics and computer science on
providing a mathematical basis for aggregation of rankings. In the “axiomatic ap-
proach,” one formulates a set of desiderata that the aggregation function is supposed
to satisfy, and characterizes various aggregation functions in terms of the “axioms”
they satisfy. The classical result of Arrow [2] shows that a small set of fairly natural
requirements cannot be simultaneously achieved by any nontrivial aggregation func-
tion. For a comprehensive account of specific criteria satisfied by various aggregation
methods, see the survey by Fishburn [18]. In the “metric approach,” one starts with
a metric on the underlying set of rankings (such as permutations or top k lists) and
defines the aggregation problem as that of finding a consensus ranking (permutation
or top k list, respectively) whose total distance to the given rankings is minimized.
It is, of course, natural to study which axioms a given metric method satisfies, and
indeed several such results are known (again, see Fishburn’s survey [18]).

A prime consideration in the adoption of a metric aggregation method in computer
science applications is whether it admits an efficient exact or provably approximate
solution. Several metric methods with excellent properties (e.g., aggregating full lists
with respect to the Kendall tau distance) turn out to be NP-hard to solve exactly
[6, 12]; fortunately, results like the Diaconis–Graham inequality rescue us from this de-
spair, since if two metrics are equivalent and one of them admits an efficient algorithm,
we automatically obtain an efficient approximation algorithm for the other! This is
one of the main reasons for our interest in obtaining equivalences between metrics.

While the work of [12, 16] and follow-up efforts offer a fairly clear picture on how
to compare and aggregate full or top k lists, the context of database-centric applica-
tions poses a new, and rather formidable, challenge. As outlined earlier through the
example of online commerce systems, as a result of nonnumeric/few-valued attributes,
we encounter partial rankings much more than full rankings in some contexts. While
it is possible to treat this issue heuristically by arbitrarily ordering the tied elements
to produce a full ranking, a mathematically well-founded treatment becomes possible
once we are equipped with metrics on partial rankings. By the equivalence outlined
above, it follows that every constant-factor approximation algorithm for rank ag-
gregation with respect to one of our metrics automatically yields a constant-factor
approximation algorithm with respect to all of our metrics. These facts were crucially
used in [14] to obtain approximation algorithms for the problem of aggregating partial
rankings.

2. Preliminaries. Bucket orders. A bucket order is, intuitively, a (strict) linear
order with ties. More formally, a bucket order is a transitive binary relation ≺ for
which there are sets B1, . . . ,Bt (the buckets) that form a partition of the domain such
that x ≺ y if and only if there are i, j with i < j such x ∈ Bi and y ∈ Bj . If x ∈ Bi,
we may refer to Bi as the bucket of x. We may say that bucket Bi precedes bucket Bj

if i < j. Thus, x ≺ y if and only if the bucket of x precedes the bucket of y. We think
of the members of a given bucket as “tied.” A linear order is a bucket order where
every bucket is of size 1. We now define the position of bucket B, denoted pos(B).
Let B1, . . . ,Bt be the buckets in order (so that bucket Bi precedes bucket Bj when
i < j). Then pos(Bi) = (

∑
j<i |Bj |) + (|Bi| + 1)/2. Intuitively, pos(Bi) is the average

location within bucket Bi.

Comment on terminology.2 A bucket order ≺ is irreflexive, that is, there is
no x for which x ≺ x holds. The corresponding reflexive version � is defined by

2The authors are grateful to Bernard Monjardet for providing the information in this paragraph.

COMPARING PARTIAL RANKINGS 631

saying x � y precisely if either x ≺ y or x = y. What we call a bucket order is
sometimes called a “weak order” (or “weak ordering”) [1, 19]. But unfortunately,
the corresponding reflexive version � is also sometimes called a weak order (or weak
ordering) [2, 13, 27]. A bucket order is sometimes called a “strict weak order” (or
“strict weak ordering”) [7, 27]. The reflexive version is sometimes called a “complete
preordering” [3] or a “total preorder” [7]. We are using the terminology bucket order
because it is suggestive and unambiguous.

Partial ranking. Just as we can associate a ranking with a linear order (i.e.,
permutation), we associate a partial ranking σ with each bucket order, by letting
σ(x) = pos(B) when B is the bucket of x. We refer to a partial ranking associated
with a linear order as a full ranking. When it is not otherwise specified, we assume
that all partial rankings have the same domain, denoted D. We say that x is ahead
of y in σ if σ(x) < σ(y). We say that x and y are tied in σ if σ(x) = σ(y). When
we speak of the buckets of a partial ranking, we are referring to the buckets of the
corresponding bucket order.

We define a top k list to be a partial ranking where the top k buckets are sin-
gletons, representing the top k elements, and the bottom bucket contains all other
members of the domain. Note that in [16] there is no bottom bucket in a top k list.
This is because in [16] each top k list has its own domain of size k, unlike our scenario
where there is a fixed domain.

Given a partial ranking σ with domain D, we define its reverse, denoted σR, in
the expected way. That is, for all d ∈ D, let σR(d) = |D| + 1 − σ(d).

We also define the notion of swapping in the normal way. If a, b ∈ D, then
swapping a and b in σ produces a new order σ′, where σ′(a) = σ(b), σ′(b) = σ(a),
and σ′(d) = σ(d) for all d ∈ D \ {a, b}.

Refinements of partial rankings. Given two partial rankings σ and τ , both with
domain D, we say that σ is a refinement of τ and write σ � τ if the following
holds: for all i, j ∈ D, we have σ(i) < σ(j) whenever τ (i) < τ (j). Notice that when
τ (i) = τ (j), there is no order forced on σ. When σ is a full ranking, we say that
σ is a full refinement of τ . Given two partial rankings σ and τ , both with domain
D, we frequently make use of a particular refinement of σ in which ties are broken
according to τ . Define the τ -refinement of σ, denoted τ ∗ σ, to be the refinement of
σ with the following properties. For all i, j ∈ D, if σ(i) = σ(j) and τ (i) < τ (j), then
(τ ∗ σ)(i) < (τ ∗ σ)(j). If σ(i) = σ(j) and τ (i) = τ (j), then (τ ∗ σ)(i) = (τ ∗ σ)(j).
Notice that when τ is in fact a full ranking, then τ∗σ is also a full ranking. Also note
that ∗ is an associative operation, so that if ρ is another partial ranking with domain
D, it makes sense to talk about ρ∗ τ ∗ σ.

Notation. When f and g are functions with the same domain D, we denote the
L1 distance between f and g by L1(f, g). Thus, L1(f, g) =

∑
i∈D |f(i) − g(i)|.

2.1. Metrics, near metrics, and equivalence. A binary function d is called
symmetric if d(x, y) = d(y, x) for all x, y in the domain, and it is called regular if
d(x, y) = 0 if and only if x = y. A distance measure is a nonnegative, symmetric,
regular binary function. A metric is a distance measure d that satisfies the triangle
inequality : d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z in the domain.

The definitions and results in this section were derived in [16], in the context
of comparing top k lists. Two seemingly different notions of a “near metric” were
defined in [16]: their first notion of near metric is based on “relaxing” the polygonal
inequality that a metric is supposed to satisfy.

632 FAGIN, KUMAR, MAHDIAN, SIVAKUMAR, AND VEE

Definition 1 (near metric). A distance measure on partial rankings with domain
D is a near metric if there is a constant c, independent of the size of D, such that
the distance measure satisfies the relaxed polygonal inequality: d(x, z) ≤ c(d(x, x1) +
d(x1, x2) + · · · + d(xn−1, z)) for all n > 1 and x, z, x1, . . . , xn−1 ∈ D.

It makes sense to say that the constant c is independent of the size of D when, as
in [16], each of the distance measures considered is actually a family, parameterized
by D. We need to make an assumption that c is independent of the size of D, since
otherwise we are simply considering distance measures over finite domains, where
there is always such a constant c.

The other notion of near metric given in [16] is based on bounding the distance
measure above and below by positive constant multiples of a metric. It was shown
that both the notions of near metrics coincide.3 This theorem inspired a definition of
what it means for a distance measure to be “almost” a metric, and a robust notion of
“similar” or “equivalent” distance measures. We modify the definitions in [16] slightly
to fit our scenario, where there is a fixed domain D.

Definition 2 (equivalent distance measures). Two distance measures d and
d′ between partial rankings with domain D are equivalent if there are positive con-
stants c1 and c2, independent of the size of D, such that c1d

′(σ1,σ2) ≤ d(σ1,σ2) ≤
c2d

′(σ1,σ2) for every pair σ1,σ2 of partial rankings.
It is clear that the above definition leads to an equivalence relation (i.e., reflexive,

symmetric, and transitive). It follows from [16] that a distance measure is equivalent
to a metric if and only if it is a near metric.

2.2. Metrics on full rankings. We now review two well-known notions of
metrics on full rankings, namely the Kendall tau distance and the Spearman footrule
distance.

Let σ1,σ2 be two full rankings with domain D. The Spearman footrule distance is
simply the L1 distance L1(σ1,σ2). The definition of the Kendall tau distance requires
a little more work.

Let P = {{i, j} | i �= j and i, j ∈ D} be the set of unordered pairs of distinct
elements. The Kendall tau distance between full rankings is defined as follows. For
each pair {i, j} ∈ P of distinct members of D, if i and j are in the same order in σ1 and
σ2, then let the penalty K̄i,j(σ1,σ2) = 0; and if i and j are in the opposite order (such
as i being ahead of j in σ1 and j being ahead of i in σ2), then let K̄i,j(σ1,σ2) = 1. The
Kendall tau distance is given by K(σ1,σ2) =

∑
{i,j}∈P K̄i,j(σ1,σ2). The Kendall tau

distance turns out to be equal to the number of exchanges needed in a bubble sort to
convert one full ranking to the other.

Diaconis and Graham [11] proved a classical result, which states that for every
two full rankings σ1, σ2,

K(σ1, σ2) ≤ F (σ1, σ2) ≤ 2K(σ1, σ2).(1)

Thus, the Kendall tau distance and the Spearman footrule distance are equivalent
metrics for full rankings.

3. Metrics for comparing partial rankings. In this section we define metrics
on partial rankings. The first set of metrics is based on profile vectors (section 3.1).
As part of this development, we consider variations of the Kendall tau distance where

3This result would not hold if instead of relaxing the polygonal inequality, we simply relaxed the
triangle inequality.

COMPARING PARTIAL RANKINGS 633

we vary a certain parameter. The second set of metrics is based on the Hausdorff
distance (section 3.2). Section 3.3 compares these metrics (when the partial rankings
are top k lists) with the distance measures for top k lists that are developed in [16].

3.1. Metrics based on profiles. Let σ1,σ2 be two partial rankings with do-
main D. We now define a family of generalizations of the Kendall tau distance to
partial rankings. These are based on a generalization [16] of the Kendall tau distance
to top k lists.

Let p be a fixed parameter, with 0 ≤ p ≤ 1. Similar to our definition of

K̄i,j(σ1,σ2) for full rankings σ1,σ2, we define a penalty K̄
(p)
i,j (σ1,σ2) for partial

rankings σ1,σ2 for {i, j} ∈ P. There are three cases.
Case 1. i and j are in different buckets in both σ1 and σ2. If i and j are in

the same order in σ1 and σ2 (such as σ1(i) > σ1(j) and σ2(i) > σ2(j)), then let

K̄
(p)
i,j (σ1,σ2) = 0; this corresponds to “no penalty” for {i, j}. If i and j are in the

opposite order in σ1 and σ2 (such as σ1(i) > σ1(j) and σ2(i) < σ2(j)), then let the

penalty K̄
(p)
i,j (σ1,σ2) = 1.

Case 2. i and j are in the same bucket in both σ1 and σ2. We then let the

penalty K̄
(p)
i,j (σ1,σ2) = 0. Intuitively, both partial rankings agree that i and j are

tied.
Case 3. i and j are in the same bucket in one of the partial rankings σ1 and σ2,

but in different buckets in the other partial ranking. In this case, we let the penalty

K̄
(p)
i,j (σ1,σ2) = p.

Based on these cases, define K(p), the Kendall distance with penalty parameter p,
as follows:

K(p)(σ1,σ2) =
∑

{i,j}∈P
K̄

(p)
i,j (σ1,σ2).

We now discuss our choice of penalty in Cases 2 and 3. In Case 2, where i and
j are in the same bucket in both σ1 and σ2, what if we had defined there to be a

positive penalty K̄
(p)
i,j (σ1,σ2) = q > 0? Then if σ were an arbitrary partial ranking

that had some bucket of size at least 2, we would have had K(p)(σ,σ) ≥ q > 0. So
K(p) would not have been a metric, or even a distance measure, since we would have
lost the property that K(p)(σ,σ) = 0. The next proposition shows the effect of the
choice of p in Case 3.

Proposition 3. K(p) is a metric when 1/2 ≤ p ≤ 1, is a near metric when
0 < p < 1/2, and is not a distance measure when p = 0.

Proof. Let us first consider the case p = 0. We now show that K(0) is not even
a distance measure. Let the domain D have exactly two elements a and b. Let τ 1

be the full ranking where a precedes b, let τ 2 be the partial ranking where a and
b are in the same bucket, and let τ 3 be the full ranking where b precedes a. Then
K(0)(τ 1, τ 2) = 0 even though τ 1 �= τ 2. So indeed, K(0) is not a distance measure.
Note also that the near triangle inequality is violated badly in this example, since
K(0)(τ 1, τ 2) = 0 and K(0)(τ 2, τ 3) = 0, but K(0)(τ 1, τ 3) = 1.

It is easy to see that K(p) is a distance measure for every p with 0 < p ≤ 1. We
now show that K(p) does not satisfy the triangle inequality when 0 < p < 1/2 and
satisfies the triangle inequality when 1/2 ≤ p ≤ 1. Let τ 1, τ 2, and τ 3 be as in our
previous example. Then K(p)(τ 1, τ 2) = p, K(p)(τ 2, τ 3) = p, and K(p)(τ 1, τ 3) = 1.
So the triangle inequality fails for 0 < p < 1/2, since K(p)(τ 1, τ 3) > K(p)(τ 1, τ 2) +
K(p)(τ 2, τ 3). On the other hand, the triangle inequality holds for 1/2 ≤ p ≤ 1, since

634 FAGIN, KUMAR, MAHDIAN, SIVAKUMAR, AND VEE

then it is easy to verify that K̄
(p)
i,j (σ1,σ3) ≤ K̄

(p)
i,j (σ1,σ2) + K̄

(p)
i,j (σ2,σ3) for every

i, j, and so K(p)(σ1,σ3) ≤ K(p)(σ1,σ2) + K(p)(σ2,σ3).

We now show that K(p) is a near metric when 0 < p < 1/2. It is easy to verify
that if 0 < p < p′ ≤ 1, then K(p)(σ1,σ2) ≤ K(p′)(σ1,σ2) ≤ (p′/p)K(p)(σ1,σ2).
Hence, all of the distance measures K(p) are equivalent whenever 0 < p. As noted
earlier, it follows from [16] that a distance measure is equivalent to a metric if and
only if it is a near metric. Since K(p) is equivalent to the metric K(1/2) when 0 < p,
we conclude that in this case, K(p) is a near metric.

It is worth stating formally the following simple observation from the previous
proof.

Proposition 4. All of the distance measures K(p) are equivalent whenever 0 <
p ≤ 1.

For the rest of the paper, we focus on the natural case p = 1/2, which corresponds
to an “average” penalty for two elements i and j that are tied in one partial ranking
but not in the other partial ranking. We show that K(1/2) is equivalent to the other
metrics we define. It thereby follows from Proposition 4 that each of the distance
measures K(p) for 0 < p ≤ 1, and in particular the metrics K(p) for 1/2 ≤ p ≤ 1, is
equivalent to these other metrics.

We now show there is an alternative interpretation for K(1/2) in terms of a “pro-
file.” Let O = {(i, j) : i �= j and i, j ∈ D} be the set of ordered pairs of distinct
elements in the domain D. Let σ be a partial ranking (as usual, with domain D).
For (i, j) ∈ O, define pij to be 1/4 if σ(i) < σ(j), to be 0 if σ(i) = σ(j), and to be
−1/4 if σ(i) > σ(j). Define the K-profile of σ to be the vector 〈pij : (i, j) ∈ O〉 and
Kprof(σ1,σ2) to be the L1 distance between the K-profiles of σ1 and σ2. It is easy
to verify that Kprof = K(1/2).4 It is also easy to see that the K-profile of σ uniquely
determines σ.

It is clear how to generalize the Spearman footrule distance to partial rankings—
we simply take it to be L1(σ1,σ2), just as before. We refer to this value as Fprof(σ1,σ2),
for reasons we now explain. Let us define the F -profile of a partial ranking σ to be
the vector of values σ(i). So the F -profile is indexed by D, whereas the K-profile is
indexed by O. Just as the Kprof value of two partial rankings (or of the correspond-
ing bucket orders) is the L1 distance between their K-profiles, the Fprof value of two
partial rankings (or of the corresponding bucket orders) is the L1 distance between
their F -profiles. Since Kprof and Fprof are L1 distances, and since the K-profile and
the F -profile each uniquely determine the partial ranking, it follows that Kprof and
Fprof are both metrics.

3.2. The Hausdorff metrics. Let A and B be finite sets of objects and let d
be a metric on objects. The Hausdorff distance between A and B is given by

dHaus(A,B) = max

{
max
γ1∈A

min
γ2∈B

d(γ1, γ2), max
γ2∈B

min
γ1∈A

d(γ1, γ2)

}
.(2)

Although this looks fairly nonintuitive, it is actually quite natural, as we now
explain. The quantity minγ2∈B d(γ1, γ2) is the distance between γ1 and the set B.
Therefore, the quantity maxγ1∈A minγ2∈B d(γ1, γ2) is the maximal distance of a mem-
ber of A from the set B. Similarly, the quantity maxγ2∈B minγ1∈A d(γ1, γ2) is the

4The reason that the values of pij in the K-profile are 1/4, 0, and −1/4 rather than 1/2, 0, and
−1/2 is that each pair {i, j} with i �= j is counted twice, once as (i, j) and once as (j, i).

COMPARING PARTIAL RANKINGS 635

maximal distance of a member of B from the set A. Therefore, the Hausdorff dis-
tance between A and B is the maximal distance of a member of A or B from the
other set. Thus, A and B are within Hausdorff distance s of each other precisely if
every member of A and B is within distance s of some member of the other set. The
Hausdorff distance is well known to be a metric.

Critchlow [9] used the Hausdorff distance to define a metric, which we now define,
between partial rankings. Given a metric d that gives the distance d(γ1, γ2) between
full rankings γ1 and γ2, define the distance dHaus between partial rankings σ1 and σ2

to be

dHaus(σ1,σ2) = max

{
max
γ1�σ1

min
γ2�σ2

d(γ1, γ2), max
γ2�σ2

min
γ1�σ1

d(γ1, γ2)

}
,(3)

where γ1 and γ2 are full rankings. In particular, when d is the footrule distance,
this gives us a metric between partial rankings that we call FHaus, and when d is the
Kendall distance, this gives us a metric between partial rankings that we call KHaus.
Both FHaus and KHaus are indeed metrics, since they are special cases of the Hausdorff
distance.

The next theorem, which is due to Critchlow (but which we state using our
notation), gives a complete characterization of FHaus and KHaus. For the sake of
completeness, we prove this theorem in the appendix.5

Theorem 5 (see [9]). Let σ and τ be partial rankings, let σR be the reverse of
σ, and let τR be the reverse of τ . Let ρ be any full ranking. Then

FHaus(σ, τ) = max{F (ρ∗ τR∗ σ, ρ∗ σ∗ τ),

F (ρ∗ τ ∗ σ, ρ∗ σR∗ τ)},
KHaus(σ, τ) = max{K(ρ∗ τR∗ σ, ρ∗ σ∗ τ),

K(ρ∗ τ ∗ σ, ρ∗ σR∗ τ)}.

Theorem 5 gives us a simple algorithm for computing FHaus(σ, τ) and KHaus(σ, τ):
we simply pick an arbitrary full ranking ρ and do the computations given in Theo-
rem 5. Thus, let σ1 = ρ∗ τR ∗ σ, let τ1 = ρ∗ σ ∗ τ , let σ2 = ρ∗ τ ∗ σ, and let
τ2 = ρ∗ σR ∗ τ . Theorem 5 tells us that FHaus(σ, τ) = max {F (σ1, τ1), F (σ2, τ2)}
and KHaus(σ, τ) = max {K(σ1, τ1),K(σ2, τ2)}. It is interesting that the same pairs,
namely (σ1, τ1) and (σ2, τ2), are the candidates for exhibiting the Hausdorff distance
for both F and K. Note that the only role that the arbitrary full ranking ρ plays
is to arbitrarily break ties (in the same way for σ and τ) for pairs (i, j) of distinct
elements that are in the same bucket in both σ and τ . A way to describe the pair
(σ1, τ1) intuitively is as follows: break the ties in σ based on the reverse of the order-
ing in τ , break the ties in τ based on the ordering in σ, and break any remaining ties
arbitrarily (but in the same way in both). A similar description applies to the pair
(σ2, τ2).

The algorithm just described for computing FHaus(σ, τ) and KHaus(σ, τ) is based
on creating pairs (σ1, τ1) and (σ2, τ2), one of which must exhibit the Hausdorff dis-
tance. The next theorem gives a direct algorithm for computing KHaus(σ, τ) that we
make use of later.

Theorem 6. Let σ and τ be partial rankings. Let S be the set of pairs {i, j}
of distinct elements such that i and j appear in the same bucket of σ but in different

5Our proof arose when, unaware of Critchlow’s result, we derived and proved this theorem.

636 FAGIN, KUMAR, MAHDIAN, SIVAKUMAR, AND VEE

buckets of τ , let T be the set of pairs {i, j} of distinct elements such that i and j
appear in the same bucket of τ but in different buckets of σ, and let U be the set of
pairs {i, j} of distinct elements that are in different buckets of both σ and τ and are
in a different order in σ and τ . Then KHaus(σ, τ) = |U | + max {|S|, |T |}.

Proof. As before, let σ1 = ρ∗ τR∗ σ, let τ1 = ρ∗ σ∗ τ , let σ2 = ρ∗ τ ∗ σ, and
let τ2 = ρ∗ σR∗ τ . It is straightforward to see that the set of pairs {i, j} of distinct
elements that are in a different order in σ1 and τ1 is exactly the union of the disjoint
sets U and S. Therefore, K(σ1, τ1) = |U | + |S|. Identically, the set of pairs {i, j}
of distinct elements that are in a different order in σ2 and τ2 is exactly the union
of the disjoint sets U and T , and hence K(σ2, τ2) = |U | + |T |. But by Theorem 5,
we know that KHaus(σ, τ) = max {K(σ1, τ1),K(σ2, τ2)} = max {|U | + |S|, |U | + |T |}.
The result follows immediately.

3.3. Metrics in this paper for top k lists vs. distance measures defined
in [10]. Metrics on partial rankings naturally induce metrics on top k lists. We now
compare (a) the metrics on top k lists that are induced by our metrics on partial
rankings with (b) the distance measures on top k lists that were introduced in [16].
Recall that for us, a top k list is a partial ranking consisting of k singleton buckets,
followed by a bottom bucket of size |D|−k. However, in [16], a top k list is a bijection
of a domain (“the top k elements”) onto {1, . . . , k}. Let σ and τ be top k lists (of
our form). Define the active domain for σ, τ to be the union of the elements in the
top k buckets of σ and the elements in the top k buckets of τ . In order to make
our scenario compatible with the scenario of [16], we assume during our comparison
that the domain D equals the active domain for σ, τ . Our definitions of K(p), FHaus,
and KHaus are then exactly the same in the two scenarios. (Unlike the situation in
section 3.1, even the case p = 0 gives a distance measure, since the unpleasant case
where K(0)(σ1,σ2) = 0 even though σ1 �= σ2 does not arise for top k lists σ1 and
σ2.) Nevertheless, K(p), FHaus, and KHaus are only near metrics in [16] in spite of
being metrics for us. This is because, in [16], the active domain varies depending on
which pair of top k lists is being compared.

Our definition of Kprof(σ, τ) is equivalent to the definition of Kavg(σ, τ) in [16],
namely the average value of K(σ, τ) over all full rankings σ, τ with domain D, where
σ � σ and τ � τ . It is interesting to note that if σ and τ were not top k lists
but arbitrary partial rankings, then Kavg would not be a distance measure, since
Kavg(σ,σ) can be strictly positive if σ is an arbitrary partial ranking.

Let � be a real number greater than k. The footrule distance with location pa-
rameter �, denoted F (�), is defined by treating each element that is not among the
top k elements as if it were in position �, and then taking the L1 distance [16]. More
formally, let σ and τ be top k lists (of our form). Define the function fσ with domain
D by letting fσ(i) = σ(i) if 1 ≤ σ(i) ≤ k, and fσ(i) = � otherwise. Similarly, define
the function fτ with domain D by letting fτ (i) = τ (i) if 1 ≤ τ (i) ≤ k, and fτ (i) = �
otherwise. Then F (�)(σ, τ) is defined to be L1(fσ, fτ). It is straightforward to verify
that Fprof(σ, τ) = F (�)(σ, τ) for � = (|D| + k + 1)/2.

4. Equivalence between the metrics. In this section we prove our main the-
orem, which says that our four metrics are equivalent.

Theorem 7. The metrics Fprof , Kprof , FHaus, and KHaus are all equivalent, that
is, within constant multiples of each other.

Proof. First, we show

KHaus(σ1,σ2) ≤ FHaus(σ1,σ2) ≤ 2KHaus(σ1,σ2).(4)

COMPARING PARTIAL RANKINGS 637

The proof of this equivalence between FHaus and KHaus uses the robustness of the
Hausdorff definition with respect to equivalent metrics. It is fairly easy, and is given
in section 4.1.

Next, we show

Kprof(σ1,σ2) ≤ Fprof(σ1,σ2) ≤ 2Kprof(σ1,σ2).(5)

We note that (5) is much more complicated to prove than (4) and is also much more
complicated to prove than the Diaconis–Graham inequality (1). The proof involves
two main concepts: “reflecting” each partial ranking so that every element has a mirror
image and using the notion of “nesting,” which means that the interval spanned by
an element and its image in one partial ranking sits inside the interval spanned by
the same element and its image in the other partial ranking. The proof is presented
in section 4.2.

We note that the equivalences given by (4) and (5) are interesting in their own
right.

Finally, we show in section 4.3 that

Kprof(σ1,σ2) ≤ KHaus(σ1,σ2) ≤ 2Kprof(σ1,σ2).(6)

This is proved using Theorem 6.
Using (4), (5), and (6), the proof is complete, since (4) tells us that the two Haus-

dorff metrics are equivalent, (5) tells us that the two profile metrics are equivalent,
and (6) tells us that some Hausdorff metric is equivalent to some profile metric.

4.1. Equivalence of FHaus and KHaus. In this section, we prove the simple
result that the Diaconis–Graham inequalities (1) extend to FHaus and KHaus. We
begin with a lemma. In this lemma, for metric d, we define dHaus as in (2), and
similarly for metric d′.

Lemma 8. Assume that d and d′ are metrics where there is a constant c such
that d ≤ c · d′. Then dHaus ≤ c · d′Haus.

Proof. Let A and B be as in (2). Assume without loss of generality (by reversing
A and B if necessary) that dHaus(A,B) = maxγ1∈A minγ2∈B d(γ1, γ2). Find γ1 in A
that maximizes minγ2∈B d(γ1, γ2), and γ2 in B that minimizes d(γ1, γ2). Therefore,
dHaus(A,B) = d(γ1, γ2). Find γ′

2 in B that minimizes d′(γ1, γ
′
2). (There is such a

γ′
2 since by assumption on the definition of Hausdorff distance, A and B are finite

sets.) Then dHaus(A,B) = d(γ1, γ2) ≤ d(γ1, γ
′
2), since γ2 minimizes d(γ1, γ2). Also

d(γ1, γ
′
2) ≤ c · d′(γ1, γ

′
2), by assumption on d and d′. Finally c · d′(γ1, γ

′
2) ≤ c ·

d′Haus(A,B), by definition of d′Haus and the fact that γ′
2 minimizes d′(γ1, γ

′
2). Putting

these inequalities together, we obtain dHaus(A,B) ≤ c · d′Haus(A,B), which completes
the proof.

We can now show that the Diaconis–Graham inequalities (1) extend to FHaus and
KHaus.

Theorem 9. Let σ1 and σ2 be partial rankings. Then KHaus(σ1,σ2) ≤
FHaus(σ1,σ2) ≤ 2KHaus(σ1,σ2).

Proof. The first inequality KHaus(σ1,σ2) ≤ FHaus(σ1,σ2) follows from the first
Diaconis–Graham inequality K(σ1,σ2) ≤ F (σ1,σ2) and Lemma 8, where we let the
roles of d, d′, and c be played by K, F , and 1, respectively. The second inequality
FHaus(σ1,σ2) ≤ 2KHaus(σ1,σ2) follows from the second Diaconis–Graham inequality
F (σ1,σ2) ≤ 2K(σ1,σ2) and Lemma 8, where we let the roles of d, d′, and c be played
by F , K, and 2, respectively.

638 FAGIN, KUMAR, MAHDIAN, SIVAKUMAR, AND VEE

4.2. Equivalence of Fprof and Kprof . In order to generalize the Diaconis–
Graham inequalities to Fprof and Kprof , we convert a pair of partial rankings into full
rankings (on an enlarged domain) in such a way that the Fprof distance between the
partial rankings is precisely 4 times the F distance between the full rankings, and the
Kprof distance between the partial rankings is precisely 4 times the K distance between
the full rankings. Given a domain D, produce a “duplicate set” D� =

{
i� : i ∈ D

}
.

Given a partial ranking σ with domain D, produce a new partial ranking σ�, with
domain D ∪D�, as follows. Modify the bucket order associated with σ by putting i�

in the same bucket as i for each i ∈ D. We thereby double the size of every bucket.
Let σ� be the partial ranking associated with this new bucket order. Since i� is in the
same bucket as i, we have σ�(i) = σ�(i�). We now show that σ�(i) = 2σ(i) − 1/2 for
all i in D.

Fix i in D, let p be the number of elements j in D such that σ(j) < σ(i), and let
q be the number of elements k in D such that σ(k) = σ(i). By the definition of the
ranking associated with a bucket order, we have

σ(i) = p + (q + 1)/2.(7)

Since each bucket doubles in size for the bucket order associated with σ�, we similarly
have

σ�(i) = 2p + (2q + 1)/2.(8)

It follows easily from (7) and (8) that σ�(i) = 2σ(i) − 1/2, as desired.
We need to obtain a full ranking from the partial ranking σ�. First, for every full

ranking π with domain D, define a full ranking π† with domain D ∪D� as follows:

π†(d) = π(d) for all d ∈ D,

π†(d�) = 2|D| + 1 − π(d) for all d in D

so that π† ranks elements of D in the same order as π, elements of D� in the reverse
order of π, and all elements of D before all elements of D�.

We define σπ = π†∗ (σ�). For instance, suppose B is a bucket of σ� containing
the items a, b, c, a�, b�, c�, and suppose that π orders the items π(a) < π(b) < π(c).
Then σπ will contain the sequence a, b, c, c�, b�, a�. Also notice that in this example,
1
2 (σπ(a) + σπ(a�)) = 1

2 (σπ(b) + σπ(b�)) = 1
2 (σπ(c) + σπ(c�)) = pos(B). In fact,

because of this “reflected-duplicate” property, we see that in general, for every d ∈ D,

1

2
(σπ(d) + σπ(d�)) = σ�(d) = σ�(d�) = 2σ(d) − 1/2.(9)

The following lemma shows that no matter what order π we choose, the Kendall
distance between σπ and τπ is exactly 4 times the Kprof distance between σ and τ .

Lemma 10. Let σ, τ be partial rankings, and let π be any full ranking on the
same domain. Then K(σπ, τπ) = 4Kprof(σ, τ).

Proof. Assume that i and j are in D. Let us consider the cases in the definition
of K(p) (recall that Kprof equals K(p) when p = 1/2).

Case 1. i and j are in different buckets in both σ and τ . If i and j are in the same
order in σ and τ , then the pair {i, j} contributes no penalty to Kprof(σ, τ), and no
pair of members of the set

{
i, j, i�, j�

}
contribute any penalty to K(σπ, τπ). If i and j

are in the opposite order in σ and τ , then the pair {i, j} contributes a penalty of 1 to

COMPARING PARTIAL RANKINGS 639

Kprof(σ, τ), and the pairs among
{
i, j, i�, j�

}
that contribute a penalty to K(σπ, τπ)

are precisely {i, j},
{
i�, j�

}
,
{
i, j�

}
, and

{
i�, j

}
, each of which contributes a penalty

of 1.
Case 2. i and j are in the same bucket in both σ and τ . Then the pair {i, j}

contributes no penalty to Kprof(σ, τ), and no pair of members of the set
{
i, j, i�, j�

}
contribute any penalty to K(σπ, τπ).

Case 3. i and j are in the same bucket in one of the partial rankings σ and τ ,
but in different buckets in the other partial ranking. Then the pair {i, j} contributes
a penalty of 1/2 to Kprof(σ, τ). Assume without loss of generality that i and j are in
the same bucket in σ and that τ (i) < τ (j). There are now two subcases, depending
on whether π(i) < π(j) or π(j) < π(i). In the first subcase, when π(i) < π(j), we
have

σπ(i) < σπ(j) < σπ(j�) < σπ(i�)

and

τπ(i) < τπ(i�) < τπ(j) < τπ(j�).

So the pairs among
{
i, j, i�, j�

}
that contribute a penalty to K(σπ, τπ) are precisely{

i�, j
}

and
{
i�, j�

}
, each of which contribute a penalty of 1.

In the second subcase, when π(j) < π(i), we have

σπ(j) < σπ(i) < σπ(i�) < σπ(j�)

and

τπ(i) < τπ(i�) < τπ(j) < τπ(j�).

So the pairs among
{
i, j, i�, j�

}
that contribute a penalty to K(σπ, τπ) are precisely

{i, j} and
{
i�, j

}
, each of which contribute a penalty of 1.

In all cases, the amount of penalty contributed to K(σπ, τπ) is 4 times the amount
of penalty contributed to Kprof(σ, τ). The lemma then follows.

Notice that Lemma 10 holds for every choice of π. The analogous statement is
not true for Fprof . In that case, we need to choose π specifically for the pair of partial
rankings we are given. In particular, we need to avoid a property we call “nesting.”

Given fixed σ, τ , we say that an element d ∈ D is nested with respect to π if
either

[σπ(d),σπ(d�)] � [τπ(d), τπ(d�)]

or [τπ(d), τπ(d�)] � [σπ(d),σπ(d�)],

where the notation [s, t] � [u, v] for numbers s, t, u, v means that [s, t] ⊆ [u, v] and
s �= u and t �= v. It is sometimes convenient to write [u, v] � [s, t] for [s, t] � [u, v].

The following lemma shows us why we want to avoid nesting.
Lemma 11. Given partial rankings σ, τ and full ranking π, suppose that there

are no elements that are nested with respect to π. Then F (σπ, τπ) = 4Fprof(σ, τ).
Proof. Assume d ∈ D. By assumption, d is not nested with respect to π. We now

show that

|σπ(d) − τπ(d)| + |σπ(d�) − τπ(d�)|
= |σπ(d) − τπ(d) + σπ(d�) − τπ(d�)|.(10)

640 FAGIN, KUMAR, MAHDIAN, SIVAKUMAR, AND VEE

There are three cases, depending on whether σπ(d) = τπ(d), σπ(d) < τπ(d), or
σπ(d) > τπ(d).

If σπ(d) = τπ(d), then (10) is immediate. If σπ(d) < τπ(d), then necessarily
σπ(d�) ≤ τπ(d�), since d is not nested. But then the left-hand side and right-hand side
of (10) are each τπ(d)−σπ(d) + τπ(d�)−σπ(d�), and so (10) holds. If σπ(d) > τπ(d),
then necessarily σπ(d�) ≥ τπ(d�), since d is not nested. But then the left-hand side
and right-hand side of (10) are each σπ(d) − τπ(d) + σπ(d�) − τπ(d�), and so once
again, (10) holds.

From (9) we obtain σπ(d) + σπ(d�) = 4σ(d) − 1. Similarly, we have τπ(d) +
τπ(d�) = 4τ (d) − 1. Therefore

|σπ(d) − τπ(d) + σπ(d�) − τπ(d�)| = 4|σ(d) − τ (d)|.(11)

From (10) and (11) we obtain

|σπ(d) − τπ(d)| + |σπ(d�) − τπ(d�)| = 4|σ(d) − τ (d)|.

Hence,

F (σπ, τπ) =
∑
d∈D

(|σπ(d) − τπ(d)| + |σπ(d�) − τπ(d�)|)

=
∑
d∈D

4|σ(d) − τ (d)|

= 4Fprof(σ, τ).

In the proof of the following lemma, we show that in fact, there is always a full
ranking π with no nested elements.

Lemma 12. Let σ, τ be partial rankings. Then there exists a full ranking π on
the same domain such that F (σπ, τπ) = 4Fprof(σ, τ).

Proof. By Lemma 11, we need only show that there is some full ranking π with no
nested elements. Assume that every full ranking has a nested element; we shall derive
a contradiction. For a full ranking π, we say that its first nest is mind π(d), where d
is allowed to range over all nested elements of π. Choose π to be a full ranking whose
first nest is as large as possible.

Let a be the element such that π(a) is the first nest of π. By definition, a is
nested. Without loss of generality, assume that

[σπ(a),σπ(a�)] � [τπ(a), τπ(a�)].(12)

The intuition behind the proof is the following. We find an element b such that
it appears in the left-side interval but not in the right-side interval of (12). We
swap a and b in the ordering π and argue that b is not nested in this new ordering.
Furthermore, we also argue that no element occurring before a in π becomes nested
due to the swap. Hence, we produce a full ranking whose first nest—if it has a nested
element at all—is later than the first nest of π, a contradiction. We now proceed with
the formal details.

Define the sets S1 and S2 as follows:

S1 =
{
d ∈ D \ {a} | [σπ(a),σπ(a�)] � [σπ(d),σπ(d�)]

}
and

S2 =
{
d ∈ D \ {a} | [σπ(a),σπ(a�)] � [τπ(d), τπ(d�)]

}
.

COMPARING PARTIAL RANKINGS 641

We now show that S1 \S2 is nonempty. This is because |S1| = 1
2 |[σπ(a),σπ(a�)]| − 1,

while |S2| ≤ 1
2 |[σπ(a),σπ(a�)]| − 2, since [σπ(a),σπ(a�)] � [τπ(a), τπ(a�)] but a is

not counted in S2. Choose b in S1 \ S2. Note that the fact that b ∈ S1 implies that a
and b are in the same bucket for σ. It further implies that π(a) < π(b).

We now show that a and b are in different buckets for τ . Suppose that a and b
were in the same bucket for τ . Then since π(a) < π(b), we would have τπ(a) < τπ(b)
and τπ(a�) > τπ(b�). That is, [τπ(a), τπ(a�)] � [τπ(b), τπ(b�)]. If we combine this
fact with (12), we obtain [σπ(a),σπ(a�)] � [τπ(a), τπ(a�)] � [τπ(b), τπ(b�)]. This
contradicts the fact that b /∈ S2. Hence, a and b must be in different buckets for τ .

Now, produce π′ by swapping a and b in π. Since π(a) < π(b), we see that
π′(b) = π(a) < π(b) = π′(a). We wish to prove that the first nest for π′—if it has
a nested element at all—is larger than the first nest for π, which gives our desired
contradiction. We do so by showing that b is unnested for π′ and further, that d is
unnested for π′ for all d in D such that π′(d) < π′(b). In order to prove this, we need
to examine the effect of swapping a and b in π.

We first consider σ. We know that a and b appear in the same bucket of σ. Let
Bab be the bucket of σ that contains both a and b. Swapping a and b in π has the
effect of swapping the positions of a and b in σπ (so in particular σπ′(b) = σπ(a)),
swapping the positions of a� and b� in σπ (so in particular σπ′(b�) = σπ(a�)) and
leaving all other elements d and d� in Bab in the same place (so σπ(d) = σπ′(d)
and σπ(d�) = σπ′(d�)). Since σπ′(b) = σπ(a) and σπ′(b�) = σπ(a�), and since two
closed intervals of numbers are equal precisely if their left endpoints and their right
endpoints are equal, we have

[σπ′(b),σπ′(b�)] = [σπ(a),σπ(a�)].(13)

Now, let B be a bucket of σ other than Bab. Then swapping a and b in π has no
effect (as far as σπ is concerned) on the elements in B, since the relative order of all
elements in B is precisely the same with or without the swap. That is, σπ(d) = σπ′(d)
and σπ(d�) = σπ′(d�) for all d in B. But we noted earlier that these same two equalities
hold for all elements d in Bab other than a and b. Therefore, for all elements d other
than a or b (whether or not these elements are in Bab), we have

[σπ′(d),σπ′(d�)] = [σπ(d),σπ(d�)].(14)

We now consider τ . We know that a and b appear in different buckets of τ .
Let B be a bucket of τ containing neither a nor b (if there is such a bucket). As
with σ, we see that elements in B are unaffected by swapping a and b in π. That is,
τπ(d) = τπ′(d) and τπ(d�) = τπ′(d�) for all d in B.

Now, let Ba be the bucket of τ containing a (but not b). Notice that for all d in Ba

such that π(d) < π(a), we have π(d) = π′(d). Hence, the relative order among these
most highly ranked elements of Ba remains the same. Therefore, τπ(d) = τπ′(d) and
τπ(d�) = τπ′(d�) for all d in Ba such that π(d) < π(a). Furthermore, π′(a) > π(a),
and so a is still ranked after all the aforementioned d’s in τπ′ . Hence, τπ(a) ≤ τπ′(a)
and τπ(a�) ≥ τπ′(a�). That is,

[τπ′(a), τπ′(a�)] ⊆ [τπ(a), τπ(a�)].(15)

Finally, let Bb be the bucket of τ that contains b (but not a). As before, for all d
in Bb such that π(d) < π(a), we have π(d) = π′(d). Hence, the relative order among
these most highly ranked elements of Bb remains the same. Therefore, τπ(d) = τπ′(d)

642 FAGIN, KUMAR, MAHDIAN, SIVAKUMAR, AND VEE

and τπ(d�) = τπ′(d�) for all d in Bb such that π(d) < π(a). That is, for every d such
that π(d) < π(a) (i.e., every d such that π′(d) < π′(b)), we have

[τπ′(d), τπ′(d�)] = [τπ(d), τπ(d�)].(16)

Furthermore, π′(b) < π(b), and so b is still ranked before all d′ in Bb such that
π(b) < π(d′) = π′(d′). Hence, τπ(b) ≥ τπ′(b) and τπ(b�) ≤ τπ′(b�). That is,

[τπ′(b), τπ′(b�)] ⊇ [τπ(b), τπ(b�)].(17)

From (14) and (16), we see that d remains unnested for all d such that π′(d) <
π′(b). So we need only show that b is unnested for π′ to finish the proof. If b were
nested for π′, then either [σπ′(b),σπ′(b�)] � [τπ′(b), τπ′(b�)] or [τπ′(b), τπ′(b�)] �
[σπ′(b),σπ′(b�)]. First, suppose that [σπ′(b),σπ′(b�)] � [τπ′(b), τπ′(b�)]. Then

[σπ(a),σπ(a�)] = [σπ′(b),σπ′(b�)] by (13)

� [τπ′(b), τπ′(b�)] by supposition

⊇ [τπ(b), τπ(b�)] by (17).

But this contradicts the fact that b /∈ S2. Now, suppose that [τπ′(b), τπ′(b�)] �
[σπ′(b),σπ′(b�)]. Then

[τπ′(b), τπ′(b�)] � [σπ′(b),σπ′(b�)] by supposition

= [σπ(a),σπ(a�)] by (13)

� [τπ(a), τπ(a�)] by (12)

⊇ [τπ′(a), τπ′(a�)] by (15).

But this implies that a and b are in the same bucket for τ , a contradiction. Hence, b
must not be nested for π′, which was to be shown.

We can now prove our desired theorem that Fprof and Kprof are equivalent.
Theorem 13. Let σ and τ be partial rankings. Then Kprof(σ, τ) ≤ Fprof(σ, τ) ≤

2Kprof(σ, τ).
Proof. Given σ and τ , let π be the full ranking guaranteed by Lemma 12. Then

we have

Kprof(σ, τ) = 4K(σπ, τπ) by Lemma 10

≤ 4F (σπ, τπ) by (1)

= Fprof(σ, τ) by Lemma 12.

And similarly,

Fprof(σ, τ) = 4F (σπ, τπ) by Lemma 12

≤ 8K(σπ, τπ) by (1)

= 2Kprof(σ, τ) by Lemma 10.

4.3. Equivalence of KHaus and Kprof . We now prove (6), which is the final
step in proving Theorem 7.

Theorem 14. Let σ1 and σ2 be partial rankings. Then Kprof(σ1,σ2) ≤
KHaus(σ1,σ2) ≤ 2Kprof(σ1,σ2).

COMPARING PARTIAL RANKINGS 643

Proof. As in Theorem 6 (where we let σ1 play the role of σ, and let σ2 play
the role of τ), let S be the set of pairs {i, j} of distinct elements such that i and j
appear in the same bucket of σ1 but in different buckets of σ2, let T be the set of
pairs {i, j} of distinct elements such that i and j appear in the same bucket of σ2

but in different buckets of σ1, and let U be the set of pairs {i, j} of distinct elements
that are in different buckets of both σ1 and σ2 and are in a different order in σ1 and
σ2. By Theorem 6, we know that KHaus(σ1,σ2) = |U | + max {|S|, |T |}. It follows
from the definition of Kprof that Kprof(σ1,σ2) = |U |+ 1

2 |S|+
1
2 |T |. The theorem now

follows from the straightforward inequalities |U |+ 1
2 |S|+

1
2 |T | ≤ |U |+max {|S|, |T |} ≤

2(|U | + 1
2 |S| +

1
2 |T |).

This concludes the proof that all our metrics are equivalent.

5. An alternative representation. Let σ and σ′ be partial rankings. Assume
that the buckets of σ are, in order, B1, . . . ,Bt, and the buckets of σ′ are, in order,
B′

1, . . . ,B′
t′ . Critchlow [9] defines nij (for 1 ≤ i ≤ t and 1 ≤ j ≤ t′) to be |Bi ∩ B′

j |.
His main theorem gives formulas for KHaus(σ,σ′) and FHaus(σ,σ′) (and for other
Hausdorff measures) in terms of the nij ’s. His formula for KHaus(σ,σ′) is particularly
simple, and is given by the following theorem.

Theorem 15 (see [9]). Let σ, σ′, and the nij’s be as above. Then

KHaus(σ,σ′) = max

⎧⎨
⎩

∑
i<i′, j≥j′

nijni′j′ ,
∑

i≤i′, j>j′

nijni′j′

⎫⎬
⎭ .

It is straightforward to derive Theorem 6 from Theorem 15, and to derive Theo-
rem 15 from Theorem 6, by using the simple fact that if S, T, U are as in Theorem 6,
then

|U | =
∑

i<i′, j>j′

nijni′j′ ,

|S| =
∑

i=i′, j>j′

nijni′j′ ,

|T | =
∑

i<i′, j=j′

nijni′j′ .

Let us define the Critchlow profile of the pair (σ,σ′) to be a t× t′ matrix, where t
is the number of buckets of σ, t′ is the number of buckets of σ′, and the (i, j)th entry
is nij . We noted that Critchlow gives formulas for KHaus(σ,σ′) and FHaus(σ,σ′) in
terms of the Critchlow profile. The reader may find it surprising that the Critchlow
profile contains enough information to compute KHaus(σ,σ′) and FHaus(σ,σ′). The
following theorem implies that this “surprise” is true not just about KHaus and FHaus,
but about every function d (not even necessarily a metric) whose arguments are a
pair of partial rankings, as long as d is “name-independent” (that is, the answer is
the same when we rename the elements). Before we state the theorem, we need some
more terminology. The theorem says that the Critchlow profile “uniquely determines
σ and σ′, up to renaming of the elements.” What this means is that if (σ,σ′) has
the same Critchlow profile as (τ , τ ′), then the pair (σ,σ′) is isomorphic to the pair
(τ , τ ′). That is, there is a one-to-one function f from the common domain D onto
itself such that σ(i) = τ (f(i)) and σ′(i) = τ ′(f(i)) for every i in D. Intuitively, the
pair (τ , τ ′) is obtained from the pair (σ,σ′) by the renaming function f .

644 FAGIN, KUMAR, MAHDIAN, SIVAKUMAR, AND VEE

Theorem 16. The Critchlow profile uniquely determines σ and σ′, up to renam-
ing of the elements.

Proof. We first give an informal proof. The only relevant information about an
element is which Bi it is in and which B′

j it is in. So the only information that matters
about the pair σ,σ′ of partial rankings is, for each i, j, how many elements are in
Bi ∩ B′

j . That is, we can reconstruct σ and σ′, up to renaming of the elements, by
knowing only the Critchlow profile.

More formally, let (σ,σ′) and (τ , τ ′) each be pairs of partial rankings with the
same Critchlow profile. That is, assume that the buckets of σ are, in order, B1, . . . ,Bt,
the buckets of σ′ are, in order, B′

1, . . . ,B′
t′ , the buckets of τ are, in order, C1, . . . , Ct,

and the buckets of τ ′ are, in order, C′
1, . . . , Ct′ , where |Bi∩B′

j | = |Ci∩C ′
j | for each i, j.

(Note that the number t of buckets of σ is the same as the number of buckets of τ ,
and similarly the number t′ of buckets of σ′ is the same as the number of buckets of
τ ′; this follows from the assumption that (σ,σ′) and (τ , τ ′) have the same Critchlow
profile.) Let fij be a one-to-one mapping of Bi ∩ B′

j onto Ci ∩ C′
j (such an fij exists

because |Bi ∩ B′
j | = |Ci ∩ C′

j |). Let f be the function obtained by taking the union
of the functions fij (we think of functions as sets of ordered pairs, so it is proper to
take the union). It is easy to see that (σ,σ′) and (τ , τ ′) are isomorphic under the
isomorphism f . This proves the theorem.

The Critchlow profile differs in several ways from the K-profile and the F -profile,
as defined in section 3.1. First, the K-profile and the F -profile are each profiles of
a single partial ranking, whereas the Critchlow profile is a profile of a pair of partial
rankings. Second, from the K-profile of σ we can completely reconstruct σ (not
just up to renaming of elements, but completely), and a similar comment applies to
the F -profile. On the other hand, from the Critchlow profile we can reconstruct the
pair (σ,σ′) only up to a renaming of elements. Thus, the Critchlow profile “loses
information,” whereas the K-profile and F -profile do not.

6. Conclusions. In this paper we consider metrics between partial rankings. We
define four natural metrics between partial rankings. We obtain efficient polynomial
time algorithms to compute these metrics. We also show that these metrics are all
within constant multiples of each other.

Appendix. Proof of Theorem 5. In this appendix, we prove Theorem 5.
First, we state a fact that we use several times.

Lemma 17. Suppose a ≤ b and c ≤ d. Then |a− c| + |b− d| ≤ |a− d| + |b− c|.
Proof. To see this, first note that by symmetry, we can assume, without loss of

generality, that a ≤ c. Now there are three cases: a ≤ b ≤ c ≤ d, a ≤ c ≤ b ≤ d, and
a ≤ c ≤ d ≤ b. In the first case (when a ≤ b ≤ c ≤ d), it is easy to verify that both the
left-hand side and the right-hand side of the inequality equal |a− b|+2|b− c|+ |c−d|,
and so the left-hand side and the right-hand side are equal. In both the second case
(when a ≤ c ≤ b ≤ d) and the third case (when a ≤ c ≤ d ≤ b), it is easy to verify
that the right-hand side equals |a− c|+ 2|b− c|+ |b− d|, which exceeds the left-hand
side by 2|b− c|.

We next show a simple lemma.
Lemma 18. Let π be a full ranking, and let σ be a partial ranking. Suppose that

π �= σ. Then there exist i, j such that π(j) = π(i) + 1 while σ(j) ≤ σ(i). If σ is in
fact a full ranking, then σ(j) < σ(i).

Proof. For each m with 1 ≤ m ≤ |D|, let dm be the member of the domain D,
where π(dm) = m. Thus, D =

{
d1, . . . , d|D|

}
and π(d1) < π(d2) < · · · < π(d|D|). If

σ(d�) < σ(d�+1) for all �, then we would have Kprof(σ, π) = 0, contradicting the fact

COMPARING PARTIAL RANKINGS 645

that π �= σ. Hence, there must be some � for which σ(d�+1) ≤ σ(d�). Setting i = d�
and j = d�+1 gives us the lemma.

If σ is a full ranking, then σ(j) �= σ(i), showing σ(j) < σ(i).
The next two lemmas will be helpful in obtaining a characterization of the Haus-

dorff distance.
Lemma 19. Let σ be a full ranking, and let τ be a partial ranking. Then the

quantity F (σ, τ), taken over all full refinements τ � τ , is minimized for τ = σ∗ τ .
Similarly, the quantity K(σ, τ), taken over all full refinements τ � τ , is minimized
for τ = σ∗ τ .

Proof. First, note that if τ is a full ranking with τ � τ , then there is a full ranking
π such that τ = τ ∗ π. We show that F (σ, σ∗ τ) ≤ F (σ, π∗ τ) and K(σ, σ∗ τ) ≤
K(σ, π∗ τ) for every full ranking π. The lemma will then follow. Let

U = {π | π is a full ranking and F (σ, σ∗ τ) > F (σ, π∗ τ)} ,

V = {π | π is a full ranking and K(σ, σ∗ τ) > K(σ, π∗ τ)} ,

and let S = U ∪ V . If S is empty, then we are done. So suppose not; we derive
a contradiction. Over all full rankings π ∈ S, choose π to be a full ranking that
minimizes K(σ, π). In other words, choose a full ranking in S that is as close to σ as
possible, according to the Kendall distance.

Clearly σ �∈ S, and so π �= σ (since π ∈ S). Since π �= σ, Lemma 18 guarantees
that we can find a pair i, j such that π(j) = π(i) + 1, but σ(j) < σ(i). Produce π′

by swapping i and j in π. Clearly, π′ has one fewer inversion with respect to σ than
π does. Hence, K(σ, π′) < K(σ, π). If we can show that π′ ∈ S, then we obtain our
desired contradiction, since π is the full ranking in S that minimizes K(σ, π). So we
need only show that π′ ∈ S.

If i and j are in different buckets for τ , then π′∗ τ = π∗ τ . Hence, F (σ, π′∗ τ) =
F (σ, π∗ τ) and K(σ, π′∗ τ) = K(σ, π∗ τ). So if π ∈ U , then π′ ∈ U , and if π ∈ V ,
then π′ ∈ V . In either case, π′ ∈ S, and we are done.

On the other hand, assume that i and j are in the same bucket for τ . Then
π′∗ τ (i) = π∗ τ (j) and π′∗ τ (j) = π∗ τ (i). Furthermore, since π(i) < π(j) and i and
j are in the same bucket for τ , we have π∗ τ (i) < π∗ τ (j), while σ(j) < σ(i).

Either π ∈ U or π ∈ V . First, consider the case where π ∈ U . We have

|π′∗ τ (j) − σ(j)| + |π′∗ τ (i) − σ(i)|
= |π∗ τ (i) − σ(j)| + |π∗ τ (j) − σ(i)|(18)

≤ |π∗ τ (i) − σ(i)| + |π∗ τ (j) − σ(j)|,

where the inequality follows from Lemma 17 with a = π∗ τ (i), b = π∗ τ (j), c = σ(j),
and d = σ(i). We also have |π′∗ τ (d)− σ(d)| = |π∗ τ (d)− σ(d)| for all d ∈ D \ {i, j},
since π′∗ τ and π∗ τ agree everywhere but at i and j. If we sum over all d (where
we make use of (18) for d = i and d = j), we obtain F (σ, π′∗ τ) ≤ F (σ, π∗ τ). Since
π ∈ U , we have F (σ, π∗ τ) < F (σ, σ∗ τ). Combining these last two inequalities, we
obtain F (σ, π′∗ τ) < F (σ, σ∗ τ). Therefore, π′ ∈ U , and so π′ ∈ S, which was to be
shown.

Now consider the case where π ∈ V . Since π(j) = π(i)+1 and since i and j are in
the same bucket of τ , we have π∗τ (j) = π∗τ (i)+1. Similarly, π′∗τ (i) = π′∗τ (j)+1.
And as we noted earlier, π ∗ τ and π′ ∗ τ agree everywhere except at i and j. In
other words, π′∗ τ is just π∗ τ , with the adjacent elements i and j swapped. Since

646 FAGIN, KUMAR, MAHDIAN, SIVAKUMAR, AND VEE

σ(i) > σ(j) we see that π′∗τ has exactly one fewer inversion with respect to σ than π∗τ
does. Hence, K(σ, π′∗τ) < K(σ, π∗τ). Since π ∈ V , we have K(σ, π∗τ) < K(σ, σ∗τ).
Combining these last two inequalities, we obtain K(σ, π′∗τ) < K(σ, σ∗τ). Therefore,
π′ ∈ V , and so π′ ∈ S, which was to be shown.

Lemma 20. Let σ and τ be partial rankings, and let ρ be any full ranking. Then
the quantity F (σ, σ∗ τ), taken over all full refinements σ � σ, is maximized when
σ = ρ∗ τR ∗ σ. Similarly, the quantity K(σ, σ ∗ τ), taken over all full refinements
σ � σ, is maximized when σ = ρ∗ τR∗ σ.

Proof. First, note that for any full refinement σ � σ, there is some full ranking π
such that σ = π∗ σ. We show that for all full rankings π,

F (ρ∗ τR∗ σ, ρ∗ τR∗ σ∗ τ) ≥ F (π∗ σ, π∗ σ∗ τ)

and K(ρ∗ τR∗ σ, ρ∗ τR∗ σ∗ τ) ≥ K(π∗ σ, π∗ σ∗ τ).

The lemma will then follow.
Let U = {full π | F (ρ ∗ τR ∗ σ, ρ ∗ τR ∗ σ ∗ τ) < F (π ∗ σ, π ∗ σ ∗ τ)}, let

V = {full π | K(ρ∗ τR∗ σ, ρ∗ τR∗ σ∗ τ) < K(π∗ σ, π∗ σ∗ τ)}, and let S = U ∪ V .
If S is empty, then we are done. So suppose not; we derive a contradiction. Over all
full rankings π ∈ S, choose π to be the full ranking that minimizes K(ρ∗ τR, π).

Clearly ρ∗ τR �∈ S, and so π �= ρ∗ τR (since π ∈ S). Since π �= ρ∗ τR, Lemma 18
guarantees that we can find a pair i, j such that π(j) = π(i) + 1, but ρ∗ τR(j) <
ρ∗ τR(i). Produce π′ by swapping i and j. Clearly, π′ has one fewer inversion with
respect to ρ∗τR than π does. Hence, K(ρ∗τR, π′) < K(ρ∗τR, π). We now show that
π′ ∈ S, producing a contradiction.

If i and j are in different buckets for σ, then π′∗ σ = π∗ σ. Hence, F (π′∗ σ, π′∗
σ∗ τ) = F (π∗ σ, π∗ σ∗ τ) and K(π′∗ σ, π′∗ σ∗ τ) = K(π∗ σ, π∗ σ∗ τ). So if π ∈ U ,
then π′ ∈ U , and if π ∈ V , then π′ ∈ V . In either case, π′ ∈ S, and we are done.

Likewise, if i and j are in the same bucket for both σ and τ , then swapping i and
j in π swaps their positions in both π∗σ∗ τ and π∗σ and leaves all other elements in
their same positions in both π∗σ∗ τ and π∗σ. So again, we see F (π′∗σ, π′∗σ∗ τ) =
F (π∗ σ, π∗ σ∗ τ) and K(π′∗ σ, π′∗ σ∗ τ) = K(π∗ σ, π∗ σ∗ τ). As before, π′ ∈ S.

The only remaining situation is when i and j are in the same bucket for σ, but in
different buckets for τ . Let us consider this situation. First of all, π′∗ σ is just π∗ σ
with the adjacent elements i and j swapped, since i and j are in the same bucket for
σ. Second, π′∗ σ∗ τ = π∗ σ∗ τ since i and j are in different buckets for τ .

Since π(i) < π(j), we have π ∗ σ(i) < π ∗ σ(j). Further, τ (i) < τ (j) since
ρ∗ τR(j) < ρ∗ τR(i) and ρ∗ τR is a refinement of the reverse of τ . Since τ (i) < τ (j),
we have π∗ σ∗ τ (i) < π∗ σ∗ τ (j).

Either π ∈ U or π ∈ V . Let us first examine the case that π ∈ U . Substituting
a = π∗ σ(i), b = π∗ σ(j), c = π∗ σ∗ τ (i), d = π∗ σ∗ τ (j) in Lemma 17 gives us

|π∗ σ(i) − π∗ σ∗ τ (i)| + |π∗ σ(j) − π∗ σ∗ τ (j)|
≤ |π∗ σ(i) − π∗ σ∗ τ (j)| + |π∗ σ(j) − π∗ σ∗ τ (i)|(19)

= |π′∗ σ(j) − π′∗ σ∗ τ (j)| + |π′∗ σ(i) − π′∗ σ∗ τ (i)|,

where the equality follows from the facts that (a) π∗ σ(i) = π′∗ σ(j) and π∗ σ(j) =
π′∗ σ(i) since π′∗ σ is just π∗ σ with the adjacent elements i and j swapped, and
(b) π′∗ σ∗ τ = π∗ σ∗ τ . Also, since π′∗ σ is just π∗ σ with the adjacent elements
i and j swapped, |π′ ∗ σ(d) − π′ ∗ σ ∗ τ (d)| = |π ∗ σ(d) − π ∗ σ ∗ τ (d)| for all d ∈
D \ {i, j}. If we sum over all d (where we make use of (19) for d = i and d = j),

COMPARING PARTIAL RANKINGS 647

we obtain F (π ∗ σ, π ∗ σ ∗ τ) ≤ F (π′ ∗ σ, π′ ∗ σ ∗ τ). Since π ∈ U , we have that
F (ρ∗ τR∗σ, ρ∗ τR∗σ∗ τ) < F (π∗σ, π∗σ∗ τ). Combining these last two inequalities,
we obtain F (ρ∗ τR∗σ, ρ∗ τR∗σ∗ τ) < F (π′∗σ, π′∗σ∗ τ). Therefore, π′ ∈ U , and so
π′ ∈ S, which was to be shown.

We now examine the case that π ∈ V . From above, we see that π′∗σ∗τ = π∗σ∗τ ,
while π′∗σ and π∗σ differ only by swapping the adjacent elements i and j. Since, as
shown above, π′∗ σ(i) > π′∗ σ(j) while π′∗ σ∗ τ (i) < π′∗ σ∗ τ (j), we see that there
is exactly one more inversion between π′∗ σ and π′∗ σ∗ τ than between π∗ σ and
π∗σ∗ τ . Hence, K(π∗σ, π∗σ∗ τ) < K(π′∗σ, π′∗σ∗ τ). By our assumption, π ∈ V ,
and so K(ρ∗ τR∗ σ, ρ∗ τR∗ σ∗ τ) < K(π∗ σ, π∗ σ∗ τ). Combining these last two
inequalities, we obtain K(ρ∗ τR∗ σ, ρ∗ τR∗ σ∗ τ) < K(π′∗ σ, π′∗ σ∗ τ). Therefore,
π′ ∈ V , and so π′ ∈ S, which was to be shown.

We can now prove Theorem 5. We prove the theorem for FHaus. The proof for
KHaus is analogous. Recall that

FHaus(σ, τ) = max
{

max
σ

min
τ

F (σ, τ),max
τ

min
σ

F (σ, τ)
}
,

where throughout this proof, σ and τ range through all full refinements of σ and τ ,
respectively. We show maxσ minτ F (σ, τ) = F (ρ∗τR∗σ, ρ∗σ∗τ). A similar argument
shows that maxτ minσ F (σ, τ) = F (ρ∗ τ∗σ, ρ∗σR∗ τ). The claim about FHaus in the
statement of the theorem follows easily.

Think for now of σ � σ as fixed. Then by Lemma 19, the quantity F (σ, τ),
where τ ranges over all full refinements of τ , is minimized when τ = σ∗ τ . That is,
minτ F (σ, τ) = F (σ, σ∗ τ).

By Lemma 20, the quantity F (σ, σ ∗ τ), where σ ranges over all full refine-
ments of σ, is maximized when σ = ρ∗ τR ∗ σ. Hence, maxσ minτ F (σ, τ) = F (ρ∗
τR∗ σ, ρ∗ τR∗ σ∗ τ). Since ρ∗ τR∗ σ∗ τ = ρ∗ σ∗ τ , we have maxσ minτ F (σ, τ) =
F (ρ∗ τR∗ σ, ρ∗ σ∗ τ), as we wanted.

REFERENCES

[1] F. Aleskerov and B. Monjardet, Utility Maximization, Choice, and Preference, Stud.
Econom. Theory 16, Springer-Verlag, Berlin, 2002.

[2] K. J. Arrow, Social Choice and Individual Values, John Wiley and Sons, New York, 1951.
[3] K. J. Arrow and M. D. Intriligator, Handbook of Mathematical Economics, North-Holland,

Amsterdam, 1982.
[4] J. A. Aslam and M. Montague, Models for metasearch, in Proceedings of the 24th Annual

International ACM SIGIR Conference on Research and Development in Information Re-
trieval, New Orleans, 2001, pp. 276–284.

[5] K. A. Baggerly, Visual Estimation of Structure in Ranked Data, Ph.D. thesis, Rice University,
Houston, TX, 1995.

[6] J. J. Bartholdi, C. A. Tovey, and M. A. Trick, Voting schemes for which it can be difficult
to tell who won the election, Social Choice and Welfare, 6 (1989), pp. 157–165.

[7] D. S. Bridges and G. B. Mehta, Representations of Preference Orderings, Lecture Notes in
Econom. and Math. Systems 422, Springer-Verlag, Heidelberg, Berlin, New York, 1995.

[8] W. W. Cohen, R. E. Schapire, and Y. Singer, Learning to order things, J. Artificial Intel-
ligence Res., 10 (1999), pp. 243–270.

[9] D. E. Critchlow, Metric Methods for Analyzing Partially Ranked Data, Lecture Notes in
Statist. 34, Springer-Verlag, Berlin, 1980.

[10] P. Diaconis, Group Representation in Probability and Statistics, IMS Lecture Series Monogr.
Ser. 11, Institute of Mathematical Statistics, Hayward, CA, 1988.

[11] P. Diaconis and R. Graham, Spearman’s footrule as a measure of disarray, J. Roy. Statist.
Soc. Ser. B, 39 (1977), pp. 262–268.

648 FAGIN, KUMAR, MAHDIAN, SIVAKUMAR, AND VEE

[12] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar, Rank aggregation methods for the web,
in Proceedings of the 10th International World Wide Web Conference, Hong Kong, 2001,
pp. 613–622.

[13] J. Eatwell, M. Milgate, and P. Newman, The New Palgrave: A Dictionary of Economics,
MacMillan, London, 1987.

[14] R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, and E. Vee, Comparing and aggregating
rankings with ties, in Proceedings of the 23rd ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systems, Denver, 2004, pp. 47–58.

[15] R. Fagin, R. Kumar, K. McCurley, J. Novak, D. Sivakumar, J. Tomlin, and

D. Williamson, Searching the workplace web, in Proceedings of the 12th International
World Wide Web Conference, Budapest, 2003, pp. 366–375.

[16] R. Fagin, R. Kumar, and D. Sivakumar, Comparing top k lists, SIAM J. Discrete Math., 17
(2003), pp. 134–160.

[17] R. Fagin, R. Kumar, and D. Sivakumar, Efficient similarity search and classification via
rank aggregation, in Proceedings of the 2003 ACM SIGMOD International Conference on
Management of Data, San Diego, 2003, pp. 301–312.

[18] P. Fishburn, Condorcet social choice functions, SIAM J. Appl. Math., 33 (1977), pp. 469–489.
[19] P. C. Fishburn, Interval Orders and Interval Graphs: A Study of Partially Ordered Sets, John

Wiley and Sons, New York, 1985.
[20] L. A. Goodman and W. H. Kruskal, Measures of association for cross classification, J. Amer.

Statist. Assoc., 49 (1954), pp. 732–764.
[21] T. H. Haveliwala, A. Gionis, D. Klein, and P. Indyk, Evaluating strategies for similarity

search on the web, in Proceedings of the 11th International World Wide Web Conference,
Honolulu, 2002, pp. 432–442.

[22] M. Kendall and J. D. Gibbons, Rank Correlation Methods, Edward Arnold, London, 1990.
[23] M. G. Kendall, The treatment of ties in ranking problems, Biometrika, 33 (1945), pp. 239–251.
[24] G. Lebanon and J. D. Lafferty, Cranking: Combining rankings using conditional probability

models on permutations, in Proceedings of the 19th International Conference on Machine
Learning, Sydney, Australia, 2002, pp. 363–370.

[25] M. Montague and J. A. Aslam, Condorcet fusion for improved retrieval, in Proceedings of
the 11th International Conference on Information and Knowledge Management, McLean,
VA, 2002, pp. 538–548.

[26] M. E. Renda and U. Straccia, Web metasearch: Rank vs. score based rank aggregation meth-
ods, in Proceedings of the 18th Annual Symposium on Applied Computing, Melbourne,
FL, 2003, pp. 841–846.

[27] F. S. Roberts, Measurement Theory, with Applications to Decisionmaking, Utility, and the
Social Sciences, Encyclopedia Math. Appl., Addison-Wesley, Reading, MA, 1979.

[28] J. Sese and S. Morishita, Rank aggregation method for biological databases, Genome Infor-
matics, 12 (2001), pp. 506–507.

[29] R. R. Yager and V. Kreinovich, On how to merge sorted lists coming from different web
search tools, Soft Computing Research Journal, 3 (1999), pp. 83–88.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 649–655

A COMBINATORIAL INTERPRETATION
OF THE CHEBYSHEV POLYNOMIALS∗

EMANUELE MUNARINI†

Abstract. We give a combinatorial interpretation of the Chebyshev polynomials in terms of the
number of ideals of generalized fences and crowns.

Key words. Chebyshev polynomials, principle of inclusion-exclusion, generalized fences, gener-
alized crowns, order ideals, multisets

AMS subject classifications. 05A15, 05A19, 06A07

DOI. 10.1137/S0895480103432283

1. Introduction. Chebyshev polynomials appear in several contexts, from anal-
ysis to combinatorics. Here we are interested in the combinatorial representations of
these polynomials. For instance they are involved in the enumeration of certain per-
mutations avoiding some patterns [10, 11, 6]. In [7] they arise by a commutative
substitution into the cd-index of a special Eulerian partially ordered set. Similarly,
in [8, 9] they are generalized by means of the ce-index of another special Eulerian
partially ordered set.

In this paper we give a combinatorial interpretation of the Chebyshev polynomials
which turns out to be much simpler than the ones recalled above. Such an interpreta-
tion is based on the enumeration of the ideals of certain posets which generalize fences
(of even size) and crowns [12, 15]. The enumeration is obtained in an elementary way
using the principle of inclusion-exclusion, generalizing the result obtained in [12] for
ordinary fences and crowns.

Recall that an ideal of a poset P is a subset I such that for every x, y ∈ P , if
x ≤ y and y ∈ I, then x ∈ I. Let J (P) be the set of all ideals of P and let Jk(P) be
the set of all ideals of size k of P . The rank polynomial of J (P) is defined by

R(J (P), x) =

|P |∑
k=0

|Jk(P)| xk.

Recall also [13, 14] that the Chebyshev polynomials of the first kind Tn(x) are
defined by the recurrence

Tn+2(x) = 2xTn+1(x) − Tn(x)(1)

with the initial conditions T0(x) = 1, T1(x) = x, while the Chebyshev polynomials of
the second kind Un(x) are defined by the recurrence

Un+2(x) = 2xUn+1(x) − Un(x)(2)

with the initial conditions U0(x) = 1, U1(x) = 2x.

∗Received by the editors July 28, 2003; accepted for publication (in revised form) October 20,
2004; published electronically September 5, 2006.

http://www.siam.org/journals/sidma/20-3/43228.html
†Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano,

Italy (munarini@mate.polimi.it).

649

650 EMANUELE MUNARINI

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

x
(1)
1

x
(2)
1

x
(3)
1

x
(4)
1

x
(5)
1

x
(1)
4

x
(2)
4

x
(3)
4

x
(4)
4

x
(5)
4

x
(1)
2

x
(5)
2

x
(1)
3

x
(5)
3

(a)

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�
�

�
�

�
��

x
(1)
1

x
(2)
1

x
(3)
1

x
(4)
1

x
(5)
1

x
(1)
4

x
(2)
4

x
(3)
4

x
(4)
4

x
(5)
4

x
(1)
2

x
(5)
2

x
(1)
3

x
(5)
3

(b)

Fig. 1. (a) The generalized fence F(5)
4 ; (b) the generalized crown C(5)

4 .

2. Ideals of generalized fences. Let n, s ∈ N, s �= 0. The generalized fence

F (s)
n is the poset formed by s n elements x

(1)
1 , . . . , x

(s)
1 , . . . , x

(1)
n , . . . , x

(s)
n with cover

relations x
(1)
i < · · · < x

(s)
i for i = 1, . . . , n, and x

(s)
i > x

(1)
i+1 for i = 1, 2, . . . , n− 1 (see

Figure 1(a) for an example).

To obtain an explicit form for the numbers i
(s)
n = |J (F (s)

n)| and i
(s)
n,k = |Jk(F (s)

n)|
we first notice that the ideals of F (s)

n are equivalent to particular multisets (a more ele-
mentary combinatorial structure) and then apply the principle of inclusion-exclusion.

Let [n] be the set {1, 2, . . . , n}. Given an ideal I of F (s)
n consider the multiset

μ : [n] → N defined setting μ(i) = j when x
(j)
i ∈ I, x

(j+1)
i �∈ I, and μ(i) = 0 when

x
(1)
i �∈ I. This multiset is (s + 1)-filtering, i.e., μ(i) ≤ s for all i ∈ [n]. Since I is an

ideal, μ satisfies the following condition:

if μ(i) = s then μ(i + 1) �= 0, for all i = 1, 2, . . . , n− 1 .(3)

Moreover, the order of μ, i.e., the sum μ(1) + · · ·+μ(n), is equal to the size |I| of the

ideal I. For instance, the ideal I = {x(1)
2 , x

(2)
2 , x

(3)
2 , x

(1)
3 } of F (3)

4 corresponds to the

multiset μ = 0310. Let M
(s)
n be the set of all (s + 1)-filtering multisets on [n] with

property (3); similarly let M
(s)
n,k be the set of all multisets in M

(s)
n of order k.

It is easy to see that the correspondence I �→ μ just defined is a bijection

between J (F (s)
n) and M

(s)
n , and between Jk(F (s)

n) and M
(s)
n,k. Hence i

(s)
n = |M (s)

n | and

i
(s)
n,k = |M (s)

n,k|.
Let Ai be the set of all (s+ 1)-filtering multisets μ on [n] such that μ(i) = s and

μ(i+1) = 0. Then M
(s)
n = A′

1∩· · ·∩A′
n−1 (where the prime denotes complementation).

Hence by the Sylvester formula [13, 15]

i(s)n = |A′
1 ∩ · · · ∩A′

n−1| =
∑

S⊆[n−1]

(−1)|S|

∣∣∣∣∣
⋂
i∈S

Ai

∣∣∣∣∣ .
Consider the set AS =

⋂
i∈S Ai, with S ⊆ [n − 1] . If S contains two consecutive

elements i and i+1, then AS = ∅, since we have 0 = μ(i+1) = s for every multiset μ
in AS and by hypothesis s > 0. On the contrary, if S is a sparse subset of [n− 1], i.e.,
it does not contain any two consecutive elements, then AS is equivalent to the set of
all (s+1)-filtering multisets on a set of n−2|S| elements, since each μ ∈ AS is already
defined on i and i+1 for every i ∈ S. Hence we have the identity |AS | = (s+1)n−2|S|

which does not depend on the set S but only on its size. Since the number of all
k-element sparse subsets of [n − 1] is given [13] by the binomial coefficient

(
n−k
k

)
, it

COMBINATORIAL INTERPRETATION OF CHEBYSHEV POLYNOMIALS 651

follows that

i(s)n =

�n/2�∑
k=0

(
n− k

k

)
(−1)k(s + 1)n−2k .(4)

Next we want to determine a recurrence for the numbers i
(s)
n . Consider the poset

F (s)
n+2 and the element x

(s)
1 . An ideal I not containing x

(s)
1 is equivalent to a pair

(I1, I2), where I1 is an ideal of the chain {x(1)
1 , . . . , x

(s−1)
1 } and I2 is an ideal of the

poset G
(s)
n+1 obtained by removing all the elements x

(1)
1 , . . . , x

(s)
1 , which is isomorphic

to F (s)
n+1. So there are s · i(s)n+1 ideals of this kind. An ideal I containing x

(s)
1 contains

also the elements x
(1)
1 , . . . , x

(s−1)
1 , x

(1)
2 . Hence I is equivalent to an ideal of G

(s)
n+1

containing x
(1)
2 . The number of these ideals is given by the difference between the

number of all ideals of G
(s)
n+1 and the number of all ideals of G

(s)
n+1 not containing x

(1)
2 .

But the ideals not containing x
(1)
2 do not contain any of the elements of the form x

(j)
2

and so are equivalent to the ideals of F (s)
n . Since G

(s)
n+1 and F (s)

n+1 are isomorphic,

the number of all ideals in this second case is i
(s)
n+1 − i

(s)
n . In conclusion we have the

recurrence

i
(s)
n+2 = (s + 1) i

(s)
n+1 − i(s)n .(5)

Since the initial conditions are i
(s)
0 = 1 and i

(s)
1 = s + 1, comparing (2) with (5), it

follows that

i(s)n = Un

(
s + 1

2

)
.(6)

In particular, setting x = (s + 1)/2 , from (6) and (4) we obtain the well-known [13]
expansion of the Chebyshev polynomials of the second kind

Un(x) =

�n/2�∑
k=0

(
n− k

k

)
(−1)k(2x)n−2k.

A similar argument allows one to obtain i
(s)
n,k. It is sufficient to consider the sets Ai

of all (s+1)-filtering multisets μ of order k on [n] such that μ(i) = s and μ(i+1) = 0.
Again AS = ∅ when S contains two consecutive elements and AS is equivalent to the
set of all (s+1)-filtering multisets of order k−s|S| on a set of n−2|S| elements when
S is sparse. Hence

|AS | =

(
n− 2|S|; s + 1

k − s|S|

)
,

where
(
n; s+1

k

)
is a polynomial coefficient and counts the (s + 1)-filtering multisets of

order k on a set of n elements [5]. In conclusion

i
(s)
n,k =

∑
j≥0

(
n− j

j

)(
n− 2j; s + 1

k − sj

)
(−1)j .(7)

Moreover, exactly as before, we can obtain the recurrence

i
(s)
n+2,k+s = i

(s)
n+1,k+s + · · · + i

(s)
n+1,k+1 + i

(s)
n+1,k − i

(s)
n,k .(8)

652 EMANUELE MUNARINI

�

�

�

�

�

�

�
�

�
�

1

2

3

4

5

6

�

� �

� � �

� � �

� � �

� �

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

∅

1 4

12
14

45

124 145 456

1234

1245

1456

12345 12456

123456

F
(3)
2 (x) = 1 + 2x + 3x2 + 3x3 + 3x4 + 2x5 + x6 , i

(3)
2 = 15 .

Fig. 2. The generalized fence F(3)
2 and the associated lattice J (F(3)

2).

Using (7) and the identity [5]:

(1 + x + x2 + · · · + xs)n =

sn∑
k=0

(
n; s + 1

k

)
xk ,(9)

it is straightforward to obtain∑
k≥0

i
(s)
n,k xk = (xs/2)n

∑
j≥0

(
n− j

j

)
(−1)j

(1 + x + · · · + xs)n−2j

(xs/2)n−2j
.

Then by (4) it follows that the rank polynomial F
(s)
n (x) =

∑
k≥0 i

(s)
n,k xk of the lattice

J(F (s)
n) is given by

F (s)
n (x) = xsn/2 Un

(
1 + x + · · · + xs

2xs/2

)
.(10)

It is also straightforward to obtain the recursion

F
(s)
n+2(x) = (1 + x + x2 + · · · + xs−1)F

(s)
n+1(x) + xsF (s)

n (x) .(11)

See Figure 2 for an example.

3. Ideals of generalized crowns. The generalized crown C(s)
n is the poset ob-

tained by F (s)
n adding the cover relation x

(1)
1 < x

(s)
n (see Figure 1(b) for an example).

To obtain j
(s)
n = |J (C(s)

n)| and j
(s)
n,k = |J (C(s)

n)| we proceed as in the previous case.

The ideals of C(s)
n are equivalent to the (s + 1)-filtering multisets on [n] with the

following property: if μ(i) = s, then μ(i + 1) �= 0 for all i ∈ [n], where the indices are

taken cyclically so that μ(n + 1) = μ(1) . Let N
(s)
n be the set of all these multisets

and let N
(s)
n,k be the set of all these multisets of order k. Hence j

(s)
n = |N (s)

n | and

j
(s)
n,k = |N (s)

n,k|.
Consider the set Bi of all the (s + 1)-filtering multisets on [n] such that μ(i) = s

and μ(i + 1) = 0. Then N
(s)
n = B′

1 ∩ · · · ∩B′
n and

j(s)
n = |B′

1 ∩ · · · ∩B′
n| =

∑
S⊆[n]

(−1)|S|

∣∣∣∣∣
⋂
i∈S

Bi

∣∣∣∣∣ .

COMBINATORIAL INTERPRETATION OF CHEBYSHEV POLYNOMIALS 653

Again the set BS =
⋂

i∈S Bi is empty when S contains two consecutive elements
(modulo n) and is isomorphic to the set of all the (s + 1)-filtering multisets on a set
of n − 2|S| elements otherwise. In the latter case |BS | = (s + 1)n−2|S|. Since there
are

(
n−k
k

)
n

n−k k-element sparse subsets of [n] (see [13]), it follows that

j(s)
n =

�n/2�∑
k=0

(
n− k

k

)
n

n− k
(−1)k(s + 1)n−2k .(12)

To obtain a recurrence for these numbers, consider C(s)
n+2 and x

(s)
1 . Given an ideal

I of C(s)
n+2, then x

(s)
1 �∈ I or x

(s)
1 ∈ I. In the first case I is an ideal of the poset obtained

by removing x
(s)
1 . This poset is isomorphic to the generalized fence F (s)

n+2 with the

element x
(s)
n+2 removed. Therefore I is an ideal of F (s)

n+2 not containing x
(s)
n+2 and so

we have i
(s)
n+2 − i

(s)
n+1 such ideals. In the second case, I contains x

(1)
1 , . . . , x

(s)
1 and

x
(s)
2 . By removing all the elements of the form x

(j)
1 , we have that I is equivalent to

an ideal of F (s)
n+1 containing x

(s)
1 . It follows that there are i

(s)
n+1 − i

(s)
n such ideals. In

conclusion, j
(s)
n+2 = (i

(s)
n+2 − i

(s)
n+1) + (i

(s)
n+1 − i

(s)
n), that is

j
(s)
n+2 = i

(s)
n+2 + i(s)n .

Using recurrence (5) it is easy to see that the numbers j
(s)
n satisfy the same recurrence,

i.e.,

j
(s)
n+2 = (s + 1)j

(s)
n+1 − j(s)

n .(13)

We do not define C(s)
n for n = 0. However, we set j

(s)
0 = 2 so that the sequence {j(s)

n }n
satisfies the recurrence (13) for each n ≥ 0. Then, since the initial conditions are

j
(s)
0 = 2 and j

(s)
1 = s + 1, from (1) and (13) it follows that

j(s)
n = 2Tn

(
s + 1

2

)
.(14)

In particular, for x = (s+ 1)/2 , by (14) and (12) we obtain the expansion [13] of the
Chebyshev polynomials of the first kind

Tn(x) =
1

2

�n/2�∑
k=0

(
n− k

k

)
n

n− k
(−1)k (2x)n−2k.

To obtain an explicit formula for the numbers j
(s)
n,k , consider the sets Bi of

all (s + 1)-filtering multisets μ of order k on [n] such that μ(i) = s and
μ(i+ 1) = 0 , for i ∈ [n] (with μ(n+ 1) = μ(1)). Again, BS = ∅ when S contains
two consecutive elements (modulo n) and is equivalent to the set of all (s+1)-filtering
multisets of order k − s|S| on a set of n− 2|S| elements when S is sparse. So

|BS | =

(
n− s|S|; s + 1

k − s|S|

)

and

j
(s)
n,k =

∑
j≥0

(
n− j

j

)
n

n− j

(
n− sj; s + 1

k − sj

)
(−1)j .(15)

654 EMANUELE MUNARINI

�

�

�

�

�

�

�
�
�
�

�
�

�
�

1

2

3

4

5

6

�

� �

� � �

� �

� � �

� �

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

∅

1 4

12
14

45

124 145

1234

1245

1456

12345 12456

123456

C
(3)
2 (x) = 1 + 2x + 3x2 + 2x3 + 3x4 + 2x5 + x6 , j

(3)
2 = 14 .

Fig. 3. The generalized crown C(3)
2 and the associated lattice J (C(3)

2).

Finally, using identities (15), (9), and (12), the rank polynomial C(s)
n =

∑
j≥0 j

(s)
n,k xk

of the lattice J(C(s)
n) is given by

C(s)
n (x) = 2xsn/2 Tn

(
1 + x + · · · + xs

2xs/2

)
.(16)

See Figure 3 for an example.

4. Concluding remarks. The poset F (s)
n can be generalized as follows. Replace

the kth column with a column of height sk, for each k. In this way we obtain the
generalized fence Fσ

n , where σ = (s1, s2, s3, . . .). It is straightforward to obtain also
in this case the recurrence

fσ
n+2 = (sn+2 + 1)fσ

n+1 − fσ
n(17)

with initial conditions fσ
0 = 1 and fσ

1 = s1 +1 for the numbers of all ideals of Fσ
n . We

still have a linear recurrence but with variable coefficients. Moreover, the principle
of inclusion-exclusion is not useful since the cardinality of the sets AS depends on S
and not just on its size. However, recurrence (17) implies that the numbers fσ

n can
be expressed as continuants, i.e., as determinant of a tridiagonal matrix∣∣∣∣∣∣∣∣∣∣∣∣

s1 + 1 1
1 s2 + 1 1

1 s3 + 1 1
· · · · · ·

sn−1 + 1 1
1 sn + 1

∣∣∣∣∣∣∣∣∣∣∣∣
= fσ

n .

These determinants appear in the context of Catalan-like numbers [1, 2]. Specifically,
the Catalan-like numbers Cσ

n , where σ = (s0, s1, . . .), are characterized as the unique
sequence with Hankel determinants

det[Cσ
i+j]

n
i,j=0 = 1 , det[Cσ

i+j+1]
n
i,j=0 = fσ−1

n ,

where σ − 1 = (s0 − 1, s1 − 1, . . .). In particular, when σ = (s, s, s, . . .) we have that

the Catalan-like numbers C
(s)
n are characterized as the unique sequence with Hankel

COMBINATORIAL INTERPRETATION OF CHEBYSHEV POLYNOMIALS 655

determinants

det[Cσ
i+j]

n
i,j=0 = 1 , det[Cσ

i+j+1]
n
i,j=0 = Un+1(s/2).

In the enumeration of ideals of generalized fences and crowns sparse subsets of
{1, 2, . . . , n} play a central role. As observed by the referee, these subsets play a
crucial role also in the calculation of the cd-index [3, 4]. This connection seems to
deserve to be explored more deeply.

REFERENCES

[1] M. Aigner, Catalan-like numbers and determinants, J. Combin. Theory Ser. A, 87 (1999),
pp. 33–51.

[2] M. Aigner, Catalan and other numbers: A recurrent theme, in Algebraic Combinatorics and
Computer Science, Springer Italia, Milan, 2001, pp. 347–390.

[3] L. J. Billera, R. Ehrenborg, and M. Readdy, The cd-index of zonotopes and arrangements,
in Mathematical Essays in Honor of Gian-Carlo Rota, B. E. Sagan and R. P. Stanley, eds.,
Birkhäuser, Boston, 1998, pp. 23–40.

[4] L. J. Billera, S. K. Hsiao, and S. van Willigenburg, Peak quasisymmetric functions and
eulerian enumeration, Adv. Math., 176 (2003), pp. 248–276.

[5] L. Comtet, Advanced Combinatorics, Reidel, Boston, 1974.
[6] E. S. Egge and T. Mansour, Permutations which avoid 1243 and 2143, continued fractions,

and Chebyshev polynomials, Electron. J. Combin., 9 (2002/03), Research paper 7, 35 pp.
(electronic).

[7] G. Hetyei, Orthogonal polynomials represented by CW-spheres, Electron. J. Combin., 11
(2004/06), no. 2, Research paper 4, 28 pp. (electronic).

[8] G. Hetyei, Tchebyshev posets, Discrete Comput. Geom., 32 (2004), pp. 493–520.
[9] G. Hetyei, Matrices of formal power series associated to binomial posets, J. Algebraic Combin.,

22 (2005), pp. 65–104.
[10] T. Mansour, Restricted 132-alternating permutations and Chebyshev polynomials, Ann.

Comb., 7 (2003), pp. 201–227.
[11] T. Mansour and Z. Stankova, 321-polygon-avoiding permutations and Chebyshev polynomi-

als, Electron. J. Combin., 9 (2002/03), Research paper 5, 16 pp. (electronic).
[12] E. Munarini and N. Zagaglia Salvi, On the rank polynomial of the lattice of order ideals of

fences and crowns, Discrete Math., 259 (2002), pp. 163–177.
[13] J. Riordan, An Introduction to Combinatorial Analysis, Princeton University Press, Princeton,

NJ, 1978.
[14] T. J. Rivlin, The Chebychev Polynomials, John Wiley, New York, 1990.
[15] R. Stanley, Enumerative Combinatorics, Volume 1, Cambridge Stud. Adv. Math. 49, Cam-

bridge University Press, Cambridge, UK, 1997.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 656–668

A NEW PERIODICITY LEMMA∗

KANGMIN FAN† , SIMON J. PUGLISI‡ , W. F. SMYTH†‡ , AND ANDREW TURPIN§

Abstract. Given a string x = x[1..n], a repetition of period p in x is a substring ur =
x[i..i+rp−1], p = |u|, r ≥ 2, where neither u = x[i..i+p−1] nor x[i..i+(r+1)p−1] is a repetition.
The maximum number of repetitions in any string x is well known to be Θ(n logn). A run or
maximal periodicity of period p in x is a substring urt = x[i..i+rp+ |t|−1] of x, where ur is a
repetition, t is a proper prefix of u, and no repetition of period p begins at position i−1 of x or
ends at position i+ rp+ |t|. In 2000 Kolpakov and Kucherov [J. Discrete Algorithms, 1 (2000),
pp. 159–186] showed that the maximum number ρ(n) of runs in any string x is O(n), but their
proof was nonconstructive and provided no specific constant of proportionality. At the same time,
they presented experimental data strongly suggesting that ρ(n) < n. Related work by Fraenkel and
Simpson [J. Combin. Theory Ser. A., 82 (1998), pp. 112–120] showed that the maximum number
σ(n) of distinct squares in any string x satisfies σ(n) < 2n, while experiment again encourages the
belief that in fact σ(n) < n. In this paper, as a first step toward proving these conjectures, we present
a periodicity lemma that establishes limitations on the number and range of periodicities that can
occur over a specified range of positions in x. We then apply this result to specify corresponding
limitations on the occurrence of runs.

Key words. string, word, periodicity, square, repetition, run, maximal periodicity

AMS subject classification. 68R15

DOI. 10.1137/050630180

1. Introduction. The study of strings began with an investigation of period-
icity properties [23], and periodicity of various kinds still remains a central theme,
important both in theory and practice—for example, in data compression, pattern
matching, computational biology, and many other areas. In this paper we present re-
sults that specify restrictions on the nature and extent of periodic behavior in strings.
Although these results are theoretical, their importance is very much a product of
their practical application, as we explain below.

It will be convenient throughout to represent strings in boldface (for example,
x = x[1..n]) and their lengths in italics (for example, x = |x|).

If w = ur for some nonempty string u and some integer r ≥ 2, then w is said to
be a repetition. Further, a repetition in x is a substring ur = x[i..i+ru−1], r ≥ 2,
in x, where x[i..i+u−1] is not a repetition and x[i..i+(r+1)u−1] �= ur+1. We call
u the generator of the repetition, u its period, and r its exponent; and we represent
it economically by an integer triple (i, u, r). In the early 1980s three quite different

∗Received by the editors April 28, 2005; accepted for publication (in revised form) March 16, 2006;
published electronically September 15, 2006. Preliminary versions of parts of this paper appeared
in Proceedings of the 16th Annual Symposium on Combinatorial Pattern Matching, Lecture Notes
in Comput. Sci. 3537, Springer-Verlag, Berlin, 2005, and in Proceedings of the 16th Australasian
Workshop on Combinatorial Algorithms, University of Ballarat, Ballarat, Victoria, Australia, 2005.

http://www.siam.org/journals/sidma/20-3/63018.html
†Algorithms Research Group, Department of Computing and Software, McMaster University,

Hamilton, ON L8S 4K1, Canada (fank@mcmaster.ca, smyth@mcmaster.ca, www.cas.mcmaster.ca/
cas/research/algorithms.htm). The first and third authors were supported in part by grants from
the Natural Sciences and Engineering Research Council of Canada.

‡Department of Computing, Curtin University, GPO Box U1987, Perth WA 6845, Australia
(puglisi@computing.edu.au, smyth@computing.edu.au).

§Department of Computer Science and Information Technology, RMIT University, GPO Box
2476V, Melbourne V 3001, Australia (aht@cs.rmit.edu.au). The fourth author was supported by a
grant from the Australian Research Council.

656

A NEW PERIODICITY LEMMA 657

O(x log x) algorithms were published [2, 1, 17] for the computation of all the repeti-
tions in a given string x. In a sense these algorithms were all asymptotically optimal,
since in [2] it was shown that in fact a Fibonacci string fn contains Θ(fn log fn)
repetitions.

In [16] Main introduced a more compact encoding of repetitions: a run or maximal
periodicity of period u in x was defined to be a substring urt = x[i..i+ru+t−1] of
x, where ur is a repetition, t is a proper prefix of u, and no repetition of period u
begins at position i−1 of x or ends at position i+ru+t. u is called the generator
of the run, t is called its tail, and a run is economically represented by a 4-tuple
(i, u, r, t). Computing all the runs in x permits all the repetitions in x to be listed in
an obvious way. Main [16] showed how to compute all the “leftmost” runs in x in time
Θ(x), provided that the suffix tree [24, 18] and the Lempel–Ziv (LZ) factorization [14]
of x were both available. In [4] it was shown that a suffix tree could be computed
in linear time on an indexed (bounded integer) alphabet; since the LZ factorization
is computable in linear time from the suffix tree, this meant that the overall worst-
case time requirement of Main’s algorithm was Θ(x) on an indexed alphabet. In [13]
Kolpakov and Kucherov took matters a step further by extending Main’s algorithm
to also compute nonleftmost runs in x in time proportional to their number, and then
by showing that the maximum number ρ(x) of runs in any string x was at most

k1x− k2 log2 x
√
x,(1)

where k1 and k2 are positive constants. Thus, at least in principle, all the runs in x
could be determined in linear time.

However, there is a problem with (1): The proof is nonconstructive and gives no
information about the magnitude of the constants k1 and k2. Nevertheless Kolpakov
and Kucherov provide convincing experimental evidence that

∗ ρ(x) < x;
∗ ρ(x) is achieved by a cube-free string x on alphabet {a, b};
∗ ρ(x + 1) ≤ ρ(x)+2.

As far as we know, there are only two published works that address these fundamental
questions of periodicity. In [7] an infinite family of strings x is constructed that is
conjectured for sufficiently large x to achieve ρ(x) < x. This family thus provides a
lower bound on ρ(x). More recently, Rytter [21] has used interesting techniques to
show that ρ(n) ≤ 5n, thus establishing an upper bound.

It was mentioned above that Main’s algorithm computes all the leftmost runs in x,
that is, the leftmost occurrence of each distinct run, a collection that certainly includes
the leftmost occurrence of each distinct square in x. This suggests a connection
with another well-known problem: the determination of σ(x), the maximum number
of distinct squares in any string x, where again experiment strongly suggests that
σ(x) < x. With this problem better progress has been made: Fraenkel and Simpson
showed [6] that σ(x) ≤ 2x−2, a result recently proved somewhat more simply by Ilie
[8], then later improved to σ(x) ≤ 2x−Θ(log x) [9].

In order to show that in general ρ(x) < x (σ(x) < x), it seems to be necessary to
establish restrictions on the number of runs (squares) that can occur near a position in
x at which one or two runs (squares) are already known to occur. Perhaps the most
famous theoretical result available for such a purpose is the following “periodicity
lemma.”

Lemma 1 (see [5]). Let p and q be two periods of x, and let d = gcd(p, q). If
p+q ≤ x+d, then d is also a period of x.

658 K. FAN, S. J. PUGLISI, W. F. SMYTH, AND A. TURPIN

Unfortunately this lemma provides no special information about runs or the
squares with which runs must begin, and it places no restrictions on the positions
at which periodic substrings may occur. To our knowledge the only result that pro-
vides such information is the following “three squares lemma.”

Lemma 2 (see [3, 15]). Suppose u is not a repetition, and suppose w �= uj for
any j ≥ 1. If u2 is a prefix of w2, in turn a proper prefix of v2, then w ≤ v−u.

Our main result in this paper is essentially a generalization of this result, which
we call a “new periodicity lemma”: We allow w to be offset by k positions from the
start of v2, and we do not always require complete squares v2 and w2, only sufficiently
long substrings of periods v and w. Moreover, as a corollary of our main result, we
are able to specify exactly the periodic behavior in the string.

2. New periodicity lemma. In this section we prove results that establish
restrictions on the squares that can occur in the neighborhood of positions in a string
at which one or two squares already appear. We begin with three simple definitions.

Definition 3. A square u2 is said to be irreducible if u is not a repetition.
Definition 4. A square u2 is said to be regular if no prefix of u is a square.
Definition 5. A square u2 is said to be minimal if no proper prefix of u2 is a

square.
Lemma 6. If u2 is minimal, then u2 is regular; if u2 is regular, then u2 is

irreducible.
Proof. The proof of the first statement is immediate. To prove the second, observe

that by Definition 4, no prefix of u is a square. Therefore u cannot be a repetition,
and so by Definition 3 u2 is irreducible.

The existence of a minimal square already imposes significant limitations on the
nature of other squares that can exist, as the following result shows.

Lemma 7. If x = u2 is minimal, then for all integers k ≥ 0 and w ∈ u/2..u−1,
(a) if

k + w ≤ u, k+3w ≥ 2u,(2)

x[k+1..k+2w] is not a square;
(b) if

k + w > u, k+2w ≤ 2u,(3)

either x[k+1..k+2w] is not a square or x[w′+1..w′+u] has period u−w, where

w′ = (k+w)−u.

Proof. Suppose that for some pair of integers k and w satisfying either (2) or (3),
x[k+1..k+2w] = w2.

First assume that k = 0. Then if (2) holds, either w = u, a contradiction, or else
w < u, contradicting the minimality of u2. On the other hand, if (3) holds, then both
w > u and w ≤ u must hold, again a contradiction. Thus we can assume that k ≥ 1.

(a) Suppose that (2) holds, let w′ = u−(k+w), and consider

ŵ = x[1..w−w′] = x[k+w′+1..k+w].

Since by (2)

(w−w′) − (k+w′) = k+3w−2u ≥ 0,

A NEW PERIODICITY LEMMA 659

u u

w′+1..w′+u

� �w′

� �k � �w � �w

Fig. 1. Lemma 7(b).

the substring x[1..k+w] has period k+w′. Again by (2),

(k+w) − 2(k+w′) = (k+w) − 2(u−w) ≥ 0,

so that x[1..k+w] has prefix
(
x[1..k+w′]

)2
, contradicting the minimality of

u2. Thus in case (a) no such k and w can exist.
(b) Next we suppose that (3) holds so that w < u and hence that k−w′ = u−w > 0

(see Figure 1).
Consider

w = x[w′+1..w′+w] = x[k+1..u+w′].

Since by (3) w′+w = k+(2w−u) ≥ k, the substring x[w′+1..w′+u] of length
u has period k−w′ = u−w, as required.

To show that in case (a) of Lemma 7 the assumption that k+3w ≥ 2u (as well as
the weaker condition w ≥ u/2) is necessary, consider the example u = 14, k = 6, w = 5:

x = u2 = abbaba(babab)(bab‖ab)(babab)ababbab.

Here w = babab, and w3 is a substring of x.
To show that in case (b) of Lemma 7 the substring w2 can in fact exist, consider

the example u = 11, k = 4, w = 8 with w′ = 1:

x = u2 = babc(abcabca‖b)(abcabcab)ca.

The substring x[2..12] = (abc)3ab has period u−w = 3.
We turn now to the situation in which a regular square and an irreducible square

occur at the same position. We first prove two basic lemmas that describe the re-
lationship between regularity and irreducibility, and then go on to prove our main
result.

Lemma 8. If v2 is irreducible with regular proper prefix u2, then

v > max{u+1, 3u/2}.

Proof. Observe that 1 ≤ u < v, and observe further that u+1 ≥ 3u/2 if and only
if u ≤ 2.

For u = 1, u2 = λ2 for some letter λ and the shortest irreducible square v2 =
(λ2μ)2 for some letter μ �= λ. Thus for u = 1, v ≥ 3 > u+1, as required.

For u = 2, since u2 is regular, u2 = (λμ)2 and the shortest irreducible square
v2 = (λμλμν)2 for some letter ν. Thus for u = 2, v ≥ 5 > u+1, as required.

Suppose therefore that u ≥ 3, and suppose further, without loss of generality,
that v < 2u. Then

v = uu[1..v−u] = u[v−u+1..u]v[2u−v+1..v],

660 K. FAN, S. J. PUGLISI, W. F. SMYTH, AND A. TURPIN

where y = u[1..v−u] of length v−u is a prefix of u, and hence of v, and z = u[v−u+1..u]
of length 2u−v is a prefix of v, and hence of u. If we now assume 2v ≤ 3u, it follows
that v−u ≤ 2u−v, so that y is also a prefix of z. Thus u has prefix y2 and so u2

cannot be regular, a contradiction. We conclude that 2v > 3u, as required.
Observe that if u2 is not regular, Lemma 8 may not hold: u = ababa allows

v = ababaab with v < 3u/2.
Lemma 9. If x = v2 is irreducible with regular proper prefix u2, v < 2u, then

x = u1u2u1u1u2u1u2u1u1u2,

where u1 = 2u−v, u2 = 2v−3u.
Proof. Since v < 2u, u ≥ 3 by Lemma 8. Let u1 be the suffix of u of length

u1 = 2u−v that is a prefix of v, and hence also a prefix of u. By the regularity
of u and Lemma 8, u1 < u/2 and so u = u1u2u1 for some nonempty u2. Then
v = u1u2u1u1u2, so that u2 = 2v−3u, as required.

For the proof of our main result, the following definitions will be helpful. If
x = uv, v nonempty, then vu = Ru(x) is said to be the uth rotation of x; also, if u
is both a proper prefix and a suffix of x, then it is said to be a border of x.

We frequently make use of the following two well-known results.
Lemma 10 (see [22, p. 76]). Let x be a string of length n and minimum period

p, and let j ∈ 1..n−1 be an integer. Then Rj(x) = x if and only if x is a repetition
and p divides j.

Lemma 11 (see [22, p. 76]). If a string x is a repetition, then so is every rotation
of x.

We first state the new periodicity lemma (NPL) in a rather general and easily
understood form: Having gone through the proof, we will then be able to reexpress it
to yield stronger conclusions based on weaker premises. A total of 14 cases arise in the
proof (see Table 1). For each of these cases, we are able to identify a specific square
prefix of u that is forced by the presence of w2 in the string x, thus contradicting the
assumption that u2 is regular; therefore, if u2 is not regular, the square prefix must
exist.

For each of the main cases, we specify the range of values of k (either k ∈ 0..u1

or k ∈ u1+1..u1+u2−1) and the end position of w(1) (first occurrence of w) in x.
To facilitate this latter task, we introduce the notation u1

(j),u2
(j) to denote the jth

occurrence of u1,u2, respectively, in x. Thus “w(1) ends in u2
(2)” means that the

first occurrence of w in x ends in the second occurrence of u2 in x. In most of the
cases, it is useful to introduce a substring s that is both a prefix of w and a suffix of
one of the substrings u1

(j) or u2
(j) in which w(1) ends.

Lemma 12 (NPL). If x has regular prefix u2 and irreducible prefix v2, u < v <
2u, then for every k ∈ 0..v−u−1 and every w ∈ v−u+1..v−1, w �= u, x[k+1..k+2w]
is not a square.

Proof. Suppose instead that for some k and w, w2 = x[k+1..k+2w]. Recall the
definitions of u1 and u2 given in Lemma 9, with u1+u2 = v−u.
A. k ≤ u1.

I. w(1) ends in u1
(2) (k+w ≤ u, s = u−(k+w)).

(a) w(2) ends in u1
(3) (k+2w ≤ u+u1) (see Figure 2).

Define q = u1[1..q] and z = u1[1..z], which are both prefixes of u1

and suffixes of w:

q = u1−s = k+w−(u1+u2), z = k+2w−u.

A NEW PERIODICITY LEMMA 661

u1 u2 u1 u1

� �u
� �v

k w(1) w(2)

q s z

Fig. 2. Case A.I.(a).

u1 u2 u1 u1 u2

� �u
� �v

k w(1) w(2)

s

Fig. 3. Case A.I.(b).

Observe that

q−k = w−(u1+u2) > 0, z−q = w−u1 > 0.

Since q < z, q is a border of z, and thus z has period z−q.
(i) q ≥ z/2 (k ≥ u2). Here z, and hence u1, has prefix

z[1..z−q]2 = z[1..w−u1]
2,

contradicting the regularity of u2.
(ii) q < z/2 (k < u2). Here we can set z = qpq, where p > 0.

Since q > k, we can also set q = kt, where, as noted above,
t = w−(u1+u2) > 0. Hence z = ktpkt = ktr for r = pkt.
Observe now that tpkt is a prefix of w(1), while r is a prefix
of w(2). Thus r = Rt(r), so that by Lemmas 10 and 11, r and
all of its rotations are repetitions of period t. It follows that z,
a prefix of u1, is a repetition of period t = w−(u1 +u2) and
exponent at least 3, contradicting the regularity of u2.

(b) w(2) ends in u2
(2) (k+2w > u+u1) (see Figure 3).

Since w > u1+u2, k+s < u1; since w < u, k+s > 0. Therefore ks is
a prefix of u1, and since su1 is a prefix of w, it follows that u has
prefix (ks)2, k+s = u−w, contradicting the regularity of u2.

II. w(1) ends in u1
(3) (k+w ≤ u+u1, s = u+u1−(k+w)) (see Figure 4).

Since w �= u, k+s �= u1. Observe that w(1) has prefix Rk(u1u2), while
w(2) has prefix Ru1−s(u1u2). Since u1−s �= k (otherwise w = u), it
follows from Lemma 10 that u1u2 is a repetition of period |k−(u1−s)| =
|u−w|, contradicting the regularity of u2. Note that if u2 is not regular,
then u must also have period |u−w|.

III. w(1) ends in u2
(2) (k+w ≤ v, s = v−(k+w), k+s > 0) (see Figure 5).

w(1) has prefix Rk(u1u2), while w(2) has prefix Rt(u1u2), where t =
u1+u2−s. Since t = k+w−u > k, it follows from Lemma 10 that u1u2

is a repetition of period t−k = w−u, contradicting the regularity of u2.
Note that if u2 is not regular, then u must also have period w−u.

IV. w(1) ends in u1
(4) (k+w ≤ 2u, s = 2u−(k+w)) (see Figure 6).

662 K. FAN, S. J. PUGLISI, W. F. SMYTH, AND A. TURPIN

u1 u2 u1 u1 u2 u1

� �u
� �v

k w(1) w(2)

s

Fig. 4. Case A.II.

u1 u2 u1 u1 u2 u1 u2

� �u
� �v

k w(1) w(2)

s

Fig. 5. Case A.III.

u1 u2 u1 u1 u2 u1 u2 u1

� �u
� �v

k w(1) w(2)

s

Fig. 6. Case A.IV.

u1 u2 u1 u1 u2 u1

� �u
� �v

k w(1) w(2)

q s q

Fig. 7. Case B.I.(a).

As in case A.III., w(1) has prefix Rk(u1u2), while w(2) has prefix
Ru1−s(u1u2). It follows from Lemma 10 that u1u2 is a repetition of
period k+s−u1 = v−w, contradicting the regularity of u2. Note that if
u2 is not regular, then u must also have period v−w.

B. k > u1.
I. w(1) ends in u1

(3) (k+w ≤ u+u1, s = u+u1−(k+w), k+s < 2u1).
(a) w(2) ends in u1

(4) (k+2w ≤ 2u) (see Figure 7).
Let q be the prefix of u1 and suffix of w(2) defined by

q = w−u2−s = k+2w−v;

then, because it is a prefix of u1, q occurs at position u+1 of x and,
because it is a suffix of w(1), also at position k+w−q+1. These two
copies of q are offset by period

t = u+q−(k+w) = w+u−v.

Since

q−2t = k+2w−v−2w−2u+2v

= k+v−2u > 0,

A NEW PERIODICITY LEMMA 663

u1 u2 u1 u1 u2 u1 u2

� �u
� �v

k w(1) w(2)

u1 s

Fig. 8. Case B.I.(b).

u1 u2 u1 u1 u2 u1 u2

� �u
� �v

k w(1) w(2)

u1 s

Fig. 9. Case B.II.(a).

u1 u2 u1 u1 u2 u1 u2 u1

� �u
� �v

k w(1) w(2)

r q s z

Fig. 10. Case B.II.(b)(i).

therefore q, and hence u1, has a square prefix of period w+u−v,
contradicting the regularity of u2.

(b) w(2) ends in u2
(3) (k+2w > 2u) (see Figure 8).

Observe that since u1 occurs at position s+u2+1 in w(2), and since
u1

2 begins at position u1+u2−k+1 in w(1), therefore u1 = Rt(u1)
for t = k+s−u1 = u−w. Hence by Lemma 10, u1 is a repetition of
period u−w, contradicting the regularity of u2.

II. w(1) ends in u2
(2) (k+w ≤ v, s = v−(k+w), k+s �= u1+u2).

(a) w < u (k+s > u1+u2) (see Figure 9).
Observe that u1

2 occurs at position u1+u2−k+1 in w(1), while u1

occurs at position s+1 in w(2). Since s > u1+u2−k, this means
that u1 = Rt(u1) for t = k+s−(u1+u2) = u−w > 0. Hence u1 is
a repetition of period u−w, contradicting the regularity of u2.

(b) w > u (k+s < u1+u2).
(i) w(2) ends in u1

(5) (k+2w ≤ v+u, w−s ≤ u) (see Figure 10).
Let r = u2[k−u1+1..u2], where r = u1 + u2 − k and r− s = w−
u > 0. Observe that w(1) = (ru1)(u1q), where q = u2[1..u2−s].
Also w(2) has prefix su1z, where z = u2[1..r−s], of length r+u1.
Since w−s ≤ u, the copy of u that begins at position v+1 of
x has prefix (u1z)(u1q), where q−z = u2−r > 0. Thus u has
prefix (u1z)2 of period u1+r−s = w−(u1+u2), contradicting
the regularity of u2.

(ii) w(2) ends in u1
(6) (k+2w ≤ v+u+u1, u < w−s ≤ u+u1) (see

Figure 11).
Observe that w(1) has suffix Ru2−s(u2u1

2), while w(2) has suffix

664 K. FAN, S. J. PUGLISI, W. F. SMYTH, AND A. TURPIN

u1 u2 u1 u1 u2 u1 u2 u1 u1

� �u
� �v

k w(1) w(2)

s

Fig. 11. Case B.II.(b)(ii).

u1 u2 u1 u1 u2 u1 u2 u1 u1 u2

� �u
� �v

k w(1) w(2)

s � �t

Fig. 12. Case B.II.(b)(iii).

u1 u2 u1 u1 u2 u1 u2 u1 u1

� �u
� �v

k w(1) w(2)

s

Fig. 13. Case B.III.

Rt(u2u1
2), where t = u1 +u2 +w−s−u. Since t−(u2−s) =

w−(u1+u2) > 0, it follows from Lemmas 10 and 11 that u2u1
2,

and hence u, is a repetition of period w−(u1+u2), contradicting
the regularity of u2.

(iii) w(2) ends in u2
(4) (k+2w < 2v, u+u1 < w− s < v) (see

Figure 12).
As in case B.II.(b)(ii), w(1) has suffix Ru2−s(u2u1

2), while now
w(2) has suffix Rt(u2u1

2), where t = w−s−(u+u1) > 0. Since
u2−s−t = v−w > 0, it follows from Lemmas 10 and 11 that
u2u1

2, and hence u, is a repetition of period v−w, contradicting
the regularity of u2.

III. w(1) ends in u1
(4) (k+w ≤ 2u, s = 2u−(k+w), k+s < u) (see Figure 13).

Observe that w(1) has prefix Rk(u), while w(2) has prefix Ru1−s(u).
Since u1 < k+s, it follows by Lemma 10 that u is a repetition of period
k+s−u1 = v−w, contradicting the regularity of u2.
If w(2) extends only to the end of u1

(5), the argument of case B.II.(a)
can instead be used to show that u1 is a repetition of period v−w, again
contradicting the regularity of u2.

IV. w(1) ends in u2
(3) (k+w ≤ 2u+u2, s = 2u+u2−(k+w)) (see Figure 14).

The arguments of case B.III. apply: u (or u1) is a repetition of period
v−w, contradicting the regularity of u2.

This completes the proof.

In view of this result, and especially its proof, we realize that if u2 is not con-
strained to be regular, the existence of the three squares imposes severe conditions on

A NEW PERIODICITY LEMMA 665

u1 u2 u1 u1 u2 u1 u2 u1 u1 u2

� �u
� �v

k w(1) w(2)

s

Fig. 14. Case B.IV.

the periodicity of u, as shown in Table 1. In this table we specify, for each of the 14
cases identified in the proof, the prefix of u (u1, u1u2, or u itself) that begins with a
square, as well as the period of the square. We also indicate cases in which the entire
prefix is in fact a repetition. Of course all copies of the prefix in x will have the same
periodicity properties. Furthermore, in all cases (3–6 and 10–14) in which a period of
u is identified, the periodicity lemma applies, since u also has period u1+u2 = v−u.
For example, in cases 6 and 12–14 u, hence u2, hence all of v2, will have period
gcd(v − w, v−u); a similar result holds for cases 4–5 and 11. An alternative form of
Lemma 12 may then be given as follows.

Lemma 13. Let u = u1u2u1, v = uu1u2, u1 and u2 nonempty. If x = v2 =
ky, where k ∈ 0..v−u−1 and y has period w ∈ v−u+1..v−1, w �= u, then every
occurrence of u in x is determined by cases 1–6 of Table 1.

Observe that this result holds for every nonempty border u1 of u such that
u1 < u/2.

The rightmost column of Table 1 specifies the length of x that may be required in
order to establish the periodicity of the prefix of u. For example, in cases 1–3 not even
all of u2 is required, and even in case 12 not all of v2 is required. This observation
leads to the following weaker, but perhaps still interesting, corollary of the NPL that
relates only to u2.

Lemma 14. Let u = u1u2u1, u1 and u2 nonempty. If x = u2u1u2 = ky,
where k ∈ 0..u1 and y has period w ∈ u1 +u2 +1..u1 +u2 +u, w �= u, then every
occurrence of u in x is determined by Table 1.

Again this result holds for every nonempty border u1 of x.
We can state an equivalent of Lemma 12 for runs. Observe first that by definition

every run is irreducible. Observe also that if a run of period u and tail t occurs at
position i in x, no run of the same period can occur at any position j ∈ i..i+u+t.
Thus, if we define a regular run to be a run of generator u where u2 is a regular
square, we can state the following lemma.

Lemma 15. Suppose x has a regular run of period u as prefix and another run of
period v < 2u as prefix. Then for every integer k ∈ 0..v−u−1 and for every w ∈ u..v,
no run of period w (other than, for k = 0, the two given runs) occurs at position k+1
of x.

Finally, we remark that Lemmas 12 and 15 apply only trivially to the cases u = 1
and u = 2. As noted earlier for u = 1, v ≥ 3 > 2u, while for u = 2, v ≥ 5 > 2u,
contrary to the requirement of the lemmas that v < 2u. However, for all u ≥ 3, the
hypothesis of the lemmas can be satisfied—for example, if u = aba of length 3, v may
be abaab of length 5 < 2 × 3. More generally, we may think of such squares v2 as
being “small,” in contrast to those of period greater than 2u that are “large”; thus
Lemmas 12 and 15 restrict the occurrences of squares/runs when the second square
at some position is small. Note also that if u2 is in fact minimal (hence by Lemma 6
regular), then the irreducible square v2 must be regular.

666 K. FAN, S. J. PUGLISI, W. F. SMYTH, AND A. TURPIN

T
a
b
l
e

1

P
er

io
d
ic

it
y

ta
bl

e
fo

r
k
,u

,v
,w

(u
n
co

n
st

ra
in

ed
u
).

S
u
b

S
q
u
a
re

R
eq

u
ir

ed
C

a
se

k
≤

k
+
w

≤
S
u
b
ca

se
su

b
ca

se
p
re

fi
x

R
ep

et
it
io

n
?

P
er

io
d

x
1

u
1

u
k
+

2
w

≤
u
+
u
1

k
≥

u
2

u
1

w
−
u
1

u
+
u
1

2
k
<

u
2

u
1

w
−
v

+
u

u
+
u
1

3
k
+

2
w

>
u
+
u
1

u
u
−
w

v
4

u
+
u
1

u
1
u
2

&
u

y
es

|u
−
w
|

2
u

5
v

u
1
u
2

&
u

y
es

w
−
u

2
v
−
u

6
2
u

u
1
u
2

&
u

y
es

v
−
w

v
+
u

7
u
1
+
u
2
−

1
u
+
u
1

k
+

2
w

≤
2
u

u
1

w
−
v
+
u

2
u

8
k
+

2
w

>
2
u

u
1

y
es

u
−
w

2
v
−
u

9
v

w
<

u
u
1

y
es

u
−
w

2
v
−
u

1
0

w
>

u
k
+

2
w

≤
v
+
u

u
w
−
v
+
u

v
+
u

1
1

k
+

2
w

≤
2
v
−
u
2

u
y
es

w
−
v
+
u

2
v
−
u
2

1
2

k
+

2
w

<
2
v

u
y
es

v
−
w

2
v
−

1
1
3

2
u

u
1

&
u

y
es

v
−
w

v
+
u

1
4

2
u
+
u
2

u
1

&
u

y
es

v
−
w

v
+
u

A NEW PERIODICITY LEMMA 667

3. Discussion. We have proved two main lemmas (Lemmas 7 and 12) that
restrict the periods w of squares that can occur at positions i+ k in x when at
position i either one (Lemma 7) or two (Lemma 12) squares are known to occur. It
seems that, with the exception of [15, Lemma 8.1.14], such properties have not been
studied previously. In particular, we hope that with the help of Lemma 12, it will be
possible to establish, or at least make progress with, the three conjectures arising out
of [13].

The Main/Kolpakov–Kucherov algorithm [16, 13] is the only known linear-time
algorithm for computing all the runs in a given string x. It is complex and, until
recently, depended for its worst-case linear behavior on the use of Farach’s algorithm
[4], also complex and not space-efficient, for linear-time computation of suffix trees.
Since 2003 three worst-case linear-time suffix array construction algorithms [10, 11, 12]
have been available for use in the computation of the LZ factorization, but even after
the substitution of suffix arrays for suffix trees in the all-runs algorithm, significant
complications remain. For instance, it seems clear [19, 20] that due to their recursive
nature the linear-time algorithms are not in practice the fastest suffix array construc-
tion algorithms available. We hope that, with a more precise understanding of the
periodicity of runs, it will become possible to design simpler algorithms that will
compute all the runs in a string in a more direct and efficient manner.

Acknowledgment. The authors thank a referee for suggestions that have ma-
terially improved the presentation.

REFERENCES

[1] A. Apostolico and F. P. Preparata, Optimal off-line detection of repetitions in a string,
Theoret. Comput. Sci., 22 (1983), pp. 297–315.

[2] M. Crochemore, An optimal algorithm for computing the repetitions in a word, Inform. Pro-
cess. Lett., 12 (1981), pp. 244–250.

[3] M. Crochemore and W. Rytter, Squares, cubes, and time-space efficient strings searching,
Algorithmica, 13 (1995), pp. 405–425.

[4] M. Farach, Optimal suffix tree construction with large alphabets, in Proceedings of the 38th
Annual IEEE Symposium on Foundation of Computer Science, 1997, pp. 137–143.

[5] N. J. Fine and H. S. Wilf, Uniqueness theorems for periodic functions, Proc. Amer. Math.
Soc., 16 (1965), pp. 109–114.

[6] A. S. Fraenkel and R. J. Simpson, How many squares can a string contain?, J. Combin.
Theory Ser. A, 82 (1998), pp. 112–120.

[7] F. Franek, R. J. Simpson, and W. F. Smyth, The maximum number of runs in a string,
M. Miller and K. Park, eds., in Proceedings of the 14th Annual Australasian Workshop on
Combinatorial Algorithms, 2003, pp. 26–35.

[8] L. Ilie, A simple proof that a word of length n has at most 2n distinct squares, J. Combin.
Theory Ser. A, 112 (2005), pp. 163–164.

[9] L. Ilie, A note on the number of distinct squares in a word, in Proceedings of the 5th Annual
International Conference on Combinatorics on Words, S. Brlek and C. Reutenauer, eds.,
2005, pp. 289–294.

[10] J. Kärkkäinen and P. Sanders, Simple linear work suffix array construction, in Proceedings
of the 30th Annual International Conference on Automata, Languages, and Programming,
2003, pp. 943–955.

[11] D. K. Kim, J. S. Sim, H. Park, and K. Park, Linear-time construction of suffix arrays, in
Proceedings of the 14th Annual Symposium on Combinatorial Pattern Matching, Lecture
Notes in Comput. Sci. 2676, R. Baeza-Yates, E. Chávez, and M. Crochemore, eds., Springer-
Verlag, Berlin, 2003, pp. 186–199.

[12] P. Ko and S. Aluru, Space efficient linear time construction of suffix arrays, in Proceedings
of the 14th Annual Symposium on Combinatorial Pattern Matching, Lecture Notes in
Comput. Sci. 2676, R. Baeza-Yates, E. Chávez, and M. Crochemore, eds., Springer-Verlag,
Berlin, 2003, pp. 200–210.

668 K. FAN, S. J. PUGLISI, W. F. SMYTH, AND A. TURPIN

[13] R. Kolpakov and G. Kucherov, On maximal repetitions in words, J. Discrete Algorithms, 1
(2000), pp. 159–186.

[14] A. Lempel and J. Ziv, On the complexity of finite sequences, IEEE Trans. Inform. Theory, 22
(1976), pp. 75–81.

[15] M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press, Cambridge,
UK, 2002.

[16] M. G. Main, Detecting leftmost maximal periodicities, Discrete Appl. Math., 25 (1989), pp.
145–153.

[17] M. G. Main and R. J. Lorentz, An O(n logn) algorithm for finding all repetitions in a string,
J. Algorithms, 5 (1984), pp. 422–432.

[18] E. M. McCreight, A space-economical suffix tree construction algorithm, J. ACM, 23 (1976),
pp. 262–272.

[19] S. J. Puglisi, W. F. Smyth, and A. Turpin, The performance of linear time suffix sorting
algorithms, in Proceedings of the IEEE Data Compression Conference, J. Storer and M.
Cohn, eds., 2005, pp. 358–367.

[20] S. J. Puglisi, W. F. Smyth, and A. Turpin, A taxonomy of suffix array construction algo-
rithms, ACM Comput. Surv., to appear.

[21] W. Rytter, The number of runs in a string: Improved analysis of the linear upper bound,
in Proceedings of the 23rd Symposium on Theoretical Aspects of Computer Science, B.
Durand and W. Thomas, eds., Lecture Notes in Comput. Sci. 2884, Springer-Verlag, Berlin,
2006, pp. 184–195.

[22] B. Smyth, Computing Patterns in Strings, Addison-Wesley, Reading, MA, 2003.
[23] A. Thue, Über unendliche zeichenreihen, Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana,

7 (1906), pp. 1–22.
[24] P. Weiner, Linear pattern matching algorithms, in Proceedings of the 14th Annual IEEE

Symposium on Switching and Automata Theory, 1973, pp. 1–11.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 669–681

CYCLE EXTENDABILITY AND HAMILTONIAN CYCLES IN
CHORDAL GRAPH CLASSES∗

ATIF ABUEIDA† AND R. SRITHARAN‡

Abstract. A cycle C in a graph is extendable if there exists a cycle C′ such that V (C) ⊆ V (C′)
and | V (C′) | = | V (C) | + 1. A graph is cycle extendable if every non-Hamiltonian cycle in the
graph is extendable. An unresolved question is whether or not every Hamiltonian chordal graph is
cycle extendable. We show that Hamiltonian graphs in classes such as interval, split, and in some
subclasses of strongly chordal graphs, are cycle extendable. We also address efficiently finding a
Hamilton cycle in some cases. A unifying theme to our approach is the use of appropriate vertex
elimination orders.

Key words. cycle, Hamiltonian, extendability, chordal graph

AMS subject classification. 05C38

DOI. 10.1137/S0895480104441267

1. Introduction. The graphs that we consider are undirected and simple. A
cycle C in a graph is extendable if there exists a cycle C ′ such that V (C) ⊆ V (C ′) and
| V (C ′) | = | V (C) | + 1. In this situation, we say C extends to C ′. We also refer to
C ′ as an extension of C. A graph is cycle extendable [6, 7] if every non-Hamiltonian
cycle in the graph is extendable. Hendry [6, 7] raised the question of whether every
Hamiltonian chordal graph is cycle extendable: A graph is chordal if every cycle with
at least four vertices in the graph has a chord. The class of chordal graphs forms a
well-studied [1] subclass of the class of perfect graphs.

Jiang [9] proved that every Hamiltonian chordal graph that is also planar is cycle
extendable. The question of whether every Hamiltonian chordal graph is cycle ex-
tendable remains open. We show that Hamiltonian graphs in classes such as interval,
split, and in some subclasses of strongly chordal graphs, are cycle extendable. We
also address the problem of efficiently finding a Hamilton cycle in some subclasses of
chordal graphs. It is known [1] that deciding whether a given graph is Hamiltonian
is NP-complete even when the input belongs to severely restricted classes of chordal
graphs.

A proof due to Chen et al. [2] that a Hamiltonian interval graph is cycle ex-
tendable appears in a companion paper in this issue of the journal. The technique
employed in [2] is to derive a contradiction to the fact [2, 11] that an interval graph is
Hamiltonian if and only if it is 1-tough. In contrast, our techniques rely on the theory
of classes of chordal graphs. In particular, we make use of presence of vertices with
special properties and elimination order of vertices with special properties. We use
such properties to rearrange vertices on cycles so that they become conducive to our
inductive arguments. Our inductive proofs employ deletion of vertices and deletion
of edges, as well as addition of edges in some cases. In general, deletion and addition

∗Received by the editors February 24, 2004; accepted for publication (in revised form) December
28, 2005; published electronically September 15, 2006. This research was supported by the Research
Council, University of Dayton.

http://www.siam.org/journals/sidma/20-3/44126.html
†Department of Mathematics, The University of Dayton, Dayton, OH 45469 (atif.abueida@notes.

udayton.edu).
‡Department of Computer Science, The University of Dayton, Dayton, OH 45469 (srithara@notes.

udayton.edu).

669

670 ATIF ABUEIDA AND R. SRITHARAN

of edges need not preserve membership in classes of chordal graphs. Hence, we first
develop tools needed for these.

We next present some of the notation used in the paper. We then present rel-
evant background, and the tools needed for our proofs, for the classes of graphs we
study. The results on extending cycles follow. We conclude by presenting conse-
quences of some of our proofs in regard to efficiently deciding whether a given graph
is Hamiltonian and finding a Hamilton cycle.

2. Notation. Let G = (V,E) be a graph. For a subset S of vertices of G, we
use G[S] to denote the subgraph of G induced by S. For vertices u, v, we use u sees
v for u is adjacent to v, and u misses v for u is not adjacent to v. For a vertex v,
N(v) denotes the set of vertices adjacent to v. The closed neighborhood of v, N [v], is
{v}∪N(v). For vertex v, d(v) denotes the degree of v, the number of vertices adjacent
to v. We use n to refer to the number of vertices in G, m to refer to the number of
edges in G, and ||G|| to refer to m + n. G − uv denotes the graph obtained from G
by deleting the edge uv. Similarly, for nonadjacent vertices u, v, G+ uv is the graph
obtained from G by adding the edge uv. For graphs G and F , we use G contains F
or G has F to mean G has an induced subgraph isomorphic to F .

We introduce other definitions and notation as we need them. We present some
relevant graphs in Figure 1.

• •
•

• •

�
�

�
�

�
�

�
�

F1

• •
•

• •

�
�

�
�

�
�

�
�

F2

•
v5

•
v4

•
v3

•v6 • v2

•
v1

�
�
�
��

�
�
��

�
�
�

A Sun

•
v5

•
v4

•
v3

•
v2

• v6•v1

�
�

��

�
�

�
�

�
�
�

�

G1

•

•

•

•
••

•

�
�

��

�
�

��

�
�

�
�

�
�
�

�

�
�

�
�

G2

Fig. 1. Some specific graphs.

3. Background and tools. The classes of graphs that we deal with are hered-
itary; i.e., if a graph is in the class, then every induced subgraph of the graph is also
in the class. However, some of our proofs, which are based on induction on ||G|| (sum
of the number of vertices and the number of edges in G), involve deletion of vertices,
deletion of edges, and addition as well as deletion of edges. As deletion or addition of
an arbitrary edge may not preserve membership in the class, special tools are needed
for addition and deletion of edges. In this regard, we also provide the relevant tools
for each class of graphs.

For vertices v1, v2, . . . , vk, by v1v2 . . . vk is a segment of cycle C (path P), we mean
that v1 through vk occur consecutively along C (P). For a cycle C in a graph such
that v ∈ V (C) and |V (C)| ≥ 4, let uvw be a segment of C. In the case that u sees w,
by C−v we mean the cycle obtained from C by replacing the segment uvw with the
segment uw.

Vertex v in a graph is simplicial if N(v) induces a clique. It is well known [5] that
graph G is chordal if and only if for every induced subgraph H of G, either H is a
clique or there exist two nonadjacent simplicial vertices of H. A vertex is simplicial
if and only if it belongs to exactly one maximal clique. Also, deletion of an edge
incident on a simplicial vertex of a chordal graph results in a chordal graph.

CYCLE EXTENDABILITY IN CHORDAL GRAPH CLASSES 671

3.1. Strongly chordal graphs. A graph is strongly chordal if it is chordal and
every cycle in the graph on 2k vertices, k ≥ 3, has a chord uv such that each segment
of the cycle from u to v has an odd number of edges. Farber introduced [3] the class
of strongly chordal graphs and gave several characterizations for the class; we need
some definitions before we can present his theorem.

A vertex x in a graph is simple if it is simplicial, and also the vertices in N(x)
can be ordered as x1x2 . . . xk such that N [x1] ⊆ N [x2] ⊆ · · · ⊆ N [xk]. For a simple
vertex x, given such an ordering of its neighbors, we say xi < xj in N(x) whenever
i < j. We also refer to x1 and x2 as the smallest and second smallest vertices in N(x),
respectively.

A Sun is a graph formed on the vertex-set {v1, v2, . . . , v2k}, k ≥ 3, by starting with
the cycle v1v2 . . . v2kv1, and then making the vertex-subset {v2, v4, . . . , v2k} induce a
clique (see Figure 1). For a graph G, let R = v1v2 . . . vn be an ordering of vertices
of G. Let Gi = G[{vi, vi+1, . . . , vn}]. R is a simple elimination order for G if vi
is simple in Gi, 1 ≤ i ≤ n. R is a strong elimination order for G if R is a simple
elimination order and, for every i < j < k such that vi sees vj and vk, N [vj] ⊆ N [vk]
in Gi. The following theorem is due to Farber [3].

Theorem 3.1 (see [3]). The following are equivalent for any graph G:

• G is strongly chordal.
• G is chordal and does not contain a Sun.
• Vertices of G admit a simple elimination order.
• Vertices of G admit a strong elimination order.

The following lemma will be repeatedly used to rearrange neighbors of a simple
vertex on a given cycle.

Lemma 3.2. Let G be a strongly chordal graph and x be a simple vertex of G.
Suppose C is a cycle such that uxv is a segment of C, and xw is a chord of C such
that w < v in N(x). Then there exists a cycle C ′ of G such that V (C) = V (C ′) and
uxw is a segment of C ′.

Proof of Lemma 3.2. Assume that in the clockwise direction along C, u, x, and v
appear consecutively. Let z be the vertex next to w on C in the clockwise direction.
Such a z exists as the segment w . . . x of C in the clockwise direction contains u. As
N [w] ⊆ N [v] in G, v sees z. Let A = w . . . v be the segment of C in the counter-
clockwise direction. Let B = z . . . x be the segment of C in the clockwise direction;
observe that ux is a segment of B. Then, the required cycle C ′ is the one in which
the segments xw, A, vz, and B occur consecutively in that order. As ux and xw are
segments of C ′, uxw is a segment of C ′.

Corollary 3.3. Let G be a strongly chordal graph and x be a simple vertex of
G. Let p be the smallest vertex in N(x) and q be the second smallest vertex in N(x).
Suppose C is a cycle such that {x, p, q} ⊆ V (C). Then there exists a cycle C ′ of G
such that V (C) = V (C ′) and pxq is a segment of C ′.

Proof of Corollary 3.3. Suppose C has the segment axb where neither a nor b is p.
Apply Lemma 3.2 to C with b and p in place of v and w, respectively. The resulting
cycle has axp, or equivalently pxa, as a segment. If a �= q, then apply Lemma 3.2 to
this cycle with a and q in place of v and w, respectively, to get C ′.

The following is a direct corollary.

Corollary 3.4. Suppose G is a strongly chordal graph, x is a simple vertex of
G, and p, q are the two smallest vertices in N(x). Then, G is Hamiltonian if and
only if G has a Hamilton cycle in which pxq is a segment.

Lemma 3.5. Let G be a strongly chordal graph, x be a simple vertex of G, and
xu be any edge incident on x. Then G− xu is strongly chordal.

672 ATIF ABUEIDA AND R. SRITHARAN

Proof of Lemma 3.5. We will show that G− xu is chordal and does not contain a
Sun. As x is simple (and hence simplicial) in G, G− xu is chordal. Suppose deletion
of the edge xu from G created a Sun on vertex-set {v1, v2, . . . , v2k}, k ≥ 3. As x and
u must be part of the Sun, let x = vi and u = vj . Observe that no v2p is simplicial
in G − xu. In any Sun, between any two vertices whose subscripts are odd, there is
a chordless path on 4 vertices (see Figure 1). Therefore, at least one of i, j is even,
or else G would contain a chordless cycle on 4 vertices. As { vl | l is even } induces a
clique in G−xu, and vi misses vj in G−xu, at least one of i, j must be odd. Therefore,
one of i, j is even and the other is odd, and { vl | l is odd } induces an independent
set in G also. Therefore, no v2p is simplicial in G either. As vi is simplicial in G,
without loss of generality, we can assume x = v1 and j is even. Observe that, in G
and in G − xu, {v2, v2k} ⊆ N(v1). Therefore, j �= 2 and j �= 2k. Now, in G, v3 sees
v2 but misses v2k, and v2k−1 sees v2k but misses v2. Hence, in G, N [v2k] �⊆ N [v2] and
N [v2] �⊆ N [v2k], contradicting x being a simple vertex.

Lemma 3.6. Let G be a strongly chordal graph, x be a simple vertex of G, y be a
simple vertex of G\x, and xy be an edge. Then, for any edge yu incident on y such
that u /∈ N(x), G− yu is strongly chordal.

Proof of Lemma 3.6. Suppose G − yu is not chordal. Then, yu was the only
chord of the cycle yauby in G [14]. As y is simple (and hence simplicial) in G\x, and
a misses b in G, either x = a or x = b; assume x = a. Then, u ∈ N(x) in G, a
contradiction.

Now, suppose deletion of the edge yu from G created a Sun on vertex-set V S =
{v1, v2, . . . , v2k}, k ≥ 3. As y and u must be part of the Sun, let y = vi and u = vj .
Observe that no v2p is simplicial in G−yu. In any Sun, between any two vertices whose
subscripts are odd, there is a chordless path on 4 vertices (see Figure 1). Therefore,
at least one of i, j is even, or else G would contain a chordless cycle on 4 vertices. As
{ vl | l is even } induces a clique G− yu, and vi misses vj in G− yu, at least one of
i, j must be odd. Therefore, one of i, j is even and the other is odd, and { vl | l is odd }
induces an independent set in G also. Therefore, no v2p is simplicial in G either. We
next want to argue that i must be odd; suppose not and without loss of generality, let
y = v2. Then, in G, y sees v3, y sees v1, and v1 misses v3; therefore, y is not simplicial
in G. However, as y is simplicial in G\x, either v1 = x or v3 = x; assume v1 = x.
Now, in G\x, v2 sees v3, v2 sees v2k, but v3 misses v2k. Therefore, y is not simplicial
in G\x, a contradiction. Hence, y = vi where i is odd, and assume y = v1 and j is
even, where j �= 2 and j �= 2k. Let GS = G[V S]. In GS , v3 sees v2 but misses v2k,
and v2k−1 sees v2k but misses v2; therefore v1 is not simple in GS . However, v1 = y
must be simple in G\x and hence in GS\x. Therefore, x ∈ V S, and assume x = vr
for some r. As x is simplicial in G, it is also simplicial in GS . However, as x sees y,
r must be even. But, in GS , { vl | l is odd } induces an independent set. Therefore,
no v2p is simplicial in GS , and we have a contradiction.

3.2. Interval graphs. A graph is an interval graph if each vertex of the graph
can be mapped to an interval on the real line such that two vertices in the graph
are adjacent if and only if their corresponding intervals have a nonempty intersection.
Every interval graph is strongly chordal [1]. For an interval graph G, we use I(G) to
refer to its interval model, the collection of intervals that represent G. For a vertex
x, we use Ix to refer to the interval x is mapped to, L(x) and R(x) to refer to the left
and right endpoints, respectively, of Ix, and K(G) = K1K2 . . .Kr to refer to a linear
ordering of the maximal cliques of G such that for any vertex v of G, the maximal
cliques that contain v occur consecutively in K(G) [4]. Every interval graph admits

CYCLE EXTENDABILITY IN CHORDAL GRAPH CLASSES 673

an interval model in which all endpoints of intervals are distinct [5] and we always
assume this. For an interval graph G, we use I(G) in which all endpoints are distinct,
and K(G) that corresponds to I(G) interchangeably using the notation (G, I(G)) or
(G, K(G)). Also, when the context is clear we simply use I and K, omitting reference
to G. Next we present some tools that are needed.

The following lemma is implicit in section 3.2 of [8].
Lemma 3.7 (see [8]). In an interval graph (G,K(G)), let u and v be adjacent

vertices such that some Kc in K(G) is the rightmost maximal clique containing u as
well as the leftmost maximal clique containing v. Then, the graph H = G− uv is an
interval graph.

The next lemma summarizes a few lemmata from [11].
Lemma 3.8 (see [11]). Suppose (G, K = K1K2 . . .Kr) is an interval graph and

P : x . . . z is a path in G such that x ∈ K1 and z ∈ Kr are simplicial vertices of G.
Then, there is a path P ′ : (x = w1)w2 . . . (wk = z) in G such that the following hold:

• V (P) = V (P ′).
• Every wi can be mapped to a maximal clique Kf(wi) of K(G) that contains

wi in such a way that, for 1 ≤ i ≤ (k − 1),
(1) Kf(wi) also contains wi+1, and
(2) f(wi) ≤ f(wi+1).

In essence, the lemma says that the path P ′, which contains the same set of
vertices as path P and also starts and ends at the same vertices as P , can be traversed
along K(G), through the maximal cliques that wi are mapped to, in such way that
the traversal never moves to the left.

4. Cycle extendability. In this section, we present theorems pertaining to cycle
extendability of Hamiltonian graphs in subclasses of chordal graphs. While a different
proof is possible for the following lemma, we have chosen to prove it in the same spirit
as our other inductive proofs.

Lemma 4.1. Suppose G is a Hamiltonian chordal graph and C is a non-Hamiltonian
cycle in G such that | V (C) | = 3 or | V (C) | = 4. Then, C extends in G.

Proof of Lemma 4.1. We consider the | V (C) | = 3 and | V (C) | = 4 cases
separately. In both proofs, we assume that the given graph is not a clique, or else the
lemma is trivially proved.

We first prove the lemma by induction on the number of vertices in the graph,
when | V (C) | = 3. The lemma is easily verified for all Hamiltonian chordal graphs
with at most 4 vertices. Suppose the lemma is true for all Hamiltonian chordal graphs
with at most (n−1) vertices, and let G be a Hamiltonian chordal graph with n vertices
and C be a non-Hamiltonian cycle in G such that | V (C) | = 3. Let M be a Hamilton
cycle of G. If n = 4, then C extends to M ; therefore, we can assume n ≥ 5. As G is
not a clique, there exist nonadjacent simplicial vertices u and v of G. As V (C) induces
a clique in G, either u /∈ V (C) or v /∈ V (C); assume v /∈ V (C). As G\v has at least 4
vertices, C is a non-Hamiltonian cycle in G\v. Further, G\v is chordal, the number
of vertices in G\v is (n − 1), and M−v is a Hamilton cycle of G\v. Therefore, ap-
plying the inductive hypothesis to G\v and C, we get the required extension of C in G.

We next prove the lemma by induction on the number of vertices in the graph,
when | V (C) | = 4. The lemma is easily verified for all Hamiltonian chordal graphs
with at most 5 vertices. Suppose the lemma is true for all Hamiltonian chordal graphs
with at most (n−1) vertices, and let G be a Hamiltonian chordal graph with n vertices
and C be a non-Hamiltonian cycle in G such that | V (C) | = 4. Let M be a Hamilton
cycle of G. If n = 5, then C extends to M ; therefore, we can assume n ≥ 6. As G

674 ATIF ABUEIDA AND R. SRITHARAN

is not a clique, there exist nonadjacent simplicial vertices u and v of G. If either
u /∈ V (C) or v /∈ V (C), then, assuming v /∈ V (C), we can induct (as in the case of
| V (C) | = 3) on G\v and C to get the required extension. Therefore, C = uxvyu.
Now, at least one of u, v must have a degree of at least 3 in G; or else, each of u,
v has degree 2 in G, implying that C is also a Hamilton cycle of G, contradicting G
having at least 6 vertices. Without loss of generality, let d(v) ≥ 3. Then, there exists
vertex w such that w sees v, and w /∈ V (C). As v is simplicial in G, w must see both
x and y. Therefore, the cycle uxwvyu is a required extension of C.

Remark 4.1. Suppose the Hamiltonian graph G with n vertices belongs to a
hereditary class of chordal graphs. Let C be the non-Hamiltonian cycle of G that
we wish to extend. Given Lemma 4.1 and Hamiltonicity of G, we can assume 5 ≤
|V (C)| ≤ (n−2). Further, for every simplicial vertex v of G, we can assume v ∈ V (C)
(else, induct on G\v and C to get an extension), and also every w ∈ N(v) is on C (else,
w can be inserted between v and a neighbor next to it on C to get an extension).

Recall that every interval graph is strongly chordal. We will repeatedly use
Lemma 3.2 and Corollary 3.3 in proving the following theorem. Also, recall that
||G|| refers to the sum of the number of vertices and the number of edges in G.

Theorem 4.2. A Hamiltonian interval graph is cycle extendable.

Proof of Theorem 4.2. The proof is by induction on the sum of the number of
vertices and the number of edges in the graph. The theorem is easily verified for every
Hamiltonian interval graph G where ||G|| < 11. Assume that the theorem holds for
every Hamiltonian interval graph G where ||G|| ≤ t−1. Let (G,K(G) = K1K2 . . .Kr)
be a Hamiltonian interval graph with ||G|| = t, and let C be a given non-Hamiltonian
cycle in G. Let M be a Hamilton cycle of G and n be the number of vertices in G.
We assume as per Remark 4.1.

Suppose there exist vertices v and w of G such that each of v, w is contained
only in the maximal clique K1 in K(G). Then, each of v, w is simplicial in G. Also,
it is the case that N [v] = N [w]. Now, M−v is a Hamilton cycle of G\v and, as
5 ≤| V (C) |≤ (n − 2), C−v is a cycle in G\v such that 4 ≤| V (C−v) |≤ (n − 3).
As G\v has (n− 1) vertices, C−v is a non-Hamiltonian cycle in G\v. Since G\v is a
Hamiltonian interval graph with ||G\v|| < ||G||, we can apply the inductive hypothesis
to G\v and C−v to get an extension C ′ of C−v in G\v. Now, for any segment wz of
C ′, v sees both w and z. Hence, by replacing the segment wz of C ′ with wvz, we
can get the desired extension for C in G. Therefore, we can now assume that there is
exactly one simplicial vertex of G in K1.

Let I(G) be the interval model for G that corresponds to K(G) = K1K2 . . .Kr.
Recall that we can assume that endpoints of intervals in I(G) are distinct. Let
R = (x = v1)(y = v2)v3 . . . vn be a strong elimination order of G that corresponds
[10] to the increasing order of right endpoints of intervals in I(G). As x is the first
vertex in R, R(x) is the smallest right endpoint in I(G); hence, x ∈ K1. As x is
simple (and hence simplicial) in G and x ∈ K1, x /∈ Ki, i ≥ 2.

For the simple vertex x, let x1 and x2 be the smallest and second smallest vertices
in N(x). Recall that this means that when vertices in N(x) are linearly ordered by
containment of their closed neighborhoods, x1 and x2 will be the first and second
vertices, respectively, in the order. Observe that as R is a strong elimination order
for G, x1 and x2 naturally correspond to the first two neighbors of x with respect to
R also. By Corollaries 3.3 and 3.4, we can assume that x2xx1 is a segment of M as
well as C.

Suppose d(x) ≥ 3 and let {x1, x2, z} ⊆ N(x). Then, edge xz is such that xz /∈
E(C) and xz /∈ E(M). Clearly, the graph G− xz is Hamiltonian.

CYCLE EXTENDABILITY IN CHORDAL GRAPH CLASSES 675

As K1 is the only maximal clique containing x, and as xz is an edge, K1 is the
rightmost maximal clique of K(G) containing x as well as the leftmost maximal clique
of K(G) containing z. Therefore, by Lemma 3.7 the graph G−xz is an interval graph.
Also, as |V (G − xz)| = |V (G)|, but G − xz has one less edge than G, ||G − xz|| =
(||G|| − 1) < ||G||. Therefore, by applying the inductive hypothesis to G− xz and C,
we can get the desired extension for C.

As G is Hamiltonian, d(x) ≥ 2, and therefore, we can now assume that d(x) = 2
and N(x) = {x1, x2} and K1 = {x, x1, x2}. We consider two cases depending on the
adjacency between x and y in G.

Case A. (x = v1) sees (y = v2) in G.

Clearly, y = x1. Recall that x2x(x1 = y) is a segment of both M and C, and
K1 = {x, x1 = y, x2}. Note that both x and x2 see y. As C is a non-Hamiltonian
cycle in G with 5 ≤| V (C) |≤ (n− 2), G has at least 6 vertices. Therefore, d(y) ≥ 3.

Let x2xyp be a segment of M and x2xyq be a segment of C where p and q may be
different. If d(y) ≥ 5, then there exist vertex z and edge yz such that z /∈ {x, x2, p, q},
yz /∈ E(M), and yz /∈ E(C). Clearly, G − yz is Hamiltonian, and C is a non-
Hamiltonian cycle in G − yz. We next want to show that we can then induct on
G− yz and C to get an extension for C. As x is the only vertex in K1 that is not in
any Ki, i ≥ 2, {y, x2} ⊆ K2. As K2 contains a vertex that is not in K1, K1 − {x} is
not a maximal clique in G\x. For 2 ≤ i ≤ r, as Ki is a maximal clique of G such that
x /∈ Ki, Ki is a maximal clique of G\x also. Therefore, K(G\x) = K2K3 . . .Kr. As
y is simplicial in G\x, y /∈ Ki, i ≥ 3. Also, as y sees z, z /∈ K1, z ∈ K2. Therefore,
K2 is the rightmost maximal clique in K(G) containing y as well as the leftmost
maximal clique containing z. Then, by Lemma 3.7, G − yz is an interval graph. As
||G−yz|| < ||G||, we can indeed induct on G−yz and C to get the required extension.
We can now assume that d(y) ≤ 4.

Suppose d(y) = 3 and for some vertex w, N(y) = {x, x2, w}. As x is simplicial in
G, 5 ≤| V (C) |≤ (n−2), and G\x has (n−1) vertices, M−x is a Hamilton cycle of the
interval graph G\x, and C−x is a non-Hamiltonian cycle of G\x. As ||G\x|| < ||G||,
applying the inductive hypothesis to G\x and C−x produces extension C ′ of C−x in
G\x. As yx2 is a segment of C ′, by replacing the segment yx2 of C ′ with yxx2, we
can get an extension for C.

Hence, we can assume d(y) = 4, N(y) = {x, x2, v, z}, the Hamilton cycle M
contains the segment x2xyv, and the edge yz is a chord of M .

If yz /∈ E(C) also, then an argument identical to the case of “d(y) ≥ 5” can be
employed to get an extension of C. Therefore, we assume yz ∈ E(C) and hence x2xyz
is a segment of the cycle C.

Since y is simplicial in G\x, vertex v sees y and z in G. If v /∈ V (C), then by
replacing the segment x2xyz in C with the segment x2xyvz we can get an extension
for C. Hence, we assume v ∈ V (C).

We now consider three cases based on the relative order of the vertices x2, v,
and z in R. Note that for the simple vertex y of G\x, any such order will also
correspond to an ordering of vertices of N(y) in G\x according to containment of their
closed neighborhoods. For vertices a and b, we use a < b to mean a comes before b
in R.

Case A1. x2 < v and x2 < z.
As x is simplicial in G, G\x is a Hamiltonian interval graph with (n− 1) ver-
tices, and ||G\x|| < ||G||. As 5 ≤| V (C) |≤ (n−2), C−x is a non-Hamiltonian
cycle with the segment x2y in G\x. Apply the inductive hypothesis to G\x
and C−x to get an extension C ′ of C−x in G\x. As y is simple in G\x, x2 is

676 ATIF ABUEIDA AND R. SRITHARAN

the smallest vertex in N(y) in G\x, and every neighbor of y in G\x is on C ′,
by Corollary 3.3, we can assume x2y is a segment of C ′. Then, replacing the
segment x2y of C ′ with the segment x2xy, we can get an extension for C.

Case A2. v < x2 and v < z.
Recall that x2xyv is a segment of M . We next want to show that vertices
of cycle C can be rearranged so that x2xyv is a segment of C also. Suppose
x2xyv is not a segment of C. Observe again that 5 ≤| V (C) |≤ (n− 2).
Now, consider the cycle C−x in G\x. As y is simple in G\x, every neighbor of
y in G\x is on the cycle C−x, x2yz is a segment of C−x, and v is the smallest
vertex in N(y) in G\x, applying Lemma 3.2 with v and z in place of w and v,
respectively, we can ensure that x2yv is a segment of C−x. Now, replacing the
segment x2y of C−x with the segment x2xy, we can get a cycle on the same
set of vertices as V (C) such that x2xyv is a segment of that cycle. Therefore,
we can assume C itself is a cycle in which x2xyv is a segment.
Now, as the edge yz is such that yz /∈ E(C) and yz /∈ E(M), an argument
identical to the case of “d(y) ≥ 5” can be used to get an extension of C.

Case A3. z < v and z < x2.
Similar to the way vertices on C were rearranged in Case A2, rearrange
vertices on M so that x2xyz is a segment of M also. Now, as the edge yv is
such that yv /∈ E(C) and yv /∈ E(M), an argument identical to the case of
“d(y) ≥ 5” can be used to get an extension of C.

Case B. (x = v1) misses (y = v2) in G.

As x misses y in G and y is simplicial in G\x, y is simplicial in G also. Therefore,
y ∈ V (C). As R(x) is the smallest right endpoint in I(G) and x misses y, R(x) <
L(y). As x sees x1 and x2, and R(y) is the second smallest right endpoint in I(G),
L(xi) < R(x) < L(y) < R(y) < R(xi), i = 1, 2. Therefore, y sees x1 and x2. Note
that K1 = {x, x1, x2} and N(x) = {x1, x2}.

The rightmost maximal clique of I(G), namely Kr, contains a vertex z such that
z /∈ Kr−1. As Kr is the only maximal clique containing z, z is simplicial in G and
hence z ∈ V (C). We make the following claims.

Claim 1. Let T be a cycle in G such that {x, x1, x2, y, z} ⊆ V (T). Then, there
exists cycle T ′ in G such that V (T) = V (T ′) and x2xx1y is a segment of T ′.

Claim 2. Let H = (G\x1) + xy, i.e., the graph obtained from G by first deleting
the vertex x1 and then adding the edge xy. Then H is an interval graph.

Before we prove the claims, we show how the claims can be used to complete the
proof of the theorem.

As C and M are cycles of G that satisfy conditions of Claim 1, we can assume
that x2xx1y is a segment of C as well as M . Let H = (G\x1) + xy. By Claim 2,
H is an interval graph. Let C ′ be the cycle in H obtained from C by replacing the
segment x2xx1y by x2xy. Similarly, let M ′ be the cycle in H obtained from M by
replacing the segment x2xx1y by x2xy. Clearly, M ′ is a Hamilton cycle of H. As
H has (n − 1) vertices and 4 ≤| V (C ′) |≤ (n − 3), C ′ is a non-Hamiltonian cycle in
H. As a vertex and at least three edges (namely, x1x, x1x2, x1y) were deleted, and
the edge xy was added to derive H from G, ||H|| < ||G||. By applying the inductive
hypothesis to H and C ′, we get an extension C ′′ of C ′ in H. As x2 and y are the
only neighbors of x in H, x2xy must be a segment of C ′′. As x1 sees x and y in G, by
replacing the segment xy of C ′′ with the segment xx1y, we get the desired extension
for C in G.

We now complete the proof of the theorem by presenting the proofs of Claims 1
and 2.

CYCLE EXTENDABILITY IN CHORDAL GRAPH CLASSES 677

Proof of Claim 1. Recall that T is a cycle in the interval graph (G,K(G) =
K1K2 . . .Kr), where x ∈ K1 and z ∈ Kr. Let P1 be the segment of T in the clockwise
direction from x to z. Let P2 be the segment of T in the counter-clockwise direction
from x to z. As N(x) = {x1, x2}, without loss of generality, we can assume that
x1 ∈ V (P1) and x2 ∈ V (P2).

Note that if G had exactly two maximal cliques, then as every simplicial vertex of
G and every neighbor of every simplicial vertex of G is on C, C = M , a contradiction.
Therefore, we can assume that r ≥ 3.

Let Ps, s = 1 or s = 2, be the path such that y ∈ V (Ps). We next show that the
vertices on Ps can be rearranged so that xxjy is a segment of Ps for j = 1 or j = 2.

Refer to Lemma 3.8. As vertices x, z and path Ps satisfy the hypotheses of
Lemma 3.8, Ps satisfies the conclusions of the lemma; let f be as defined in the
lemma. If xxjy is a segment of Ps, then we are done; so, assume otherwise, and
Ps = xxjp . . . y . . . z, where p �= y.

We next show that y ∈ K2. Suppose not, and let i be the smallest integer such
that y ∈ Ki; clearly, i ≥ 3. Now, as there exists vertex q �= x such that q ∈ K2

but q /∈ K3, it follows that R(q) < R(y), a contradiction to R(y) being the second
smallest right endpoint in the model. Recall that as x misses y and y is simplicial in
G\x, y is simplicial in G also. We can conclude that K2 is the only maximal clique
of G containing y, and therefore f(y) = 2.

As r ≥ 3 and Kr is the only maximal clique containing z, y �= z.

Let w be the vertex that immediately follows y in Ps; such a w exists as y �= z.
Referring back to Ps, as p /∈ K1, f(y) = 2, and Ps is a path satisfying Lemma 3.8,
it follows that for every vertex u in the segment p . . . y of Ps, f(u) = 2. Further, as
every neighbor of y must belong to K2, w ∈ K2. Therefore, all the vertices in the
segment p . . . yw of Ps belong to K2. We can now simply delete y from its current
position in Ps and insert it immediately before p to obtain a desired path in which
xxjy is a segment.

Finally, if j = 1, then as xx1y is a segment of P1 and xx2 is a segment of P2,
x2xx1y is a segment of T , and T ′ = T is the desired cycle. Otherwise, P2 contains
the segment xx2y. Let xx1q be a segment of P1. As x is simple in G, and x1 is the
smallest vertex in N(x), N [x1] ⊆ N [x2] in G. Therefore, x2 sees q. Let P ′ be the
path in G in which the following are consecutive segments: segment xx1 of P1, edge
x1y, and segment y . . . z of P2. Let P ′′ be the path in G in which the following are
consecutive segments: segment xx2 of P2, edge x2q, and segment q . . . z of P1. Then,
the union of P ′ and P ′′ is the desired cycle T ′ containing the segment x2xx1y.

Proof of Claim 2. Recall that (G,K(G) = K1K2 . . .Kr) is the given interval
graph. Let I(G) be the interval model that corresponds to K(G) in which endpoints
are distinct. As x misses y in G and R(x) is the smallest right endpoint, we have
R(x) < L(y). Derive interval model I ′ for H from I(G) as follows: First delete the
interval Ix1 corresponding to vertex x1. Then, place L(y) so that L(y) < R(x), leaving
all other endpoints unchanged.

Since R(y) is the second smallest right endpoint in I(G), there is no interval Iw
in I(G) such that R(x) < R(w) < L(y). Therefore, the only changes effected by I ′

are deletion of x1, addition of y to the neighborhood of x, and addition of x to the
neighborhood of y, as desired.

The proof of Theorem 4.2 is now complete.

Refer to Figure 1 for the graphs F1 and F2.

Theorem 4.3. A Hamiltonian strongly chordal graph with no F1 or F2 is cycle
extendable.

678 ATIF ABUEIDA AND R. SRITHARAN

Proof of Theorem 4.3. The proof is by induction on the number of vertices in
the graph. It is easily verified that the theorem is true for all relevant graphs with at
most 5 vertices. Assume that the theorem is true for all Hamiltonian strongly chordal
graphs with no F1 or F2 that have at most (n− 1) vertices. Let G be a Hamiltonian
strongly chordal graph on n vertices that contains no F1 or F2, and C be a given
non-Hamiltonian cycle in G. We assume as per Remark 4.1. Let x be a simple vertex
of G, u the smallest vertex in N(x), and v the second smallest vertex in N(x). Let
M be a Hamilton cycle of G.

By Corollary 3.3, we can now assume that vxu is a segment of the Hamilton cycle
M as well as the cycle C. Let vxup be a segment of M and vxuq be a segment of C
where p may be different from q. As N [u] ⊆ N [v] in G, v sees both p and q in G.

Let H = G\{x, u}, M1 be the cycle obtained from M by replacing the segment
vxup with vp, and C1 be the cycle obtained from C by replacing the segment vxuq
with vq. It follows that H is a strongly chordal graph with no F1 or F2, H has
(n − 2) vertices, and M1 is a Hamilton cycle of H. As 3 ≤| C1 |≤ (n − 4), C1 is a
non-Hamiltonian cycle in H. Therefore, by inductive hypothesis, C1 extends to cycle
C2 in H. As v ∈ V (C2), there exists a segment wvz of C2. We claim that u must see
one of w, z in G. Suppose not, and u misses both w and z in G. As x is simple (and
hence simplicial) in G, x must also miss both w and z. Then, depending on whether
or not w sees z in G, the set {u, v, w, x, z} of vertices induces either F1 or F2 in G, a
contradiction.

Now, without loss of generality, let u see z in G. Starting from C2, replacing the
segment wvz with the segment wvuz, and then replacing the segment wvuz in the
resulting cycle with the segment wvxuz, we can obtain an extension for C.

The graphs F1 and F2 are interval graphs. The graph G2 in Figure 1 is not an
interval graph. However, G2 is a Hamiltonian strongly chordal graph that does not
contain F1 or F2.

The following theorem essentially shows that the ideas employed in Case A of
the proof of Theorem 4.2 hold for the larger class of Hamiltonian strongly chordal
graphs also. Graph G1 in Figure 1 is an example of a graph satisfying the conditions
of Theorem 4.4.

Theorem 4.4. Suppose G is a Hamiltonian strongly chordal graph with the strong
elimination order v1v2 . . . vn of vertices such that vivi+1 is an edge, 1 ≤ i ≤ (n − 1).
Then, G is cycle extendable.

Proof of Theorem 4.4. The proof is by induction on the sum of the number of
vertices and the number of edges in the graph. We refer to a strong elimination order
as in the statement of the theorem as a special order. The theorem is easily verified
for every Hamiltonian strongly chordal graph G with a special order where ||G|| < 11.
Assume that the theorem holds for every Hamiltonian strongly chordal graph G with
a special order where ||G|| ≤ t − 1. Let G be a Hamiltonian strongly chordal graph
on n vertices, with a special order R = v1v2 . . . vn, with ||G|| = t, and let C be a
given non-Hamiltonian cycle in G. Let M be a Hamilton cycle of G. Observe that
R\v1 = v2v3 . . . vn is a special order for G\v1. We assume as per Remark 4.1 that v1

and every neighbor of v1 are on C.

Clearly, v2 is the smallest vertex in N(v1). Let vk be the second smallest vertex
in N(v1). By Corollaries 3.3 and 3.4, we can assume that vkv1v2 is a segment of M
as well as C.

Suppose d(v1) ≥ 3 and let {v2, vk, z} ⊆ N(v1). Then, edge v1z is such that
v1z /∈ E(C) and v1z /∈ E(M). Clearly, the graph G − v1z is Hamiltonian. By
Lemma 3.5, G − v1z is strongly chordal. Vertex v1 is simplicial in G − v1z also.

CYCLE EXTENDABILITY IN CHORDAL GRAPH CLASSES 679

Suppose v1 had neighbors vi, vj in G − v1z such that i < j, but N [vi] �⊆ N [vj]
in G − v1z. Then, in G − v1z, vi sees vp that vj misses. Then, it must be that
{vp, vj} = {v1, z}. This is impossible as v1 �= vj , and as v1 sees vj and vp misses vj
in G − v1z, v1 �= vp either. Finally, as z �= v2, R is a special order for G − v1z also.
As ||G− v1z|| < ||G||, by applying the inductive hypothesis to G− v1z and C we can
get the desired extension for C.

As G is Hamiltonian, d(v1) ≥ 2, and therefore, we can now assume that d(v1) = 2
and N(v1) = {v2, vk}. Therefore, vkv1v2 is a segment of both M and C. Note that
both v1 and vk see v2. As C is a non-Hamiltonian cycle in G with 5 ≤| V (C) |≤ (n−2),
G has at least 6 vertices. Therefore, d(v2) ≥ 3.

Suppose d(v2) = 3 and for some vertex w, N(v2) = {v1, v3, w}. Then, M−v1

is a Hamilton cycle of G\v1, C−v1 is a non-Hamiltonian cycle in G\v1, R\v1 is a
special order of G\v1, and ||G\v1|| < ||G||. Applying the inductive hypothesis to
G\v1 and C−v1

produces extension C ′ of C−v1 in G\v1. Then, replacing the segment
vkv2 of C ′ with vkv1v2, we can get an extension for C. Now, we can assume that
d(v2) ≥ 4.

We now consider two cases based on the adjacency between v1 and v3.

Case 1. v1 sees v3 (and vk = v3).

As N(v1) = {v2, v3}, v3v1v2 is a segment of M as well as C. Then, M−v1 is a
Hamilton cycle of G\v1, C−v1 is a non-Hamiltonian cycle in G\v1, R\v1 is a special
order of G\v1, and ||G\v1|| < ||G||. Apply the inductive hypothesis to G\v1 and
C−v1

to get an extension C ′ of C−v1
in G\v1. As v2 is simple in G\v1, and v3 is the

smallest vertex in N(v2) in G\v1, by Lemma 3.2, we can assume v3v2 is a segment of
C ′. Then, replacing the segment v3v2 of C ′ with the segment v3v1v2, we can get an
extension for C.

Case 2. v1 misses v3 (and vk �= v3).

Now, vk �= v3 is the second smallest vertex in N(v1). Let vkv1v2p be a segment
of M . We next show that if p �= v3, then vertices of M can be rearranged so that
vkv1v2v3 is a segment of M . First apply Lemma 3.2 to G\v1, M−v1 , and the simple
vertex v2 of G\v1, with v3 and p in place of w and v, respectively, so that vkv2v3

is a segment of C−v1 . Now, replacing the segment vkv2 with vkv1v2, we can make
vkv1v2v3 a segment of M . Let vkv1v2q be a segment of C. If v3 /∈ V (C), then as v2

is simplicial in G\v1, v3 sees consecutive vertices v2 and q on C. We can then extend
C by replacing the segment v2q with v2v3q. Therefore, assume v3 ∈ V (C). Then an
argument similar to the one used for M can be employed to show that vkv1v2v3 is a
segment of C also.

As d(v2) ≥ 4, there now exist vertex z /∈ {v1, vk, v3} and edge v2z such that
v2z /∈ E(M) and v2z /∈ E(C). Clearly, G − v2z is Hamiltonian and C is a non-
Hamiltonian cycle in G − v2z. By Lemma 3.6, G − v2z is strongly chordal. By a
previous argument, R\v1 is a special order of (G− v2z)\v1. As vk /∈ {v2, z}, no edge
incident on vk was deleted; therefore N [v2] ⊆ N [vk] in G−v2z also, and R is a special
order for G − v2z. We can now apply the inductive hypothesis to G − v2z and C to
get an extension for C.

The proof of Theorem 4.4 is now complete.

Theorem 4.5. A Hamiltonian split graph is cycle extendable.

Proof of Theorem 4.5. The proof is by induction on the number of vertices in
the graph. The theorem is easily verified for Hamiltonian split graphs with at most 5
vertices and assume that the theorem is true for all Hamiltonian split graphs with at
most (n − 1) vertices. Let G = (K, I,E) be a Hamiltonian split graph on n vertices
and C be a given non-Hamiltonian cycle of G. We assume as per Remark 4.1.

680 ATIF ABUEIDA AND R. SRITHARAN

Observe that for any v ∈ I, v is simplicial in G. We claim that for any non-
Hamiltonian cycle C in G, of all vertices in (K ∪ I) − V (C), either there exists a
simplicial vertex v of G or there exists a vertex u such that u sees two consecutive
vertices w, z of C. In order to verify the claim, as every v ∈ I is simplicial in
G, if I �⊆ V (C), then we are done; hence assume that I ⊆ V (C). Now, consider
u ∈ (K−V (C)). If u were simplicial in G, then we are done proving the claim; hence
assume otherwise. As K induces a clique in G, it then follows that (N(u) ∩ I) �= ∅.
Let w ∈ I be a vertex that u sees and let wz be a segment of C. As w is simplicial in
G, u sees z, and hence u sees two consecutive vertices on C.

To complete the proof of the theorem, if there exists v ∈ ((K ∪ I) − V (C)) such
that v is simplicial in G, we apply the inductive hypothesis to G\v and C to get
the required extension of C; as G\v has (n − 1) vertices, C is a non-Hamiltonian
cycle in G\v. Also, as v is simplicial in G, G\v is Hamiltonian. Otherwise, we have
u ∈ ((K ∪ I) − V (C)) such that u sees consecutive vertices w, z of C. An exten-
sion of C can then be obtained by replacing the segment wz of C with the segment
wuz.

We conclude with some remarks on finding a Hamilton cycle in a strongly chordal
graph that does not contain F1 or F2. Müller showed [12] that deciding whether a
strongly chordal graph that is also a split graph is Hamiltonian is NP-complete. As
a split graph cannot contain F1, it follows that deciding whether a strongly chordal
graph that does not contain F1 is Hamiltonian is NP-complete. In contrast, Corol-
lary 3.4 and the proof of Theorem 4.3 can be used to show that for a strongly chordal
graph G on at least 5 vertices that does not contain F1 or F2, G is Hamiltonian if
and only if G\{x, u} is Hamiltonian, where x is a simple vertex and u is the smallest
vertex in N(x). As a strong elimination order of a strongly chordal graph can be
found in O(n2) time [13, 16, 15], it follows that whether a strongly chordal graph that
does not contain F1 or F2 is Hamiltonian can be decided in O(n2) time.

Acknowledgments. We thank Carlin Sappenfield for timely help with the lit-
erature and the editors for their comments.

REFERENCES

[1] A. Brandstädt, V. B. Le, and J. P. Spinrad, Graph classes: A survey, SIAM Monogr.
Discrete Math. Appl. 3, SIAM, Philadelphia, 1999.

[2] G. Chen, R. J. Faudree, R. J. Gould, and M. S. Jacobson, Cycle extendability of Hamil-
tonian interval graphs, SIAM J. Discrete Math., 20 (2006), pp. 682–689.

[3] M. Farber, Characterizations of strongly chordal graphs, Discrete Math., 43 (1983), pp. 173–
189.

[4] P. C. Gilmore and A. J. Hoffman, A characterization of comparability graphs and of interval
graphs, Canad. J. Math., 16 (1964), pp. 539–548.

[5] M. C. Golumbic, Algorithmic graph theory and perfect graphs, Academic Press, New York,
1980.

[6] G. R. T. Hendry, Extending cycles in digraphs, J. Combin. Theory Ser. B, 46 (1989), pp. 162–
172.

[7] G. R. T. Hendry, Extending cycles in graphs, Discrete Math., 85 (1990), pp. 59–72.
[8] L. Ibarra, Fully dynamic algorithms for chordal graphs and split graphs, J. Algorithms, to

appear.
[9] T. Jiang, Planar Hamiltonian chordal graphs are cycle extendable, Discrete Math., 257 (2002),

pp. 441–444.
[10] H. Kaplan, R. Shamir, and R. E. Tarjan, Tractability of parameterized completion problems

on chordal, strongly chordal, and proper interval graphs, SIAM J. Comput., 28 (1999),
pp. 1906–1922.

CYCLE EXTENDABILITY IN CHORDAL GRAPH CLASSES 681

[11] M. Keil, Finding Hamilton circuits in interval graphs, Inform. Process. Lett., 20 (1985),
pp. 201–206.

[12] H. Müller, Hamiltonian circuits in chordal bipartite graphs, Discrete Math., 156 (1996),
pp. 291–298.

[13] R. Paige and R. E. Tarjan, Three partition refinement algorithms, SIAM J. Comput., 16
(1987), pp. 973–989.

[14] D. J. Rose, R. E. Tarjan, and G. S. Lueker, Algorithmic aspects of vertex elimination on
graphs, SIAM J. Comput., 5 (1976), pp. 266–283.

[15] J. Sawada and J. P. Spinrad, From a simple elimination ordering to a strong elimination
ordering in linear time, Inform. Process. Lett., 86 (2003), pp. 299–302.

[16] J. P. Spinrad, Doubly lexical ordering of dense 0-1 matrices, Inform. Process. Lett., 45 (1993),
pp. 229–235.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 682–689

CYCLE EXTENDABILITY OF HAMILTONIAN
INTERVAL GRAPHS∗

GUANTAO CHEN† , RALPH J. FAUDREE‡ , RONALD J. GOULD§ , AND

MICHAEL S. JACOBSON¶

Abstract. A graph G of order n is pancyclic if it contains cycles of all lengths from 3 to n.
A graph is called cycle extendable if for every cycle C of less than n vertices there is another cycle
C∗ containing all vertices of C plus a single new vertex. Clearly, every cycle extendable graph is
pancyclic if it contains a triangle. Cycle extendability has been intensively studied for dense graphs
while little is known for sparse graphs, even very special graphs. We show that all Hamiltonian
interval graphs are cycle extendable. This supports a conjecture of Hendry that all Hamiltonian
chordal graphs are cycle extendable.

Key words. interval graph, Hamiltonian, cycle extendable

AMS subject classification. 05C38

DOI. 10.1137/S0895480104441450

1. Introduction. All graphs considered in this paper are finite and simple. We
will generally follow the notation and definitions of West [14]. Let G be a graph. We
use V (G) and E(G) to denote its vertex set and edge set, respectively. For any vertex
v of G, N(v) (or NG(v)) denotes the neighborhood of v (neighborhood of v in G)
and d(v) (or dG(v)) denotes the degree of v (degree of v in G). For any X ⊆ V (G),
let G[X] denote the subgraph induced by X. If H is a subgraph of G, we define
G[H] := G[V (H)].

A graph is chordal if every cycle of length at least 4 contains a chord. An interval
graph is a graph whose vertices correspond to a family of intervals so that vertices are
adjacent if and only if the corresponding intervals intersect. It is well known that all
interval graphs are chordal graphs.

In a graph G, a Hamiltonian cycle is a cycle containing all vertices of G. A
graph is Hamiltonian if it has a Hamiltonian cycle. Determining when graphs are
Hamiltonian is one of the fundamental problems in graph theory. Although it is NP-
hard to decide whether a graph is Hamiltonian, finding conditions sufficient to imply
a graph is Hamiltonian has been intensively studied in the last thirty years. While
studying Hamiltonicity, many related properties have also been heavily explored. For
example, a graph G of order n is pancyclic if it contains cycles of all lengths from 3 to
n. Clearly, every pancyclic graph is Hamiltonian, but the converse is not true. Being
pancyclic provides a lot more cycle structure to graphs. Although there are many

∗Received by the editors February 21, 2004; accepted for publication (in revised form) October
17, 2005; published electronically September 15, 2006.

http://www.siam.org/journals/sidma/20-3/44145.html
†Department of Computer Science and Department of Mathematics and Statistics, Georgia State

University, Atlanta, GA 30303, and Faculty of Mathematics and Statistics, Huazhong Normal Uni-
versity, Wuhan, China (gchen@gsu.edu). The research of this author was partially supported by
NSA grant H98230-04-1-0300 and NSF grant DMS-0500951.

‡University of Memphis, Memphis, TN 38152 (rfaudree@memphis.edu).
§Department of Math and Computer Science, Emory University, Atlanta, GA 30322 (rg@mathcs.

emory.edu).
¶Department of Mathematics, University of Colorado at Denver, Denver, CO 80217-3364 (msj@

math.cudenver.edu).

682

CYCLE EXTENDABILITY OF HAMILTONIAN INTERVAL GRAPHS 683

Hamiltonian graphs which are not pancyclic, the known sufficient degree conditions
implying each of the properties are often similar. For example, the classic result of
Ore [10] says that a graph G of order n ≥ 3 is Hamiltonian if d(u) + d(v) ≥ n for
every nonadjacent pair u, v ∈ V (G). Bondy [2] showed the same condition implies
that G is either pancyclic or a complete bipartite graph Kn/2,n/2. A common method
of showing that a graph G is pancyclic is described below:

• Show that G has a triangle.
• Suppose that G has a cycle of length k < n, and find a special cycle of length k

(< n) and a special vertex v /∈ V (C) such that G[V (C)∪{v}] is Hamiltonian.

Motivated by the above observations, Hendry [7] gave the following definitions. In
a graph G, a non-Hamiltonian cycle C is extendable if there exists a vertex v /∈ V (C)
such that G[V (C) ∪ {v}] is Hamiltonian. A graph G is cycle extendable if all non-
Hamiltonian cycles are extendable. In the same paper, Hendry showed that a graph G
of order n ≥ 3 is cycle extendable if d(u) + d(v) ≥ n+ 1 for every pair of nonadjacent
vertices u and v. Graphs satisfying the above degree conditions must be very dense
(in edges). To study the cycle structure of graphs less dense, usually some other
structural properties are imposed, for example, planarity.

In 1931, Whitney [15] proved that every 4-connected plane triangulation contains
a Hamiltonian cycle. In 1956, Tutte [13] extended that result to 4-connected planar
graphs. Malkevitch [9] conjectured that every 4-connected graph containing a C4 is
pancyclic. Combining results from [12, 11, 3], we know that every 4-connected planar
graph of order n ≥ 9 contains cycles of length n − i for i = 1, . . . , 6. These results
use the approach of finding shorter cycles from long cycles. However, this approach
cannot demonstrate why C4s should play an important role in 4-connected planar
graphs being pancyclic. Thus, constructing larger cycles from smaller cycles might be
a better approach. Hence, cycle extendable graphs take on added importance.

For any graph H, let c(H) denote the number of connected components of H.
Let t > 0 be a positive number. We say a graph is t-tough if |A| ≥ t · c(G − A) for
all cuts A ⊆ V (G). Clearly, every Hamiltonian graph is 1-tough. On the other hand,
a longstanding conjecture of Chvátal [5] states that there exists a constant t such
that every t-tough graph is Hamiltonian. Although this conjecture remains open,
Chen et al. [4] showed that all 18-tough chordal graphs are Hamiltonian. Note that
a chordal graph containing a cycle Ck also contains a cycle Ck−1 if k ≥ 4. Repeating
this argument, we see that all chordal Hamiltonian graphs are pancyclic. Hendry [7]
gave the following conjecture.

Conjecture 1.1. All Hamiltonian chordal graphs are cycle extendable.

The purpose of this paper is to prove that Conjecture 1.1 is true for a special
class of chordal graphs, namely interval graphs.

Theorem 1.2. All Hamiltonian interval graphs are cycle extendable.

The proof of Theorem 1.2 will be given in section 3. In section 2 we will develop
necessary properties of interval graphs.

Keil [8] designed a linear algorithm to find a Hamiltonian cycle in an interval
graph. One consequence of his algorithm is that an interval graph is Hamiltonian
if and only if it is 1-tough. We will heavily use this fact in our proof. For 1-tough
Hamiltonian graphs, a cut A of G is called critical if c(G − A) = |A|. Let C be
a Hamiltonian cycle of G and A be a critical cut of G; then the vertex sets of the
components of G − A are exactly those of the components of C − A. The following
lemma regarding critical cuts on Hamiltonian graphs will be needed in our proof, and
its proof is straightforward.

684 CHEN, FAUDREE, GOULD, AND JACOBSON

Lemma 1.3. Let G be a Hamiltonian graph with a Hamiltonian cycle C. If A is
a cut of G such that all segments of C − A induce components of G− A and A does
not contain two consecutive vertices of C, then A is a critical cut of G.

For any two disjoint intervals A and B on the real number line, we let d(A,B)
denote the distance between A and B. Let G be an interval graph. For each vertex
v ∈ V (G), let I(v) denote the corresponding interval called the representation of v.
For each W ⊆ V (G), let I(W) =

⋃
v∈W I(v). For each subgraph H of G, we define

I(H) = I(V (H)). Clearly, I(H) is also an interval of the real line if H is connected.
Since only finite simple graphs will be considered in this paper, we assume that I(v) is
a closed interval for each v ∈ V (G). For each interval I = [a, b], we call a the left-end
of I and b the right-end of I. We say a vertex v is on the left side of w (or equivalently
w is on the right side of v) if a ≤ b for all a ∈ I(v) and b ∈ I(w). For any two vertex
subsets U and W , we say that U is on the left side of W if u is on the left side of w
for any u ∈ U and w ∈ W .

2. Paths and cycles in interval graphs. In this section we will review some
properties of interval graphs. Most of these properties are given in [8]. A clique D is a
subgraph of G such that all vertices in D are mutually adjacent. This is equivalent to
the property that the intersection of the corresponding intervals is not empty. Thus,
a clique D can be represented by a point p which is contained in each of the intervals
corresponding to the vertices of D. Note, however, that different cliques may have the
same representative. A clique is maximal if there is no other clique containing this
clique as a proper subgraph. It is not difficult to see that different maximal cliques
must have different representatives. By selecting a representative p for each maximal
clique D and ordering all maximal cliques from left to right on the real number line by
their representative points, Gilmore and Hoffman [6] obtained the following property.

Lemma 2.1. The maximal cliques of an interval graph G can be linearly ordered,
such that, for every vertex x of G, the maximal cliques containing x occur consecu-
tively.

We name such an ordering D1, D2, . . . , Dm the linear order of cliques, where a
maximal clique is named Di if its representative point pi is the ith smallest represen-
tative of the maximal cliques of G.

A vertex v that appears in a maximal clique Di is called a conductor for Di if
v also appears in the maximal clique Di+1. Clearly, the interval corresponding to v
contains the interval [pi, pi+1]. Let

L(Di) := {D1, D2, . . . , Di} and L̃(Di) := {Di+1, . . . , Dm}.

A path P in G is spanning for L(Di) if P contains all vertices of G not appearing in
L̃(Di) and P has two conductors of Di as endvertices. Let Ri be the set of representa-
tives of the maximal cliques containing vertex vi. A point embedding Q of a path P :
v1v2 . . . vn is an assignment of a real number q(vi) ∈ Ri to vi such that q(vi) ∈ Ri+1

for 1 ≤ i ≤ n− 1. A path is straight if it has a point embedding Q with the property
that q(vr) ≤ q(vr+1) for 1 ≤ r ≤ n− 1. The following lemma is due to Keil [8].

Lemma 2.2. Given a path P with point embedding Q, in an interval graph G,
with an endpoint v1 that appears only in D1, there exists a straight path P ′, with v1

as an endpoint, that has the same vertex set as P and has a point embedding Q′ that
has the same point set as Q.

A path P , with endvertices u and v, that spans L(Di) is said to be U -shaped if
there exists a vertex x in P that appears only in D1 such that the two subpaths of

CYCLE EXTENDABILITY OF HAMILTONIAN INTERVAL GRAPHS 685

y
x

Fig. 1. A standard cycle.

P from x to u and from x to v are straight. Such a vertex x is called the base of the
U -shaped path P . The point embedding of w in the U -shaped path P is the point
embedding of v in the path from x to u if w lies on this path; otherwise it is the
point embedding of v in the path from x to v. We denote the embedding by qP . The
following result is also due to Keil [8].

Lemma 2.3. If G is an interval graph with m maximal cliques, then G has a
Hamiltonian cycle if and only if there exists a U -shaped spanning path for L(Di),
1 ≤ i ≤ m− 1.

Based on Lemma 2.3, for every Hamiltonian interval graph there is a Hamiltonian
cycle C and two vertices x ∈ D1 and y ∈ Dm such that both x-y paths induced by
C are straight, x appears only in D1, and y appears only in Dm. We name such
a Hamiltonian cycle a standard Hamiltonian cycle (see Figure 1) and denote it by
(C : x, y) with distinguished vertices x and y. We also denote the embedding by qC .
Keil [8] also showed the following lemma.

Lemma 2.4. An interval graph with at least 3 vertices is Hamiltonian if and only
if it is 1-tough.

Lemma 2.5. Let G be a 2-connected chordal graph and e an edge of G. Then e
is on a triangle of G.

Proof. Let T be a smallest cycle containing e. Since every cycle of length at least
4 must contain a chord, T is a triangle.

3. Proof of Theorem 1.2. Suppose, to the contrary, there is a Hamiltonian
interval graph G and a non-Hamiltonian cycle C of G such that C is not extendable.
Furthermore, we assume that |G|, the order of G, is minimum with respect to this
assumption.

The strategy of the proof is to find a critical cut A of H = G[V (C) ∪ {v}] such
that H − A has |A| components, there is a component of G − V (H) adjacent only
to vertices in A, and every other component of G− V (H) is adjacent only to A and
vertices in at most one component of H−A. Thus, G−A has more components than
|A|, a contradiction to the fact that G is 1-tough (violating Lemma 2.4).

Since C is a Hamiltonian cycle in G[V (C)], we can assume that there exist two
vertices x and y such that (C : x, y) is a standard Hamiltonian cycle of G[V (C)].
Further, x appears only in D1 and y appears only in Dm, where the ordering of
D1, D2, . . . , Dm is the linear ordering of maximal cliques of G[V (C)]. Let P1 and P2

be the two x-y paths induced by C. Let qi be an embedding of Pi for each i = 1,
2, respectively. Since x appears only in D1, all neighbors of x are adjacent. So,
without loss of generality, we assume that q1(x) = q2(x). Similarly, we assume that
q1(y) = q2(y). For convenience, we define qC(v) = qi(v) if v ∈ Pi.

Let B be a Hamiltonian cycle of G and assume that B has a given orientation.
Since B is a cycle, B−V (C) is a union of disjoint segments. Let B(ai, bi), i = 1, 2, . . . ,
denote those nonempty segments, where ai and bi are in V (C). A segment B(ai, bi) is

686 CHEN, FAUDREE, GOULD, AND JACOBSON

a type-1 segment if ai and bi are adjacent in G. Otherwise, we call B(ai, bi) a type-2
segment.

Claim 3.1. If B(ai, bi) is a type-1 segment, then there is a vertex ci ∈ B(ai, bi)
such that ci is adjacent to both ai and bi.

Proof. Since aiB(ai, bi]ai is a cycle and G is a chordal graph, by Lemma 2.5, aibi
is on a triangle in the subgraph induced by this cycle. Let ci be the other vertex of
this triangle. Clearly, ci is adjacent to both ai and bi.

Claim 3.2. All B(ai, bi) are type-2 segments.

Proof. Suppose, to the contrary, that B(a1, b1) is a type-1 segment. Let G∗ =
G− V (B(a1, b1)) and B∗ = B ∪ {a1b1} − V (B(a1, b1)). Clearly, B∗ is a Hamiltonian
cycle of G∗ and V (G∗) ⊃ V (C). If |G∗| > |C|, G∗ is cycle extendable by the induction
hypothesis. Thus, C is extendable in G∗, so it is extendable in G, a contradiction. If
|G∗| = |C|, then by Claim 3.1, there exists c1 ∈ B(a1, b1) such that a1c1, b1c1 ∈ E.
Then, C∗ = B[b1, a1]c1b1 is an extension of C, a contradiction.

Let H := G[V (C)] and for any v ∈ V (G) − V (C) let Hv := G[V (C) ∪ {v}]. The
following claim is a direct consequence of the fact that cycles are 1-tough.

Claim 3.3. If A is a critical cut of H, then A does not contain two consecutive
vertices of C and all segments of C − A induce components of H − A. Thus, all
segments of C −A induce disjoint intervals on the real line.

Claim 3.4. If v �∈ V (H) has at least two neighbors in H, there exists a nontrivial
critical cut A of H such that N(v) ⊆ A.

Proof. Since Hv is a non-Hamiltonian interval graph, it is not 1-tough. Hence,
there is a cut A of Hv such that c(Hv − A) ≥ |A| + 1. Since H is a Hamiltonian
interval graph, it is 1-tough. Thus, v itself is a component of Hv − A, A is a critical
cut of H, and N(v) ⊆ A.

Claim 3.5. For each segment B(ai, bi) there exists ci ∈ B(ai, bi) such that ci has
two neighbors on C. Thus, H has a nontrivial critical cut.

Proof. Since I(ai) ∩ I(bi) = ∅, let I denote the interval between I(ai) and I(bi).
Then, I ⊆ I(B(ai, bi)). Let ci ∈ B(ai, bi) such that I(ci)∩I(ai) �= ∅ and I(ci)∩I �= ∅.
Since C is connected, I ⊆ I(C), so that there exists di ∈ V (C) − {ai, bi} such that
cidi ∈ E. Thus, |NC(ci)| ≥ 2, and we are done by Claim 3.4.

Claim 3.6. Let A be a nontrivial critical cut of H. Then, I(S) are disjoint
intervals for all components S ⊆ H − A. If there exists a path P in G − V (C)
connecting two components S and T of H − A, then I(S) and I(T) must be two
consecutive intervals in I(H −A).

Proof. The first part of Claim 3.6 is trivial. To prove the second part of the
claim, suppose, to the contrary, there is a component R of H − A such that I(R) is
between I(S) and I(T). So I(R) ⊂ I(P). Let r ∈ R. Then, qC(r) ∈ I(r) ⊂ I(P),
so that there is a vertex w ∈ P such that qC(r) ∈ I(w). Since qC(r) is contained in
two consecutive vertices of C, w can be inserted into cycle C to make a larger cycle,
which is a contradiction.

Recall that (C : x, y) is a standard Hamiltonian cycle in H. If A is a critical cut
of H, A does not contain two consecutive vertices of C and each component of C −A
induces a component of H −A.

Claim 3.7. For any nontrivial critical cut A of H, x �∈ A and y �∈ A.

Proof. Since x ∈ D1, all neighbors of x in H are adjacent. Thus, x �∈ A. Similarly,
y �∈ A.

Claim 3.8. For every component D of G−V (C), there exists a nontrivial critical
cut A of H such that N(D) ⊆ A; i.e., all neighbors of D are in A.

CYCLE EXTENDABILITY OF HAMILTONIAN INTERVAL GRAPHS 687

Proof. Let D be a component of G− V (C) and v ∈ D. We assume, without loss
of generality, v ∈ B(a1, b1). By Claim 3.4, let A := Av be a critical cut of H such
that NC(v) ⊆ A.

Note that I(H − A) is a union of disjoint intervals and each such interval corre-
sponds to a component of H −A. Let L be the component of H −A such that I(L)
is the closest interval of I(H − A) on the left side of v and let R be the component
of H − A such that I(R) is the closest interval of I(H − A) on the right side of v.
Since A is critical and NC(v) ⊆ A, such components L and R exist. We assume that
|V (L)| + |V (R)| is at its minimum over all nontrivial critical cuts A := Av.

We claim that NH(D) ⊆ A. Suppose, to the contrary, that NH(D) �⊆ A; then we
have NH(D) ∩ V (L ∪R) �= ∅. Assume, without loss of generality, that for w ∈ D, we
have NC(w) ∩ V (R) �= ∅ and distD(v, w) is minimum with this property. Let P [v, w]
be a shortest path in D connecting v and w. Then, N(P [v, w)) ∩R = ∅.

Since N(w) ∩ R �= ∅ and N(P [v, w)) ∩ R = ∅, I(w) must contain the left-
end of I(R). Since there are two paths from x to R along C, then |NC(w)| ≥ 2.
By Claim 3.4, let A∗ := Aw, be a nontrivial critical cut of H such that NC(w) ⊆ A∗.
Let

AL = {a ∈ A : a is on the left side of w},

A∗
R = {a∗ ∈ A∗ : a∗ is not on the left side of a},

X = AL ∪A∗
R.

We will show that X is a critical cut of H. Note that
• each component S of H − X such that I(S) is on the left side of I(w) is a

component of H −A,
• each component S of H −X such that I(S) is on the right side of I(w) is a

component of C −A∗, and
• there is no component S of H −X such that I(S) is between I(v) and I(w).

Thus, X is a cut of H, and, by Claim 3.3, in order to show that X is a critical cut,
we need only show that X does not contain two consecutive vertices of C. Suppose, to
the contrary, there are two consecutive vertices a and b on C and a, b ∈ X. Without
loss of generality, we assume that a ∈ A \ A∗ and b ∈ A∗ \ A. By the definition of
X, a is on the left side of w and b is not on the left side of w. Thus, b ∈ R. Since
qC(a) is on the left side of w and qC(a) ∈ I(b) (because a and b are consecutive on
C), I(P [v, w)] ∩ I(b) �= ∅, which contradicts the minimality of P [v, w].

Let R∗ be the component of H − X such that I(R∗) is the closest interval of
I(H −X) on the right side of w and let I := I(P [v, w]). Note that if x ∈ V (C) such
that I(x)∩I �= ∅, then either x ∈ A∗ or x ∈ A. In any case, we have that x ∈ X. Note
that R is induced by a segment of C. Let y0 be the first vertex along the segment
of R from left to right such that y0w ∈ E(G). Without loss of generality, we assume
that y0 ∈ P1. Let x0 be the predecessor of the segment R along P1 from x to y and
let x−

0 be the predecessor of x0. Since X does not contain two consecutive vertices
of C and x0 ∈ X, qC(x−

0) must lie on the left side of I(R). Since C is a standard
cycle of H, qC(x−

0) /∈ I. Thus, qC(x−
0) is on the left side of the interval of c1. Thus,

x0 ∈ A∩A∗. Let S be the segment of R from the first vertex of R to the predecessor
of y0. We first note that S �= ∅ (since X does not contain two consecutive vertices).
Thus, S is a component of H −X.

We claim that |V (R∗)| < |V (R)|, which leads to a contradiction of the minimality
of |V (L)| + |V (R)|. This is certainly true if R∗ = S ⊂ R. Suppose R∗ �= S. Then,

688 CHEN, FAUDREE, GOULD, AND JACOBSON

I(R∗) is between I(w) and I(S). From the definition of R and S, we have R∗ ⊆ A.
Since A does not contain two consecutive vertices of C, |V (R∗)| = 1. Since |V (R)| ≥
|V (S)| + 1 ≥ 2, we have |V (R∗)| < |V (R)|, as desired.

Let D1, D2, . . . , Dm be the components of G − V (C). Assume, without loss of
generality, that I(Di) is on the left side of I(Dj) whenever i < j. By Claim 3.8, for
each Di, I(Di) ⊆ I(C) and there exists a nontrivial critical cut Ai of H such that
N(Di) ⊆ Ai. Let LAi = {a ∈ Ai | a is on the left side of Ai} and RAi = A − LAi.
We now inductively define Bi for each i = 1, 2, . . . ,m as follows: B1 = A1 and, for
each i > 1, if Di is adjacent to at most one component of H − Bi−1, let Bi = Bi−1.
Otherwise, let

Bi = {b ∈ Bi−1 | b is on the left side of Di} ∪RAi.

Claim 3.9. Bi is a nontrivial critical cut for each i = 1, 2, . . . ,m.
Proof. Claim 3.9 is true for i = 1. Suppose it is true for i− 1 ≥ 1. If Bi = Bi−1,

then it is also true for i. So, we assume that Bi �= Bi−1. In this case, let L and R
be two components of H − Bi−1 such that N(Di) ∩ L �= ∅ and N(Di) ∩ R �= ∅. By
Claim 3.6, I(L) and I(R) are two consecutive intervals of I(H −Bi−1). Furthermore,
I(Di) contains the interval between L and R as a subinterval. Note that components
of H −Bi on the left side of Di are those of H −Bi−1 and components of H −Bi on
the right side of Di are those of H − Ai. In order to show that Bi is a critical cut,
we only need show that Bi does not contain two consecutive vertices of C. Suppose,
to the contrary, a and b are two consecutive vertices on C such that a ∈ Bi−1 \ Ai

and b ∈ Ai \ Bi−1. Since b �∈ Bi−1, qC(a) ∈ I(a) ∩ I(b) must be on the right side
of L. Similarly, qC(a) must be on the left side of R. Thus, qC(a) ∈ I(Di), so that
there exists w ∈ I(Di) adjacent to both a and b. Then, C is extendable, which is a
contradiction.

By the definition, we have N(D1) ⊆ Bm and, for each i > 1, either N(Di) ⊆ Bm

or Di is adjacent to at most one component of H − Bm. Since H − Bm has exactly
|Bm| components, G − Bm has at least |Bm| + 1 components, which contradicts the
fact that G is 1-tough. This contradiction completes the proof.

Note: Just at the time of submission we were informed of another proof of this
result in [1].

Acknowledgment. We thank the referees for their useful suggestions which led
to a simpler proof.

REFERENCES

[1] A. Abueida and R. Sritharan, Cycle extendable and Hamilton cycles in chordal graph classes,
SIAM J. Discrete Math., 20 (2006), pp. 669–681.

[2] J. A. Bondy, Pancyclic graphs, J. Combin. Theory Ser. B, 11 (1977), pp. 80–84.
[3] G. Chen, G. Fan, and X. Yu, Cycles in 4-connected planar graphs, European J. Combin., 25

(2004), pp. 763–780.
[4] G. Chen, M. S. Jacobson, A. Kézdy, and J. Lehel, Tough enough chordal graphs are Hamil-

tonian, Networks, 31 (1998), pp. 29–38.
[5] V. Chvátal, Tough graphs and Hamiltonian circuits, Discrete Math., 5 (1973), pp. 215–228.
[6] P. C. Gilmore and A. J. Hoffman, A characterization of cocomparability graphs and of

interval graphs, Canad. J. Math., 16 (1964), pp. 539–548.
[7] G. R. T. Hendry, Extending cycles in graphs, Discrete Math., 85 (1990), pp. 59–72.
[8] J. M. Keil, Finding Hamiltonian circuits in interval graphs, Inform. Process. Lett., 20 (1985),

pp. 201–206.
[9] J. Malkevitch, Polytopal graphs, in Selected Topics in Graph Theory 3, Beneike and R.

Wilson, eds., Academic Press, New York, 1988, pp. 169–188.

CYCLE EXTENDABILITY OF HAMILTONIAN INTERVAL GRAPHS 689

[10] O. Ore, Note on Hamilton circuits, Amer. Math Monthly, 67 (1960), p. 55.
[11] D. P. Sanders, On paths in planar graphs, J. Graph Theory, 24 (1997), pp. 341–345.
[12] R. Thomas and X. Yu, 4-connected projective-planar graphs are Hamiltonian, J. Combin.

Theory Ser. B, 62 (1994), pp. 114–132.
[13] T. Tutte, A theorem on planar graphs, Trans, Amer. Math. Soc., 82 (1956), pp. 99–116.
[14] D. West, Introduction to Graph Theory, 2nd ed., Prentice Hall, Upper Saddle River, NJ, 2001.
[15] H. Whitney, A theorem on graphs, Ann. of Math. (2), 32 (1931), pp. 378–390.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 690–704

THE CHANNEL ASSIGNMENT PROBLEM WITH
VARIABLE WEIGHTS∗

DANIEL KRÁL’†

Abstract. A λ-graph G is a (finite or infinite) graph with k types of edges, x1-edges, . . . , xk-
edges. A labeling c of the vertices of G by nonnegative reals is proper with respect to reals x1, . . . , xk

if the labels of the end-vertices of an xi-edge differ by at least xi. The span of the labeling c is
the supremum of the labels used by c. The λ-function λG(x1, . . . , xk) is the infimum of the spans
of all the proper labelings with respect to x1, . . . , xk. We show that the λ-function of any graph
G is piecewise linear in x1, . . . , xk with finitely many linear parts (unless the λ-function is infinite).
Moreover, we show that for all integers k and χ, there exist constants Ck,χ and Dk,χ such that the
λ-function of every λ-graph G with k types of edges and chromatic number at most χ is comprised
of at most Ck,χ linear parts, and that the coefficients of x1, . . . , xk of the linear functions comprising
λG(x1, . . . , xk) are integers between 0 and Dk,χ. Among others, our results yield proofs of the
piecewise linearity conjecture, coefficient bound conjecture, and delta bound conjecture of Griggs
and Jin [SIAM J. Discrete Math., 20 (2006), pp. 302–327].

Key words. channel assignment problem, graph labeling with distance conditions

AMS subject classification. 05C15

DOI. 10.1137/040619636

1. Introduction. Radio frequency problems can be expressed as various graph
labeling problems [14, 20]. A prominent role among such problems is played by the
notion of L(p1, . . . , pk)-labelings, also referred to as graph labelings with distance
constraints. So far, the study of the dependence of optimal L(p1, . . . , pk)-labelings on
the parameters p1, . . . , pk has not been studied too intensively; however, several new
approaches to studying this dependence have recently been proposed: An approach
based on real-value relaxation of L(p1, . . . , pk)-labelings can be found in the work of
Griggs and Jin [9, 10, 11], and, more recently, another approach based on the notion
of λ-graphs was developed in [2]. In the present paper, we generalize the notion of
λ-graphs introduced in [2] from k = 2 to arbitrary k and provide structural results
for the general model. The results we obtain yield proofs of the piecewise linearity
conjecture, coefficient bound conjecture, and delta bound conjecture of Griggs and
Jin [9].

A labeling c of the vertices of a (finite or infinite) graph G by nonnegative integers
is an L(p1, . . . , pk)-labeling for positive integers p1, . . . , pk if the labels of any two
vertices u and v at distance (exactly) i differ by at least pi. Let us remark here that
all graphs as well as λ-graphs considered in this paper can be finite or infinite unless
stated otherwise. The supremum of the labels used by c is said to be the span of c, and
the least span of an L(p1, . . . , pk)-labeling of a graph G is denoted by λG(p1, . . . , pk)

∗Received by the editors November 25, 2004; accepted for publication (in revised form) April 14,
2006; published electronically September 15, 2006.

http://www.siam.org/journals/sidma/20-3/61963.html
†Institute for Mathematics, Technical University Berlin, Strasse des 17. Juni 136, D-10623 Berlin,

Germany. The author was a postdoctoral fellow at TU Berlin within the framework of the European
training network COMBSTRU from October 2004 to July 2005. Department of Applied Mathematics
and Institute for Theoretical Computer Science (ITI), Faculty of Mathematics and Physics, Charles
University, Malostranské nám. 25, 118 00 Prague, Czech Republic (kral@kam.mff.cuni.cz). Institute
for Theoretical Computer Science is supported by Ministry of Education of Czech Republic as project
1M0545. The author is now a Fulbright scholar at School of Mathematics, Georgia Institute of
Technology, 686 Cherry St., Atlanta, GA 30332-0160 (kral@math.gatech.edu).

690

CHANNEL ASSIGNMENT PROBLEM WITH VARIABLE WEIGHTS 691

(we deviate here from the standard notation in order to emphasize the dependence on
the parameters p1, . . . , pk). In the extensive literature on L(p1, . . . , pk)-labelings, one
can find many papers on algorithms for L(p1, . . . , pk)-labelings of (finite) graphs [1, 4,
7, 8, 17, 21]. From the structural point of view, the attention of researchers focused
mainly on the case of L(2, 1)-labelings, partly because of the following conjecture of
Griggs and Yeh [12].

Conjecture 1.1 (Δ2 conjecture). If G is a finite graph of maximum degree
Δ ≥ 2, then λG(2, 1) ≤ Δ2.

Conjecture 1.1 was verified for several special classes of graphs, including graphs
of maximum degree two, chordal graphs [22] (see also [5, 18]), hamiltonian cubic
graphs [15, 16], and planar graphs with maximum degree Δ �= 3 [3]. In the general
case, the original bound λG(2, 1) ≤ Δ2+2Δ from [12] has been improved to λG(2, 1) ≤
Δ2 + Δ in [6]. A recent more general result of the author and Škrekovski [19] yields
λG(2, 1) ≤ Δ2 + Δ − 1. The present record λG(2, 1) ≤ Δ2 + Δ − 2 has been recently
established by Gonçalves [13].

In order to capture the dependence of the optimum spans on the parameters,
Griggs and Jin [9] allow the parameters p1, . . . , pk and the labels used by a labeling c
to be any nonnegative reals. Similarly to the original notion, they define the span of
a labeling c as the supremum of the labels used by c, and λG(p1, . . . , pk) denotes the
span of an optimum labeling of a graph G, i.e., the minimum (that is always attained if
λG(p1, . . . , pk) is finite) of the spans of all L(p1, . . . , pk)-labelings of G. The function
λG is a function from R

k
+ to R+, where R+ is the set of nonnegative reals. Note

that λG(p1, . . . , pk) is finite if the maximum degree of G is bounded. In this setting,
Griggs and Jin [9] prove that for any reals p1, . . . , pk, the value of λG(p1, . . . , pk) of a

graph G with bounded maximum degree is equal to
∑k

i=1 αipi for some nonnegative
integers αi, and if all p1, . . . , pk are integers, the values λG(p1, . . . , pk) in the original
and the relaxed settings coincide. Among others, Griggs and Jin [9] also show that
the function λG(p1, . . . , pk) is a continuous function piecewise linear in the parameters
p1, . . . , pk; i.e., the set R

k
+ can be partitioned into parts (of positive measure) such that

λG(p1, . . . , pk) is linear on each of the parts. They do not prove that the number of
such parts is finite for k > 2 and conjecture that the following more general statements
actually hold [9].

Conjecture 1.2 (piecewise linearity conjecture). For every graph G with bounded
maximum degree, the function λG(p1, . . . , pk) is comprised of finitely many linear
parts; i.e., R

k
+ can be partitioned into finitely many parts such that λG(p1, . . . , pk) is

linear on each of the parts.

Conjecture 1.3 (coefficient bound conjecture). For every graph G with bounded
maximum degree and every integer k, there exists a constant Dk,G such that the fol-
lowing holds for all reals p1, . . . , pk: The value of the function λG(p1, . . . , pk) is equal

to
∑k

i=1 αipi for some integer coefficients α1, . . . , αk between 0 and Dk,G (the in-
tegers α1, . . . , αk depend on p1, . . . , pk). Moreover, there is a labeling c with span

λG(p1, . . . , pk) such that c(v) =
∑k

i=1 αi(v)pi, where α1(v), . . . , αk(v) are between 0
and Dk,G.

Conjecture 1.4 (delta bound conjecture). For all integers Δ and k, there exists
a constant Dk,Δ such that for every graph G with maximum degree at most Δ and
all reals p1, . . . , pk the following holds: The value of the function λG(p1, . . . , pk) is

equal to
∑k

i=1 αipi for some integer coefficients α1, . . . , αk between 0 and Dk,Δ (the
integers α1, . . . , αk depend on p1, . . . , pk). Moreover, there is a labeling c with span

λG(p1, . . . , pk) such that c(v) =
∑k

i=1 αi(v)pi, where α1(v), . . . , αk(v) are integers

692 DANIEL KRÁL’

between 0 and Dk,Δ.
Note that the delta bound conjecture implies the coefficient bound conjecture.

Griggs and Jin [9] proved the three Conjectures 1.2, 1.3, and 1.4 for k = 2 (for k = 1,
the conjectures are trivial) as well as Conjecture 1.2 for finite graphs G (for all values
of k).

In the present paper, we consider the problems posed in [9] in the more general
setting of λ-graphs introduced for k = 2 in [2]. A λ-graph G with k types of edges
is a graph G whose edges are labeled by variables x1, . . . , xk. An edge labeled by a
variable xi is called an xi-edge. Two vertices of G may be joined by edges of several
types. A proper labeling c of G with respect to real numbers x1, . . . , xk is a labeling
of the vertices of G by nonnegative reals such that the labels of the end-vertices of an
xi-edge uv differ by at least xi; i.e., |c(u) − c(v)| ≥ xi. The span of the labeling c is
the supremum of the labels used by c, and λG(x1, . . . , xk) is defined to be the infimum
of the spans of all proper labelings with respect to x1, . . . , xk. Using the technique
developed in [2], we show in section 2 that for all reals x1, . . . , xk, if λG(x1, . . . , xk) is
finite, then there exists a proper labeling c with span λG(x1, . . . , xk) and the span of c
is equal to the maximum label used by c; i.e., both the infimum and the supremum in
the definitions are attained. The λ-function of a λ-graph G is λG(x1, . . . , xk) viewed
as a function of variables x1, . . . , xk; i.e., λG is a function from R

k
+ to R+. The

chromatic number χ(G) of a λ-graph G is the chromatic number of the underlying
graph; i.e., χ(G) = λG(1, . . . , 1) + 1.

L(p1, . . . , pk)-labelings of graphs can be modeled as λ-graphs as follows: If G is
a graph, form a λ-graph G(k) with the vertex set V (G) such that two vertices u and
v are joined by an xi-edge in G(k), i = 1, . . . , k, if their distance in G is exactly i.
Clearly, the optimum span λG(p1, . . . , pk) is equal to the value λG(k)(x1, . . . , xk) of the
λ-function of G(k) for xi = pi, i = 1, . . . , k. Because of this close relation, we decided
to use the notation λG(. . .) for both the spans of optimum L(p1, . . . , pk)-labelings and
the λ-functions of λ-graphs. Since it is always clear throughout the paper whether G is
a graph (in which case λG(p1, . . . , pk) stands for the span of an optimum L(p1, . . . , pk)-
labeling) or a λ-graph (in which case λG stands for the λ-function of G), the confusion
of the notations is avoided.

As in the case of L(p1, . . . , pk)-labeling [9], λ-functions of λ-graphs have the scal-
ing property; i.e., for all nonnegative reals x1, . . . , xk and β, the following holds:
λG(βx1, . . . , βxk) = βλG(x1, . . . , xk). Therefore, the λ-function of any λ-graph is
linear on every ray through the origin in R

k
+. Let us remark that we implicitly as-

sume that the λ-function is finite on its domain (see the remark after Proposition 2.3).
In section 4, we show that the λ-function λG of any λ-graph G is comprised of finitely
many linear parts; i.e., R

k
+ can be partitioned into finitely many parts such that λG

is linear on each of the parts. Because of the scaling property, it is easy to see that
there is such a partition of R

k
+ where all the parts are infinite polyhedral cones with

the tips at the origin.
Our main result is Theorem 4.1, which asserts the existence of the constants

Ck,χ and Dk,χ such that the λ-function of any λ-graph G with k types of edges
and chromatic number at most χ is comprised of at most Ck,χ linear parts, and
the coefficients of x1, . . . , xk of the linear functions comprising the λ-function are
integers between 0 and Dk,χ. In fact, there exists a partition of R

k
+ into Ck,χ infinite

polyhedral cones such that the λ-function of each λ-graph G with k types of edges
and chromatic number at most χ is linear on each of the cones; i.e., there is such
a partition that does not depend on G. In this paper, we solely focus on proving
the existence of the constants Ck,χ and Dk,χ without attempting to optimize their

CHANNEL ASSIGNMENT PROBLEM WITH VARIABLE WEIGHTS 693

growth. Let us remark that the existence of the constants Ck,χ and Dk,χ for k = 2
follows from the results of [2]. However, the technique used in [2] does not seem to
generalize to k > 2. As demonstrated in section 5, our main result yields the proofs
of the piecewise linearity conjecture, coefficient bound conjecture, and delta bound
conjecture for L(p1, . . . , pk)-labelings (Conjectures 1.2, 1.3, and 1.4).

2. Preliminaries. The very first natural questions on λ-graphs are whether the
infimum in the definition of the function λ(x1, . . . , xk) is always attained and whether
the span of every optimal labeling c is equal to the maximum label (the supremum in
the definition of the span is attained). The positive answers to these two questions
are provided by an analogue of the Gallai–Roy theorem for infinite graphs with edges
of finitely many different weights proved in [2]. We will not state this theorem in
its full generality but just in the form restricted to λ-graphs. An orientation of an
infinite graph G is said to be finitary if the maximum length of its directed walks
is bounded. In particular, a finitary orientation of G is acyclic. A weight of a finite
directed path P in an orientation of a λ-graph G with respect to x1, . . . , xk is the
sum of the variables assigned to its edges, i.e.,

∑k
i=1 αixi if P contains αi xi-edges.

The weight of a finitary orientation �G of a λ-graph G is the maximum weight of a
directed path in �G (note that the maximum is always attained since the lengths of

directed paths in �G are bounded in a finitary orientation and there are only finitely
many different types of edges in G). We can now state the version of the Gallai–Roy
theorem for λ-graphs.

Theorem 2.1. Let G be a λ-graph with k types of edges. For any real numbers
x1, . . . , xk, if the value of λG(x1, . . . , xk) is finite, then it is equal to the minimum

weight of a finitary orientation �G of G (in particular, there exists a finitary orientation
of weight λG(x1, . . . , xk)).

Let us remark that the proof of Theorem 2.1 involves the axiom of choice.

If �G is a finitary orientation of a λ-graph G, then the labeling c, where c(v) is the
maximum weight of a directed path ending at a vertex v, is a proper labeling of G
with respect to x1, . . . , xk (note that there is always a path with maximum weight).

We say that the labeling c, defined in this way, corresponds to the orientation �G.
Clearly, the span of the labeling corresponding to �G is the weight of �G. On the other
hand, for a proper labeling c of G for positive reals x1, . . . , xk that has a finite span,
one may define a (finitary) orientation �G of G such that an edge uv is directed from

u to v if c(u) < c(v). We say that this orientation �G corresponds to the labeling c.
Observe that the weight of the orientation corresponding to a proper labeling c is at
most its span and, in general, the weight can be strictly smaller.

We now answer the two questions posed at the beginning of our discussion.

Proposition 2.2. Let G be a λ-graph with k types of edges and x1, . . . , xk

parameters such that λG(x1, . . . , xk) is finite. There exists a proper labeling c of G
with respect to x1, . . . , xk with span λG(x1, . . . , xk). Moreover, every labeling c with
span λG(x1, . . . , xk) that is proper with respect to x1, . . . , xk contains a vertex v with
c(v) = λG(x1, . . . , xk).

Proof. We can assume without loss of generality that all the parameters x1, . . . , xk

are positive: If this is not true, then we consider the λ-graph formed by xi-edges for
xi > 0. By Theorem 2.1, there exists a finitary orientation �G of G with weight equal
to λG(x1, . . . , xk). Let c be the labeling corresponding to the orientation �G. Since the
span of c is equal to λG(x1, . . . , xk), the first part of the statement of the proposition
follows.

694 DANIEL KRÁL’

Let c be a labeling with span λG(x1, . . . , xk). Assume to the contrary that c(v) <

λG(x1, . . . , xk) for all vertices v. Let �G be a finitary orientation corresponding to

c and let c′ be the labeling corresponding to �G with respect to x1, . . . , xk. It is
easy to observe that c′(v) ≤ c(v) for each vertex v. Since the weight of �G is equal to
max c′(v) and c′(v) ≤ c(v) < λG(x1, . . . , xk), we infer that the span of c′ is smaller than
λG(x1, . . . , xk). However, this is impossible by the definition of λG(x1, . . . , xk).

The definition of λ-functions does not guarantee that the function is finite for all
values of x1, . . . , xk. But at least the following proposition holds.

Proposition 2.3. The λ-function of a λ-graph G with k types of edges is finite
for all x1, . . . , xk ∈ R

k
+ if and only if it is finite for some positive reals x1, . . . , xk.

Proof. Clearly, it is enough to prove that if λ(x1, . . . , xk) is finite for some positive
reals x1, . . . , xk, then λ(y1, . . . , yk) is finite for all nonnegative reals y1, . . . , yk. Let c
be a labeling with span at most λ(x1, . . . , xk) (it exists by Proposition 2.2). Let us
define a new labeling c′ as follows:

c′(v) =
max{y1, . . . , yk}
min{x1, . . . , xk}

c(v) .

It is straightforward to verify that c′ is a proper labeling of G with respect to y1, . . . , yk
and its span is equal to max{y1,...,yk}

min{x1,...,xk}λ(x1, . . . , xk). Hence, λ(y1, . . . , yk) is finite.

In the rest of this paper, we always implicitly assume that the λ-function of a
considered λ-graph is finite for all nonnegative reals.

If G is a λ-graph, we say that an edge uv is an x≤�-edge if uv is an xi-edge where
i ≤ �. Similarly, we use the terms x<�-edges, x≥�-edges, etc. We demonstrate the
notation introduced in the next auxiliary lemma that will be used later. Though
the lemma is quite easy to prove, we decided to include its proof to demonstrate our
notation.

Lemma 2.4. Let G be a λ-graph with k types of edges and with chromatic number
at most χ, and let 0 ≤ � < k. If there exist an integer D and a finitary orientation �G
of G such that every directed path in �G contains at most D x≤�-edges, then

λG(x1, . . . , xk) ≤ dmax + (� + 1)D · χ · max{x�+1, . . . , xk},

where dmax is the maximum sum of weights of x≤�-edges on a directed path in �G; i.e.,

dmax would be the weight of �G if the parameters x�+1, . . . , xk were equal to zero.
In particular, it holds that λG(x1, . . . , xk) ≤ χ · max{x1, . . . , xk}.
Proof. Fix a finitary orientation �G that has the properties described in the state-

ment of the lemma. If � = 0, fix any finitary orientation �G of G (note that G has a
finitary orientation because its chromatic number is finite). Let d(v) be the maximum

sum of the weights of x≤�-edges on a directed path in �G ending at a vertex v; i.e.,

d(v) would be the label of v corresponding to the orientation �G if the parameters
x�+1, . . . , xk were equal to zero. Clearly, dmax = maxv∈V (G) d(v). Let D be the set of
all different values of d(v) and let δ(v) be the number of the elements of D smaller

than d(v). Since every directed path in �G contains at most D x≤�-edges, it holds that
|D| ≤ (�+ 1)D. Hence, 0 ≤ δ(v) < |D| ≤ (�+ 1)D for every vertex v of G. Finally, let
μ be a coloring of the vertices of G with colors 1, . . . , χ.

Let us define a labeling c′ of the vertices of G as follows:

c′(v) = d(v) + (δ(v)χ + μ(v)) · max{x�+1, . . . , xk} .

CHANNEL ASSIGNMENT PROBLEM WITH VARIABLE WEIGHTS 695

Since δ(v) < |D| ≤ (� + 1)D for every vertex v of G, the span of c′ does not exceed

dmax + |D|χ · max{x�+1, . . . , xk} ≤ dmax + (� + 1)Dχ · max{x�+1, . . . , xk}.

In the rest, we show that c′ is a proper labeling with respect to x1, . . . , xk.
Consider an xi-edge uv of G. By symmetry, we may assume that the edge uv is

directed from u to v in �G. In particular, it holds that d(u) ≤ d(v). Hence, δ(u) ≤ δ(v).
We distinguish two major cases: The first one is i ≤ �. In this case, d(u) + xi ≤ d(v)
and thus δ(u) < δ(v). We can immediately conclude that

c′(v) − c′(u) = d(v) − d(u) + ((δ(v) − δ(u))χ + μ(v) − μ(u)) · max{x�+1, . . . , xk}
≥ d(v) − d(u) + (χ + μ(v) − μ(u)) · max{x�+1, . . . , xk}
≥ d(v) − d(u) ≥ xi.

In particular, the edge uv is properly colored in this case.
The other case is that i > �. If d(u) = d(v), then δ(u) = δ(v) and the following

holds (similarly to the first case):

|c′(u) − c′(v)| = |μ(u) − μ(v)| · max{x�+1, . . . , xk} ≥ xi.

If d(u) < d(v), then δ(u) < δ(v) and we infer the following:

c′(v) − c′(u) = d(v) − d(u) + ((δ(v) − δ(u))χ + μ(v) − μ(u)) · max{x�+1, . . . , xk}
≥ (χ + μ(v) − μ(u)) · max{x�+1, . . . , xk} ≥ xi.

Hence, the labels of u and v always differ by at least xi.
We remark that χ can be replaced by χ− 1 in the estimate on λG(x1, . . . , xk) of

Lemma 2.4—we decided to state the lemma with the slightly worse bound in order
to try to keep the formulas simple.

3. Orientations with minimum weight. In this section, we construct orien-
tations of λ-graphs with minimum weight such that the maximum length of a directed
path in the constructed orientation is bounded. First, let us define numbers Di,χ and
Ki,χ for integer χ and i recursively as follows:

D1,χ = χ,

Ki,χ = (i + 1)Di,χ , and

Di+1,χ = (2Ki,χ)K
2
i,χ+3 · χ.

Next, we state several propositions that can be verified directly from the definitions
of Di,χ and Ki,χ. Their proofs are left to the reader.

Proposition 3.1. For integers χ ≥ 2 and i ≥ 1, the number of multisets that
consist of at most Di,χ numbers 1, . . . , i does not exceed Ki,χ − 1.

Proposition 3.2. The following holds for all integers χ ≥ 2 and i ≥ 1:

Di+1,χ ≥ (2Ki,χ)K
2
i,χ+2 · χ + Ki,χ · χ .

Before proceeding with introducing further notation, let us provide some insights
into the statement and the proof of the main lemma of this section (Lemma 3.5). The
lemma asserts that for every k and χ, every λ-graph G with k types of edges and
chromatic number at most χ has an optimal finitary orientation �G such that every

696 DANIEL KRÁL’

directed path of �G contains at most D�,χ x≤�-edges for � = 1, . . . , k. In the proof
of our main result, we apply the lemma with � = k to show that the length of the
longest directed walk in an optimal finitary orientation can be bounded by constant
that does not depend on x1, . . . , xk.

The lemma is proved by induction on �. In the �th step, we have already found
an optimal finitary orientation �G and the corresponding labeling c such that every
directed path of �G contains at most D�−1,χ x≤�−1-edges. We let d(v) be the labeling

of G corresponding to �G if the parameters x�, . . . , xk were equal to zero. As the next
step of the proof, we define a new labeling c′ as follows: If the labels c(v) and d(v) are
close, we define c′(v) = c(v), and we define c′(v) to be approximately d(v) + μ(v)x�,
otherwise, where μ is a fixed coloring of G with colors 1, . . . , χ. In the latter case, the
value of c′(v) is not exactly d(v)+μ(v)x�, but it is shifted by a value that depends on
d(v). We then establish that c′ is a proper labeling and the corresponding orientation
�G′ does not have directed paths with more than D�,χ x≤�-edges.

The notion of “being close” is defined in terms of possible differences between the
labels d(v); the set of such differences is the set |Γ′

D�−1,χ
| that is defined later. The

size of this set is K2
�−1,χ (see Proposition 3.3). Two labels are considered to be close

if their difference is at most C · t, where C is a constant (that depends on d(v)) and
the value of t is chosen to have Property () introduced in the proof of Lemma 3.5.
Property () can be rephrased vaguely as follows: “If the difference of labels d(v) and
d(v′) is larger than t, then it is much larger than t.” The value of t can be chosen

not to exceed (2K�−1,χ)K
2
�−1,χχx� ≈ D�,χx�. Since the ratio t/x� ≈ D�,χ essentially

determines the maximum number of x�-edges contained in a directed path of �G′, the
lemma will be established.

We now introduce additional notation used in the proof of the main lemma of
this section. For an integer M and positive reals x1, . . . , xk, ΓM (x1, . . . , xk) denotes
the set of all combinations of x1, . . . , xk with nonnegative integer coefficients whose
sum does not exceed M ; i.e.,

ΓM (x1, . . . , xk) =

⎧⎨
⎩

k∑
j=1

αjxj for 0 ≤ α1, . . . , αk and

k∑
j=1

αj ≤ M

⎫⎬
⎭ .

Note that ΓK�−1,χ
(x1, . . . , x�−1) is the set of all possible labels that can be assigned

to the vertices of G by the labeling d corresponding to �G. The set Γ′
M (x1, . . . , xk) is

then defined to be the set of all nonnegative reals that can be expressed as a difference
of two numbers from ΓM (x1, . . . , xk); i.e.,

Γ′
M (x1, . . . , xk) = {α− β|α, β ∈ ΓM (x1, . . . , xk) and α− β ≥ 0} .

Since 0 ∈ ΓM (x1, . . . , xk), the set ΓM (x1, . . . , xk) is a subset of Γ′
M (x1, . . . , xk). The

following estimates on the sizes of ΓM (x1, . . . , xk) and Γ′
M (x1, . . . , xk) directly follow

from Proposition 3.1.
Proposition 3.3. Let x1, . . . , xk be any positive real numbers and let χ ≥ 2 be

a positive integer. The following two estimates hold:

|ΓDk,χ
(x1, . . . , xk)| < Kk,χ and

|Γ′
Dk,χ

(x1, . . . , xk)| < K2
k,χ.

CHANNEL ASSIGNMENT PROBLEM WITH VARIABLE WEIGHTS 697

We now establish an auxiliary lemma that is needed in the proof of Lemma 3.5 to
define the notion of “being close.” As already explained, a label c(v) is close from the
label d(v) < c(v) if the difference c(v)−d(v) is at most C ·t. Lemma 3.5 guarantees the
existence of a suitable number t that is bounded from below and above by a constant
multiple of a parameter y (chosen later to be x�). The value of t has to satisfy an
additional property (later referred to as Property ()) that is crucial in establishing
that the modified labeling c′ is proper.

Lemma 3.4. Let k ≥ 1 and χ ≥ 2 be positive integers, S a set of at most K2
k,χ−1

positive real numbers, and y another positive real number. There exists a real number
t,

Kk,χχy ≤ t ≤ (2Kk,χ)K
2
k,χχy,

such that the set S contains no element strictly between t and Kk,χ(t + χy). In
particular, the real t has the following property:

If γ ∈ S and γ > t, then γ ≥ Kk,χ(t + χy).

Proof. Let us define reals tj , j = 0, . . . ,K2
k,χ, as follows:

tj = (2Kk,χ)jχy.

Since tj < Kk,χ(tj +χy) = Kk,χ(tj + t0) ≤ 2Kk,χtj = tj+1 for all j = 1, . . . ,K2
k,χ − 1,

all the open intervals Ij ,

Ij = (tj ,Kk,χ(tj + χy)) with j = 1, . . . ,K2
k,χ,

are disjoint. Since all the K2
k,χ intervals Ij are disjoint and |S| < K2

k,χ, there exists
j0 ≥ 1 such that no element of S is contained in Ij0 . The number tj0 is the desired
number t.

We are now ready to state and prove the key lemma of this section.
Lemma 3.5. Let G be a (finite or infinite) λ-graph G with k types of edges and

with chromatic number at most χ. Fix real numbers x1 ≥ · · · ≥ xk > 0. For each
� = 1, . . . , k, there exists a finitary orientation �G of G of weight λG(x1, . . . , xk) such

that every directed path in �G contains at most D�,χ x≤�-edges.
Proof. If χ = 1, there is nothing to prove since G contains no edges and the

statement of the lemma holds vacuously. Therefore, we assume χ ≥ 2 in the remaining.
For the rest of the proof, let us fix a proper coloring μ (in the usual sense) of the
vertices of G with colors 1, . . . , χ.

The proof of the lemma proceeds by induction on the number �. First, we have
to deal with the case � = 1. Consider any finitary orientation �G of G of weight
λG(x1, . . . , xk). Such an orientation exists by Theorem 2.1. By Lemma 2.4, we get

that λG(x1, . . . , xk) ≤ χx1. Hence, every directed path in �G contains at most D1,χ = χ
x1-edges.

We now deal with the case � > 1. By the induction, there exists a finitary
orientation �G of G of weight λG(x1, . . . , xk) such that any directed path contains at

most D�−1,χ x≤�−1-edges. Let c(v) be the labeling corresponding to �G, and let d(v)

be the maximum sum of weights of x≤�−1-edges on a directed path in �G ending at a
vertex v. Clearly, d(v) ≤ c(v) for every vertex v of G. Finally, let δ(v) be the number
of the elements of ΓD�−1,χ

smaller than or equal to d(v). Since |ΓD�−1,χ
| < K�−1,χ by

Proposition 3.3, 1 ≤ δ(v) ≤ K�−1,χ − 1 for every vertex v of G.

698 DANIEL KRÁL’

Since Γ′
D�−1,χ

(x1, . . . , x�−1) contains at most K2
�−1,χ − 1 real numbers by Propo-

sition 3.3, we infer from Lemma 3.4 (applied for k = �− 1, S = Γ′
D�−1,χ

(x1, . . . , x�−1),

and y = x�) that there exists a real number t,

K�−1,χχx� ≤ t ≤ (2K�−1,χ)K
2
�−1,χχx� ,(3.1)

such that the set Γ′
D�−1,χ

(x1, . . . , x�−1) contains no element strictly between t and

K�−1,χ(t + χx�); i.e., t has the following property:

If γ ∈ Γ′
D�−1,χ

(x1, . . . , x�−1) and γ > t, then γ ≥ K�−1,χ(t + χx�).

We refer to this property throughout the proof as Property ().
As the next step of the proof, we define a new labeling c′ and show that it is a

proper labeling with respect to x1, . . . , xk:
1. If c(v) − d(v) ≤ (K�−1,χ − δ(v))t, then c′(v) = c(v).
2. Otherwise, c′(v) = d(v) + (K�−1,χ − 1)t + δ(v)χx� + μ(v)x�.

Note that the definition of being “close” depends on the value of d(v). For values of
d(v) near λG(x1, . . . , xk), the difference is required to be a small multiple of t (it can
be as small as t or 2t for maximal possible values of d(v)). The threshold difference
is increased by t by each step “down” in the order of the numbers contained in
ΓD�−1,χ

(x1, . . . , x�−1) (note that each d(v) is contained in this set). The labeling c′ is
a combination of the original labeling c for vertices, where d(v) and c(v) are “close,”
and a completely different labeling for the remaining vertices—the additional space
among labels considered to be “close” for small values of d(v) is needed so that the
combination of the two labelings is proper.

We now prove that the labeling c′ is proper with respect to x1, . . . , xk. Let us
consider an xi-edge uv of G. In order to verify that c′ is a proper labeling on the edge
uv, we distinguish five major cases:

• Both the labels c′(u) and c′(v) are defined by the first rule.
Since c′(u) = c(u) and c′(v) = c(v), we have |c′(u)−c′(v)| = |c(u)−c(v)| ≥ xi.

• The label c′(u) is defined by the first rule, the label c′(v) is defined by the
second rule, and i < �.
We distinguish two subcases according to the orientation of the edge uv in
�G. If the edge is directed from u to v, we have d(u) + xi ≤ d(v). Because
the label of u is defined by the first rule, the label c′(u) = c(u) is at most
d(u) + (K�−1,χ − 1)t. On the other hand, the label c′(v) is larger than d(v) +
(K�−1,χ − 1)t. We infer that c′(v) − c′(u) ≥ d(v) − d(u) ≥ xi.
The other subcase is that the edge uv is directed from v to u. In particular,
d(v) + xi ≤ d(u), δ(v) < δ(u) and c(v) ≤ c(u). First, we show that d(u) −
d(v) − xi > t. Assume to the contrary that

d(u) − d(v) − xi ≤ t.(3.2)

Since c is a proper labeling of G, it holds that c(v) ≤ c(u) − xi. And since
the label of u was defined by the first rule, we have

c(u) ≤ d(u) + (K�−1,χ − δ(u))t.(3.3)

Therefore, the following holds:

c(v) ≤ c(u) − xi

≤ d(u) + (K�−1,χ − δ(u))t− xi (by (3.3))

≤ d(v) + (K�−1,χ − δ(u))t + t (by (3.2))

≤ d(v) + (K�−1,χ − δ(v))t.

CHANNEL ASSIGNMENT PROBLEM WITH VARIABLE WEIGHTS 699

However, this yields that the label of v should have been defined by the first
rule. We conclude that d(u) − d(v) − xi > t.
Since d(u)−d(v)−xi ∈ Γ′

D�−1,χ
(x1, . . . , x�−1), it holds that d(u)−d(v)−xi ≥

K�−1,χ(t + χx�) by Property ().
We now bound the label c′(v) assigned to the vertex v from above (recall that
μ(v)x� ≤ χx� ≤ t and δ(v) ≤ K�−1,χ − 1):

c′(v) = d(v) + (K�−1,χ − 1)t + δ(v)χx� + μ(v)x�

≤ d(v) + K�−1,χt + K�−1,χχx�

≤ d(u) − xi ≤ c(u) − xi = c′(u) − xi.

Hence, the labels of the vertices u and v differ by at least xi as required.
• The label c′(u) is defined by the first rule, the label c′(v) is defined by the

second rule, and i ≥ �.
If d(u) ≤ d(v), then c′(u) ≤ d(u)+(K�−1,χ−1)t and c′(v) ≥ d(v)+(K�−1,χ−
1)t + μ(v)x� ≥ d(u) + (K�−1,χ − 1)t + x�. Therefore, c′(v) − c′(u) ≥ xi as
desired.
In the rest, we focus on the case d(u) > d(v). In particular, the edge uv is
directed from v to u. By the definition of δ(u) and δ(v), we have δ(u) > δ(v).
Since the edge uv is directed from v to u, it also holds that c(u) > c(v).
First, we exclude the case d(u)−d(v) ≤ t. Since the label of the vertex u was
defined by the first rule, we have c(u) ≤ d(u) + (K�−1,χ − δ(u))t. We infer
the following upper bound on c(v):

c(v) ≤ c(u) ≤ d(u) + (K�−1,χ − δ(u))t

≤ d(v) + t + (K�−1,χ − δ(u))t

≤ d(v) + (K�−1,χ − δ(v))t.

However, the label to v should then have been defined by the first rule, not
by the second one. We conclude that d(u) − d(v) > t.
Since the difference d(u)−d(v) is contained in Γ′

D�−1,χ
(x1, . . . , x�−1), it holds

that d(u) − d(v) ≥ K�−1,χ(t + χx�) by Property (). The following upper
bound on c′(v) readily follows (recall that δ(v) ≤ K�−1,χ − 1 and μ(v) ≤ χ):

c′(v) = d(v) + (K�−1,χ − 1)t + δ(v)χx� + μ(v)x�

≤ d(v) + K�−1,χt− t + K�−1,χχx�

≤ d(u) − t ≤ c(u) − x� = c′(u) − x� ≤ c′(u) − xi.

Hence, the labels of the end-vertices of the xi-edge uv differ by at least xi as
required.

• Both the labels c′(u) and c′(v) are defined by the second rule and i < �.

By symmetry, we may assume that the edge uv is directed from u to v in �G.
In this case, d(u) + xi ≤ d(v) and δ(u) < δ(v). The difference of the labels
c′(u) and c′(v) can be easily estimated:

c′(v) − c′(u) = d(v) − d(u) + (δ(v) − δ(u))χx� + (μ(v) − μ(u))x�

≥ xi + χx� − |μ(v) − μ(u)|x� ≥ xi.

We conclude that the edge uv is properly labeled.

700 DANIEL KRÁL’

• Both the labels c′(u) and c′(v) are defined by the second rule, and i ≥ �.
By symmetry, it can be assumed that the edge uv is directed from u to v in
�G. In this case, d(u) ≤ d(v). If d(u) = d(v), then

|c′(v) − c′(u)| = |μ(v) − μ(u)|x� ≥ x� ≥ xi.

In the rest, we deal with the case d(u) < d(v). In particular, δ(u) < δ(v). The
difference between c′(u) and c′(v) as follows (recall that 1 ≤ μ(u), μ(v) ≤ χ)
can then be bounded as follows:

c′(v) − c′(u) = d(v) − d(u) + (δ(v) − δ(u))χx� + (μ(v) − μ(u))x�

≥ χx� − |μ(v) − μ(u)|x� ≥ x� ≥ xi.

Hence, the difference of the labels c′(u) and c′(v) is at least xi as desired.
As the next step, we show that the span of c′ is equal to λG(x1, . . . , xk). In order

to do so, it is enough to show that c′(v) ≤ λG(x1, . . . , xk) for every vertex v of G. Let
cmax and dmax be the maximums of the values c(v) and d(v) taken over all the vertices
v of G. Clearly, cmax = λG(x1, . . . , xk). By Lemma 2.4 and (3.1), the following holds:

cmax ≤ dmax + �D�−1,χχ · x� = dmax + K�−1,χχ · x� ≤ dmax + t.

Fix a vertex v of G. In order to show that c′(v) ≤ cmax, we distinguish three cases
according to the difference between d(v) and dmax:

• d(v) = dmax

Since c(v) ≤ cmax ≤ dmax+K�−1,χχx� ≤ dmax+t = d(v)+t ≤ d(v)+(K�−1,χ−
δ(v))t, the label of the vertex v was defined by the first rule. Consequently,
c′(v) = c(v) ≤ cmax.

• 0 < dmax − d(v) ≤ t
First, observe that δ(v) ≤ K�−1,χ − 2. Again, we bound the original label
c(v) from above:

c(v) ≤ cmax ≤ dmax + t ≤ d(v) + 2t ≤ d(v) + (K�−1,χ − δ(v))t.

Therefore, the label of the vertex v was defined by the first rule, and c′(v) =
c(v) ≤ cmax.

• dmax − d(v) > t
Since dmax − d(v) ∈ Γ′

D�−1,χ
(x1, . . . , x�−1), we infer from Property () that

dmax − d(v) ≥ K�−1,χ(t + χx�). If the first rule applies to the vertex v, then
c′(v) = c(v) ≤ cmax. If the second rule applies, then the following estimate
on c′(v) holds (recall that δ(v) ≤ |ΓD�−1,χ

| ≤ K�−1,χ − 1):

c′(v) = d(v) + (K�−1,χ − 1)t + δ(v)χx� + μ(v)x�

≤ d(v) + K�−1,χt + K�−1,χχx�

≤ dmax ≤ cmax.

Hence, the label c′(v) does not exceed cmax.

Let �G′ be the orientation of G corresponding to the labeling c′. Since all x1, . . . , xk

are positive, the orientation of G is finitary and its weight is at most the span of c′.
Since the span of c′ is λG(x1, . . . , xk), the weight of �G′ is exactly λG(x1, . . . , xk). In

order to finish the proof of the lemma, we establish that each directed path in �G′

contains at most D�,χ x≤�-edges.

CHANNEL ASSIGNMENT PROBLEM WITH VARIABLE WEIGHTS 701

All the labels c′(v) defined by the first rule are contained in the following union
of intervals by (3.1): ⋃

γ∈ΓD�−1,χ
(x1,...,x�−1)

[γ, γ + K�−1,χt〉

⊆
⋃

γ∈ΓD�−1,χ
(x1,...,x�−1)

[
γ, γ + (2K�−1,χ)K

2
�−1,χ+1χx�

)
.

The labels c′(v) assigned by the second rule are from the following set:⋃
γi∈ΓD�−1,χ

(x1,...,x�−1)

{γi + (K�−1,χ − 1)t + iχx� + jx�, j = 1, . . . , χ},

where γ1, γ2, . . . are all the elements of ΓD�−1,χ
listed in increasing order. Con-

sider a directed path P in �G′ and let C be the set of labels c′(v) of the end-
vertices of x≤�-edges on P . Since any two labels in C differ by at least x� and
|ΓD�−1,χ

(x1, . . . , x�−1)| < K�−1,χ by Proposition 3.3, we have the following upper
bound on the number of labels c′(v) ∈ C, v ∈ P that were defined by the first rule:

|ΓD�−1,χ
(x1, . . . , x�−1)|

(2K�−1,χ)K
2
�−1,χ+1χx�

x�
≤ (2K�−1,χ)K

2
�−1,χ+2χ .

Similarly, the number of such labels defined by the second rule does not exceed

|ΓD�−1,χ
(x1, . . . , x�−1)|χ ≤ K�−1,χχ .

Combining both bounds, we infer from Proposition 3.2 that the size of C does not

exceed D�,χ = (2K�−1,χ)K
2
�−1,χ+3χ. Therefore, every directed path in �G′ contains at

most D�,χ x≤�-edges as desired.
We modify Lemma 3.5 to a version used in section 4.
Lemma 3.6. Let G be a (finite or infinite) λ-graph with k types of edges and

chromatic number at most χ. For any k-tuple of nonnegative reals x1, . . . , xk, there
exists a finitary orientation of G with weight λG(x1, . . . , xk) for which the maximum
length of a directed path is at most Dk,χ.

Proof. By symmetry, we can assume that x1 ≥ · · · ≥ xk (otherwise, permute the
types of the edges of G). If xk > 0, the statement of the lemma follows directly from
Lemma 3.5. In the rest, we deal with the case when xk′ > 0 and xk′+1 = · · · = xk = 0.

Fix a coloring μ of G with χ colors 1, . . . , χ. Let G′ be the subgraph of G formed
by x≤k′-edges. By Lemma 3.5, there exists a finitary orientation �G′ of G′ with weight
λG′(x1, . . . , xk′) = λG(x1, . . . , xk) and with maximum path length at most Dk′,χ. Let

c(v) be the labeling of G′ corresponding to �G′. Observe that c(v) ∈ ΓDk′,χ(x1, . . . , xk′)
for every vertex v of G.

We extend �G′ to a finitary orientation �G of G. An x>k′-edge uv is directed from
u to v if c(u) < c(v), and from v to u if c(u) > c(v). If c(u) = c(v), then the edge uv
is directed from u to v if μ(u) < μ(v), and from v to u otherwise. Clearly, the weight

of �G is the same as the weight of �G′.
Let P be a directed path in �G. The labels c(v) of vertices v do not decrease along

the path P . Moreover, each subpath of P formed by vertices v with the same label

702 DANIEL KRÁL’

assigned by c has length at most χ−1 as the colors μ(v) of the vertices comprising the
subpath strictly increase. Since all the labels c(v) are from the set ΓDk′,χ(x1, . . . , xk′),
P contains at most Kk′,χ such monochromatic subpaths. Hence, the length of a

directed P in �G does not exceed Kk′,χ ·χ, and the maximum length of a directed path

in �G is at most Kk′,χ · χ ≤ Dk,χ.

4. Main result. In this section, we prove our main result on the structure of
the λ-functions of λ-graphs. Before doing so, we introduce several definitions. As we
see later, the (finite) set Fminmax

k,χ of piecewise-linear functions, which is defined in
what follows, is a superset of all λ-functions of λ-graphs G with k types of edges and
chromatic number at most χ.

Let Fk,χ be the set of all linear functions of k variables with integer coefficients
between 0 and Dk,χ; i.e.,

Fk,χ =

{
k∑

i=1

αixi, 0 ≤ αi ≤ Dk,χ

}
.

Next, Fmax
k,χ is the set of all functions ϕ that are equal to the maximum of some of

the functions from Fk,χ; i.e.,

Fmax
k,χ = {ϕ(x1, . . . , xp) = max

f∈F
f(x1, . . . , xp) for F ⊆ Fk,χ, F �= ∅} .

Finally, Fminmax
k,χ is the set of all functions that are equal to the minimum of some of

the functions from Fmax
k,χ ; i.e.,

Fminmax
k,χ = {ϕ(x1, . . . , xp) = min

f∈F
f(x1, . . . , xp) for F ⊆ Fmax

k,χ , F �= ∅} .

Observe Fk,χ ⊆ Fmax
k,χ ⊆ Fminmax

k,χ . Clearly, all three sets Fk,χ, Fmax
k,χ , and Fminmax

k,χ

are finite. Therefore, R
k
+ can be partitioned into finitely many polyhedral cones (with

the tips at the origin) such that every function contained in Fminmax
k,χ is linear on each

of the cones. Let Ck,χ be the number of such cones.
We now state and prove the main result of the paper (recall that both the numbers

Ck,χ and Dk,χ just depend on k and χ).
Theorem 4.1. For every λ-graph G with k types of edges and chromatic number

at most χ, λG(x1, . . . , xk) is a piecewise linear function of x1, . . . , xk with at most
Ck,χ linear parts formed by linear functions with integer coefficients between 0 and
Dk,χ. Moreover, R

k
+ can be partitioned into at most Ck,χ polyhedral cones such that

for each of the cones the following holds: There exist integers αi(v) between 0 and

Dk,χ such that the labeling c, c(v) =
∑k

i=1 αi(v)xi, is a proper labeling of G with
respect to x1, . . . , xk and the span of c is λG(x1, . . . , xk). For fixed k and χ, this
partition of R

k
+ is independent of a λ-graph G.

Proof. Let D be the set of all finitary orientations of G with maximum length of
a directed path at most Dk,χ. For an orientation �G ∈ D, let F (�G) be the set of all the

functions
∑k

i=1 αixi such that �G contains a directed path with precisely αi xi-edges

(for all i). Since the maximum length of a directed path in �G does not exceed Dk,χ,

the set F (�G) is a subset of Fk,χ, i.e., F (�G) ⊆ Fk,χ. By the definition, the weight of

the orientation �G with respect to x1, . . . , xk is the following:

w�G(x1, . . . , xk) = max
f∈F (�G)

f(x1, . . . , xk).

CHANNEL ASSIGNMENT PROBLEM WITH VARIABLE WEIGHTS 703

Let W be the set of all the functions w�G(x1, . . . , xk), where �G ranges through all the

orientations contained in D. Clearly, W ⊆ Fmax
k,χ . For w ∈ W , let �Gw be one of

the orientations in D with w�G = w. By Theorem 2.1 and Lemma 3.6, the following
equality holds:

λG(x1, . . . , xk) = min
�G∈D

w�G(x1, . . . , xk) = min
w∈W

w(x1, . . . , xk).

Similarly as before, we have λG(x1, . . . , xk) ∈ Fminmax
k,χ .

Consider the partition of R
k
+ into Ck,χ polyhedral cones such that every function

of Fminmax
k,χ is linear on each of the cones. In particular, λG(x1, . . . , xk) ∈ Fminmax

k,χ is
linear on each of the cones.

Fix one such cone and let w ∈ W be a function such that λG(x1, . . . , xk) =
w(x1, . . . , xk) on the fixed cone. Let c be the labeling corresponding to the orientation
�Gw. Since no directed path of �Gw ∈ D has length more than Dk,χ, the corresponding
label c(v), when viewed as a function of x1, . . . , xk, belongs to the set Fmax

k,χ . In
particular, each c(v) is a linear function on the fixed cone. Therefore, c(v) can be
expressed as a combination of x1, . . . , xk with integer coefficients between 0 and Dk,χ.
The statement of the theorem now follows.

Since only the functions from Fminmax
k,χ could be the λ-function of a λ-graph with k

types of edges and with chromatic number at most χ, we have the following corollary.
Corollary 4.2. There exist only finitely many piecewise linear functions that

could be the λ-function of a λ-graph with k types of edges and with chromatic number
at most χ.

Another immediate corollary is the following somewhat surprising statement.
Corollary 4.3. Let x1, . . . , xk be a fixed k-tuple of positive reals and let γ be

a nonnegative real. There exist only finitely many different k-parameter λ-functions
λG such that λG(x1, . . . , xk) ≤ γ.

Proof. If G is a λ-graph with k types of edges such that λG(x1, . . . , xk) ≤ γ, then

the chromatic number of G does not exceed λG(x1,...,xk)
min{x1,...,xk} + 1 ≤ γ

min{x1,...,xk} + 1 by

the scaling property. By Corollary 4.2, λ-graphs with k types of edges with bounded
chromatic number have only finitely many different λ-functions.

Note that Corollary 4.3 includes the result of [2] that the number of λ-functions
with prescribed boundary values is finite.

5. Labelings with distance conditions. In this section, we infer from The-
orem 4.1 the piecewise linearity conjecture, coefficient bound conjecture, and delta
bound conjecture stated in [9]. First, let us state the following simple proposition
that can be found in [9] (note that its proof employs the axiom of choice).

Proposition 5.1. If G is a graph of maximum degree Δ and k is a positive
integer, then the chromatic number of the kth power of G does not exceed Δk + 1.

We can now state the theorem from which the three conjectures mentioned above
readily follow.

Theorem 5.2. For all integers Δ ≥ 1 and k ≥ 2, there exist constants C ′
k,Δ and

D′
k,Δ with the following property: For any graph G with maximum degree Δ, there

exists a partition of R
k
+ into at most C ′

k,Δ polyhedral cones with the tips at the origin
such that the function λG(p1, . . . , pk) is linear in each of the cones. Moreover, for
each of the cones the following is true: There exist integers αi(v) between 0 and Dk,χ

such that the labeling c, c(v) =
∑k

i=1 αi(v)pi, is a proper L(p1, . . . , pk)-labeling of G
with respect to x1, . . . , xk and the span of c is λG(p1, . . . , pk).

704 DANIEL KRÁL’

Proof. Set C ′
k,Δ = Ck,Δk+1 and D′

k,Δ = Dk,Δk+1. Let G be a graph with

maximum degree Δ, and form the λ-graph G(k) as described in section 1. By Propo-
sition 5.1, the chromatic number of G(k) does not exceed Δk + 1. Theorem 5.2 now
follows from Theorem 4.1.

An immediate corollary of Theorem 5.2 (alternatively, of Corollary 4.2) is the
following corollary.

Corollary 5.3. Let Λk,Δ for k ≥ 2 be the set that consists of all the functions
λG(p1, . . . , pk) of graphs G with maximum degree at most Δ. The set Λk,Δ is finite.

Acknowledgments. The author would like to thank Jerrold R. Griggs for in-
teresting and helpful discussions on real number graph labelings with distance con-
ditions. The comments of the three anonymous referees that helped to improve the
presentation of the results contained in this paper are greatly appreciated.

REFERENCES

[1] G. Agnarsson, R. Greenlaw, and M. M. Halldórsson, Powers of chordal graphs and their
coloring, Congr. Numer., to appear.

[2] R. Babilon, V. Jeĺınek, D. Král’, and P. Valtr, Labelings of graphs with fixed and variable
edge-weights, submitted.

[3] P. Bella, D. Král’, B. Mohar, and K. Quittnerová, Labeling planar graphs with a condition
at distance two, European J. Combin., to appear.

[4] H. L. Bodlaender, T. Kloks, R. B. Tan, and J. van Leeuwen, λ-coloring of graphs, in
STACS 2000 (Lille), Lecture Notes in Comput. Sci. 1770, G. Goos, J. Hartmanis, and
J. van Leeuwen, eds., Springer, Berlin, 2000, pp. 395–406.

[5] G. J. Chang, W.-T. Ke, D. D.-F. Liu, and R. K. Yeh, On L(d, 1)-labellings of graphs,
Discrete Math., 3 (2000), pp. 57–66.

[6] G. J. Chang and D. Kuo, The L(2, 1)-labeling problem on graphs, SIAM J. Discrete Math., 9
(1996), pp. 309–316.

[7] J. Fiala, J. Kratochv́ıl, and T. Kloks, Fixed-parameter complexity of λ-labelings, Discrete
Appl. Math., 113 (2001), pp. 59–72.

[8] D. A. Fotakis, S. E. Nikoletseas, V. G. Papadopoulou, and P. G. Spirakis, NP-
completeness results and efficient approximations for radiocoloring in planar graphs, in
Mathematical Foundations of Computer Science 2000 (Bratislava), Lecture Notes in Com-
put. Sci. 1893, B. Rovan, ed., Springer, Berlin, 2000, pp. 363–372.

[9] J. R. Griggs and X. T. Jin, Real number graph labellings with distance conditions, SIAM J.
Discrete Math., 20 (2006), pp. 302–327.

[10] J. R. Griggs and X. T. Jin, Real number graph labellings of paths and cycles, submitted.
[11] J. R. Griggs and X. T. Jin, Real number graph labellings of infinite graphs, submitted.
[12] J. R. Griggs and R. K. Yeh, Labelling graphs with a condition at distance 2, SIAM J. Discrete

Math., 5 (1992), pp. 586–595.
[13] D. Gonçalves, On the L(p, 1)-labelling of graphs, Discrete Math. Theor. Comput. Sci., AE

(2005), pp. 81–86.
[14] W. K. Hale, Frequency assignment: Theory and applications, Proc. IEEE, 68 (1980), pp. 1497–

1514.
[15] J.-H. Kang, L(2, 1)-labeling of 3-regular Hamiltonian graphs, submitted.
[16] J.-H. Kang, L(2, 1)-Labelling of 3-Regular Hamiltonian Graphs, Ph.D. thesis, University of

Illinois, Urbana-Champaign, IL, 2004.
[17] D. Král’, An exact algorithm for the channel assignment problem, Discrete Appl. Math. 145

(2005), pp. 326–331.
[18] D. Král’, Coloring powers of chordal graphs, SIAM J. Discrete Math., 18 (2004), pp. 451–461.
[19] D. Král’ and R. Škrekovski, A theorem about the channel assignment problem, SIAM J.

Discrete Math., 16 (2003), pp. 426–437.
[20] C. McDiarmid, Discrete mathematics and radio channel assignment, in Recent Advances in

Algorithms and Combinatorics, C. Linhares-Sales and B. Reed, eds., Springer, New York,
2003, pp. 27–63.

[21] C. McDiarmid, On the span in channel assignment problems: Bounds, computing and count-
ing, Discrete Math., 266 (2003), pp. 387–397.

[22] D. Sakai, Labeling chordal graphs: Distance two condition, SIAM J. Discrete Math., 7 (1994),
pp. 133–140.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 705–726

COMPACT ROUTING WITH NAME INDEPENDENCE∗

MARTA ARIAS† , LENORE J. COWEN† , KOFI A. LAING† , RAJMOHAN RAJARAMAN‡ ,

AND ORJETA TAKA†

Abstract. This paper is concerned with compact routing schemes for arbitrary undirected
networks in the name-independent model first introduced by Awerbuch, Bar-Noy, Linial, and Peleg.
A compact routing scheme that uses local routing tables of size Õ(n1/2), O(log2 n)-sized packet
headers, and stretch bounded by 5 is obtained, where n is the number of nodes in the network.
(We use the notation Õ (f(n)) to represent O(f(n) logc n), where c is an arbitrary nonnegative real
number, independent of n.) Alternative schemes reduce the packet header size to O(logn) at the
cost of either increasing the stretch to 7 or increasing the table size to Õ(n2/3). For smaller table-
size requirements, the ideas in these schemes are generalized to a scheme that uses O(log2 n)-sized
headers and Õ(k2n2/k)-sized tables, and achieves a stretch of min{1 + (k− 1)(2k/2 − 2), 16k2 − 8k},
improving the best previously known name-independent scheme due to Awerbuch and Peleg.

Key words. compact routing, name independence, stretch, routing table, networks

AMS subject classifications. 05C12, 68W15, 68M10

DOI. 10.1137/04062053

1. Introduction. Consider an undirected (weighted) n-node network in which
nodes are labeled with an arbitrary permutation P of the labels {0, . . . , n − 1}. A
packet labeled i can arrive at any node in the network and must then be delivered to
the node that P assigned label i. This is called name-independent routing, since the
labels are unrelated to network topology. Consider the scheme in which each node
stores an entry for each destination i in its local routing table, containing the name
of the outgoing link for the first edge along the shortest path from itself to i. This
uses O(n log n) space at every node and routes along shortest paths.

In this paper, we study the design of name-independent compact routing schemes.
More formally, let us define the stretch of a path p(u, v) from node u to node v as
|p(u,v)|
d(u,v) , where d(u, v) is the length of the shortest u-v path and |p(u, v)| is the length

of p(u, v). We consider the following question: Can a routing scheme be designed
that uses sublinear space per node for the routing tables, and routes packets along
paths with bounded stretch? All results in this paper, except one in section 2, which
considers the special case of trees, are universal in the sense that they apply to any
undirected n-node network with positive edge weights.

The study of compact routing schemes is the study of routing-time and space
tradeoffs for approximate shortest paths—one of the most fundamental problems in
distributed algorithms. The design of compact routing algorithms was originally mo-
tivated by the need for scalable routing in communication networks and has recently

∗Received by the editors December 9, 2004; accepted for publication (in revised form) January 30,
2006; published electronically September 29, 2006. A preliminary version of this paper appeared in
Proceedings of the 15th Annual ACM Symposium on Parallelism in Algorithms and Architectures [2].

http://www.siam.org/journals/sidma/20-3/62053.html
†Department of Computer Science, Tufts University, Medford, MA 02155 (marias@cs.tufts.edu,

cowen@cs.tufts.edu, laing@cs.tufts.edu, otaka@cs.tufts.edu). The work of the first author was sup-
ported in part by NSF grant IIS-0099446. The work of the second and fifth authors was supported
in part by NSF grant CCR-0208629. The work of the third author was supported in part by NSF
grant EHR-0227879.

‡College of Computer & Information Science, Northeastern University, Boston, MA 02115 (rraj@
ccs.neu.edu). The work of this author was supported in part by NSF CAREER award CCR-9983901.

705

706 ARIAS, COWEN, LAING, RAJARAMAN, AND TAKA

been evaluated for routing in Internet-like graphs [15]. Compact routing has also
recently gathered interest in the contexts of efficient searching of distributed hash
tables, distributed dictionaries, and peer-to-peer systems [1].

Though the name-independent version of the compact routing problem was first
introduced in 1989 by Awerbuch et al. [5], progress has been slow. Much recent work
[4, 11, 9, 21] has occurred on the easier but related compact routing problem, where
the compact routing scheme designer may assign his/her own polylogarithmic-sized
node labels (generally O(log n)- or O(log2 n)-bit), dependent on network topology.
That is, when a packet destined for i arrives, “i” has been renamed, not by some
arbitrary permutation P but by the routing scheme designer, in order to give maxi-
mum information about the underlying topology of the network. (An alternative but
equivalent formulation is that a packet destined for i arrives also with a short (up
to) O(log2 n)-bit address chosen by the compact routing scheme designer, dependent
on network topology.) For example, if the underlying network were a planar grid in
the topology-dependent (also called the name-dependent) model, then the algorithm
designer could require that a packet destined for a node comes addressed with its
(x, y) coordinates, whereas in the name-independent model under consideration here,
the packet would come with a destination name, independent of its (x, y) coordinates,
and would have to learn information about its (x, y) coordinates from its name as it
wandered the network.

In [5], Awerbuch et al. argued that even though topology-dependent node labels
might be fine for static networks, they make less sense in a dynamic network, where
the network topology changes over time. There are serious consistency and continuity
issues if the identifying label of a node changes as network connectivity evolves. In
such a model, a node’s identifying label needs to be decoupled from network topology.
In fact, network nodes should be allowed to choose arbitrary names (subject to the
condition that node names are unique), and packets destined for a particular node
name enter the network with this name only, with no additional topological address
information.1 Routing information relating this name to the location of the destina-
tion node is distributed in the routing tables of the network, which can be updated if
network topology changes.

The scheme of Awerbuch et al. in [5, 6] showed, perhaps surprisingly, that the
problem of compact routing with name-independent node names was not impossible.
They presented the first universal compact routing scheme to achieve all of the fol-
lowing four properties: (1) sublinear-space routing tables at every node; (2) constant
size stretch; (3) polylogarithmic-sized routing headers; and (4) topology-independent
node names. We note that [5, 6] also studied routing schemes for minimizing total
space, over all nodes, as opposed to the maximum space at a node, which is our mea-
sure of interest with respect to space. Bounds for routing schemes in terms of the
degree of the network were also derived in [6].

While the Awerbuch et al. scheme achieved constant stretch with sublinear space,
it was of theoretical interest only, because the stretch they achieved was far too large.
Exploring the different stretch-space tradeoffs of [5], we obtain that the minimum
stretch any of their schemes use when achieving sublinear space is 486 (calculated
from Corollary 6.5 in their paper, setting k = 3, and noting that the constant in
the big-O notation is in fact 2). That is, their schemes produce paths that are at

1Notice that this is a slightly stronger condition than having the nodes labeled with an arbitrary
permutation P , since that assumes that the labels are precisely the integers {0, . . . , n− 1}. We talk
about how to get around this in section 6.

COMPACT ROUTING WITH NAME INDEPENDENCE 707

Table 1

A comparison of our results (shown in boldface) to prior results on name-independent compact
routing.

Table Header
size size Stretch

[5] Õ
(
n1/2

)
O(logn) 2592

[5] Õ
(
n2/3

)
O(logn) 486

[3] Õ
(
n1/2

)
O(logn) 1088

[3] Õ
(
n2/3

)
O(logn) 634

This paper Õ
(
n1/2

)
O(log2 n) 5

This paper Õ
(
n1/2

)
O(logn) 7

This paper Õ
(
n2/3

)
O(logn) 5

Lower bound [13] o(n) log2 n 3

most 486 times the optimal length of the shortest path. A paper by Awerbuch and
Peleg [3] that appeared a year later presented an alternate scheme with a polynomial
space/stretch tradeoff that achieves superior stretch to the [5] construction when
space is ≤ Õ(n1/2) (achieving a stretch of 1088 by substituting k = 2 into Lemma
3.2, whereas meeting this space bound in [5] requires setting k = 4 in Corollary 6.5
with a resulting stretch bound of 2592).

Gavoille and Gengler proved a lower bound of 3 for the stretch of any compact
routing scheme that uses sublinear space at every node. Their result applies when
there are up to log2 n bits of topology-dependent routing information, and therefore
applies also to the name-independent model [13].

Since the conference version of this paper [2], the gap between the Gavoille and
Gengler lower bound of 3 [13] and this paper’s upper bound of 5 has been closed by
Abraham et al. [7] for polylogarithmic-sized headers. They obtained a stretch of 3 with
Õ
(
n1/2

)
space and O(log2 n/ log log n)-sized headers. Also, our upper bound with

polynomial stretch tradeoff has been improved to a linear tradeoff by Abraham et al.
[1], who obtained stretch O(k) for space Õ(n1/k logD), where D is the normalized
diameter of the network.

1.1. Our results. This paper presents the first practical universal compact rout-
ing algorithms that achieve constant stretch with sublinear-sized routing tables, poly-
logarithmic packet headers, and name independence. Our first results substantially
improve the best known stretch achievable with the sublinear-space constraint, as
listed in Table 1. We then present tradeoff schemes that obtain increased but still
bounded stretch, while decreasing the space to Õ(n1/k) for each integral k > 1. The
principal ingredients of our schemes include the following: the O(log n) greedy ap-
proximation to dominating set, used in the same fashion as in [6, 11, 9, 22] for most
of the constructions; the sparse neighborhood covers of [3] for the construction in
section 5; a distributed dictionary, as first defined by Peleg [19]; the schemes of [9]
and [21, 12] for compact routing on trees; and a new randomized block assignment of
ranges of addresses.

We note that our algorithms can be easily modified to determine either the name-
dependent name of the destination or the results of a “handshaking scheme” in the
sense of [21]. Therefore, if there is a whole stream of packets from a single origin
headed for the same destination, once routing information is learned and the first
packet is sent, an acknowledgment packet can be sent back with topology-dependent

708 ARIAS, COWEN, LAING, RAJARAMAN, AND TAKA

address information so that subsequent packets can be sent to the destination using
name-dependent routing—that is, without the overhead in stretch incurred due to the
name-independent model, which arises partly from the need to perform lookups.

Stretch 5 and 7 schemes with different resource requirements are presented in sec-
tion 3. In sections 4 and 5, we generalize the ideas in our stretch 5 and 7 constructions
to two separate schemes that produce different stretch/space tradeoffs parameterized
by an integer k. The scheme in section 4 uses space Õ(kn1/k) and achieves stretch
bounded by 1 + (2k − 1)(2k − 2). It achieves our best stretch/space tradeoff for
3 ≤ k ≤ 8 (for k = 2, use the stretch 5 scheme of section 2; for k ≥ 9, use the scheme
in section 5). The scheme in section 5 uses space Õ(k2n2/k) for graphs in which the
edge weights are polynomial in n, and has a stretch bound of 16k2 − 8k. Combining
the two bounds together yields the result given in the abstract, which improves on the
best previously known stretch bounds for all integers k > 1 in the name-independent
model. (The previous Awerbuch–Peleg scheme [3] uses space Õ(k2n2/k) and achieves
stretch bounded by 64k2 + 16k for graphs whose edge weights are polynomial in n.)

1.2. Remarks on the model. Before we go into the details of the constructions,
we make a few remarks about the model. We assume the nodes are labeled precisely
with a permutation of the integers {0, . . . , n−1}, but we refer the reader to section 6 for
how to extend this to a more arbitrary set of distributively self-chosen node names.
Each node v is also assumed to have a unique name from the set {1, . . . , deg(v)}
assigned to each outgoing edge, but these names are assumed to be assigned locally
with no global consistency. The model in which the names of the port numbers are
chosen by the routing algorithm (based on network topology) was called the designer-
port model by [12]. When the names of the port numbers are arbitrarily assigned by
the network, the model is called the fixed-port model [12]. All of the results in this
paper assume the more difficult fixed-port model.

Second, we point out that all our schemes in the name-independent model use
writable packet headers; packets that are told only a topology-independent name
may, in the course of their route, discover and then store topology-dependent routing
information (of length at most O(log n) or O(log2 n)) to route to their destination.
This is in contrast to the topology-dependent routing schemes, where in some of those
schemes the fixed-topology information is “hardwired in” as the address of the packet
and need never be changed.

2. Preliminaries. In this section we review two previously known name-depend-
ent results on compact routing in tree networks, which we will use as subroutines,
analyze the time taken to precompute the routing tables in these schemes, and also
present a new name-independent compact routing scheme for trees and single-source
routing in general graphs. We will use the following two compact routing results in
the name-dependent model. We note that Lemma 2.2 is not the only tree-routing
scheme in [21, 12], and that each of these papers presents different general schemes
in the stronger designer-port model.

Lemma 2.1 (see Cowen [9]). There is a name-dependent routing scheme for any
tree T with root l such that given any node v in T , the scheme routes along the optimal
path of length d(l, v) in the fixed-port model. The space per node is O(

√
n log n), and

the address size is O(log n).
Lemma 2.2 (see Thorup and Zwick [21], Fraigniaud and Gavoille [12]). There is

a name-dependent routing scheme for any tree T such that given any pair of nodes u
and v in T , the scheme routes along the optimal path of length d(u, v) in the fixed-port
model. The space per node is O(log n), and the address size is O(log2 n).

COMPACT ROUTING WITH NAME INDEPENDENCE 709

2.1. Precomputation running time. The following result is not proven ex-
plicitly in the original paper, but its running time is necessary for our running time
analysis.

Lemma 2.3. The task of precomputing the routing tables and node labels of the
name-dependent scheme of Cowen [9] in Lemma 2.1 runs in linear time.

Proof. The identification of the big nodes BN(T) in the tree T can be trivially
accomplished in an O(n) pass by reading the adjacency list of the tree and counting
the degree of each node.

Having identified BN(T), one O(n) depth-first traversal through the tree is suf-
ficient to determine the depth-first labels of the nodes, as well as the routing tables.
During this pass we maintain a stack of pairs (u, p), where each u is the name of a
big node on the path from the currently visited node to the root l, and p is the local
port number at u for descending to the current node being visited by the depth-first
traversal. The pairs (u, p) are ordered on the stack by distance from the root; a new
pair (u,⊥) is pushed each time we descend into a new big node u (but after we have
chosen a label for the node u), and it is popped when we finish traversing the subtree
rooted at u. The right element in the pair is initially blank (indicated ⊥) but it is set
to a different value for every child of u that we visit.

The routing labels R(v) assigned to the currently traversed node v includes the
depth-first number of v and the item (u, p) currently on top of the stack.

For the nodes that are not big nodes, at most one routing table entry (corre-
sponding to an interval) is created in constant time for each end of an undirected
edge in the tree, so creating the set of routing tables Tab(u) for the non-big nodes u
takes O(n) time and can be accomplished without increasing the running time of the
depth-first traversal.

We create the routing tables for the big nodes in BN(T) as follows. We use the
stack of big nodes containing pairs of the form (u, p) described previously. Each time
a new pair (u′,⊥) is pushed onto the stack, we traverse the stack nondestructively
from top to bottom (that is, towards the root l) and set the routing table Tab(u) of u
in each pair (u, p) to contain a pointer to the newly discovered big node u′. That is,
we indicate that at node u, in order to reach node u′, we use port p. Note that even
though the big nodes may be scattered within the tree, having the stack enables us
to create each table entry (in an ancestor of u′) in O(1) time. Since there are at most
O(

√
n) big nodes each with at most

√
n big descendants, the total running time for this

phase is O(n). Note that for clarity we have presented these two Tab(u) computations
for big and non-big nodes separately, but in practice they can be interleaved in one
pass with the same total asymptotic running time.

We now turn to the schemes of Thorup and Zwick [21] and Fraigniaud and Gavoille
[12]. In [12], it is shown that the tables for their name-dependent scheme can be
precomputed in O(n log n) time. It can be easily shown that the scheme of Thorup
and Zwick [21] can also be computed in O(n log n) time.

2.2. Single-source name-independent compact routing. In this section we
present a new name-independent compact routing scheme for single-source routing
in arbitrary networks. The intuition for name-independent compact routing can be
explained by a simple analogy. In the real world a directory maps names to contact
information. A compact routing table is modeled in this analogy by being unable to
store the entire directory at any single location. We therefore split up the directory
into equal-sized consecutive blocks and distribute these close to the node that needs
to refer to them. We must be able to predict which nearby node will contain the

710 ARIAS, COWEN, LAING, RAJARAMAN, AND TAKA

entry we are interested in. Then, given a name, we will locate the nearby node with
the relevant portion of the directory, read the directory entry, then use the contact
information to locate the person. The main problem is showing how to do this in
such a way that the lookup process is not excessive compared with the cost of finally
using the contact information to locate the person.

Let T be a (weighted) rooted n-node tree with root r, whose nodes are labeled
{0, . . . , n−1} according to some arbitrary permutation P (T could be a shortest path
tree in a general graph, for single-source routing). For simplicity, we assume that

√
n

is an integer.2 We first prove the following.
Lemma 2.4. Given a tree T with a weight function w defined on its edges, there

exists a name-independent routing scheme that
1. requires O(

√
n log n) space per node;

2. remembers at most O(log n) bits in the packet header;
3. routes a packet from the root r to the node with label j (for any j ∈ {0, . . . ,

n− 1}) along a path of length at most 3d(r, j).
Proof. Let r denote the root of T . For each i and j, let eij denote the port

name of the first edge along the shortest path from i to j. Denote by N(i) the set
of the

√
n closest nodes to i in T , including i, and breaking ties lexicographically by

node name. Furthermore, divide the space of node labels {0, . . . , n − 1} into blocks
of size

√
n, so that block B0 consists of the addresses from 0 . . .

√
n− 1 and block Bi

consists of the node labels i
√
n to (i + 1)

√
n− 1 (recall that

√
n is assumed to be an

integer). Let CR(x) denote the address label that a node x would be assigned under
the tree-routing scheme of Lemma 2.1, and let CTab(x) denote the corresponding
routing table stored by node x.

Let vφ(0), vφ(1), . . . , vφ(
√
n−1) be the names assigned to the nodes in N(r), ordered

by distance from the root r, with ties broken lexicographically. The following are
stored at each node i in T :

• (r, eir) for the root node r.
• If i ∈ N(r), then i = vφ(t) for some unique index t. For each j ∈ Bt, (j, CR(j))

is stored. Call this the block table.
• CTab(i).

In addition, the following extra information is stored at the root node r:
• For each node x in N(r), (x,CR(x)) is stored. Call this the root table.
• For 0 ≤ k <

√
n, the pair (k, vφ(k)) is stored. Call this the dictionary table.

Now suppose a packet destined for j arrives at r. If (j, CR(j)) is in the root table,
the packet writes CR(j) into its header and routes optimally to j with stretch 1 using
the CTab(x) tables. Otherwise, let t be the index such that j is in Bt, and look up
(t, vφ(t)) in the dictionary table, followed by (vφ(t), CR(vφ(t)) in the root table, and
write CR(vφ(t)) into the packet header (where we note that there is guaranteed to be
an entry for vφ(t) in the root table because vφ(t) ∈ N(r)). As illustrated in Figure 1,
we route optimally to vφ(t), look up (j, CR(j)) in its block table, write CR(j) into the
packet header, and route optimally back to the root using the (r, exr) entries found at
intermediate nodes x. Then we route optimally from the root to j using CR(j) and
the CTab(x) tables. Since vφ(t) is among r’s closest

√
n nodes and j is not, we have

d(r, vφ(t)) ≤ d(r, j) and thus the total route length is ≤ 3d(r, j).
CTab(x) is of size O(

√
n log n) by Lemma 2.1. Since there are exactly

√
n nodes

in N(i) for every n, every block table has
√
n entries, each of size O(log n) bits. The

2When
√
n is not an integer we round n up to the smallest larger perfect square, at a cost of

(less than) doubling the length of a log n bit node identifier.

COMPACT ROUTING WITH NAME INDEPENDENCE 711

r

j

N(r)

t

B0

B1

B2

B3

Fig. 1. An illustration of the derivation of the stretch bound for single-source routing in a tree
T . A table of the name-dependent labels keyed by the topology-independent node names (shown on
the left) is broken into

√
n equal-sized blocks and distributed in the

√
n-sized neighborhood N(r) of

the root r. To route to a destination node j outside N(r), we look up the name-dependent label for
j at t, where t ∈ N(r) satisfies j ∈ Bt (routing to t and back is done optimally). Finally we route
optimally to j, obtaining a stretch of 3.

additional information stored at the root consists of two
√
n-entry tables, each with

O(log n)-bit entries. The maximum space requirement is therefore O(
√
n log n) =

Õ(
√
n) at every node.
Note that if we substitute a name-dependent tree-routing scheme that satisfies

Lemma 2.2 for the one in Lemma 2.1 in the construction above, we get the same
stretch bounds, but the packet header size increases to O(log2 n).

2.3. Hitting set algorithm. Given an undirected (weighted) network G with
n nodes and m edges, we determine for each node u a neighborhood ball N(u) of
the n1/2 nodes closest to u including u and breaking ties lexicographically by node
name. Next we define a hitting set L of landmarks, such that for every node v, N(v)
contains a node in L. The following well-known result appears in [18]; it follows from
the general (1 + lnn)-approximation algorithm for set-cover.

Lemma 2.5 (see Lovász [18]). Let G = (V,E) be an undirected graph of n
nodes and m edges. Let N(v) denote the set of v’s n1/2 closest neighbors (with ties
broken lexicographically by node name). There exists a set L ⊂ V such that |L| =
O(n1/2 log n) and ∀v ∈ V,L

⋂
N(v) 	= ∅. A greedy algorithm exists that computes L

in Õ(m + n3/2) time.

3. Name-independent routing with stretch 5 and 7 in general networks.
Let V be labeled with unique addresses {0, . . . , n − 1}. We divide the address space
into blocks Bi for i = 0, . . . ,

√
n−1, so that block Bi consists of the node labels i

√
n to

(i+1)
√
n−1. A polylogarithmic number of blocks will be assigned to each node such

that each neighborhood contains an instance of every block (see Lemma 3.1)—let Si

be the set of blocks assigned to node i.
Let Tl denote a single-source shortest path tree rooted at l that spans all the nodes

of the network. Also, partition the nodes of G into sets Hl according to their closest
landmarks, so that Hl = {v|v’s closest landmark is l}. Let Tl[Hl] be a single-source
shortest path tree rooted at l spanning just the nodes of Hl. Let lu denote u’s closest
landmark in L.

In what follows, we present three compact routing schemes A, B, and C in the
name-independent model. Scheme A uses Õ(n1/2)-sized routing tables and O(log2 n)-

712 ARIAS, COWEN, LAING, RAJARAMAN, AND TAKA

sized routing headers, while achieving a stretch bound of 5. Scheme B improves
on header size at the expense of stretch—it uses Õ(n1/2)-sized routing tables and
O(log n)-sized routing headers, while achieving a stretch bound of 7. Finally, com-
pared to Scheme A, Scheme C trades table size for header size, and uses Õ(n2/3)-sized
routing tables and O(log n)-sized routing headers, while achieving a stretch bound of 5.

3.1. Common data structures. In this subsection we present some data struc-
tures common to all three routing schemes and analyze their precomputation time.
All three schemes utilize the sets of blocks Sv, whose properties are described by the
following lemma, which is a special case of Lemma 4.1. To avoid repetition, the latter
is proved in section 4, after building up more general definitions which are not neces-
sary for the following case (substituting k = 2 in Lemma 4.1 immediately yields the
following).

Lemma 3.1. Let G be a graph on n nodes, and let N(v) denote the set of v’s
closest

√
n neighbors (including v itself) with ties broken lexicographically by node

name. Let {Bi|0 ≤ i <
√
n} denote a set of blocks. There exists an assignment of

sets Sv of blocks to nodes v, such that

• ∀v ∈ G, ∀Bi (0 ≤ i <
√
n), there exists a node j ∈ N(v) with Bi ∈ Sj;

• ∀v ∈ G, |Sv| = O(log n).

This assignment can be computed in Õ(n2) expected time or Õ(n3) deterministic time.

Given such an assignment of blocks, the routing tables of all three schemes contain
the following for every node u:

1. For every node v in N(u), (v, euv).
2. For every i, 0 ≤ i <

√
n, (i, t), where t ∈ N(u) satisfies Bi ∈ St (such a node

t exists by our construction of Su in Lemma 3.1).

Clearly (1) takes O(
√
n log n) space. Note that since N(u) is of size

√
n, and

since (2) takes O(log n) space for each of
√
n values i, these common data structures

require a total of O(
√
n log n) space.

To compute the neighborhood N(u) of each node u, we run a truncated Dijkstra
algorithm. This takes Õ(n) time per node [10], for a total of Õ(n2) time. During the
computation of the truncated Dijkstra algorithm, we also obtain the table of entries
(v, euv) in item (1) by overloading the relaxation operation that sets a new parent for
each node, so that it also derives a new tentative port number from its new parent,
and this is stored in the root of that particular truncated Dijkstra run. Since the extra
work done by each relaxation takes O(1) time, the asymptotic running time remains
the same. Finally, on identifying all the neighborhoods we create a sorted list of the
neighbors of each node, in a total of O(n3/2 log n) time.

The assignment of sets satisfying Lemma 3.1 is computed in expected Õ
(
n2

)
or

deterministic Õ
(
n3

)
time. After determining the assignment, we compute the pairs

(i, t) in item (2). For each node u and each neighbor t ∈ N(u), for every block
Bi assigned to node t, we store the pair (i, t) in an array of length

√
n associated

with node u. The total time for this procedure is Õ(n3/2). Thus we have shown the
following.

Lemma 3.2. The common data structures described above are of size O(
√
n log n)

and can be computed in Õ(n2) expected or Õ(n3) deterministic time.

3.2. Scheme A.

3.2.1. Data structures. Let L be any set of landmarks that satisfies Lemma 2.5,
and let Tab(x) and R(x) refer to the routing table and address, respectively, of node

COMPACT ROUTING WITH NAME INDEPENDENCE 713

G

N(u)

u

t
lg

w

Fig. 2. An illustration of the worst-case route taken by a packet under Scheme A. Only relevant
nodes and paths are depicted. This route is shown to satisfy a stretch bound of 5 in Theorem 3.3.

x, under a tree-routing scheme that satisfies the requirements of Lemma 2.2. Recall
that euv denotes the first edge along a shortest path from u to v. Each node u stores
the following, in addition to the common data structures described in section 3.1:

1. For every node l ∈ L, (l, eul).
2. For every block Bk in Su, and for each node j in Bk, the triple (j, lg, R(j)),

where lg is a landmark that minimizes, over all landmarks in L, the quantity
d(u, lg) + d(lg, j), and R(j) is the tree-routing address j in the tree Tlg .

3. For every landmark l ∈ L, u stores the routing table Tab(u) for the tree Tl.

3.2.2. Routing algorithm. Consider two cases for the location of the destina-
tion node w relative to the source node u.

(i) w ∈ N(u)
⋃
L: Then the entry (w, evw) is stored at every node v on the

shortest path from u to w and we route directly to w with a stretch of 1.
(ii) w 	∈ N(u)

⋃
L: (The route for this case is illustrated in Figure 2.) On failing

to find (w, euw) stored at u, it must be the case that w 	∈ N(u)
⋃
L. Compute

the index i for which w ∈ Bi, and look up the node t ∈ N(u) that stores
entries for all nodes in Bi. Next, route optimally to the node t using (t, ext)
information at intermediate nodes x. At node t, we look up lg, route optimally
to lg, following the (lg, evlg) entries in the routing tables in nodes v on the
shortest path from t to lg, and then optimally from lg to w, using the address
R(w) and the tree-routing tables Tab(x) stored at all nodes for the tree rooted
at lg.

Theorem 3.3. Given a graph G with n nodes and m positive-weighted edges,
there exists a stretch-5 compact routing scheme that uses O(

√
n log3 n)-sized local rout-

ing tables and O(log2 n) headers which can be precomputed in Õ(n2 +m
√
n) expected

or Õ(n3) deterministic time.
Proof. First we show that the stretch of Scheme A is bounded by 5. If w ∈

N(u)
⋃
L, we route optimally with stretch 1. Otherwise, the route taken is of length

d(u, t) + d(t, lg) + d(lg, w). We have d(u, t) + d(t, lg) + d(lg, w) ≤ d(u, t) + d(t, lu) +
d(lu, w), because lg was chosen to minimize precisely the quantity d(t, l) + d(l, w), for
all l ∈ L. Now d(t, lu) ≤ d(t, u) + d(u, lu) by the triangle inequality, and similarly
d(lu, w) ≤ d(lu, u) + d(u,w). Since t ∈ N(u) by construction, w 	∈ N(u) implies
d(u, t) ≤ d(u,w). Similarly, L being a hitting set for N(u) implies lu ∈ N(u), thus
d(u, lu) ≤ d(u,w). Thus the route taken is of length ≤ 2d(u, t) + 2d(u, lu) + d(u,w) ≤
5d(u,w).

Next we show that the data structures of section 3.2.1 require O(n1/2 log3 n)
space. The space of (1) is O(log n) bits for each landmark in the set L which is of size
O(

√
n log n). For (2) we need O(log2 n) space for each of the

√
n nodes in each block

714 ARIAS, COWEN, LAING, RAJARAMAN, AND TAKA

(note that (2) includes an O(log2 n)-sized tree-routing address for each node in each
block), times the number of blocks in Su, which is O(log n) by Lemma 3.1, for a total
of O(n1/2 log3 n) space. (3) takes O(

√
n log2 n) space because the number of trees is

equal to the number of landmarks, which is O(
√
n log n), and u stores O(log n) bits

for each tree.
Finally we analyze the running time required for computing the routing tables.

Recall from Lemma 2.5 that computing the set of landmarks L takes Õ(m+n3/2) time
[18]. To obtain the pointers (l, eul) at each node (item (1)), we run the full Dijkstra
algorithm for single-source shortest path trees from each landmark l ∈ L in a total of
Õ(n3/2+m

√
n) time (using a Fibonacci heap implementation of Dijkstra’s algorithm).

We can overload the relaxation operation so that when the parent of b is set to a, b is
added to the adjacency list of a (and deleted from that of its previous parent if there
was one). This gives us an adjacency-list representation of the single-source shortest
path tree. We could also sort the list of landmarks to facilitate the use of a binary
search for quickly obtaining (l, eul), but this can be done in Õ(

√
n) time.

For each tree subgraph Tl with n nodes (a single-source shortest path tree rooted
at l ∈ L), we can compute the routing labels R(u) and name-dependent routing tables
Tab(u) (of item (3)) according to the scheme of [12] or [21] in Õ(n) time (by [12], for
example). Since there are Õ(

√
n) landmarks in all, the total running time is Õ(n3/2).

That done, we fill in the contents of the blocks (item (2)) in O(n2 log2 n) time (n
nodes times O(log n) blocks per node, times

√
n entries per block, times O(

√
n log n)

landmark candidates, times O(1) for looking up d(u, li) and d(li, j) from the precom-
puted tables).

The total expected running time for Scheme A is therefore Õ(n2 + m
√
n). It is

interesting to note that this is less than the best known running time for all-pairs
shortest path algorithms.

3.3. Scheme B.

3.3.1. Data structures. Again we define the set L as any set of landmarks
that satisfies Lemma 2.5. Recall that CTab(x) and CR(x) refer to the routing table
and address, respectively, of node x in a scheme that satisfies the requirements of
Lemma 2.1. In addition to the common data structures in section 3.1, each node u
stores the following:

1. For every node l ∈ L, (l, eul).
2. For every node j in Bk, where Bk is a block in Su, the name of the closest

landmark lj to j, and the tree-routing address CR(j) for j in the tree Tlj [Hlj].
3. If lu is u’s closest landmark, then u stores its routing table CTab(u) for the

tree Tlu .

3.3.2. Routing algorithm. Again, consider two possible cases on the location
of the destination node w relative to the source node u.

(i) w ∈ N(u)
⋃
L: Then the entry (w, evw) is stored at every node v on the

shortest path from u to w and we route directly to w with a stretch of 1.
(ii) w 	∈ N(u)

⋃
L: (This case is illustrated in Figure 3.) On failing to find

(w, euw) stored at u, it must be that w 	∈ N(u)
⋃
L. Compute the index i for

which w ∈ Bi, and let t ∈ N(u) be the node that stores entries for all nodes
in Bi. Use the entries (t, ext) at intermediate nodes x to route optimally to
the node t. At node t, we look up lw, route optimally to lw, following the
(lw, evlw) entries in the routing tables in nodes v on the shortest path from t
to lw, and then optimally from lw to w, using the address CR(w) in the tree

COMPACT ROUTING WITH NAME INDEPENDENCE 715

G

u

t

N(u)

w

lw

N(w)

Fig. 3. An illustration of the worst-case route taken by a packet under Schemes B and C. This
route is shown to satisfy a stretch bound of 7 in Theorem 3.4. For Scheme C, we use the name-
dependent scheme of Cowen [9], so we have the extra condition that d(lw, w) = d(w, lw) < d(u,w)
and this reduces the stretch bound to 5, as shown in Theorem 3.6.

Tlw , coupled with the tree-routing tables CTab(x) stored for all nodes x that
chose lw as their closest landmark.

Theorem 3.4. Given a graph G with n nodes and m positive-weighted edges,
there exists a stretch-7 compact routing scheme that uses O(

√
n log2 n)-sized local

routing tables and O(log n) headers which can be precomputed in Õ(n2+m
√
n) expected

or Õ(n3) deterministic time.

Proof. First we show that the stretch of Scheme B is bounded by 7. If w ∈
N(u)

⋃
L, we route optimally with a stretch of 1. Otherwise, the route taken by the

algorithm is of length d(u, t) + d(t, lw) + d(lw, w). Now d(t, lw) ≤ d(t, w) + d(w, lw) ≤
d(t, u) + d(u,w) + d(w, lw), by repeated applications of the triangle inequality, so
the route taken by the algorithm is of length ≤ 2d(u, t) + d(u,w) + 2d(lw, w). But
d(u, t) ≤ d(u,w) because t ∈ N(u) and w is not. Also, d(lw, w) ≤ d(lu, w), since lw is
w’s closest landmark. So d(lw, w) ≤ d(w, lu) ≤ d(w, u)+d(u, lu) ≤ 2d(u,w), where the
second inequality follows from the triangle inequality and the third from the fact that
lu ∈ N(u) (since L is a hitting set), while w is not. So 2d(u, t)+d(u,w)+2d(lw, w) ≤
7d(u,w), proving the result.

Next we show that the items in section 3.3.1 require O(n1/2 log2 n) space. The
space for (1) is exactly the same as for Scheme A, which we have already shown is
O(

√
n log2 n). (2) takes O(

√
n log n) space per block times the number of blocks that

are stored at a node. This is because we are storing O(log n) bits for the tree-routing
address of each of the

√
n nodes in every block. So (2) takes

√
n space times the

number of blocks in Su, which is O(log n) by Lemma 3.1. (3) takes O(
√
n log n) space

in Scheme B because the trees Tl partition the nodes and each node participates in
only one tree, thus requiring space O(

√
n log n).

Finally we consider the running time. The computation of item (1) for Scheme B
is identical to that in Scheme A, and runs in Õ(n3/2 + m

√
n) time. By Lemma 2.3,

given a tree subgraph Tl with n nodes (a single-source shortest path tree rooted at
l ∈ L), we can compute the routing labels R(u) and name-dependent routing tables
Tab(u) (of item (3)) according to the scheme of Cowen [9] in O(n) time per landmark.
Therefore the total running time for computing item (3) and the routing labels used
in item (4) is Õ(n3/2), since there are Õ(

√
n) landmarks and the running time is O(n)

per landmark.

We compute the closest landmark to each node using the tables of shortest dis-
tances from each landmark to every node in the graph, in Õ(n3/2) time, by considering
each node and, for each node, every possible landmark.

716 ARIAS, COWEN, LAING, RAJARAMAN, AND TAKA

We can now fill in the contents of the blocks (item (2)): as in Scheme A, there are
O(n3/2 log n) entries in all the blocks in all the nodes, times O(1) to look up the closest
landmark lj to node j, and the routing label CR(j) for j in the tree Tlj spanning the

set of nodes whose closest landmark is lj . This comes to a total of Õ(n3/2). The total

expected running time is therefore Õ(n2 + m
√
n). Again, this is less than the best

known running time for all-pairs shortest path algorithms.

3.4. Scheme C.

3.4.1. Data structures. Let L be the set of landmarks constructed in the fol-
lowing topology-dependent compact routing scheme.

Lemma 3.5 (see Cowen [9]). There is a name-dependent compact routing algo-

rithm with O(n2/3 log4/3 n)-sized tables and O(log n)-bit headers at each node which
achieves stretch 3.

Also let LTab(x) and LR(x) denote the corresponding routing table and address
for node x that the scheme of [9] constructs. Recall that CTab(x) and CR(x) refer to
the same parameters in a scheme that satisfies the requirements of Lemma 2.1. Each
node u stores the following:

1. For every node j in Bk, where Bk is a block in Su, the name of the closest
landmark lj to j, and the tree-routing address CR(j) for j in the tree Tlj [Hlj].

2. The routing table LTab(u) and for every node v ∈ N(u), LR(v).

3.4.2. Routing algorithm. If u has stored an entry for w that gives w’s address
LR(w), we use Cowen’s compact routing scheme of [9] to route to w, with stretch
bounded by 3. So suppose u has no address LR(w) stored for w in its local table. It
must be that w 	∈ N(u)

⋃
L. Compute the index i for which w ∈ Bi.

(i) If u ∈ L, look up the node t ∈ N(u) that stores entries for all nodes in Bi, and
use (t, ext) to route optimally to t. At t, write LR(w) into the packet header,
and then use the landmark pointers in the routing tables to route optimally
back from t to u. Then, use LR(w) and Cowen’s compact routing scheme
(see [9]) to route to w with stretch bounded by 3. The cost of the round trip
to t and back is less than 2d(u,w), because t ∈ N(u) and w 	∈ N(u) implies
d(u, t) < d(u,w), so the total stretch is bounded by 5.

(ii) If u 	∈ L, by Cowen’s construction, since u has no address LR(w) stored for w
in its local table, it must be that d(lw, w) < d(u,w). In this case (illustrated
in Figure 3), we look up (t, ext) to route optimally to the node t ∈ N(u) that
stores entries for all nodes in Bi. We determine the identity of lw, and the
address of w in the tree routed at lw from t’s entry for w in its local table.
Then we route optimally from t to lw, and then from lw to w.

Theorem 3.6. Given a graph G with n nodes and m positive-weighted edges,
there exists a stretch-5 compact routing scheme that uses O(n2/3 log4/3 n)-sized lo-
cal routing tables and O(log n) headers which can be precomputed in Õ

(
n2 + mn2/3

)
expected or Õ(n3) deterministic time.

Proof. First we show the stretch bound of 5. In this regard, it remains to analyze
the case when w 	∈ N(u)

⋃
L and u 	∈ L. Then, as remarked above, the absence of

an entry for w in Cowen’s scheme implies d(lw, w) ≤ d(u,w), and the route taken is
of length d(u, t) + d(t, lw) + d(lw, w). Now d(t, lw) ≤ d(t, u) + d(u, lw), and d(u, lw) ≤
d(u,w)+d(w, lw). So the route is of length ≤ 2d(u, t)+d(u,w)+2d(w, lw) ≤ 5d(u,w),
since w 	∈ N(u) and t ∈ N(u) implies d(u, t) ≤ d(u,w).

The space requirements are as follows. As in Schemes A and B, item (1) takes
O(

√
n log2 n) space. The items in (2) are the tables of Cowen’s scheme, which are

COMPACT ROUTING WITH NAME INDEPENDENCE 717

proved to be of size O(n2/3 log4/3 n) in [9]; this clearly dominates the space require-
ments of (1).

Finally the precomputation time is obtained as follows. In Scheme C, we use
the name-dependent routing scheme for general graphs of [9]. Therefore we require
O(n5/3 + n2/3m) time for precomputing the name-dependent routing labels LR(u)
and tables LTab(u) [9].

Item (1) is computed similarly to item (2) of Scheme B except that it refers to
LR(u) and LTab(u), and again the running time is Õ(n3/2).

Finally item (2) stores, for each node u and each node v ∈ N(u), the value LR(v).
This takes a total of Õ(n3/2). Clearly the running time for Scheme C is dominated
by the precomputations for the name-dependent scheme and the Õ(n2) time required
for computing the common data structures, and altogether this takes O(n2 + n2/3m)
expected running time.

4. A generalized routing scheme for Õ(n1/k) space. In this section we
present compact routing schemes that provide tradeoffs between the amount of space
available at a node and the stretch obtained. In the process, we prove Lemma 4.1, of
which Lemma 3.1 is a special case (obtained by setting k = 2).

4.1. Preliminaries. Given a graph G with V = {0, . . . , n − 1}, we assume for
simplicity that n1/k is an integer, and define the alphabet Σ = {0, . . . , n1/k − 1}.
For each 0 ≤ i ≤ k, Σi is the set of words over Σ of length i. Let 〈u〉 ∈ Σk be
the base n1/k representation of u, padded with leading zeros so that it is of length
exactly k. For each 0 ≤ i ≤ k, we also define functions σi : Σk −→ Σi, such that
σi((a0, . . . , ak−1)) = (a0, . . . , ai−1). That is, σi extracts the prefix of length i from a
string α ∈ Σk.

For each α ∈ Σk−1, define a set Bα = {u ∈ V |σk−1(〈u〉) = α}. We will call these
sets blocks. Clearly ∀α ∈ Σk−1, |Bα| = n1/k. We abuse notation slightly by defining
σi(Bα) = σi(α0), where α0 is the word in Σk obtained by appending a zero to α.
Note that by this definition, σk−1(Bα) = σk−1(〈u〉) whenever u ∈ Bα.

For every node u, we define the neighborhoods N i(u) as the set of ni/k nodes
closest to u including u itself, breaking ties lexicographically by node name. We first
prove the following.

Lemma 4.1. Given a graph G, there exists an assignment of sets of blocks Sv to
nodes v, so that

• ∀v ∈ G, ∀0 ≤ i < k, ∀τ ∈ Σi, there exists a node w ∈ N i(v) with Bα ∈ Sw

such that σi(Bα) = τ ;
• ∀v ∈ G, |Sv| = O(log n).

Such an assignment can be computed in expected Õ
(
n3−2/k

)
time or in deterministic

Õ
(
n4−2/k

)
time.

Proof. Our existence proof is by the probabilistic method. Let n be the number
of nodes in the graph G. Consider a random assignment of f(n) blocks to each node,
each block chosen independently and uniformly at random from B, the set of all
blocks. Here f(n) will be defined later to ensure the result.

For u ∈ G and τ ∈ Σi for some i, 0 ≤ i < k, we say that (u, τ) is covered if there
exists a node w in N i(u) such that w is assigned a block Bα for which σi(Bα) = τ .
Since for every i, |Σi| = |N i(u)| = ni/k, the number of times a node in N |τ |(u) is
assigned a block is n|τ |/k ·f(n); in each instance, the probability that (u, τ) is covered
is 1/n|τ |/k. Thus, the probability that (u, τ) is uncovered at the end of the assignment

718 ARIAS, COWEN, LAING, RAJARAMAN, AND TAKA

is (
1 − 1

n|τ |/k

)n|τ|/kf(n)

≤ e−f(n).

The total number of different pairs (u, τ) is

n ·
∑

0≤i<k

ni/k =
n(n− 1)

n1/k − 1
< n2,

since n1/k ≥ 2. The expected number of pairs that remain uncovered at the end of
the assignment is less than n2e−f(n). If we choose f(n) = �2 lnn�, then the expected
number of uncovered pairs is strictly less than 1, thus guaranteeing the existence of an
assignment that covers all pairs. If we choose f(n) = �2 lnn + ln 2�, then the failure
probability is at most 1/2. Thus repeating this procedure an expected O(1) times
would yield the desired assignment.

We now calculate the expected running time of the above randomized algorithm.
We can calculate N i(u) for 0 ≤ i < k and u using a truncated Dijkstra algorithm [10]
in Õ

(
n(2k−2)/k

)
time per node. During this calculation, we can also compute for each

w and 0 ≤ i < k the list of u such that w ∈ N i(u). Given a complete assignment, we
go over each node w and each block Bα assigned to w and mark all pairs (u, τ) that
are covered due to this block. The total time taken for this procedure is∑
w∈V

O(log n)·
∑

0≤i<k

|{u : w ∈ N i(u)}| = O(log n)·
∑
u∈V

∑
0≤i<k

|N i(u)| = O(n2−1/k log n).

Thus the expected total running time is Õ
(
n3−2/k

)
.

We now derandomize the above probabilistic assignment by deterministically as-
signing blocks to the nodes one at a time, subject to the constraint that the number
of blocks assigned to each node at the end of the procedure is f(n) = �2 lnn�. The
procedure consists of nf(n) steps, numbered from 1. In each step, we arbitrarily se-
lect a node u which can be assigned at least one more block. We assign to u a block
that minimizes the expected number of uncovered pairs, conditioned on the partial
assignment chosen thus far, assuming that the blocks assigned in subsequent steps are
chosen independently and uniformly at random from B. Let Ai represent the partial
assignment at the end of step i and let U be the random variable representing the
number of uncovered pairs at the end of the complete assignment. For convenience,
let A0 denote the empty assignment.

By our argument above, we know that E[U | A0] < 1. We will now show that for
1 ≤ j ≤ nf(n), E[U | Aj] ≤ E[U | Aj−1]. This would imply that E[U | Anf(n)] < 1;
since Anf(n) is the complete assignment, the random variable U | Anf(n) is, in fact,
deterministic and, being an integer, has to equal 0.

Consider the jth step. Let u be the node to which a block is assigned in this step.
We have

E[U | Aj−1] =
1

|B|
∑
B∈B

E[U | Aj−1 ∪ {B → u}].

(Here, B → u denotes that block B is assigned to node u and we represent a partial
assignment as a multiset of elements of the form block → node.) Clearly, there exists
B ∈ B such that E[U | Aj ∪ {B → u}] ≤ E[U | Aj]. By our choice of the block in

COMPACT ROUTING WITH NAME INDEPENDENCE 719

each step, it follows that E[U | Aj] ≤ E[U | Aj−1]. This completes the proof that the
final assignment has the property that all of the pairs are covered.

It remains to establish that our block assignment procedure is polynomial time.
As for the randomized algorithm, we first compute the neighborhoods N i(·) and their
inverses for each node u in Õ

(
n3−2/k

)
time using a truncated Dijkstra algorithm [10].

The total number of block assignment steps is n�2 lnn�. In step j, we examine all
blocks B and compute E[U | Aj−1 ∪ {B → u}]. We maintain the set of uncovered
pairs (u, τ) and, for each pair (u, i) where 0 ≤ i < k, a count c(u, i) of the total
number of blocks that remain to be assigned to nodes in N i(u). Maintaining the
set of uncovered pairs and the count c(·, ·) for the uncovered pairs takes overall time
O(n(k−1)/k log n · n2−1/k) since we consider O(n(k−1)/k log n) blocks per node, and
n2−1/k is the sum of the sizes of all of the neighborhoods N i(u), over all i and all u.

Given a partial assignment A, the conditional expectation can be calculated as
follows:

E[U | A] =
∑

uncovered(u,τ)

(
1 − 1

n|τ |/k

)c(u,|τ |)
.

This takes time O(n2−1/k), which is a bound on the number of total pairs (u, τ). Since
the total number of blocks equals |Σk−1| = n(k−1)/k, the total number of conditional
expectations calculated overall is n1−1/k × nf(n) = O(n2−1/k log n). Thus, the total
time for calculating conditional expectations is O(n4−2/k log n), and this is precisely
the asymptotic bound on the total running time.

4.2. Space. A component of the algorithm is the following name-dependent
routing algorithm.

Theorem 4.2 (see Thorup and Zwick [21]). Given an integer k ≥ 2, there

exist name-dependent routing schemes which use O(n1/k log1−1/k n) × o(log2 n) =
Õ(n1/k) space per node, o(log2 n)-sized headers, and which deliver messages with
stretch 2k − 1.

We note that this is the version of their algorithm which requires handshaking,
but our scheme stores the precomputed handshaking information with the destination
address. Let TZR(u, v) denote the address required for routing from u to v (that
is, the final o(log2 n)-bit header Thorup and Zwick determine from u and v after
executing the handshaking protocol), and let TZTab(u) denote the routing table
their algorithm stores at node u.

Let {Su|u ∈ V } be a collection of sets of blocks that satisfies Lemma 4.1. For
each node u, let S′

u = Su

⋃
{Bβ}, where u ∈ Bβ (that is, each node always stores the

block to which its own address belongs). Each node u stores the following:

1. TZTab(u).
2. For every v ∈ N1(u), the pair (v, euv), where euv is the first edge on a shortest

path from u to v.
3. The set S′

u of O(log n) blocks Bα, and for each block Bα ∈ S′
u, the following:

(a) For every 0 ≤ i < k − 1, and for every τ ∈ Σ, let v be the nearest
node containing a block Bβ such that σi(Bβ) = σi(Bα) and the (i+1)st
symbol of σk−1(Bβ) is τ . If i = 0, we store the node name v; otherwise
we store the routing address TZR(u, v).

(b) Corresponding to i = k−1, for every τ ∈ Σ, we store the routing address
TZR(u, v), where 〈v〉 = ατ . Note that, consistently with 3(a), the node

720 ARIAS, COWEN, LAING, RAJARAMAN, AND TAKA

v satisfies σk−1(Bα) = α = σk−1(〈v〉) and the kth symbol of σk(〈v〉)
is τ .

Lemma 4.3. The space requirement of our algorithm is o(kn1/k log3 n) bits, which
is simply Õ(n1/k) bits for fixed constant k.

Proof. By Theorem 4.2, we need o(n1/k log3−1/k n) space per node, for (1). Since
|N1(u)| = n1/k for all u, it is clear that (2) uses O(n1/k log n) space. For (3) we note
that |S′

u| = O(log n) blocks. For each block, we store kn1/k values TZR(u, v), where
the size of TZR(u, v) in bits is o(log2 n). Therefore the space requirement for (3) is
o(kn1/k log3 n), and this dominates the other two terms.

4.3. Routing algorithm. We denote by Hop(u, v) the Thorup–Zwick route
from a node u that stores the routing information TZR(u, v) to the node v. For source
node s and destination node t, our algorithm routes a packet through a sequence of
nodes s = v0, v1, . . . , vk = t. For any two successive nodes vi and vi+1 in this sequence
that are distinct (except for v0 and v1), the transition between them is made through
the path Hop(vi, vi+1). The sequence s = v0, v1, . . . , vk = t has the property that
each vi (except vk) contains a block Bβi for which σi(Bβi) = σi(〈t〉). The case
when vi = vi+1 occurs when node vi coincidentally contains a block that matches the
destination in at least i + 1 digits.

Figure 4 diagrams an example sequence of nodes vi. The following is the pseu-
docode for the algorithm.

Algorithm 4.4.

if (t ∈ N1(s)):
route to t using shortest path pointers eut

else:
i ← 0
while (i 	= k):

τ ← σi+1(〈t〉)
if (i+1 < k):

vi+1← closest v ∈ N i+1(vi) such that ∃Bβ ∈ Sv, σ
i+1(Bβ) = τ

else:
vk ← t

if (vi 	= vi+1):
if (i = 0):

route to v1 by shortest path pointers euv1

else: (i ≥ 1)
route to vi+1 along Hop(vi, vi+1) using TZR(vi, vi+1)

i ← i + 1

Lemma 4.5. Algorithm 4.4 always delivers a given packet successfully from a
source node s to a destination t.

Proof. At each vi we have sufficient routing information to route to node vi+1, and
delivery to node vi+1 is guaranteed by the Thorup–Zwick algorithm. The algorithm
terminates on finding t, because in the worst case we have stored information for
routing to a node v in Nk(vk−1) = V such that σk(〈v〉) = σk(〈t〉), and the latter
condition implies v = t.

We note that the idea of matching increasing prefixes of node names appears in
the parallel algorithms literature for multidimensional array routing (see [17]); it has
also been cleverly used in recent schemes proposed in the context of locating replicated
objects in peer-to-peer systems [23, 16, 20, 14].

COMPACT ROUTING WITH NAME INDEPENDENCE 721

Fig. 4. A schematic of how the prefix-matching algorithm of Theorem 4.8 works. The figure
includes only the sequence of nodes where the distributed dictionary is read; the other nodes in the
path are not shown. For illustration purposes each node contains only 3 blocks, and the contents of
each block are illustrated in the magnified table. Asterisks stand for arbitrary digits in block labels.
Notice that the blocks that are actually consulted (shown labeled) have prefixes that increasingly
match the destination 1482.

4.4. Stretch analysis. In this section we complete the analysis of Algorithm 4.4
by analyzing the stretch.

Lemma 4.6. For 0 ≤ i ≤ k − 1, d(vi, vi+1) ≤ 2id(s, t).
Proof. Recall that vi is the first node that is found to match the ith prefix of the

destination t by the routing algorithm, as defined above. For each 0 ≤ i ≤ k, let v∗i
be the closest node to node s such that σi(〈v∗i 〉) = σi(〈t〉). The proof is by induction.

For the basis case, we note that based on the algorithm d(s, v1) = d(v0, v1) ≤
20d(s, t), since t itself is a candidate to be v1. If d(s, t) < d(s, v1), then t would have
been chosen to be node v1, because t contains a block Bβ such that σ1(Bβ) = σ1(〈t〉).

The inductive hypothesis is that for all i such that 0 ≤ i ≤ r− 1 < k− 1, we have
d(vi, vi+1) ≤ 2id(s, t). We bound d(vr, vr+1) as follows:

d(vr, vr+1) ≤ d(vr, v
∗
r+1) (1)

≤ d(vr, s) + d(s, v∗r+1) (2)
≤ d(s, t) + d(vr, s) (3)
≤ d(s, t) + d(s, vr) (4)

≤ d(s, t) +

r−1∑
i=0

d(vi, vi+1) (5)

≤ d(s, t)

[
1 +

r−1∑
i=0

2i
]

(6)

≤ 2rd(s, t).

(1) follows by definition of vr+1 and v∗r+1, and (2) follows since d(vr, v
∗
r+1) is a

shortest distance. We obtain (3) by commutativity, and since t is a candidate to be
the node v∗r+1. By symmetry we get (4), and (5) follows since d(s, vr) is a shortest
distance. Finally (6) is obtained by applying the inductive hypothesis, and the result
follows.

722 ARIAS, COWEN, LAING, RAJARAMAN, AND TAKA

In this context let p′(s, t) be the path obtained by routing from s to t, using a
shortest path between each pair of distinct vi and vi+1.

Corollary 4.7. For all s, t, p′(s, t) ≤ (2k − 1)d(s, t).

Proof. p′(s, t) =
∑k−1

i=0 d(vi, vi+1) ≤
∑k−1

i=0 2id(s, t) ≤ (2k − 1)d(s, t).

Theorem 4.8. For fixed constant k ≥ 2, Algorithm 4.4 uses space Õ(n1/k), and
delivers packets correctly with stretch 1+ (2k− 1)(2k − 2) using packet headers of size
o(log2 n). The routing tables can be computed in polynomial time.

Proof. The space bound and termination are established in Lemmas 4.3 and 4.5,
respectively.

While routing from s = v0 to v1, we do not use the name-dependent algorithm,
since we have shortest path pointers within each ball of size n1/k, so the stretch for
that segment is 1. The stretch for the remaining segments, based on the previous
corollary, is (2k − 2) times the stretch factor of 2k− 1 from the Thorup–Zwick name-
dependent scheme.

We note that for the special case when k = 2, our earlier specialized algorithm
(Scheme A) with a stretch of 5 is better than the generalized algorithm of this section,
which has stretch 7 when k = 2.

5. A generalized routing scheme with a polynomial tradeoff. In this sec-
tion we present a universal name-independent compact routing scheme that, for every
k ≥ 2, uses space Õ(k2n

2
k log n) and achieves a stretch of 16k2−8k, with O(log2 n)-bit

headers, on any undirected graph with edge weights whose size is polynomial in n.
The scheme is very similar to Awerbuch and Peleg’s scheme [3]. Like [3], we use an
underlying topology-dependent routing scheme with low stretch and build on top of
that a dictionary to retrieve topology-dependent information. Our dictionary is based
on the prefix matching idea of section 4.

5.1. Preliminaries. Given an undirected network G = (V,E) with n nodes
and polynomial-sized edge weights, we define N̂m(v) as the set of nodes in V that
are within distance m from v ∈ V ; Diam(G) is the ratio of the maximum distance
between any pair of nodes in G to the minimum distance in G; Rad(v,G) is the ratio
of the maximum distance between any node in G and v to the minimum distance in
G; Rad(G) is min{Rad(v,G)|v ∈ V }; and Center(G) is any vertex v ∈ V such that
Rad(v,G) = Rad(G).

A cluster C is a subset of the nodes in the graph, and a cover is a collection of
clusters C = {Ci}i covering all the vertices of G, that is, such that

⋃
i Ci = V . We

extend our definition of Diam(), Rad(), and Center() to clusters C by considering
the subgraph induced by the vertices in C. Finally, these definitions are extended to
covers C by taking the maximum over the values of every cluster in the cover, e.g.,
Rad(C) = max{Rad(C)|C ∈ C}.

Let C be a connected set of vertices, and v = Center(C) its center. We define
Tree(C) as the shortest path tree rooted at v that spans all the vertices in C. Define
Height (T) where T is a tree as the maximum distance from the root of T to any
vertex in T . Notice that by construction, we have Height (Tree(C)) = Rad(C). We
use the following result.

Theorem 5.1 (see Awerbuch and Peleg [3]). Given an integer k > 1, a weighted
graph G = (V,E) with |V | = n, and a distance r such that 1 ≤ r ≤ Diam(G), it is
possible to construct a tree cover T satisfying the following:

1. For every node v ∈ V , there is a tree T ∈ T spanning all the vertices in
N̂r(v).

COMPACT ROUTING WITH NAME INDEPENDENCE 723

2. For every tree T ∈ T , Height (T) ≤ (2k − 1)r.
3. For any v ∈ V , v appears in at most 2kn1/k trees.

We use the same hierarchy of covers as in [3]. For every i = 1, . . . , �log(Diam(G))�,
we apply Theorem 5.1 with r = 2i and construct a tree cover Ti such that (1) for

every v ∈ V , there exists a tree in the cover that includes N̂2i

(v); (2) the height
of such a tree is at most (2k − 1)2i; and (3) every vertex appears in no more than

2kn
1
k trees. For every cluster Ci we define a tree Ti on the nodes of Ci. Then at

every level i = 1, . . . , �log(Diam(G))�, every node v in the network chooses a tree Ti

that contains N̂2i

(v). Following the terminology of [3], we refer to that tree as v’s
home tree at level i. Notice that the existence of such a tree is guaranteed by the
construction.

We use a name-dependent tree-routing scheme that satisfies Lemma 2.2 to route
within trees in the covers. Let Tab(T, x) denote the routing table for x in the shortest
path tree T , and let R(T, x) denote x’s topology-dependent address for that tree.

5.2. Space. Let Σ and the set of functions σ be defined as in section 4. For
every level i = 1, . . . , �log(Diam(G))�, every vertex u stores the following:

1. An identifier for u’s home tree at level i.
2. For every tree Ti in the ith level tree cover that vertex u is in, u stores the

following:
(a) Tab(Ti, u).

(b) For every τ ∈ Σ (notice there are n
1
k choices) and for every j ∈ {0, . . . , k−

1} (k choices), R(Ti, v), where v ∈ Ci is the nearest node such that
σj(〈u〉) = σj(〈v〉) and the (j + 1)st symbol of 〈v〉 is τ if such a node v
exists. It also stores the root of Ti.

Lemma 5.2. The space requirement of our scheme is O(k2n2/k log2 n logDiam(G)).
Proof. Notice first that O(log n) bits are sufficient to identify a tree in a given

level since there are at most 2kn1+ 1
k such trees. Fix some level i of the hierarchy.

The space that level i imposes on any node u in the graph is

O(log n)︸ ︷︷ ︸
(1)

+ 2kn1/k︸ ︷︷ ︸
(2)

(O(log n)︸ ︷︷ ︸
(3)

+n1/kkO(log2 n)︸ ︷︷ ︸
(4)

) = O(k2n2/k log2 n),

where (1) is the length of u’s home tree identifier, (2) accounts for the number of trees
u appears in, (3) is the space needed for the routing table of u within a tree, and (4)
is the space required to specify the prefix table. The total space requirement for any
node in the graph is therefore O(k2n

2
k log2 n log(Diam(G))).

5.3. Routing algorithm. To route from u to v we do the following. For in-
creasing values of i = 1 up to �log(Diam(G))�, u attempts to route to v in its home
tree Ti at level i, until the destination is reached. Notice that success is guaranteed
because in level i = �log(Diam(G))� trees span the entire graph.

To route a message from u to v within cluster Ti we go through a series of nodes
in Ti (this is illustrated in Figure 5). The message always carries the tree-routing
label of the origin u and an identifier of the current tree Ti. From any intermediate
node, say w, in this series (u is the first such node), it is routed to a node in Ti that
matches the largest prefix of the name of the destination v. If no such node exists in
Ti, then the message is returned to u by using the tree-routing label of u (this is when
failure to deliver is detected). Otherwise, the message reaches the destination after
at most k such trips. Notice that while node w might appear in different clusters,

724 ARIAS, COWEN, LAING, RAJARAMAN, AND TAKA

GG

ci

ci+1

Ci

Ci+1

0000

0000

1999

1248

1231

1234

1888

1212

1230

1234

Fig. 5. An illustration of the routing scheme with polynomial tradeoff. The left figure illustrates
how a routing is attempted from node 0000 to node 1234 at level i. On each successive step we route
to another node in the current home cluster Ci, which matches the destination in one more digit—
note that the prefix which matches the destination is marked. Each of these steps may or may not
go through the center of tree ci. In this case, since 1234 is not in the home tree Ci of 0000, this
process eventually fails, and the packet is returned to the source (shown as the dotted line). At the
next level, a larger home tree Ci+1 is used, and this time delivery is successful.

we retrieve the information corresponding to the appropriate tree Ti; we can do this
because an identifier for the current cluster Ti is included in the message.

5.4. Stretch analysis. Let the distance between u and v be d. There exists a
level i ≤ log(2d) such that u’s home tree Ti contains v. When routing within tree Ti,
there are at most k nodes visited, and the distance between nodes is no more than
2Height (Ti). The total distance traveled within Ti is at most

k2Height (Ti) ≤ k2(2k − i)2i (by Theorem 5.1)

≤ k2(2k − 1)2d (since i ≤ log(2d))

= (8k2 − 4k)d.

The total distance traveled in the whole process is at most twice the distance in the
last level visited, i.e., (16k2 − 8k)d. The stretch is therefore 16k2 − 8k. Thus we have
the following.

Theorem 5.3. For every k ≥ 2, there is a universal name-independent com-
pact routing scheme that uses O(k2n

2
k log2 n log(Diam(G))) space, O(log2 n)-bit head-

ers, and achieves stretch 16k2 − 8k, where D is the normalized diameter of the net-
work.

6. A remark on node names. We have thus far assumed that the node names
form an arbitrary permutation of {0, . . . , n− 1}. We argue here that this assumption
can be made without loss of generality. Suppose we have a set of n nodes, each having
a unique name from an arbitrary universe U . We use a hash function h that maps U
to the set {0, . . . , p − 1}, where p ≥ n is a prime. The hash function is chosen such
that (1) it can be computed fast; (2) it requires small space; and (3) the probability of
collision is small. A natural candidate for this hash function is from the class proposed
by Carter and Wegman. We draw a polynomial H from a class of integer polynomials
H of degree O(log n). For any node u, we rename u to name(u) = H(int(u)) mod p,

COMPACT ROUTING WITH NAME INDEPENDENCE 725

where int(u) is the integer representation in Zp. The following lemma, which directly
follows from [8], guarantees low collision probabilities.

Lemma 6.1 (Carter and Wegman [8]). Let m ∈ [p] be an integer. For every
collection of � nodes u1 through u�, we have

Pr [name(u1) = name(u2) = · · · = name(u�) = m] ≤
(

2

p

)�

.

By setting p = Θ(n), we ensure that the number of bits in the new name is
log n + O(1), and that the probability of Ω(logn) nodes mapping to the same name
is inverse-polynomial. Furthermore, the representation of the hash function H only
requires storing O(log n) words of O(log n) bits each at a node, amounting to O(log2 n)
bits at each node.

We now describe how the routing schemes proposed in the paper can be modified
to handle two consequences of the above hashing mechanism: (1) the node names are
chosen from [0,Θ(n)) rather than [0, n); and (2) there may be Θ(logn) collisions for
a given name. We first note that all of our routing schemes easily adapt to the case
where the unique names are drawn from the integers in the interval [0,Θ(n)). In the
new schemes, there will be no routing-table entries containing names from the interval
[0,Θ(n)) that do not exist. The adapted schemes yield the same respective stretch
factors at the cost of a constant-factor increase in space.

In order to accommodate the event that the hashed names of two nodes are the
same, a small modification to the routing tables suffices. Suppose, in our original
scheme with unique names, the table at a node contains an entry for a node with
name X, satisfying a property (e.g., lying within a certain neighborhood). In the
new scheme, the table will contain an entry for all nodes with hashed name X that
satisfy the property; the entries may be distinguished by also storing the original
names of the nodes, or by comparing the result of applying another hash function (or
a series of hash functions, for increasing confidence) to the node names. Specifically,
for Schemes A, B, and C, the primary change will be that a block may have more
than

√
n nodes (but O(

√
n) with high probability), thus increasing the space at each

node by at most a constant factor with high probability. For the schemes of sections 4
and 5, the primary change will be owing to the following: for a node u and a given
k-bit sequence μ, there may be multiple nodes whose prefix matches that of u in all
but the last k bits and has μ in the last k bits. Thus in step 3(b) of section 4.2
and in step 2(b) of section 5.2, the modified scheme will store the hashed names and
the original name (for resolving conflicts) of all such nodes, rather than the unique
node under the earlier uniqueness assumption. Note that the increase in size of the
namespace and the collisions result in the increase in space of O(log n) per node with
high probability, while maintaining the same stretch factor.

7. Concluding remarks. In this paper, we have developed low-stretch schemes
that decouple node names from network topology. An important next step is to study
this problem on fully dynamic networks, where routing tables must be updated online
as nodes and edges arrive and depart from the network.

REFERENCES

[1] I. Abraham, C. Gavoille, and D. Malkhi, Routing with improved communication-space
trade-off, in Proceedings of the 18th International Symposium on Distributed Computing

726 ARIAS, COWEN, LAING, RAJARAMAN, AND TAKA

(DISC), R. Guerraoui, ed., Lecture Notes in Comput. Sci. 3274, Springer, Berlin, 2004,
pp. 305–319.

[2] M. Arias, L. Cowen, K. Laing, R. Rajaraman, and O. Taka, Compact routing with name
independence, in Proceedings of the 15th Annual ACM Symposium on Parallelism in Al-
gorithms and Architectures, ACM, New York, 2003, pp. 184–192.

[3] B. Awerbuch and D. Peleg, Sparse partitions, in Proceedings of the 31st Annual IEEE
Symposium on Foundations of Computer Science, 1990, pp. 503–513.

[4] B. Awerbuch and D. Peleg, Routing with polynomial communication-space trade-off, SIAM
J. Discrete Math., 5 (1992), pp. 151–162.

[5] B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg, Compact distributed data structures
for adaptive network routing, in Proceedings of the 21st ACM Symposium on Theory of
Computing, ACM, New York, 1989, pp. 479–489.

[6] B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg, Improved routing strategies with
succinct tables, J. Algorithms, 11 (1990), pp. 307–341.

[7] I. Abraham, C. Gavoille, D. Malkhi, N. Nisan, and M. Thorup, Compact name-
independent routing with minimum stretch, in Proceedings of the 16th Annual ACM Sym-
posium on Parallelism in Algorithms and Architectures (SPAA 2004), ACM, New York,
2004, pp. 20–24.

[8] J. L. Carter and M. N. Wegman, Universal classes of hash functions, J. Comput. System
Sci., 18 (1979), pp. 143–154.

[9] L. Cowen, Compact routing with minimum stretch, J. Algorithms, 38 (2001), pp. 170–183.
[10] D. Dor, S. Halperin, and U. Zwick, All pairs almost shortest paths, in Proceedings of the

37th Annual IEEE Symposium on Foundations of Computer Science, 1996, pp. 452–461.
[11] T. Eilam, C. Gavoille, and D. Peleg, Compact routing schemes with low stretch factor, in

Proceedings of the 17th Annual ACM Symposium on Principles of Distributed Computing
(PODC), ACM, New York, 1998, pp. 11–20.

[12] P. Fraigniaud and C. Gavoille, Routing in trees, in 28th International Colloquium on Au-
tomata, Languages and Programming (ICALP), F. Orejas, P. G. Spirakis, and J. van
Leeuwen, eds., Lecture Notes in Comput. Sci. 2076, Springer, Berlin, 2001, pp. 757–772.

[13] C. Gavoille and M. Gengler, Space-efficiency of routing schemes of stretch factor three,
J. Parallel Distrib. Comput., 61 (2001), pp. 679–687.

[14] K. Hildrum, J. Kubiatowicz, S. Rao, and B. Zhao, Distributed object location in a dynamic
network, in Proceedings of the 14th Annual ACM Symposium on Parallel Algorithms and
Architectures, ACM, New York, 2002, pp. 41–52.

[15] D. Krioukov, K. Fall, and X. Yang, Compact routing on Internet-like graphs, in Proceedings
of the 23rd Annual Joint Conference of the IEEE Computer and Communications Societies
(Infocom 2004), 2004, pp. 209–219.

[16] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, H. Weather-

spoon, R. Gummadi, S. Rhea, W. Weimer, C. Wells, and B. Zhao, Oceanstore: An
architecture for global-scale persistent storage, SIGPLAN Not., 35 (2000), pp. 190–201.

[17] T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hyper-
cubes, Morgan Kaufmann, San Mateo, CA, 1992.

[18] L. Lovász, On the ratio of optimal integral and fractional covers, Discrete Math., 13 (1975),
pp. 383–390.

[19] D. Peleg, Distance-dependent distributed directories, Inform. Comput., 103 (1993), pp. 270–
298.

[20] C. G. Plaxton, R. Rajaraman, and A. W. Richa, Accessing nearby copies of replicated
objects in a distributed environment, Theory Comput. Syst., 32 (1999), pp. 241–180.

[21] M. Thorup and U. Zwick, Compact routing schemes, in Proceedings of the 13th Annual ACM
Symposium on Parallel Algorithms and Architectures, ACM, New York, 2001, pp. 1–10.

[22] M. Thorup and U. Zwick, Approximate distance oracles, in Proceedings of the 33rd Annual
ACM Symposium on Theory of Computing, ACM, New York, 2001, pp. 183–192.

[23] M. van Steen, F. J. Hauck, and A. S. Tanenbaum, A model for worldwide tracking of dis-
tributed objects, in Proceedings of the 1996 Conference on Telecommunications Information
Networking Architecture (TINA 96), 1996, pp. 203–212.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 727–740

RECONSTRUCTING CHAIN FUNCTIONS IN
GENETIC NETWORKS∗

IRIT GAT-VIKS† , RICHARD M. KARP‡ , RON SHAMIR† , AND RODED SHARAN†

Abstract. The following problems arise in the analysis of biological networks: We have a
boolean function of n variables, each of which has some default value. An experiment fixes the
values of any subset of the variables, the remaining variables assume their default values, and the
function value is the result of the experiment. How many experiments are needed to determine
(reconstruct) the function? How many experiments that involve fixing at most q values are needed?
What are the answers to these questions when an unknown subset of the variables are actually
involved in the function? In the biological context, the variables are genes and the values are gene
expression intensities. An experiment measures the gene levels under conditions that perturb the
values of a subset of the genes. The goal is to reconstruct the particular logic (regulation function)
by which a subset of the genes together regulate one target gene, using few experiments that involve
minor perturbations. We study these questions under the assumption that all functions belong to a
biologically motivated set of so-called chain functions. We give optimal reconstruction schemes for
several scenarios and show their application in reconstructing the regulation of galactose utilization
in yeast.

Key words. network reconstruction, experimental design

AMS subject classifications. 90B10, 62K99, 06E30

DOI. 10.1137/S089548010444376X

1. Introduction. In this paper we study the problem of function reconstruction.
We have a set of N boolean variables. Each variable has a default value, and an
experiment can change (fix to 0 or 1) its value. The order of an experiment is the
number of variables fixed during the experiment. The value of one variable of interest
(the output) is determined by a boolean function of n other variables. The output
of an experiment is the value of the function, where all fixed variables attain their
respective values and the rest attain their default values. The problem of function
reconstruction is to determine this function using a minimum number of experiments
of the smallest possible order.

The motivation to studying the problem arises in molecular biology: The reg-
ulation of biological entities is key to cellular function. The genes are expressed
(transcribed) into mRNAs, which are translated into proteins. The regulatory fac-
tors which control (regulate) gene expression are themselves protein products of other
genes. The result is a complex network of regulatory relations among genes. A ge-
netic network consists of a set of variables that correspond to genes, attaining real
values, called states. The state of a gene indicates the discretized expression level of
the gene. A gene may be regulated by several other genes, implying that its state

∗Received by the editors May 16, 2004; accepted for publication (in revised form) January 24,
2006; published electronically October 4, 2006. The work of the first author was supported by a
Colton fellowship. The second and third authors were supported by a grant from the US-Israel
Binational Science Foundation (BSF). The fourth author was supported by a Fulbright grant and by
NSF ITR grant CCR-0121555. A preliminary version of this paper appeared in Proceedings of the
Ninth Pacific Symposium on Biocomputing [10].

http://www.siam.org/journals/sidma/20-3/44376.html
†School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel (iritg@tau.ac.il,

rshamir@tau.ac.il, roded@tau.ac.il).
‡International Computer Science Institute, 1947 Center St., Berkeley, CA 94704 (karp@icsi.

berkeley.edu).

727

728 I. GAT-VIKS, R. M. KARP, R. SHAMIR, AND R. SHARAN

is a function of the states of its regulating genes, or its regulators. An experiment
involves perturbations such as knocking out certain genes (fixing their states to some
low value) or overexpressing them (fixing their states to some high value) and mea-
suring the expression levels of all other genes. The measurement of gene expression
levels is facilitated by high throughput technologies, such as DNA microarrays (e.g.,
[6]). The order of an experiment is the number of genes that are perturbed. In order
to reconstruct the regulatory relations among genes, we need to infer the set of genes
that cooperate in the regulation of a given gene and the particular logical function
by which this regulation is determined. This paper studies the number and order of
experiments that are needed in order to infer the regulatory function that governs a
specific gene.

A key obstacle in the inference of regulation relations is the large number of
possible solutions and, consequently, the unrealistically large amount of data needed
to identify the right one. A common and simple model for genetic networks is the
boolean model, in which the state of a gene is 0 (off) or 1 (on). The boolean assumption
is a drastic simplification of real biology, yet it captures important features of biological
systems and was frequently used in previous studies [16].

There is a large body of previous work on learning boolean functions from a
random sample of their output values (see [3] for a review). Those studies focus
on devising efficient probably approximately correct (PAC) learning algorithms for
subclasses of boolean functions using a polynomial-size sample. Another body of work
is devoted to exact learning of certain classes of boolean functions using a polynomial
number of queries (see, e.g., [4] and references thereof). For the specific problem of
exact boolean function reconstruction in a genetic network, Akutsu et al. [1] have
shown that the number of experiments (or queries) that are needed for reconstructing
a function of N genes is prohibitive: The lower and upper bounds on the number of
experiments of order N−1 that are needed are Ω(2N−1) and O(N ·2N−1), respectively.
When the function involves only d regulators, the number of required experiments of
order d is still Ω(Nd) and O(N2d), respectively [1].

The inherent complexity of this problem led researchers to seek ways around
this problem. Ideker, Thorson, and Karp [16] studied how to dynamically design
experiments so as to maximize the amount of information extracted. Friedman et al.
[8] used Bayesian networks to reveal parts of the genetic network that are strongly
supported by the data. Tanay and Shamir [24] suggested a method of expanding
a known network core using expression data. Several studies used prior knowledge
about the network structure, or restrictive models of the structure, in order to identify
relevant processes in gene expression data [12, 15, 23, 22].

Recently, a biologically motivated, boolean model of regulation relations based
on chain functions was suggested in order to cope with the problem of function re-
construction in biological context [9]. In a chain function, the state of the regulated
gene depends on the influence of its direct regulator, whose activity may in turn de-
pend on the influence of another regulator, and so on, in a chain of dependencies (we
defer formal definitions to the next section). The class of chain functions has sev-
eral important advantages [9]: These functions reflect common biological regulation
behavior, so many real biological regulatory relations can be elucidated using them
(examples include the SOS response mechanism in E. coli [21] and galactose utilization
in yeast [18]). Moreover, by restricting consideration to chain functions, the number
of candidate functions drops from double exponential to single exponential only.

In this paper we study several computational problems arising when wishing to

RECONSTRUCTING CHAIN FUNCTIONS IN GENETIC NETWORKS 729

reconstruct chain functions using a minimum number of experiments of the smallest
possible order. We address both the question of finding the set of regulators of a chain
function, which is typically much smaller than the entire set of genes, and the question
of reconstructing the function given its regulators. We give optimal reconstruction
schemes for several scenarios and show their application on real data. Our analysis
focuses on the theoretical complexity of reconstructing regulation relations (number
and order of experiments), assuming that experiments provide accurate results and
that the target function can be studied in isolation from the rest of the genetic network.

The paper is organized as follows: Section 2 contains basic definitions related
to chain functions. In section 3 we give worst-case and average-case analyses of the
number of experiments needed in order to reconstruct a chain function. Both low-
order and high-order experimental settings are considered. In section 4 we study the
reconstruction of composite regulation functions that combine several chains. Finally,
in section 5 we describe a biological application of our analysis to reconstruct the
regulation mechanism of galactose utilization in yeast.

2. Chain functions. Chain functions were introduced by Gat-Viks and Shamir
[9]. In the following we define these functions and describe their main properties.
Our presentation differs from the original one to allow succinct description of the
reconstruction schemes in later sections.

Variables, regulators and states. Let U denote the set of all variables in a
network, where |U | = N + 1. These variables correspond to genes, mRNAs, proteins,
or metabolites. Each variable may attain one of two states: 1 or 0. The state of
gene g, denoted by state(g), indicates the discretized expression level of the gene. A
variable normally attains its wild-type state, but perturbations such as gene knockouts
may change its state. We say that a variable g0 ∈ U is regulated by a set S =
{g1, . . . , gn} ⊂ U if state(g0) = fg0(state(gn), . . . , state(g1)) and S is a minimal set
with that property. In that case we say that S is the regulator set of g0, and g0 is
called the regulatee. Associated with each regulator gi is a binary constant yi which
dictates the control property of gi. If yi = 0 then gi is an activator; otherwise gi is a
repressor. This is an intrinsic property of the regulator and is not subject to change.
The control pattern of fg0 is the binary vector (yn, . . . , y1).

Given a certain order gn, . . . , g1 of the regulators, we call gi a predecessor of gj
for i > j and a successor of gk for i < k. We also say that gi is to the left of gj and
to the right of gk. Each regulator transmits a signal to its immediate successor, and
this chain of events enables a signal to propagate from gn to g0 in a manner defined
by a chain function (see Figure 1, top part).

Chain function definition. The chain function model assumes that the func-
tional relations are deterministic. The chain function fg0 on the regulators gn, . . . , g1

determines the state of the regulatee g0.

The function fg0 can be defined using two n-long boolean vectors attributing
activity and influence to each gi. Let a(gi) denote the activity of gi, and let infl(gi)
denote the influence signal from gi to gi−1. The definitions of activity and influence
on the other regulators are recursive: The influence on gn is always 1. gi is active
(a(gi) = 1) iff it exists (state(gi) = 1) and it receives a positive influence from its
predecessor (infl(gi+1) = 1). The influence infl(gi) transmitted from gi to gi−1 is a
xor (⊕) of a(gi) and yi: infl(gi) is 1 if gi is an activator and is itself activated or if
gi is a repressor and is not activated (so that it fails to repress gi−1). Formally,

730 I. GAT-VIKS, R. M. KARP, R. SHAMIR, AND R. SHARAN

Fig. 1. The chain function model. Top: A chain function model. Bottom: An illustration of
a chain function with five regulators. g1, g2, g4 are repressors, and g3, g5 are activators. The state
of all regulators is 1. Influences are indicated on the horizontal arrows. Regulator types and blocks
are indicated below.

a(gi) = infl(gi+1) ∧ state(gi),(1)

infl(gi) = yi ⊕ a(gi).(2)

Finally, the state of the regulatee g0 is simply the influence of g1. We define the output
of fg0 to be state(g0).

A chain function is uniquely determined by its set of regulators, their order, and
the control pattern. For example, if g0 is regulated by (g3, g2, g1) via a chain function
with control pattern 010, then f(1, 1, 1) = 0 and f(0, 1, 1) = 1.

3. Reconstruction of chain functions. In this section we study the question
of uniquely determining the chain function which operates on a known regulatee, using
a minimum number of experiments. We assume throughout that all variable states
in wild type are known. We further assume that all regulator states in wild type are
1, except possibly gn. The latter assumption is motivated by the observation that in
many biological examples, all regulators are expressed in wild type, and the state of
the regulatee is determined by the presence or absence of a metabolite gn. (Examples
include the Trp, lac, and araBAD operons in E. coli [21], the regulation of galactose
utilization [18] in yeast, and human MAPK cascades [17]).

An experiment is defined by a set of variables that are externally perturbed
(knocked-out or overexpressed). The states of the perturbed variables are thus fixed,
and the states of all nonperturbed regulators are assumed to remain at the wild-type
values. The state of the regulatee is determined by the chain function. The order of
an experiment is the number of externally perturbed variables in it.

Our reconstruction algorithms are based on performing various experiments and
observing their effect on the state of the regulatee. The algorithms implicitly assume
that the regulation function is indeed a chain function and do not explicitly test this
property.

We now devise a simple set of equations that characterize the output of a chain
function as a function of the control pattern and the states of the regulators, both

RECONSTRUCTING CHAIN FUNCTIONS IN GENETIC NETWORKS 731

in the wild-type state and in states produced by perturbing some regulators. These
equations are the foundation of all the subsequent reconstruction schemes:

Proposition 1. Let f be a chain function on gn, . . . , g1. If state(gi) = 1 for
1 ≤ i < n, then state(g0) = state(gn) ⊕ (⊕n

i=1yi). For any other state vector, if the

least index of a state-0 regulator is j ≤ n, then fg0(gn, . . . , g1) = ⊕j
i=1yi.

Proof. By definition, a(gn) = state(gn). For i < n, state(gi) = 1 implies that
a(gi) = a(gi+1)⊕ yi+1. It follows by induction that state(g0) = state(gn)⊕ (⊕n

i=1yi).
Similarly, if state(gj) = 0 and state(gi) = 1 for all i < j, it follows by induction that

fg0(gn, . . . , g1) = ⊕j
i=1yi.

Under the above assumptions on regulator states, a chain function can be viewed
as a series of inversion and identity gates, whose input is the state of gn. Each identity
gate corresponds to an activator, whose output is equal to its input. Each inversion
gate corresponds to a repressor, whose output is opposite to its input. The output of
the last gate in the chain is the state of the regulatee.

3.1. Types and blocks. A perturbation is an experiment that changes the state
of a variable to the opposite of its state in wild type. By our assumption on the
regulator states in wild type (all regulator states in wild type are 1, except possibly
gn), the perturbation of a regulator in {gn−1, . . . , g1} is a knockout. For S ⊆ U ,
an S-perturbation is an experiment in which the states of all the variables in S are
perturbed.

Let w be state(g0) in wild type. Let w̄ be the opposite state. For the recon-
struction, we first classify the variables in U into two types: W and W̄ (see Figure 1,
bottom part). A variable is in W (W̄) if its perturbation produces output w (w̄).
Typically, the majority of the genes have type W , since in particular all the genes
that are not part of the chain function are such. By Proposition 1 we have gn ∈ W̄ ,
and gn−1 ∈ W iff state(gn)⊕yn = 0. We call a gene that belongs to W (W̄) a W -gene
(W̄ -gene). Similarly, we call a regulator of type W (W̄) a W -regulator (W̄ -regulator).
For a given gene, we call a successor of type W (W̄) of that gene a W -successor
(W̄ -successor).

The type of a gene can be determined by a single perturbation of the gene. Such
an experiment will be referred to as a typing experiment throughout.

Corollary 2. Given an ordered set of regulators gn, . . . , g1, their control pattern
can be reconstructed using n− 1 typing experiments.

Proof. Perform typing experiments for g1, . . . , gn−1 (by definition gn ∈ W̄). By
Proposition 1, for every 1 < i < n, yi = 1 iff the types of gi and gi−1 differ. Also,
yn = 1 iff either state(gn) = 0 and the types of gn, gn−1 are equal, or state(gn) = 1
and the two types differ. Finally, we can use Proposition 1 to deduce y1.

Any control pattern (yn, . . . , y1) may be separated into blocks of consecutive reg-
ulators by truncating the control pattern after each 1. The first block (rightmost,
ending at g1) has two possible forms: 0 . . . 0 or 0 . . . 01. All other blocks are of the
form 0 . . . 01, so the right boundary of a block corresponds to a regulator gj with
yj = 1, and any other regulator gi in the block has yi = 0.

Lemma 3. Each block contains regulators of a single type, and two adjacent blocks
contain regulators of opposite types.

The proof follows from the fact that the type of gi, i < n differs from the type of
gi−1 iff yi = 1. Thus, we can refer to a block as either a W -block or a W̄ -block, and
the two types of blocks alternate. For convenience, we shall refer to gn as forming a
W̄ -block of its own.

732 I. GAT-VIKS, R. M. KARP, R. SHAMIR, AND R. SHARAN

3.2. Reconstructing the regulator set and the function. Consider a chain
function with control pattern (yn, . . . , y1) and let gj , . . . , gi be a block. Then infl(gi) =

[infl(gj+1) ∧ (
∧j

h=i state(gh))] ⊕ yi. Thus, the effect of the block on the function is
determined by the boolean variable infl(gj+1), by the control pattern, and by the
conjunction of the states of its regulators. Since this conjunction is independent of
the order of occurrence of these genes, no experiment based on perturbing the states
of the genes can determine the order of the genes within the block. In view of this
limitation, we shall aim to find the equivalence class of chain functions as detectable
by perturbation experiments, i.e., our goal is to reconstruct the control pattern, the
set of genes within each block (but not their order), and the ordering of the blocks.
Correspondingly, in the following we will use the term successor of a gene to denote a
regulator that succeeds that gene in the chain and is not a member of its block. For
convenience, we shall refer to gene (in fact, W -genes) that are not regulators of g0 as
predecessors of gn.

The above discussion implies that once we have typed each gene, it remains to
determine, for each pair consisting of a W -gene and a W̄ -gene, which one precedes
the other in the chain. Let kW and kW̄ denote the number of regulators of type W
and W̄ , respectively. Note that kW + kW̄ = n ≤ N , and in fact, typically, n � N as
kW � |W |.

Suppose we perform a {i, k}-perturbation with gi ∈ W and gk ∈ W̄ . If the
result is w, then gk precedes gi. Otherwise, gi precedes gk. A 2-order experiment for
determining the relative order of a W -gene and a W̄ -gene will be called a comparison
throughout.

Proposition 4. Given the set of regulators of a chain function and their types,
kW kW̄ comparisons are necessary and sufficient to reconstruct the function.

Proof. The upper bound follows by comparing every W -regulator with every W̄ -
regulator. The lower bound follows from the fact that, in the special case where every
W̄ -regulator precedes every W -regulator, no set of comparisons can determine the
relative order of a given pair consisting of a W -regulator and a W̄ -regulator, unless it
includes a direct comparison between the pair. Therefore, all such comparisons must
be performed.

Note that the problem of reconstructing a chain function by comparisons, once
the regulators have been typed, can be viewed as a sorting problem: The input is a
list of n elements of two types, such that the set of elements of each type consists
of several equivalence classes, and there is a linear order of all these classes. The
objective is to find the equivalence classes and their order, using only queries that
compare two elements of distinct types. In the special case that each equivalence
class consists of one element, the problem is related1 to the well-studied problem of
matching nuts and bolts [2] and has an optimal Θ(n log n) deterministic solution [19].

We now turn to the question of reconstructing a chain function without prior
knowledge of the identity of its regulators. The discussion above suggests a way to
solve the problem: First, we find the gene types using N typing experiments. Next,
we reconstruct the block structure by performing all possible comparisons between a
W -gene and a W̄ -gene.

A more efficient reconstruction is possible when gn is known. This is often the case
when the chain function models a signal transduction pathway, where gn represents

1The difference between the problem of matching nuts and bolts and our problem is that in our
case we have strict linear order among all the elements and there is no notion of matching between
W -regulators and W̄ -regulators.

RECONSTRUCTING CHAIN FUNCTIONS IN GENETIC NETWORKS 733

a known stimulator of the corresponding biological response. If gn is known, then
since gn ∈ W̄ , all W -regulators can be identified by comparing every W -gene with
gn, using a total of N − kW̄ comparisons. Since every W̄ -gene is a regulator, these
experiments are sufficient to identify all the regulators, and we can apply Proposition
4 to complete the reconstruction in N −kW̄ +kW (kW̄ − 1) comparisons. In summary,
we have the following proposition.

Proposition 5. A chain function can be reconstructed using at most N typing
experiments and kW̄ (N −kW̄) comparisons. Given gn, a chain function can be recon-
structed using at most N − 1 typing experiments and N − n + kW kW̄ comparisons.

We can prove a matching lower bound by generalizing the argument in Proposi-
tion 4.

Proposition 6. At least kW̄ (N − kW̄) comparisons are necessary to reconstruct
a chain function.

Proof. Consider the case where all W̄ -regulators precede the W -regulators. In this
case, no set of comparisons can determine the relative order of a given pair consisting
of a W -gene and a W̄ -gene unless it includes a direct comparison between the pair.
Therefore, all such comparisons must be performed.

Propositions 4 and 5 provide a worst-case analysis. Next, we describe another
reconstruction algorithm, whose expected number of required experiments is lower.
The analysis of the running time is similar to that of quick-sort (cf. [5]) and assumes
that the chain to be reconstructed has W̄ -blocks of bounded size. Denote by Dg the
set of W -successors of g ∈ W̄ in f .

Proposition 7. A chain function with W̄ -blocks of size bounded by d can be
reconstructed using N typing experiments and an expected number of O(Nd log kW̄ +
kW kW̄) comparisons.

Proof.
Algorithm: First, we perform N typing experiments. Next, we apply a random-

ized scheme to reconstruct the chain: Each time we pick a gene g ∈ W̄ at random,
find its successors and their order, and remove g and all its successors from further
consideration. We stop when no W̄ genes are left. In order to find the successors of
g, we first identify the members of Dg using at most N −kW̄ comparisons. Using Dg,
we then reconstruct the part of the chain that spans g and its successors by at most
|Dg|(kW̄ − 1) comparisons, as in Proposition 4.

Complexity: The set of comparisons can be divided into two parts: those that
are required to identify the sets Dg and those required to reconstruct the chain parts
induced by these sets. For the latter, at most kW kW̄ comparisons are needed in total,
since every pair consisting of a W -regulator and a W̄ -regulator is compared at most
once. Thus, it suffices to compute the expectation of the first part. Let T (x) be
this expectation, given that the current W̄ set (i.e., the set of W̄ -genes that were not
removed in previous iterations) contains x elements, where T (0) = 0. For x ≥ 1, with
probability 1

x the qth rightmost element of W̄ is chosen in the current iteration. Hence,
T (x) ≤ 1

x

∑x
q=1(d(N − kW̄) + T (x− q)). By induction, T (x) ≤ d(N − kW̄)(log x+ 1).

Substituting x = kW̄ , we obtain the required bound.
The expected number of experiments improves over the upper bound of Propo-

sition 5 for d < kW̄ , which is the case in many real biological regulations, e.g., the
filamentous-invasion pathway (n = 9, kW̄ = 2, and d = 1, illustrated in [11, Figure
3]), and the HOG signaling pathway (n = 6, kW̄ = 3, and d = 2 [13]) in yeast.

3.3. Using high-order experiments. In this section we show how to improve
the above results when using experiments of order q > 2. The results in this section

734 I. GAT-VIKS, R. M. KARP, R. SHAMIR, AND R. SHARAN

are mainly of theoretical interest, since high-order experiments may not be practical.
Proposition 8. Given the set of n regulators of a chain function, the function

can be reconstructed using O(n
2

q log q) experiments of order at most q ≤ n. This is

optimal up to constant factors for q = Θ(n).
Proof. The number of possible chain functions with n regulators is Θ((log2 e)

n+1n!)
[9]. Since each experiment provides one bit of information, the information lower
bound is Ω(n log n) experiments.

Suppose at first that q = n. Let ni be the number of regulators in block i, where
blocks are indexed in right-to-left order. Our reconstruction algorithm is as follows:
First, we perform n typing experiments. Next, we identify the type of the first block
using one experiment of order n, in which all regulators are perturbed (this way we
perturb also the genes in the first block, and thus its type is identical to the output).
We proceed to reconstruct the blocks one by one, according to their order along the
chain. Note that the type of each block is now known, since the two types alternate.
Suppose we have already reconstructed blocks 1, . . . , i−1. For reconstructing the ith
block we only consider the set of regulators that do not belong to the first i−1 blocks.
Out of this set, let A be the subset of regulators that have the same type as block i,
and let B be the subset of regulators of the opposite type. In order to identify the
members of the ith block we use a binary-search-like procedure: We divide A into
two halves. For each half we perform a perturbation that includes that half and all
regulators in B. If the result is the type of block i, we continue recursively with that
half. Otherwise, we discard it. The search requires O(ni log n) experiments. Thus,
altogether we perform O(n log n) experiments.

When q < n, we use the above algorithm as a component in our reconstruction
scheme, allowing us to reconstruct a subchain of size q within a chain of size n using
O(q log q) experiments of order at most q. Our reconstruction scheme is based on
Proposition 4, which shows that for reconstruction it suffices to compare every W -

regulator with every W̄ -regulator. To this end we form O(n
2

q2) regulator subsets, each

of size at most q, such that every pair consisting of a W -regulator and a W̄ -regulator
appears in one of the subsets. To compute these subsets we form a kW × kW̄ matrix,
whose entries are in 1-1 correspondence with (W, W̄)-regulator pairs. We then cover

this matrix using O(kW kW̄

q2) disjoint submatrices of dimension at most
q/2� × �q/2
,
each identifying a regulator subset of the required size.

Next, we reconstruct the subchain of size q associated with each subset using
O(q log q) experiments of order at most q. After this process, each (W, W̄)-regulator
pair appears in one of the subchains, and thus its relative order has been determined.
This is sufficient in order to computationally reconstruct the chain (as in Proposition

4). Altogether we use O(kW kW̄

q log q) = O(n
2

q log q) experiments for reconstructing
the chain from its regulators.

We now provide a reconstruction scheme for the case that the set of regulators is
not known. Let f be a chain function. For a gene g ∈ W̄ , denote as before by Dg its
set of W -successors in f . A building block in our reconstruction scheme is a method to
efficiently identify the members of Dg using O(|Dg| log q +N/q) experiments of order
at most q. The process is as follows: We partition the W -genes into � N

q−1
 subsets of
size at most q− 1. For each subset R we test whether it contains some successor of g
using an (R ∪ {g})-perturbation, in which g and the subset members are perturbed.
If as a result of the perturbation the output changes to w, then at least one of the
members in R succeeds g. In this case we use standard binary search to identify all
the m successors in R by performing additional O(m log q) experiments of order at

RECONSTRUCTING CHAIN FUNCTIONS IN GENETIC NETWORKS 735

most (
q/2� + 1). Otherwise, all the subset members precede g and we discard R.
Each of the successors of g is discovered exactly once, which gives the required bound.

Proposition 9. For q ≤ n, a chain function can be reconstructed using O(nN/q+
n2 log q/q) experiments of order at most q. For q > n, O(N + n log q) experiments of
order at most q are sufficient.

Proof. The reconstruction is done in three stages. First, we perform N typing
experiments. Second, we discover all W -regulators as follows: For each regulator
b ∈ W̄ we use the scheme described above to identify its successors in W , and re-
move them from further consideration. Each W -regulator is discovered exactly once
and, thus, we need O(kW̄N/q + kW log q) experiments of order at most q altogether.
Last, we reconstruct the chain, given the regulators and their types, in O(n2 log t/t)
experiments, using the method given in Proposition 8, where t = min{q, n}. In total
O(N + kW̄N/q + kW log q + n2 log t/t) experiments are used.

A lower bound on the number of experiments that are required is given in the
following proposition.

Proposition 10. Ω(max{N/q, nN/q2, n logN}) experiments of order at most q
are necessary to reconstruct a chain function.

Proof. We give three different lower bounds, whose union yields the required
result. First, Ω(N/q) experiments are required to identify at least one W̄ -regulator.
Second, Ω(nN/q2) experiments are required to cover every pair of a W - and a W̄ -gene.
Third, the number of possible chain functions is Θ(

(
N
n

)
(log2 e)

n+1n!) [9]. Hence, the
information theoretic lower bound on the reconstruction is Ω(n logN).

Finally, we give an optimal reconstruction scheme when gn is known and q =
�N/2
 + 1.

Proposition 11. In case gn is known, there is an optimal reconstruction scheme
that uses Θ(n logN) experiments of order at most �N/2
 + 1.

Proof. We perform the reconstruction in two stages. In the first stage we discover
the set of regulators and their types. In the second stage we apply Proposition 8
to reconstruct the chain function. To discover the set of regulators we perform a
binary-search-like process as follows: We partition all variables excluding gn and g0

into two halves, H1 and H2. For i = 1, 2 we apply an Hi ∪ {gn}-perturbation. Since
gn is perturbed, all nonregulator effects are masked, and we get the result w iff Hi

contains some W -regulators. Therefore, for each set that gives the results w, we
continue recursively until we reach single genes. In this way we have identified a
subset T of the W -regulators, including all those in the first (rightmost) block. We
now repeat the recursive process on U \ (T ∪ gn ∪ g0), but this time do not include
gn in the perturbations. This process identifies a subset T ′ of the W̄ regulators,
including the first W̄ -block. By repeating these two recursive processes (with and
without including gn in the perturbations) we eventually identify all regulators. The
total effort is O(n logN) since each path that identifies one of the n regulators is a
binary search in N variables and thus takes O(logN) experiments.

4. Combining several chains. In this section we extend the notion of a chain
function to cover common biological examples in which the regulatee state is a boolean
function of several chains. Frequently, a combination of several signals influences the
transcription of a single regulatee via several pathways that carry these signals to the
nucleus, and a regulation function that combines them together. Here, we formalize
this situation by modeling each signal transduction pathway by a chain function, and
letting the outputs of these paths enter a boolean gate.

Define a k-chain function f as a boolean function which is composed of k chain

736 I. GAT-VIKS, R. M. KARP, R. SHAMIR, AND R. SHARAN

functions over disjoint sets of regulators that enter a boolean gate G(f). Let f i be
the ith chain function and let gij denote the jth regulator in f i. The output of the

function is G(infl(g1
1), . . . , infl(gk1)).

In the following we present several biological examples for k-chain functions that
arise in transcriptional regulation in different organisms: The lac operon [21] codes
for lactose utilization enzymes in E. coli. It is under both negative and positive
transcriptional control. In the absence of lactose, lac-repressor protein binds to the
promoter of the lac operon and inhibits transcription. In the absence of glucose,
the level of cAMP in the cell rises, which leads to the activation of CAP, which in
turn promotes transcription of the lac operon. In our formalism, the lac operon is
controlled by a 2-chain function with an AND gate. The chains are f1(g1

2 , g
1
1) =

f1(lactose, lac-repressor), with control pattern 11, and f2(g2
3 , g

2
2 , g

2
1) = f2(glucose,

cAMP, CAP), with control pattern 100. Other examples of 2-chains with AND gates
are the regulation of arginine metabolism and galactose utilization in yeast [18]. A
2-chain with an OR gate regulates lysine biosynthesis pathway enzymes in yeast [18].

These examples motivate us to restrict attention to gates that are either OR or
AND. We first show that we can distinguish between OR and AND gates. We then
show how to reconstruct k-chain functions in the case of OR and later extend our
method to handle AND gates.

Denote the output of f i by Oi. If Oi = 1 in wild type, we call f i a 1-chain
and, otherwise, a 0-chain. A regulator gij is called a 0-regulator (1-regulator) if its
perturbation produces Oi = 0 (Oi = 1). Let k0 (k1) be the number of 0-regulators
(1-regulators) in f . A block is called a 0-block (1-block), if it consists of 0-regulators
(1-regulators).

Lemma 12. Given a k-chain function f with gate G(f) which is either AND or
OR, k ≥ 2, we can determine, using O(N2) experiments of order at most 2, whether
G(f) is an AND gate or an OR gate.

Proof. We perform N typing experiments. If w = 0 and W̄ = ∅, then G(f) is an
AND gate. If w = 1 and W̄ = ∅, then G(f) is an OR gate. Otherwise, W̄ �= ∅. In
this situation the cases of w = 0 and w = 1 are similarly analyzed. We describe only
the former.

If w = 0, we have to differentiate between the case of an OR gate, whose inputs
are all 0-chains, and the case of an AND gate, whose inputs are one 0-chain and (k−1)
1-chains. To this end we perform all comparisons of a W -gene and a W̄ -gene. Let
T be the set of genes g such that the result of a {g, g′}-perturbation is w for every
g′ ∈ W̄ . Then T �= ∅ iff G(f) is an AND gate.

We now study the reconstruction of an OR gate. Let S be the (possibly empty)
set of regulators that reside in one of the first blocks (i.e., the blocks containing
gi1), that are also 1-blocks. We observe that a perturbation of any regulator in S
results in state(g0) = 1 regardless of any other simultaneous perturbations we may
perform. Hence, determining the specific chain to which an element from S belongs is
not possible. Therefore, our reconstruction will be unique up to the ordering within
blocks and up to the assignment of the regulators in S to their chains. The next
lemma handles the case w = 0. The subsequent lemma treats the case w = 1.

Lemma 13. Given a k-chain function f with an OR gate and assuming that
w = 0, we can reconstruct f using N typing experiments and (N−k1)k1 comparisons.

Proof. We perform N typing experiments. Then, for each 1-regulator b, we
perform all possible comparisons, thereby identifying all 0-regulators that succeed b
in its chain. This completes the reconstruction.

RECONSTRUCTING CHAIN FUNCTIONS IN GENETIC NETWORKS 737

Lemma 14. Let f be a k-chain function with an OR gate. Assume that w = 1,
and let r be the number of 1-chains entering the OR gate. Then f can be reconstructed
using O(Nr + Nn) experiments of order at most r + 2.

Proof. First, we determine r, the minimum order of an experiment that will
produce output 0 for f . For i = 1, 2, . . . we perform all possible i-order experiments;
r is determined as the smallest i for which we obtain output 0. In total we perform
O(Nr) experiments. We call the set of perturbed genes in an r-order experiment
which results in output 0, a reset combination.

Next, we reconstruct the 1-chains. Fix an arbitrary reset combination R. For
every a ∈ R we perform a set of experiments of order r+1 as follows: For every reset
combination R′ ⊃ R \ {a} with a /∈ R′, we perturb R′ and in addition each other
gene, one at a time, recording those that produce output 1 as 1-regulators. For every
a, the sets of 1-regulators discovered in these experiments form a linear order under
set inclusion. The 1-regulators that are not common to all these sets are exactly the
1-regulators (that are not in S) of the chain that includes a. For each 0-regulator in
R′ \R our experiments determine the 1-regulators that succeed it in this chain. Thus,
we can infer all the 1-chains. The total number of experiments performed is O(Nk0).

Finally, we reconstruct the 0-chains. To this end we perturb the 1-regulators
in R, thereby deactivating the 1-chains and reducing the problem of reconstructing
the 0-chains to that of reconstructing a (k − r)-chain function with an OR gate and
w = 0 (removing the already discovered regulators of the 1-chains from consideration).
This is done by applying the reconstruction method of Lemma 13 using O(Nk1)
experiments of order at most r + 2. The assignment of 1-regulators in S will remain
uncertain.

Note that for k = 1 the above algorithms will reconstruct a single chain. Indeed,
for w = 0 the algorithm of Lemma 13 coincides with that of section 3, and for w = 1,
applying the algorithm of Lemma 14 we shall discover that r = k = 1. Further note
that for every reconstructed chain we can identify whether its first block is a 1-block
(i.e., contains genes in S). This is simply done by computing for that chain the value
of state(gn) ⊕ (⊕iyi) on its known members and comparing it to the chain’s output.
Last, note that if k is known and r = k, then the order of the experiments that are
required to reconstruct the k-chain is at most r + 1, since f contains no 0-chains.

The reconstruction method for the case of an OR gate can be used for the recon-
struction of an AND gate as well, by exchanging the roles of 0 and 1 in the above
description. This gives rise to the following result:

Theorem 15. A k-chain function with an OR or an AND gate can be recon-
structed using O(Nk) experiments of order at most k+1. The reconstruction requires
Ω(

(
N
k

)
/k) experiments of this order.

Proof. The upper bound follows from Lemmas 12, 13, and 14 and the duality
of AND and OR gates. For the lower bound consider a k-chain function with an
OR gate consisting of k 1-chains, each of which contains a single 0-regulator. Such
a function has a single reset combination, which must be identified in the process of
reconstructing the chain. Since each experiment of order k + 1 can test at most k
combinations, Ω(

(
N
k

)
/k) experiments are required for the reconstruction.

5. A biological application. The methods we presented above can be applied
to reconstruct chain functions from biological data. We describe one such application
to the reconstruction of the yeast galactose regulation function, for which some of the
required perturbations have been performed. We show that one additional experiment
suffices to fully reconstruct the regulation function.

738 I. GAT-VIKS, R. M. KARP, R. SHAMIR, AND R. SHARAN

The galactose utilization in the yeast Saccharomyces cerevisiae [18] occurs in a
biochemical pathway that converts galactose into glucose-6-phosphate. The trans-
porter gene gal2 encodes a protein that transports galactose into the cell. A group of
enzymatic genes, gal1, gal7, gal10, gal5, and gal6, encode the proteins responsible for
galactose conversion. The regulators gal4p, gal3p, and gal80p control the transporter,
the enzymes, and to some extent each other (Xp denotes the protein product of gene
X). In the following, we describe the regulatory mechanism. gal4p is a DNA binding
factor that activates transcription. In the absence of galactose, gal80p binds gal4p and
inhibits its activity. In the presence of galactose in the cell, gal80p binds gal3p. This
association releases gal4p, promoting transcription. This mechanism can be viewed
as a chain function, where f1(g1

4 , g
1
3 , g

1
2 , g

1
1) = f1(galactose, gal3, gal80, gal4), and the

corresponding control pattern is 0110 (see also [9]). The gal7, gal10, and gal1 regu-
latees are also negatively controlled by another chain f2(g2

2 , g
2
1) = f2(glucose,mig1)

with control pattern 01. The two chains are combined by an AND gate (see Fig-
ure 2(A)).

Ideker et al. [14] performed several experiments to interrogate the galactose uti-
lization mechanism. In these experiments glucose was absent from the media. Conse-
quently, the output of f2 was always 1, and hence we shall focus on the reconstruction
of f1 using the experimental data of [14]. Using the discretization procedure employed
by Ideker et al. [14], the measured wild-type levels of gal3, gal80, and gal4 were 1, in
accordance with our model assumption. The wild-type level of galactose was also 1.

Assuming we know the group of four regulators, we need, according to Propo-
sition 4, a total of 4 typing experiments and 3 comparisons (since only gal80 is
of type W) to reconstruct the chain. Notably, all 4 typings and 2 of the 3 com-
parisons2 were performed by Ideker et al. [14] (see Figure 2(B)). Using the same
discretization procedure, the experiments yielded the correct results for all three
regulatees. The results suggest two possible chain functions: f1(g1

4 , g
1
3 , g

1
2 , g

1
1) =

f1(galactose, gal3, gal80, gal4) or f1(g1
4 , g

1
3 , g

1
2 , g

1
1) = f1(galactose, gal80, gal3, gal4),

both with control pattern 0110. The missing experiment is a comparison of gal80 and
gal3. A correct result of this experiment will lead to full and unique reconstruction
of the chain function.

6. Concluding remarks. In this paper we studied the computational problems
arising when wishing to reconstruct regulation relations using a minimum number
of experiments, assuming that the experiments’ results are noiseless. We restricted
attention to common biological relations, called chain functions, and exploited their
special structure in the reconstruction. We also suggested an extension of that model,
which combines several chain functions, and studied some of the same reconstruction
questions for the extended model. On the practical side, we have shown an application
of our reconstruction scheme for inferring the regulation of galactose utilization in
yeast.

The task of designing optimal experimental settings is fundamental in meeting
the great challenge of regulatory network reconstruction. While this task entails
coping with complex interacting regulation functions and noisy biological data, we
chose here to focus on the reconstruction of a single regulation relation of a single
regulatee and assume that the function can be studied in isolation. Hence, upon
any perturbation, none of the other regulators change their states. Another major

2In fact, the gal80Δgal4Δ-gal experiment was of order 3 but allowed the comparison of gal80
and gal4.

RECONSTRUCTING CHAIN FUNCTIONS IN GENETIC NETWORKS 739

Fig. 2. Galactose pathway regulation. (A) The 2-chain function regulating gal1, gal7, and
gal10 transcription. (B) Typing and comparison experiments performed by Ideker et al. [14].

assumption is that the wild-type state of all regulators (except possibly gn) is 1. This
assumption, which is necessary for the analysis (e.g., Lemma 3) is commonly held in
undelayed biological systems, where all the regulators exist in a certain basal level
and the signal can propagate fast (e.g., MAPK systems in unicellular organisms such
as yeast and multicellular organisms including humans, reviewed in [17]). Regulations
that involve production of absent regulators are typically (slow) temporal processes.
Our analysis should be extended in order to deal with such complex regulations and
temporal processes.

This analysis focuses on theoretical complexity of regulation reconstruction, as-
suming perturbation experiments that measure (accurately) only gene states. It is
clear, however, that other experimental techniques (e.g., interaction measurements [7,
20]) might help to constrain the reconstruction and reduce the solution space. In a
practical approach, diverse data sources should be incorporated, and the experiments
should be designed dynamically and take into consideration the experimental noise.
The theoretical analysis here could hopefully serve as a component in such a practical
experimental design.

REFERENCES

[1] T. Akutsu, S. Kuhara, O. Maruyama, and S. Miyano, Identification of genetic networks
by strategic gene disruptions and gene overexpressions under a boolean model, Theoret.
Comput. Sci., 298 (2003), pp. 235–251.

[2] N. Alon, M. Blum, A. Fiat, S. Kannan, M. Naor, and R. Ostrovsky, Matching nuts and
bolts, in Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms,
SIAM, Philadelphia, 1994, pp. 690–696.

[3] M. Anthony, The Sample Complexity and Computational Complexity of Boolean Function
Learning, Tech. Report LSE-CDAM-2002-13, London School of Economics and Political
Science, London, UK, 2002.

[4] N. H. Bshouty, Exact learning Boolean function via the monotone theory, Inform. and Com-
put., 123 (1995), pp. 146–153.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press,
Cambridge, MA, 1990.

740 I. GAT-VIKS, R. M. KARP, R. SHAMIR, AND R. SHARAN

[6] J. Derisi, V. Iyer, and P. Brown, Exploring the metabolic and genetic control of gene ex-
pression on a genomic scale., Science, 282 (1997), pp. 699–705.

[7] A. H. Tong et al., Global mapping of the yeast genetic interaction network, Science, 303
(2004), pp. 808–13.

[8] N. Friedman, M. Linial, I. Nachman, and D. Pe’er, Using Bayesian networks to analyze
expression data, J. Comp. Biol., 7 (2000), pp. 601–620.

[9] I. Gat-Viks and R. Shamir, Chain functions and scoring functions in genetic networks, Bioin-
formatics, 19, Supplement 1 (2003), pp. 108–117.

[10] I. Gat-Viks, R. Shamir, R. M. Karp, and R. Sharan, Reconstructing chain functions in ge-
netic networks, in Proceedings of the Ninth Pacific Symposium on Biocomputing (PSB’04),
2004.

[11] M. C. Gustin, J. Albertyn, M. Alexander, and K. Davenport, Map kinase pathways in
the yeast Saccharomyces cerevisiae, Microbiol. Mol. Biol. Rev., 62 (1998), pp. 1264–1300.

[12] D. Hanisch, A. Zien, R. Zimmer, and T. Lengauer, Co-clustering of biological networks and
gene expression data, Bioinformatics, 18, Supplement 1 (2002), pp. 145–154.

[13] S. Hohmann, Osmotic stress signaling and osmoadaptation in yeasts., Microbiol. Mol. Biol.
Rev., 66 (2002), pp. 300–372.

[14] T. Ideker et al., Integrated genomic and proteomic analyses of systematically perturbed
metabolic network, Science, 292 (2001), pp. 929–933.

[15] T. Ideker, O. Ozier, B. Schwikowski, and A. F. Siegel, Discovering regulatory and signal-
ing circuits in molecular interaction networks., Bioinformatics, 18, Supplement 1 (2002),
pp. 233–240.

[16] T. Ideker, V. Thorsson, and R. M. Karp, Discovery of regulatory interaction through per-
turbation: Inference and experimental design, in Proceedings of Pacific Symposioum in
Biocomputing, 2000, pp. 305–316.

[17] G. L. Johnson and R. Lapadat, Motigen-activated protein kinase pathways mediated by ERK,
JNK, and p38 protein kinases, Science, 298 (2002), pp. 1911–12.

[18] E. W. Jones, J. R. Pringle, and J. R. Broach, eds., The Molecular and Cellular Biology of
the Yeast Saccharomyces: Gene Expression, Cold Spring Harbor Laboratory Press, Cold
Spring Harbor, NY, 1992.

[19] J. Komlós, Y. Ma, and E. Szemerédi, Matching nuts and bolts in o(n logn) time, SIAM J.
Discrete Math., 11 (1998), pp. 347–372.

[20] T. I. Lee et al., Transcriptional regulatory networks in Saccharomyces Cerevisiae, Science,
298 (2002), pp. 799–804.

[21] F. C. Neidhardt, ed., Escherichia coli and Salmonella: Cellular and Molecular Biology, ASM
Press, 1996.

[22] D. Pe’er, A. Regev, and A. Tanay, Minreg: Inferring an active regulator set, Bioinformatics,
18, Supplement 1 (2002), pp. 258–267.

[23] E. Segal, B. Taskar, A. Gasch, N. Friedman, and D. Koller, Rich probabilistic models
for gene expression, Bioinformatics, 17, Supplement 1 (2001), pp. 243–252.

[24] A. Tanay and R. Shamir, Computational expansion of genetic networks, Bioinformatics, 17,
Supplement 1 (2001), pp. 270–278.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 741–747

ON THE STRONG CHROMATIC NUMBER OF GRAPHS∗

MARIA AXENOVICH† AND RYAN MARTIN†

Abstract. The strong chromatic number, χS(G), of an n-vertex graph G is the smallest number
k such that after adding k�n/k�−n isolated vertices to G and considering any partition of the vertices
of the resulting graph into disjoint subsets V1, . . . , V�n/k� of size k each, one can find a proper k-
vertex-coloring of the graph such that each part Vi, i = 1, . . . , �n/k�, contains exactly one vertex
of each color. For any graph G with maximum degree Δ, it is easy to see that χS(G) ≥ Δ + 1.
Recently, Haxell proved that χS(G) ≤ 3Δ− 1. In this paper, we improve this bound for graphs with
large maximum degree. We show that χS(G) ≤ 2Δ if Δ ≥ n/6 and prove that this bound is sharp.

Key words. strong chromatic number, triangle factors, transversals

AMS subject classifications. 05C35, 05C15

DOI. 10.1137/050633056

1. Introduction. An n-vertex graph G is strongly r-colorable if after adding
r�n/r� − n isolated vertices to G and considering any partition of the vertices of
the resulting graph into disjoint subsets V1, . . . , V�n/r� of size r each, one can find a
proper r-vertex-coloring of the graph such that each part Vi, i = 1, . . . , �n/r�, contains
exactly one vertex of each color. In [5], it was shown that if a graph G is strongly
r-colorable, then it is strongly (r + 1)-colorable.

The strong chromatic number of G, denoted χS(G), is the smallest positive integer
k such that G is strongly k-colorable.

The famous “cycle plus triangles” problem of Erdős [4], asking whether χS(C3m)
= 3, was answered affirmatively by Fleischner and Stiebitz [7], [8]; see also [15]. In
general, Alon [1] proved that for any graph G with maximum degree Δ, χS(G) ≤ cΔ,
where c is a very large constant (as the author remarks, c could be reduced to 108).
Recently, Haxell [12] improved the bound by Alon drastically, proving that χS(G) ≤
3Δ − 1 for any graph G with maximum degree Δ.

As far as the lower bound is concerned, it is easy to see that the strong chromatic
number of a graph with maximum degree Δ is at least Δ+1 by taking one of the Vi’s
to be the neighborhood of a vertex of maximum degree.

Let

f(Δ, n) = max{χS(G) : G has maximum degree Δ and order n}.

Therefore, the best known general bounds are

Δ + 1 ≤ f(Δ, n) ≤ 3Δ − 1

for any Δ and any n ≥ Δ + 1.
The following theorem is our main result which gives an exact value for f(Δ, n)

when Δ ≥ n/6. It also provides a minimum degree condition for the existence of a
K3-factor in tripartite graphs.

∗Received by the editors June 3, 2005; accepted for publication (in revised form) April 17, 2006;
published electronically October 4, 2006.

http://www.siam.org/journals/sidma/20-3/63305.html
†Department of Mathematics, Iowa State University, Ames, IA 50011 (axenovic@math.iastate.

edu, rymartin@iastate.edu). The research of the second author was partially supported by NSA
grant H98230-05-1-0257.

741

742 MARIA AXENOVICH AND RYAN MARTIN

Theorem 1.1. Let G be a graph on n vertices with maximum degree Δ, Δ ≥ n/6.
Then χS(G) ≤ 2Δ. Moreover, for any positive integers Δ and n, such that Δ ≤ n/2
there is a graph G0 on n vertices, maximum degree Δ and χS(G0) ≥ 2Δ.

Corollary 1.2. For any positive integer Δ and any n such that n/6 ≤ Δ ≤ n/2,
f(Δ, n) = 2Δ. Moreover, f(Δ, n) ≥ 2Δ when Δ ≤ n/2.

2. Proof of Theorem 1.1. In [7], [8], and other sources, it was noted that for
specific values of n depending on Δ, there is a graph G such that χS(G) ≥ 2Δ. We
observe here that a similar but general construction gives the same bound for arbitrary
n. Let Δ ≤ n/2, and let G0 be a graph formed by a disjoint union of a complete
bipartite graph KΔ,Δ and n − 2Δ isolated vertices. Assume that χS(G0) ≤ 2Δ − 1;
that is, for r = 2Δ − 1, any partition of V (G0) and r�n/r� − n isolated vertices into
t = �n/r� sets of equal sizes, V1, . . . , Vt, allows a proper r-coloring of the resulting
graph such that each Vi uses all the colors. Note that t ≥ �2Δ/(2Δ−1)� = 2. Now, let
A,B be the partite sets of a complete bipartite subgraph of G0 with |A| = |B| = Δ,
and let A ⊆ V1 and B ⊆ V2. Then it is easy to see that it is impossible to find the
desired r-coloring.

Together with the upper bound which we prove below, we shall have that χS(G0)
= 2Δ when n/6 ≤ Δ ≤ n/2.

Now we shall prove the main statement of Theorem 1.1 by providing an upper
bound on the strong chromatic number. Let G be a graph on n vertices with maximum
degree Δ ≥ n/6.

Let Δ ≥ n/2. Then 2Δ ≥ n and we trivially have that χS(G) ≤ n ≤ 2Δ.

Let n/4 ≤ Δ < n/2. Thus, n/2 ≤ 2Δ < n and we have to partition V (G) and
needed isolated vertices arbitrarily into two sets V1 and V2, |V1| = |V2|. Each vertex
in V1 is nonadjacent to at least |V2|/2 vertices in V2 and vice versa. Consider the
bipartite complement G′ of this graph. That is, the edge set of G′ consists of all
pairs {v1, v2}, v1 ∈ V1 and v2 ∈ V2 such that {v1, v2} /∈ E(G). We claim that for
each S ⊆ V1, |N(S)| ≥ |S|. Indeed, assume that there is a set S′ ⊆ V1 for which
|N(S′)| < |S′|. We have then that |S′| > |V1|/2; thus, for any vertex v ∈ V2 \N(S′),
v is adjacent to at most |V1| − |S′| < |V1|/2 vertices, a contradiction. Applying the
König–Hall theorem to G′ gives a perfect matching, which provides a proper coloring
of the original graph, G, with 2Δ colors, each represented exactly once in V1 and
exactly once in V2.

Let n/6 ≤ Δ < n/4. As before, in order to verify that χS(G) ≤ r = 2Δ,
we need to add r�n/r� − n isolated vertices to G and partition the resulting vertex
set arbitrarily into parts V1, V2, V3 of equal sizes. We shall be treating this case by
analyzing and extending partial colorings.

A partial strong coloring of G with respect to V1, V2, V3 is a proper coloring of
a subset of the vertices of G such that no two colored vertices in the same part Vi,
i = 1, 2, 3, have the same color and each color class contains exactly 3 vertices. For
a set S of vertices and a vertex coloring χ, we say that S is partially multicolored by
χ if any two vertices in S, which are colored by χ, have distinct colors. Let χ be a
maximal partial strong coloring of G with respect to V1, V2, V3. We will show that
we can always enlarge such partial strong coloring; i.e., create another partial strong
coloring with more colors, until we color all the vertices. For a color c, we denote
the vertices of this color {c1, c2, c3}, where ci ∈ Vi for i = 1, 2, 3. We fix v1 ∈ V1,
v2 ∈ V2, v3 ∈ V3 such that none of v1, v2, v3 are colored by χ. For i = 1, 2, 3, define
the following set:

ON THE STRONG CHROMATIC NUMBER OF GRAPHS 743

Xi
def
= {u ∈ Vi : vi is not adjacent to a vertex of color χ(u)}
∪ {u ∈ Vi : u is not colored by χ}.

Observe that any colored vertex in Xi can be replaced by vi, i = 1, 2, 3, to create
another strong partial coloring. Note also that

|Xi| ≥ |Vi| − deg(vi) + ti ≥ Δ, i = 1, 2, 3,

where ti is the number of neighbors of vi in {v1, v2, v3}.
To simplify the notation, we shall assume that no color of χ is labeled by x, v, or

w, we reserve xi or wi to denote a vertex in Xi (it might be colored or not colored),
and vi are the vertices fixed above. We shall write z ∼ y, z
∼ y if zy ∈ E(G),
zy /∈ E(G), respectively. For disjoint subsets S1, S2 of vertices of G and a vertex z,
z /∈ S1, we write S1 ∼ S2 if each vertex in S1 is adjacent to all vertices in S2, S1
∼ S2

if there are no edges between S1 and S2, and z ∼ S1, z
∼ S1 if {z} ∼ S1, {z}
∼ S1,
respectively.

To start the proof, we give two lemmas which allow us either to enlarge χ or to
replace χ with another partial strong coloring such that some three specific vertices
become uncolored and the number of colors remains the same.

Lemma 2.1. Let xi ∈ Xi, i = 1, 2, 3. If {x1, x2, x3} is partially multicolored,
then there is a strong partial coloring with as many color classes as χ and with xi’s
being uncolored.

Proof. Suppose each xi, i = 1, 2, 3, is colored; i.e., x1 = a1, x2 = b2, x3 = c3
with distinct colors a, b, c. Replace color classes a, b, and c with new color classes
{v1, a2, a3}, {b1, v2, b3}, and {c1, c2, v3}; see Figure 1.

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

a

b

c

1

2

3

v

v

v

1

2

3

V

V

V

1

2

3

a

a

b

b

c

c

11

2 2

3 3

Fig. 1. Color switches for Lemma 2.1.

Now, suppose exactly one xi is uncolored, without loss of generality, x1 = a1,
x2 = b2, and x3 is uncolored. Replace color classes a and b with new color classes
{v1, a2, a3}, {b1, v2, b3}. Suppose exactly one xi is colored, without loss of generality,
x1 = a1, and x2, x3 are uncolored. Replace color class a with the new color class
{v1, a2, a3}. Each case makes {x1, x2, x3} uncolored.

Lemma 2.2.

(1) If there is a set {x1, x2, x3}, with xi ∈ Xi, i = 1, 2, 3, which induces an
independent set and is partially multicolored, then χ can be enlarged.

(2) If there is a set {xi, x
′
i, xj , xk}, with xi, x

′
i ∈ Xi, xj ∈ Xj, xk ∈ Xk, {i, j, k} =

{1, 2, 3} such that {xj , xk} is partially multicolored, and both {xi, xj , xk} and
{x′

i, xj , xk} induce independent sets, then χ can be enlarged.
(3) Let a set {x1, x2, x3}, with xi ∈ Xi, i = 1, 2, 3, induce an independent set

and the set {v1, v2, v3} induce neither an independent set nor a clique. Then
either χ can be enlarged or one can find another partial strong coloring with
as many color classes as in χ and with three uncolored vertices x′

i ∈ Xi,
i = 1, 2, 3, that induce a K3.

744 MARIA AXENOVICH AND RYAN MARTIN

Proof. (1) By Lemma 2.1 there is a partial strong coloring with as many color
classes as in χ and such that x1, x2, x3 are uncolored. We can give these vertices a
new color, thus enlarging the coloring.

(2) If either {xi, xj , xk} or {x′
i, xj , xk} is partially multicolored then we can

use (1); otherwise assume, without loss of generality, that i = 1, j = 2, k = 3
and x1 = a1, x

′
1 = b1, x2 = b2, x3 = a3 for distinct colors a, b. Consider the follow-

ing sets of vertices: {v1, b2, a3}, {b1, v2, b3}, and {a1, a2, v3}. They are independent
because of the definition of Xi’s, i = 1, 2, 3. We can color vertices in each of these
sets with the same new color, which replaces color classes a, b and saturates vertices
{v1, v2, v3}, thus enlarging χ.

(3) We can assume, without loss of generality, that v1 ∼ v2 and v2
∼ v3.

Case 1. χ(x1) = χ(x2) = χ(x3) = a. Replace the color class a with two new color
classes, {x1, v2, v3} and {v1, x2, x3}, thus enlarging χ.

Case 2. χ(x2) = χ(x3) = a. If x1 is not colored by χ, replace color class a with
two new color classes: {a1, v2, v3} and {x1, x2, x3}. If x1 is colored b, replace color
classes a and b with the following three new color classes: {a1, v2, v3}, {v1, b2, b3},
{x1, x2, x3}. This enlarges χ.

Case 3. χ(x1) = χ(x2) = a. If x3 ∼ {v1, v2}, then replace x3 with v3 in its
color class if x3 is colored by χ. Then v1, v2, x3 are three uncolored vertices inducing
a clique. Let {x′

1, x
′
2, x

′
3} = {v1, v2, x3}. If x3
∼ v1, then replace x3 by v3 in its

color class (if x3 is colored) and replace a color class a with two new color classes,
{v1, x2, x3}, {x1, v2, a3}, thus enlarging χ. If x3
∼ v2, then replace x1 by v1 in
its color class, replace x3 by v3 in its color class (if x3 is colored), and give a new
color to the independent set {x1, v2, x3}, thus enlarging χ. Note that the case when
χ(x1) = χ(x3) = a is symmetric.

Case 4. {x1, x2, x3} is partially multicolored. This is part (1) of this lemma.

Next, we consider three cases depending on how many edges the set {v1, v2, v3}
induces in G. We shall greedily choose appropriate xi ∈ Xi, i = 1, 2, 3, and enlarge
the coloring. The proof begins with Case 1, where {v1, v2, v3} induces three edges.
In this case, the coloring can be enlarged. In Case 2, {v1, v2, v3} induces two edges,
without loss of generality v2
∼ v3, and either the coloring can be enlarged or another
coloring with the same number of colors can be found so that there are three pairwise
adjacent uncolored vertices reducing the analysis to Case 1. Finally, in Case 3 there
is only one edge, without loss of generality v1v2, induced by {v1, v2, v3}. In this case,
either the coloring can be enlarged or we can find a coloring that puts us in Case 2
or Case 1. See Figure 2.

��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������

Case 2

��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������

Case 3Case 1

v

v

v

1

2

3

V

V

V

1

2

3

V

V

V

1

2

3

v

v

v

1

2

3

V

V

V

1

2

3

v

v

v

1

2

3

Fig. 2. Cases 1, 2, 3.

In Cases 1 and 2 we shall need the following parameter:

q
def
= max{|N(x) ∩Xj | : x ∈ Xi; i
= j with i, j ∈ {1, 2, 3}}.

ON THE STRONG CHROMATIC NUMBER OF GRAPHS 745

Case 1: v1 ∼ v2, v1 ∼ v3 and v2 ∼ v3. We have |Xi| ≥ |Vi| − (deg(vi) − 2) ≥
Δ + 2 for i = 1, 2, 3. Without loss of generality, assume that q = |N(x1) ∩ X2|
for x1 ∈ X1. Let x2 ∈ X2 \ N(x1) be a vertex not of color χ(x1). Consider S =
X3 \(N(x1) ∪N(x2)). By the choice of x1, |S| ≥ |X3|−(Δ−q)−q ≥ (Δ+2)−Δ = 2;
thus there are two vertices x3, x

′
3 ∈ X3 nonadjacent to both x1 and x2. Therefore,

Lemma 2.2 (2) can be applied to the four vertices x1, x2, x3, x
′
3 to enlarge the coloring.

Case 2: v1 ∼ v2, v1 ∼ v3 and v2
∼ v3. In this case, |X1| ≥ Δ+2 and |X2|, |X3| ≥
Δ+1. Let q = |N(xi)∩Xj |, xi ∈ Xi, and let k ∈ {1, 2, 3}\{i, j}. Let xj ∈ Xj \N(xi),
and let xk ∈ Xk \ (N(xi)∪N(xj)). Note that such xj and xk exist since |Xj | ≥ Δ+1
and |Xk \ (N(xi) ∪N(xj))| ≥ Δ + 1 − q − (Δ − q) ≥ 1.

Therefore, we can apply Lemma 2.2 (3) to an independent set {xi, xj , xk}. This
either enlarges χ or reduces Case 2 to Case 1.

Case 3: v1 ∼ v2, v1
∼ v3 and v2
∼ v3. We show that in each of the Cases 3.1–3.3
one can enlarge the coloring, either directly or by finding a coloring with the same
number of colors that satisfies either the conditions of Case 2 or the conditions of
Case 1. These subcases are arranged according to the presence of specific paths in
X1 ∪X2 ∪X3; see Figure 3.

��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������

Case 3.3

��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������

Case 3.2Case 3.1

V

V

V

1

2

3

v

v

v

1

2

3

a

a

1

2

V

V

V

1

2

3

v

v

v

1

2

3

V

V

V

1

2

3

v

v

v

1

2

3

Fig. 3. Subcases of Case 3.

Case 3.1. There is no path with three vertices w1, w2, w3; wi ∈ Xi, i = 1, 2, 3.
We have that |X1|, |X2| ≥ Δ+1 and |X3| ≥ Δ. Let Gi,j be the bipartite subgraph

of G induced by the edges of G between Xi and Xj , with i
= j and i, j ∈ {1, 2, 3}.
Note that Gi,j = Gj,i. Moreover, the distinct graphs Gi,j are pairwise vertex-disjoint.
If one of Gi,j has a nonedge xi
∼ xj , then for any xk ∈ Xk, k ∈ {1, 2, 3} \ {xi, xj},
{x1, x2, x3} is an independent set. Thus, we can assume that each Gi,j is a complete
bipartite graph. It is easy to see that in this case there is also an independent set
{x1, x2, x3}, xi ∈ Xi, i = 1, 2, 3. Now, we can apply Lemma 2.2 (3) to {x1, x2, x3}
and either enlarge the coloring or reduce the analysis to Case 1.

Case 3.2. There is a path P with three vertices w1, w2, w3, wi ∈ Xi, i = 1, 2, 3,
such that either the vertices of P are partially multicolored or the middle vertex of P
is in X1 ∪X2.

If P is partially multicolored, we can apply Lemma 2.1 immediately to obtain a
partial strong coloring with as many colors as χ and with vertices of P being uncolored.
We can now choose vi = wi, i = 1, 2, 3, and use Case 2 or Case 1.

If P has repeated colors on its vertices, these can be only endvertices of P . With-
out loss of generality, let the midpoint of P be w1 ∈ X1, and let a2 = w2, a3 = w3

be the endpoints of P . If w1 is not colored, replace color class a with an independent
set {a1, v2, v3}. If w1 has color b, then, in addition, replace the color class b with an
independent set {v1, b2, b3}. This uncolors w1, w2, w3 and brings us to Case 2.

Case 3.3. There is a path (w1, w3, w2) with wi ∈ Xi for i = 1, 2, 3 and w1, w2 of
the same color. Moreover, there are no paths satisfying the conditions of Case 3.2.

Note that there is no independent set {x1, x2, x3}, xi ∈ Xi; otherwise we can

746 MARIA AXENOVICH AND RYAN MARTIN

either enlarge the coloring or reduce the analysis to Case 1 by Lemma 2.2 (3). Note
also that if x1 ∼ x2, xi ∈ Xi, i = 1, 2, then {x1, x2}
∼ X3; otherwise it is Case 3.2.
Therefore, we have that the bipartite subgraph of G with parts X1, X2 induces one
nontrivial connected component F which must be a complete bipartite graph. Since
vi ∈ Xi, i = 1, 2, 3, and v1 ∼ v2, v1, v2 ∈ V (F). Let B1 ⊆ X1, B2 ⊆ X2 be the partite
sets of F . Let Ai = Xi \ Bi, i = 1, 2. Then we have that B1 ∼ B2, A1 ∪ A2 ∼ X3,
A1
∼ A2. Then, in particular, we have that ai ∈ Ai, i = 1, 2, and |A1| = |A2| = 1;
otherwise we shall find a path satisfying Case 3.2. Since |X1|, |X2| ≥ Δ + 1, we have
that |B1| = |B2| = Δ. Therefore, we can conclude that |X1| = |X2| = Δ + 1 and
|X3| = Δ.

Claim. The vertices v1, v2, v3 are the only uncolored vertices and every color class
other than a has exactly one member in X1 ∪X2.

Proof of claim. Let b be a color used by χ, b
= a, not present on vertices of X1.
N(v2) = B1, so v2
∼ b1 and v2
∼ b3. This implies that b2 ∈ X2. Thus, any color b,
b
= a, is used on some vertex in X1 ∪X2.

Let t be the number of uncolored vertices in each Vi, i = 1, 2, 3, i.e., the number of
color classes in χ is 2Δ−t. The fact that each color class other than a contains at least
one member of X1 ∪X2 and a contains two such members gives that |X1| + |X2| ≥
(2Δ−t+1)+2t. Here, the expression in parenthesis gives the lower bound on number
of colored vertices in X1 and X2 and 2t is the number of uncolored vertices in X1

and X2. Because |X1|+ |X2| = 2Δ + 2, we have that t = 1. As a result, every vertex
other than v1, v2, v3 is colored and every color class other than a contains exactly one
vertex from X1 ∪X2.

By claim, there are 2Δ − 2 colors different from a in χ. Let ν be the number
of neighbors of v3 colored differently than a. Since v3 ∼ {a1, a2}, we have that
deg(v3) ≥ ν + 2. For a color c, c
= a, the conditions v3
∼ c1 and v3
∼ c2 imply that
c3 ∈ X3. Using also the fact that v3 ∈ X3, we have that |X3| ≥ (2Δ − 2 − ν) + 1.
Since |X3| = Δ, we have that (2Δ − 2 − ν) + 1 ≤ Δ, thus ν ≥ Δ − 1. Therefore,
deg(v3) ≥ ν + 2 ≥ Δ + 1, a contradiction.

This concludes Case 3.3, and the proof of Theorem 1.1.

3. Concluding remarks. It should be noted that Theorem 1.1 is equivalent to
the following.

Corollary 3.1. Let G be a tripartite graph with parts of size n each. If the
minimum degree of G is at least 3n/2 then G has a K3-factor.

This result provides another sufficient condition for the existence of K3-factors.
For other results in this area, see, for example, [3, 11, 2, 6, 13, 14, 9]. It also came to
author’s attention after this paper was submitted that this problem has been consid-
ered independently in [10] by treating r-factors in multipartite graphs under maximum
degree conditions.

Acknowledgments. The authors are indebted to anonymous referees for their
careful work. They are especially thankful to a referee who provided Lemma 2.2 (3),
which helped shorten the proofs.

REFERENCES

[1] N. Alon, The strong chromatic number of a graph, Random Structures Algorithms, 3 (1992),
pp. 1–7.

[2] N. Alon and R. Yuster, H-factors in dense graphs, J. Combin. Theory Ser. B, 66 (1996), pp.
269–282.

ON THE STRONG CHROMATIC NUMBER OF GRAPHS 747

[3] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta
Math. Acad. Sci. Hungar., 14 (1963), pp. 423–439.

[4] P. Erdős, On some of my favourite problems in graph theory and block designs, Matematiche
(Catania), 45 (1990), pp. 61–73.

[5] M. R. Fellows, Transversals of vertex partitions in graphs, SIAM J. Discrete Math., 3 (1990),
pp. 206–215.

[6] E. Fischer, Variants of the Hajnal-Szemerédi theorem, J. Graph Theory, 31 (1999), pp. 275–
282.

[7] H. Fleischner and M. Stiebitz, A solution to a colouring problem of P. Erdős, Discrete
Math., 101 (1992), pp. 39–48.

[8] H. Fleischner and M. Stiebitz, Some remarks on the cycle plus triangles problem, in The
Mathematics of Paul Erdős, II, Algorithms Combin. 14, Springer, Berlin, 1997, pp. 136–
142.

[9] R. Johansson, Triangle factors in a balanced blown-up triangle, Discrete Math., 211 (2000),
pp. 249–254.

[10] A. Johansson, R. Johansson, and K. Markström, Factors of r-Partite Graphs, personal
communication.

[11] A. Hajnal and E. Szemerédi, Proof of a conjecture of P. Erdős, in Combinatorial Theory and
Its Applications, II (Balatonfüred, 1969), North-Holland, Amsterdam, 1970, pp. 601–623.

[12] P. E. Haxell, On the strong chromatic number, Combin. Probab. Comput., 13 (2004), pp.
857–865.

[13] Cs. Magyar and R. Martin, Tripartite version of the Corrádi-Hajnal theorem, Discrete Math.,
254 (2002), pp. 289–308.

[14] R. Martin and E. Szemerédi, Quadripartite version of the Hajnal-Szemerédi theorem, Dis-
crete Math., to appear.

[15] H. Sachs, Elementary proof of the cycle-plus-triangles theorem, in Combinatorics, Paul Erdős
Is Eighty, Vol. 1, Bolyai Soc. Math. Stud., János Bolyai Math. Soc., Budapest, 1993, pp.
347–359.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 748–768

APPROXIMATION ALGORITHMS FOR RECTANGLE STABBING
AND INTERVAL STABBING PROBLEMS∗

SOFIA KOVALEVA† AND FRITS C. R. SPIEKSMA‡

Abstract. In the weighted rectangle stabbing problem we are given a grid in R
2 consisting of

columns and rows each having a positive integral weight, and a set of closed axis-parallel rectangles
each having a positive integral demand. The rectangles are placed arbitrarily in the grid with the
only assumption being that each rectangle is intersected by at least one column or row. The objective
is to find a minimum-weight (multi)set of columns and rows of the grid so that for each rectangle
the total multiplicity of selected columns and rows stabbing it is at least its demand. A special case
of this problem, called the interval stabbing problem, arises when each rectangle is intersected by
exactly one row. We describe an algorithm called STAB, which is shown to be a constant-factor
approximation algorithm for different variants of this stabbing problem.

Key words. rectangle stabbing, approximation algorithms, combinatorial optimization

AMS subject classifications. 68W25, 68R05, 90C27

DOI. 10.1137/S089548010444273X

1. Introduction. The weighted rectangle stabbing problem (WRSP) can be de-
scribed as follows: given are a grid in R

2 consisting of columns and rows each having
a positive integral weight, and a set of closed axis-parallel rectangles each having a
positive integral demand. The rectangles are placed arbitrarily in the grid with the
only assumption being that each rectangle is intersected by at least one column or
row. The objective is to find a minimum-weight (multi)set of columns and rows of
the grid so that for each rectangle the total multiplicity of selected columns and rows
stabbing this rectangle equals at least its demand. (A column or row is said to stab
a rectangle if it intersects it.)

A special case of the WRSP is the case where each rectangle is intersected by
exactly one row; we will refer to the resulting problem as the weighted interval stabbing
problem (WISP), or ISP in the case of unit weights (see Figure 1 for an example of
an instance of the ISP).

Fig. 1. An instance of ISP with unit demands. The rectangles (or intervals in this case) are
in grey; the columns and row in black constitute a feasible solution.

∗Received by the editors March 31, 2004; accepted for publication (in revised form) August 16,
2005; published electronically October 12, 2006. This work grew out of the Ph.D. thesis [7]; a pre-
liminary version of this paper appeared in the Proceedings of the 12th Annual European Symposium
on Algorithms [10]. This research was supported by EU-grant APPOL, IST 2001-30027.

http://www.siam.org/journals/sidma/20-3/44273.html
†Corresponding author. Department of Quantitative Economics, Maastricht University, P.O. Box

616, NL-6200 MD Maastricht, The Netherlands (sonja.kovaleva@mail.com).
‡Department of Applied Economics, Katholieke Universiteit Leuven, Naamsestraat 69, B-3000,

Leuven, Belgium (frits.spieksma@econ.kuleuven.be).

748

APPROXIMATION ALGORITHMS FOR STABBING PROBLEMS 749

Motivation. Although at first sight the WRSP may seem rather specific, it is
not difficult to see that the following two problems can be reduced to WRSP.

• Solving special integer programming problems. The following type of inte-
ger linear programming problem can be reformulated as instances of WRSP:
minimize{wx| (B|C)x ≥ b, x ∈ Z

l}, where B and C are both 0,1-matrices
with consecutive 1’s in the rows (so-called interval matrices; see, e.g., Schri-
jver [11]), b ∈ Z

n
+, w ∈ Z

l
+. Indeed, construct a grid which has a column for

each column in B and a row for each column in C. For each row i of matrix
B|C, draw a rectangle i such that it intersects only the columns and rows
of the grid corresponding to the positions of 1’s in row i. Observe that this
construction is possible since B and C have consecutive 1’s in the rows. To
complete the construction, assign demand bi to each rectangle i and a cor-
responding weight wj to each column and row of the grid. Let the decision
variables x describe the multiplicities of the columns and rows of the grid.
In this way we have obtained an instance of WRSP. In other words, integer
programming problems where the columns of the constraint matrix A can be
permuted such that A = (B|C), with B and C each being an interval matrix,
are special cases of WRSP.

• Stabbing geometric figures in the plane. Given a set of arbitrary connected
closed geometric sets in the plane, use a minimum number of straight lines
of two given directions to stab each of these sets at least once. Indeed,
by introducing a new coordinate system specified by the two directions and
by replacing each closed connected set by a closed rectangle defined by the
projections of the set to the new coordinate axes, we obtain an instance of the
problem of stabbing rectangles using a minimum number of axis-parallel lines.
More specifically, we define a grid whose rows and columns are axis-parallel
lines containing the rectangles’ edges. We can restrict attention to those lines
since any axis-parallel line stabbing some set of rectangles can be replaced
by a line stabbing this set and containing a rectangle’s edge. Therefore,
the problem of stabbing the rectangles with axis-parallel lines reduces to the
problem of stabbing them with the rows and columns of the grid.

Literature. The WRSP and its special case WISP have already received at-
tention in the literature. Motivated by an application in parallel processing, Gaur,
Ibaraki, and Krishnamurti [3] present a 2-approximation algorithm for the WRSP
with unit weights and demands, which admits an easy generalization to arbitrary
weights and demands. Furthermore, Hassin and Megiddo [4] (mentioning military
and medical applications) study a number of special cases of the problem of stabbing
geometric figures in R

2 by a minimum number of straight lines. In particular, they
present a 2-approximation algorithm for the task of stabbing connected figures of the
same shape and size with horizontal and vertical lines. Moreover, they study the
case of stabbing horizontal line segments of length K, whose endpoints have integral
x-coordinates, with a minimum number of horizontal and vertical lines, and give a
2 − 1

K -approximation algorithm for this problem. In our setting this corresponds to
the ISP with unit demands, where each rectangle in the input is intersected by exactly
K columns. Finally, Cǎlinescu et al. [2], mentioning applications in embedded sensor
networks, show that the problem of separating n points in the plane with a minimum
number of axis-parallel lines is a special case of the unweighted rectangle stabbing
problem.

Concerning computational complexity, a special case of ISP where each rectangle
is stabbed by at most two columns is shown to be APX-hard in [9].

750 SOFIA KOVALEVA AND FRITS C. R. SPIEKSMA

Our results. We present here an approximation algorithm called STAB for dif-
ferent variants of WISP (see, e.g., Vazirani [12] for an overview on approximation
algorithms). First, we show that STAB is a 1

(1−(1−1/k)k)
-approximation algorithm

for ISPk, the variant of ISP where each row intersects at most k rectangles (e.g., the
instance depicted in Figure 1 is an instance of ISP3). Observe that STAB is a 4

3 -
approximation algorithm for the case k = 2, and that STAB is an e

e−1 -approximation
algorithm for the case where the number of rectangles sharing a row is unlimited
(k = ∞). Thus, STAB improves upon the results described in Hassin and Megiddo [4]
(for K ≥ 3) and does not impose any restrictions on the number of columns inter-
secting rectangles. Second, we show that STAB is an e

e−1 -approximation algorithm
for the weighted case of ISP∞, i.e., the case where the columns and the rows of the
grid have arbitrary positive integral weights. Third, we state here that the algo-
rithm described by Gaur, Ibaraki, and Krishnamurti [3] can be generalized to yield
a q+1

q -approximation algorithm for WRSP where the demand of each rectangle is
bounded from below by an integer q. Observe that this provides a 2-approximation
algorithm for the WRSP described in the introduction, where q = 1. Thus, this is
an improvement upon the approximation ratio of the algorithm of Gaur, Ibaraki, and
Krishnamurti [3] for instances with a lower bound on the rectangles’ demands that is
larger than 1. For the proof of this result, we refer to Kovaleva [7].

Our algorithms are based on rounding the linear programming relaxation of an
integer programming formulation in an interesting way. We use the following property
present in our formulation: The variables can be partitioned into two sets such that
when the values of one set are fixed, one can compute the optimal values of the
other variables in polynomial time, and vice versa. Next, we consider different ways
of rounding one set of variables and compute each time the optimal values of the
remaining variables, while keeping the best solution.

We also show that there exist instances of ISP2 and ISP∞ (see section 3) and
WRSP (see [7]) for which the ratio between the values of a natural integer linear pro-
gramming (ILP) formulation and its linear programming relaxation (LP-relaxation)
is equal (or arbitrarily close) to the obtained approximation ratios. This suggests that
these approximation ratios are unlikely to be improved by an LP-rounding algorithm
based on the natural ILP formulation.

2. Preliminaries. Let us formalize the definition of WRSP. Let the grid in the
input consist of t columns and m rows, numbered consecutively from left to right and
from bottom to top, with positive weight wc (vr) attached to each column c (row r).
Further, we are given n rectangles such that rectangle i has demand di ∈ Z+ and is
specified by leftmost column li, rightmost column ri, top row ti, and bottom row bi.

Let us give a natural ILP formulation of WRSP. In this paper we use notation
[a : b] for the set of integers {a, a + 1, . . . , b}. The decision variables yc, zr ∈ Z+,
c ∈ [1 : t], r ∈ [1 : m], denote the multiplicities of column c and row r, respectively.

Minimize
m∑
r=1

vrzr +

t∑
c=1

wcyc(1)

subject to
∑

r∈[bi:ti]

zr +
∑

c∈[li:ri]

yc ≥ di ∀i ∈ [1 : n],(2)

zr, yc ∈ Z
1
+ ∀r, c.(3)

APPROXIMATION ALGORITHMS FOR STABBING PROBLEMS 751

In a vector notation this can be represented as

Minimize vz + wy(4)

subject to Bz + Cy ≥ d,(5)

z ∈ Z
m
+ , y ∈ Z

t
+,(6)

where B ∈ {0, 1}n×m and C ∈ {0, 1}n×t are the constraint matrices of inequalities (2).
The linear programming relaxation is obtained by replacing the integrality constraints
(6) by the nonnegativity constraints z ∈ R

m
+ , y ∈ R

t
+.

For an instance I of WRSP and a vector a ∈ Z
n, we introduce two auxiliary ILP

problems:

IPz(I, a):
(7)

Minimize vz
subject to Bz ≥ a,

z ∈ Z
m
+ .

IPy(I, a):
(8)

Minimize wy
subject to Cy ≥ a,

y ∈ Z
t
+.

Lemma 2.1. For any a ∈ Z
n, the LP-relaxation of each of the problems IPz(I, a)

and IPy(I, a) is integral.
Proof. As was previously observed in [3], matrices B and C have a so-called

consecutive 1’s property. This implies that these matrices are totally unimodular
(see, e.g., Schrijver [11]), which implies the lemma.

Corollary 2.2. The optimum value of IPz(I, a) (IPy(I, a)) is smaller than or
equal to the value of any feasible solution to its LP-relaxation.

Corollary 2.3. The problem IPz(I, a) (IPy(I, a)) can be solved in polynomial
time. Its optimal solution coincides with that of its LP-relaxation.

In fact, the special structure of IPz(I, a) and IPy(I, a) allows us to solve it via
a minimum cost flow algorithm: Let MCF (p, q) denote the time needed to solve the
minimum cost flow problem on a network with p nodes and q arcs. A proof of the
following lemma can also be found in Veinott and Wagner [13].

Lemma 2.4. The problem IPz(I, a) (IPy(I, a)) can be solved in time O(MCF (t, n+
t)) (O(MCF (m,n + m))).

Proof. Consider the LP-relaxation of formulation IPy(I, a) and substitute the
current variables by new variables u0, . . . , ut as yc = uc − uc−1 ∀c ∈ [1 : t]. Then it
transforms into

(9)
Minimize −w1u0 + (w1 − w2)u2 + · · · + (wt−1 − wt)ut−1 + wtut

subject to uri − uli−1 ≥ ai ∀i ∈ [1 : n],
uc − uc−1 ≥ 0 ∀c ∈ [1 : t].

Let us denote the vector of objective coefficients, the vector of right-hand sides, and the
constraint matrix by w, a, and C, respectively, and the vector of variables by u. Then
(8) can be represented as {minimize wu| Cu ≥ a}. Its dual is {maximize ax| CTx =
w, x ≥ 0}. Observe that this is a minimum cost flow formulation with flow conservation
constraints CTx = w, since CT has exactly one 1 and one -1 in each column. Given
an optimal solution to the minimum cost flow problem, one can obtain the optimal
dual solution u0, . . . , ut via a shortest path computation (see Ahuja, Magnanti, and
Orlin [1]), and thus optimal y1, . . . , yt values as well.

752 SOFIA KOVALEVA AND FRITS C. R. SPIEKSMA

3. Algorithm STAB. Recall that the interval stabbing problem WISP refers to
the restriction of WRSP, where each rectangle in the input is intersected by exactly
one row. We also refer by WISPk to WISP, where each row intersects at most k
rectangles. We assume in this section that all demands are unit (di = 1, i ∈ [1 : n]),
thus resulting in the following formulation:

Minimize

m∑
r=1

vrzr +

t∑
c=1

wcyc(10)

subject to zρi
+

∑
c∈[li:ri]

yc ≥ 1 ∀i ∈ [1 : n],(11)

zr, yc ∈ Z
1
+ ∀r, c.(12)

Here we denote by ρi the index of the row intersecting rectangle i.

First we describe algorithm STAB for WISP. In subsection 3.1 we show that
it achieves a ratio of 1

1−(1−1/k)k
for the unweighted version of WISPk: ISPk. In

subsection 3.2 we prove that STAB achieves a ratio of e
e−1 for WISP. Subsection 3.3

shows that the integrality gap between the values of a natural integer programming
formulation of ISPk and its LP-relaxation for k = 2 and k = ∞ coincides with the
approximation ratio of the algorithm. An alternative algorithm for the case k = 2
yielding the same worst-case ratio (i.e., 4

3) is described in Kovaleva and Spieksma [8].

Informally, algorithm STAB can be described as follows: Solve the LP-relaxation
of (10)–(12), and denote the solution found by (ylp, zlp). Assume, without loss of
generality, that the rows are sorted as zlp

1 ≥ zlp

2 ≥ · · · ≥ zlp
m. At each iteration

j (j = 0, . . . ,m) we solve the problem (10)–(12) with a fixed vector z, the first j
elements of which are set to 1, and the others to 0. As shown in Lemma 2.4, this can
be done in polynomial time using a minimum cost flow algorithm. Finally, we take
the best of the resulting m + 1 solutions. A formal description of STAB is shown in
Figure 2.

We use notation value(y, z) ≡
∑t

c=1 yc +
∑m

r=1 zr, value(y) ≡
∑t

c=1 yc, and
value(z) ≡

∑m
r=1 zr.

1. solve the LP-relaxation of (10)–(12), and obtain its optimal solution (ylp, zlp);
2. reindex the rows of the grid so that zlp

1 ≥ zlp

2 ≥ · · · ≥ zlp
m;

3. V ← ∞;
4. for j = 0 to m

for i = 1 to j z̄i ← 1,
for i = j + 1 to m z̄i ← 0.
solve IPy(I, b), where bi = 1 − z̄ρi , ∀i ∈ [1 : n], and obtain ȳ;
if value(ȳ, z̄) < V , then V ← value(ȳ, z̄), y∗ ← ȳ, z∗ ← z̄;

5. return (y∗, z∗).

Fig. 2. Algorithm STAB.

3.1. The approximation result for ISPk. In this subsection we show that
algorithm STAB is a 1

1−(1−1/k)k
-approximation algorithm for ISPk. Let us first adapt

APPROXIMATION ALGORITHMS FOR STABBING PROBLEMS 753

the ILP formulation (10)–(12) to ISPk with unit demands:

Minimize
t∑

c=1

yc +

m∑
r=1

zr(13)

subject to zρi +
∑

c∈[li:ri]

yc ≥ 1 ∀i ∈ [1 : n],(14)

zr, yc ∈ Z+ ∀r, c.(15)

Theorem 3.1. Algorithm STAB is a 1
1−(1−1/k)k

-approximation algorithm for

ISPk.
Proof. Consider an instance I of ISPk, and let (ylp, zlp) and (y∗, z∗) be, respec-

tively, an optimal LP solution and the solution returned by the algorithm for I. We
prove the theorem by establishing that

(16) value(y∗, z∗) ≤ 1

1 − (1 − 1/k)k
value(ylp, zlp).

It is enough to prove the result for instances satisfying the following assumption:
We assume that the optimal LP solution satisfies constraints (14) at equality; i.e.,

(17) zlp

ρi
+

∑
c∈(li:ri)

ylp

c = 1 ∀i ∈ [1 : n].

We now sketch why we can assume that (17) holds. Indeed, suppose that (17)
does not hold for some intervals i of some instance I. Then we modify I by shortening
those intervals for which (17) does not hold. More precisely, by splitting the columns
with ylp-values we shorten the appropriate intervals so that the assumption becomes
true (see Figure 3 for an example). Thus, given I and (ylp, zlp), we create an instance
I ′ for which (17) holds. It is now easy to check that an optimal LP solution for I
(with the split columns) is also an optimal LP solution for I ′. Since in I ′ the intervals
have become shorter, algorithm STAB applied to I ′ returns a solution with a value
equal to or larger than the value of the solution returned for I. Then inequality (16)
proven for I ′ implies this inequality for I as well.

Fig. 3. Example of an initial instance (left) and a new instance satisfying the assumption (right).

We order the rows of the grid in order of nonincreasing zlp-values, and we denote
by l (l ≥ 0) the number of zlp-values equal to 1. Then zlp

1 = · · · = zlp

l = 1, 1 > zlp

l+1 ≥
· · · ≥ zlp

m ≥ 0. We assume that value(ylp) is positive (otherwise all the zlp-values have
to be equal to 1 and the theorem obviously holds).

By construction,

(18) value(y∗, z∗) = min
j∈[0:m]

value(yj , zj) ≤ min
j∈[l:m]

value(yj , zj),

754 SOFIA KOVALEVA AND FRITS C. R. SPIEKSMA

where (yj , zj) is the jth solution generated in step 4 of STAB.
Let us proceed by defining a number qj = qj(Δ, β) ∈ R for each j ∈ [0 : m] that

depends on a given Δ ∈ [0, 1]m and β > 0 as follows:

(19)

�qj�∑
k=1

(1 − Δj+k) + (qj − 	qj
)(1 − Δj+	qj
) = β,

where we put Δj = 0 if j > m. Since the left-hand side is 0 at qj = 0 and continuously
increases to infinity as qj grows, there always exists a unique point qj satisfying the
equality.

We will prove the following lemma.
Lemma 3.2.

value(yj , zj) ≤ j + k · qj
(
zlp,

value(ylp)

k

)
∀j ∈ [l : m].

Then, assuming that Lemma 3.2 holds, it follows from (18) that

(20) value(y∗, z∗) ≤ min
j∈[l:m]

(
j + k · qj

(
zlp,

value(ylp)

k

))
.

Theorem 3.1 follows now from the following lemma, the proof of which can be found
in the appendix.

Lemma 3.3. Given are real numbers 1 ≥ Δ1 ≥ Δ2 ≥ · · · ≥ Δm ≥ 0, a positive
real number Y , an integer p ≥ 2, and an integer l ≥ 0. Then the following holds:

(21) min
i∈[l:m]

(i + p · qi(Δ, Y/p)) ≤ 1

1 − (1 − 1/p)p

(
Y +

m∑
r=l+1

Δr

)
+ l.

By applying this lemma with p = k, Δ = zlp, and Y = value(ylp), the right-hand
side of (20) can be bounded by

1

1−(1−1/k)k

(
value(ylp) +

m∑
r=l+1

zlp

r

)
+l ≤ 1

1−(1−1/k)k

(
value(ylp) +

m∑
r=l+1

zlp

r + l

)
,

and since zlp

1 = · · · = zlp

l = 1, the right-hand side of this last expression is equal to

1

1 − (1 − 1/k)k
value(ylp, zlp).

The theorem is then proved.
Proof of Lemma 3.2. Consider (yj , zj); for some j ∈ [l : m], let us find an upper

bound for value(yj , zj). By construction,
− zjr = 1 ∀r ≤ j,
− zjr = 0 ∀r ≥ j + 1,
− yj is an optimal solution to IPy(I, b), where bi = 1 − zjρi

∀i ∈ [1 : n].

Obviously, value(zj) = j. In order to bound value(yj) we introduce a solution
y′j , which is feasible to the LP-relaxation of IPy(I, b). Then, Corollary 2.2 implies
that value(yj) ≤ value(y′j).

APPROXIMATION ALGORITHMS FOR STABBING PROBLEMS 755

First, let us define subsets S1, S2, . . . , Sm, where Sr ⊂ [1 : t] ∀r = 1, . . . ,m (i.e.,
each subset consists of a set of columns of the grid), in the following way:

Sr =
⋃

i:ρi=r

[li : ri].

Thus, Sr is the set of columns stabbing intervals in row r.

Fix now some j ∈ [l : m], and construct vector y′j as follows: For each column
c ∈ [1 : t],

– if c ∈ Sj+1 ∪ · · · ∪ Sm, then denote by t the minimum index such that c ∈ St

and let y′jc = 1

(1−zlp
t)

ylp
c (recall that zlp

r < 1 ∀r ∈ [l + 1 : m]);

– otherwise, let y′jc = ylp
c .

Let us now establish feasibility of y′j with respect to the LP-relaxation of IPy(I, b).
For any interval i we show that the following inequality holds:

(22)
∑

c∈[li:ri]

y′jc ≥ 1 − zjρi
.

If ρi < j + 1, where ρi is the row number of interval i, then zjρi
= 1, and the

inequality holds automatically. Consider the case ρi ≥ j + 1. For any c ∈ Sρi , y
′j
c

is defined as ylp
c /(1 − zlp

t), where t ≤ ρi. Since zlp

t are nonincreasing with t, we have
y′jc ≥ ylp

c /(1 − zlp
ρi

). Then, since [li : ri] ⊆ Sρi , we have y′jc ≥ ylp
c /(1 − zlp

ρi
) for any

c ∈ [li : ri]. Using this, and remembering that (ylp, zlp) satisfies zlp
ρi

+
∑

c∈[li:ri]
ylp
c ≥ 1,

we have

∑
c∈[li:ri]

y′jc ≥ 1

(1 − zlp
ρi)

∑
c∈[li:ri]

ylp

c ≥
1 − zlp

ρi

1 − zlp
ρi

= 1.

Thus, we have shown that inequality (22) holds for any i ∈ [1 : n], and therefore y′j

is feasible to the LP-relaxation of IPy(I, b). Now Corollary 2.2 implies that

(23) value(yj) ≤ value(y′j).

In what follows we show that value(y′j) ≤ k · qj(zlp, value(ylp)
k) ∀j ∈ [l : m]. By

construction of y′j , using notation Y (S) =
∑

c∈S ylp
c ,

(24)
value(y′j) = 1

1−zlp
j+1

Y (Sj+1) + 1

1−zlp
j+2

Y (Sj+2\Sj+1)

+ · · · + 1

1−zlp
m
Y (Sm\(Sj+1∪Sj+2∪· · ·∪Sm−1)) + Y ([1 : t]\(Sj+1∪Sj+2∪· · ·∪Sm)).

Observe that for the Y (·)-terms the following equality holds:

(25)

Y (Sj+1) + Y (Sj+2\Sj+1) + · · · + Y (Sm\(Sj+1 ∪ Sj+2 ∪ · · · ∪ Sm−1))

+Y ([1 : t]\(Sj+1 ∪ Sj+2 ∪ · · · ∪ Sm)) =

t∑
c=1

ylp

c = value(ylp).

Moreover, using the definition of Sr, our assumption (17), and the fact that there are

756 SOFIA KOVALEVA AND FRITS C. R. SPIEKSMA

at most k intervals per row, we have for each r = j + 1, . . . ,m

(26)

Y (Sr\(Sj+1 ∪ Sj+2 ∪ · · · ∪ Sr−1)) ≤ Y (Sr) =
∑
c∈Sr

ylp

c

≤
∑

i:ρi=r

∑
c∈[li:ri]

ylp

c =
∑

i:ρi=r

(1 − zlp

ρi
) ≤ k(1 − zlp

r).

Now consider the following optimization problem:

max
Yj+1,Yj+2,...

(
1

1 − zlp

j+1

Yj+1 +
1

1 − zlp

j+2

Yj+2 + · · · + 1

1 − zlp
m
Ym +

∞∑
r=m+1

Yr

)

subject to Yj+1 + · · · + Ym +

∞∑
r=m+1

Yr ≤ value(ylp),(27)

0 ≤ Yr ≤ k(1 − zlp

r) ∀r = j + 1, . . . ,m,(28)

0 ≤ Yr ≤ k ∀r = m + 1, . . . ,∞.(29)

Due to (25) and (26) the following solution is feasible to this optimization problem:
Yr = Y (Sr\(Sj+1 ∪ Sj+2 ∪ · · · ∪ Sr−1)) for each r = j + 1, . . . ,m, and

∑∞
r=m+1 Yr =

Y ((1 : t)\(Sj+1 ∪ Sj+2 ∪ · · · ∪ Sm)) (distributed arbitrarily among the components
of the sum while satisfying (29)). Therefore the optimum value of this optimization
problem is an upper bound on the right-hand side of (24).

What does the optimum solution to this optimization problem look like? Notice
that the constraint matrix of (27)–(29) is a so-called greedy matrix (see Hoffman,
Kolen, and Sakarovitch [5]). Together with the fact that the objective coefficients are
nonincreasing, a result from [5] implies that successive maximization of the variables
Yj+1, Yj+2, . . . in this order produces an optimum solution. Thus, we obtain the
following optimal solution:

Yj+1 = k(1 − zlp

j+1), Yj+2 = k(1 − zlp

j+2), . . . , Yj+�q� = k(1 − zlp

j+�q�),

Yj+�q�+1 = (q − 	q
)k(1 − zlp

j+�q�+1)

for some number q ∈ R+, which due to (27) has to satisfy

k(1− zlp

j+1)+ k(1− zlp

j+2)+ · · ·+ k(1− zlp

j+�q�)+ k(q−	q
)(1− zlp

j+�q�+1) = value(ylp),

where we put zlp
r = 0 for any r > m. Notice that q ≡ qj(z

lp, value(ylp)
k) (see (19)),

and the optimum value of the problem (27)–(29), which bounds the right-hand side

of (24) from above, is k · qj(zlp, value(ylp)
k). This proves Lemma 3.2.

3.2. The approximation result for WISP. In this section we consider the
weighted version of ISP, without any limitation on the number of rectangles sharing
a row, and prove the following result.

Theorem 3.4. Algorithm STAB is an e/(e−1) ≈ 1.582-approximation algorithm
for WISP.

Proof. Consider an instance I of WISP, and let (ylp, zlp) and (y∗, z∗) be, respec-
tively, an optimal solution to the LP-relaxation of (10)–(12) and the solution returned
by the algorithm for I. We show that their values are related as follows:

(30) value(y∗, z∗) ≤ e

e− 1
value(ylp, zlp).

APPROXIMATION ALGORITHMS FOR STABBING PROBLEMS 757

Since value(ylp, zlp) is a lower bound for the optimal value of WIS, the theorem follows.
Assume, without loss of generality, that the rows of the grid are sorted so that

zlp

1 ≥ zlp

2 ≥ · · · ≥ zlp
m. Further, suppose there are l zlp-values equal to 1, i.e., zlp

1 =
. . . zlp

l = 1, and 1 > zlp

l+1 ≥ zlp

p+2 ≥ · · · ≥ zlp
m ≥ 0.

Let (yj , zj) be candidate solution number j constructed by STAB for I ∀j ∈ [0 :
m]. From the design of STAB we know that

(31) value(y∗, z∗) = min
j∈[0:m]

value(yj , zj) ≤ min
j∈[l:m]

value(yj , zj).

Claim 1.

value(yj , zj) ≡ wyj + vzj ≤
j∑

r=1

vr +
wylp

1 − zlp

j+1

for any j ∈ [l : m].

Let us prove it. Consider (yj , zj) for some j ∈ [l : m]. By construction,
– zjr = 1 ∀r ≤ j,
– zjr = 0 ∀r ≥ j + 1,
– yj is an optimal solution to IPy(I, b) with bi = 1 − zρi

∀i ∈ [1 : n].

Clearly, vzj ≡
∑m

r=1 vrz
j
r =

∑j
r=1 vr. Let us show that

(32) wyj ≤ wylp

1 − zlp

j+1

.

To prove this, we establish that the fractional solution

(33)
1

1 − zlp

j+1

ylp,

where we set zlp

m+1 = 0, is feasible to the LP-relaxation of IPy(I, b). Since yj is
optimal to IPy(I, b), Corollary 2.2 implies (32). So, let us prove the following claim.

Claim 1.1. Solution (33) is feasible to the LP-relaxation of IPy(I, b) with bi =
1 − zρi

∀i ∈ [1 : n]. We show that constraint (8) is satisfied:

(34)
1

1 − zlp

j+1

∑
c∈[li,ri]

ylp

c ≥ 1 − zjρi
for any i ∈ [1 : n].

Indeed, in case zjρi
= 1, the inequality trivially holds. Otherwise, if zjρi

= 0, it follows

from the construction of zj that ρi ≥ j+1. The ordering of the zlp-values implies that
zlp
ρi

≤ zlp

j+1. Then, using this and the fact that solution (ylp, zlp) satisfies constraint
(14), we have

1

1 − zlp

j+1

∑
c∈[li,ri]

ylp

c ≥ 1

1 − zlp

j+1

(1 − zlp

ρi
) ≥ 1

1 − zlp

j+1

(1 − zlp

j+1) = 1.

This proves (34) and, subsequently, Claims 1.1 and 1.
From (31) and Claim 1,

value(y∗, z∗) ≤ min
j∈[l:m]

(
j∑

r=1

vr +
wylp

1 − zlp

j+1

)

758 SOFIA KOVALEVA AND FRITS C. R. SPIEKSMA

=

l∑
r=1

vr + min
j∈[l:m]

(
j∑

r=l+1

vr +
wylp

1 − zlp

j+1

)
.

Lemma 3.5 given below implies now that the last expression can be upper bounded
by

l∑
r=1

vr +
e

e− 1

(
m∑

r=l+1

vrz
lp

r + wylp

)
≤ e

e− 1

(
l∑

r=1

vr +

m∑
r=l+1

vrz
lp

r + wylp

)
.

Since zlp

1 = · · · = zlp

l = 1, the last expression can be rewritten as

e

e− 1

(
m∑
r=1

vrz
lp

r + wylp

)
=

e

e− 1
(vzlp + wylp),

which establishes inequality (30) and proves the theorem.
Lemma 3.5. Suppose we are given numbers 1 > Δ1 ≥ Δ2 ≥ · · · ≥ Δm ≥ 0

∀i = 1, . . . ,m, and Δm+1 = 0. Further, given are positive numbers a1, a2, . . . , am
and Y . Then we have

(35) min
j=0,...,m

(
j∑

r=1

ar +
1

1 − Δj+1
Y

)
≤ e

e− 1

(
m∑
r=1

arΔr + Y

)
.

We give the proof of this lemma in the appendix.

3.3. Tightness. In this subsection we demonstrate that the ratio between the
optimum values of ISPk and the LP-relaxation of its ILP formulation (13)–(15) can
be arbitrarily close to the bounds achieved by STAB in case k = 2 and k = ∞ (which
are, respectively, 4/3 and e/(e− 1)).

For the case k = 2 this is shown by the instance of ISP2 depicted in Figure 4
(recall that all the column and row demands and rectangle weights are unit). Here
the optimal value of the problem is 2, since at least two elements (columns or rows)
are needed to stab the three rectangles, whereas the optimal fractional solution has
the value of 3/2.

Fig. 4. An instance of ISP2 and an optimal fractional solution.

In the remainder of the section we consider the problem ISP∞, or simply ISP,
without any limitation on the number of rectangles sharing a row.

Theorem 3.6. The integrality gap of (13)–(15) is arbitrarily close to e
e−1 .

Proof. For each m ∈ N we will construct an instance Im of ISP and show that the
value of some feasible solution to its LP-relaxation tends to be e

e−1 times its optimal
value as m increases.

APPROXIMATION ALGORITHMS FOR STABBING PROBLEMS 759

Let us construct Im as follows. Let the grid have m rows and t = m! columns. Let
the rows be numbered consecutively and let each row j intersect exactly j rectangles
of the instance. Let rectangles intersected by row j be numbered j1, . . . , jj . All these
rectangles are disjoint and each intersects exactly m!

j columns (see Figure 5). So, for
a rectangle ji we have that its row number ρji is r, and its leftmost and rightmost
columns are lji = m!

j (i− 1) + 1 and rji = m!
j i. The total number of rectangles in the

instance is then n = 1 + 2 + · · · + m.

Fig. 5. Instance I4.

We claim that the following solution (y, z) is feasible to the LP-relaxation of
(13)–(15) for Im:

(36)
zj =

{
0 ∀j = 1, . . . , P,
1 − P/j ∀j = P + 1, . . . ,m,

yc = P
m! ∀c = 1, . . . ,m!,

where P = P (m) is the number satisfying

1

m
+

1

m− 1
+ · · · + 1

P + 1
≤ 1 and

1

m
+

1

m− 1
+ · · · + 1

P + 1
+

1

P
≥ 1.

Denote the value of this solution by LP (Im), and observe that

LP (Im) =

t∑
c=1

yc +

m∑
r=1

zr = m− P

(
1

P + 1
+

1

P + 2
+ · · · + 1

m

)
.

Let us show feasibility of (y, z). Take any rectangle ji and show that the constraint
zρji

+
∑

c∈[lji ,rji]
yc ≥ 1 is satisfied. Notice that the z-values of our solution also can

be expressed as zj = max (1 − P
j , 0) ∀j = 1,,m. Substituting these values, and

rewriting the left-hand side of constraints (14) gives

max

(
1 − P

ji
, 0

)
+

∑
c∈[lji ,rji]

P

m!
= max

(
1 − P

ji
, 0

)
+

m!

ji

P

m!

= max

(
1 − P

ji
, 0

)
+

P

ji
.

Clearly, the last expression is at least equal to 1, which proves feasibility of solution
(y, z) to the LP-relaxation of (13)–(15) for Im.

760 SOFIA KOVALEVA AND FRITS C. R. SPIEKSMA

Now denote by OPT (I) the optimum value to ISP for I, and show that OPT (Im) =
m. Consider any optimal integral solution, and denote by k the maximum row num-
ber, whose corresponding z-value is 0. First, this means that there are at least m− k
rows whose z-values are 1. Second, observe that, since there are k disjoint rectangles
on row k and this row is not selected, there are at least k columns needed to stab
these rectangles. Therefore, this solutions has to select at least m − k rows and k
columns, meaning OPT (Im) ≥ m. Since there exists a feasible solution of value m
(select all the rows, for instance), we obtain that OPT (Im) = m.

We use Lemma 5.3 given in the appendix to prove that the ratio

OPT (Im)

LP (Im)
=

m

m− P (1
m + 1

m−1 + · · · + 1
P+1)

approaches e
e−1 when m increases. This establishes our tightness result.

As mentioned in the introduction, Theorems 3.1 and 3.6 imply that it is unlikely
that a better ratio for ISP∞ can be achieved using formulation (13)–(15).

Approximation algorithms with a ratio of e
e−1 are not uncommon in the literature;

integrality gaps with this ratio seem to appear less frequently. Another example
of a (different) formulation with an integrality gap that equals e

e−1 is described in
Hoogeveen, Skutella, and Woeginger [6].

4. Conclusion. We presented an approximation algorithm called STAB for
two variants of the weighted rectangle stabbing problem. STAB achieves a ratio
of 1

1−(1−1/k)k
for ISPk, the special case where each rectangle is stabbed by a single

row and by at most k columns, and where all stabbing lines have unit weight. STAB
achieves a ratio of e

e−1 for WISP, the special case where each rectangle is stabbed by a
single row. STAB considers different ways of rounding the LP-relaxation and outputs
the best solution found in this way; it is also shown that the ratio proved equals the
integrality gap when k = 2 and when k = ∞.

5. Appendix. In this appendix we give proofs of lemmas which we used in this
paper.

Lemma 3.3. Given are real numbers 1 ≥ Δ1 ≥ Δ2 ≥ · · · ≥ Δm ≥ 0, a positive
real number Y , an integer p ≥ 2, and an integer 0 ≤ l < m. The following holds:

(37) min
i=l,...,m

(i + p · qi(Δ, Y/p)) ≤ 1

1 − (1 − 1/p)p

(
Y +

m∑
r=l+1

Δr

)
+ l,

where qi = qi(Δ, Y/p) for each i ∈ [0 : m] is uniquely defined by the equality

(38)

�qi�∑
k=1

(1 − Δi+k) + (qi − 	qi
)(1 − Δi+	qi
) = Y/p,

where we put Δi = 0 if i > m.
Proof. It is enough to prove this lemma for l = 0. The case of other l < m can

be reduced to the case of l = 0 by changing the index to j = i − l and observing
that qj+l(Δ, Y/p) = qi(Δ

−l, Y/p), where vector Δ−l is obtained by deleting the first
l elements from vector Δ. So we will prove that

min
i=0,...,m

(i + p · qi(Δ, Y/p)) ≤ 1

1 − (1 − 1/p)p

(
Y +

m∑
r=1

Δr

)
.

APPROXIMATION ALGORITHMS FOR STABBING PROBLEMS 761

The proof consists of two lemmas. In Lemma 5.1 we show that the left-hand side
of (37) is upper bounded by the following supremum:

(39) sup
f(·) ∈ H

G(f(·)),

where

(40) G(f(·)) = min
x ∈ R+

(f(x) + p · (f(x + Y/p) − f(x))) ,

and the class of functions H is defined as

(41) H =

{
f(·) : R+ → R+

∣∣∣∣ f(·) is continuous, increasing, concave,
f(0) = 0, f(x) ≤ x +

∑m
r=1 Δr

}
.

In Lemma 5.2 we show that this supremum is upper bounded by the right-hand side
of (37), which proves the lemma.

Lemma 5.1.

min
i=0,...,m

(i + p · qi(Δ, Y/p)) ≤ sup
f(·) ∈ H

G(f(·)),

where G(f(·)) and H are defined in (40) and (41).

Proof. To establish this, it is sufficient to exhibit a particular function f̂(·) ∈ H,
such that

(42) G(f̂(·)) = min
i=0,...,m

(i + p · qi(Δ, Y/p)) .

Then, the supremum of G(f(·)) over all the possible f(·) ∈ H is clearly larger than

or equal to G(f̂(·)).
Before we describe the function f̂(·), let us define an auxiliary function F (·) :

R+ → R+ as follows:

(43) F (q) ≡
�q�∑
r=1

(1 − Δr) + (q − 	q
) (1 − Δ	q
),

where we set Δr = 0 ∀r ≥ m + 1.
Observe that F (·) is
– continuous;
– increasing, since Δr < 1, and therefore (1 − Δr) > 0 ∀r = 1, . . . ,∞;
– convex, since the coefficients Δr are nonincreasing with increasing r, and there-

fore the coefficients (1 − Δr) are nondecreasing with increasing r.
Furthermore,

– F (0) = 0;
– F (q) ≥ (q −

∑m
r=1 Δr) ∀q ∈ R+, since F (q) can be also represented as

F (q) = q −

⎛
⎝ �q�∑

r=1

Δr + (q − 	q
)Δ	q

⎞
⎠ ,

and obviously (
∑�q�

r=1 Δr + (q − 	q
)Δ	q
) ≤
∑m

r=1 Δr ∀q ∈ R+;

762 SOFIA KOVALEVA AND FRITS C. R. SPIEKSMA

– F (q) is linear on each of the intervals [i, i+1], i = 0, . . . ,m−1, and on [m,+∞).

We are now ready to present f̂(·) : R+ → R+. We define

f̂(·) ≡ F−1(·)

(since F (·) is increasing, F−1(·) exists).

We claim that f̂(·) ∈ H. Indeed, f̂(·) has the following properties:

– f̂(·) : R+ → R+ since F (·) : R+ → R+;

– f̂(·) is continuous, increasing, and concave, since F (·) is continuous, increasing,
and convex;

– f̂(0) = 0, since F (0) = 0;

– f̂(x) ≤ x +
∑m

r=1 Δr ∀x ∈ R+. This can be obtained from F (q) ≥ (q −∑m
r=1 Δr) ∀q ∈ R+, using F (q) = x, q = f̂(x).

This proves that f̂(·) ∈ H.
To prove the lemma it remains to show that

G(f̂(·)) = min
i=0,...,m

(i + p · qi(Δ, Y/p)) .

Comparing the definition of qi(Δ, Y/p) (see (38)) and F (·) (see (43)), observe
that for each i ∈ [0 : m] qi satisfies

(44) F (i + qi) − F (i) = Y/p.

Thus, qi = F−1(F (i) + Y/p) − i. Setting xi ≡ F (i) ∀i = 0, . . . ,m, we find that

i = F−1(xi) and qi = F−1(xi+Y/p))−F−1(xi). Replacing F−1(·) by f̂(·), we obtain

qi = f̂(xi + Y/p) − f̂(xi) ∀i = 0, . . . ,m.

Using this together with i = F−1(xi) = f̂(xi), we can rewrite

(45) min
i=0,...,m

(i + p · qi(Δ, Y/p)) = min
i = 0, . . . ,m

xi = f̂−1(i)

(
f̂(xi) + p(f̂(xi + Y/p) − f̂(xi))

)
.

Now we need to show that the latter expression is equal to

(46) G(f̂(·)) ≡ min
x ∈ R+

(
f̂(x) + p(f̂(x + Y/p) − f̂(x))

)
.

We do this by showing that the function f̂(x) + p(f̂(x + Y/p) − f̂(x)) is continuous
and concave in each of the intervals [xi, xi+1] ∀i = 0, . . . ,m − 1, and is increasing
in [xm,+∞). Therefore the minimum can be achieved only at one of the endpoints
x0, x1, . . . , xm.

Indeed, consider function f̂(x)+p(f̂(x+Y/p)−f̂(x)) in [xi, xi+1] for some i ∈ [0 :

m−1]. It can also be written as pf̂(x+ Y/p)− (p− 1)f̂(x). We know that f̂(x+ Y/p)

is concave on [xi, xi+1], since it is concave everywhere in R+. Furthermore, f̂(x) is
linear on each [xi, xi+1], i ∈ [0 : m−1], since F (·) is linear on [i, i + 1], i ∈ [0 : m−1].
Obviously, a concave function minus a linear function is again concave.

Now we show that pf̂(x + Y/p) − (p − 1)f̂(x) is increasing in [xm,+∞). Since

f̂(x) = F−1(·) is increasing and linear in [xm,+∞), the growth rate of f̂(x) is the

APPROXIMATION ALGORITHMS FOR STABBING PROBLEMS 763

same as the growth rate of f̂(x + Y/p) in [xm,+∞), and thus the growth rate of

pf̂(x + Y/p) − (p − 1)f̂(x) is positive. We have proved that the minimum in (46)
is always achieved at one of the points x0, x1, . . . , xm, and therefore (46) is equal to
(45). This completes the proof of Lemma 5.1.

Lemma 5.2.

sup
f(·)∈H

G(f(·)) ≤ 1

1 − (1 − 1/p)p
C,

where

C = Y +

m∑
r=1

Δr,

G(f(·)) = min
x∈R+

(f(x) + p(f(x+Y/p)−f(x))) ,

and the set of functions H (via notation C) is

H =

{
f(·) : R+ → R+

∣∣∣∣ f(·) is continuous, increasing, concave,
f(0) = 0, f(x) ≤ x + C − Y

}
.

Proof. We will prove several claims and subclaims.
Claim 1.

sup
f(·)∈H

G(f(·)) = sup
g : fg(·)∈H

g,

where for each g ∈ R+ function fg(·) is defined as follows:
– fg(j · Y/p) = g(1 − (1 − 1/p)j) ∀j ∈ 0 ∪ N;
– fg(x) is continuous in [0,+∞) and linear in each [(j − 1) · Y/p, j · Y/p], j ∈ N.

Notice that fg(·) is completely defined by the above characterization.
To prove this claim it is enough to show that for any f(·) ∈ H there exists a

function f ĝ(·) ∈ H, with ĝ ≥ 0, such that

G(f(·)) = G(f ĝ(·)) = ĝ.

To show that, we prove two subsidiary claims.
Claim 1.1. For any g ≥ 0,

G(fg(·)) ≡ min
x∈ R+

(fg(x) + p(fg(x+Y/p)−fg(x))) = g.

Indeed, by construction fg(x) is linear in each of the intervals [(j − 1) · Y/p, j · Y/p],
j ∈ N. This implies that function (fg(x) + p(fg(x+Y/p)−fg(x))) is linear in each of
these intervals as well. Therefore the minimum over all x ≥ 0 is achieved in one of
the endpoints 0, Y/p, 2Y/p, Consider (fg(x) + p · (fg(x+Y/p)−fg(x))) at the
point x = j · Y/p for some j ∈ N ∪ 0:

fg(j · Y/p) + p · (fg((j + 1) · Y/p)−fg(j · Y/p)).

764 SOFIA KOVALEVA AND FRITS C. R. SPIEKSMA

Using the definition of fg(·) we can rewrite it as follows:

g · (1 − (1 − 1/p)j) + p · (g(1 − (1 − 1/p)j+1) − g · (1 − (1 − 1/p)j)).

With simple computations one can verify that the last expression is equal to g. This
proves Claim 1.1.

Claim 1.2. For any f(·) ∈ H it holds that f ĝ(·) ∈ H, where ĝ = G(f(·)).
Clearly, f ĝ(x) is concave. To prove that f ĝ(x) ≤ x + C − Y ∀x ∈ R+, it is sufficient
to show that f ĝ(x) ≤ f(x), since f(·) ∈ H means, e.g., f(x) ≤ x + C − Y ∀x ∈ R+.

So, let us establish that f ĝ(x) ≤ f(x) ∀x ∈ R+. Recall that f ĝ(x) is linear in each
of the intervals [(j − 1) · Y/p, j · Y/p], j ∈ N, and f(x) is concave in R+. Then it is
sufficient to show that

f ĝ(x) ≤ f(x) ∀x = j · Y/p, j ∈ 0 ∪ N.

We use mathematical induction on j. For j = 0, f ĝ(0) = f(0) = 0 and the inequality
trivially holds. Suppose, for j−1 we have proved that f ĝ((j−1)·Y/p) ≤ f((j−1)·Y/p),
and let us show that f ĝ(j · Y/p) ≤ f(j · Y/p).

Observe that f ĝ(·) can be represented in a recursive way as follows:

(47) f ĝ(j · Y/p) = ĝ/p + f ĝ((j−1) · Y/p) (1 − 1/p).

Since ĝ = G(f(·)) we know that

ĝ ≤ f((j−1) · Y/p) + p · (f(j · Y/p)−f((j−1) · Y/p)).

Rearranging the expression, we obtain

f(j · Y/p) ≥ ĝ/p + f((j−1) · Y/p) (1 − 1/p).

By the induction hypothesis and (47) we can bound the right-hand side by

ĝ/p + f((j−1) · Y/p) (1 − 1/p) ≥ ĝ/p + f ĝ((j−1) · Y/p) (1 − 1/p) = f ĝ(j · Y/p).

This proves Claim 1.2.
These two claims imply that for any f(·) ∈ H, there exists f ĝ(·) ∈ H, with ĝ ≥ 0,

such that

G(f(·)) = G(f ĝ(·)) = ĝ.

This implies Claim 1.
Claim 2.

sup
g : fg(·)∈H

g ≤ 1

1 − (1 − 1/p)p
C.

Indeed, fg(·)∈H implies fg(x) ≤ x + C − Y ∀x ∈ R+ and, in particular, for x = Y.
From this, using the definition of fg(·), we obtain

fg(Y) ≡ fg(p · Y/p) ≡ g(1 − (1 − 1/p)p) ≤ Y + C − Y = C,

and from the last inequality, we obtain

g ≤ 1

(1 − (1 − 1/p)p)
C,

APPROXIMATION ALGORITHMS FOR STABBING PROBLEMS 765

which proves Claim 2 and establishes Lemma 5.2.
Now we give a proof of Lemma 3.5. This version of the proof is due to Sgall (see

the acknowledgments).
Lemma 3.5. Suppose we are given numbers 1 > Δ1 ≥ Δ2 ≥ · · · ≥ Δm ≥ 0 and

Δm+1 = 0. Further, given are positive numbers a1, a2, . . . , am and Y . Then we have

(48) min
j=0,...,m

(
j∑

r=1

ar +
Y

1 − Δj+1

)
≤ e

e− 1

(
m∑
r=1

arΔr + Y

)
.

Proof. We use mathematical induction on the size of inequality m. For m = 0,
the statement trivially holds. Suppose that the lemma was proved for any inequality
of size smaller than m. First, consider the case Δ1 ≥ e−1

e . We can write

min
j=0,...,m

(
j∑

r=1

ar +
Y

1 − Δj+1

)
≤ min

j=1,...,m

(
j∑

r=1

ar +
Y

1 − Δj+1

)

= a1 + min
j=1,...,m

(
j∑

r=2

ar +
Y

1 − Δj+1

)
.

The latter minimum is the left-hand side of (48) for a smaller sequence: Δ2, . . . ,Δm

and a2, . . . , am. Applying the induction hypothesis, we can bound the last expression
from above as follows (we also use our bound on Δ1):

a1 +
e

e− 1

(
m∑
r=2

arΔr + Y

)
≤ a1 · Δ1

e

e− 1
+

e

e− 1

(
m∑
r=2

arΔr + Y

)

=
e

e− 1

(
m∑
r=1

arΔr + Y

)
.

Thus, we have shown an induction step for the case Δ1 ≥ e−1
e . For the remaining

case, Δ1 < e−1
e , we give a direct proof below.

Suppose Δ1 < e−1
e . Denote the left-hand side of (48) by X, and notice that

(49)

j∑
r=1

ar ≥ X − 1

1 − Δj+1
Y for 0 ≤ j ≤ m.

The following steps are justified below:

m∑
r=1

arΔr + Y =

m∑
j=1

(
(Δj − Δj+1)

j∑
r=1

ar

)
+ Y

≥(1)
m∑
j=1

(Δj − Δj+1)X −

⎛
⎝ m∑

j=1

Δj − Δj+1

1 − Δj+1

⎞
⎠Y + Y

= Δ1X −

⎛
⎝ m∑

j=1

(
Δj − 1

1 − Δj+1
+ 1

)⎞⎠Y + Y

766 SOFIA KOVALEVA AND FRITS C. R. SPIEKSMA

= Δ1X +

⎛
⎝1 −m +

m∑
j=1

1 − Δj

1 − Δj+1

⎞
⎠Y

≥(2) Δ1X +
(
1 −m + m(1 − Δ1)

1
m

)
Y

≥(3) Δ1X +
(
1 −m + m(1 − Δ1)

1
m

)
(1 − Δ1)X

=
(
1 + m(−1 + (1 − Δ1)

1
m)(1 − Δ1)

)
X ≥(4)

(
1 − 1

e

)
X.

(1) Here we use the ordering of the deltas and inequality (49).
(2) This inequality follows from the arithmetic-geometric mean inequality

∑m
j=1 xj ≥

m(
∏m

j=1 xj)
1/m used for positive numbers xj =

1−Δj

1−Δj+1
.

(3) Here we use inequality Y ≥ (1−Δ1)X, which is implied by (49) for j = 0 and
the fact that the coefficient of Y is nonnegative, which follows from 1 − Δ1 ≥ 1

e ≥
(1 − 1

m)m.
(4) This inequality is elementary calculus: The minimum of the left-hand side over

all Δ1 is achieved for 1−Δ1 = (m
m+1)m, and, after substituting this value, it reduces

to 1 − (m
m+1)m+1 ≥ 1 − 1

e .
Lemma 5.3. Let P (m) ∈ N be defined as follows:

(50)
1

m
+

1

m− 1
+ · · · + 1

P (m) + 1
≤ 1 and

(51)
1

m
+

1

m− 1
+ · · · + 1

P (m) + 1
+

1

P (m)
≥ 1.

Then,

lim
m→∞

m

m− P (m)(1
m + 1

m−1 + · · · + 1
P (m)+1)

=
e

e− 1
.

Proof. Let us first find limm→∞ P (m)/m. Observe that the following inequalities
hold:

1

m
+

1

m− 1
+ · · · + 1

P (m) + 1
≥

∫ m+1

P (m)+1

1

x
dx = ln

m + 1

P (m) + 1
,

1

m
+

1

m− 1
+ · · · + 1

P (m)
≤

∫ m

P (m)−1

1

x
dx = ln

m

P (m) − 1

(the equalities follow from
∫ b

a
1/x dx = ln b/a). Then (50) and (51) imply

1 ≥ ln
m + 1

P (m) + 1
, 1 ≤ ln

m

P (m) − 1
.

APPROXIMATION ALGORITHMS FOR STABBING PROBLEMS 767

From this we have

m + 1

e
− 1 ≤ P (m) ≤ m

e
+ 1.

Dividing by m,

1 + 1/m

e
− 1/m ≤ P (m)

m
≤ 1

e
+ 1/m.

Now we see that limm→∞ P (m)/m = 1/e.
Let us now find limm→∞ (1

m + 1
m−1 + · · · + 1

P (m)+1). From (50) and (51) we have

1 − 1

P (m)
≤ 1

m
+

1

m− 1
+ · · · + 1

P (m) + 1
≤ 1.

Since we already know that limm→∞ P (m) = ∞, we have

lim
m→∞

(
1

m
+

1

m− 1
+ · · · + 1

P (m) + 1

)
= 1.

Now consider

m

m− P (m)(1
m + 1

m−1 + · · · + 1
P (m)+1)

=
1

1 − P (m)
m (1

m + 1
m−1 + · · · + 1

P (m)+1)
.

Using limm→∞
P (m)
m = 1/e and limm→∞ (1

m + 1
m−1 + · · · + 1

P (m)+1) = 1 we have

lim
m→∞

1

1 − P (m)
m (1

m + 1
m−1 + · · · + 1

P (m)+1)
=

1

1 − 1/e
=

e

e− 1
,

which establishes the lemma.

Acknowledgments. We are very grateful to professor Jǐŕı Sgall from the Math-
ematical Institute of the Academy of Sciences of the Czech Republic, for allowing
us to include his proof of Lemma 3.5. We also thank an anonymous referee whose
comments improved the paper.

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms, and
Applications, Prentice-Hall, Englewood Cliffs, NJ, 1993.

[2] G. Cǎlinescu, A. Dumitrescu, H. Karloff, and P.-J. Wan, Separating points by axis-
parallel lines, Internat. J. Comput. Geom. Appl., 15 (2005), pp. 575–590.

[3] D. R. Gaur, T. Ibaraki, and R. Krishnamurti, Constant ratio approximation algorithms for
the rectangle stabbing problem and the rectilinear partitioning problem, J. Algorithms, 43
(2002), pp. 138–152.

[4] R. Hassin and N. Megiddo, Approximation algorithm for hitting objects with straight lines,
Discrete Appl. Math., 30 (1991), pp. 29–42.

[5] A. J. Hoffman, A. W. J. Kolen, and M. Sakarovitch, Totally-balanced and greedy matrices,
SIAM J. Alg. Discrete Methods, 6 (1985), pp. 721–730.

[6] H. Hoogeveen, M. Skutella, and G. J. Woeginger, Preemptive scheduling with rejection,
Math. Program., 94 (2003), pp. 361–374.

[7] S. Kovaleva, Approximation of Geometric Set Packing and Hitting Set Problems, Ph.D. thesis,
Maastricht University, Maastricht, The Netherlands, 2003.

768 SOFIA KOVALEVA AND FRITS C. R. SPIEKSMA

[8] S. Kovaleva and F. C. R. Spieksma, Approximation of a geometric set covering problem, in
Proceedings of the 12th Annual International Symposium on Algorithms and Computation
(ISAAC’01), Lecture Notes in Comput. Sci. 2223, Springer-Verlag, Berlin, 2001, pp. 493–
501.

[9] S. Kovaleva and F. C. R. Spieksma, Primal-dual approximation algorithms for a packing-
covering pair of problems, RAIRO Oper. Res., 36 (2002), pp. 53–72.

[10] S. Kovaleva and F. C. R. Spieksma, Approximation of rectangle stabbing and interval stab-
bing problems, in Proceedings of the 12th Annual European Symposium on Algorithms
(ESA 2004), Lecture Notes in Comput. Sci. 3221, Springer-Verlag, Berlin, 2004, pp. 426–
435.

[11] A. Schrijver, Theory of Linear and Integer Programming, John Wiley & Sons, Chichester,
UK, 1986.

[12] V. V. Vazirani, Approximation Algorithms, Springer-Verlag, Berlin, 2001.
[13] A. F. Veinott and H. M. Wagner, Optimal capacity scheduling: Parts I and II, Oper. Res.,

10 (1962), pp. 518–547.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 769–798

THE COMPLEXITY OF GRAPH PEBBLING∗

KEVIN MILANS† AND BRYAN CLARK‡

Abstract. In a graph G whose vertices contain pebbles, a pebbling move uv removes two
pebbles from u and adds one pebble to a neighbor v of u. The optimal pebbling number π̂(G) is the
minimum k such that there exists a distribution of k pebbles to G so that for any target vertex r in
G, there is a sequence of pebbling moves which places a pebble on r. The pebbling number π(G) is
the minimum k such that for all distributions of k pebbles to G and for any target vertex r, there is a
sequence of pebbling moves which places a pebble on r. We explore the computational complexity of
computing π̂(G) and π(G). In particular, we show that deciding whether π̂(G) ≤ k is NP-complete.
Furthermore, we prove that deciding whether π(G) ≤ k is ΠP

2 -complete and therefore both NP-hard
and coNP-hard. Additionally, we provide a characterization of when an unordered set of pebbling
moves can be ordered to form a valid sequence of pebbling moves.

Key words. graph pebbling, complexity, ΠP
2 -completeness

AMS subject classifications. 05C99, 68Q17, 68R10

DOI. 10.1137/050636218

1. Introduction. Let G be a simple, undirected graph and let p : V (G) →
N∪{0} be a distribution of pebbles to the vertices of G. We refer to the total number
of pebbles

∑
v p(v) as the size of p, denoted by |p|. A pebbling move uv consists

of removing two pebbles from a vertex u with p(u) ≥ 2 and adding one pebble to
a neighbor v of u. After completing a pebbling move uv, we are left with a new
distribution of pebbles, which we denote by puv. Similarly, if σ = u1v1, . . . , ukvk is a
sequence of pebbling moves, denote by pσ the distribution of pebbles that results from
making the pebbling moves specified by σ. Although graph pebbling was originally
developed to simplify a result in number theory (Chung provides the history [2]), it
has since become an object of study in its own right. Hurlbert presents a detailed
survey of recent graph pebbling results [6].

We use G and H to refer to simple, undirected graphs. We use D and E to refer to
directed graphs, possibly with multiple edges. If v is a vertex in a directed multigraph
D, we denote the indegree (resp., outdegree) of v by d−D(v) (resp., d+

D(v)). When D
is clear from the context, we may write d−(v) for d−D(v) or d+(v) for d+

D(v). We say
that D ⊆ E if, for each edge uv in D, the multiplicity of uv in E is as least as large as
the multiplicity of uv in D. We denote by D − uv the directed multigraph obtained
from D by removing one occurrence of the edge uv; similarly, when D ⊆ E we denote
by E − D the directed multigraph obtained from E by reducing the multiplicity of
each edge uv in E by the multiplicity of uv in D. We use V (G) (resp., E(G)) to
refer to the vertex set (resp., edge set) of G, and proceed in a similar manner for
directed multigraphs, except that E(D) is a multiset. We define n(G) = |V (G)| and
e(G) = |E(G)|, and proceed in a similar manner for directed multigraphs. We write
dG(u, v) (or d(u, v) when G is clear from the context) for the length of the shortest

∗Received by the editors July 17, 2005; accepted for publication (in revised form) February 22,
2006; published electronically October 24, 2006.

http://www.siam.org/journals/sidma/20-3/63621.html
†Department of Computer Science, University of Illinois, Urbana, IL 61801 (milans@uiuc.edu).

The work of this author was partially supported by NSF grant DMS-0528086.
‡Department of Physics, University of Illinois, Urbana, IL 61801 (bkclark@uiuc.edu).

769

770 KEVIN MILANS AND BRYAN CLARK

uv-path in G. If p and q are pebble distributions on a graph G, we say that p ≥ q if
p(v) ≥ q(v) for each vertex v in G.

Given a graph G with a pebble distribution p, we say that a vertex r in G
is reachable if there is a sequence of pebbling moves which places a pebble on r.
Note that whenever p(r) > 0, r is trivially reachable. The notion of reachability
is fundamental to graph pebbling; most of our decision problems involve questions
of reachability. We call the problem of deciding (given G, p, and r) whether r is
reachable reachable. The complexity of reachable was first studied by Hurlbert
and Kierstead, who found that reachable is NP-complete via a reduction from the
perfect matching problem in 4-uniform hypergraphs [7]. In section 3, we establish that
reachable is NP-complete, a result obtained simultaneously and independently by
Watson [14].

Given a graph G and a target vertex r, the r-pebbling number of G, denoted
π(G, r), is the minimum k such that r is reachable under every pebble distribu-
tion of size k. Similarly, the pebbling number of G, denoted π(G), is the minimum
k such that every vertex in G is reachable under every pebble distribution of size
k. For a connected graph G, a pigeonhole argument quickly establishes that such
a k exists and thus π(G) is well defined (see Proposition 5.1). We call the prob-
lem of deciding whether π(G, r) ≤ k (resp., π(G) ≤ k) r-pebbling-number (resp.,
pebbling-number). In section 5, we establish that both decision problems are ΠP

2 -
complete, meaning that these problems are complete for the class of problems com-
putable in polynomial time by a coNP machine equipped with an oracle for an NP-
complete language. Consequently, these decision problems are both NP-hard and
coNP-hard. It follows that r-pebbling-number and pebbling-number are in nei-
ther NP nor coNP unless NP = coNP. Watson simultaneously and independently
established that r-pebbling-number is coNP-hard [14].

Observe that if we fix some vertex r in G and put one pebble on every other
vertex, r is not reachable. It follows that π(G) ≥ n(G). It is natural to wonder
which graphs achieve equality in π(G) = n(G). Although no characterization of such
graphs is known, a growing body of results provides conditions that are necessary or
sufficient to imply π(G) = n(G). Recall that G is k-connected if n(G) ≥ k + 1 and
for every set S of at most k− 1 vertices, G−S is connected. If G has diameter 2 and
is 3-connected, then π(G) = n(G) [3]. Consequently, the probability that a random
graph on n vertices satisfies π(G) = n(G) approaches 1 as n grows. Furthermore, if G
has diameter d and is (22d+3)-connected, then π(G) = n(G) [5]. On the other hand,
if G contains a cut vertex, then π(G) > n(G). Indeed, suppose v is a cut vertex in G
and let u and w be vertices in separate components of G− v. If we put three pebbles
on u, zero pebbles on v and w, and one pebble on every other vertex, then it is not
possible to place a pebble on w.

The optimal pebbling number of G, denoted π̂(G), is the minimum k such that
there is some distribution of size k under which all vertices are reachable. We call
the problem of deciding whether π̂(G) ≤ k optimal-pebbling-number. In section
4, we establish that optimal-pebbling-number is NP-complete.

It is immediate that π̂(G) ≤ n(G). If G is connected, then π̂(G) ≤ �2n(G)/3�
[1]. Equality is achieved by the path [1, 9] and the cycle [1]. It is an open problem to
characterize which graphs achieve equality.

Given G and distributions p and q, we say that p covers q if there exists a sequence
of pebbling moves σ such that pσ ≥ q. The unit distribution assigns one pebble to each
vertex in G. We call the problem of deciding whether p covers the unit distribution

THE COMPLEXITY OF GRAPH PEBBLING 771

Table 1.1

A summary of the decision problems considered in this paper.

Name Full name Description Complexity

pn pebbling-number Given G,k: is π(G) ≤ k? ΠP
2 -complete

rpn r-pebbling-number Given G, k, r: is π(G, r) ≤ k? ΠP
2 -complete

opn optimal-pebbling-number Given G, k: is π̂(G) ≤ k? NP-complete

pr reachable Given G, p, r: is r reachable? NP-complete

coverable. In section 3, we establish that coverable is NP-complete; this result
was obtained simultaneously and independently by Watson [14].

Although most of the problems we study are computationally difficult, there are
some interesting pebbling problems that are tractable. A pebble distribution q is
positive if q assigns at least one pebble to every vertex. A distribution p is simple
if it assigns zero pebbles to all but one vertex. The q-cover pebbling number of G,
denoted γq(G), is the minimum k such that every distribution of size k covers q. The
cover pebbling theorem states that for any positive distribution q, there is a simple
distribution p of size γq(G)−1 such that p does not cover q [13, 11]. As a consequence,
given G and a positive distribution q, one can easily compute γq(G) in polynomial
time. In the special case that q is the unit distribution, we simply write γ(G) for
γq(G).

Let us consider a simple example. Suppose we are given a graph H with a
distribution of pebbles, and we wish to determine if there is a sequence of pebbling
moves which ends with only one pebble left in the entire graph. We call this problem
annihilation. It is not difficult to see that annihilation is NP-hard. Indeed, a
reduction from hamiltonian-path is almost immediate. Specifically, to decide if G
has a Hamiltonian path, we may construct H from G by introducing a new vertex v
which is adjacent to each vertex in G. We place two pebbles on v and one pebble on
every other vertex in H. It is clear that G has a Hamiltonian path if and only if there
is a sequence of pebbling moves which results in only one pebble in H.

What is less clear is that annihilation is in NP. If σ is a sequence of pebbling
moves in G under p which results in only one pebble left in G, then the length of σ is
|p| − 1, which may be exponentially large in the number of bits needed to represent
G and p. Hence, σ may be too large to serve as a certificate for membership in
annihilation. However, as we will see, the order of the moves in σ is insignificant.
In fact, if we are merely told how many times σ pebbles along each direction in every
edge in G, then we can quickly verify the existence of σ.

In section 2, we develop a characterization of when unordered sets of pebbling
moves may be ordered in a way that yields a valid sequence of pebbling moves. In
section 3, we present results on the complexity of reachable and coverable. We
also observe that a simple greedy strategy solves reachable whenever G is a tree.
Section 3 uses some results from section 2. In section 4, we present our results on the
complexity of computing the optimal pebbling number. Section 4 uses some results
from sections 2 and 3. In section 5, we present our results on the complexity of
computing the (r-)pebbling number. Section 5 uses some results from sections 2 and
3; it is generally independent of section 4. In section 6, we present our conclusions.
Table 1.1 summarizes our results.

2. Pebble orderability. Many questions in graph pebbling concern the exis-
tence of a sequence of pebbling moves with certain properties. There is a natural

772 KEVIN MILANS AND BRYAN CLARK

temptation to search for such sequences directly, by deciding which pebbling move to
make first, which to make second, and so forth. In this section, we develop tools that
allow us more flexibility in constructing sequences of pebbling moves. In particular,
our goal is to worry only about which moves we should make and not the order in
which to make them.

We define the signature of a sequence of pebbling moves σ in a graph G to be
the directed multigraph on vertex set V (G), where the multiplicity of an edge uv is
the number of times σ pebbles from u to v. We say that a digraph D is orderable
under a pebble distribution p if some ordering of E(D) is a valid sequence of pebbling
moves, starting at p. When p is clear from the context, we may simply write that D
is orderable instead of D is orderable under p. We characterize when D is orderable
under p. We call the problem of testing whether D is orderable under p orderable,
or po for short.

As it turns out, two conditions which are necessary for D to be orderable under p
are also sufficient. Suppose that D is orderable and consider a vertex v. We note that
v begins with p(v) pebbles, D pledges that v will receive d−D(v) pebbles from pebbling
moves into v, and D requests d+

D(v) pebbling moves out of v. Because each pebbling
move out of v costs two pebbles, it is clear that p(v) + d−D(v) is at least 2d+

D(v). This
leads us to define the balance of a vertex v as

balance(D, p, v) = p(v) + d−D(v) − 2d+
D(v).

The balance of v is simply the number of pebbles that remain on v after executing any
sequence of pebbling moves whose signature is D; that is, for any σ whose signature
is D, we have that pσ(v) = balance(D, p, v).

If D is orderable under p, then the balance of each vertex must be nonnegative.
We call this condition the balance condition. The balance condition alone is not
sufficient: If D is a directed cycle and each vertex has one pebble, then the balance
of each vertex is zero, but we cannot make any pebbling moves, and thus D is not
orderable. However, as was implicitly observed by Moews [8], if D is acyclic, then the
balance condition is sufficient.

Theorem 2.1 (acyclic orderability characterization; see [8]). If D is an acyclic
digraph with distribution p, then D is orderable under p if and only if the balance
condition is satisfied.

Proof. We have observed that the balance condition is necessary. Conversely,
if the balance condition is satisfied, then we obtain a sequence of pebbling moves σ
whose signature is D by iteratively selecting a source u in D, making all pebbling
moves out of u, and deleting u from D.

Despite the simplicity of the acyclic orderability characterization, we are already
able to obtain one of our most useful corollaries. It makes precise our intuition that if
we are trying to place pebbles on a target vertex r, it is never advantageous to pebble
around in a cycle. Our proof is similar to that of Moews [8].

Corollary 2.2 (no cycle lemma; see [4, 8]). Suppose that D is orderable
under p. There exists an acyclic D′ ⊆ D such that D′ is orderable under p and
balance(D′, p, v) ≥ balance(D, p, v) for all v.

Proof. Let D′ be a digraph obtained by iteratively removing cycles from D until
no cycles remain. Observe that removing a cycle C does not change the balance of
vertices outside of C but does increase the balance of vertices in C by one. It follows
that balance(D′, p, v) ≥ balance(D, p, v) ≥ 0 for all v. Hence, D′ is acyclic and sat-
isfies the balance condition. By the acyclic orderability characterization, D′ is order-
able.

THE COMPLEXITY OF GRAPH PEBBLING 773

In most contexts, if a sequence σ of pebbling moves satisfies certain criteria, then
so will any sequence σ′ which satisfies pσ′ ≥ pσ. As we have seen, in these situations,
we are able to restrict our attention to sequences of pebbling moves whose signatures
are acyclic. Indeed, all of our major results fall into this category and therefore require
only the orderability characterization for acyclic digraphs.

Nevertheless, one may wish to study the existence of sequences of pebbling moves
which purposefully remove pebbles from the graph, as in the annihilation decision
problem. Let us return to our orderability characterization for arbitrary D. As we
have seen, in general the balance condition is not sufficient. However, as we show in
our next lemma, a directed cycle with one pebble on each vertex is the only minimal,
nontrivial situation which satisfies the balance condition and does not allow us to
make any pebbling moves.

Lemma 2.3. Suppose that D with distribution p satisfies the balance condition,
D is connected, and e(D) ≥ 1. If we cannot make any pebbling move described by an
edge in D, then D is a directed cycle and each vertex has exactly one pebble.

Proof. Observe that D does not have any source vertices. Indeed, if v were a
source, then the balance condition would imply that v has enough pebbles to make
all pebbling moves out of v requested by D. Therefore v must have outdegree zero,
and so v is an isolated vertex, which contradicts that D is connected and contains an
edge.

Let n be the number of vertices in D, let m be the number of edges in D, let
X ⊆ V (D) be the set of all sinks, let Y = V (D) −X be the set of all nonsinks, let k
be the number of edges with heads in Y and tails in X, and let z be the number of
nonsinks that have exactly one pebble. Note that m =

∑
v d

−(v) = k +
∑

v∈Y d−(v)
and m =

∑
v d

+(v) =
∑

v∈Y d+(v). Furthermore, for each v ∈ Y , we have that
p(v) ≤ 1; otherwise, p(v) ≥ 2 and v has outdegree at least one, contradicting that
there are no pebbling moves available. It follows that z =

∑
v∈Y p (v). Adding the

inequality balance(D, p, v) ≥ 0 over all v ∈ Y , we obtain

∑
v∈Y

d−(v) +
∑
v∈Y

p (v) ≥ 2
∑
v∈Y

d+(v)

or, equivalently, m−k+z ≥ 2m, and thus m+k ≤ z. Because D has no sources, every
vertex has indegree at least one and thus m ≥ n. Therefore n ≤ m ≤ m+ k ≤ z ≤ n.
It follows that n = m = z, so that every vertex in D is neither a sink nor a source and
has exactly one pebble. Furthermore, because n = m, each vertex in D has indegree
and outdegree exactly one. It follows that D is a directed cycle.

Of course, any sequence of pebbling moves leaves a pebble somewhere in the graph;
therefore if D contains an edge and D is orderable under p, then balance(D, p, v) ≥ 1
for some vertex v. In fact, a slight generalization of this observation will serve as our
second necessary condition. To develop this condition, we first recall the component
digraph.

Let D be a directed multigraph. A strongly connected component A of D is trivial
if A consists of a single vertex with indegree and outdegree zero. Define comp(D),
the component digraph of D, to be the digraph obtained by contracting each strongly
connected component of D to a single vertex.

Suppose that D is orderable under p, and consider a sink A in comp(D). Because
A is a sink component, any pebbling move whose source is in A also has its sink in
A; it follows that unless A is trivial, then there must be some vertex v in A with
balance(D, p, v) ≥ 1. We call the condition that every nontrivial sink in comp(D)

774 KEVIN MILANS AND BRYAN CLARK

contains a vertex of positive balance the sink condition. Note that in the directed
cycle example, each vertex has balance zero, and thus the sink condition fails.

As we now show, the balance condition together with the sink condition are
sufficient for D to be orderable. We require a simple proposition.

Proposition 2.4. If D is a strongly connected digraph and D−uv is not strongly
connected, then comp(D−uv) contains a single sink A, u is in A, and v is not in A.

Theorem 2.5 (orderability characterization). D is orderable under p if and only
if

(1) (balance condition) every vertex has nonnegative balance, and
(2) (sink condition) every nontrivial sink A in comp(D) contains some vertex

with balance at least one.

Proof. We have observed that both conditions are necessary. Assume (1) and
(2) hold. We show that D is orderable under p by induction on e(D). If e(D) = 0,
the statement is trivial. In the remaining cases, we assume that D has at least one
edge.

We consider the case that there is a source v in D with outdegree at least one.
Because balance(D, p, v) ≥ 0, v has enough pebbles to make all the pebbling moves
that D requests out of v. Let σ be an arbitrary ordering of these moves and obtain D′

from D by removing all edges whose source is v. We argue that D′ is orderable under
pσ. It is clear that D′ under pσ satisfies the balance condition. Observe that every
sink in comp(D′) either consists of v (and is therefore trivial) or is a sink in comp(D).
It follows that every nontrivial sink in comp(D′) is a nontrivial sink in comp(D) and
hence contains some vertex with balance at least one. By induction, D′ is orderable
under pσ. In the remaining cases, we assume that every source in D is an isolated
vertex.

Next, we consider the case where comp(D) contains a source A with outdegree
at least one. Let uv be an edge from a vertex u in A to a vertex v outside of A.
We check that A under p satisfies both the balance condition and the sink condition.
The balance condition follows from observing that A is a source in comp(D). Because
A is strongly connected and balance(A, p, u) ≥ 2, we have that A satisfies the sink
condition. By induction, there is an ordering σ of E(A) which is a valid sequence
of pebbling moves. We argue that D − E(A) is orderable under pσ. It is clear that
D − E(A) under pσ satisfies the balance condition. Because every nontrivial sink in
comp(D−E(A)) is a nontrivial sink in comp(D), D−E(A) satisfies the sink condition.
Because every source in D is an isolated vertex, it must be that there is some edge e
in D whose tail is u; this edge e is contained in A. Therefore D−E(A) contains fewer
edges than D, so that the inductive hypothesis implies that D − E(A) is orderable
under pσ. In the remaining cases we assume that every source in comp(D) is an
isolated vertex in comp(D).

Because comp(D) is acyclic and every source in comp(D) is an isolated vertex
in comp(D), it follows that D consists of disjoint, strongly connected components.
Because D is orderable if and only if each component of D is orderable, we assume
without loss of generality that D is a single, strongly connected component. If we
can make a pebbling move uv which leaves D−uv strongly connected, then it is clear
that D − uv under puv satisfies both conditions and thus D is orderable.

It remains to consider the case that every possible pebbling move results in a
digraph which is no longer strongly connected. By Lemma 2.3, we have that some
pebbling move uv is possible.

First, suppose that uv is the only edge out of u. Note that because D is strongly

THE COMPLEXITY OF GRAPH PEBBLING 775

connected, u must have indegree at least one. Furthermore, because uv is a valid
pebbling move, we have p (u) ≥ 2. It follows that balance(D, p, u) ≥ 1. It is clear that
D − uv under puv satisfies the balance condition; by Proposition 2.4, we have that it
also satisfies the sink condition. By induction D − uv is orderable under puv.

Otherwise, let uw ∈ E (D), w
= v. Let z be a vertex in D with balance(D, p, z) ≥
1 (we allow z ∈ {u,w, v}), let P be a uz-path, and let Q be a zu-path. Observe that
uv
∈ P or uw
∈ P . In the former case, u and z are in the same strongly connected
component in D − uv; in the latter case, u and z are in the same strongly connected
component in D − uw. By Proposition 2.4 we have that either D − uv under puv
or D − uw under puw satisfies both conditions. It then follows that D is orderable
under p.

Observe that if D is acyclic, then the sink condition is trivially satisfied, and
we recover the acyclic orderability characterization. Our general orderability char-
acterization yields a quick method for checking whether D is orderable, and thus
orderable is in P. As a consequence, we see that annihilation is in NP.

Before we conclude this section, we use our tools to prove some technical lemmas
which will be useful in later sections. We define a proper sink to be a sink with
indegree at least one.

Lemma 2.6. Suppose D is acyclic and orderable under p. Then for any vertex
w, there exists D′ ⊆ D such that D′ is orderable under p and

balance(D′, p, w) = balance(D, p,w) + 2d+
D(w)

= p(w) + d−D(w).

Additionally, if d+
D(w) > 0 or D has proper sinks other than w, then we may take D′

to be a proper subgraph of D.
Proof. Observe that if uv is an edge in D with v a sink, then D − uv satisfies

the balance condition. Let D′ be a digraph obtained from D by iteratively deleting
edges into sinks other than w until no such edges remain. Because D′ is acyclic and
satisfies the balance condition, the acyclic orderability characterization implies that
D′ is orderable. Observe that w is a sink, or else D′ would contain an edge uv with
v
= w a sink. Furthermore, every edge into w in D remains in D′. It follows that
balance(D′, p, w) = balance(D, p,w) + 2d+

D(w).
Often, we wish to explore the consequences of the existence of a sequence of

pebbling moves with certain properties. In many contexts, considering a minimum
sequence of pebbling moves with the properties in question provides us with additional
structure. For example, the no cycle lemma implies that a minimum sequence of
pebbling moves witnessing that p covers q must be acyclic.

Lemma 2.7 (minimum signatures lemma). Let σ be a minimum sequence of
pebbling moves in G under p which places at least k pebbles on r, where p(r) ≤ k. If
D is the signature of σ, then D is acyclic, contains no proper sinks except possibly r,
the outdegree of r is 0, and the indegree of r is k − p(r).

Proof. By the no cycle lemma, D is acyclic, or else we obtain a shorter sequence
of pebbling moves placing at least k pebbles on r. By Lemma 2.6, the outdegree of r
is zero and no vertex except possibly r is a proper sink, or again we obtain a shorter
sequence.

Because d+
D(r) = 0, we have balance(D, p, r) = p(r) + d−D(r). Together with

balance(D, p, r) ≥ k, we have that d−D(r) ≥ k − p(r). If d−D(r) > k − p(r), then
balance(D, p, r) > k. Obtain D′ from D by deleting one edge into r. Notice that D′

satisfies the balance condition and furthermore balance(D′, p, r) = balance(D, p, r) −

776 KEVIN MILANS AND BRYAN CLARK

1 ≥ k. It follows from the acyclic orderability characterization that we obtain a shorter
sequence.

If we are interested in minimum sequences of pebbling moves that place k pebbles
on some vertex r in a set R of target vertices, the structure of these sequences is further
constrained. Not only do their signatures obey the conditions found in the minimum
signatures lemma, but the outdegree of each vertex in R is bounded.

Lemma 2.8. Let σ be a sequence of pebbling moves in G under p that places at
least k > 0 pebbles on a vertex r ∈ R which, among all sequences placing at least k
pebbles on some vertex in R, minimizes the total number of pebbling moves. Let D be
the signature of σ. For each v ∈ R, we have that d+

D(v) < k/2.
Proof. Observe that D is acyclic, or else we contradict the no cycle lemma.

Suppose for a contradiction that there is v ∈ R with d+
D(v) ≥ k/2. Because k > 0,

we have d+
D(v) > 0 and thus Lemma 2.6 yields a shorter sequence of pebbling moves

placing at least k pebbles on v, a contradiction.

3. Pebble reachability. Recall that the pebbling number of a graph π(G) is
the minimum k such that every vertex is reachable under every distribution of size
k. It is natural, then, to explore the decision problem that results when we fix a
particular distribution and target vertex; that is, given G, p, and r, is r reachable?
We call this problem reachable, or pr for short. As we show, pr is NP-complete,
even when the inputs are restricted so that G is bipartite and has maximum degree
three, and each vertex starts with at most two pebbles.

Analogously, fixing the distribution in the cover pebbling number γ(G) yields
another decision problem: Given G and p, does p cover the unit distribution? We call
this problem coverable, abbreviated pc. Although deciding whether γ(G) ≤ k is
possible in polynomial time [13, 11], pc is NP-complete.

A sequence of pebbling moves σ is nonrepetitive if for every (unordered) pair of
vertices {u, v}, σ contains at most one pebbling move between the vertices u and
v. Similarly to pr, we may ask, given G, p, and r, whether r is reachable via a
nonrepetitive sequence of pebbling moves. We call this problem npr (nonrepetitive
pebble reachability). We show that npr is NP-complete. Our reduction is from a
restricted form of 3sat whose instances φ are all in a canonical form.

Definition 3.1. A 3CNF formula φ is in canonical form if
(1) φ has at least two clauses,
(2) each clause contains two or three variables,
(3) each variable appears at most three times in φ,
(4) each variable appears either once or twice in its positive form, and
(5) each variable appears exactly once in its negative form.
It is well known that 3sat remains NP-complete when (2)–(3) are required [12].

Suppose φ is a 3sat formula which satisfies (2)–(3) but not necessarily (1), (4), or
(5). Indeed, if a variable x always appears in its positive (negative) form in φ, we
obtain a simpler, equivalent formula by setting x to true (false), thus removing all
clauses containing x (x). If x appears twice in its negative form, we simply switch
all negative occurrences of x to positive occurrences and all positive occurrences of
x to negative occurrences. In this way, we obtain an equivalent formula φ′ satisfying
(2)–(5). If φ′ has at least two clauses, then φ′ satisfies each of (1)–(5); otherwise, φ′

contains zero clauses and is trivially satisfiable, so we may replace φ′ with any fixed,
satisfiable 3CNF formula in canonical form. We define r3sat to be this restricted
form of 3sat.

Our reduction from r3sat to npr employs several simple gadgets. The AND

THE COMPLEXITY OF GRAPH PEBBLING 777

2 0 2 2 0 2 2 0 2 2 0 2

r

0

0 0

0

1 1 1

1

1

1

W X ZY

Fig. 3.1. If φ = (w ∨ x) ∧ (w ∨ x) ∧ (w ∨ y ∨ z) ∧ (x ∨ y ∨ z), then Gnpr(φ) appears above.

gadget is a vertex v that has two input edges and one output edge; initially, v is given
zero pebbles. Notice that if σ is nonrepetitive and contains a pebbling move from v
along the output edge, then σ must contain pebbling moves into v along both input
edges. The OR gadget is identical, except that v is initially given a single pebble. In
this case, if σ is nonrepetitive and contains a pebbling move from v along the output
edge, then σ must contain a pebbling move into v along one of the input edges. Using
2-ary AND (OR) gadgets, one easily constructs k-ary AND (OR) gadgets.

The variable gadget is a path v1v2v3. The endpoint vertices {v1, v3} are initially
given two pebbles, and the internal vertex v2 is initially given zero pebbles. The
endpoint vertices correspond to the positive occurrence(s) of the variable in φ, and
the internal vertex corresponds to the negative occurrence of the variable in φ. The
variable gadget has two or three output edges, depending upon how many times the
corresponding variable appears in φ. If xi appears three times in φ, then its associated
variable gadget Xi has three output edges, one incident to each vi. If xi appears twice
in φ, then Xi has two output edges, one incident to each of v1 and v2. We say that
the output edges incident to v1 and v3 are positive output edges, and the output edge
incident to v2 is the negative output edge.

Given an instance φ of r3sat, we construct G = Gnpr(φ) as follows. For each
variable xi in φ, we introduce a variable gadget Xi in G. For each clause cj containing
k ∈ {2, 3} variables, we introduce a k-ary OR gadget Cj . The output edges of the
Xi’s are identified with the input edges of the Cj ’s in the natural way: If xi appears
in cj , a positive output edge of Xi is identified with an input edge of Cj , and if xi

appears in cj , the negative output edge of Xi is identified with an input edge of Cj .
The output edges of the Cj ’s are connected to the input edges of an m-ary AND
gadget A, where m is the number of clauses in φ. Finally, the output edge of A is
connected to the target vertex r.

Example. If φ = (w∨x)∧ (w∨x)∧ (w∨ y∨ z)∧ (x∨ y∨ z), then Gnpr(φ) appears
in Figure 3.1.

778 KEVIN MILANS AND BRYAN CLARK

Proposition 3.2. Let φ be an instance of r3sat with n variables and m clauses.
Then Gnpr(φ) has O(n + m) vertices.

Theorem 3.3. npr is NP-complete, even when G has maximum degree three
and each vertex starts with at most two pebbles.

Proof. It is immediate that npr is in NP. Let φ be an instance of r3sat and let
G = Gnpr(φ). Observe that each vertex in G starts with at most two pebbles and the
maximum degree in G is three.

We claim that φ is satisfiable if and only if there is a nonrepetitive sequence of
pebbling moves which ends with a pebble on r. Suppose that φ is satisfiable via
f : {x1, . . . , xn} → {true, false}. We construct a nonrepetitive sequence of pebbling
moves which ends with a pebble on r as follows. For each variable xi with f(xi) =
false, we make a pebbling move from each endpoint of Xi to the interior vertex of Xi.
Notice that after executing these pebbling moves, for each xi with f(xi) = true, we
have two pebbles on each endpoint of Xi, and for each xi with f(xi) = false, we have
two pebbles on the interior vertex of Xi. Because f satisfies φ, each clause gadget
Ci has some input edge which is incident to a vertex in a variable gadget with two
pebbles. By construction, each vertex in a variable gadget is incident to at most one
clause gadget input edge; therefore we are able to make pebbling moves into each
clause gadget Ci. By the construction of our clause gadgets, we are then able to
make pebbling moves out of each clause gadget and, by construction, along each of
the inputs to the m-ary AND gadget. It follows that we are able to make a pebbling
move along the output of our AND gadget, which places a pebble on r. It is easily
observed that our sequence of pebbling moves is nonrepetitive.

Conversely, suppose that σ is a nonrepetitive sequence of pebbling moves which
ends with a pebble on r. We construct a satisfying assignment f as follows. Because
σ contains a pebbling move across the output of the AND gadget A, it follows that
σ contains pebbling moves across the output of each clause gadget Ci. Hence, for
each clause gadget Ci, σ contains a pebbling move across an input edge ei of Ci.
If ei is incident to an endpoint of Xj , then we set f(xj) = true; otherwise, if ei is
incident to the interior vertex of Xj , we set f(xj) = false. We claim that we do not
attempt to set both f(xj) = true and f(xj) = false. Indeed, if we set f(xj) = false,
then σ contains a pebbling move out of the interior vertex v of Xj along an input
edge to some clause gadget. Because σ is nonrepetitive, v starts with zero pebbles,
and v has degree three, it must be that σ contains pebbling moves from each of the
endpoints in Xj into v. Because each endpoint of Xj starts with only two pebbles
and σ is nonrepetitive, the moves into v are the only pebbling moves which originate
from the endpoints of Xj . Therefore σ does not contain a pebbling move out of an
endpoint of Xj along an input edge of a clause gadget, and hence we never attempt
to set f(xj) = true. If the truth values for any variables remain unset, we set them
arbitrarily. Now f witnesses that φ is satisfiable.

One of the major tools available to us when designing interesting graph pebbling
problems is the path; on a path, the pebbling moves available to us are rather limited.
If we are in a situation where we need not concern ourselves with pebbling in cycles,
then our options on a path become even more limited. Furthermore, if the path is
long, it may be difficult to pebble across. Before using paths to reduce npr to pr, we
explore some basic properties.

Lemma 3.4. Let G be a graph which contains an induced path P = v0, . . . , vn+1

containing n+2 vertices, and suppose that each of the n internal vertices in P contains
c pebbles. Let D be an acyclic signature of a sequence of pebbling moves so that

THE COMPLEXITY OF GRAPH PEBBLING 779

the edge v1v0 has multiplicity a0 ≥ c. Then the multiplicity of vn+1vn is at least
2n(a0 − c) + c.

Proof. Observe that the claim is trivial if a0 = 0; we assume that a0 ≥ 1. For
1 ≤ i ≤ n, let ai be the multiplicity of vi+1vi. We claim that for all 1 ≤ i ≤ n, we
have that

(1) ai + c ≥ 2ai−1, and
(2) ai ≥ a0.

Suppose for a contradiction that i ≥ 1 is the least integer for which (1) or (2) fails,
and consider the vertex vi. By our selection of i, ai−1 ≥ a0 and therefore D requests
at least a0 pebbling moves out of vi along edge vivi−1. Because a0 ≥ c and a0 ≥ 1,
we have that 2a0 > c; hence, by the balance condition at vi, the indegree of vi in D is
at least one. Because D is acyclic, D contains no edges of the form vi−1vi. Because
vi is an internal vertex in an induced path in G, the only other edge incident to vi
is vivi+1. It follows that the indegree of vi in D is exactly the multiplicity of vi+1vi,
and so the indegree of vi in D is ai. Therefore the balance condition at vi implies
that ai + c ≥ 2ai−1, which, together with a0 ≥ c and ai−1 ≥ a0, implies ai ≥ a0.

Solving our recurrence in (1), we find that ai ≥ 2i(a0 − c) + c.
We use our path lemma to argue that if we can pebble across a long path several

times, then we can place many pebbles on the originating endpoint of the path. Using
Lemma 2.6, we obtain the following corollary.

Corollary 3.5. Under the assumptions of Lemma 3.4, there exists D′ ⊆ D such
that D′ is orderable and balance(D′, p, vn+1) ≥ 2n+1(a0 − c) + 2c. If in addition we
have d+

D(vn+1) > 0, then we may take D′ to be a proper subgraph of D.
Our reduction used the notion of nonrepetitive sequences of pebbling moves. In

fact, there is a natural correspondence between the nonrepetitive sequences of pebbling
moves in a graph G and (arbitrary) sequences of pebbling moves in another graph
S(G,α).

Definition 3.6. We obtain S(G,α) from G by replacing each edge in G with a
path containing α internal vertices so that dS(G,α)(u, v) = (1 + α) dG(u, v) for each
pair u, v of vertices of G. We call these paths one use paths.

As our next lemma shows, the correspondence holds whenever α is sufficiently
large with respect to the number of pebbles in G.

Lemma 3.7. Fix a graph G and a parameter t ≥ 0. Suppose that

α ≥ max {lg 2t, 4 lg e(G)}

and let H = S(G,α). Let p be a pebble distribution on G of size at most t and define
a pebble distribution q on H so that q and p agree on V (G) and q assigns one pebble
each to the internal vertices of H’s one use paths. We have the following claims.

(1) If σ is a nonrepetitive sequence of pebbling moves in G, then there exists a
sequence of pebbling moves σ′ in H such that pσ and qσ′ agree on V (G).

(2) Conversely, if σ is a sequence of pebbling moves in H, then there exists a
nonrepetitive sequence of pebbling moves σ′ in G such that pσ′(v) ≥ qσ(v) for
all v in G.

Proof. Claim 1 is clear. Suppose that σ is a sequence of pebbling moves in H.
By the no cycle lemma, we may assume without loss of generality that the signature
D of σ is acyclic. We define a digraph D′ with vertex set V (G) as follows. Let uv
be an edge in G and let u = w0, . . . , wα+1 = v be the corresponding one use path in
H. The multiplicity of the edge uv in D′ is the multiplicity of the edge wαwα+1 in
D. Because D is acyclic, the balance condition implies that if D contains the edge

780 KEVIN MILANS AND BRYAN CLARK

wαwα+1, then D contains all edges wkwk+1. It follows that D′ is also acyclic. It is
easily seen that balance(D′, p, v) ≥ balance(D, q, v) for each v in D′. By the acyclic
orderability characterization, we obtain a sequence of pebbling moves σ′ such that
pσ′(v) ≥ qσ(v) for all v in G. It remains to show that D′ has no edges of multiplicity
at least two, so that σ′ is nonrepetitive.

Suppose for a contradiction that uv is an edge in D′ with multiplicity at least two;
again, let u = w0, . . . , wα+1 = v be the corresponding one use path in H. It follows
that wαwα+1 has multiplicity at least two in D. Recalling that q assigns each of the
internal vertices wi one pebble, Lemma 3.4 implies that the multiplicity of w0w1 is
at least 2α + 1. Because each pebbling move reduces the total number of pebbles by
one, certainly the size of q is at least 2α + 2. But |q| = |p|+αe(G) and together with
t ≤ 2α−1 and αe(G) ≤ 2α−1, we obtain a contradiction.

Corollary 3.8. reachable is NP-complete, even when G is bipartite and has
maximum degree three, and each vertex starts with at most two pebbles.

Proof. By the no cycle lemma and the acyclic orderability characterization, pr

is in NP. We reduce the fragment of npr targeted by our reduction from r3sat to
npr as follows. Consider a graph G with maximum degree three, a distribution of
pebbles p which places at most two pebbles on each vertex in G, and a target vertex
r. Let α be the least odd number larger than max {lg 2 |p| , 4 lg e(G)}. Our reduction
outputs H = S(G,α) with pebble distribution q as in Lemma 3.7 and target vertex r.
Observe that H is bipartite and has maximum degree three, and each vertex starts
with at most two pebbles. By Lemma 3.7, r is reachable via a nonrepetitive sequence
of pebbling moves in G if and only if r is reachable in H.

Let φ be an instance of r3sat. We define Gpr(φ) = S(Gnpr(φ), α) with α chosen
as in our corollary; that is, Gpr is the composition of our reduction from r3sat to
npr and our reduction from npr to pr.

Corollary 3.9. coverable is NP-complete, even when G is bipartite and has
maximum degree three, and each vertex starts with at most three pebbles.

Proof. By the no cycle lemma and the acyclic orderability characterization, we
have that pc is in NP. We reduce pr to pc as follows. Let G be a graph with pebble
distribution p and target vertex r. Define a new distribution q of pebbles so that
q(v) = p(v) + 1 for all v
= r and q(r) = p(r). We claim that r is reachable under p if
and only if q covers the unit distribution. The forward direction is clear.

Suppose that σ is a minimum sequence of pebbling moves witnessing that q covers
the unit distribution, and let D be the signature of σ. By the no cycle lemma, D is
acyclic. Because balance(D, q, v) ≥ 1, we have that balance(D, p, v) ≥ 0 for all v and
balance(D, p, r) ≥ 1. It follows from the acyclic orderability characterization that D
is orderable under p. Together with balance(D, p, r) ≥ 1, we have that r is reachable
under p.

As we have seen, reachable is NP-complete, even under some restrictions of the
inputs. However, as we now observe, if we restrict G to be a tree, then we can solve
reachable in polynomial time using a simple greedy strategy. A greedy pebbling
move is a pebbling move uv such that d(v, r) < d(u, r). Moews established that the
maximum number of pebbles that can be placed on a target vertex r in T is achievable
using greedy pebbling moves [8]. We extend this slightly and argue that every maximal
sequence of greedy pebbling moves places the maximum possible number of pebbles
on r. The greedy pebbling strategy arbitrarily makes greedy pebbling moves until no
greedy pebbling move is possible.

Proposition 3.10 (greedy tree lemma; see [8]). In a tree T with target r, the

THE COMPLEXITY OF GRAPH PEBBLING 781

maximum number of pebbles that can be placed on r is achieved with the greedy pebbling
strategy.

Proof. Suppose for a contradiction that under p, it is possible to place k pebbles
on r, but if we make the greedy pebbling move uv, it is no longer possible to place
at least k pebbles on r. Let σ be a minimum sequence of pebbling moves placing k
pebbles on r, and let D be the signature of σ. By the no cycle lemma, D is acyclic.
If D contains the edge uv, then the acyclic orderability characterization implies that
D − uv is orderable under puv, implying that it is possible to place k pebbles on r
even after pebbling uv. Otherwise, if D does not contain the edge uv, then d+(u) = 0,
or else D contains a proper sink other than r, contradicting the minimum signatures
lemma. Therefore σ does not contain any pebbling moves out of u, and so uv followed
by σ is a legal sequence of pebbling moves placing at least k pebbles on r.

4. Complexity of optimal pebbling number. Recall that the optimal peb-
bling number π̂(G) of a graph G is the least number k such that there exists a dis-
tribution of size k under which every vertex is reachable. As in the introduction, we
define optimal-pebbling-number (abbreviated opn) to be the problem of deciding,
given G and k, whether π̂(G) ≤ k. In this section, we show that opn is NP-complete.
We observe that opn is in NP; indeed, we may witness that π̂(G) ≤ k by providing
a distribution p of size k and, for each r, the signature Dr of a sequence of pebbling
moves showing that r is reachable. More care is needed to establish that opn is NP-
hard. As in our proof that pr is NP-hard, we establish that opn is NP-hard through
an intermediate decision problem.

Let G be a graph and let p be a distribution of pebbles to G. A vertex r is
determinative if r being reachable under p implies that every vertex in G is reachable
under p. Informally, if r is determinative, then no vertex in G is more difficult to
pebble than r. Our intermediate decision problem is reachable with the added
restriction that r is determinative. We call this problem dpr (determinative pebble
reachability).

Proposition 4.1. dpr is NP-complete, even when each vertex starts with at
most two pebbles.

Proof. Because reachable is in NP, it is immediate that dpr is in NP as well.
We show that our reduction Gpr from r3sat to pr actually produces an instance of
dpr. Let φ be an instance of r3sat, and let G = Gpr(φ) with distribution p and
target r. We show that r is determinative. Suppose that it is possible to place a
pebble on r or, equivalently, that φ is satisfiable. Consider a vertex v ∈ G. If v is an
internal vertex in a one use path introduced in our reduction from npr to pr, then v
begins with one pebble and thus v is reachable trivially.

It remains to consider the case that v is a vertex introduced in our reduction from
r3sat to npr, so that v is either in an OR gadget, in a variable gadget, in an AND
gadget, or equal to r. If v is in an OR gadget, then v begins with a pebble. If v is
an endpoint of a variable gadget, then v begins with two pebbles. If v is the interior
vertex of a variable gadget, then we may place a pebble on v by pebbling from either
of the endpoints (which start with two pebbles) across the one use path. Otherwise,
if v is in an AND gadget or v = r, then we use the satisfiability of φ to place a pebble
on v.

Before we are able to present our reduction from dpr to opn, we require some
technical lemmas. The following weighting argument is well known and is a funda-
mental tool in graph pebbling.

Proposition 4.2 (standard weight equation). Let G be a graph with distribution

782 KEVIN MILANS AND BRYAN CLARK

Fig. 4.1. star(3, 5).

p and target vertex r, and let ai be the number of pebbles at distance i from r. If it is
possible to place s pebbles on r, then we have

∑
i≥0 2−iai ≥ s.

Proof. Observe that it is not possible to make a pebbling move which increases
the sum

∑
i≥0 2−iai.

The following graph will be useful to us in two different contexts: first, as a gadget
and second, in establishing the correctness of our reduction from dpr to opn.

Definition 4.3. We define star(α, β) to be the result of replacing each edge in
K1,β with a path containing α edges so that star(α, β) has αβ edges. Equivalently,
star(α, β) = S(K1,β , α− 1).

Example. star(3, 5) appears in Figure 4.1.
Our reduction from dpr to opn produces a graph whose global structure is similar

to that of star(·). Our instance of dpr plays the role of the center vertex, and the
gadgets that we add play the role of the leaves. When we argue the correctness of
our reduction, we apply the following lemma to limit the pebble distributions that
we must consider. The lemma shows that, despite its simplicity, the standard weight
equation can yield nontrivial results.

Lemma 4.4. Fix α ≥ 1 and β ≥ 2. Let p be a distribution of β2α pebbles to
star(α, β) with the property that for each leaf l in star(α, β), it is possible to place 2α

pebbles on l. If 2(β2 + 1) < 2α, then p is the distribution which places 2α pebbles on
each leaf and zero pebbles on the other vertices.

Proof. Let v be the center vertex of star(α, β) and, for each 0 ≤ i ≤ α, let ai be
the number of pebbles at distance i from v. For each leaf l, it is possible to place 2α

pebbles on l, and Proposition 4.2 yields an equation; we sum these equations. Because
there are β leaves, we obtain β2α on the right-hand side. A pebble at distance i from
v is at distance α − i from its closest leaf and α + i from all other leaves. It follows
that pebbles at distance i from v contribute 1/2α−i + (β − 1)/2α+i to the left-hand
side of the equation. We obtain

α∑
i=0

(
1

2α−i
+

β − 1

2α+i

)
ai ≥ β2α

and, after some simplification,

α∑
i=0

(
2i +

β − 1

2i

)
ai ≥ β4α.

THE COMPLEXITY OF GRAPH PEBBLING 783

Let f(x) = 2x + (β − 1)2−x so that pebbles at distance i contribute f(i) to the
left-hand side. Analyzing the derivative f ′(x) = ln 2 (2x − (β − 1)2−x), we find that
f ′(x) = 0 has one solution, namely x0 = log4(β − 1). Furthermore, for x > x0, we
have f ′(x) > 0 and for x < x0, we have f ′(x) < 0. It follows that f(x) has a global
minimum at x = x0, f(x) is decreasing on (−∞, x0], and f(x) is increasing on [x0,∞).

Let m =
∑α−1

i=0 ai be the number of pebbles not at distance α from v; we show
that m < 1, implying that m = 0. Noting that aα = β2α −m, we have that(

max
0≤i≤α−1

f(i)

)
m + f(α) (β2α −m) ≥ β4α.

Because of the monotonicity properties of f , we have max0≤i≤α−1 f(i) ∈ {f(0), f(α− 1)}.
Because 2(β2 + 1) < 2α, certainly 2β < 2α and therefore

f(0) = β < 2α−1 ≤ 2α−1 + (β − 1)21−α = f(α− 1).

It follows that max0≤i≤α−1 f(i) = f(α−1). Observe that f(α)−f(α−1) = 2α−1−(β−
1)/2α. Because β−1 < 2(β2 +1) < 2α, we have that f(α)− f(α−1) > 2α−1 −1 ≥ 0.
After substitution and further simplification, we obtain

m ≤ β2α (f(α) − 2α)

f(α) − f(α− 1)
.

Substituting our formula for f(α) into the numerator yields

m ≤ β(β − 1)

f(α) − f(α− 1)
≤ β2

f(α) − f(α− 1)
.

Because 2(β2 +1) < 2α, we have that β2 < 2α−1 −1; recalling that f(α)− f(α−1) >
2α−1 − 1, we have m < 1 as required.

It follows that p places every pebble at distance α from v. It remains to show
that p places 2α pebbles on each leaf. Fix an arbitrary leaf l, and let n be the number
of pebbles that p places on l. Applying the standard weight equation to l, we have
that

n +
β2α − n

22α
≥ 2α.

After simplification, we obtain that

n ≥ 2α − 2α(β − 1)

4α − 1
.

Similarly to the previous paragraph, we show that n > 2α − 1. We have that

2α(β − 1)

4α − 1
≤ 2α(β − 1)

4α − 2α
=

β − 1

2α − 1
.

Because β ≤ 2(β2 + 1) < 2α, we have that (β− 1)/(2α − 1) < 1 and hence n > 2α − 1
as required. Therefore p assigns each leaf at least 2α pebbles, and the lemma fol-
lows.

We now have the tools necessary to present our reduction from dpr to opn. Let G
be a graph with pebble distribution p and determinative target vertex r. Let m = |p|,

784 KEVIN MILANS AND BRYAN CLARK

let α =
⌈
lg
(
2(m2 + 1) + 1

)⌉
, and let β = 2αm+ 2. We construct a graph H with the

property that π̂(H) ≤ m2α if and only if r is reachable in G.

We construct H from G by attaching a copy of star(α, β) to each pebble in G.
That is, for each pebble on a vertex u, we introduce a copy of star(α, β) and attach
it to u by identifying u with one of the leaves of our copy of star(α, β).

Lemma 4.5. r is reachable in G under p if and only if π̂(H) ≤ m2α.

Proof. (=⇒). Suppose r is reachable. Define a distribution q of m2α pebbles
to H by placing 2α pebbles at the centers of each of the m copies of star(α, β) in
H. Consider a vertex v in H. If v belongs to a copy S of star(α, β), then v is at
a distance at most α from the center of S; because the center of S begins with 2α

pebbles, v is reachable. Otherwise, v must be a vertex in G. Because r is reachable
and determinative under p, to show that v is reachable, it suffices to show that q
covers p. But each star can contribute one pebble to the vertex it shares with G, and
thus q covers p.

(⇐=). Let q be a distribution of m2α pebbles to H witnessing that π̂(H) ≤ m2α.
We claim that if u is the center vertex of a copy S of star(α, β), then it is possible
to place 2α pebbles on u starting from q. Indeed, because S contains β − 1 > m2α

pendant paths with endpoint u, there is some path to which q assigns no pebbles
(except possibly at u). Let w0w1, . . . , wα be one such path with w0 = u. Because
every vertex is reachable under q, certainly wα is reachable; let D be a signature of
a minimum sequence of pebbling moves that places a pebble on wα. Because wα is a
leaf and q assigns no pebbles to wα, wα−1wα is an edge in D; therefore Corollary 3.5
implies that we can place 2α pebbles on u.

When a graph has a pebble distribution, contracting a set of vertices S changes
the pebble distribution in the natural way: Pebbles on vertices in S are collected at
the vertex of contraction. Construct H ′ and pebbling distribution q′ from H and q
by applying the following contractions:

(1) Contract all vertices in H that are also in G to a single vertex v.
(2) For each copy S of star(α, β), contract the vertices in S that are at distance

at least α from v.

Observe that H ′ is exactly star(α,m), with center vertex v. Because the contraction
operation cannot make pebbling more difficult, it is possible to place 2α pebbles on
each leaf in H ′ starting from q′. Because 2(m2 + 1) < 2α, applying Lemma 4.4 to
H ′ = star(α,m) implies that q′ must assign 2α pebbles to each leaf of H ′. It follows
that q assigns 2α pebbles to each copy of star(α, β) in H in such a way that each
pebble is at a distance at least α away from the vertices in G.

Let E be the signature of a minimum sequence of pebbling moves in H starting
from q which places a pebble on r. Consider a copy S of star(α, β) attached to a
vertex u in G. We claim that E contains at most one edge from S into u. Indeed, if
this were otherwise, then by Corollary 3.5 there would exist E′ ⊆ E which placed at
least 2 · 2α pebbles on the center vertex of S. However, this is impossible because E
is acyclic with edges from S into G, and q assigns only 2α pebbles to S.

Obtain E′ from E by deleting all edges except those in G. Because each ver-
tex u in G receives a pebble from p for every attached copy of star(α, β), we have
that balance(E′, p, u) ≥ balance(E, q, u) for all vertices u of G. It follows from
the acyclic orderability characterization that E′ is orderable under p; together with
balance(E′, p, r) ≥ balance(E, q, r) ≥ 1, we have that r is reachable under p.

We conclude with this section’s main theorem.

Theorem 4.6. optimal-pebbling-number is NP-complete.

THE COMPLEXITY OF GRAPH PEBBLING 785

Proof. We have already observed that opn is in NP and exhibited a reduction
from dpr to opn. It remains to check that our reduction is computable in polynomial
time for the restricted class of dpr shown to be NP-hard in Proposition 4.1. Consider
an instance G, p, r of dpr with n = n(G) and m = |p| at most 2n. It suffices to show
that the pair H,m2α produced by our reduction is not too large. Our reduction uses
gadgets star(α, β) with α ≤

⌈
lg
(
2(4n2 + 1) + 1

)⌉
and β ≤ 2αm+2 = O(n3). It follows

that each gadget star(α, β) has at most O(n3 log n) vertices. Because our reduction
introduces at most 2n gadgets, H contains a total of at most n + 2nO(n3 log n) =
O(n4 log n) vertices.

5. Complexity of pebbling number. Although the optimal pebbling num-
ber has received some study, combinatorialists have focused more attention on the
pebbling number. Recall that the r-pebbling number π(G, r) is the minimum k such
that r is reachable under every distribution of size k. Similarly, the pebbling number
π(G) is the minimum k such that every vertex is reachable under every distribution
of size k. It is clear from the definitions that if n is the number of vertices in G, then
π̂(G) ≤ n ≤ π(G). At first glance, it may not be clear that π(G) is well defined. In
fact, if G is not connected, then we can place arbitrarily many pebbles in a single
component and we will not be able to place pebbles on vertices outside the compo-
nent. However, for connected graphs, π(G) is well defined; we implicitly assume that
G is connected. Indeed, if d is the diameter of G, every vertex is reachable provided
that our distribution is forced to place at least 2d pebbles on some vertex. We record
this observation as a proposition.

Proposition 5.1. Let G be a graph with diameter d. Then π(G) ≤
(
2d − 1

)
n+1.

We call the problem of deciding whether π(G, r) ≤ k r-pebbling-number (ab-
breviated rpn); similarly, we define pebbling-number (abbreviated pn) to be the
problem of deciding whether π(G) ≤ k. In this section, we establish that pn and
rpn are ΠP

2 -complete. First, note that both languages are in ΠP
2 . Indeed, to decide

if π(G) ≤ k, our machine need only check that for all distributions p of size k and all
target vertices r, there exists a digraph Dp,r orderable under p that places a pebble
on r. The distributions of size k, the target vertices, and the digraphs Dp,r are all
describable using poly(n, log k) bits. Further, orderable is in P. It follows that pn

is in ΠP
2 . A similar argument shows that rpn is in ΠP

2 .

The seminal ΠP
2 -complete problem is a quantified version of 3sat whose instances

consist of a 3CNF formula φ over a set of universally quantified variables and a set of
existentially quantified variables (see [10]). We say that φ is valid if for every setting
of the universally quantified variables, there is a setting of the existentially quantified
variables which satisfies φ. The decision problem ∀∃3sat is to determine whether φ
is valid. Just as 3sat remains NP-complete when φ is restricted to be in canonical
form (recall Definition 3.1), ∀∃3sat remains ΠP

2 -complete when φ is restricted to be
in canonical form. We call this restriction r∀∃3sat.

We show that rpn is ΠP
2 -complete by a reduction from r∀∃3sat. Whereas our

reduction to opn produces graphs H with the property that only one distribution can
possibly succeed in witnessing π̂(H) ≤ k, our reduction to rpn produces graphs with
the property that almost all distributions succeed in being able to place a pebble on
r. It is the rare “difficult” distributions—those which may not allow a pebble to be
placed on r—that correspond to settings of the universally quantified variables in our
r∀∃3sat formula. Given a distribution of k pebbles to the graph we produce, either
r is easily reachable or the distribution corresponds to a setting f of the universally
quantified variables in φ, and r is reachable if and only if φ is satisfiable under f .

786 KEVIN MILANS AND BRYAN CLARK

Our reduction from r∀∃3sat to rpn involves the construction of several graphs,
each building on the previous construction. We refer to the ith graph we produce
as Gi = Gi(φ). We present the reduction with respect to a fixed instance φ of
r∀∃3sat.

5.1. The underlying graph. We obtain G1 from φ by modifying Gnpr(φ)
slightly. That is, for each universally quantified variable xi in φ, we remove both
edges from the variable gadget Xi in Gnpr(φ) associated with xi and remove one peb-
ble each from the endpoints of Xi so that the endpoints of Xi start with one pebble
instead of two. (We leave intact variable gadgets Xj corresponding to existentially
quantified variables xj in φ.) Let n1 = n(G1) be the number of vertices in G1, let
e1 = e(G1), and let p1 be the distribution on G1. The following definition gives
the correspondence between settings of the universally quantified variables in φ and
distributions of pebbles in G1.

Definition 5.2. For each setting f of the universally quantified variables in φ,
let p1,f be the distribution of pebbles to G1 given by adding the following pebbles to p1.
For each xi with f(xi) = true, add one pebble to each of the two vertices associated
with positive occurrences of xi in φ. For each xi with f(xi) = false, add two pebbles
to the vertex associated with the negative instance of xi.

Observe that under any p1,f , each vertex in G1 contains at most two pebbles.
Our interest in G1 under the distributions p1,f is based on the following proposition,
whose proof is similar to that of Theorem 3.3.

Proposition 5.3. There is a nonrepetitive sequence of pebbling moves which
places a pebble on r in G1 starting from p1,f if and only if there is a setting of the
existentially quantified variables in φ which, together with f , satisfies φ.

Note that for any two settings f , f ′ of the universally quantified variables in φ,
|p1,f | = |p1,f ′ |; let t = |p1,f |. Because p1,f assigns at most two pebbles to each vertex
in G1, t ≤ 2n1. We obtain G2 from G1 by setting α = �max {lg 2t, 4 lg e1}� and
replacing each edge in G1 with a path of length α + 1; that is, G2 = S(G1, α) (recall
Definition 3.6). Let n2 be the number of vertices in G2.

Let p2 be the distribution of pebbles to G2 so that p2 and p1 agree on all vertices
in G1, and p2(v) = 1 for all vertices v introduced in our construction of G2 from G1.
Similarly, let p2,f be the distribution of pebbles to G2 so that p2,f and p1,f agree on
all vertices in G1, and p2,f (v) = 1 for all vertices v introduced in our construction of
G2 from G1.

We call G2 the underlying graph and a distribution p2,f an underlying distribution.
Observe that by Lemma 3.7, there is a nonrepetitive sequence of pebbling moves
which places a pebble on r in G1 under p1,f if and only if there is an arbitrary
sequence of pebbling moves in G2 under p2,f which places a pebble on r. Together
with Proposition 5.3, this results in the following proposition.

Proposition 5.4. There is a sequence of pebbling moves which places a pebble on
r in G2 starting from p2,f if and only if there is a setting of the existentially quantified
variables in φ, which, together with f , satisfies φ.

One useful property of the underlying graph together with an underlying distribu-
tion is that it is not possible to accumulate more than five pebbles on any vertex. This
property will be instrumental in arguing that the gadgets we attach to the underlying
graph behave correctly.

Proposition 5.5. It is not possible to place more than five pebbles on any vertex
in G2 starting from any p2,f .

Proof. Suppose for a contradiction that it is possible to place at least six peb-

THE COMPLEXITY OF GRAPH PEBBLING 787

bles on a vertex u in G2. First, suppose u is a vertex introduced in our construc-
tion of G2 from G1 so that u is an internal vertex wi, 1 ≤ i ≤ α, in a one use
path P = w0w1, . . . , wαwα+1. Let D be a signature of a minimum sequence of peb-
bling moves which places at least six pebbles on wi. Because p2,f (wi) = 1, to have
balance(D, p2,f , wi) ≥ 6 we must have that the indegree of wi is at least five. It fol-
lows by the pigeonhole principle that the multiplicity of either wi−1wi or wi+1wi is at
least three. If the former is true, we can apply Corollary 3.5 to obtain a sequence of
pebbling moves that places 2i(3− 1) + 2 · 1 ≥ 6 pebbles on w0. Similarly, if the latter
is true, we apply Corollary 3.5 to obtain a sequence of pebbling moves that places
2α+1−i(3−1)+2 ·1 ≥ 6 pebbles on wα+1. Because w0 and wα+1 are vertices in G1, it
suffices to show that it is not possible to place more than five pebbles on any vertex
in G1.

Suppose that u is in G1. Because it is possible to place at least six pebbles on u
in G2 starting from p2,f , by Lemma 3.7, there is a nonrepetitive sequence of pebbling
moves that places at least six pebbles on u in G1 starting from p1,f . But this is clearly
impossible, because the maximum degree in G1 is three and each vertex receives at
most two pebbles from p1,f .

Now that we have established the important properties of the underlying graph
and the underlying distributions, we attach gadgets to the vertices in the underlying
graph. Just as the star gadgets we attach in our reduction from dpr to opn force
any potentially successful distribution to take a certain form, our gadgets here force
any potentially unsuccessful distribution to take a form which effectively induces one
of the underlying distributions on the underlying graph.

5.2. The gadgets. We introduce three classes of gadgets: the null gadget, the
fork gadget, and the eye gadget. In this section, we explore the relevant properties of
our gadgets as isolated graphs.

All classes of gadgets share some common properties. The gadgets have attach-
ment vertices; later, we will attach gadgets to the underlying graph by identifying
the attachment vertices of a gadget with vertices in the underlying graph. A supply
quota s assigns each attachment vertex v a number s(v); each gadget has one or more
supply quotas. Under a particular distribution q, a gadget satisfies s if q covers s.

The gadgets have overflow vertices which are adjacent to r; we call the edges
between the overflow vertices and r the overflow edges. We say that a gadget has an
overflow threshold of k if r is reachable via an overflow edge under every distribution
of size k.

Let q be a distribution of pebbles to a gadget. If the gadget is able to satisfy any
one of its supply quotas, or if r is reachable via an overflow edge, we say that the
gadget is potent under q. We say that a gadget has a potency threshold of k if the
gadget is potent under every distribution of k pebbles.

Every gadget has one or more critical distributions, each of equal size. If q is a
critical distribution and s is a supply quota, we say that q breaches s if there exists
an attachment vertex v such that it is possible to place more than s(v) pebbles on v
starting from q.

Our critical distributions and supply quotas are in bijective correspondence; that
is, for each critical distribution there is a corresponding supply quota and vice versa.
Each critical distribution q exhibits the following critical distribution properties:

(1) starting from q, r is not reachable via an overflow edge,
(2) q does not breach its corresponding supply quota.

As we present the gadgets, their supply quotas, and their critical distributions, we

788 KEVIN MILANS AND BRYAN CLARK

�
�
�

�
�
�

�
�
�

�
�
�

wv

Fig. 5.1. The null gadget. The dashed line represents a path with c edges, the circle around
v indicates that v is an attachment vertex, and the box around w indicates that w is an overflow
vertex.

will establish an overflow threshold, a potency threshold, and the critical distribution
properties.

To motivate the study of these parameters, we outline their use in our proof of
the correctness of our reduction. Given an r∀∃3sat instance φ, we compute H and k
such that φ is valid if and only if π(H, r) ≤ k. We construct H by attaching various
gadgets to the underlying graph and we set k to be the sum, over all gadgets, of the
size of the gadget’s critical distributions.

Suppose that φ is valid and consider a distribution of k pebbles to H. If some
gadget receives fewer pebbles than its potency threshold, the pigeonhole principle
implies that some gadget receives more pebbles than its overflow threshold, and hence
r is reachable. Otherwise, all gadgets are potent. If r is reachable via some gadget’s
overflow edge, we are done. Otherwise, every gadget is able to satisfy one of its supply
quotas; this implies that our initial distribution on H covers some p2,f . Because φ is
satisfiable under f , we obtain from Proposition 5.4 a sequence of pebbling moves in
the underlying graph which places a pebble on r.

The converse direction is somewhat trickier but proceeds roughly as follows. Sup-
pose that π(H, r) ≤ k and consider a setting f of the universally quantified variables
of φ. We assign pebbles to H by selecting (according to f) a critical distribution for
each gadget. Because π(H, r) ≤ k, we obtain a signature D of a minimum sequence
of pebbling moves which places a pebble on r. Next, we argue that our critical dis-
tribution properties still apply even though the gadgets have been attached to the
underlying graph. Then we show how D can be used to obtain a sequence of pebbling
moves in the underlying graph starting from p2,f which places a pebble on r. A final
application of Proposition 5.4 implies that φ is satisfiable under f .

As we discuss our gadgets, we will have occasion to refer to a number of absolute
constants. When these constants are largely unimportant, we refer to them with the
notation O(1) instead of naming them individually. Our gadgets are defined in terms
of two parameters, β and c. We set c = 3 (in fact, any constant c so that 2c exceeds
the constant obtained in Proposition 5.5 will do). We postpone fixing the precise
value of β; suffice it to say we will choose β = lg n2 + O(1). Our gadgets use small
paths of length c to provide some separation between the underlying graph and more
sensitive areas of our gadgets. We use larger paths of length β so that the number of
pebbles in a gadget’s critical distribution far exceeds its potency threshold.

5.2.1. The null gadget. The null gadget is a path with c edges and appears
in Figure 5.1. We use the null gadget to ensure that every vertex in the underlying
graph is not too far away from r, so that distributions which concentrate pebbles on
the underlying graph quickly imply that r is reachable. The null gadget has a single
supply quota s, with s(v) = 0; its corresponding critical distribution q assigns zero
pebbles to each vertex in the null gadget.

Overflow threshold. Because c is a fixed constant, the null gadget is a fixed graph
which does not depend upon φ. By Proposition 5.1, its pebbling number is a fixed
constant, say a, not depending upon φ. Clearly, if there are 2a pebbles in the null
gadget, then it is possible to place two pebbles on w and hence one pebble on r. It

THE COMPLEXITY OF GRAPH PEBBLING 789

�
�
�
�

�
�
�
�

P2

P3

P1
�
�
�

�
�
�

�
�
�

�
�
�u

v

w

Fig. 5.2. The fork gadget. The dashed lines represent paths P2, P3 with c edges, the solid line
represents a path P1 with β edges, the circle around v indicates that v is an attachment vertex, and
the box around w indicates that w is an overflow vertex.

follows that O(1) is an overflow threshold for the null gadget.
Potency threshold. Because s is trivially satisfied, the null gadget has a potency

threshold of 0.
Critical distribution properties. Because q assigns zero pebbles to the null gadget,

it is clear that under q, the null gadget does not breach s, nor is it possible to place
a pebble on r via the null gadget’s overflow edge.

5.2.2. The fork gadget. The fork gadget consists of three paths P1, P2, P3

which share only a common endpoint, as shown in Figure 5.2. The fork gadget
is responsible for injecting one pebble in the underlying graph at the attachment
location, much like the star gadgets in the previous section. It has one supply quota s
with s(v) = 1; the corresponding critical distribution q is given by q(u) = 2 · 2β+c − 1
and q(x) = 0 for all x
= u.

Overflow threshold. The fork gadget has an overflow threshold of 2 · 2β+c +O(1).
Indeed, if the fork gadget is unable to place two pebbles on w (and hence one on
r), there can be at most O(1) pebbles on P2 and P3. Second, there can be at most
2 · 2β+c − 1 pebbles in P1 and P2. It follows that the fork gadget can contain at most
2 · 2β+c + O(1) pebbles if r is not reachable via an overflow edge.

Potency threshold. The fork gadget has a potency threshold of 2β+c + O(1).
Indeed, if the fork gadget is not potent, then it must have at most O(1) pebbles on
P2, or else it would be able to place a pebble on r. Similarly, it must have at most
2β+c − 1 pebbles on P1 and P3, or else it would be able to place a pebble on v and
therefore satisfy s.

Critical distribution properties. Both the standard weight equation and the greedy
tree lemma show that under q, the fork gadget does not breach s, nor is r reachable
via an overflow edge.

5.2.3. The eye gadget. The eye gadget is the most complex of our three gad-
gets, and it is at the heart of our reduction. Our reduction attaches one eye gadget
for each universally quantified variable in φ. The eye gadget is shown in Figure 5.3.

The eye gadget has two supply quota/critical distribution pairs. The pair (s+, q+)
corresponds to a positive (true) setting of the variable x and the pair (s−, q−) corre-
sponds to a negative (false) setting of x. We call s+ the positive supply quota and we
call s− the negative supply quota. Similarly, we call q+ the positive critical distribution
and q− the negative critical distribution.

We define the supply quotas via s+(v1) = s+(v3) = 1, s+(v2) = 0, and s−(v1) =
s−(v3) = 0, s−(v2) = 2. Similarly, the critical distributions are given by q+(u1) =
q+(u3) = 2 · 2β+c − 1, q+(u0) = q+(u2) = 2β+c − 1, and q−(u1) = q−(u3) = 2β+c − 1,

790 KEVIN MILANS AND BRYAN CLARK

0

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

v1 v2 v3

u2

u3u1
P1

P2

P3

w1 w2

w3w0

P0

u

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

Fig. 5.3. The eye gadget. The dashed lines represent paths with c edges, and the solid lines
represent paths P0, P1, P2, P3 with β edges. The circled vertices vi are attachment vertices; the boxed
vertices wj are overflow vertices.

q−(u0) = q−(u2) = 2 · 2β+c − 1. We define q+(x)and q−(x) to be zero whenever
x
∈ {u0, u1, u2, u3}.

Let F be the subgraph of the eye gadget obtained by removing the ui and all
interior vertices of the paths Pi. Observe that F depends only on c and therefore, like
the null gadget, F is a fixed graph, not depending upon φ. It follows that π(F) = O(1).

Overflow threshold. The eye gadget has an overflow threshold of 6 · 2β+c + O(1).
Suppose the eye gadget contains k pebbles and it is not possible to place a pebble on
r via one of the overflow edges. We show that k ≤ 6 · 2β+c + O(1). Immediately, we
have that F contains at most 2π(F) = O(1) pebbles or else it would be possible to
place two pebbles on w0 and hence one pebble on r. To bound the number of pebbles
in the Pi’s, we consider two cases. First, suppose that each Pi contains fewer than
2β+c pebbles; in this case, we have that k ≤ 4 · 2β+c +O(1). Otherwise, suppose that
Pj has at least 2β+c pebbles. Clearly, Pj has at most 2 · 2β+c − 1 pebbles, or else we
could use these pebbles to place a pebble on r via the overflow vertex wj ; similarly,
the opposite path Pj+2 contains at most 2 · 2β+c − 1 pebbles (subscript arithmetic is
understood modulo 4). Finally, the remaining paths Pj−1, Pj+1 each contain at most
2β+c − 1 pebbles; indeed, if Pj−1 (Pj+1) contained 2β+c pebbles, we could use them
to place one pebble on wj−1 (wj) and we could use 2β+c pebbles from Pj to place
a second pebble on wj−1 (wj). It follows that the Pi’s contain at most 6 · 2β+c − 4
pebbles, and thus k ≤ 6 · 2β+c + O(1).

Potency threshold. The eye gadget has a potency threshold of 5 · 2β+c + O(1).
Suppose the eye gadget contains k pebbles, r is not reachable via an overflow edge,
and it is not possible to satisfy s+ or s−. We show that k ≤ 5 ·2β+c+O(1). As before,

THE COMPLEXITY OF GRAPH PEBBLING 791

T1

T2

T3

�
�
�

�
�
�v2

u2

P2

P0

u3
P3

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

v3

w2

w3

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

w2

w3

�
�
�

�
�
�v1u1

P1

�
�
�

�
�
�w1

�
�
�

�
�
�w0

�
�
�

�
�
�w1

u0

�
�
�

�
�
�w0

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

Fig. 5.4. The overflow vertices split the eye gadget into three trees T1, T2, T3.

we have that F contains at most O(1) pebbles. To bound the number of pebbles in
the Pi, we consider the same two cases as before. If each path has fewer than 2β+c

pebbles, we immediately have k ≤ 4 · 2β+c + O(1) and are done. Otherwise, suppose
Pj has at least 2β+c pebbles. Once again, we have that Pj contains at most 2 ·2β+c−1
pebbles, and Pj−1, Pj+1 each contain at most 2β+c − 1. However, now the opposite
path Pj+2 has at most 2β+c−1 pebbles. Indeed, if Pj , Pj+2 both contain at least 2β+c

pebbles, then we can either place one pebble each on v1 and v3, satisfying s+ (as is
the case if {j, j + 2} = {1, 3}), or we can place two pebbles on v2, satisfying s− (as is
the case if {j, j + 2} = {0, 2}). It follows that the paths contain at most 5 · 2β+c − 4
pebbles, implying k ≤ 5 · 2β+c + O(1).

Critical distribution properties. It remains to verify the critical distribution prop-
erties for q+ and q−. First, we show that under q ∈ {q+, q−}, r is not reachable via
an overflow vertex. Let R be the set of overflow vertices in the eye gadget, and let D
be the signature of a minimum sequence of pebbling moves that places two pebbles
on a vertex in R. By Lemma 2.8, we have that each vertex in R has outdegree zero in
D. Observe that deleting R from the eye gadget results in a graph with three compo-
nents; let A1 be the component containing P1, let A2 be the component containing P0

and P2, and let A3 be the component containing P3. Let T1 be the subtree of the eye
gadget induced by the set of vertices V (A1) ∪ {w0, w1}; similarly, let T2 be induced
by V (A2) ∪ R, and let T3 be induced by V (A3) ∪ {w2, w3}. The trees Ti appear in
Figure 5.4.

Let Dl be the digraph obtained by deleting from D all pebbling moves outside of
Tl. Because D is acyclic, it is immediate that each Dl is acyclic. Observe that for all
x ∈ V (Tl) − R, we have balance(Dl, q, x) = balance(D, q, x). Furthermore, because
d+
D(wi) = 0 for all wi ∈ R, we have that d+

Dl
(wi) = 0. Therefore by the acyclic

orderability characterization, Dl is orderable.

792 KEVIN MILANS AND BRYAN CLARK

Let wi be the overflow vertex on which D places two pebbles. Because q(wi) = 0,
we have that the indegree of wi in D is at least two. Suppose two edges into wi are
contained in the same tree Tl. Then Dl is the signature of a sequence of pebbling
moves in Tl starting from q that places at least two pebbles on wi. By the greedy
tree lemma, the greedy pebbling strategy in Tl under q places at least two pebbles
on wi. However it is easily checked that regardless of q ∈ {q+, q−}, Tl ∈ {T1, T2, T3},
and wi ∈ R, the greedy strategy in Tl under q places at most one pebble on wi.
Alternatively, suppose that D contains edges into wi from two distinct trees. Because
wi is in T2 and one other tree, it must be that D contains an edge into wi from T2.
Then D2 is a signature of a sequence of pebbling moves in T2 starting from q which
places a pebble on wi; therefore the greedy strategy in T2 starting from q places a
pebble on wi. Because the greedy strategy in T2 starting from q+ is unable to place
any pebbles on any overflow vertex, it follows that q = q−. Suppose that D contains
an edge into wi from Tl ∈ {T1, T3}. Then Dl is the signature of a sequence of pebbling
moves in Tl starting from q− that places a pebble on wi; therefore the greedy strategy
in Tl starting from q− places a pebble on wi. But now a familiar contradiction is at
hand: It is easily checked that regardless of Tl ∈ {T1, T3} and wi ∈ R, the greedy
strategy in Tl starting from q− is unable to place a pebble on wi.

Let (s, q) ∈ {(s+, q+), (s−, q−)}. It remains to show that q does not breach
s. Suppose for a contradiction that D is the signature of a minimum sequence of
pebbling moves which witnesses that q breaches s. We have that the outdegree of
each overflow vertex wi ∈ R is zero; indeed, if d+

D(wi) ≥ 1, then by Lemma 2.6 we
would obtain a sequence of pebbling moves placing two pebbles on wi, a contradiction.
As before, let Dl be the digraph obtained from D by deleting all edges outside of Tl; as
before, we have that Dl is orderable in Tl. It follows that if D places more than s(vl)
pebbles on vl, then Dl witnesses that it is possible to place more than s(vl) pebbles
on vl in Tl starting from q. By the greedy tree lemma, the greedy strategy places
more than s(vl) pebbles on vl in Tl starting from q. But now we have a contradiction:
We easily check that regardless of (s, q) ∈ {(s+, q+), (s−, q−)} and l ∈ {1, 2, 3}, the
greedy strategy in Tl starting from q places exactly s(vl) pebbles on vl.

5.2.4. Summary. We summarize the various parameters of our gadgets in Table
5.1.

Table 5.1

Gadget Potency threshold Size of critical distributions Overflow threshold

Null 0 0 O(1)

Fork 2β+c + O(1) 2 · 2β+c − 1 2 · 2β+c + O(1)

Eye 5 · 2β+c + O(1) 6 · 2β+c − 4 6 · 2β+c + O(1)

From Table 5.1, we obtain the gap lemma.
Lemma 5.6 (gap lemma). There exists a nonnegative constant C (depending only

on c) such that for each gadget, the overflow threshold exceeds the size of the critical
distributions by at most C, and for the fork and eye gadgets, the size of the critical
distributions exceeds the potency threshold by at least 2β+c − C.

5.3. Construction of H. We set β = �lg 3Cn2� = lg n2 + O(1), with C as in
Lemma 5.6.

Armed with our gadgets and our underlying graph G2, we are able to describe
the last step in our reduction from r∀∃3sat to rpn. For each pebble in p2 on a

THE COMPLEXITY OF GRAPH PEBBLING 793

vertex z in the underlying graph, we attach a fork gadget to z by identifying the
attachment vertex v in the fork gadget with z. For each triplet z1, z2, z3 of vertices in
G2 corresponding to a universally quantified variable x in φ, with z1, z3 corresponding
to positive occurrences of x in φ and z2 corresponding to the negative occurrence of
x in φ, we attach an eye gadget by identifying the attachment vertex vi in the eye
gadget with zi in the underlying graph. Finally, for any vertex z
= r in the underlying
graph to which we did not attach a fork or eye gadget, we attach a null gadget by
identifying v in the null gadget with z in the underlying graph. Let H be the resulting
graph, and let k be the sum, over all gadgets in H, of the size of the gadget’s critical
distributions. Our reduction from r∀∃3sat to rpn outputs H, k, and r.

Note that we attach gadgets to the underlying graph by identifying attachment
vertices in gadgets with vertices in the underlying graph so that in H, each attach-
ment vertex v is a member of the underlying graph and also a member of a gadget.
Furthermore, by our construction, every vertex other than r in the underlying graph
is identified with an attachment vertex; thus the vertices in the underlying graph are
exactly the attachment vertices together with r.

We pause to observe two important properties about H.
Proposition 5.7. In constructing H, we attach at most two gadgets to every

vertex in the underlying graph.
Proof. Recall that p2 assigns at most two pebbles to any vertex in the underlying

graph; furthermore, p2 assigns at most one pebble to any vertex associated with a
universally quantified variable in φ.

Proposition 5.8. The diameter of H is at most 2β + O(1).
Proof. It suffices to show that for each z in H, the distance from z to r is at most

β + O(1). If z
= r, then z is contained in some gadget. In each gadget, every vertex
is at most β + O(1) from an overflow vertex.

5.4. R-PEBBLING-NUMBER is ΠP
2 -complete.

Proposition 5.9. Let a1, . . . , an, b1, . . . , bn, and x be real numbers with
∑n

i=1 ai ≥∑n
i=1 bi. If an < bn − x, then there exists i such that ai > bi + x/(n− 1).

Proof. The proof is by contradiction. Otherwise,

n∑
i=1

ai =

n−1∑
i=1

ai + an

<

(
n−1∑
i=1

bi +
x

n− 1

)
+ bn − x

=

n∑
i=1

bi.

We have accumulated the tools needed to show the correctness of our reduction.
Theorem 5.10. φ is valid if and only if π(H, r) ≤ k.
Proof. (=⇒). Suppose that φ is valid and let p be a pebble distribution on H

of size k. We may assume p(r) = 0. Let l be the number of gadgets in H, label the
gadgets as Q1, . . . , Ql, let ai be the number of pebbles that p assigns to Qi, and let
bi be the size of Qi’s critical distributions. Because every vertex in H other than r
belongs to at least one gadget, we have

∑l
i=1 ai ≥ k =

∑l
i=1 bi.

We consider several cases. First, suppose there is some gadget Qi to which p
assigns fewer pebbles than Qi’s potency threshold; by the gap lemma, we have that

794 KEVIN MILANS AND BRYAN CLARK

ai < bi − (2β+c − C). By Proposition 5.9, there is some Qj to which p assigns at
least (2β+c − C)/(l − 1) pebbles more than the size of Qj ’s critical distributions. By
Proposition 5.7, l − 1 ≤ l ≤ 2n2. It follows that Qj contains at least

2β+c − C

2n2
≥ 2β − C

2n2

≥ 3Cn2 − C

2n2

≥ 2Cn2

2n2

≥ C

more pebbles than the size of its critical distributions. It follows from Lemma 5.6 that
Qj contains at least as many pebbles as its overflow threshold and therefore we can
place a pebble on r via one of Qj ’s overflow edges. Otherwise, p assigns every gadget
at least as many pebbles as its potency threshold. If there is some gadget which is
able to place a pebble on r via an overflow edge, then we are done. Otherwise, for
every gadget Q, there is a supply quota s such that Q under p satisfies s. Using these
supply quotas, we obtain a setting f of the universally quantified variables in φ as
follows. We set f(x) = true if the eye gadget associated with x satisfies its positive
supply quota s+; otherwise, the eye gadget associated with x must meet the negative
supply quota s−, and we set f(x) = false. We claim that p covers p2,f . In each gadget,
execute the pebbling moves witnessing that the gadget satisfies its supply quota. The
fork gadgets alone produce a distribution that is at least as good as p2, and the eye
gadgets supply the additional pebbles prescribed by p2,f . Because φ is valid, it follows
from Proposition 5.4 that r is reachable.

(⇐=). Suppose that π(H, r) ≤ k and let f be a setting of the universally quan-
tified variables in φ. We obtain a setting of the existentially quantified variables in φ
witnessing that φ is satisfiable under f . Naturally, we study a pebble distribution p
on H of size k corresponding to f ; we construct p by setting p(r) = 0 and choosing
a critical distribution qi for each gadget Qi. If Qi is not an eye gadget, then Qi has
only one critical distribution and our selection of qi is forced. If Qi is an eye gadget,
we let qi be the positive critical distribution q+ if f(x) = true and we let qi be the
negative critical distribution q− otherwise. Note that p does not assign any pebbles
to any vertex in the underlying graph. Let si be the supply quota associated with qi.

Let H ′ be the graph obtained from H by removing all the overflow edges. Our
first task is to establish the analog of Proposition 5.5 for H ′.

Claim 1. In H ′ starting from p, it is not possible to place more than five pebbles
on any vertex in the underlying graph.

Proof. Suppose for a contradiction that D is the signature of a minimum sequence
of pebbling moves that places at least six pebbles on some vertex w in the underlying
graph.

Subclaim 1. D does not contain an edge whose head is inside the underlying
graph and whose tail is outside the underlying graph.

Proof. Suppose for a contradiction that uv is an edge in D from a vertex u in
the underlying graph to some vertex v not in the underlying graph. Because H ′ does
not contain any overflow edges, it must be that uv is an edge on a path of length c
in some gadget; let this path be P = x0, . . . , xc, with u = xc and v = xc−1. It follows
that D contains the edge x1x0, or else D contains a cycle or a proper sink other than

THE COMPLEXITY OF GRAPH PEBBLING 795

w, contradicting the minimum signatures lemma. Because p(xi) = 0 for each internal
vertex of P , we have by Corollary 3.5 that it is possible to place 2c = 8 ≥ 6 pebbles
on u using fewer pebbling moves, a contradiction. Therefore D does not contain an
edge from the underlying graph to a vertex outside the underlying graph.

Subclaim 2. For each u in the underlying graph, the number of edges in D into
u with heads outside the underlying graph is at most p2,f (u).

Proof. If this is not the case, then there is some gadget Qi attached to u such that
D contains more than si(u) edges from Qi into u. Construct D′ from D by deleting
all edges not contained in Qi. Clearly, D′ ⊆ D is acyclic; we show that D′ is orderable
by verifying the balance condition. Consider a vertex v in Qi. Recall that H ′ does
not contain overflow edges, and therefore if v is not an attachment vertex, then the
neighborhood of v is contained in Qi. It follows that if v is not an attachment vertex,
we have balance(D′, qi, v) = balance(D, p, v). Alternatively, if v is an attachment
vertex, we have that d+

D′(v) = 0 or else D′ (and hence D) would contain an edge
from a vertex v in the underlying graph to a vertex outside the underlying graph,
contradicting our previous subclaim. It follows that if v is an attachment vertex, we
have balance(D′, qi, v) ≥ 0. By the acyclic orderability characterization, we have that
D′ is orderable under qi. Together with d−D′(u) > si(u) and d+

D′(u) = 0 (recall that
u is an attachment vertex), we have that balance(D′, qi, u) > si(u). Therefore D′

witnesses that it is possible to place more than si(u) pebbles on u in Qi starting from
qi, contradicting Qi’s critical distribution properties.

We return to our proof of Claim 1. Construct D′ from D by removing all edges
from D that are not in the underlying graph. Clearly, D′ ⊆ D is acyclic. We show
that D′ is orderable under p2,f by checking the balance condition. For each u in the
underlying graph, we have balance(D′, p2,f , u) ≥ balance(D, p, u). Indeed, at most
p2,f (u) edges into u are deleted from D in our construction of D′; however, p(u) = 0,
so that p2,f offsets this decrease in balance. It follows that D′ is orderable under
p2,f . Together with balance(D′, p2,f , w) ≥ balance(D, p,w) ≥ 6, we have that it is
possible to place at least six pebbles on w starting from p2,f in the underlying graph,
contradicting Proposition 5.5. This completes our proof of Claim 1.

We return to our proof of Theorem 5.10. Let D be the signature of a minimal
sequence of pebbling moves in H starting from p that places a pebble on r.

Claim 2 (no backflow into gadgets claim). D does not contain an edge from a
vertex inside the underlying graph to a vertex outside the underlying graph.

Proof. By the minimum signatures lemma, we have that D contains at most one
pebbling move along an overflow edge and any such pebbling move must be directed
from an overflow vertex into r. Construct D′ from D by removing this edge if it exists.
Because r has outdegree zero in D, the acyclic orderability characterization implies
that D′ is orderable. Furthermore, because D′ does not contain any pebbling move
along overflow edges, D′ yields a sequence of pebbling moves in H ′.

Because D′ is constructed from D by removing at most one edge into r, it suffices
to show that D′ does not contain an edge from a vertex inside the underlying graph to
a vertex outside the underlying graph. Suppose for a contradiction that D′ contains
an edge uv from u inside the underlying graph to v outside the underlying graph.
It must be that uv is a pebbling move along a path P of length c in some gadget.
Let P = x0, . . . , xc with u = xc and v = xc−1. It follows that D′ contains the edge
x1x0. Indeed, if D′ does not have x1x0 as an edge, neither does D (after all, x0
= r),
and so D contains a cycle or a proper sink other than r, contradicting the minimum
signatures lemma. Therefore D′ contains the pebbling move x1x0.

796 KEVIN MILANS AND BRYAN CLARK

Recalling that p assigns each internal vertex of P zero pebbles, Corollary 3.5
implies that there is an orderable D′′ ⊆ D′ which places at least 2c = 8 pebbles on
xc = u. But now D′′ is a signature witnessing that it is possible to place at least six
pebbles on u in H ′ starting from p, contradicting Claim 1.

Let us resume our proof of Theorem 5.10. Construct Di from D by deleting from
D all edges not contained in Qi or in Qi’s overflow edges.

Claim 3. Di is orderable under qi, and for each attachment vertex v, we have
that balance(Di, qi, v) = d−Di

(v).

Proof. Because Di ⊆ D, Di is acyclic and thus it suffices to verify the balance
condition. Because d+

D(r) = 0, clearly d+
Di

(r) = 0 and thus the balance condition is
satisfied at r. Consider a vertex v in Qi. Unless v is an attachment vertex, all edges
incident to v in D also appear in Di, and so balance(Di, qi, v) = balance(D, p, v).
Otherwise, if v is an attachment vertex, then d+

Di
(v) = 0 or else D would contain an

edge from a vertex in the underlying graph to a vertex outside the underlying graph,
contradicting Claim 2. Together with qi(v) = 0, it follows that balance(Di, qi, v) =
d−Di

(v). By the acyclic orderability characterization, Di is orderable under qi.

Claim 4. For each u in the underlying graph, D contains at most p2,f (u) edges
from outside the underlying graph into u.

Proof. Suppose that u is a counterexample to the claim. If u = r, then there is
some gadget Qi such that D contains an edge wr into r along one of Qi’s overflow
edges. But Di also contains wr and, by Claim 3, Di is orderable under qi. Clearly,
balance(Di, qi, r) ≥ 1 and therefore r is reachable in Qi under qi, contradicting the
critical distribution properties of Qi. Otherwise, if u
= r, then there is some gadget
Qi such that D contains more than si(u) edges into u from vertices in Qi. But these
edges are also in Di, so that d−Di

(u) > si(u). By Claim 3, Di is the signature of
a sequence of pebbling moves in Qi under qi placing more than si(u) pebbles on u,
contradicting Qi’s critical distribution properties.

Let us complete our proof of Theorem 5.10. Construct E from D by deleting
from D any edges outside the underlying graph. We show that E is orderable un-
der p2,f . Clearly, E ⊆ D is acyclic and therefore it suffices to check the balance
condition. Consider a vertex u in the underlying graph, and let m be the number
of edges into u from outside the underlying graph. In constructing E from D, the
balance of u decreases by m; by Claim 4, we have m ≤ p2,f (u). Because p(u) = 0,
changing distributions from p to p2,f increases the balance of u by p2,f (u). It fol-
lows that balance(E, p2,f , u) ≥ balance(D, p, u). Therefore E is orderable under p2,f

and so r is reachable in the underlying graph under p2,f . A final application of
Proposition 5.4 implies that φ is satisfiable under f . This completes our proof of
Theorem 5.10.

We are now able to complete our proof that r-pebbling-number is ΠP
2 -complete.

Theorem 5.11. r-pebbling-number is ΠP
2 -complete, even when the diameter

of H is at most O(log n(H)) and k = poly(n(H)).

Proof. We have already observed that rpn is in ΠP
2 and checked the correctness

of our reduction; it remains to check the diameter condition on H and that H and k
are not too large relative to φ so that our reduction is computable in polynomial time.
By Proposition 5.8, the diameter of H is at most 2β + O(1) = 2 �lg 3Cn2� + O(1).
Because n2 is the number of vertices in the underlying graph, we have n2 ≤ n(H) and
therefore the diameter of H is at most 2 �lg 3Cn(H)� + O(1) = O(log n(H)).

It remains to check the size condition on H and k. Because G1 has the same
number of vertices as Gnpr(φ), Proposition 3.2 implies that the size of G1 is poly-

THE COMPLEXITY OF GRAPH PEBBLING 797

nomial in the size of φ. Because the underlying graph G2 is S(G1, α) with α =
�max {lg 2t, 4 lg e(G1)}� and t ≤ 2n(G1), we have that the size of the underlying
graph is polynomial in the size of G1. Observe that each gadget has size linear in
β = lg n2 + O(1). Together with Proposition 5.7, we have that the size of H is poly-
nomial in the size of G2. It follows that the size of H is polynomial in the size of φ.
Finally, every gadget’s critical distribution size is at most O(2β) = O(n2); together
with Proposition 5.7, we have that k is polynomial in n2 and hence polynomial in
n(H).

5.5. PEBBLING-NUMBER is ΠP
2 -complete. After having established Theo-

rem 5.11, it is relatively easy to show that pn is ΠP
2 -complete.

Theorem 5.12. pebbling-number is ΠP
2 -complete.

Proof. We have already observed that pn is in ΠP
2 . To show that pn is ΠP

2 -hard,
we reduce rpn to pn. Let G be a graph with target vertex r, and let k ≥ 0 be
an integer. We produce H and k′ so that π(G, r) ≤ k if and only if π(H) ≤ k′.
By Theorem 5.11, our reduction may assume that the diameter d of G is at most
c′ lg n(G) for an absolute constant c′ and k = poly(n(G)).

We construct H and k′ as follows. Let n = n(G) and set α = �knc′�. We let H be
the graph consisting of α copies of G that share r, so that H − r is α disjoint copies
of G − r. We set k′ = αk. Observe that k′ and the size of H are polynomial in the
size of G. It remains to show that π(G, r) ≤ k if and only if π(H) ≤ k′.

(=⇒). Suppose π(G, r) ≤ k. Consider a distribution of k′ = αk pebbles to H
and let u be some target vertex in H. Observe that d(u, r) ≤ d and therefore to place
a pebble on u, it suffices to show that we can place 2d pebbles on r. Our strategy is as
follows. If there is some copy of G with at least k pebbles, then we arbitrarily select a
set S of k pebbles from this copy of G; because π(G, r) ≤ k, we can use these pebbles
to place a pebble on r. We repeat this strategy until we are unable to find a copy of
G with at least k pebbles. Let s be the number of pebbles we are able to place on r
via this strategy. Observe that after executing this strategy s times, at least kα− ks
unused pebbles remain in H, and furthermore, if more than α(k − 1) unused pebbles
remain in H, then some copy of G contains at least k unused pebbles. It follows that

kα− ks ≤ α(k − 1),

and therefore s ≥ α/k ≥ nc′ = 2c
′ lgn ≥ 2d.

(⇐=). Suppose π(H) ≤ k′, and let p be a distribution of k pebbles to G. If
p(r) > 0, then r is trivially reachable. Otherwise, we define a distribution q of
k′ = αk pebbles to H by distributing k pebbles in each copy of G according to p. Let
D be the signature of a minimum sequence of pebbling moves that places a pebble on
r. By the minimum signatures lemma, all edges of D are contained in a single copy
of G. It follows that r is reachable in G under p.

6. Conclusions. As we have seen, many graph pebbling problems on unre-
stricted graphs are computationally difficult. We have seen that reachable and
optimal-pebbling-number are both NP-complete. The authors believe it more
likely than not that reachable remains NP-complete even when the graphs are re-
stricted to be planar. However, we have more hope that reachable may fall to P
when the graphs are restricted to be outerplanar. It may be interesting to investigate
the computational complexity of these problems when the inputs are restricted to be
planar or outerplanar.

We have also seen that pebbling-number is ΠP
2 -complete and therefore both

NP-hard and coNP-hard. It follows that unless the polynomial hierarchy collapses

798 KEVIN MILANS AND BRYAN CLARK

to the first level, pebbling-number is in neither NP nor coNP. Consequently, given
G and k, it is unlikely that we can compute in polynomial time a collection P of
candidate distributions of size k such that if π(G) > k, then some vertex in G is not
reachable from some p ∈ P (or else pn would be in NP).

We have shown that coverable and reachable are both NP-complete; how-
ever, the computational complexity of these problems diverges when we introduce
a universal quantifier over pebble distributions. When we add such a quantifier to
coverable, we obtain the problem of determining if γ(G) ≤ k, which is possible in
polynomial time [13, 11]. The computational difficulties in coverable are smoothed
out by the consideration of all pebble distributions of size k: There is a nice structure
to the maximum pebble distributions from which a graph cannot be covered with
pebbles. On the other hand, by adding a similar universal quantifier to reachable,
we obtain rpn, which asks us to decide if π(G, r) ≤ k. Instead of observing a decrease
in the computational complexity, we have encountered a ΠP

2 -complete problem.
We recall that the graph pebbling community has shown a good deal of interest in

developing necessary conditions and sufficient conditions for equality in π(G) = n(G).
Of course, the ultimate goal is to develop a characterization for when equality holds.
We should remark that our hardness result for pebbling-number does not suggest
that any such characterization need be complex from a computational point of view.
Indeed, our pebbling-number hardness result produces G and k with k > n(G). It
may be interesting to explore the complexity of deciding whether π(G) = n(G).

Acknowledgments. We thank David Bunde, Jeff Erickson, and Sariel Har-
Peled for helpful suggestions throughout the revision process. Additionally, we are
grateful for the corrections and suggestions of our anonymous referees.

REFERENCES

[1] D. P. Bunde, E. W. Chambers, D. Cranston, K. Milans, and D. B. West, Pebbling and
optimal pebbling in graphs, J. Graph Theory, to appear.

[2] F. R. K. Chung, Pebbling in hypercubes, SIAM J. Discrete Math., 2 (1989), pp. 467–472.
[3] T. A. Clarke, R. A. Hochberg, and G. H. Hurlbert, Pebbling in diameter two graphs and

products of paths, J. Graph Theory, 25 (1997), pp. 119–128.
[4] B. Crull, T. Cundiff, P. Feltman, G. H. Hurlbert, L. Pudwell, Z. Szaniszlo, and

Z. Tuza, The cover pebbling number of graphs, Discrete Math., 296 (2005), pp. 15–23.
[5] A. Czygrinow, G. Hurlbert, H. A. Kierstead, and W. T. Trotter, A note on graph

pebbling, Graphs Combin., 18 (2002), pp. 219–225.
[6] G. Hurlbert, Recent progress in graph pebbling, Graph Theory Notes N.Y., 49 (2005), pp. 25–

37.
[7] G. H. Hurlbert and H. Kierstead, private communication, 2005.
[8] D. Moews, Pebbling graphs, J. Combin. Theory Ser. B, 55 (1992), pp. 244–252; also available

online from http://djm.cc/dmoews/pebbling-graphs.ps.
[9] L. Pachter, H. S. Snevily, and B. Voxman, On pebbling graphs, Congr. Numer., 107 (1995),

pp. 65–80.
[10] C. H. Papadimitriou, Computational Complexity, Addison–Wesley, Reading, MA, 1994.
[11] J. Sjöstrand, The cover pebbling theorem, Electron. J. Combin., 12 (2005), Note 22.
[12] C. A. Tovey, A simplified NP-complete satisfiability problem, Discrete Appl. Math., 8 (1984),

pp. 85–89.
[13] A. Vuong and M. I. Wyckoff, Conditions for Weighted Cover Pebbling of Graphs, preprint;

available online from http://www.arxiv.org/abs/math.CO/0410410 (2004).
[14] N. G. Watson, The Complexity of Pebbling and Cover Pebbling, preprint; available online

from http://www.arxiv.org/abs/math.CO/0503511 (2005).

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 799–810

ON GRAPHS HAVING NO CHROMATIC ZEROS IN (1, 2)∗

F. M. DONG† AND K. M. KOH‡

Abstract. For a graph G of order n ≥ 2, an ordering (x1, x2, . . . , xn) of the vertices in G is called
a double-link ordering of G if x1x2 ∈ E(G) and xi has at least two neighbors in {x1, x2, . . . , xi−1}
for all i = 3, 4, . . . , n. This paper shows that certain graphs possessing a kind of double-link ordering
have no chromatic zeros in the interval (1, 2). This result implies that all graphs with a 2-tree as
a spanning subgraph, certain graphs with a Hamiltonian path, all complete t-partite graphs, where
t ≥ 3, and all (v(G) − Δ(G) + 1)-connected graphs G have no chromatic zeros in the interval (1, 2).

Key words. chromatic polynomial, chromatic zero

AMS subject classification. 05C15

DOI. 10.1137/04061787X

1. Introduction. For a simple graph G with vertex set V (G) and edge set
E(G), let P (G,λ) denote its chromatic polynomial. A zero of P (G,λ) is also called a
chromatic zero of G.

It is known that every graph has no chromatic zeros in the two intervals (−∞, 0)
and (0, 1) (see [4] or [7], for instance). Jackson [5] showed that every graph has no
chromatic zeros in (1, 32/27] as well. Let v(G) and b(G) denote the order (number of
vertices) and the number of blocks of a graph G.

Theorem 1.1 (see [5]). For any connected graph G with v(G) ≥ 2, the in-
equality (−1)v(G)+b(G)−1P (G,λ) > 0 holds for all λ ∈ (1, 32/27].

Thomassen [9] further showed that for any interval (a, b) with b > 32/27, there
exist graphs having chromatic zeros in (a, b). Hence (−∞, 0), (0, 1), and (1, 32/27]
are the only intervals in which every graph has no chromatic zeros.

The problem we study in this paper is motivated by the following conjecture
proposed by Jackson [5].

Conjecture 1.1. If G is a 3-connected and nonbipartite graph, then G has no
chromatic zeros in (1, 2).

Applying Theorem 1.1, it can be shown that the fact that G has no chromatic
zeros in (1, 2) is actually equivalent to saying that the inequality in Theorem 1.1 holds
for all λ ∈ (1, 2).

Corollary 1.1. Let G be a connected graph with v(G) ≥ 2. Then G has no
chromatic zeros in (1, 2) if and only if (−1)v(G)+b(G)−1P (G,λ) > 0 for all λ ∈ (1, 2).

The condition that G is nonbipartite in the above conjecture is necessary, since,
as was pointed out by Jackson [5], every 2-connected bipartite graph of odd order has
a chromatic zero in (1, 2). Here we give a very short proof of this observation, which
will be used in the following sections.

Lemma 1.1. Let G be a connected bipartite graph with v(G) ≥ 2. If v(G) + b(G)
is even, then G has a chromatic zero in (1, 2).

∗Received by the editors October 29, 2004; accepted for publication (in revised form) May 17,
2006; published electronically November 3, 2006.

http://www.siam.org/journals/sidma/20-3/61787.html
†Mathematics and Mathematics Education, National Institute of Education, Nanyang Technolog-

ical University, Singapore 637616 (fmdong@nie.edu.sg). Corresponding author.
‡Department of Mathematics, National University of Singapore, Singapore 117543 (matkohkm@

nus.edu.sg).

799

800 F. M. DONG AND K. M. KOH

Proof. Since G is bipartite, P (G, 2) > 0. Since P (G,λ) is continuous, there
exists a real number δ with 0 < δ < 1 such that P (G,λ) > 0 for all λ ∈ (2 − δ, 2).
As v(G) + b(G) is even, (−1)v(G)+b(G)−1P (G,λ) < 0 holds for all λ ∈ (2 − δ, 2). By
Corollary 1.1, the result holds.

Let G be a graph with n = v(G) ≥ 2. An ordering (x1, x2, . . . , xn) of the vertices
in G is called a double-link ordering of G if x1x2 ∈ E(G) and

|N(xi) ∩ Vi−1| ≥ 2(1)

for all i = 3, 4, . . . , n, where Vi = {x1, x2, . . . , xi} and N(x) is the set of vertices in G
adjacent to x. Throughout this paper, the notation Vi is fixed whenever a double-link
ordering (x1, x2, . . . , xn) of V (G) is given.

In this paper, we shall exhibit various families of graphs which have no chromatic
zeros in (1, 2). We first establish a general result (namely, Theorem 2.1) in section 2
that certain graphs which possess a kind of double-link orderings have no chromatic
zeros in (1, 2). Let Γ denote the family of these graphs. In section 3, we give a sufficient
condition for a graph to be in Γ. We then show in section 4 that Γ includes certain
graphs having a Hamiltonian path, complete t-partite graphs, where t ≥ 3, complete
bipartite graphs with an additional edge, and graphs which are (v(G) − Δ(G) + 1)-
connected, where Δ(G) denotes the maximum degree of G. Finally in section 5, we
give a necessary condition for a graph to be in Γ and also propose some conjectures.

2. A family of graphs with a double-link ordering. Let D be the family
of graphs with a double-link ordering. It is clear that D contains only one graph of
order 2 (i.e., K2), one graph of order 3 (i.e., K3), and two graphs of order 4 (i.e., K4

and K4 − e). For any n ≥ 2, Kn ∈ D, but for all n ≥ 3, the path Pn does not belong
to D.

By definition, we have the following lemma.

Lemma 2.1. Let G be a graph with v(G) ≥ 3. Then G ∈ D if and only if G
contains a vertex x such that d(x) ≥ 2 and G− x ∈ D.

The following is a property of the graphs in D. The size (number of edges) of G
is denoted by e(G).

Lemma 2.2. Let G ∈ D with v(G) ≥ 3. Then e(G) ≥ 2v(G) − 3 and G is
2-connected.

Proof. The result e(G) ≥ 2v(G) − 3 follows directly from the definition.

When v(G) = 3, G ∼= K3, and so G is 2-connected. It follows by induction from
Lemma 2.1 that G is 2-connected if v(G) ≥ 3.

Our aim in this section is to study a subfamily of D and show that every graph
in this subfamily has no chromatic zeros in the interval (1, 2).

Let G ∈ D with n = v(G) ≥ 2, and (x1, x2, . . . , xn) be a double-link ordering of
V (G). If there exist ui, vi ∈ N(xi) ∩ Vi−1 with ui �= vi for i = 3, 4, . . . , n such that
the inequality

|I| > |{i : {ui, vi} ⊆ I, 3 ≤ i ≤ n}|(2)

holds for every nonempty independent set I of G, then (x1, x2, . . . , xn) is called a
γ-ordering of G.

Since G ∈ D, by definition, we have G[V2] ∼= K2 and G[V3] ∼= K3 (when n ≥ 3),
where G[A] denotes the subgraph of G induced by A for any A ⊆ V (G). Thus, for
any nonempty independent set I of G, {ui, vi} �⊆ I for i = 3, 4. Hence inequality (2)

GRAPHS HAVING NO CHROMATIC ZEROS IN (1, 2) 801

can be replaced by the following inequality:

|I| > |{i : {ui, vi} ⊆ I, 5 ≤ i ≤ n}|.(3)

Let Γ be the family of graphs having a γ-ordering. It is clear that Γ ⊆ D. By
definition, if G ∈ D and v(G) ≤ 5, then G ∈ Γ. But, for any n ≥ 6, there exists a
graph G ∈ D with v(G) = n such that G /∈ Γ. For example, if G is a graph obtained
from the complete bipartite graph K2,n−2 by adding one edge which joins any two
vertices in the part with n− 2 vertices, then it can be shown that G ∈ D but G /∈ Γ
if n ≥ 6. Thus Γ is a proper subfamily of D.

By the definition of a γ-ordering, we have the following lemma.
Lemma 2.3. Let G ∈ Γ with a γ-ordering (x1, x2, . . . , xn), where n ≥ 3. Then

(x1, x2, . . . , xi) is a γ-ordering of G[Vi], and thus G[Vi] ∈ Γ for i = 2, 3, . . . , n.
In this section, we shall show that each graph in Γ has no chromatic zeros in

(1, 2). To establish this result, we need to show the following:
(i) If G ∈ Γ and G is a spanning subgraph of a graph H, then H ∈ Γ.
(ii) If G ∈ Γ and x ∈ V (G) with d(x) = 2, then G− x ∈ Γ and (G− x) · uv ∈ Γ,

where {u, v} = N(x) and (G − x) · uv is the graph obtained from G − x by
contracting u and v.

Lemma 2.4. Let G be a spanning subgraph of a graph H. If G ∈ Γ, then H ∈ Γ.
Proof. Since G ∈ Γ, G has a γ-ordering (x1, x2, . . . , xn), where n = v(G) ≥ 2.

Then there exist ui, vi ∈ NG(xi) ∩ Vi−1 with ui �= vi for i = 3, 4, . . . , n such that (3)
holds for every nonempty independent set I of G.

Since G is a spanning subgraph of H, (x1, x2, . . . , xn) is also a double-link ordering
of H and ui, vi ∈ NH(xi) ∩ Vi−1 for i = 3, 4, . . . , n. Each independent set I of H is
also independent in G. Thus (3) also holds for every nonempty independent set I of
H. Therefore H ∈ Γ.

On the other hand, if G ∈ Γ, what edge uv can be removed from G such that
G− uv ∈ Γ?

Lemma 2.5. Let G ∈ Γ and (x1, x2, . . . , xn) be a γ-ordering of G. Assume that
ui, vi are distinct vertices in N(xi) ∩ Vi−1 for i = 3, 4, . . . , n such that inequality (3)
holds for every nonempty independent set I of G. Let uv ∈ E(G). If

{u, v} �⊆ {ui : i = 3, 4, . . . , n} ∪ {vi : i = 3, 4, . . . , n}(4)

and

uv /∈ {xiui : i = 3, 4, . . . , n} ∪ {xivi : i = 3, 4, . . . , n},(5)

then (x1, x2, . . . , xn) is also a γ-ordering of G− uv and so G− uv ∈ Γ.
Proof. By (4), {u, v} �= {u3, v3} = {x1, x2}, and so x1x2 ∈ E(G − uv). By (5),

ui, vi ∈ NG−uv(xi) ∩ Vi−1 for i = 3, 4, . . . , n. Suppose that there exists a nonempty
independent set I of G− uv such that

|I| ≤ |{i : {ui, vi} ⊆ I, 5 ≤ i ≤ n}|.

Then I is not an independent set of G. Thus u, v ∈ I. By (4), either u or v does not
belong to {ui, vi : i = 3, 4, . . . , n}, say u /∈ {ui, vi : i = 3, 4, . . . , n}. Then

|{i : {ui, vi} ⊆ I\{u}, 5 ≤ i ≤ n}| = |{i : {ui, vi} ⊆ I, 5 ≤ i ≤ n}| > |I\{u}|

implying that inequality (3) does not hold for the independent set I\{u} of G, a
contradiction.

802 F. M. DONG AND K. M. KOH

Therefore the result holds.
Lemma 2.6. Let G ∈ Γ and x ∈ V (G) with d(x) = 2. Then
(i) G− x ∈ Γ; and
(ii) (G− x) · uv ∈ Γ if N(x) = {u, v} with uv /∈ E(G).
Proof. (i) Let n = v(G). It is easy to verify that G − x ∈ Γ if n ≤ 4. Now let

n ≥ 5.
Let (x1, x2, . . . , xn) be a γ-ordering of G. By the definition of a γ-ordering, if

3 ≤ i < n− 1 and xixi+1 /∈ E(G), then (x1, x2, . . . , xi−1, xi+1, xi, xi+2, . . . , xn) is also
a γ-ordering of G.

Let x = xi. We may assume that i ≥ 3. Since d(x) = 2, by definition, N(x) ⊆
Vi−1 = {x1, x2, . . . , xi−1}. Thus xxj /∈ E(G) for all j = i + 1, . . . , n. By the above
argument, if i < n, we can get a new γ-ordering of G by exchanging xi (i.e., x) and
xi+1. Repeating this process, we would have a γ-ordering ending with x. Hence we
may assume that x = xn, and we have G− x ∈ Γ.

(ii) Let (x1, x2, . . . , xn) be a γ-ordering of G and x = xn. Since G ∈ Γ, by
Lemma 2.5, there exist ui, vi ∈ N(xi)∩ Vi−1 with ui �= vi for i = 5, 6, . . . , n such that
(3) holds for every nonempty independent set I of G.

Since N(xn) = {u, v}, we have {u, v} = {un, vn}. Since unvn /∈ E(G), we have
{ui, vi} �= {un, vn} for all i = 5, 6, . . . , n − 1; otherwise, (3) does not hold for the
independent set I = {un, vn}.

Let G′ = (G−xn) ·unvn. Assume that un = xs and vn = xt, where s < t ≤ n−1.
For convenience, we still denote by xs the new vertex in G′ after contracting un and
vn in G − xn. Then (x1, x2, . . . , xt−1, xt+1, . . . , xn−1) is a double-link ordering of G′

with u′
i, v

′
i ∈ NG′(xi) ∩ V ′

i , where V ′
i = Vi\{xt} and

u′
i =

{
ui if ui �= xt,
xs otherwise

and v′i =

{
vi if vi �= xt,
xs otherwise.

Since {ui, vi} �= {xs, xt}, we have u′
i �= v′i for i ∈ {3, 4, . . . , t− 1, t + 1, . . . , n− 1}.

Suppose that there exists a nonempty independent set I ′ of G′ such that

|I ′| ≤ |{i : {u′
i, v

′
i} ⊆ I ′, i = 5, 6, . . . , n− 1, i �= t}|.(6)

Then we have xs ∈ I ′; otherwise, (3) does not hold for the nonempty independent set
I ′ of G.

Let I0 = (I ′\{xs})∪{un, vn}. Then |I0| = |I ′|+1 and I0 is a nonempty indepen-
dent set of G. Since {un, vn} ⊆ I0 and {ui, vi} ⊆ I0 whenever {u′

i, v
′
i} ⊆ I ′ for each

5 ≤ i ≤ n− 1 with i �= t, we have

|I0| = 1 + |I ′|
≤ 1 + |{i : {u′

i, v
′
i} ⊆ I ′, i = 5, 6, . . . , n− 1, i �= t}|

≤ |{i : {ui, vi} ⊆ I0, i = 5, 6, . . . , n}|.

Thus (3) does not hold for the independent set I0 of G, a contradiction.
Hence G′ = (G− xn) · unvn = (G− x) · uv ∈ Γ.
We are now ready to prove our main result in this section.
Theorem 2.1. For any G ∈ Γ, (−1)v(G)P (G,λ) > 0 for all λ ∈ (1, 2).
Proof. We have v(G) ≥ 2. If 2 ≤ v(G) ≤ 3, then G = Kn, where n = 2 or 3.

Thus the result holds for v(G) ≤ 3. Assume that the result holds for all G ∈ Γ with
v(G) < n, where n ≥ 4.

GRAPHS HAVING NO CHROMATIC ZEROS IN (1, 2) 803

Suppose on the contrary that the result does not hold for some graph of order
n in Γ. Let G be such a graph with minimum e(G). Let λ ∈ (1, 2) be such that
(−1)v(G)P (G,λ) < 0.

By definition, G has a γ-ordering (x1, x2, . . . , xn). Then there exist ui, vi ∈
N(xi) ∩ Vi−1 with ui �= vi for i = 3, 4, . . . , n such that (3) holds for every nonempty
independent set I of G.

It is clear that d(xn) ≥ 2.
Case 1. d(xn) = 2.
So N(xn) = {un, vn}. By Lemma 2.3, G− xn ∈ Γ. If unvn ∈ E(G), then

(−1)nP (G,λ) = (2 − λ)(−1)n−1P (G− xn, λ) > 0,

a contradiction. Hence unvn /∈ E(G).
By Lemma 2.4, (G − xn) + unvn ∈ Γ and, by Lemma 2.6, (G − xn) · unvn ∈ Γ.

Since

P (G,λ) = P (G + unvn, λ) + P (G · unvn, λ)

= (λ− 2)P ((G− xn) + unvn, λ) + (λ− 1)P ((G− xn) · unvn, λ),

we have

(−1)nP (G,λ) = (2 − λ)(−1)n−1P ((G− xn) + unvn, λ)

+ (λ− 1)(−1)n−2P ((G− xn) · unvn, λ)

> 0,

a contradiction.
Case 2. d(xn) ≥ 3.
There exists w ∈ N(xn)\{un, vn}. By Lemma 2.5, G−xnw ∈ Γ. Since G−xn ∈ Γ

and G ·xnw can be considered as a graph obtained from G−xn by adding some edges,
by Lemma 2.4, G · xnw ∈ Γ. Thus, by the assumption on the minimality of e(G),

(−1)nP (G− xnw, λ) > 0

and

(−1)n−1P (G · xnw, λ) > 0.

Hence

(−1)nP (G,λ) = (−1)nP (G− xnw, λ) + (−1)n−1P (G · xnw, λ) > 0,

a contradiction.
Therefore (−1)v(G)P (G,λ) > 0 for all G ∈ Γ with v(G) = n.

3. Graphs in Γ. In the preceding section, it is shown that every graph in Γ
has no chromatic zeros in (1, 2). However, we don’t know exactly what graphs are
included in Γ, although some families of graphs in Γ have been found (see section 4).

Question. What graphs are included in Γ?
Given a double-link ordering (x1, x2, . . . , xn) of G, if (x1, x2, . . . , xn) is a γ-

ordering of G, then the following inequality follows from (3) for every nonempty
independent set I of G:

|I| > |{i : N(xi) ∩ Vi ⊆ I, i = 5, . . . , n}|.(7)

804 F. M. DONG AND K. M. KOH

We conjecture that the converse is also true.
Conjecture 3.1. Let (x1, x2, . . . , xn) be a double-link ordering of a graph G.

Then (x1, x2, . . . , xn) is a γ-ordering if the following inequality holds for every non-
empty independent set I of G:

|I| > |{i : N(xi) ∩ Vi ⊆ I, i = 5, . . . , n}|.(8)

In this section, we present a sufficient condition, which is stronger than (8), for a
graph to be in Γ. We first introduce two results.

Lemma 3.1. Let (x1, x2, . . . , xn) be a double-link ordering of a graph G, where
n = v(G) ≥ 2, and U0 = {i : 5 ≤ i ≤ n,N(xi) ∩ Vi−1 is independent in G}. Then
(x1, x2, . . . , xn) is a γ-ordering if and only if there exist ui, vi ∈ N(xi) ∩ Vi−1 with
ui �= vi for all i ∈ U0 such that

|I| > |{i : {ui, vi} ⊆ I, i ∈ U0}|(9)

holds for every nonempty independent set I of G.
Proof. The necessity is obvious by (3) and we need only to prove the sufficiency.
Assume that there exist ui, vi ∈ N(xi)∩Vi−1 with ui �= vi for all i ∈ U0 such that

(9) holds for every nonempty independent set I of G.
Let U1 = {5, 6, . . . , n}\U0. For each i ∈ U1, there exist ui, vi ∈ N(xi)∩ Vi−1 such

that uivi ∈ E(G). For any independent set I of G, {ui, vi} �⊆ I for each i ∈ U1, and
so

{i : {ui, vi} ⊆ I, 5 ≤ i ≤ n} = {i : {ui, vi} ⊆ I, i ∈ U0}.

Thus (3) follows from (9) for every nonempty independent set I of G, and therefore
(x1, x2, . . . , xn) is a γ-ordering.

Lemma 3.2. Let A1, A2, . . . , Ak be any k sets such that the following inequality
holds for every nonempty set S ⊆ {1, 2, . . . , k}:

|S| <
∣∣∣∣∣
⋃
i∈S

Ai

∣∣∣∣∣ .(10)

Then there exist ui, vi ∈ Ai with ui �= vi for i = 1, 2, . . . , k such that

|S| <
∣∣∣∣∣
⋃
i∈S

{ui, vi}
∣∣∣∣∣(11)

holds for every nonempty S ⊆ {1, 2, . . . , k}.
Proof. By Hall’s theorem, there exist distinct u1, u2, . . . , uk such that ui ∈ Ai

for i = 1, 2, . . . , k. We now select all vi’s by the following algorithm:
1. Let Q = ∅.
2. Choose any i ∈ {1, 2, . . . , k}\Q such that Ai\{uj : 1 ≤ j ≤ k, j /∈ Q} is not

empty. Let vi be any member in Ai\{uj : 1 ≤ j ≤ k, j /∈ Q} and replace Q
by Q ∪ {i}.

3. If Q = {1, 2, . . . , k}, then stop; otherwise, go to step 2.
By condition (10),⎛

⎜⎝ ⋃
1≤j≤k j

/∈Q

Ai

⎞
⎟⎠ \{uj : 1 ≤ j ≤ k, j /∈ Q} �= ∅

GRAPHS HAVING NO CHROMATIC ZEROS IN (1, 2) 805

and so step 2 is workable. Thus all vi’s can be determined by this algorithm.
Now let r1r2 . . . rk be the permutation of the set {1, 2, . . . , k} such that vri+1 is

selected after vri in the above algorithm for i = 1, 2, . . . , k − 1. Notice from step 2 of
this algorithm that

vri /∈ {urj : i ≤ j ≤ k}, i = 1, 2, . . . , k.

Let S be any nonempty subset of {1, 2, . . . , k} = {r1, r2, . . . , rk}. Let t be the mini-
mum number in {1, 2, . . . , k} such that rt ∈ S. Then

vrt /∈ {urj : rj ∈ S, j = 1, 2, . . . , k} = {urj : rj ∈ S, j = t, t + 1, . . . , k}

and so

|{urj , vrj : rj ∈ S, j = 1, 2, . . . , k}| ≥ |{urj : rj ∈ S, j = 1, 2, . . . , k}| + 1 > |S|.

Hence (11) follows.
Theorem 3.1. Let (x1, x2, . . . , xn) be a double-link ordering of G, where n =

v(G) ≥ 2. If

|U | <
∣∣∣∣∣
⋃
i∈U

(N(xi) ∩ Vi−1)

∣∣∣∣∣(12)

holds for every nonempty U ⊆ {i : 5 ≤ i ≤ n,N(xi)∩Vi−1 is independent in G}, then
(x1, x2, . . . , xn) is a γ-ordering of G and so G ∈ Γ.

Proof. Let U0 = {i : 5 ≤ i ≤ n,N(xi)∩Vi−1 is independent in G}. By condition
(12) and Lemma 3.2, there exist ui, vi ∈ N(xi)∩ Vi−1 with ui �= vi for all i ∈ U0 such
that

|U | <
∣∣∣∣∣
⋃
i∈U

{ui, vi}
∣∣∣∣∣(13)

holds for every nonempty U ⊆ U0.
Let I be any nonempty independent set of G. For

U = {i : {ui, vi} ⊆ I, i ∈ U0},

we have
⋃

i∈U{ui, vi} ⊆ I, and by (13),

|{i : {ui, vi} ⊆ I, i ∈ U0}| = |U | <
∣∣∣∣∣
⋃
i∈U

{ui, vi}
∣∣∣∣∣ ≤ |I|.

By Lemma 3.1, (x1, x2, . . . , xn) is a γ-ordering of G.

4. Some families of graphs in Γ. In this section, we shall show that Γ includes
the following families of graphs:

(i) graphs containing a 2-tree as a spanning subgraph;
(ii) 2-connected plane near-triangulations;
(iii) all t-partite graphs, where t ≥ 3;
(iv) graphs with a Hamiltonian path x1x2 . . . xn such that (x1, x2, . . . , xn) is a

double-link ordering;

806 F. M. DONG AND K. M. KOH

(v) graphs obtained from Km,n = (A,B;E), where 2 ≤ n ≤ m + 1, by adding
one edge joining two vertices in B, where |A| = m and |B| = n;

(vi) all (v(G) − Δ(G) + 1)-connected graphs G.
A graph G is called a chordal graph if either v(G) = 1 or G contains a vertex x

such that
(i) G− x is a chordal graph, and
(ii) either d(x) = 0 or the subgraph of G induced by N(x) is complete.
By the definition of a chordal graph, it can be shown that every 2-connected

chordal graph belongs to Γ, which follows from the next result.
Lemma 4.1. Let G be a graph with v(G) ≥ 3 and x ∈ V (G). If G − x ∈ Γ and

N(x) is not an independent set of G, then G ∈ Γ.
Proof. As G−x ∈ Γ, G−x has a γ-ordering (x1, x2, . . . , xn−1), where n = v(G).

Let xn = x. Since N(xn) is not an independent set of G,

{i : N(xi) ∩ Vi−1 is independent, 5 ≤ i ≤ n}
= {i : N(xi) ∩ Vi−1 is independent, 5 ≤ i ≤ n− 1}.

By Lemma 3.1, the result holds.
Corollary 4.1. If a graph G contains a double-link ordering (x1, x2, . . . , xn),

where n = v(G) ≥ 2, such that N(xi)∩ Vi−1 is not independent for all i = 5, 6, . . . , n,
then G ∈ Γ.

Dong and Koh [3] showed that if G contains a 2-tree as a spanning subgraph,
then G contains no chromatic zeros in (1, 2). By Corollary 4.1, such a graph actually
belongs to Γ, so their result follows from Theorem 2.1.

Birkhoff and Lewis [1] showed that every plane near-triangulation has no chro-
matic zeros in (1, 2). By Corollary 4.1, every 2-connected plane near-triangulation
belongs to G ∈ Γ, because if v(G) ≥ 4, then G contains a vertex x such that G− x is
a 2-connected plane near-triangulation and N(x) is not independent. Thus, Birkhoff
and Lewis’ result is a special case of Theorem 2.1.

Corollary 4.2. Every complete t-partite graph G, where t ≥ 3, contains a 2-tree
as a spanning subgraph and hence belongs to Γ.

Proof. Let xyzx be a triangle in G. For every w ∈ V (G)\{x, y, z}, we have
|N(w) ∩ {x, y, z}| ≥ 2. Thus G contains a spanning 2-tree, and so G ∈ Γ.

Thomassen [8] showed that any graph with a Hamiltonian path has no chromatic
zeros in (1, t0], where

t0 =
2

3
+

1

3

3

√
26 + 6

√
33 +

1

3

3

√
26 − 6

√
33 = 1.29559 . . . ,(14)

but for any ε > 0, there exists a graph with a Hamiltonian path which has a chromatic
zero in (t0, t0 + ε).

By Theorem 2.1, we will show that there is a large family of graphs with a
Hamiltonian path which have no chromatic zeros in (1, 2).

Lemma 4.2. Let G be a graph and x ∈ V (G) with d(x) ≥ 2. If G − x has
a γ-ordering (x1, x2, . . . , xn−1), where n = v(G), such that xxn−1 ∈ E(G), then
(x1, x2, . . . , xn−1, x) is a γ-ordering of G and thus G ∈ Γ.

Proof. Assume that (x1, x2, . . . , xn−1) is a γ-ordering of G − x and xxn−1 ∈
E(G). Then there exist ui, vi ∈ N(xi) ∩ Vi−1 with ui �= vi for i = 3, 4, . . . , n− 1 such
that

|I| > |{i : {ui, vi} ⊆ I, i = 5, . . . , n− 1}|(15)

GRAPHS HAVING NO CHROMATIC ZEROS IN (1, 2) 807

� . . . ���

� . . . ���

x3 x4 x5 xm+2

x1 x2 xm+3 xm+n

...

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.....

................
.................
................
................
................
................
................
.................
................
................
................
................
................
.................
................
................
................
..............

........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
.................

..
...

..
...

...
..

...
..

...
..

...
...

..
...

..
...

..
................................

................
................
................
................
................
................
................
................
................
................
.................
................
................
................
................
................
.................
...............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.....

................
................
................
................
.................
................
................
................
................
................
................
.................
................
................
................
................
................
...............

.................................
.................................

.................................
.................................

.................................
.................................

.................................
.................................

.................................
.................................

.................................
.................................

.................................
.................................

.................................
.................................

.................................
.........................

........................
........................

........................
........................

........................
........................

........................
........................

........................
........................

........................
........................

........................
........................

........................
........................

........................
.................

................
................
................
................
................
.................
................
................
................
................
................
.................
................
................
................
................
................
...............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.....

........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
.................

...
..

...
...

..
...

..
...

...
...

...
..

...
..

...
...

..
..............................

.................................
.................................

.................................
.................................

.................................
.................................

.................................
.................................

.................................
.................................

.................................
.................................

.................................
.................................

.................................
.................................

.................................
.........................

........................
........................

........................
........................

........................
........................

........................
........................

........................
........................

........................
........................

........................
........................

........................
........................

........................
.................

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.....

Fig. 1.

holds for every nonempty independent set I of G.
Let un = xn−1 and vn be any vertex in N(x)\{xn−1}. Suppose that I is a

nonempty independent set I of G such that

|I| ≤ |{i : {ui, vi} ⊆ I, i = 5, . . . , n}|.(16)

Then, by (15), {un, vn} ⊆ I and so xn−1 ∈ I. However, as xn−1 /∈ {ui, vi : i =
1, 2, . . . , n− 1}, by (15) again,

|I| = 1 + |I\{xn−1}|
> 1 + |{i : {ui, vi} ⊆ I\{xn−1}, i = 5, . . . , n− 1}|
= |{i : {ui, vi} ⊆ I, i = 5, . . . , n}|,

contradicting (16). Hence the result holds.
The next result follows directly from Lemma 4.2.
Theorem 4.1. Let G be a graph with a Hamiltonian path x1x2 . . . xn, where

n ≥ 2. If (x1, x2, . . . , xn) is a double-link ordering of G, then G ∈ Γ.
By Lemma 1.1, a 2-connected bipartite graph G has chromatic zeros in (1, 2)

as long as v(G) is odd. The next result shows that for any 2-connected complete
bipartite graph, adding one edge properly to this graph produces a graph having no
chromatic zeros in (1, 2).

Theorem 4.2. Let m,n be integers with 2 ≤ n ≤ m + 1. Let G be the graph
obtained from the complete bipartite graph Km,n = (A,B;E) by adding one edge
joining any two vertices in B, where |A| = m and |B| = n. Then G ∈ Γ.

Proof. Let A = {x3, x4, . . . , xm+2} and B = {x1, x2, xm+3, . . . , xm+n}. Assume
that G is obtained from the complete bipartite graph Km,n = (A,B;E) by adding
one edge x1x2, as shown in Figure 1.

Note that (x1, x2, . . . , xm+n) is a double-link ordering of G. For i ≥ 3, N(xi)∩Vi−1

is independent if and only if i ∈ {m + 3,m + 4, . . . ,m + n}. Since

N(xi) ∩ Vi−1 = {x3, x4, . . . , xm+2}

for all i = m + 3,m + 4, . . . ,m + n, the inequality

|U | ≤ n− 2 < m = |{x3, x4, . . . , xm+2}| =

∣∣∣∣∣
⋃
i∈U

(N(xi) ∩ Vi−1)

∣∣∣∣∣
holds for every nonempty U ⊆ {m + 3,m + 4, . . . ,m + n}. Hence, by Theorem 3.1,
(x1, x2, . . . , xm+n) is a γ-ordering of G.

808 F. M. DONG AND K. M. KOH

Clearly, 0 ≤ Δ(G) ≤ v(G) − 1 holds for each graph G. It is easy to show that if
Δ(G) = v(G) − 1, then P (G,λ) > 0 for all λ ∈ (1, 2). Indeed, it can be shown that
if Δ(G) = v(G) − 1 and G is 2-connected, then G contains a 2-tree as a spanning
subgraph and so G ∈ Γ by Corollary 4.1. In this section, we shall generalize this
result.

Theorem 4.3. If a graph G is (v(G) − Δ(G) + 1)-connected, then G ∈ Γ.
Proof. Let x ∈ V (G) such that d(x) = Δ(G). Let

k = |V (G)\(N(x) ∪ {x})| = v(G) − Δ(G) − 1.

Then G is (k + 2)-connected, and thus the subgraph induced by N(x)∪ {x}, denoted
by H, is 2-connected. Since dH(x) = v(H) − 1 and H is 2-connected, H contains
a spanning 2-tree. Thus H contains a double-link ordering (x1, x2, . . . , xt) such that
NH(xi) ∩ Vi−1 is not independent in H for all i = 3, 4, . . . , t, where t = v(H) =
1 + dG(x) = 1 + Δ(G).

Let V (G)\(N(x) ∪ {x}) = {xt+1, xt+2, . . . , yt+k}. Since G is (k + 2)-connected,
we have dG(xt+i) ≥ k + 2 for each 1 ≤ i ≤ k and thus

|NG(xt+i) ∩ Vt+i−1| = dG(xt+i) − |NG(xt+i) ∩ {xt+j : j = i + 1, . . . , k}|
≥ k + 2 − (k − i)

= i + 2.

Let U be any nonempty subset of {t + i : i = 1, 2, . . . , k} and t + r be the maximum
number in U . Then

|U | ≤ |r| < |NG(xt+r) ∩ Vt+r−1| ≤

∣∣∣∣∣∣
⋃
j∈U

(NG(xj) ∩ Vj−1)

∣∣∣∣∣∣ .
By Theorem 3.1, (x1, x2, . . . , xt+k) is a γ-ordering of G.

The conclusion of Theorem 4.3 is no longer true if G is not (v(G) − Δ(G) + 1)-
connected. Consider the complete bipartite graph Km,n, where 2 ≤ n ≤ m. Observe
that

v(Km,n) − Δ(Km,n) + 1 = (m + n) −m + 1 = n + 1(17)

and Km,n is n-connected but not (n + 1)-connected. However, by Lemma 1.1, Km,n

has chromatic zeros in (1, 2) if m + n is odd.
Dong and Koh [2] showed that if Δ(G) ≥ v(G)−2, then G contains no chromatic

zeros in the interval (1, d), where

d =
5

3
+

1

6

3

√
12
√

69 − 44 − 1

6

3

√
12
√

69 + 44 = 1.430159709(18)

Furthermore this result does not hold if d is replaced by any larger number. By
Theorem 4.3, however, we have the following corollary.

Corollary 4.3. If G is a 3-connected graph with Δ(G) = v(G)−2, then G ∈ Γ,
and so G contains no chromatic zeros in (1, 2).

5. A necessary condition. In this section, we first present a necessary con-
dition for a graph G to be in Γ and then propose some conjectures related to the
existence of chromatic zeros in (1, 2). Let c(H) denote the number of components of
a graph H.

GRAPHS HAVING NO CHROMATIC ZEROS IN (1, 2) 809

Lemma 5.1. Let (x1, x2, . . . , xn) be any ordering of the vertices in a graph G,
where n = v(G) ≥ 2. Then for any S ⊆ V (G), there exists an independent set T of
G such that |T | = c(G− S) and

T ⊆ {xi ∈ V (G)\S : N(xi) ∩ Vi ⊆ S, i = 1, 2, . . . , n}.(19)

Proof. Let c(G − S) = c and G1, G2, . . . , Gc be the components of G − S. Let
T = {xmk

: k = 1, 2, . . . , c}, where mk = min{j : xj ∈ V (Gk), j = 1, 2, . . . , n}. It
is clear that T is independent in G. Since (N(xmk

) ∩ Vmk
) ∩ V (Gk) = ∅, we have

N(xmk
) ∩ Vmk

⊆ S for each k = 1, 2, . . . , c. Thus the lemma holds.

Theorem 5.1. For any G ∈ Γ, c(G − S) ≤ |S| holds for every nonempty inde-
pendent set S of G.

Proof. Let n = v(G). The result is obvious if n ≤ 4. Assume that n ≥ 5.

Let (x1, x2, . . . , xn) be any γ-ordering of G. Let ui, vi ∈ N(xi) ∩ Vi−1 for i =
5, 6, . . . , n be such that inequality (3) holds for every nonempty independent set I of G.
Suppose that there exists a nonempty independent set S of G with c(G−S) ≥ |S|+1.
We shall show that (3) does not hold for S, a contradiction.

By Lemma 5.1, there exists an independent set T of G such that |T | = |S| + 1
and

T ⊆ {xi ∈ V (G)\S : N(xi) ∩ Vi ⊆ S, i = 1, 2, . . . , n}.

Since x1x2 ∈ E(G), {x1, x2} �⊆ T . For i = 3, 4, N(xi) ∩ Vi is not independent in G,
and so xi /∈ T . Hence |T ∩ {x5, . . . , xn}| ≥ |T | − 1 = |S|. For each i = 5, 6, . . . , n, if
xi ∈ T , then {ui, vi} ⊆ N(xi) ∩ Vi ⊆ S. Thus

|{i : {ui, vi} ⊆ S, 5 ≤ i ≤ n}| ≥ |T ∩ {x5, . . . , xn}| ≥ |S|,

a contradiction.

By Theorem 5.1, the condition in the following conjecture is thus weaker than
that in Theorem 4.1.

Conjecture 5.1. Let G be a graph with a Hamiltonian path. If c(G− S) ≤ |S|
holds for every nonempty independent set S of G, then (−1)v(G)P (G,λ) > 0 holds for
all λ ∈ (1, 2).

We believe that the condition “G has a Hamiltonian path” in Conjecture 5.1 is
redundant.

Conjecture 5.2. If c(G−S) ≤ |S| holds for every nonempty independent set S
of a graph G, then (−1)v(G)P (G,λ) > 0 holds for all λ ∈ (1, 2).

It is obvious that the condition in the following conjecture, which was first pro-
posed by Thomassen [10], is stronger than that in Conjectures 5.1 and 5.2, because
for a Hamiltonian graph G, the inequality c(G− S) ≤ |S| holds for every S ⊆ V (G).

Conjecture 5.3. If G is a Hamiltonian graph, then (−1)v(G)P (G,λ) > 0 holds
for all λ ∈ (1, 2).

Acknowledgment. The authors wish to thank the referees for their very helpful
suggestions and comments.

810 F. M. DONG AND K. M. KOH

REFERENCES

[1] G. D. Birkhoff and D. C. Lewis, Chromatic polynomials, Trans. Amer. Math. Soc., 60 (1946),
pp. 355–451.

[2] F. M. Dong and K. M. Koh, Domination numbers and zeros of chromatic polynomials, Dis-
crete Math., submitted.

[3] F. M. Dong and K. M. Koh, Two results on real zeros of chromatic polynomials, Combin.
Probab. Comput., 13 (2004), pp. 809–813.

[4] F. M. Dong, K. M. Koh, and K. L. Teo, Chromatic Polynomials and Chromaticity of Graphs,
World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.

[5] B. Jackson, A zero-free interval for chromatic polynomials of graphs, Combin. Probab. Com-
put., 2 (1993), pp. 325–336.

[6] R. C. Read, An introduction to chromatic polynomials, J. Combin. Theory, 4 (1968), pp.
52–71.

[7] R. C. Read and W. T. Tutte, Chromatic polynomials, in Selected Topics in Graph Theory
3, L. W. Beineke and R. J. Wilson, eds., Academic Press, San Diego, 1988, pp. 15–42.

[8] C. Thomassen, Chromatic zeros and Hamiltonian paths, J. Combin. Theory Ser. B, 80 (2000),
pp. 218–224.

[9] C. Thomassen, The zero-free intervals for chromatic polynomials of graphs, Combin. Probab.
Comput., 6 (1997), pp. 497–506.

[10] C. Thomassen, On the number of Hamiltonian cycles in bipartite graphs, Combin. Probab.
Comput., 5 (1996), pp. 437–442.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 4, pp. 811–828

UNIFORM FORMULAE FOR COEFFICIENTS OF MEROMORPHIC
FUNCTIONS IN TWO VARIABLES. PART I∗

MANUEL LLADSER†

Abstract. Uniform asymptotic formulae for arrays of complex numbers of the form (fr,s),
with r and s nonnegative integers, are provided as r and s converge to infinity at a comparable
rate. Our analysis is restricted to the case in which the generating function F (z, w) :=

∑
fr,szrws

is meromorphic in a neighborhood of the origin. We provide uniform asymptotic formulae for the
coefficients fr,s along directions in the (r, s)-lattice determined by regular points of the singular
variety of F . Our main result derives from the analysis of a one dimensional parameter-varying
integral describing the asymptotic behavior of fr,s. We specifically consider the case in which the
phase term of this integral has a unique stationary point; however, we allow the possibility that
one or more stationary points of the amplitude term coalesce with this. Our results find direct
application in certain problems associated to the Lagrange inversion formula as well as bivariate
generating functions of the form v(z)/(1 − w · u(z)).

Key words. asymptotic enumeration, analysis of algorithms, bivariate generating functions,
canonical representations, coalescing saddles, combinatorial enumeration, discrete random structures,
uniform asymptotic expansions

AMS subject classifications. 05A16, 41A60

DOI. 10.1137/040620849

1. Introduction. Suppose that G(z, w) and H(z, w) are analytic functions of
the complex variables z and w in an open polydisk centered at the origin and assume
that H(0, 0) �= 0. Then, the function

F (z, w) :=
G(z, w)

H(z, w)

is analytic in a neighborhood of the origin in C
2; in particular, it has a power series

expansion of the form
∑

fr,sz
rws, where the indices r and s are nonnegative integers.

In what follows we use the notation [zrws]F to refer to the coefficient of zrws in the
power series expansion of F . We also use the notation (r, s) → ∞ as a shorthand for
r → ∞ and s → ∞.

Generating functions of the above form occur frequently in the study of discrete
random structures and analysis of algorithms (see [14] for a comprehensive account of
examples). For a wide class of bivariate functions of this kind the coefficients [zrws]F
are expected, up to an exponential factor, to be of order s−(p+1)/n as (r, s) → ∞ with
r/s fixed. Here, the coefficients p and n are functions of the ratio r/s. In particular,
the asymptotic behavior of [zrws]F can be understood even if r/s varies but in such
a way that p and n do not change. In this paper we show how to provide uniform
asymptotic formulae for the coefficients [zrws]F as (r, s) → ∞ when r/s is restricted
to a set of values where the coefficient p may not remain constant.

From this point on we assume as given a point (ζ, ω) which is a strictly minimal
simple zero of H. By simple zero we mean that H(ζ, ω) = 0; however, the complex

∗Received by the editors December 15, 2004; accepted for publication (in revised form) April 5,
2006; published electronically December 5, 2006.

http://www.siam.org/journals/sidma/20-4/62084.html
†Department of Applied Mathematics, University of Colorado at Boulder, P.O. Box 526 UCB,

Boulder, CO 80309-0526 (manuel.lladser@colorado.edu).

811

812 MANUEL LLADSER

gradient ∇H(ζ, ω) �= 0. By strictly minimal zero we mean that ζ · ω �= 0 and that
(ζ, ω) is the only zero of H(z, w) in the polydisk where |z| ≤ |ζ| and |w| ≤ |ω|.

The pioneering work of Pemantle and Wilson [13] implies that it is possible to
determine an asymptotic expansion for the coefficients of F only along a certain
direction in the (r, s)-lattice specified by (ζ, ω). This direction corresponds to the line

dir(ζ, ω) := {(r, s) ∈ R
2 : r · ωHw(ζ, ω) − s · ζ Hz(ζ, ω) = 0},(1.1)

where Hw and Hz, respectively, denote the complex partial derivative of H with
respect to w and z. For simplicity it will be assumed ahead that Hw(ζ, ω) �= 0. In
particular, (r, s) ∈ dir(ζ, ω) if and only if r/s = d(ζ, ω), where

d(ζ, ω) :=
ζ Hz(ζ, ω)

ωHw(ζ, ω)
.

The strict minimality of (ζ, ω) implies that d(ζ, ω) ≥ 0 (see Lemma 2.1 in [13]).
Furthermore, if this quantity is a rational number, Pemantle and Wilson show that
there are integers n = n(ζ, ω) ≥ 2 and p = p(ζ, ω) ≥ 0 and coefficients cj = cj(ζ, ω),
with j ≥ p and cp �= 0, such that

[zrws]F ≈ ζ−rω−s

2π

∞∑
j=p

cj s
−(j+1)/n,(1.2)

for all (r, s) ∈ dir(ζ, ω), as (r, s) → ∞. The asymptotic notation used above is
in the standard sense where the sequence (s−(j+1)/n)j≥p is the so called auxiliary
asymptotic sequence. This means that the difference between the left- and right-hand
side terms above, with the summation truncated to the term in which j = m, is
O(ζ−r ω−s s−(m+2)/n), as (r, s) → ∞.

The technique used to obtain the asymptotic formula in (1.2) proceeds by relating
the coefficient [zrws]F , with (r, s) ∈ dir(ζ, ω), to a one dimensional Fourier or Laplace
like integral of the form

ζ−rω−s

2π

∫
a(θ; ζ, ω) exp{−s · f(θ; ζ, ω)}dθ .(1.3)

We will refer loosely to a(θ; ζ, ω) and f(θ; ζ, ω), respectively, as the derived amplitude
and phase term. Roughly speaking, the expansion in (1.2) is in powers of s−1/n

because the derived phase term vanishes to degree n in the variable θ about θ =
0, which turns out to be the dominant critical point of the integral. Furthermore,
[zrws]F is of order ζ−r ω−s s−(p+1)/n because the derived amplitude term vanishes
to degree p at θ = 0. (See [6] and [3] for a compelling introduction to the main
techniques used to study the asymptotic behavior of Fourier–Laplace integrals.)

The asymptotic expansion in (1.2) holds usually along a wider set of directions in
the (r, s)-lattice. Indeed, suppose that K is a compact set of strictly minimal simple
zeros of H and consider the set

Λ :=
⋃

(ζ,ω)∈K

{
(r, s) ∈ R

2 :
r

s
= d(ζ, ω)

}
.(1.4)

Observe that Λ is a cone if K is connected. Theorem 3.3 in [13] implies that (1.2)
holds uniformly as (r, s) → ∞, with (r, s) ∈ Λ, provided that the derived amplitude

UNIFORM ASYMPTOTIC FORMULAE. PART I 813

and phase term in (1.3) do not change their degree of vanishing about θ = 0 as (ζ, ω)
varies over K. In particular, if for each (r, s) ∈ Λ, (ζ, ω) = (ζ(r, s), ω(r, s)) ∈ K is
such that d(ζ, ω) = r/s, then

[zrws]F ∼ cp(ζ, ω) · ζ
−rω−s

2π
· s−(p+1)/n,(1.5)

uniformly for all (r, s) ∈ Λ, as (r, s) → ∞. The notation used above means that the
ratio of the two sides tends to 1 as (r, s) → ∞.

However, when there is a change of degree of the derived amplitude or phase term
in (1.3) the hypotheses of [13] are not met and therefore no conclusion may be drawn
from it. When the change of degree is in the phase term one needs to build a bridge
between differently scaled regions. This is hard work and will be presented in the
forthcoming paper [11]. (For further details on this case, see Theorem 6.6 in Chapter
6 in [12].)

The main contribution of the present paper is to settle the case in which only the
derived amplitude term may undergo a change of degree. Although it is not mentioned
in [13] the asymptotic formula in (1.2) is still valid for (r, s) ∈ Λ but it requires a more
careful interpretation. To amplify on this consider the case in which at a particular
point (ζc, ωc) ∈ K, the derived amplitude term in (1.3) vanishes to degree q yet, for
all (ζ, ω) ∈ K nearby (ζc, ωc), the derived amplitudes vanish to some degree p < q.
Then (1.5) implies that up to the exponential factor ζ−rω−s,

[zrws]F is of order

{
s−(q+1)/n if r/s = d(ζc, ωc);
s−(p+1)/n otherwise,

(1.6)

as (r, s) ∈ Λ goes to infinity, provided that r/s remains constant.
A problem of interest is how to bridge the gap between the asymptotic orders in

(1.6) as r/s approaches d(ζc, ωc), as (r, s) → ∞. As we shall see in the coming section,
we resolve this problem with great generality, and can provide a uniform asymptotic
expansion for the coefficients [zrws]F as long as (r, s) ∈ Λ and |r/s − d(ζc, ωc)| is
sufficiently small. Our main result builds upon the asymptotic analysis of an integral
such as the one in (1.3), which does not rely on having the term a(θ; ζ, ω) vanish to
constant degree as (ζ, ω) varies over K. The technique we propose to analyze integrals
of this kind draws on the techniques of Chester, Friedman, and Ursell [5], the results
of Levinson on polynomial canonical representations [8], [9], and the work of Pemantle
and Wilson [13]. All of these techniques are founded on complex variable methods.
For a compelling introduction to function theory of one or several complex variables,
see [4], [15], or [17].

Under appropriate hypotheses, our main result implies that [zrws]F has (up to
an exponentially decreasing factor) an asymptotic expansion of the form

[zrws]F =

q∑
j=p

cj(r/s) · s−(j+1)/n + o(s−(q+1)/n),(1.7)

where the coefficients cj(r/s) are analytic functions of r/s and, except for j = q,
they all vanish when r/s = d(ζc, ωc). Furthermore, the above expansion is uniform
as (r, s) → ∞ provided that r/s is sufficiently close to d(ζc, ωc). Observe how the
condition of having cj(d(ζc, ωc)) = 0, for j �= q, and cq(d(ζc, ωc)) �= 0 explains the
asymptotic behavior described in (1.6).

814 MANUEL LLADSER

In well-behaved situations one finds that the coefficients cj(r/s) in (1.7) are all
nonnegative. This sign constraint prevents cancellation between the terms participat-
ing in the summation in (1.7). As a result, one obtains that

[zrws]F = (1 + o(1)) ·
q∑

j=p

cj(r/s) · s−(j+1)/n,

if r/s → d(ζc, ωc) as (r, s) → ∞. On the contrary, when the coefficients cj(r/s) have
mixed signs, and depending on the rate at which r/s approaches to d(ζc, ωc), it is
possible that terms in the summation in (1.7) cancel one another and therefore

q∑
j=p

cj(r/s) · s−(j+1)/n = o(s−(q+1)/n) .

Thus, in situations where r/s → d(ζc, ωc) in such away that the above asymptotic
formula holds, our main result allows us to conclude only that [zrws]F is o(s−(q+1)/n)
as (r, s) → ∞. The effect of cancellation to determine asymptotic formulae for the
coefficients [zrws]F is illustrated in Example 2.5 in the next section.

2. Main definitions and results with applications. To state our main defi-
nition we recall that if U(z, w) is analytic in an open neighborhood of a point (z0, w0)
in C × C, then it is possible to represent U in the form

U(z, w) =

∞∑
k=0

Uk(z) · (w − w0)
k,

where Uk(z) := 1
k!

∂kU
∂wk (z, w0). The above series is usually referred to as the Hartogs

series of U in powers of (w − w0) about the point (z0, w0). This series is uniformly
convergent for all (z, w) in polydisks of the form {(z, w) : |z − z0| ≤ ε, |w − w0| ≤ ε}
provided that the polydisk is completely contained in the domain where U is analytic
(see section 4.5 in [12]).

To state our main result the following definition will be used.
Definition 2.1. Given nonnegative integers p < q and a function U(z, w) an-

alytic in an open neighborhood of a point (z0, w0) in C × C, we say that U has a
p-to-q change of degree about w = w0 as z → z0 provided that the Hartogs se-
ries of U in powers of (w − w0) about the point (z0, w0) is of the form U(z, w) =
Up(z) · (w − w0)

p + · · · + Uq(z) · (w − w0)
q + · · ·, where Uj(z0) = 0 for all p ≤ j < q;

however, Uq(z0) �= 0. On the contrary, if U(z, w) = Up(z) · (w − w0)
p + · · · with

Up(z0) �= 0, we say that U vanishes to constant degree p about w = w0 as z → z0. Al-
ternatively, we will sometimes say that U has a p-to-p change of degree about w = w0

as z → z0.
In what follows, G(z, w) and H(z, w) are given analytic functions in some open

polydisk D centered at the origin in C
2 and it is assumed that H(0, 0) �= 0. We also

assume as given a compact set K ⊂ D of strictly minimal simple zeros of H containing
a particular point (ζc, ωc) such that Hw(ζc, ωc) �= 0. The implicit function theorem
(see IV.5.6 in [4]) lets us then parametrize the zero set of H near (ζc, ωc) in the form
ω = g(ζ), where g is a certain analytic function of ζ near ζ = ζc.

For each (ζ, ω) ∈ K, dir(ζ, ω) is the line defined as in (1.1) and Λ is the cone de-
fined in (1.4). For each (r, s) ∈ Λ such that r/s = d(ζc, ωc) we define (ζ(r, s), ω(r, s)) :=
(ζc, ωc). Furthermore, for each (r, s) ∈ Λ we let (ζ, ω) = (ζ(r, s), ω(r, s)) ∈ K be such

UNIFORM ASYMPTOTIC FORMULAE. PART I 815

that (r, s) ∈ dir(ζ, ω). For the validity of our main result, we require the continuity
condition

(ζ(r, s), ω(r, s)) → (ζc, ωc),

as r/s → d(ζc, ωc). Indeed, since

(r, s) ∈ dir(ζ, ω) ⇐⇒ r

s
= −ζg′(ζ)

g(ζ)
,

to satisfy the continuity condition it is enough to select ζ(r, s) = ζ and ω(r, s) = g(ζ),
where ζ is the closest solution to ζ = ζc (among a finite number of solutions) to the
equation above. In particular, ζ and ω can be thought of as homogeneous functions
of degree zero in the variable (r, s).

We define

a(ζ, θ) :=
−G(ζeiθ, g(ζeiθ))

g(ζeiθ)Hw(ζeiθ, g(ζeiθ))
,(2.1)

f(ζ, θ) := ln

{
g(ζeiθ)

g(ζ)

}
− iθ

ζg′(ζ)

g(ζ)
,(2.2)

which are analytic for all θ sufficiently small and ζ sufficiently close to ζc.
Our main result is as follows.
Theorem 2.2. Let G(z, w), H(z, w), K, (ζc, ωc), etc., be as above. Define

F (z, w) := G(z, w)/H(z, w). If there are nonnegative integers p ≤ q such that a(ζ, θ)
has a p-to-q change of degree about θ = 0 as ζ → ζc, while f(ζ, θ) vanishes to constant
degree n about θ = 0 as ζ → ζc, then there is a constant C > 0 and functions Ak(ζ)
and Bk(ζ; s), with p ≤ k ≤ q, analytic in ζ near ζ = ζc, such that

Ak(ζc) = 0, p ≤ k < q,(2.3)

Aq(ζc) �= 0,(2.4)

and

[zrws]F =
ζ−rω−s

2π

⎧⎨
⎩

q∑
k=p

Ak(ζ) ·Bk(ζ; s) + O(e−s·C)

⎫⎬
⎭ ,(2.5)

uniformly for all (r, s) ∈ Λ such that r/s is sufficiently close to d(ζc, ωc). Furthermore,
there are coefficients ck(ζ; j), with j ≥ k, which are analytic in ζ near ζ = ζc such
that each coefficient Bk above admits an asymptotic expansion of the form

Bk(ζ; s) ≈
∞∑
j=k

ck(ζ; j) ·
(
1 + (−1)j ·D(j, n)

)
· 1

n
Γ

(
j + 1

n

)
· s−(j+1)/n,(2.6)

as s → ∞, uniformly for all (r, s) ∈ Λ such that r/s is sufficiently close to d(ζc, ωc),
where we have defined

D(j, n) :=

{
1, n even;

exp
(
− iπ(j+1)

n · sign{i · [θn]f(ζc, θ)}
)
, n odd.

(2.7)

816 MANUEL LLADSER

Remark 2.1. The analytic coefficients Ak in (2.3) and (2.4) together with an
auxiliary function α = α(ζ, θ) are the unique analytic solutions (near ζ = ζc and
θ = 0) to the system of equations∫ θ

0

a(ζ, w)dw =

q∑
k=p

Ak(ζ)

k + 1
αk+1,

Ak(ζc) = 0 , p ≤ k < q,

Aq(ζc) �= 0,

α = α(ζ, θ) = θ + · · · .

In particular, it follows that

Ap(ζ) = [θp]a(ζ, θ),(2.8)

Aq(ζc) = [θq]a(ζc, θ) .(2.9)

Remark 2.2. In (2.6) one has that

ck(ζ; k) = ([θn]f(ζ, θ))
−(k+1)/n

.(2.10)

More generally, the coefficients ck(ζ; j) are characterized by the identity ck(ζ; j) =
[βj]αk ∂α

∂β where, for all ζ sufficiently close to ζc, the variables α and β are related to
each other through the variable θ via the relations

α = α(ζ, θ),

β = α · ([θn]f(ζ, θ))
1/n ·

(
1 +

f(ζ, θ) − ([θn]f(ζ, θ)) αn

([θn]f(ζ, θ)) αn

)1/n

.

Theorem 2.2 is essentially equivalent to Theorem 3.3 in [13] when the amplitude
term a(ζ, θ) in (2.1) vanishes to constant degree in the variable θ about θ = 0 (the
case p = q). The first application we show is concerned with precisely this case. The
generating function in the following example is analyzed in [13]. However, here we
perform a similar analysis but from the perspective of Theorem 2.2.

Example 2.3 (lattice paths). The Delannoy numbers (see [16, p. 185]) are the
coefficients fr,s that count the number of paths in the Z × Z-lattice that join (0, 0)
with (r, s) with steps of the form (0, 1), (1, 1), and (1, 0). With the understanding
that f0,0 = 1 and fr,s = 0 whenever r < 0 or s < 0, it follows that fr,s = fr−1,s +
fr−1,s−1 + fr,s−1, for all integers r, s ≥ 0 except when (r, s) = (0, 0). Using this
recursion it is almost direct to see that

F (z, w) :=
∑
r,s≥0

fr,s z
r ws =

1

1 − z − w − zw
.

The strictly minimal simple zeros of the denominator of F are all of the form
(ζ, ω), with ζ ∈ (0, 1) and ω = g(ζ) := 1−ζ

1+ζ . Furthermore, one finds that

(r, s) ∈ dir(ζ, ω) ⇐⇒ r

s
=

2ζ

1 − ζ2
.

This allows an asymptotic analysis for [zrws]F as (r, s) → ∞, uniformly for (r, s) in
any cone of the form Λ = {(r, s) : d1 ≤ r/s ≤ d2}, with d1 > 0 and d2 > 0 arbitrary
constants. On the other hand, as shown in [13], one finds for (r, s) ∈ Λ that

(r, s) ∈ dir(ζ, ω) ⇐⇒ ζ =

√
r2 + s2 − s

r
, ω =

√
r2 + s2 − r

s
.

UNIFORM ASYMPTOTIC FORMULAE. PART I 817

Using definitions (2.1) and (2.2) it follows that

a(ζ, θ) =
1

1 − ζeiθ

=
1

1 − ζ
+

iζ

(1 − ζ)2
θ + · · · ,

f(ζ, θ) = ln

{
(1 − ζeiθ)(1 + ζ)

(1 + ζeiθ)(1 − ζ)

}
+

2iζ

1 − ζ2
θ

=
ζ(1 + ζ2)

(1 − ζ2)2
θ2 +

iζ(1 + 6ζ2 + ζ4)

3(1 − ζ2)3
θ3 + · · · .

Since a(ζ, θ) and f(ζ, θ), respectively, vanish to constant degree 0 and 2 at θ = 0,
for all ζ ∈ (0, 1), Theorem 2.2 implies that there is a constant c > 0 and coefficients
B(r, s) such that

[zrws]F =
1

2π

(√
r2 + s2 − s

r

)−r (√
r2 + s2 − r

s

)−s

·
{

r ·B(r, s)

r + s−
√
r2 + s2

+ O(e−s·c)

}
,

B(r, s) = 2
√
π
s

r

(√
r2 + s2 − s

r
+

r√
r2 + s2 − s

)−1/2

· s−1/2 + O(s−3/2),

uniformly for (r, s) ∈ Λ as (r, s) → ∞. In particular, it follows that

[zrws]F ∼
(√

r2 + s2 − s

r

)−r (√
r2 + s2 − r

s

)−s

·
√

rs

2π(r + s−
√
r2 + s2)2

√
r2 + s2

,

whenever (r, s) → ∞ at a comparable rate.

Although the computations in Theorem 2.2 can be involved, it gives a precise and
unified understanding of the elements that are important to take into consideration
when analyzing the asymptotic behavior of the coefficients of meromorphic functions
in two variables. Furthermore, the calculations greatly simplify in situations where
the coefficients Ak(ζ) are easily available. This is the main point of the following
result which is a direct consequence of Remark 2.1.

Corollary 2.4. Under the hypothesis of Theorem 2.2 but for the special case in
which q = p+1, if for all ζ sufficiently close to ζc, θ(ζ) is the only nontrivial solution
of the equation a(ζ, θ) = 0, with θ in some open neighborhood of θ = 0, then

Ap(ζ) = [θp]a(ζ, θ),(2.11)

Ap+1(ζ) =

⎛
⎝ (−1)p+1

(p + 1)(p + 2)
· {[θp]a(ζ, θ)}p+2 ·

{∫ θ(ζ)

0

a(ζ, ξ)d ξ

}−1
⎞
⎠

1/(p+1)

,(2.12)

where the branch of the (p+1)-root above is to be selected so as to have limζ→ζc Ap+1(ζ)
= [θp+1]a(ζc, θ).

818 MANUEL LLADSER

Example 2.5 (Lagrange inversion formula). If t(x) is an analytic function of x
near x = 0 such that t(x) = x · u(t(x)), for a certain analytic function u(x) with
u(0) �= 0, then [xr]t(x) = [xr−1](u(x))r/r (see section 5.4 in [16]). More generally,
many problems related to the Lagrange inversion formula naturally lead to the study
of the asymptotic behavior of coefficients of the form [xr](u(x))sv(x), as (r, s) → ∞
(see [7] and [1]). These coefficients are related to those of a bivariate generating
function via the identity

[xr](u(x))sv(x) = [zrws]
v(z)

1 − wu(z)
.(2.13)

(See the final remark in section 2 in [2] and Remark 5.22 in [12] for the uses of
multivariate generating functions in problems associated with the Lagrange inversion
formula. See [18] for a discussion in the context of Riordan arrays.)

In what follows we assume that the radius of convergence of v(z) is greater than
or equal to that of u(z). In the context of Theorem 2.2, a point of the form (ζ, 1/u(ζ))
is a strictly minimal simple zero of the denominator in the right-hand side of (2.13)
provided that ζ ·u(ζ) �= 0 and that |u(x)| is maximized on the circumference |x| = |ζ|
solely at x = ζ. We emphasize that this condition is easily satisfied for ζ > 0
and within the radius of convergence of u(z) whenever u(z) is aperiodic and has
nonnegative Taylor coefficients. Asymptotic formulae for the coefficients in (2.13)
are then available along the directions in the (r, s)-lattice where r/s = ζu′(ζ)/u(ζ).
Furthermore, if K is a compact set of strictly minimal simple zeros and (ζc, 1/u(ζc)) is
an interior point of K, then Theorem 2.2 can be used to provide asymptotic formulae in
an open cone of directions in the (r, s)-lattice containing the line r/s = ζcu

′(ζc)/u(ζc),
provided that there are nonnegative integers p ≤ q and n such that

a(ζ, θ) := v(ζeiθ),(2.14)

f(ζ, θ) := ln

{
u(ζ)

u(ζeiθ)

}
+ iθ

ζu′(ζ)

u(ζ)
,(2.15)

respectively, have a p-to-q and n-to-n change of degree about θ = 0 as ζ → ζc.
To fix these ideas consider the case in which u(x) := (1−x)−1 and v(x) := (1−2x).

Then every point of the form (ζ, 1−ζ), with ζ ∈ (0, 1), is a strictly minimal simple zero
of the denominator in the right-hand side of (2.13). Furthermore, (r, s) ∈ dir(ζ, 1− ζ)
if and only if r/s = ζ/(1 − ζ); in particular,

(r, s) ∈ dir(ζ, 1 − ζ) ⇐⇒ ζ =
r

r + s
.

This motivates us to define ζ(r, s) := r/(r + s) for all (r, s) such that r · s > 0.
Observe that back in (2.14) and (2.15) one finds that

a(ζ, θ) = (1 − 2ζ) − 2iζθ + · · · ,

f(ζ, θ) =
ζ

2(1 − ζ)2
θ2 + · · · .

While f(ζ, θ) vanishes to constant degree 2 about θ = 0, for all ζ ∈ (0, 1), a(ζ, θ) has
a 0-to-1 change of degree about θ = 0, as ζ → 1/2. As a result, using Theorem 2.2,
we can determine the asymptotic behavior of [xr](1 − x)−s(1 − 2x) as (r, s) → ∞ so
long as r and s grow at a comparable rate.

UNIFORM ASYMPTOTIC FORMULAE. PART I 819

Theorem 2.2 implies almost immediately that

[xr](1 − x)−s(1 − 2x) =
1√
2π

(
r

r + s

)−r (
s

r + s

)−s

·
{(

1 − r

s

)(
1 +

s

r

)1/2

s−1/2

+ O(s−1)

}
,(2.16)

as (r, s) → ∞, uniformly for r/s restricted to a compact subset of (0, 1) ∪ (1,∞).
On the other hand, Corollary 2.4 implies that there is an ε > 0 such that

[xr](1 − x)−s(1 − 2x) =
1√
2π

(
r

r + s

)−r (
s

r + s

)−s

·
{
A0

(
r

r + s

)
·B0(r, s) + A1

(
r

r + s

)
·B1(r, s)

}
,

as (r, s) → ∞, uniformly for (1 − ε) ≤ r/s ≤ (1 + ε), where

A0(ζ) := 1 − 2ζ,

B0(r, s) = α0

(
r

r + s

)
s−1/2 + O(s−3/2),

α0(ζ) :=
1 − ζ√

ζ
,

A1(ζ) :=
i(1 − 2ζ)2

2(1 − 2ζ + ln(2ζ))
,

B1(r, s) = α1

(
r

r + s

)
s−3/2 + O(s−5/2),

α1(ζ) := −i(1 − ζ)2 · 5 − 9ζ − 12ζ2 + 20ζ3 + 2(1 + 5ζ − 8ζ2) ln(2ζ)

4ζ
√
ζ(1 − 2ζ)(1 − 2ζ + ln(2ζ))

.

Observe that Theorem 2.2 asserts that A1(ζ) and α1(ζ) are analytic about any
ζ ∈ (0, 1). The apparent singularity of A1(ζ) at ζ = 1/2 is not so because its de-
nominator vanishes to degree 2 about ζ = 1/2. On the other hand, the numerator
and denominator of α1(ζ) vanish to degree 3 at about ζ = 1/2. Indeed, the first few
terms of the Taylor series of A1(ζ) and α1(ζ) at about ζ = 1/2 are found to be

A1(ζ) = −i− 4i

3

(
ζ − 1

2

)
+

2i

9

(
ζ − 1

2

)2

+ · · · ,

α1(ζ) = − i
√

2

4
+

31i
√

2

24

(
ζ − 1

2

)
− 503i

√
2

180

(
ζ − 1

2

)2

+ · · · .

Since A0(r/(r+s)) = 0 whenever r = s, the above expansion for [xr](1−x)−s(1−
2x) implies that

[xr](1 − x)−s(1 − 2x) = −4(s−1)

√
π

{
s−3/2 + O(s−5/2)

}
,(2.17)

as (r, s) → ∞ with r = s. This corresponds to the asymptotic expansion one would
obtain after using Stirling’s formula to find the leading asymptotic order of the fac-
torial terms in the identity

[xr](1 − x)−r(1 − 2x) = − (2r − 2)!

r((r − 1)!)2
.

820 MANUEL LLADSER

Formulae (2.16) and (2.17) characterize the asymptotic behavior of the coefficients
[xr](1 − x)−s(1 − 2x) as (r, s) → ∞ along the diagonal line r = s or along directions
completely away from it. More explicit asymptotic formulae for these coefficients, as
r/s → 1, can be obtained looking at the Taylor coefficients of the functions A0(ζ) ·
α0(ζ) and A1(ζ) · α1(ζ) at about ζ = 1/2. Indeed, it follows for all constant δ > 0
that

[xr](1 − x)−s(1 − 2x) =
−1

2
√
π

(
r

r + s

)−r (
s

r + s

)−s

(2.18)

·
{
r − s

r + s
· s−1/2 +

s−3/2

2
+ O(s−5/2)

}
,(2.19)

as (r, s) → ∞, uniformly for (r, s) in the region 1 − δ/s ≤ r/s ≤ 1 + δ/s.
If r/s approaches 1 from above, then cancellation between the first two terms in

the curly bracket in (2.18) is ruled out. As a result, if r/s = 1 + |O(s−1)|, then

[xr](1 − x)−s(1 − 2x) ∼ −1

2
√
π

(
r

r + s

)−r (
s

r + s

)−s

·
{
r/s− 1

r/s + 1
· s +

1

2

}
· s−3/2 .

(2.20)

This means that in the (r, s)-lattice a bandwidth of size s−1 from above the line r = s
is what separates the behavior of [xr](1 − x)−s(1 − 2x) as prescribed in (2.16) from
the one in (2.17).

On the other hand, if r/s approaches 1 from below, then a cascade effect of
cancellation in (2.18) may reduce the size of [xr](1−x)−s(1− 2x) to arbitrarily small
orders. Refined estimates in this case depend on the precise rate of convergence of
r/s toward 1. To amplify this, consider coefficients α > 0, β ≥ 1, γ �= 0, and δ > 0,
and suppose that

r

s
= 1 − αs−β + γs−(β+δ) + o(s−(β+δ)) .

In particular, (r−s)/(r+s) = −αs−β(1+αs−β/2)/2+γs−(β+δ)/2+o(s−2β+s−(β+δ)).
Using this in (2.18) we obtain that

[xr](1 − x)−s(1 − 2x) ∼ −1

4
√
π

(
r

r + s

)−r (
s

r + s

)−s

·

⎧⎨
⎩

(1 − α)s−3/2 if α �= 1 and β = 1;
γs−(3/2+δ) if α = 1, β = 1, and 0 < δ < 1;
s−3/2 if β > 1.

As a result and unlike the asymptotic description in (2.20), we see that if (r, s) → ∞
with r/s ↑ 1, then there is no well-defined bandwidth that separates the asymptotic
behavior of [xr](1 − x)−s(1 − 2x) as prescribed in (2.16) from the one in (2.17).
Furthermore, if α = β = 1 and 0 < δ < 1, then [xr](1 − x)−s(1 − 2x) is of an
asymptotic order smaller than anyone observed as (r, s) → ∞ along any diagonal line
in the (r, s)-lattice. This finding is consistent with the identity

[xr](1 − x)−s(1 − 2x) =
(s− r − 1) · (r + s− 2)!

r! · (s− 1)!
,

from which we see that [xr](1 − x)s(1 − 2x) = 0 whenever r/s = 1 − s−1.

UNIFORM ASYMPTOTIC FORMULAE. PART I 821

Remark 2.3. The determination of the coefficients Ak(ζ) in Theorem 2.2 becomes
more difficult the bigger the change of degree of the amplitude term a(ζ, θ) in (2.1).
However, the linear dependence between the asymptotic expansion of the coefficients
of F and of a(ζ, θ) can be exploited to overcome this problem. Indeed, if a(ζ, θ)
has a p-to-q change of degree in the variable θ, with p < q, then one can rewrite
a(ζ, θ) = a0(ζ, θ)+a1(ζ, θ), where a0(ζ, θ) is a polynomial in the variable θ (of degree
less than q) and a1(ζ, θ) vanishes regardless of ζ to constant degree q in θ. Theorem
2.2 can now be used to obtain an asymptotic expansion for each of the terms in a0(ζ, θ)
as well as for a1(ζ, θ). Combining these linearly, one obtains an asymptotic expansion
for [zrws]F that resembles the one in (2.5).

3. Proof of main results.

3.1. Associating a parameter-varying integral. In this section we show
some preliminary results that are required to prove Theorem 2.2. We assume that
there are functions G(z, w) and H(z, w) analytic in an open polydisk D centered at
(0, 0) on which F (z, w), the generating function associated to the coefficients (fr,s),
satisfies the identity F (z, w) = G(z, w)/H(z, w). In addition, we assume as given a
compact set K ⊂ D of strictly minimal simple zeros of H containing a particular
point (ζc, ωc). It is assumed that Hw(ζc, ωc) �= 0. In particular, the implicit function
theorem implies that (ζc, ωc) has an open neighborhood of the form Z ×W ⊂ D and
there is an analytic map g : Z → W such that for all (z, w) ∈ Z × W , H(z, w) =
0 if and only if w = g(z). Without loss of generality, we may assume that 0 /∈ W .

We now adopt the following notation. For all 0 < ε < π/2, the notation
| arg{z}| ≤ ε signifies that z = |z|eiθ, for some θ ∈ [−ε, ε]. Accordingly, the nota-
tion | arg{z}| ≥ ε is used to mean that z = |z|eiθ, for some θ ∈ [ε, π] ∪ [−ε,−π].

Lemma 3.1. For all ε1 > 0 sufficiently small there is a δ1 > 0 such that for
all (ζ, ω) ∈ K, H is zero-free on the set {(z, w) : |z| = |ζ|, | arg(z/ζ)| ≥ ε1, |w| ≤
(1 + δ1)|ω|}.

Proof. Without loss of generality, assume that 0 < ε1 < π/2. If K consisted of
only one point, the lemma would follow directly from the continuity of H together with
the strict minimality of its only element. More generally, define for each (ζ, ω) ∈ K the
quantity δ1(ζ, ω) to be the supremum of those δ > 0 such that H is zero-free on the set
{(z, w) : |z| = |ζ|, | arg(z/ζ)| ≥ ε1, |w| ≤ (1+ δ)|ω|}. To prove the lemma, it is enough
to show that inf{δ1(ζ, ω) : (ζ, ω) ∈ K} > 0. We prove this by contradiction. Assuming
otherwise there would be a sequence of points (ζj , ωj) ∈ K such that δ1(ζj , ωj) → 0,
as j → ∞. In particular, for all j sufficiently large, there would be a (zj , wj) such that
|zj | = |ζj |, | arg{zj/ζj}| ≥ ε1, |wj | = (1+δ1(ζj , ωj))|ωj |, and H(zj , wj) = 0. But, since
K is a compact set, there is no loss of generality in assuming that (ζj , ωj) → (ζ, ω) ∈ K
and (zj , wj) → (z, w), as j → ∞. In particular, |z| = |ζ|, |w| = |ω|, z �= ζ; however,
H(z, w) = 0. This contradicts the fact that (ζ, ω) is a strictly minimal zero of H and
therefore we conclude that inf{δ1(ζ, ω) : (ζ, ω) ∈ K} > 0. This completes the proof
of the lemma.

Lemma 3.2. For all ε2 > 0 sufficiently small there is a δ2 > 0 such that all zeros
of H in the set {(z, w) : |z − ζc| < ε2, |w| ≤ (1 + δ2)|g(z)|} are of the form w = g(z).

Proof. The strict minimality of (ζc, ωc) together with the analyticity of H imply
that there is η > 0 such that w = ωc is the only zero of H(ζc, w) in the disk {w :
|w| ≤ (1 + η)|ωc|} (see Theorem 10.18 in [15]). Without loss of generality, we may
assume that {w : |w − ωc| ≤ η|ωc|} ⊂ W . Observe that H(ζc, w) is zero-free on
the set {w : η|ωc| ≤ |w − ωc| and |w| ≤ (1 + η)|ωc|}. Thus, since H is uniformly
continuous, it follows for all ε2 > 0 sufficiently small that H is zero-free in the set

822 MANUEL LLADSER

{(z, w) : |z − ζc| ≤ ε2 , η|ωc| ≤ |w − ωc| and |w| ≤ (1 + η)|ωc|}. In this case, the
condition that {w : |w− ωc| ≤ η|ωc|} ⊂ W implies that all zeros of H in the polydisk
{(z, w) : |z− ζc| ≤ ε2, |w| ≤ (1 + η)|ωc|} are of the form w = g(z). The lemma follows
after selecting ε2 > 0 small enough and defining δ2 > 0 so as to have

(1 + δ2) = (1 + η) inf
z:|z−ζc|≤ε2

∣∣∣∣ ωc

g(z)

∣∣∣∣ > 1 .

The above inequality is always possible because g(ζc) = ωc. This completes the proof
of the lemma.

The next result pretty much follows the lines of Lemma 4.1 in [13]. It is included
here for the sake of completeness.

Lemma 3.3. For a sufficiently small choice of ε > 0 and for all |θ| ≤ ε and ζ
sufficiently close to ζc, consider the functions a(ζ, θ) and f(ζ, θ) as defined in (2.1)
and (2.2), respectively. Then f(ζ, 0) = ∂f

∂θ (ζ, 0) = 0 and, for all (ζ, ω) ∈ K suffi-
ciently close to (ζc, ωc), and all nonzero θ such that −ε ≤ θ ≤ ε, �{f(ζ, θ)} > 0).
Furthermore, if

Σ(ζ; s) :=

∫ ε

−ε

e−s·f(ζ,θ)a(ζ, θ) dθ,(3.1)

then there is a constant c > 0 such that

[zrws]F =
ζ−rω−s

2π

{
Σ(ζ; s) + O(e−sc)

}
,(3.2)

uniformly for all (r, s) ∈ dir(ζ, ω) and (ζ, ω) ∈ K sufficiently close to (ζc, ωc).
Proof. Let ε2 > 0 and δ2 > 0 be as in Lemma 3.2. Consider ε3 > 0 such that the

functions a(ζ, θ) and f(ζ, θ) are analytic for |ζ − ζc| ≤ ε3 and |θ| ≤ ε3. In addition,
consider for ε1 > 0 the sets

Kc := {(ζ, ω) ∈ K : |ζ − ζc| ≤ ε1},
γ1(ζ) := {z : |z| = |ζ| and | arg{z/ζ}| ≥ ε1},
γ2(ζ) := {z : |z| = |ζ| and | arg{z/ζ}| ≤ ε1} .

Select ε1 > 0 small enough so as to have γ2(ζ) ⊂ {z : |z−ζc| ≤ min{ε2, ε3}}, whenever
(ζ, ω) ∈ Kc. Furthermore, choose ε1 > 0 sufficiently small so that the conclusion of
Lemma 3.1 applies with some δ1 > 0. Select δ so as to satisfy 0 < δ < min{δ1, δ2, 1}.
The strict minimality of (ζ, ω) ∈ Kc implies that H is zero-free on the polydisk
{z : |z| ≤ |ζ|} × {w : |w| ≤ (1 − δ)|ω|}. Cauchy’s formula [15] can then be used to
represent the coefficients of F by the integrals

[zrws]F =
1

2π

{∫
z∈γ1(ζ)

+

∫
z∈γ2(ζ)

}
1

zr

(
1

2πi

∫
|w|=(1−δ)|ω|

G(z, w)

H(z, w) · ws+1
dw

)
dz

iz
,

(3.3)

where all contour integrals are in the standard counterclockwise orientation.
Lemma 3.1 implies for all (ζ, ω) ∈ Kc that H is zero-free on the set γ1(ζ) × {w :

|w| ≤ (1 + δ)|ω|}. As a result,∣∣∣∣∣
∫
z∈γ1(ζ)

1

zr

∫
w=(1−δ)|ω|

G(z, w)

H(z, w) · ws+1
dw

dz

iz

∣∣∣∣∣

UNIFORM ASYMPTOTIC FORMULAE. PART I 823

=

∣∣∣∣∣
∫
z∈γ1(ζ)

1

zr

∫
w=(1+δ)|ω|

G(z, w)

H(z, w) · ws

dw

iw

dz

iz

∣∣∣∣∣
≤ (2π)2|ζ|−r{(1 + δ)|ω|}−s · sup

Γ1

|F |,

where for convenience we have defined Γ1 to be the set of all those points of the form
(z, w) such that there exists a (ζ, ω) ∈ Kc such that z ∈ γ1(ζ) and |w| ≤ (1 + δ)|ω|.
Since Γ1 is compact and H is zero-free over it, then supΓ1

|F | must be finite. Back in
(3.3), this implies that

[zrws]F =
1

2π

∫
z∈γ2(ζ)

1

zr

(
1

2πi

∫
|w|=(1−δ)|ω|

G(z, w)

H(z, w) · ws+1
dw

)
dz

iz

+ O(|ζ|−r|ω|−s(1 + δ)−s),(3.4)

uniformly for all r, s ≥ 0 and all (ζ, ω) ∈ Kc. However, Lemma 3.2 implies that for
each (ζ, ω) ∈ Kc and z ∈ γ2(ζ), w = g(z) is the only singularity of the integrand above
within the disk {w : |w| ≤ (1 + δ)|g(z)|}. The residue theorem in one variable [15]
lets us conclude that

1

2πi

∫
|w|=(1−δ)|ω|

G(z, w)

H(z, w) · ws+1
dw =

−G(z, g(z))

Hw(z, g(z)) · {g(z)}s+1

+
1

2πi

∫
|w|=(1+δ)|g(z)|

G(z, w)

H(z, w) · ws+1
dw .

But, observe that if |w| = (1 + δ)|g(z)| and z ∈ γ2(ζ), then the strict minimality of
(ζ, ω) ∈ Kc implies that |g(z)| ≥ |g(ζ)| = |ω|. In particular,∣∣∣∣∣ 1

2π

∫
z∈γ2(ζ)

1

zr

(
1

2πi

∫
|w|=(1+δ)|g(z)|

G(z, w)

H(z, w) · ws+1
dz

)
dz

iz

∣∣∣∣∣
≤ |ζ|−r{(1 + δ)|ω|}−s · sup

Γ2

|F |,

where we have defined Γ2 to be the set of points (z, w) for which there exists a
(ζ, ω) ∈ Kc such that z ∈ γ2(ζ) and |w| = (1+ δ)|g(z)|. Since Γ2 is a compact set and
H is zero-free over it, from (3.4) we can conclude that

[zrws]F =
1

2π

∫
z∈γ2(ζ)

1

zr
−G(z, g(z))

Hw(z, g(z)) · {g(z)}s+1

dz

iz
+O(|ζ|−r|ω|−s(1+δ)−s),(3.5)

uniformly for all r, s ≥ 0 and all (ζ, ω) ∈ Kc.
The integral on the right-hand side in (3.5) can be parametrized using polar

coordinates. Indeed, substituting z = ζeiθ, with −ε ≤ θ ≤ ε, one obtains that

[zrws]F =
ζ−rω−s

2π

∫ ε

−ε

e−s·f(θ;ζ,r/s)a(ζ, θ)dθ + O(|ζ|−r|ω|−s(1 + δ)−s),

uniformly for all r, s ≥ 0 and all (ζ, ω) ∈ Kc, where a(ζ, θ) is defined as in (2.1) and

f(θ; ζ, λ) := ln
{

g(ζeiθ)
g(ζ)

}
+ iλθ. Observe that f

(
0; ζ, r

s

)
= 0 and

∂f

∂θ

(
0; ζ,

r

s

)
= i

(
ζg′(ζ)

g(ζ)
+

r

s

)

= i

(
r

s
− ζHz(ζ, ω)

ωHw(ζ, ω)

)
.

824 MANUEL LLADSER

In particular, we see that ∂f
∂θ

(
0; ζ, r

s

)
= 0 for all (r, s) ∈ dir(ζ, ω). Furthermore, the

strict minimality of (ζ, ω) ∈ Kc implies that |g(ζeiθ)| > |g(ζ)|, for all nonzero θ such
that −ε ≤ θ ≤ ε and, as a result, �{f(ζ; θ)} > 0 for all such θ. Lemma 3.3 follows by
noticing that whenever (r, s) ∈ dir(ζ, ω), then f (0; ζ, r/s) = f(ζ; θ), with f(ζ; θ) as
defined in (2.2).

3.2. Polynomial canonical representations. A result of Levinson [10] im-
plies that if a function H(u, v) is analytic in a neighborhood of the origin in C

2 and
its Hartogs series vanishes to degree q ≥ 1 in the variable v about the origin, then H
admits a near (0, 0) a representation of the form

H(u, v) =

q∑
j=0

Hj(u)wj .(3.6)

Above the coefficient functions Hj are analytic near the origin and such that Hj(0) = 0
for all 0 ≤ j < q; however, Hq(0) �= 0. In addition, w = w(u, v) is a certain analytic
function near the origin such that w(u, 0) = 0 and ∂w

∂v (u, 0) = 1. In [12] it is proved
using one complex variable methods that this representation is indeed unique. The
following more precise representation will be more suitable to prove our main result.

Lemma 3.4. Let 0 ≤ p ≤ q with q ≥ 1 be nonnegative integers. Suppose that
H(u, v) is analytic in a neighborhood of the origin and has a p-to-q change of degree
about v = 0 as u → 0. Then, H admits near the origin a unique representation of the
form

H(u, v) =

q∑
k=p

Hk(u) · wk,(3.7)

where Hk(0) = 0, for p ≤ k < q, Hq(0) �= 0, and w = w(u, v) is such that w(u, 0) = 0
and ∂w

∂v (u, 0) = 1. Furthermore,

Hp(u) =
1

p!

∂pH

∂vp
(u, 0) .(3.8)

Proof. The uniqueness of the representation in (3.7) is immediate from the unique-
ness of the representation in (3.6). Suppose that the representation in (3.6) applies
for all (u, v) in an open neighborhood of the polydisk {(u, v) : |u| ≤ ε and |v| ≤ ε},
for some ε > 0. Since H(u, v) has a p-to-q change of degree about v = 0 as u → 0, H
has a Hartogs series of the form

H(u, v) =
∞∑
k=p

hk(u) vk,

where the coefficients hk are analytic for |u| ≤ ε, hp(u) is not identically zero in any
neighborhood of u = 0, and hq(0) �= 0.

Consider the map Φ(u, v) = (u,w(u, v)). The conditions imposed over w in (3.6)
imply that the Jacobian matrix ∂Φ

∂(u,v) (0, 0) is triangular with all entries equal to

1 along the diagonal. Since Φ(0, 0) = (0, 0), the inverse mapping theorem lets us
assume without loss of generality that Φ is holomorphic and 1-to-1 over the polydisk
{(u, v) : |u| ≤ ε, |v| ≤ ε}. In particular, for all u such that |u| ≤ ε, w(u, ·) is 1-to-1
for |v| ≤ ε. Furthermore, since w(u, 0) = 0, the open mapping theorem implies that

UNIFORM ASYMPTOTIC FORMULAE. PART I 825

there are ρ1, ρ2 > 0 such that {w : |w| ≤ ρ1} ⊂ w(u, {v : |v| < ε}) and the preimage
of {v : |v| < ρ1} under w(u, ·) contains the disk {v : |v| ≤ ρ2}. As a result, using
Cauchy’s formula in (3.6) and then the substitution w = w(u, v), it follows for all
0 ≤ j ≤ q that

Hj(u) =
1

2πi

∫
|w|=ρ1

1

wj+1

(
q∑

k=0

Hk(u) · wk

)
dw

=
1

2πi

∫
|v|=ρ2

H(u, v)

{w(u, v)}j+1

∂w

∂v
(u, v) dv

=
1

2πi

∞∑
k=p

hk(u) ·
∫
|v|=ρ2

vk

{w(u, v)}j+1

∂w

∂v
(u, v) dv,

where for the last identity we have used that Hartogs series of H converges uni-
formly over compact subsets of {(u, v) : |u| ≤ ε and |v| ≤ ε}. However, observe
that the conditions imposed over w in (3.6) imply that, for all j < p ≤ k, the func-

tion vk

{w(u,v)}j+1
∂w
∂v (u, v) is analytic in v in an open neighborhood of {v : |v| ≤ ρ2}.

Consequently, for j < p, all the terms in the above summation vanish and therefore
Hj(u) = 0. This shows (3.7). Furthermore, if j = p, then the residue theorem implies
that

Hp(u) =
hp(u)

2πi
·
∫
|v|=ρ2

vp

{w(u, v)}p+1

∂w

∂v
(u, v) dv

= hp(u) · Res

(
vp

{w(u, v)}p+1

∂w

∂v
(u, v); v = 0

)
= hp(u) .

This shows (3.8) and completes the proof of the lemma.

3.3. Asymptotic analysis. In this section we prove Theorem 2.2. This is ac-
complished by analyzing the asymptotic behavior of the integral Σ(ζ; s) in (3.2), as
s → ∞. Observe that Σ(ζ; s) = Σ1(ζ; s) + Σ2(ζ; s), where we have defined

Σi(ζ; s) :=

∫ ε

0

e−s·f(ζ,(−1)i+1θ)a(ζ, (−1)i+1θ)dθ, i = 1, 2.

Because of the similarity of Σ1(ζ; s) and Σ2(ζ; s), we analyze only the asymptotic
behavior of Σ1(ζ; s) under the hypotheses that f(ζ, θ) and a(ζ, θ) have, respectively,
an n-to-n and p-to-q change of degree about θ = 0 as ζ → ζc, and that f(ζ, θ) has
the properties stated in Lemma 3.3. A similar analysis of the asymptotic behavior of
Σ2(ζ; s) is summarized at the end of this section.

Lemma 3.3 implies that n ≥ 2. In particular, we may write

f(ζ, θ) = u(ζ) · θn + · · · ,(3.9)

where u is a certain analytic function near ζc such that u(ζc) �= 0. Since for all nonzero
θ ∈ [−ε, ε], �{f(ζc, θ)} > 0, we must have �{u(ζc)} ≥ 0.

On the other hand, Lemma 3.4 implies that there is a unique representation of
the form ∫ θ

0

a(ζ, w)dw =

q∑
k=p

Ak(ζ)

k + 1
αk+1,(3.10)

826 MANUEL LLADSER

where Ak(ζc) = 0 for all p ≤ k < q, Aq(ζc) �= 0, and α = α(ζ, θ) is such that α(ζ, 0) = 0
and ∂α

∂θ (ζ, 0) = 1. The coefficients Ak, p ≤ k ≤ q, correspond to those appearing
in Remark 2.1. The inverse mapping theorem implies that Ψ1(ζ, θ) := (ζ, α(ζ, θ))
is a biholomorphic map from an open neighborhood of (ζ, θ) = (ζc, 0) to an open
neighborhood of (ζ, α) = (ζc, 0). In particular, assuming that ε > 0 is sufficiently
small, we can perform in Σ1(ζ; s) the change of variables α = α(ζ, θ) to obtain that

Σ1(ζ; s) =

q∑
k=p

Ak(ζ)

∫ α(ζ,ε)

0

e−s·g(ζ,α)αkdα,

where g(ζ, α) := f(Ψ−1
1 (ζ, α)). This last function is analytic in a neighborhood of the

origin. Furthermore, it’s Hartogs series about (ζ, α) = (ζc, 0) in powers of α is of the
form g(ζ, α) = u(ζ)αn + · · · with u(ζ) as in (3.9). This motivates us to consider the
map

Ψ2(ζ, α) :=

(
ζ, α · (u(ζ))1/n ·

(
1 +

g(ζ, α) − u(ζ)αn

u(ζ)αn

)1/n
)
,

where the principal branch of the nth root function is to be used in both cases. Since
u(ζc) �= 0 and �{u(ζc)} ≥ 0, it follows that Ψ2 is well defined and holomorphic near
(ζc, 0). Furthermore, if β = β(ζ, α) is such that Ψ2(ζ, α) = (ζ, β(ζ, α)), the inverse
mapping theorem implies that Ψ2(ζ, α) is biholomorphic between open neighborhoods
of (ζ, α) = (ζc, 0) and (ζ, β) = (ζc, 0). In particular, it follows that g(Ψ−1

2 (ζ, β)) = βn

and therefore

Σ1(ζ; s) =

q∑
k=p

Ak(ζ)

∫ β(ζ,α(ζ,ε))

0

e−s·βn

(α(ζ, β))k
∂α

∂β
(ζ, β)dβ,

provided that ε > 0 is chosen sufficiently small to start with. We claim that the
domain of integration of the integrals participating in the summation above can be
replaced by a real interval of the form [0, δ], for some δ > 0. For this observe that
the condition �{f(ζc, ε)} > 0 implies that �{(β(ζc, α(ζc, ε)))

n} > 0. On the other
hand, since β(ζc, α(ζc, ε)) = (u(ζc))

1/nε+O(ε2), with �{u(ζc)} ≥ 0, we conclude that
| arg{β(ζc, α(ζc, ε))}| < π/(2n). Since β(ζ, α(ζ, ε)) → β(ζc, α(ζc, ε)), as ζ → ζc, we
conclude that | arg{β(ζ, α(ζ, ε))}| < π/(2n) for all ζ sufficiently close to ζc. Choosing
δ := �{β(ζc, α(ζc, ε))}, it follows that there is a constant c > 0 such that

∫ β(ζ,α(ζ,ε))

δ

e−s·βn

(α(ζ, β))k
∂α

∂β
(ζ, β)dβ = O(e−sc),

as s → ∞, uniformly for all ζ sufficiently close to ζc and for all p ≤ k ≤ q. This
implies that

Σ1(ζ; s) =

q∑
k=p

Ak(ζ)

∫ δ

0

e−s·βn

(α(ζ, β))k
∂α

∂β
(ζ, β)dβ + O(e−sc),(3.11)

as s → ∞, uniformly for all ζ sufficiently close to ζc. An asymptotic expansion
for the integrals participating in the summation above is easily obtained using the
standard stationary phase method (see Chapter 6 in [3]). Indeed, since Hartogs series

UNIFORM ASYMPTOTIC FORMULAE. PART I 827

of (α(ζ, β))k ∂α
∂β (ζ, β) in powers of β about (ζ, β) = (ζc, 0) must be of the form

(α(ζ, β))k
∂α

∂β
(ζ, β) =

∞∑
j=k

ck(ζ; j)β
j ,

with ck(ζ; k) = (u(ζ))−(k+1)/n, then from (3.11) it follows that

Σ1(ζ; s) =

q∑
k=p

Ak(ζ) ·Bk(ζ; s) + O(e−sc),(3.12)

Bk(ζ; s) ≈
∞∑
j=k

ck(ζ; j)

n
Γ

(
j + 1

n

)
· s−(j+1)/n,(3.13)

uniformly for all ζ sufficiently close to ζc as s → ∞. The coefficients ck(ζ; j) cor-
respond to those appearing in Remark 2.2. Equations (3.12) and (3.13) provide a
complete asymptotic description for Σ1(ζ; s) which is uniform for all ζ sufficiently
close to ζc as s → ∞.

To obtain an asymptotic expansion for the term Σ2(ζ; s), the uniqueness of the
decomposition in (3.10) is relevant to relate the coefficients appearing in the expansion
of Σ2(ζ; s) with those in (3.12) and (3.13). Without delving into details it follows that

Σ2(ζ; s) =

q∑
k=p

Ak(ζ) · B̃k(ζ; s) + O(e−sc),(3.14)

where for the case in which n is even it applies that

B̃k(ζ; s) ≈
∞∑
j=k

(−1)jck(ζ; j)

n
Γ

(
j + 1

n

)
· s−(j+1)/n;(3.15)

however, for the case in which n is odd,

B̃k(ζ; s) ≈
∞∑
j=k

(−1)jD(j, n)ck(ζ; j)

n
Γ

(
j + 1

n

)
· s−(j+1)/n,(3.16)

where D(j, n) := exp(− iπ(j+1)
n · sign{i[θn]f(ζc, θ)}). Equations (2.5) and (2.6) in

Theorem 2.2 are now a direct consequence of (3.12)–(3.16). This completes the proof
of Theorem 2.2.

Acknowledgments. I would like to thank my graduate advisor, Robin Peman-
tle, and his collaborator, Mark Wilson, for their insights and support in my work
on asymptotic analysis and generating functions. Special thanks also to Jean-Pierre
Rosay and Saleh Tanveer for their helpful inputs in the preliminary version of my
graduate dissertation which in one way or another has been reflected in here.

REFERENCES

[1] C. Banderier, P. Flajolet, G. Schaeffer, and M. Soria, Planar maps and Airy phenom-
ena, in Proceedings of the 27th International Colloquium on Automata, Languages and
Programming, Geneva, Switzerland, Lecture Notes in Comput. Sci. 1853, Springer, Berlin,
2000, pp. 388–402.

828 MANUEL LLADSER

[2] C. Banderier, P. Flajolet, G. Schaeffer, and M. Soria, Random maps, coalescing saddles,
singularity analysis, and Airy phenomena, Random Structures Algorithms, 19 (2001),
pp. 194–246.

[3] N. Bleistein and R. Handelsman, Asymptotic Expansion of Integrals, Dover Publications,
Inc., New York, 1986.

[4] H. Cartan, Elementary Theory of Analytic Functions of One or Several Complex Variables,
Addison-Wesley, Reading, MA, 1973.

[5] C. Chester, B. Friedman, and F. Ursell, An extension of the method of steepest descents,
Proc. Cambridge Philos. Soc., 53 (1957), pp. 599–611.

[6] N. DeBruijn, Asymptotic Methods in Analysis, Dover Publications, Inc., New York, 1981.
[7] M. Drmota, A bivariate asymptotic expansion of coefficients of powers of generating functions,

European J. Combin., 15 (1994), pp. 139–152.
[8] N. Levinson, A canonical form for an analytic function of several variables at a critical point,

Bull. Amer. Math. Soc., 66 (1960), pp. 68–69.
[9] N. Levinson, A polynomial canonical form for certain analytic functions of two variables at

a critical point, Bull. Amer. Math. Soc., 66 (1960), pp. 366–368.
[10] N. Levinson, Transformation of an analytic function of several variables to a canonical form,

Duke Math. J., 28 (1961), pp. 345–353.
[11] M. Lladser, Uniform Formulae for the Coefficients of Meromorphic Functions in Two Vari-

ables, Part II: The Airy Phenomena, in preparation.
[12] M. Lladser, Asymptotic Enumeration via Singularity Analysis, Ph.D. thesis, The Ohio State

University, Columbus, OH, 2003.
[13] R. Pemantle and M. C. Wilson, Asymptotics of multivariate sequences. I. Smooth points of

the singular variety, J. Combin. Theory Ser. A, 97 (2002), pp. 129–161.
[14] R. Pemantle and M. Wilson, Twenty Combinatorial Examples of Asymptotics Derived from

Multivariate Generating Functions, preprint, 2005.
[15] W. Rudin, Real and Complex Analysis, 3rd ed., Higher Mathematics Series, McGraw-Hill, New

York, 1987.
[16] R. Stanley, Enumerative Combinatorics, vol. I and II of Cambridge Stud. Adv. Math., Cam-

bridge University Press, Cambridge, UK, 1999.
[17] J. Taylor, Several Complex Variables with Connections to Algebraic Geometry and Lie

Groups, Graduate Studies in Mathematics 46, AMS, Providence, RI, 2002.
[18] M. Wilson, Asymptotics of Riordan arrays, in 2005 International Conference on Analysis of

Algorithms, Discrete Math. Theor. Comput. Sci. Proc. AD, 2005, pp. 323–333.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 4, pp. 829–840

ON MINIMUM DEGREE IMPLYING THAT A GRAPH
IS H-LINKED∗

RONALD J. GOULD† , ALEXANDR KOSTOCHKA‡ , AND GEXIN YU§

Abstract. Given a fixed multigraph H, possibly containing loops, with V (H) = {h1, . . . , hm},
we say that a graph G is H-linked if for every choice of m vertices v1, . . . , vm in G, there exists a
subdivision of H in G such that vi is the branch vertex representing hi (for all i). This generalizes
the concept of k-linked graphs (as well as a number of other well-known path or cycle properties).
In this paper we determine a sharp lower bound on δ(G) (which depends upon H) such that each
graph G on at least 10(|V (H)| + |E(H)|) vertices satisfying this bound is H-linked.

Key words. minimum degree, connectivity, k-linked, H-linked

AMS subject classifications. 05C40, 05C38

DOI. 10.1137/050624662

1. Introduction. For terms not defined here, see [9]. A graph is k-linked if for
every sequence of 2k vertices, v1, . . . , vk, w1, . . . , wk, there are internally disjoint paths
P1, . . . , Pk such that Pi joins vi and wi. The literature contains numerous results and
important open problems dealing with k-linked graphs. In this paper we are concerned
with the following generalization of k-linked graphs.

Let H be a multigraph. An H-subdivision in a graph G is a pair of mappings
f : V (H) → V (G) and g: E(H) into the set of paths in G such that:

(a) f(u) �= f(v) for all distinct u, v ∈ V (H);
(b) for every uv ∈ E(H), g(uv) is an f(u), f(v)-path in G, and distinct edges

map to internally disjoint paths in G.

A graph G is H-linked if every injective mapping f : V (H) → V (G) can be
extended to an H-subdivision in G. In other words, G is H-linked if G contains an H-
subdivision with prescribed branching vertices for any such prescription. This notion
is a common generalization of the notions of k-linked, k-ordered, and k-connected
graphs. In particular, if G is k-linked, then G is H-linked for every H with k edges
and no isolated vertices. Since every 10k-connected graph is k-linked (see [8]), every
10(|E(H)| + |V (H)|)-connected graph is H-linked.

The idea of H-linked graphs originated with Jung [3], but had not been considered
in full generality until recently, when the concept was first considered independently
in [5] and [10].

In [6] and [7], H-linkage was considered for loopless multigraphs H with k edges
and minimum degree at least two. The following was shown in [7].

Theorem 1. Let H be a loopless graph with |E(H)| = k and δ(H) ≥ 2. Every
simple graph G of order n ≥ 5k + 6 with δ(G) ≥ �n+k

2 � − 1 is H-linked. If H = Ck,

∗Received by the editors February 17, 2005; accepted for publication (in revised form) March 6,
2006; published electronically December 5, 2006.

http://www.siam.org/journals/sidma/20-4/62466.html
†Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322

(rg@mathcs.emory.edu).
‡Department of Mathematics, University of Illinois, Urbana, IL 61801 and Institute of Mathemat-

ics, Novosibirsk, 630090, Russia (kostochk@math.uiuc.edu). This author was partially supported by
NSF grant DMS-0400498 and grant 03-01-00796 of the Russian Foundation for Basic Research.

§Department of Mathematics, University of Illinois, Urbana, IL 61801 (gexinyu@uiuc.edu).

829

830 RONALD J. GOULD, ALEXANDR KOSTOCHKA, AND GEXIN YU

then every graph G of order n ≥ 5k + 6 with δ(G) ≥ �n
2 � + �k

2 	 − 1 is H-linked. The
minimum degree conditions are sharp.

It was also verified in [7] that under the conditions of Theorem 1, any H-subdi-
vision in G can be extended to an H-subdivision that spans V (G). This extended an
earlier result of Kierstead, Sárközy, and Selkow [4] on k-ordered graphs. Extension
results like this and that of [2] provide a framework for generalizing both linkage and
strong Hamiltonian-type results, as both involve questions on spanning subgraphs.

In [6], the work in [7] was sharpened. At the same time a result similar to that
of [6] was shown in [1].

Let B(H) denote the maximum number of edges in an edge-cut of H. In terms
of B(H), the main results in [6] and [1] can be summarized as follows.

Theorem 2. Every simple graph G of order n with δ(G) ≥ �n+B(H)
2 � − 1 is

H-linked provided
(i) See [6]. H is a loopless connected multigraph with k edges and δ(H) ≥ 2 and

G is of order n ≥ 7.5k.
(ii) See [1]. H is a connected multigraph, possibly containing loops, and G is of

sufficiently large order n.
The purpose of this paper is to provide a merging of ideas from [6] and [1] and to

prove a more general result describing the situations also for disconnected graphs H.
That is, we wish to show for all multigraphs H, possibly containing loops, a sharp lower
bound on δ(G) sufficient to ensure that each graph G on at least 10(|V (H)|+ |E(H)|)
vertices will be H-linked. It turns out that for disconnected H, the bound is more
sophisticated.

We will say that a multigraph H is uneven if it does not contain even cycles.
Denote by c(H) the number of uneven components of H. Let

b(H) =

{
|V (H)| − 1 if H is uneven,

B(H) + c(H) otherwise.

Note that for uneven graphs, the value b(H) = |V (H)| − 1 is exactly one less than
that from the second part of the formula.

Our proof is based on the proof in [6], modified to handle the more general
conditions on H. Our main result is the following theorem.

Theorem 3. Let H be a multigraph with e(H) edges (loops or nonloops) and let
k1 = k1(H) = e(H) + c(H). Let G be a simple graph of order n ≥ 9.5(k1 + 1). If

δ(G) ≥
⌈
n + b(H)

2

⌉
− 1,(1.1)

then G is H-linked. Moreover, every injective mapping f : V (H) → V (G) can be
extended to an H-subdivision in G containing at most 5k1 + 2 vertices.

Restriction (1.1) cannot be weakened. In the next section we will prove this and
derive some simple facts on edge cuts in connected graphs. In the subsequent three
sections we prove Theorem 3 for the case of loopless H, and in the final section we
prove the theorem in full generality. We briefly discuss the ideas of the proof at the
end of section 3.

2. On edge cuts and constructions. It is well known (see, e.g., [9, p. 51])
that

B(H) ≥ (k + 1)/2(2.1)

MINIMUM DEGREE IMPLYING H-LINKED 831

for every H with k > 0 edges.
The following property makes uneven components special for our theorem.
Lemma 4. A connected graph H is uneven if and only if B(H) = |V (H)| − 1.
Proof. Suppose first that H is a connected uneven graph with m cycles. Then

no two cycles in H share an edge and hence |E(H)| = |V (H)| − 1 +m. Furthermore,
any edge cut in H misses at least one edge in each (odd) cycle of H, and hence
B(H) ≤ |E(H)| − m. Therefore B(H) ≤ |V (H)| − 1. On the other hand, if we
delete one edge from each (odd) cycle of H, then we obtain a bipartite graph. Hence
B(H) = |V (H)| − 1.

Suppose now that a connected graph H contains an even cycle C = (w1, . . . , w2m).
Let V1 = {w1, w3, . . . , w2m−1} and V2 = {w2, w4, . . . , w2m}. Then at least |V1| + |V2|
edges in H connect |V1| with |V2|. If V1 ∪ V2 = V (G), then we have B(H) ≥ |V (H)|.
Otherwise, since H is connected, there is a vertex w2m+1 adjacent to V1 ∪ V2. If
w2m+1 is adjacent to V1, then we add it to V2, otherwise add it to V1. In any case,
the number of edges between the new V1 and V2 is greater than between the old ones.
We continue adding vertices to V1 ∪ V2 so that with each added vertex, the number
of edges between V1 and V2 grows by at least one. When we add the last vertex of H,
we get a partition (V1, V2) of V (H) such that the number of edges between V1 and V2

is at least |V (H)|.
Now we show that restriction (1.1) in Theorem 3 cannot be weakened.
Suppose first that the multigraph H has no uneven components. In this case,

by definition, b(H) = B(H) = maxX⊂V (H) e(X,V (H) − X). Let this maximum be
achieved at the set X0 ⊂ V (H) and let Y0 = V (H) −X0. Let G be formed from two
complete graphs G1 and G2 of order l that intersect on b(H) − 1 vertices. If the set
S chosen as the image of V (H) under f is such that the vertices of X0 lie in G1 −G2

and the vertices of Y0 lie in G2 − G1, then G1 ∩ G2 is not large enough to allow an
embedding of H. Further, δ(G) = l − 1. Since |V (G)| = 2l − b(H) + 1, we see that

δ(G) = n+b(H)−3
2 . Thus, (1.1) is necessary in this case.

Suppose now that H has both uneven components and components containing
even cycles. Let H0 be the subgraph of H induced by all uneven components of H
and H1 be the subgraph of H induced by all other components. By our definition
and Lemma 4,

b(H) = B(H1) + |V (H0)|.(2.2)

Let X1 be a subset of V (H1) such that (X1, V (H1)−X1) is a maximum edge cut and
let Y1 = V (H1) −X1. Then B(H1) = e(X1, Y1). Consider the same graph G as the
previous paragraph. Let the mapping f be such that the image of X1 is completely
in G1 − G2, the image of Y1 is completely in G2 − G1, and the image of V (H0) is
completely in G1 ∩ G2. Then only b(H) − 1 − |V (H0)| vertices of G1 ∩ G2 are not
occupied by vertices of H0. By (2.2), this is not enough to embed all paths from the
image of X1 to the image of Y1.

If every component of H is uneven, we will map the vertices of all but one com-
ponent, say C0, from H to G1 ∩ G2 and then place the vertices of C0 into G1 − G2

and G2 −G1 so that we need |V (C0)| − 1 paths to connect G1 −G2 with G2 −G1.

3. Preliminaries. In this and the next two sections we consider only loopless
H. First, for the purposes of our proof, we wish to show that it suffices to consider
only H with no uneven components, or H that are connected and contain an odd
cycle, or H = K2. Note that if H ′ is obtained from H by adding an edge e′ and if
k1(H

′) ≤ k1(H) and b(H ′) ≤ b(H), then, since H ′ ⊃ H, the fact that a graph G is

832 RONALD J. GOULD, ALEXANDR KOSTOCHKA, AND GEXIN YU

H ′-linked implies that G is H-linked. Now, if H has at least two components and a
component H1 of H is uneven, then by adding an edge connecting H1 with another
component, we decrease c(H). This means that b(H) and k1(H) do not change. Thus,
in this case it is enough to consider only the cases when H is connected or has no
uneven components. Furthermore, if H is a tree on at least 3 vertices, then adding to
H an edge connecting two vertices at distance two does not change c(H) or b(H), but
now H contains an odd cycle. If H is a tree on 2 vertices, then H = K2 and hence
b(H) = 1. Thus, it suffices to consider the case when H has no uneven components,
or H is a connected graph containing an odd cycle, or H = K2, and the reduction we
desired is possible.

Suppose that e(H) = k. Let f : V (H) → V (G) be an injective mapping and
W = f(V (H)). Let E(H) = {ej = u0

jv
0
j : 1 ≤ j ≤ k}. Let uj = f(u0

j) and vj = f(v0
j).

If H = K2, then k = 1 and b(H) = 1. In this case, if an n-vertex graph G
satisfies the conditions of the theorem, then δ(G) ≥ (n − 1)/2. Therefore u1 and v1

are either adjacent or have a common neighbor. This settles the case of H = K2, and
from now on we assume that either H is connected and has a cycle or has no uneven
components. In this case, |W | = |V (H)| ≤ k.

For each edge ej = u0
jv

0
j ∈ E(H), we define functions β(ej , u

0
j), β(ej , v

0
j) induc-

tively as follows:
(1) If H has no vertices of degree one, then for every j, let β(ej , u

0
j) = 1/deg

H
(u0

j)

and β(ej , v
0
j) = 1/deg

H
(v0

j).

(2) If H has a pendant vertex u0
s (which is incident with the edge es = u0

sv
0
s), let

H ′ = H − u0
s. Since H ′ is a smaller graph without acyclic components, we

can define β(ej , u
0
j), β(ej , v

0
j) for every j �= s and then let β(es, u

0
s) = 1 and

β(es, v
0
s) = 0.

For simplicity, we denote β(ej , u
0
j) by βj , and β(ej , v

0
j) by γj . By construction,

for every j = 1, . . . , k,

0 ≤ βj , γj ≤ 1 and βj + γj ≤ 1.(3.1)

Also, for every u0 ∈ V (H),

∑
{e∈E(H) :u0∈e}

β(e, u0) = 1, and hence

k∑
j=1

(βj + γj) = |V (H)| = |W |.(3.2)

Say that a family C of the form {P1, . . . , Pk} is a partial H-linkage if each Pj is
either the set {uj , vj} or a uj , vj-path and the following conditions hold:

(I) |X| ≤ |W |+3k−2b(H)+2α+3, where X =
⋃k

j=1 V (Pj) and α is the number
of Pj-s that are paths;

(II) The internal vertices of the paths Pj ’s are pairwise disjoint and disjoint
from W .

Consider C0 = {{u1, v1}, . . . , {uk, vk}}. This family satisfies the properties (I)

and (II) above with X =
⋃k

j=1{uj , vj} = W and α = 0. Therefore, C0 is a partial
H-linkage.

A partial H-linkage C = {P1, . . . , Pk} is optimal, if as many Pj-s as possible are

paths and, subject to this, the set X =
⋃k

j=1 V (Pj) is as small as possible. We will
prove that an optimal partial H-linkage is an H-subdivision. This will imply our
theorem (for loopless H).

Suppose, to the contrary, that C = {P1, . . . , Pk} is an optimal partial H-linkage
but is not an H-subdivision. Let, for definiteness, Pk = {uk, vk} and ukvk /∈ E(G).

MINIMUM DEGREE IMPLYING H-LINKED 833

Denote X =
⋃k

j=1 V (Pj), x = uk, and y = vk. Let A = N(x) −X, B = N(y) −X,
and R = V (G) − (X ∪A ∪B).

By (1.1) and (2.1), each of A and B has size at least

δ(G) − (|X| − 2) ≥ n + b(H) − 2

2
− (|W | + 3k − 2b(H) + 2(k − 1) + 3 − 2)

≥ 9.5k + b(H) − 2

2
− 6k + 1 + 2b(H) = 2.5b(H) − 1.25k ≥ 1.25.

It follows that we may choose distinct a1, a2 ∈ A and b1, b2 ∈ B.
For v ∈ V (G), let dj(v) denote the number of neighbors of v in the interior of Pj

plus βj if uj ∈ NG(v) and plus γj if vj ∈ NG(v) (βj and γj are defined above (3.1)).
By (3.2), we have

k∑
j=1

dj(v) = |NG(v) ∩X| ∀v ∈ V (G).(3.3)

Let lp be the number of Pj ’s of length p for p ≥ 1, and l0 be the number of Pj ’s
that are not paths. Then

|X| = |W | +
∑
p≥1

(p− 1)lp =

k∑
j=1

(βj + γj) +
∑
p≥1

(p− 1)lp(3.4)

and

k =
∑
p≥0

lp = α + l0.(3.5)

We will assume that every path Pj is of the form Pj = uj , w1,j , . . . , wpj−1,j , vj .
Sometimes, for simplicity we will write p instead of pj and wi instead of wi,j if j is clear
from the context. In the rest of the paper, for every j = 1, . . . , k and fixed a1, a2 ∈ A,
b1, b2 ∈ B, we denote Mj = dj(x) + dj(y) and Lj = dj(a1) + dj(a2) + dj(b1) + dj(b2).

In order to add an x, y-path to C and still satisfy condition (I), we are allowed to
use only two additional vertices. In the next section, we prove that, for an optimal
C, the set X satisfies an inequality stronger than (I) and this allows us to use five
additional vertices when constructing an x, y-path. We will eventually show that
if even with the help of that many vertices we are not able to create an x, y-path,
possibly changing already constructed paths, then either x or y has a low degree.

4. Main lemma. We begin with a lemma needed in the proof of Lemma 6.
Lemma 5. Let a1, a2 ∈ A, b1, b2 ∈ B. For a Pj = uj , w1, . . . , wp−1, vj, let

sj = Mj + 0.5Lj, β = βj, and γ = γj. Define

D1(p, β, γ) =

{
p + 2 + 2β + 2γ for p ≤ 1,

p + 4 + 2β + 2γ for p ≥ 2.

Then
(a) sj ≤ D1(p, β, γ).
(b) sk ≤ 2(βk + γk). Furthermore, if xy = ukvk /∈ E(G), then sk = βk + γk.

834 RONALD J. GOULD, ALEXANDR KOSTOCHKA, AND GEXIN YU

Proof. Let λ = max{β, γ}. By definition (see (3.1)), λ ≤ 1, min{β, γ} ≤ 0.5,
and Lk = 2βk + 2γk. If xy ∈ E(G), then Mk = βk + γk; otherwise, Mk = 0. This
proves (b).

Claim 1. Let Z = {a1, a2, b1, b2}.
(i) For each z ∈ Z, the distance in Pj between any two neighbors of z is at most

two. In particular, each z ∈ Z has at most 3 neighbors in Pj.
(ii) If p ≥ 3, then no z ∈ Z is a common neighbor of uj and vj.
(iii) If p ≥ 3, then x and y have no interior neighbors of distance at most p − 3

in Pj.
(iv) If p ≥ 3, then x (respectively, y) has no interior neighbors at distance at most

p− 4 in Pj from interior neighbors of b1 and b2 (respectively, of a1 and a2).
Proof. If some z ∈ Z is adjacent to wi and wi+m for some m ≥ 3 (we treat uj as

w0 and vj as wp), then we can replace Pj by a shorter uj , vj-path, a contradiction to
the optimality of C. This proves (i), and (ii) is a partial case of (i).

If x and y have interior neighbors at distance at most p − 3 in Pj , then we can
delete Pj from C and add a shorter x, y-path. This proves (iii). The same trick
proves (iv), completing the proof of the claim.

In order to prove (a), we consider several cases (depending on p).
Case 1. p = 0. By (3.1), Lj ≤ 4(β + γ) ≤ 4. Therefore sj = Mj + 0.5Lj ≤

2(β + γ) + 2 = D1(0, β, γ).
Case 2. p = 1. Trivially,

sj ≤ 2(β + γ) + 0.5(4(β + γ)) ≤ 2(β + γ) + 2 < D1(1, β, γ).

Case 3. p = 2. If each of x and y is adjacent to w1 and some z ∈ Z is adjacent
to both uj and vj , then C is not optimal: we can replace Pj by the path uj , z, vj and
add the path xw1y. Otherwise, either Mj ≤ 2(β + γ) + 1 and hence

sj ≤ 2(β + γ) + 1 + 0.5(4(β + γ + 1)) ≤ 2(β + γ) + 6 = D1(2, β, γ),

or Lj ≤ 4(λ + 1) and hence

sj ≤ 2(β + γ + 1) + 0.5(4(λ + 1)) ≤ 2(β + γ) + 6 = D1(2, β, γ).

Case 4. p = 3. By (iii), Mj ≤ 2(β + γ) + 2. If Lj ≤ 10, then sj ≤ D1(3, β, γ).
Otherwise, because of the symmetry between A and B, we may assume that dj(a1)+
dj(a2) > 5 and that dj(a1) > 2.5. Then by (ii), we may assume that a1 is adjacent
to w1, w2, and vj and that a2 is adjacent to w1 and w2 (and maybe to one more
vertex). If yw2 ∈ E(G), then we can replace Pj with uj , w1, a1, vj and add the path
x, a2, w2, y, a contradiction to the optimality of C. If neither x nor y is adjacent to
w2, then by (iii), Mj ≤ 2(β + γ) + 1, by (ii), Lj ≤ 4(2 + λ) ≤ 12, and therefore
sj ≤ 2(β + γ) + 7 = D1(3, β, γ). If xw2 ∈ E(G) and some b ∈ {b1, b2} is adjacent to
w2, then we can replace Pj with uj , w1, a1, vj and add the path x,w2, b, y. Finally, if
neither b1w2 nor b2w2 is in E(G), then by (i), dj(b1) + dj(b2) ≤ 2(1 + λ) ≤ 4, and
hence by (ii) Lj ≤ 6 + 4 = 10.

Case 5. p ≥ 4. If x has r interior neighbors and r ≥ 2, then by (iii), dj(y) ≤ β+γ
and by (iv), dj(bi) ≤ max{0, 3−r}+λ. Together with (i) this shows that in this case,

sj ≤ 2β + 2γ + r + 3 + max{0, 3 − r} + λ.

If r ≥ 3, then sj ≤ 2β + 2γ + p− 1 + 3 + λ ≤ p + 3 + 2β + 2γ ≤ D1(p, β, γ). If r = 2,
then sj ≤ 2β + 2γ + r + 4 + λ ≤ 2β + 2γ + p + 3 ≤ D1(p, β, γ), again.

MINIMUM DEGREE IMPLYING H-LINKED 835

Thus, we can assume that each of x and y has at most one interior neighbor in
Pj . By (iv) dj(ai) + dj(y) ≤ β + γ + λ + 3 and dj(bi) + dj(x) ≤ β + γ + λ + 3 for
i = 1, 2. Therefore, sj ≤ 2λ + 6 + 2β + 2γ ≤ 2β + 2γ + p + 2 + 2 = D1(p, β, γ). This
completes the proof of (a) and hence, of Lemma 5.

Lemma 6. Let a1, a2 ∈ A, b1, b2 ∈ B, Z = {a1, a2, b1, b2}, and V0 = (A ∪ B) −
Z −NG(Z). Then |X| ≤ |W | + 3k − 2b(H) + 2α− |R| − |V0|.

Proof. Let

Σ′ = degG(x) + degG(y) +
1

2
(degG(a1) + degG(a2) + degG(b1) + degG(b2)).(4.1)

Observe that every vertex w /∈ X contributes to Σ′ at most 2: if w ∈ R, then it is
not adjacent to x and y, and if w ∈ A (respectively, w ∈ B), then it is not adjacent to
y, b1, and b2 (respectively, to x, a1, and a2). By definition, every vertex in V0 is not
adjacent to any vertex in Z, and therefore contributes at most 1 to Σ′. Furthermore,
every z ∈ Z contributes at most 1.5 to Σ′, since it is not adjacent to itself. Therefore,

Σ′ ≤ 4 · 1.5 + 2(|A ∪B| − 4) + 2|R| +
k∑

j=1

sj − |V0|.(4.2)

By Lemma 5, (3.2), and (3.5),

k∑
j=1

sj ≤ k + l0 + 2l1 +
∑
p≥2

(p + 3)lp + 2

k∑
j=1

(βj + γj) − 1

= k + l0 + 2l1 +
∑
p≥2

(p + 3)lp + 2|W | − 1.

(4.3)

Therefore,

Σ′ ≤ 2(|A ∪B| + |R|) − 2 − |V0| + 2

⎛
⎝|W | + l0 +

∑
p≥1

plp

⎞
⎠

− 1 − l0 +
∑
p≥2

(3 − p)lp + k.

By (3.4) and (3.5), the last expression is equal to 2n+3k−|V0|−3−l0−
∑

p≥2(p−3)lp.
Combining this again with (3.4) and (3.5), we get

|X| + Σ′ ≤ 2n + |W | + 3k + 2α− 3 − l0 − 2l1 − |V0|.

By the assumption of Theorem 3, δ(G) ≥ n+b(H)
2 −1 and hence Σ′ ≥ 2n+2b(H)−4.

Thus,

|X| ≤ |W | + 3k − 2b(H) + 2α− l0 − 2l1 − |V0| + 1

≤ |W | + 3k − 2b(H) + 2α− |V0|.
(4.4)

If an r ∈ R has a neighbor a0 ∈ A and a neighbor b0 ∈ B, then one can add to
C the path Pk = x, a0, r, b0, y. The new set of paths will be a better partial linkage,
since the new X would have size at most |W |+ 3k− 2b(H) + 2(α+ 1) + 1. Since this

836 RONALD J. GOULD, ALEXANDR KOSTOCHKA, AND GEXIN YU

contradicts the choice of C, no r ∈ R has both a neighbor in A and a neighbor in B.
Thus every r ∈ R contributes at most 1 to Σ′, and (4.2) becomes

Σ′ ≤ 4 · 1.5 + 2(|A ∪B| − 4) + |R| +
k∑

j=1

sj − |V0|.

Correspondingly, (4.4) transforms into

|X| ≤ |W | + 3k − 2b(H) + 2α− |V0| − |R|.(4.5)

5. Completion of the case of loopless H. Lemma 6 has the following two
immediate consequences.

Lemma 7. |A| + |B| > 2k.
Proof. By Lemma 6 and (2.1), |A| + |B| = n − (|X| + |R|) ≥ n − (|W | + 3k −

2b(H) + 2α) ≥ 9.5k − (k + 3k − 2k+1
2 + 2(k − 1)) = 4.5k + 3 > 2k.

Lemma 8. Each v ∈ V (G) is adjacent to at least 3 vertices in A ∪ B − V0. In
particular, either v has 2 neighbors in A that belong to or are adjacent to the set
{a1, a2}, or 2 neighbors in B that belong to or are adjacent to the set {b1, b2}.

Proof. Recall that by the definition of V0, A ∪B − V0 = Z ∪ (NG(Z) ∩ (A ∪B)).
Hence, by Lemma 6,

δ(G) − (|X| + |R| + |V0|) ≥ 0.5(9.5k + b(H) − 2) − |W | − 3k + 2b(H) − 2α

≥ 4.75k + 0.5b(H) − 1 − k − 3k + 2b(H) − 2(k − 1)

= 2.5b(H) − 1.25k + 1 ≥ 2.25 > 2.

Thus each vertex has at least 3 neighbors in V (G)−X −R− V0 = A∪B − V0.
For given a1, a2 ∈ A, b1, b2 ∈ B, let A′′ = A′′(a1, a2) (respectively, B′′ =

B′′(b1, b2)) denote the set of vertices in X having at least 2 neighbors in A (respec-
tively, in B) that belong to or are adjacent to the set {a1, a2} (respectively, {b1, b2}).
The above lemma yields that for every choice of a1, a2, b1, and b2,

A′′ ∪B′′ = X.(5.1)

Lemma 9. For every nonadjacent s, t ∈ A (or B), |N(s) ∩N(t) −X| ≥ 3.
Proof. Suppose to the contrary that a1, a2 ∈ A, a1a2 /∈ E(G) and the cardinality

of the set T of common neighbors of a1 and a2 outside of X is at most two. Consider
arbitrary b1, b2 ∈ B and let Z = {a1, a2, b1, b2}. Then the contribution of every
a ∈ A − Z − T to the sum Σ′ defined in (4.1) is at most 1.5. Thus, repeating the
proof of Lemma 6, the right-hand side of the inequality corresponding to (4.5) will be
less by 0.5|A − Z − T |. Hence, since |(Z ∩ A) ∪ T | ≤ 4, instead of (4.5), we will get
|X| ≤ |W | − |R| + 3k − 2b(H) + 2α− |V0| − 0.5(|A− V0| − 4). In other words,

|X| + 0.5|A| + |R| ≤ |W | + 3k − 2b(H) + 2α + 2 ≤ 6k − 2b(H).(5.2)

On the other hand, degG−X(a1)+degG−X(a2) ≤ |A|+ |T |+ |R|−2 (the −2 arises
because neither a1 nor a2 is adjacent to a1 or a2). It follows that

2
n + b(H)

2
− 2 ≤ 2δ(G) ≤ 2|X| + |A| + |R|,

MINIMUM DEGREE IMPLYING H-LINKED 837

which together with (5.2) yields n + b(H) − 2 ≤ 2(6k − 2b(H)). Thus, n ≤ 12k −
5b(H) + 2 ≤ 12k − 5k+1

2 + 2 = 9.5k − 0.5, a contradiction.
For the rest of the section, we fix some distinct a1, a2 ∈ A and b1, b2 ∈ B, and let

A′′ = A′′(a1, a2) and B′′ = B′′(b1, b2).
Lemma 10. Let C be optimal, 1 ≤ j ≤ k − 1, and either {uj , vj} ⊂ A′′ or

{uj , vj} ⊂ B′′. Then for each a ∈ A and b ∈ B,

(N(a) ∩N(b) ∩ Pj)\{uj , vj} = ∅.

Proof. Assume to the contrary that r ∈ N(a) ∩ N(b) ∩ Pj\{uj , vj}. Let P ′
k =

(x, a, r, b, y). Without loss of generality, assume that {uj , vj} ⊂ A′′. Then there exist
s ∈ N(uj) ∩ A\{a} and t ∈ N(vj) ∩ A\{a}. If s = t or s is adjacent to t, then let
P ′
j = (uj , s, t, vj).

If s and t are nonadjacent, then by Lemma 9, we have |(N(s)∩N(t))\X| ≥ 3, and
therefore there exists q ∈ N(s)∩N(t)\(X∪{a, b}). In this case, let P ′

j = (uj , s, q, t, vj).
In both cases, P ′

j is a path disjoint from P ′
k. Thus, in both cases we increase the

number of Pj-s that are paths by one and, by (4.5), maintain |X| ≤ |W | + 3k −
2b(H) + 2(α + 1) + 3. This is a contradiction which completes the proof.

Lemma 11. Let C be optimal, 1 ≤ j ≤ k − 1, Pj = (w0, w1, . . . , wp), where
w0 = uj ∈ A′′, and wp = vj ∈ B′′. If some wi, 1 ≤ i ≤ p − 1, has a neighbor
a0 ∈ A ∪ {x} and a neighbor b0 ∈ B ∪ {y}, then each wi′ for i < i′ ≤ p has no
neighbors in A− a0 and each wi′′ for 0 ≤ i′′ < i has no neighbors in B − b0.

Proof. Suppose some wi′ for i < i′ ≤ p has a neighbor a′ ∈ A − a0. By the
definition of A′′, uj has a neighbor a′′ ∈ A−a0. By Lemma 9, the length of a shortest
path P ′ from a′′ to a′ in G[A − a0] is at most two. Thus, we can replace Pj by the
path (uj , a

′′, P ′, a′, wi′ , P
′
j , vj) (where P ′

j is the part of Pj connecting wi′ with vj) and
add the path Pk = (x, a0, wi, b0, y). The new set of α + 1 paths has at most |X| + 5
vertices, which by (4.5) is at most |W | + 3k − 2b(H) + 2(α + 1) + 3, a contradiction
to the choice of C. Note that a similar argument works for wi′′ .

Similarly to dj(v), let dj(u, v) denote the number of common neighbors of u and
v “inside” Pj plus βj · |N(u) ∩N(v) ∩ {uj}| plus γj · |N(u) ∩N(v) ∩ {vj}|.

Lemma 12. Let C be optimal, a ∈ A, b ∈ B. Then there exists some j = j(a, b)
such that dj(a, b) > 1.

Proof. Since N(a)∩N(b)∩ (V (G)−X +x+ y) = ∅ (otherwise we can find a path
xazby not using any vertex of X), we have

k−1∑
j=1

dj(a, b) = |N(a) ∩N(b)| ≥ 2δ(G) − (n− 2) ≥ b(H).(5.3)

Suppose that dj(a, b) ≤ 1 for each 1 ≤ j ≤ k − 1. Then we will find an edge cut

in H with more than
∑k−1

j=1 dj(a, b) edges, a contradiction to (5.3). Let E′ be the set
of edges ej in H such that an internal vertex of Pj contains a vertex of N(a) ∩N(b).
Let V ′ be the set of vertices u0 in H such that the vertex f(u0) (i.e., the branching
vertex in G corresponding to u0) is in N(a) ∩N(b). Recall that x, y /∈ N(a) ∩N(b).
By our assumption, no vertex in V ′ is incident to an edge in E′, and for each ej ∈ E′,
the path Pj contains exactly one vertex of N(a)∩N(b). Thus, it is enough to find in
H an edge cut of size greater than |E′| + |V ′|.

Let V0 denote the set of vertices in all components of H containing at least
one edge of E′ ∪ {ek} and let H0 be the subgraph of H induced by V0. Again by
Lemma 10, for each ej ∈ E′, either uj ∈ A′′ −B′′ and vj ∈ B′′ −A′′ or vj ∈ A′′ −B′′

838 RONALD J. GOULD, ALEXANDR KOSTOCHKA, AND GEXIN YU

and uj ∈ B′′−A′′. Recall that x = f(u0
k), y = f(v0

k), x ∈ A′′−B′′, and y ∈ B′′−A′′.
It follows that the set E′ ∪ {ek} is contained in an edge-cut in H. Let V1 and V2 be
the disjoint subsets of V (H0) such that

(a) each edge in E′ ∪ {ek} is incident to a vertex in V1 and a vertex in V2, and
(b) each vertex in V1 ∪ V2 is incident to an edge in E′ ∪ {ek}.
By the above, V ′ ∩ (V1 ∪ V2) = ∅ and hence |V (H) − (V1 ∪ V2)| ≥ |V ′|. If

V1 ∪ V2 �= V0, then there is a vertex u0 ∈ V0 − (V1 ∪ V2) adjacent to V1 ∪ V2. If u0 is
adjacent to V1, then we add u0 to V2, otherwise add it to V1. In any case the number
of edges between the new V1 and V2 is greater than between the old ones. We continue
adding vertices to V1∪V2 so that with each added vertex, the number of edges between
V1 and V2 grows by at least one until we add all vertices of V0 − (V1 ∪ V2). When we
add the last vertex of H0, we get a partition (V1, V2) of V0 such that the number of
edges between V1 and V2 is at least

|E′ ∪ {ek}| + |V0 − (V1 ∪ V2)| ≥ |E′| + 1 + |V ′ ∩ V0|.

If H0 = H, then we get a contradiction to (5.3). If H0 �= H, then every component
Hi of H − V0 has an even cycle and by Lemma 4, Hi has an edge cut with at least
|V (Hi)| edges. This together with the partition (V1, V2) of V0 will give an edge cut of
H with at least |E′|+1+ |V ′∩V0|+ |V (H)−V0| ≥ |E′|+1+ |V ′| edges, a contradiction
to (5.3).

Lemma 13. Let C be optimal, 1 ≤ j ≤ k − 1. Then there is at most one a ∈ A,
such that there is more than one b ∈ B with j = j(a, b).

Proof. Let Pj = (w0, w1, . . . , wp), where w0 = uj and wp = vj . Assume to
the contrary that there are a1, a2 ∈ A and b1, b2, b3, b4 ∈ B such that j(a1, b1) =
j(a1, b2) = j(a2, b3) = j(a2, b4) = j, where a1 �= a2, b1 �= b2, b3 �= b4. By Lemma 10,
we may assume that uj ∈ A′′\B′′ and vj ∈ B′′\A′′.

Since βj+γj ≤ 1, there exists i, 1 ≤ i ≤ p−1, such that wi ∈ N(a1)∩N(b1). Since
b3 �= b4, we may assume that b3 �= b1. By Lemma 11, no vertex in V (Pj) − wi can
belong to N(a2)∩N(b3). However, this contradicts the fact that dj(a2, b3) > 1.

By Lemma 7, |A| + |B| > 2k. We may assume that |A| ≤ |B|. Thus |B| ≥ k. If
|A| ≥ k, then since |B| ≥ k, for each a ∈ A there is some j(a) and b1(a) and b2(a) such
that j(a) = j(a, b1(a)) = j(a, b2(a)). Furthermore, since |A| ≥ k, for some a1, a2 ∈ A,
the indices j(a1) and j(a2) are the same. This contradicts Lemma 13.

Thus we may assume that |A| < k. Since |B| ≥ k, for each a ∈ A there is some j(a)
and b1(a) and b2(a) such that j(a) = j(a, b1(a)) = j(a, b2(a)). Let J = {j(a) | a ∈ A}.
By Lemma 13, the indices j(a) are distinct for distinct a ∈ A and hence |J | = |A|.

Lemma 14. Suppose that j ∈ J . Then x is not adjacent to some interior vertex
of Pj.

Proof. Let Pj = (w0, w1, . . . , wp), where w0 = uj and wp = vj . By the definition
of J , there exists a ∈ A and b1, b2 ∈ B such that dj(a, b1), dj(a, b2) > 1. Since
βj + γj ≤ 1, this implies that p ≥ 2. Assume that uj ∈ A′′ −B′′ and vj ∈ B′′ −A′′.

Since uj /∈ B′′, we may assume that ujb1 /∈ E(G). Let wi′ , wi′′ ∈ N(a) ∩
N(b1) and i′ < i′′. By our choice of wi′ , 1 ≤ i′ ≤ p − 1. If xwi′ ∈ E(G), then
we get a contradiction to Lemma 11 with a0 = x, since wi′′a ∈ E(G). Thus,
xwi′ /∈ E(G).

By Lemma 14, x is not adjacent to at least |J | vertices in X −W . It also is not
adjacent to itself. Thus, |N(x)∩X| ≤ |X| − |J | − 1 ≤ |W |+ 3k− 2b(H) + 2(k− 1)−

MINIMUM DEGREE IMPLYING H-LINKED 839

|J | − 1 ≤ 6k − 2b(H) − 3 − |J |. Since |J | = |A| = |N(x) −X|, we get

n + b(H)

2
− 1 ≤ deg(x) ≤ 6k − 2b(H) − 3,

which yields n ≤ 12k − 5b(H) − 4 < 9.5k − 6.5, a contradiction. This contradiction
proves that an optimal partial H-linkage is an H-linkage in the case of loopless H.

By condition (I) in the definition of a partial H-linkage, |X| ≤ |W | − 2b(H) +
5k + 3 ≤ 5k + 2.

6. Proof of the general case. As in section 2, it is enough to consider H that
either has no uneven components or is connected and has an odd cycle other than a
loop, or has at most two vertices. Let H have k′ nonloop edges and k′′ loops, in total
k = k′ + k′′ edges. Recall that n ≥ 9.5(k1 + 1), where k1 = k + c(H). Note that b(H)
does not depend on k′′, thus b(H) ≥ 0.5k′.

Let f : V (H) → V (G) be an injective mapping and W = f(V (H)). Let E(H) =
{ej = u0

jv
0
j : 1 ≤ j ≤ k}. We may assume that the first k′ edges are not loops. Let

uj = f(u0
j) and vj = f(v0

j).

Let H ′ be the multigraph obtained from H by deleting all loops and let k′1 =
k′ + c(H ′). Since H ′ is loopless, our theorem is proved for it, and thus f can be
extended to an H ′-subdivision in G on at most 5k′1 + 2 vertices. If H ′ has an acyclic
component, then so does H, and hence by the above, |V (H ′)| ≤ 2. It was observed in
section 3 that in this case G has a subdivision of H ′ on at most 3 vertices. Thus, in
either case, f can be extended to an H ′-subdivision in G on at most 5k′ + 2 vertices.
Among such H ′-subdivisions choose one, say, F1, with the fewest vertices and let
X1 = V (F1). We will extend F1 to a partial H-subdivision F such that:

(I′) as many loops as possible are mapped to internally disjoint cycles of length
at most 4, and

(II′) among partial H-subdivisions satisfying (I′), the set X = V (F) has the small-
est size.

We claim that such a partial H-subdivision is actually an H-subdivision. Suppose
not, then we may assume that F represents the images g(ej) for 1 ≤ j ≤ q, where
k′ ≤ q ≤ k − 1.

First we observe that by the minimality of F1 and F , every vertex outside X has
at most 3 neighbors in g(ej) for each 1 ≤ j ≤ q.

Let eq+1 be a loop at vertex u0
q+1 and uq+1 = f(u0

q+1). Consider graph G′ =
G− (X − uq+1).

If H is not an isolated vertex, then every x ∈ W is in X1 (in fact, x belongs to
g(ej) for some 1 ≤ j ≤ k′), therefore, uq+1 has at most 3(q− k′) neighbors in X −X1

by (I′). If H is an isolated vertex, then k′ = 0, V (H) = {uq+1}, and uq+1 has at most
2q neighbors in X. It follows that

degG′(uq+1) ≥ degG(uq+1) − 5k′ − 2 − 3(q − k′) ≥ n + k′/2

2
− 1 − 5k′ − 2 − 3(q − k′)

≥ n

2
− 4.75q − 3 ≥ 9.5(k + 1)

2
− 4.75(k − 1) − 3 ≥ 6.5.

Let S = NG′(uq+1). If some vertices of S are adjacent or have a common neighbor
in G′ other than uq+1, then we extend our partial H-linkage. If this is not the case,

840 RONALD J. GOULD, ALEXANDR KOSTOCHKA, AND GEXIN YU

then all neighbors in G′ of vertices in S, apart from uq+1, are distinct. Thus,∑
s∈S

(degG′(s) − 1) + |S| + 1 ≤ n− (|X| − 1).(6.1)

Since S ∩X = ∅, by the above, degG′(s) ≥ degG(s) − min{|X|, 3q} for every s ∈ S.
Thus, (6.1) yields |S|(δ(G)−min{|X|, 3q}) + 1 ≤ n− |X|+ 1. Since |S| > 6, we have

6
n

2
≤ 6 min{|X|, 3q} + n− |X| ≤ 15q + n ≤ 15(k − 1) + n.

It follows that 2n < 15k, a contradiction.

Acknowledgment. We thank the referees for their very helpful comments.

REFERENCES

[1] M. Ferrara, R. J. Gould, G. Tansey, and T. Whalen, On H-linked graphs, Graphs &
Combinatorics, 22 (2006), pp. 217–224.

[2] R. J. Gould and T. Whalen, Subdivision extendability, Graphs & Combinatorics, to appear.
[3] H. A. Jung, Eine Verallgemeinerung des n-fachen Zusammenhangs für Graphen, Math. Ann.,

187 (1970), pp. 95–103.
[4] H. Kierstead, G. Sárközy, and S. Selkow, On k-ordered Hamiltonian graphs, J. Graph

Theory, 32 (1999), pp. 17–25.
[5] A. Kostochka and G. Yu, On H-linked graphs, Oberwolfach Report, no. 1, (2004), pp. 42–45.
[6] A. Kostochka and G. Yu, Minimum degree conditions for H-linked graphs, Discrete Applied

Mathematics, to appear.
[7] A. Kostochka and G. Yu, An extremal problem for H-linked graphs, J. Graph Theory, 50

(2005), pp. 321–339.
[8] R. Thomas and P. Wollan, An improved linear edge bound for graph linkages, European J.

Combin., 26 (2005), pp. 309–324.
[9] D. B. West, Introduction to Graph Theory, 2nd ed., Prentice Hall, Upper Saddle River, NJ,

2001.
[10] T. Whalen, Degree Conditions and Relations to Distance, Extendability, and Levels of Con-

nectivity in Graphs, Ph.D. thesis, Department of Mathematics and Computer Science,
Emory University, Atlanta, GA, 2003.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 4, pp. 841–879

OPTIMAL INTERLEAVING ON TORI∗

ANXIAO (ANDREW) JIANG† , MATTHEW COOK‡ , AND JEHOSHUA BRUCK§

Abstract. This paper studies t-interleaving on two-dimensional tori. Interleaving has applica-
tions in distributed data storage and burst error correction, and is closely related to Lee metric codes.
A t-interleaving of a graph is defined as a vertex coloring in which any connected subgraph of t or
fewer vertices has a distinct color at every vertex. We say that a torus can be perfectly t-interleaved
if its t-interleaving number (the minimum number of colors needed for a t-interleaving) meets the
sphere-packing lower bound, �t2/2�. We show that a torus is perfectly t-interleavable if and only if

its dimensions are both multiples of t2+1
2

(if t is odd) or t (if t is even). The next natural question
is how much bigger the t-interleaving number is for those tori that are not perfectly t-interleavable,
and the most important contribution of this paper is to find an optimal interleaving for all suffi-
ciently large tori, proving that when a torus is large enough in both dimensions, its t-interleaving
number is at most just one more than the sphere-packing lower bound. We also obtain bounds on
t-interleaving numbers for the cases where one or both dimensions are not large, thus completing
a general characterization of t-interleaving numbers for two-dimensional tori. Each of our upper
bounds is accompanied by an efficient t-interleaving scheme that constructively achieves the bound.

Key words. bursts, chromatic number, cluster, error-correcting code, Lee distance, multidi-
mensional interleaving, t-interleaving, torus

AMS subject classifications. 05C15, 05C70, 94B20

DOI. 10.1137/040618655

1. Introduction. Interleaving is an important technique used for error burst
correction and network data storage. In communications, interleaving the bits of
consecutive codewords guarantees that error bursts will get distributed over many
codewords, thus allowing the use of conventional error-correcting codes to correct
bursts of errors [16]. The concept of a one-dimensional error burst was generalized to
higher dimensions by Blaum, Bruck, and Vardy in [8], where an error burst of size t
is defined as a set of errors confined to a connected subgraph of t vertices in a multi-
dimensional array. It is there that the notion of t-interleaving was introduced, the
purpose being to color the vertices of a multidimensional array so that every connected
subgraph of t vertices receives t distinct colors, and two- and three-dimensional t-
interleaving schemes were presented. Such schemes have applications in combatting
error bursts in two-dimensional magnetic media and in three-dimensional holographic
storage systems and optical recording systems.

Subsequent work on t-interleaving includes [21], where t-interleaving on circulant
graphs with two offsets was studied, and [24], where a dual problem of t-interleaving
on two-dimensional arrays was explored. The problem of two-dimensional interleaving

∗Received by the editors November 10, 2004; accepted for publication (in revised form) May
15, 2006; published electronically December 5, 2006. This work was supported in part by the
Lee Center for Advanced Networking at the California Institute of Technology, and by NSF grant
CCR-TC-0208975. A one-page abstract presenting part of the results in this paper appeared in the
Proceedings of the IEEE International Symposium on Information Theory, held in Chicago, 2004.

http://www.siam.org/journals/sidma/20-4/61865.html
†Computer Science Department, Texas A&M University, College Station, TX, 77843-3112

(ajiang@cs.tamu.edu).
‡Computation and Neural Systems Department, California Institute of Technology, MC 136-93,

Pasadena, CA, 91125 (cook@paradise.caltech.edu).
§Electrical Engineering Department, California Institute of Technology, MC 136-93, Pasadena,

CA, 91125 (bruck@paradise.caltech.edu).

841

842 A. JIANG, M. COOK, AND J. BRUCK

with repetitions was introduced in [7] by Blaum, Bruck, and Farrell, and was exten-
sively studied in [10] by Etzion and Vardy. That problem is to interleave colors on
a two-dimensional mesh (array or its variation) in such a way that in every con-
nected subgraph of t vertices, each color appears at most r times. Here t and r are
given parameters, and the concept of interleaving with repetitions is a generaliza-
tion of t-interleaving. More work on interleaving with repetitions includes [17] and
[19]. Interleaving schemes on two-dimensional arrays achieving the Reiger bound were
studied by Abdel-Ghaffar in [1], where error bursts of both rectangular shapes and
arbitrary connected shapes were considered. More examples of interleaving for coping
with shaped error bursts include [3] and [6], where the error bursts considered are
respectively circular and rectangular.

Interleaving schemes have also been used for network data storage. In [12], an
algorithm was presented to interleave N colors on a tree whose edges have lengths,
in such a way that for every point of the tree (including a vertex or a point part way
along an edge), the smallest ball centered at the point that contains at least N vertices
will contain all N colors. That algorithm is useful for minimizing data retrieval delay
in distributed data storage systems in hierarchical or tree-like networks. A related
interleaving algorithm aimed at the graceful degradation of data-storage performance
in faulty environments was presented in [14]. In [13], a scheme called multicluster
interleaving was studied, which is a scheme to interleave colors on a path or a cycle
such that every m disjoint intervals of length L in the path or cycle together contain at
least K distinct colors, where K > L. Multicluster interleaving can be used for data
storage on array-networks, ring-networks, or disks where data gets accessed through
multiple access points.

This paper is the first to study t-interleaving on two-dimensional tori. Tori provide
an important network structure for parallel and distributed systems [9], [18], [20],
[22]. The use of t-interleaving on tori has applications in both burst error correction
and distributed data storage, similar to [8], [21], [24], [12] and [14]. Specifically, for
distributed data storage, a t-interleaving on a two-dimensional torus ensures that for
every vertex, the colors assigned within � t−1

2 � hops are all distinct. The topic of
t-interleaving on tori is closely related to a research topic in coding theory called Lee
metric codes [2], [4], [5], [11], [15]. In a t-interleaved n-dimensional torus, the set
of vertices having any given color is a Lee metric code of length n whose minimum
distance is t, and the set of Lee metric codes corresponding to different colors partitions
the whole code space.

Here we present some definitions so that we can state our claims precisely. These
definitions are straightforward generalizations of the definition of t-interleaving origi-
nally given in [8] for arrays.

Definition 1.1. Let G be a graph. By an interleaving, we will mean a vertex
coloring, as follows. We say that G is interleaved (or there is an interleaving on G)
if each vertex of G is assigned one of a finite number of distinct colors. We say that
G is t-interleaved (or there is a t-interleaving on G) if every set of t vertices, forming
a connected subgraph of G, is colored by t distinct colors.

The classic vertex coloring problem is clearly also a t-interleaving problem, where
t= 2. On the other hand, t-interleaving a graph G is the same as vertex-coloring
the power graph Gt, when the power graph Gt is defined as adding an edge to G
between each pair of vertices connected by a path of t or fewer vertices. Determining
the chromatic number of this kind of power graph is difficult in general. To the best
of our knowledge, no result on the type of graphs we are interested in has appeared
in the literature.

OPTIMAL INTERLEAVING ON TORI 843

Definition 1.2. A two-dimensional l1×l2 torus is a graph containing l1l2 vertices
and 2l1l2 edges. We denote its vertices by (i, j) for 0 ≤ i ≤ l1 − 1 and 0 ≤ j ≤ l2 − 1.

(0, 0) (0, 1) · · · (0, l2 − 1)
(1, 0) (1, 1) · · · (1, l2 − 1)

...
...

. . .
...

(l1 − 1, 0) (l1 − 1, 1) · · · (l1 − 1, l2 − 1)

Each vertex (i, j) is incident to four edges, which connect it to its four neighbors
according to the arrangement shown, wrapping around at the boundaries: ((i−1) mod
l1, j), ((i + 1) mod l1, j), (i, (j − 1) mod l2), and (i, (j + 1) mod l2).

Now we can define the problem of t-interleaving on tori.
Definition 1.3. The minimum number of colors used by any t-interleaving for

G is called the t-interleaving number of G. A t-interleaving on a torus whose number
of colors equals the torus’ t-interleaving number is called an optimal t-interleaving,
as it uses as few colors as possible.

Example 1.1. The following 5× 5 torus is 3-interleaved with 6 colors. The colors
are shown as integers from 0 to 5. Each vertex is shown as a square cell in the grid,
which is understood to have its left and right edges identified, and its top and bottom
edges identified, thus forming a torus.

0 3 1 4 2
1 4 2 0 3
2 0 3 1 5
3 1 5 2 0
4 2 0 3 1

However, the 3-interleaving number of this torus is not 6, since a 3-interleaving
does not require 6 colors: If we replace the two instances of color 5 with color 4, we
can achieve a 3-interleaving with 5 colors. Thus the 3-interleaving number of this
torus is at most 5.

To see that we need 5 colors, consider the vertex (1, 1) and its four neighbors
(0, 1), (2, 1), (1, 0), and (1, 2), and notice that any two of them are contained in a
connected subgraph of order 3. Therefore, any 3-interleaving has to assign those
5 vertices 5 distinct colors. Thus the 3-interleaving number of this torus is 5.

Note that a torus that does not have at least t rows and t columns will have the
property that there is a path of length less than t which wraps around the torus,
going from a vertex to itself. While the definitions can still be understood for such
small tori, often the practical application of interleaving results breaks down when
this happens, and we will not consider such small tori in this paper.

Assumption 1.1. When discussing t-interleaving for a torus, we will assume that
the torus has at least t rows and t columns when t is odd, and at least t− 1 rows and
t columns when t is even.

Our objective in this paper is to find optimal t-interleavings. The t-interleaving
number of a torus is by definition the number of colors of an optimal t-interleaving,
one which uses the smallest number of colors. A lower bound, which we call the
sphere-packing lower bound, can be obtained as follows. Figure 1.1 shows six graphs
(subgraphs of a torus, assuming they fit on the torus) which we call spheres S1,
S2, . . . , S6, respectively. In general, for any t ≥ 3, the sphere St is obtained by
attaching to the sphere St−2 all the vertices adjacent to it. Any two vertices in St

are connected by a path of at most t − 1 edges, so a t-interleaving needs to color

844 A. JIANG, M. COOK, AND J. BRUCK

S 1 S 2
S 3 S 4

S 5 S 6

Fig. 1.1. Six examples of spheres.

them with different colors. So the number of vertices in St, which we shall denote by
|St|, sets a universal lower bound for the t-interleaving number. This argument was
originally proposed in [8] for studying t-interleaving on arrays. A direct calculation

tells us that |St| = t2+1
2 when t is odd, and |St| = t2

2 when t is even. We refer to this
as the sphere-packing lower bound.

We define perfect t-interleaving to be a t-interleaving using just |St| colors, thus
achieving the sphere-packing lower bound, on a torus that has at least t rows and
t columns. Clearly any perfect t-interleaving is an optimal t-interleaving.

We will show that a torus can be perfectly interleaved if and only if its sizes in
both dimensions are multiples of a certain function of t. Then what about tori of
other sizes? Our main result will show that when a torus is sufficiently large in both
dimensions, its t-interleaving number exceeds the lower bound |St| by at most one.

A more detailed description of our results is as follows:
• We prove that an l1 × l2 torus can be perfectly t-interleaved if and only if

the following condition is satisfied: when t is odd (respectively, even), both

l1 and l2 are multiples of t2+1
2 (respectively, t). We reveal the close relation-

ship between perfect t-interleaving and perfect sphere-packing, and present
the complete set of perfect sphere-packing constructions. Based on that, we
obtain a set of efficient perfect t-interleaving constructions, which includes
the lattice interleaver scheme presented in [8] as a special case.

• We prove that for any torus that is sufficiently large in both dimensions, its
t-interleaving number is either |St| or |St|+1. In other words, any large torus
needs at most one more color than a perfect t-interleaving would use if it
were possible. More specifically, there exist integer pairs (θ1, θ2) such that
whenever l1 ≥ θ1 and l2 ≥ θ2, the t-interleaving number of an l1 × l2 torus is
at most |St|+1. Here θ1 and θ2 depend on t, and naturally there is a tradeoff
between them: If θ1 takes a greater value, then the minimum value that θ2

can take decreases or remains the same, and vice versa. We find a sequence
of valid values for θ1 and θ2, which are shown in Theorems 4.7 and 4.8. We
present optimal t-interleaving constructions for tori whose sizes exceed the
found pairs (θ1, θ2), and we comment that those constructions, as a general
interleaving method, can also be used to optimally t-interleave tori of many
other sizes.

• We study upper bounds for t-interleaving numbers, and show that every l1×l2
torus’ t-interleaving number is |St|+O(t2). That upper bound is tight, even
if l1 → +∞ or l2 → +∞, meaning that having just one large dimension is not
enough to guarantee any significant reduction in the t-interleaving number.
When both l1 and l2 are of the order Ω(t2), the t-interleaving number of an
l1 × l2 torus is |St| + O(t).

The results can be illustrated qualitatively as Figure 1.2, but the figure is not
quantitative: The coordinates of points and the shape of the curve are not exact.

OPTIMAL INTERLEAVING ON TORI 845

l1

l2

t2

t2

Region II

Region III

Region I

Boundary curve of Region I

Fig. 1.2. A qualitative illustration of the t-interleaving numbers.

Figure 1.2 shows for any given t how the l1 × l2 tori can be divided into different
classes based on their t-interleaving numbers.

The uniform lattice of dots in Figure 1.2 represents the sizes of all the tori that
can be perfectly t-interleaved. The region labeled as Region I consists of all the integer
pairs (θ1, θ2). The boundary curve of Region I is nonincreasing and symmetric with
respect to the line l2 = l1. We know the exact t-interleaving number of every torus
in this region: |St| if it is one of the lattice dots, and |St| + 1 otherwise. The most
important contribution of this paper is to prove the existence of Region I and present
the corresponding optimal interleaving constructions. Region II is the region where
l1 = Ω(t2) and l2 = Ω(t2), in which the tori’s t-interleaving numbers are upper-
bounded by |St| + O(t). Region III includes every torus, where the t-interleaving
number is upper-bounded by |St| + O(t2). That upper bound for Region III is tight,
even if l1 or l2 approaches +∞. Thus, increasing a torus’ size in only one dimension
does not help reduce the t-interleaving number very effectively in general.

The rest of the paper is organized as follows. In section 2, we show the necessary
and sufficient conditions for tori that can be perfectly t-interleaved, and present perfect
t-interleaving constructions based on perfect sphere packing. In section 3, we present
a t-interleaving method, with which we can t-interleave large tori using just one more
than the optimal number of colors. In section 4, we improve upon the t-interleaving
method shown in section 3, and present optimal t-interleaving constructions for tori
whose sizes are large in both dimensions. As a parallel result, the existence of Region
I is proved. In section 5, we prove some general bounds for the t-interleaving numbers.
In section 6, we conclude this paper.

2. Perfect t-interleaving. In this section, we show the close relationship be-
tween perfect t-interleaving and perfect sphere-packing, and use it to prove the nec-
essary and sufficient condition for tori to have perfect t-interleaving. We present
the complete set of perfect sphere-packing constructions. Based on them, we derive

846 A. JIANG, M. COOK, AND J. BRUCK

S 1 S 2
S 3 S 4

S 5
S 6

���
���
���
���

���
���
���
������
���
���
������
���
���
���

���
���
���
���

S3
(0,2)

S4
(0,2)

���
���
���
���

���
���
���
������
���
���
������
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

(a) (b)

Fig. 2.1. Examples of the sphere St.

efficient perfect t-interleaving constructions.

2.1. Perfect t-interleaving and sphere-packing. The following is the defi-
nition of Lee distance in tori.

Definition 2.1. The Lee distance between two vertices in a torus is the num-
ber of edges in the shortest path connecting those two vertices. For two vertices in
an l1 × l2 torus G, (a1, b1) and (a2, b2), the Lee distance between them is denoted
by d((a1, b1), (a2, b2)). Note that therefore, d((a1, b1), (a2, b2)) = min{(a1 − a2) mod
l1, (a2 − a1) mod l1}+ min{(b1 − b2) mod l2, (b2 − b1) mod l2}. Occasionally, in order
to emphasize that the two vertices are in G, we also denote it by dG((a1, b1), (a2, b2)).

Clearly, an interleaving on a torus is a t-interleaving if and only if the Lee distance
between any two vertices of the same color is at least t.

The following is a more detailed definition of spheres than that in the Introduction.
Definition 2.2. Let G be an l1 × l2 torus, where l1 ≥ 2� t−1

2 � + 1 and l2 ≥ t,

and let (a, b) be a vertex in G. When t is odd, the sphere centered at (a, b), S
(a,b)
t

is defined to be the subgraph induced by all those vertices whose Lee distance to (a, b) is

less than or equal to t−1
2 . When t is even, the sphere left-centered at (a, b), S

(a,b)
t is

defined to be the subgraph induced by all those vertices whose Lee distance to either
(a, b) or (a, (b + 1) mod l2) is less than or equal to t

2 − 1. (a, b) is called the center

of S
(a,b)
t if t is odd, or the left-center of S

(a,b)
t if t is even. If we do not care where

the sphere is centered or left-centered, then the sphere is simply denoted by St. The
number of vertices in the sphere is denoted by |St|.

Example 2.1. Figure 2.1(a) shows the spheres S1 to S6. Figure 2.1(b) shows two

spheres, S
(0,2)
3 and S

(0,2)
4 , in a 3 × 5 torus.

For any l1 × l2 torus, where l1 ≥ 2� t−1
2 �+ 1 and l2 ≥ t, its t-interleaving number

is at least |St|. We call |St| the sphere-packing lower bound. The relationship between
this bound and sphere-packing will become clearer soon.

Definition 2.3. A torus G is said to have a perfect packing of spheres St if
spheres St are packed in G in such a way that every vertex of G lies in exactly one of
the spheres.

Lemma 2.4. (1) Let t be odd. An interleaving on an l1 × l2 torus (where l1 ≥ t
and l2 ≥ t) is a t-interleaving if and only if for any two vertices (a1, b1) and (a2, b2)

of the same color, the two spheres centered at them, S
(a1,b1)
t and S

(a2,b2)
t , do not share

any common vertex.
(2) Let t be even. An interleaving on an l1 × l2 torus (where l1 ≥ t − 1 and

l2 ≥ t) is a t-interleaving if and only if for any two vertices (a1, b1) and (a2, b2) of the

OPTIMAL INTERLEAVING ON TORI 847

same color, the two spheres left-centered there, S
(a1,b1)
t and S

(a2,b2)
t , do not share any

common vertex and, what is more, b1 �= b2 or (a1 − a2) �= ±(t− 1) mod l1.

Proof. (1) Let t be odd. Both S
(a1,b1)
t and S

(a2,b2)
t are classic spheres with radius

t−1
2 . If the interleaving is a t-interleaving, then the Lee distance between (a1, b1) and

(a2, b2) is at least t = 2 · t−1
2 + 1, so S

(a1,b1)
t and S

(a2,b2)
t must have no intersection.

The converse is also true.
(2) Let t be even. We consider two cases: b1 = b2 and b1 �= b2.

First consider the case b1 = b2. In this case, S
(a1,b1)
t and S

(a2,b2)
t have no in-

tersection if and only if d((a1, b1), (a2, b2)) ≥ 2 · (t
2 − 1) + 1 = t − 1. Further,

d((a1, b1), (a2, b2)) = t − 1 if and only if (a1 − a2) ≡ ±(t − 1) mod l1. So the Lee

distance between (a1, b1) and (a2, b2) is at least t if and only if S
(a1,b1)
t and S

(a2,b2)
t

have no intersection and (a1−a2) �= ±(t−1) mod l1, which is the conclusion we want.
Now consider the case b1 �= b2. In this case, the Lee distance between (a1, b1)

and (a2, b2) is at least t ⇔ both the Lee distance between (a1, (b1 + 1) mod l2) and
(a2, b2) and the Lee distance between (a2, (b2 + 1) mod l2) and (a1, b1) are at least

t − 1 ⇔ S
(a1,(b1+1) mod l2)
t−1 does not intersect S

(a2,b2)
t−1 and S

(a2,(b2+1) mod l2)
t−1 does not

intersect S
(a1,b1)
t−1 ⇔ S

(a1,b1)
t and S

(a2,b2)
t have no intersection. Note that S

(a1,b1)
t is

the union of S
(a1,b1)
t−1 and S

(a1,(b1+1) mod l2)
t−1 , and S

(a2,b2)
t is the union of S

(a2,b2)
t−1 and

S
(a2,(b2+1) mod l2)
t−1 . So we get the conclusion.

Theorem 2.5. For an l1 × l2 torus, where l1 ≥ t and l2 ≥ t, if an interleaving
on it is a perfect t-interleaving, then for every color the spheres St centered or left-
centered at the vertices of that color form a perfect sphere-packing in the torus. The
converse is also true when t �= 2.

Proof. Let us say that the torus is interleaved. We used I to denote the set of
distinct colors used by the interleaving. For any color i ∈ I, we use Ni to denote the
number of vertices of color i.

Let us first prove one direction. Assume that the interleaving is a perfect t-
interleaving. Then |I| = |St|. By Lemma 2.4, for any i ∈ I, the spheres St centered or
left-centered at vertices of color i do not overlap. By counting the number of vertices in
the torus and in each sphere St, we get Ni ≤ l1l2

|St| for any i ∈ I. Since
∑

i∈I Ni = l1l2,

we get Ni = l1l2
|St| for any i ∈ I. So for any color i ∈ I, the spheres St centered or

left-centered at the vertices of color i form a perfect sphere-packing in the torus.
Now let us prove the converse direction. Assume t �= 2. Also assume for every

color that the spheres St centered or left-centered at the vertices of that color form a
perfect sphere packing in the torus. Then Ni = l1l2

|St| for any i ∈ I. Since
∑

i∈I Ni =

l1l2, we get |I| = |St|. What is left to prove is that the interleaving is a t-interleaving.
By Lemma 2.4, the interleaving can fail to be a t-interleaving only if the following
situation becomes true: “t is even, and there exist two vertices (a1, b1) and (a2, b2) of
the same color such that b1 = b2 and a1 − a2 ≡ t− 1 mod l1.” We will now show that
such a situation cannot happen.

Assume that situation happens. Then it is straightforward to verify that the four
vertices (a1 − (t

2 − 1) mod l1, b1), (a2 + (t
2 − 1) mod l1, b1), (a1 − (t

2 − 2) mod l1, b1 −
1 mod l2), and (a2 + (t

2 − 2) mod l1, b1 − 1 mod l2) are contained in either S
(a1,b1)
t or

S
(a2,b2)
t , while the two vertices (a1−(t

2−1) mod l1, b1−1 mod l2) and (a2+(t
2−1) mod

l1, b1 − 1 mod l2) are neither contained in S
(a1,b1)
t nor in S

(a2,b2)
t . The two vertices

(a1 − (t
2 − 1) mod l1, b1 − 1 mod l2) and (a2 + (t

2 − 1) mod l1, b1 − 1 mod l2) cannot

848 A. JIANG, M. COOK, AND J. BRUCK

A

C

(a)

A

C

(b)

C

A

C

(c)

A

(d)

Fig. 2.2. Relative positions of spheres and vertices.

both be contained in spheres St that are left-centered at vertices having the color of
(a1, b1) and (a2, b2), because they are vertically adjacent, and the vertices directly
above them, below them, and to the right of them are all contained in two spheres
that do not contain them, due to the shape of the sphere, as seen in Figure 2.2(a).
This contradicts that fact that all the spheres St, left-centered at the vertices having
the same color as (a1, b1), form a perfect sphere-packing in the torus. So the assumed
situation cannot happen. Summarizing the above results, we see that the interleaving
must be a perfect t-interleaving.

Theorem 2.6. For an l1 × l2 torus, where l1 ≥ t and l2 ≥ t, if it can be perfectly
t-interleaved, then the spheres St can be perfectly packed in it. The converse is also
true when t �= 2.

Proof. Let G be an l1 × l2 torus. For any t, Theorem 2.5 has shown that if G
can be perfectly t-interleaved, then the spheres St can be perfectly packed in it. Now
we prove the other direction. Assume t �= 2, and that the spheres St can be perfectly
packed in G. Let (x1, y1), (x2, y2), . . . , (xn, yn) be a set of vertices such that the
spheres St centered or left-centered at them form a perfect packing in G. The proof
of Theorem 2.5 has essentially shown that for any i and j (i �= j), the Lee distance
between (xi, yi) and (xj , yj) is at least t. Now we can interleave G is this way: Color
each sphere St with |St| distinct colors in the same way, so that every color is used
in exactly the same position in every sphere. Clearly, for any two colors a and b, the
two sets of vertices colored by a and b are translates of each other in the torus, and
therefore the Lee distance between any two vertices of the same color is at least t.
Thus G has a perfect t-interleaving.

OPTIMAL INTERLEAVING ON TORI 849

(a) (b)

A

C

Fig. 2.3. A sphere in a torus.

Fig. 2.4. Four positions that a neighbor sphere might be in.

2.2. Perfect t-interleaving and its construction. The following lemma is
an important property of perfect sphere-packing. It will help us derive the necessary
and sufficient condition for perfect t-interleaving.

Lemma 2.7. Let t be even and t ≥ 4. When spheres St are perfectly packed in
an l1 × l2 torus, there exists an integer a ∈ {+1,−1} such that if there is a sphere
left-centered at the vertex (x, y), then there are two spheres respectively left-centered
at ((x− t

2) mod l1, (y − a · t
2) mod l2) and ((x + t

2) mod l1, (y + a · t
2) mod l2).

Proof. Assume that spheres St are perfectly packed in an l1×l2 torus, where t ≥ 4
and t is even. First we observe that l1 ≥ t: Since a sphere St spans t− 1 rows when t
is even, l1 must be at least t− 1, but l1 cannot be exactly t− 1 either, because then,
as shown in Figure 2.3(a), the sphere will just touch itself, and it is clearly impossible
to cover the two adjacent positions marked by dashed circles in Figure 2.3(a) using
nonoverlapping spheres. Thus l1 ≥ t.

Clearly, one of the following two cases must be true, concerning the presence or
absence of any of the four possible neighbor spheres shown in Figure 2.4:

• Case 1. Whenever there is a sphere left-centered at a vertex (x, y), there are
four spheres respectively left-centered at the four vertices ((x − t

2) mod l1,
(y− t

2) mod l2), ((x− t
2) mod l1, (y+ t

2) mod l2), ((x+ t
2) mod l1, (y− t

2) mod
l2), and ((x + t

2) mod l1, (y + t
2) mod l2).

• Case 2. There exists a sphere left-centered at a vertex (x0, y0) such that
there is no sphere left-centered at at least one of the following four vertices:

850 A. JIANG, M. COOK, AND J. BRUCK

((x0 − t
2) mod l1, (y0 − t

2) mod l2), ((x0 − t
2) mod l1, (y0 + t

2) mod l2), ((x0 +
t
2) mod l1, (y0 − t

2) mod l2), and ((x0 + t
2) mod l1, (y0 + t

2) mod l2).
If Case 1 is true, then the conclusion of this lemma obviously holds. From now

on, let us assume that Case 2 is true. Without loss of generality, we assume that
there is one sphere left-centered at (x0, y0), but there is no sphere left-centered at
((x0 − t

2) mod l1, (y0 + t
2) mod l2).

Since l1 ≥ t, the vertex ((x0 − t
2) mod l1, (y0 + 1) mod l2), which we shall call

vertex A, is not contained in the sphere left-centered at (x0, y0). An example is
shown in Figure 2.3(b), where the sphere in consideration is an S8, whose left-center
(x0, y0) is labeled by C. The vertex A is contained in one of the perfectly packed
spheres, which we shall call sphere B. The relative position of vertex A in sphere B
can only be one of the following two possibilities:

• Possibility 1. The vertex A is the right-most vertex in the bottom row of the
sphere B, as in Figure 2.2(a).

• Possibility 2. The vertex A is in the lower-left diagonal of the border of
the sphere B, as in Figure 2.2(b), (c), and (d). Note that it cannot be the
left-most vertex of the sphere B, because that is the location where we are
assuming there is not a sphere.

Possibility 1, however, as we saw in Figure 2.2(a), is impossible. So we are left
with Possibility 2. In the following proof we use the example of t = 8 for illustration,
and assume that the relative position of the sphere B is as shown in Figure 2.2(b).
We comment that when t takes other values or when the sphere B takes one of the
three other positions, it is easy to see that the argument still holds.

Let the sphere left-centered at (x0, y0) be the sphere denoted by L1 in Figure 2.5,
and let sphere B be the sphere denoted by R1 in Figure 2.5. We immediately see
that the vertex denoted by E must be the right-most vertex of a sphere, so the sphere
containing the vertex E must be the sphere denoted by L2. Then we immediately
see that the vertex denoted by F must be the right-most vertex in the bottom row
of a sphere, so the sphere containing the vertex F must be the sphere denoted by
R2. With the same method we can fix the positions of a series of spheres L1, L2, L3,
L4, . . . and a series of spheres R1, R2, R3, R4, Since the torus is finite, we will
get a series of spheres L1, L2, L3, L4, . . . , Ln such that the relative position of Ln to
L1 is the same as the relative position of L1 to L2 (see Figure 2.5 for an illustration).
Such a series of spheres forms a cycle in the torus. Since the spheres are perfectly
packed in the torus, no two spheres in this cycle overlap. Similarly, the spheres R1,
R2, . . . , Rn also form a cycle in the torus. Note that we do not make any assumption
about whether these two cycles overlap or not.

If those two cycles do not already contain all the spheres in the torus, then there
must be some spheres outside the two cycles that are directly attached to the lower-
left side of the cycle formed by L1, L2, . . . , Ln. This is due to the very regular way the
cycle is formed and the resulting shape of the cycle, which is invariant to horizontal
and vertical shifts. Let D1 be a sphere directly attached to the cycle formed by
L1, L2, . . . , Ln, as shown in Figure 2.5. Note that we do not care about the exact
position of D1, as long as it is directly attached to the lower-left side of the cycle.
Then the vertex I immediately determines that the sphere containing it must be D2,
and similarly the vertex J determines the position of the sphere D3, and so on. So
we will get a series of spheres D1, D2, D3, . . . , Dn, which will again form a cycle. It
is easy to see that this cycle does not overlap the previous two cycles. Continuing in
this way, we can keep finding cycles until they cover the torus.

OPTIMAL INTERLEAVING ON TORI 851

R 1

L 1
D 1

A

L 2

R 2

L 3

R 3

L 4

R 4

R n

C

L n

D 2

D 3

D n

E

FG

H

I

J

Fig. 2.5. The packing of spheres in a torus.

We can easily see that in each of the cycles here, if there is a sphere left-centered at
a vertex (x, y), then there are two spheres respectively left-centered at ((x− t

2) mod
l1, (y − t

2) mod l2) and ((x + t
2) mod l1, (y + t

2) mod l2). In the other instances of
Case 2, we either find the same pattern of cycles or else we find the flipped pattern, in
which whenever there is a sphere left-centered at a vertex (x, y), there are two spheres
respectively left-centered at ((x − t

2) mod l1, (y + t
2) mod l2) and ((x + t

2) mod l1,
(y − t

2) mod l2). The parameter a in the statement of the lemma represents which of
the two patterns is being used.

Definition 2.8. Let t be an even positive integer, let a be either +1 or −1, and
let G be an l1 × l2 torus. Let (x, y) be an arbitrary vertex in G. We define the cycle
containing (x, y) (corresponding to the parameter a) to be the set of spheres St that
are respectively left-centered at the vertices (x, y), ((x+ t

2) mod l1, (y+ a · t
2) mod l2),

((x + 2 · t
2) mod l1, (y + 2a · t

2) mod l2), ((x + 3 · t
2) mod l1, (y + 3a · t

2) mod l2), . . .
The proof of the following lemma is omitted due to its simplicity.
Lemma 2.9. Let t be an even positive integer, let a be either +1 or −1, and let G

be an l1 × l2 torus. For any vertex (x, y) in G, the cycle containing it (corresponding

to the parameter a) consists of
lcm(l1,l2,

t
2)

t
2

distinct spheres St.

The following theorem shows the necessary and sufficient condition for tori that
can be perfectly t-interleaved.

Theorem 2.10. Let G be an l1 × l2 torus, where l1 ≥ t and l2 ≥ t. If t is odd,

then G can be perfectly t-interleaved if and only if both l1 and l2 are multiples of t2+1
2 .

852 A. JIANG, M. COOK, AND J. BRUCK

If t is even, then G can be perfectly t-interleaved if and only if both l1 and l2 are
multiples of t.

Proof. We consider the following three cases separately.
Case 1: t = 2. In this case, 2-interleaving is equivalent to vertex coloring, so

the 2-interleaving number of G equals G’s chromatic number χ(G). Let R1 and R2

each be a graph consisting of a single cycle, having l1 and l2 vertices, respectively.
Then G is the Cartesian product of those two cycles, namely, G = R1 ⊗R2. It is well
known [23] that for any two graphs H1 and H2, χ(H1 ⊗H2) = max{χ(H1), χ(H2)}.
Since l1 ≥ t = 2 (respectively, l2 ≥ t = 2), we get that χ(R1) ≥ 2 (respectively,
χ(R2) ≥ 2), and χ(R1) = 2 (respectively, χ(R2) = 2) if and only if l1 (respectively,
l2) is a multiple of 2. So χ(G) = 2 if and only if both l1 and l2 are multiples of 2.
Since |S2| = 2, we get the conclusion in this lemma.

Case 2: t is even but t �= 2. First, we prove one direction. Assume that G can
be perfectly t-interleaved. We will show that both l1 and l2 are multiples of t. Let
i be a color used by a perfect t-interleaving on G. Then by Theorem 2.5, the spheres
St left-centered at the vertices of color i form a perfect sphere-packing in G. By
Lemma 2.7, there exists an integer a ∈ {+1,−1} such that for any cycle containing a
vertex of color i (corresponding to the parameter a), the spheres St in the cycle are all
left-centered at vertices of color i, and therefore they do not overlap. By Lemma 2.9,

the cycle containing a vertex of color i consists of
lcm(l1,l2,

t
2)

t
2

distinct spheres St. So

such a cycle consists of

lcm(l1, l2,
t
2)

t
2

· |St| =
lcm(l1, l2,

t
2)

t
2

· t
2

2
= lcm

(
l1, l2,

t

2

)
· t

vertices. Let (x1, y1) and (x2, y2) be any two vertices of color i. We can see that
for the cycle containing (x1, y1) and the cycle containing (x2, y2), either they do not
overlap or they are the same cycle. Therefore, the vertices in G can be partitioned
into several such cycles, so l1 · l2 is a multiple of lcm(l1, l2,

t
2) · t. Since lcm(l1, l2,

t
2) is

a multiple of l1, l2 must be a multiple of t. Similarly, l1 must be a multiple of t, too.
So if G can be perfectly t-interleaved, then both l1 and l2 are multiples of t.

Now we prove the other direction. Assume both l1 and l2 are multiples of t. Let
W be such a set of vertices in G: W = {(x, y)|x ≡ 0 mod t

2 , y ≡ 0 mod t
2 , x + y ≡

0 mod t}. It is easy to verify that the Lee distance between any two vertices in W is
at least t. Now for i = 0, 1, . . . , t

2 − 1 and for j = 0, 1, . . . , t − 1, define W i,j to be
W i,j = {((x + i) mod l1, (y + j) mod l2)|(x, y) ∈ W}. Clearly those t

2 · t = |St| sets,

W 0,0, W 0,1, . . . , W
t
2−1,t−1, are a partition of the vertices in G. For each W i,j , we

color the vertices in it with the same distinct color. Clearly such an interleaving is a
perfect t-interleaving. So if both l1 and l2 are multiples of t, then G can be perfectly
t-interleaved.

Case 3: t is odd. First, we prove one direction. Assume that both l1 and l2 are

multiples of t2+1
2 . Golomb and Welch have shown in [11] that a t2+1

2 × t2+1
2 torus can

be perfectly packed by the spheres St for odd t. Therefore, G can also be perfectly
packed by St because a torus has a toroidal topology and G can be folded onto itself

into an t2+1
2 × t2+1

2 torus. Let C be a set of vertices in G such that the spheres St

centered at the vertices in C form a perfect sphere-packing. Then the Lee distance
between any two vertices in C is at least t. We call a set of vertices D a translate of
C when the following condition is satisfied: “There exist integers a and b such that
a vertex (x, y) ∈ C if and only if ((x + a) mod l1, (y + b) mod l2) ∈ D.” C has |St|

OPTIMAL INTERLEAVING ON TORI 853

different translates in total (including C itself), and those translates partition the
vertices of G. For each translate, we color its vertices with one distinct color, and we

get a perfect t-interleaving. So if both l1 and l2 are multiples of t2+1
2 , then G can be

perfectly t-interleaved.
Now we prove the other direction. Assume that G can be perfectly t-interleaved.

Let i be a color used by a perfect t-interleaving on G. Then by Theorem 2.5, the
spheres St centered at the vertices of color i form a perfect sphere-packing in G.
Golomb and Welch presented in [11] a way to perfectly pack spheres St in a torus
when t is odd, which can be described as “either of the following two conditions is true:
(1) Whenever there is a sphere St centered at a vertex (x, y), there are two spheres
respectively centered at ((x+ t+1

2) mod l1, (y+ t−1
2) mod l2) and ((x− t−1

2) mod l1, (y+
t+1
2) mod l2); (2) whenever there is a sphere St centered at a vertex (x, y), there

are two spheres respectively centered at ((x + t−1
2) mod l1, (y + t+1

2) mod l2) and
((x− t+1

2) mod l1, (y + t−1
2) mod l2)”. It is easy to see that that way of packing is in

fact the only way to perfectly pack St for odd t, whose feasibility requires both l1 and

l2 to be multiples of t2+1
2 . Thus if G can be perfectly t-interleaved, then both l1 and

l2 are multiples of t2+1
2 .

Below we present the complete set of perfect sphere-packing constructions. But
first let us explain a few concepts. Let G be an l1 × l2 torus that is perfectly packed
by spheres St, so there are l1l2

|St| such spheres. Define e = l1l2
|St| , and let us say that

those spheres are centered (or left-centered) at the vertices (x1, y1), (x2, y2), . . . ,
(xe, ye). By vertically (respectively, horizontally) shifting the spheres in G, we mean
to select some integer s, and get a new set of perfectly packed spheres that are centered
(or left-centered) at (x1 + s mod l1, y1), (x2 + s mod l1, y2), . . . , (xe + s mod l1, ye)
(respectively, at (x1, y1 + s mod l2), (x2, y2 + s mod l2), . . . , (xe, ye + s mod l2)). By
vertically reversing the spheres in G, we mean to get a new set of perfectly packed
spheres that are centered (or left-centered) at (−x1 mod l1, y1), (−x2 mod l1, y2), . . . ,
(−xe mod l1, ye). After such a shift or reverse operation, technically speaking, the
way the spheres are perfectly packed in G is changed. However, the pattern of the
sphere-packing essentially remains the same.

Construction 2.1. The complete set of perfect sphere-packing constructions.
Input: A positive integer t. An l1 × l2 torus G, where (1) both l1 and l2 are

multiples of t if t is even and t �= 2, (2) l2 is even if t = 2, and (3) both l1 and l2 are

multiples of t2+1
2 if t is odd.

Output: A perfect packing of the spheres St in G.
Construction:
1. If t is even and t �= 2, then do the following:
• Let A1, A2, . . . , Agcd(

l1
t ,

l2
t)−1

be gcd(l1t ,
l2
t)−1 integers, where Ai can be any

integer in the set {0, 1, . . . , t
2 − 1} for i = 1, 2, . . . , gcd(l1t ,

l2
t) − 1.

• Find the gcd(l1t ,
l2
t) cycles in G respectively containing the vertices (0, 0),

(A1, t+A1), (A1+A2, 2t+A1+A2), . . . , and (
∑gcd(

l1
t ,

l2
t)−1

i=1 Ai,
∑gcd(

l1
t ,

l2
t)−1

i=1

(t + Ai)). The spheres St in those gcd(l1t ,
l2
t) cycles form a perfect sphere-

packing in the torus.
2. If t = 2, the do the following:
• The l1 × l2 torus G has l1 rows, each of which can be seen as a ring of
l2 vertices. When t = 2, the sphere St simply consists of two horizontally
adjacent vertices. Split each row of G into l2

2 spheres in any way. The

resulting l1l2
2 spheres form a perfect sphere-packing in the torus.

854 A. JIANG, M. COOK, AND J. BRUCK

3. If t is odd, then do the following:
• Find a set of l1l2

|St| spheres St such that each of the spheres is centered at a

vertex (i · t+1
2 + j · 1−t

2 mod l1, i · t−1
2 + j · t+1

2 mod l2) for some integers i and
j. Those spheres form a perfect sphere-packing in the torus.

4. Horizontally shift, vertically shift, and/or vertically reverse the spheres in G
in any way.

Theorem 2.11. Construction 2.1 is the complete set of perfect sphere-packing
constructions.

Proof. We consider the following three cases. For each case, we need to prove
two things: First, the input part of Construction 2.1 sets the necessary and sufficient
condition for a torus to have a perfect sphere-packing; second, the construction part of
Construction 2.1 generates perfect sphere-packing correctly, and every perfect sphere-
packing that exists is a possible output of it.

Case 1: t is even and t �= 2. Lemma 2.7 and its proof have shown that when
spheres are perfectly packed in a torus, those spheres can be partitioned into cycles.
By observing the shape of the border of a cycle, we see that two adjacent cycles
can freely slide along each other’s border, and there are t

2 possible relative positions
for two adjacent cycles. In Construction 2.1, the t

2 possible relative positions are
determined by Ai, a variable that can take t

2 possible values. Now it is easy to see
that step 1 of Construction 2.1 provides a perfect sphere-packing (which takes one of
many possible forms, depending on the value of Ai), and step 4 changes the positions
of the spheres to furthermore cover all the possible cases of perfect sphere-packing.

Case 2: t = 2. We skip the proof for this case due to its simplicity.
Case 3: t is odd. In this case, Construction 2.1 reproduces the sphere-packing

method presented in [11], which is commonly known as the unique way to pack spheres
for odd t (see the final paragraph of the proof of Theorem 2.10 for a more detailed
introduction).

Now we present perfect t-interleaving constructions that are based on perfect
sphere-packing.

Construction 2.2. Perfect t-interleaving constructions
Input: A positive integer t. An l1× l2 torus G, where both l1 and l2 are multiples

of t if t is even, and both l1 and l2 are multiples of t2+1
2 if t is odd.

Output: A perfect t-interleaving on G.
Construction:
1 If t �= 2, then do the following:
• Use Construction 2.1 to get a perfect sphere-packing in G. Color each sphere

in the same way, using |St| distinct colors, so that each color is used exactly
once in each sphere.

2 If t = 2, then do the following:
• For every vertex (i, j) of G, if i + j is even, color it with color 0; otherwise

color it with color 1.
The following example illustrates how to use Construction 2.1 to obtain perfect

sphere-packing, and how to use Construction 2.2 to obtain perfect t-interleaving.
Example 2.2. Let t = 4, and let G be a 12 × 24 torus. First, we use Construc-

tion 2.1 to find a perfect sphere-packing in G. Since t is even, step 1 of Construction
2.1 is executed. We choose A1, A2, . . . , Agcd(

l1
t ,

l2
t)−1

to be A1 = 0, A2 = 1. Note that

here gcd(l1t ,
l2
t) − 1 = 2. Then the gcd(l1t ,

l2
t) = 3 cycles in G are as shown in Fig-

ure 2.6(a), which are three sets of spheres St respectively of three different background
shades. The spheres in those three cycles form a perfect packing in G.

OPTIMAL INTERLEAVING ON TORI 855

1 2

3 4 5 6

7 8

1 2

3 4 5 6

7 8 1 2

3 4 5 6

7 8 1 2

3 4 5 6

7 8

1 2

3 4 5 6

7 8 1 2

3 4 5 6

7 8 1 2

3 4 5 6

7 8 1 2

3 4 5 6

7 8

1 2

3 4 5 6

7 8

1 2

3 4 5 6

7 8

1 2

3 4 5 6

7 8 1 2

3 4 5 6

7 8

1 2

3 4 5 6

7 8 1 2

3 4 5 6

7 8

1 2

3 4 5 6

7 8

1 2

3 4 5 6

7 8

1 2

3 4 5 6

7 8

1 2

3 4 5 6

7 8

1 2

3 4 5 6

7 8 1 2

3 4 5 6

7 8

1 2

3 4 5 6

7 8

1 2

3 4 5 6

7 8 1 2

3 4 5 6

7 8

1 2

3 4 5 6

7 8

3

21 2

6

4 5 6

7 8

3 4 5 6

7 8

1 2

4 5

7 8

3

3

1

3 4

7

4 6

7 8

1 2

3 4 5 6

7 8

1 2

3 4 5 61 2

1 2

3 4 5 61 2

3 4 5 6

7 8

1 2

3 4 5 6

7 8

1 2

3 4 5

7 8

7 87 8

2

5 6

8

6

1 2

4 5 6

7 8

1

3 5

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

���
���
���
���

����
����
����
����

������
������
������

������
������
������

���
���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����
�����
�����

�����
�����
�����
�����
����� ����

����
����
����

���
���
���
���
���

���
���
���
���
���

������
������
������

������
������
������

������
������
������

������
������
������

���
���
���
���

����
����
����
����
����

����
����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���

(a) G

(b) G

Fig. 2.6. Example of perfect sphere-packing using Construction 2.1, and perfect t-interleaving
using Construction 2.2.

Next, we use Construction 2.2 to perfectly t-interleave G. Let the perfect sphere-
packing remain as it is, and color all the spheres with the same pattern, using |St| = 8
distinct colors. The resulting perfect t-interleaving on G is shown in Figure 2.6(b).

We comment that Construction 2.2 provides the complete set of perfect t-inter-
leaving constructions that have the following property: For any two colors, the two
sets of vertices respectively colored by those two colors are translates of each other in
the torus. Observing the constructions, we note that every such interleaving pattern
has at least one translational periodicity other than the identity. In the previous work
of [8], three t-interleaving constructions for two-dimensional arrays were presented,
all based on lattice interleavers. Those three constructions can also be applied to
tori because of their periodic patterns. Our Construction 2.2 generalizes the results
in [8] in two ways: First, it covers more constructions based on lattice interleavers,
with the results of [8] included as special cases; secondly, when t is even, it also
covers constructions that do not use lattice interleavers, which we can make happen
by simply letting any Ai and Aj take different values.

3. Achieving an interleaving degree within one of the optimal. Recall
that an optimal interleaving need not be a perfect interleaving. A perfect interleaving
uses |St| colors, which is possible only when the dimensions satisfy the divisibility
conditions of Construction 2.2. Most dimensions do not satisfy these divisibility con-
ditions, and thus most tori do not admit a perfect interleaving—any interleaving
must use more than |St| colors. Recall that an optimal interleaving uses the minimal
number of necessary colors.

In this section, we present a novel t-interleaving construction, with which we can
t-interleave any large enough torus with at most one more than the optimal number

856 A. JIANG, M. COOK, AND J. BRUCK

2

1

4

3

5

2

3

4

0

1

5

1

3

5

4

0

2

0 3 5

1

2

3

4

5

4

5

0

1

2

0

1

2

3

4

2

3

4

5

0

5

0

1

2

0 41

3

Fig. 3.1. An example of t-interleaving with the three features.

of colors. The construction presented here will also be used as a building block in
section 4 for optimal t-interleaving.

3.1. Interleaving construction. The following definition defines several types
of integer strings that are crucial to the interleaving constructions to be presented.

Definition 3.1.

• Given a positive integer t, if t is odd, then P is defined to be a string of
integers, “a1, a2, . . . , a t−1

2
,” where a t−1

2
= t + 1 and ai = t for 1 ≤ i < t−1

2 ;

if t is even, then P is defined to be a string of integers, “a1, a2, . . . , a t
2
,”

where a t
2

= t and ai = t − 1 for 1 ≤ i < t
2 . For example, if t = 3, then

P =“4”; if t = 4, then P =“ 3,4”; if t = 5, then P =“ 5,6.”
• Given a positive integer t, if t is odd, then Q is defined to be a string of

integers “b1, b2, . . . , b t+1
2

,” where b t+1
2

= t + 1 and bi = t for 1 ≤ i < t+1
2 ;

if t is even, then Q is defined to be a string of integers “b1, b2, . . . , b t
2+1,”

where b t
2+1 = t and bi = t− 1 for 1 ≤ i < t

2 + 1.
• Given a positive integer t, an offset sequence is a string of P ’s and Q’s. For

example, an offset sequence consisting of one P and two Q’s can be “PQQ,”
“QPQ” or “QQP .” The offset sequence is also naturally seen as a string
of integers which is the concatenation of the integer strings in its P ’s and
Q’s. For example, when t = 3, if an offset sequence consisting of one P and
two Q’s is “PQQ,” then the offset sequence is also seen as “4,3,4,3,4”; when
t = 4, if an offset sequence consisting of three P ’s and two Q’s is “PQPPQ,”
then the offset sequence is also seen as “3,4,3,3,4,3,4,3,4,3,3,4.” The number
of integers in an offset sequence is called its length.

In this section, we are particularly interested in one kind of t-interleaving on an
l1 × l2 torus, which has the following features:

• Feature 1: l1 = |St|+ 1. In other words, if t is odd, then l1 = t2+1
2 + 1; if t is

even, then l1 = t2

2 + 1.
• Feature 2: The number of colors in the t-interleaving equals l1. Also, in every

column of the torus, each of the l1 colors is assigned to exactly one vertex.
• Feature 3: If the vertex (a1, b1) and the vertex (a2, b2) have the same color,

then for i = 1, 2, . . . , l1 − 1, the vertex ((a1 + i) mod l1, b1) and the vertex
((a2 + i) mod l1, b2) have the same color.

Example 3.1. Figure 3.1 shows a t-interleaving on an l1 × l2 torus which has the
above three features. There t = 3, l1 = |St| + 1 = 6, and l2 = 8.

Now let us choose a color i, where 0 ≤ i ≤ 5, and say that the set of vertices of

OPTIMAL INTERLEAVING ON TORI 857

color i is {(x0, 0), (x1, 1), . . . , (xl2−1, l2−1)}. Then the string of integers “(x1−x0) mod
l1, (x2 − x1) mod l1, . . . , (x7 − x6) mod l1, (x0 − x7) mod l1” equals “4,4,4,3,4,4,3,4.”
Since when t = 3, P = “4” and Q = “3,4,” the above string of integers actually
equals “PPPQPQ,” which is an offset sequence of length l2. We comment that this
phenomenon is not a pure coincidence: Offset sequences do help us find t-interleavings
that have the above three features. In fact, we can prove that in many cases (e.g.,
when t = 5 or 7), for any t-interleaving on a torus that has the above three features,
after horizontally shifting and/or vertically reversing the interleaving pattern, the
resulting interleaving will exhibit the same phenomenon as the example shown here.

The following construction outputs a t-interleaving that has the three features.
Construction 3.1.
Input: A positive integer t. An l1 × l2 torus, where l1 = |St| + 1. An integer m

that equals � t
2�. Two integers p and q that satisfy the following equation set if t is

odd, ⎧⎨
⎩

pm + q(m + 1) = l2,
p(2m2 + m + 1) + q(2m2 + 3m + 2) ≡ 0 mod (2m2 + 2m + 2),

p and q are nonnegative integers, p + q > 0,
(3.1)

and satisfy the following equation set if t is even:⎧⎨
⎩

pm + q(m + 1) = l2,
p(2m2 −m + 1) + q(2m2 + m) ≡ 0 mod (2m2 + 1),

p and q are nonnegative integers, p + q > 0.
(3.2)

Output: A t-interleaving on the l1 × l2 torus that satisfies Features 1, 2, and 3.
Construction: Let S =“s0, s1, . . . , sl2−1” be an arbitrary offset sequence consist-

ing of p P ’s and q Q’s. For j = 1, 2, . . . , l2 and for i = 0, 1, . . . , l1 − 1, color the vertex
((
∑j−1

k=0 sk + i) mod l1, j mod l2) with color i.
Example 3.2. Let t= 3, l1 = 6, l2 = 8, m= 1, p= 4, and q= 2. We use Construc-

tion 3.1 to t-interleave an l1 × l2 torus. Say the offset sequence S is chosen to be
“PPPQPQ.” Then Construction 3.1 outputs the t-interleaving shown in Figure 3.1.

We explain Construction 3.1 a little further. The equation set (3.1) (for odd t)
and the equation set (3.2) (for even t) ensure that the offset sequence S, which consists
of p P ’s and q Q’s, exists. Furthermore, for any integer j (0 ≤ j ≤ l2 − 1), if (a, j)
and (b, (j + 1) mod l2) are two vertices of the same color, then b − a ≡ sj mod l1.
That is, the offset sequence S indicates the vertical offsets of any two vertices of the
same color in adjacent columns. It is simple to verify that the t-interleaving output
by Construction 3.1 satisfies all the three features listed earlier in this subsection.

The following lemma will be used to prove the correctness of Construction 3.1
and also in future analysis.

Lemma 3.2. Let i ∈ {0, 1, . . . , |St|} be any of the colors used by Construction
3.1 to interleave the l1 × l2 torus. Let {(b0, 0), (b1, 1), . . . , (bl2−1, l2 − 1)} be the set of
vertices of color i in the torus. Let m and S have the same meaning as in Construction
3.1 (namely, m = � t

2�, and S =“s0, s1, . . . , sl2−1” is the offset sequence consisting
of p P ’s and q Q’s utilized by Construction 3.1). For any two integers j1 and j2
(0 ≤ j1 �= j2 ≤ l2 − 1), we define Lj1→j2 as Lj1→j2 = [(j2 − j1) mod l2] + min{(bj2 −
bj1) mod l1, (bj1 − bj2) mod l1}. Then we have the following conclusions:

• Case 1. t is odd, j2 − j1 ≡ m mod l2, and sj1 , s(j1+1) mod l2 , s(j1+2) mod l2 ,
. . . , s(j2−1) mod l2 do not all equal t. In this case, bj2 − bj1 ≡ −(m+1) mod l1
and Lj1→j2 = t.

858 A. JIANG, M. COOK, AND J. BRUCK

• Case 2. t is odd, j2−j1 ≡ m+1 mod l2, and exactly one of sj1 , s(j1+1) mod l2 ,
s(j1+2) mod l2 , . . . , s(j2−1) mod l2 equals t+1. In this case, bj2−bj1 ≡ m mod l1
and Lj1→j2 = t.

• Case 3. t is even, j2−j1 ≡ 1 mod l2, and sj1 = t−1. In this case, bj2 −bj1 ≡
t− 1 mod l1 and Lj1→j2 = t.

• Case 4. t is even, j2 − j1 ≡ m mod l2, and sj1 , s(j1+1) mod l2 , s(j1+2) mod l2 ,
. . . , s(j2−1) mod l2 do not all equal t− 1. In this case, bj2 − bj1 ≡ −m mod l1
and Lj1→j2 = t.

• Case 5. t is even, j2−j1 ≡ m+1 mod l2, and exactly one of sj1 , s(j1+1) mod l2 ,
s(j1+2) mod l2 , . . . , s(j2−1) mod l2 equals t. In this case, bj2−bj1 ≡ m−1 mod l1
and Lj1→j2 = t.

• If none of the above five cases is true and j2−j1 �= t mod l2, then Lj1→j2 > t.
If none of the above five cases is true and j2−j1 ≡ t mod l2, then Lj1→j2 ≥ t.

Proof. Let Δ = t + 1 if t is odd, and let Δ = t if t is even. The offset sequence S
consists of P ’s and Q’s, so it has the following property: For any k ∈ {0, 1, . . . , l2 −1}
such that sk = Δ, the m − 1 integers s(k+1) mod l2 , s(k+2) mod l2 , . . . , s(k+m−1) mod l2

are all equal to Δ − 1, and either s(k+m) mod l2 or s(k+m+1) mod l2 equals Δ. Also
note that bj2 − bj1 ≡ sj1 + s(j1+1) mod l2 + s(j1+2) mod l2 + · · · + s(j2−1) mod l2 mod l1.
Based on those two observations, this lemma can be proved with straightforward
computation.

Theorem 3.3. Construction 3.1 is correct.
Proof. Let (bj1 , j1) and (bj2 , j2) be any two vertices of the same color in the

l1 × l2 torus that was interleaved by Construction 3.1. The Lee distance between
them is d((bj1 , j1), (bj2 , j2)) = min{(j2 − j1) mod l2, (j1 − j2) mod l2} + min{(bj2 −
bj1) mod l1, (bj1 − bj2) mod l1} = min{Lj1→j2 , Lj2→j1}. From Lemma 3.2, it is clear
that neither Lj1→j2 nor Lj2→j1 is less than t. Therefore d((bj1 , j1), (bj2 , j2)) ≥ t. So
Construction 3.1 t-interleaved the torus. And as mentioned before, this t-interleaving
satisfies Features 1, 2, and 3.

3.2. Existence of offset sequences. The feasibility of Construction 3.1 de-
pends only on one thing: whether the two input parameters p and q exist or not. The
following theorem shows that when the width of the torus, l2, exceeds a threshold, p
and q are guaranteed to exist.

Theorem 3.4. Let t be an odd (respectively, even) positive integer. When l2 ≥
� t

2�(�
t
2�+1)(|St|+1), there exists at least one solution (p, q) to the equation set (3.1)

(respectively, equation set (3.2)), which is shown in the input part of Construction
3.1.

Proof. Firstly, let us assume that t is odd. The equation set (3.1) is as follows:

⎧⎨
⎩

pm + q(m + 1) = l2,
p(2m2 + m + 1) + q(2m2 + 3m + 2) ≡ 0 mod (2m2 + 2m + 2),

p and q are nonnegative integers, p + q > 0,

where m = � t
2�. We introduce a new variable z, and transform the above equation

set equivalently to be

⎧⎨
⎩

(
m m + 1

2m2 + m + 1 2m2 + 3m + 2

)(
p
q

)
=

(
l2

z(2m2 + 2m + 2)

)
,

p and q are nonnegative integers; z is a positive integer,

OPTIMAL INTERLEAVING ON TORI 859

which is the same as⎧⎨
⎩

(
p
q

)
=

(
m m + 1

2m2 + m + 1 2m2 + 3m + 2

)−1 (
l2

z(2m2 + 2m + 2)

)
,

p and q are nonnegative integers; z is a positive integer,

which equals⎧⎨
⎩

p = 2(m + 1)(m2 + m + 1)z − (2m2 + 3m + 2)l2,
q = (2m2 + m + 1)l2 − 2m(m2 + m + 1)z,
p and q are nonnegative integers; z is a positive integer.

There exists a solution for the variables p, q, and z in the above equation set if
and only if the following conditions can be satisfied:⎧⎨

⎩
2(m + 1)(m2 + m + 1)z − (2m2 + 3m + 2)l2 ≥ 0,
(2m2 + m + 1)l2 − 2m(m2 + m + 1)z ≥ 0,
z is a positive integer,

which is equivalent to {
(2m2+3m+2)l2

2(m+1)(m2+m+1) ≤ z ≤ (2m2+m+1)l2
2m(m2+m+1) ,

z is a positive integer.

To enable a value for z to exist that satisfies the above conditions, it is sufficient

to make (2m2+m+1)l2
2m(m2+m+1) −

(2m2+3m+2)l2
2(m+1)(m2+m+1) ≥ 1, that is, to make l2 ≥ 2m(m + 1)(m2 +

m + 1) = � t
2�(�

t
2� + 1)(|St| + 1). Therefore when l2 ≥ � t

2�(�
t
2� + 1)(|St| + 1), there

exists at least one solution (p, q) to the equation set (3.1).
When t is even, the conclusion can be proved in a very similar way. We skip its

details.
Corollary 3.5. When l2 ≥ � t

2�(�
t
2�+1)(|St|+1), Construction 3.1 can be used

to output a t-interleaving on an (|St| + 1) × l2 torus.
Proof. When l2 ≥ � t

2�(�
t
2� + 1)(|St| + 1), all the parameters in the input part of

Construction 3.1 exist, including p and q.

3.3. Interleaving with degree within one of the optimal. In this subsec-
tion, we will show how to interleave a large enough torus with at most one more than
the optimal number of colors.

We define the simple term of tiling tori here. By tiling several interleaved tori
vertically or horizontally, we get a larger torus, whose interleaving is the straightfor-
ward combination of the interleaving on the smaller tori. It is best explained with an
example.

Example 3.3. Three interleaved tori, A, B, and C, are shown in Figure 3.2. The
torus D is a 5 × 4 torus, obtained by tiling A and B vertically in the form of

[
A
B

]
.

The torus E is a 2 × 8 torus, obtained by tiling one copy of A and two copies of C
horizontally in the form of [C A C].

The following construction t-interleaves a large enough torus with at most |St|+2
distinct integers.

Construction 3.2. t-interleave an l1 × l2 torus G, where l1 ≥ |St|(|St| + 1) and
l2 ≥ � t

2�(�
t
2� + 1)(|St| + 1), using at most |St| + 2 distinct integers.

1. Let G1 be an (|St| + 1) × l2 torus that is t-interleaved by Construction 3.1,
using colors 0, 1, . . . , |St|. Let {(c0, 0), (c1, 1), . . . , (cl2−1, l2 − 1)} be the set of vertices
in G1 having color 0.

860 A. JIANG, M. COOK, AND J. BRUCK

0 0 0 0

1 1 1 1

2 2 2 2

1 2

3 4

0 1 2 3

3 2 1 0

0 1 2 3

3 2 1 0

0 0 0 0

1 1 1 1

2 2 2 2

1 2

3 4

1 2

3 4

0 1 2 3

3 2 1 0

(a) (b)
A B C D E

Fig. 3.2. Examples of tiling tori.

0

1

2

2

0

1

0

1

2

2

0

1

0

1

2

2

0

1

0

1

2

2

0

1

0

1

2

2

0

1

0

1

2

2

0

1

2 1 2

3

3

3

3

3

30

1 0

2

0

1 0

1

2

0

1

2

0

1

22 1 2

3

3

3

3

3

30

1 0

2

0

1 0

1

2

0

1

2

0

1

2

G 1 G 2 G

Fig. 3.3. Examples of Construction 3.2.

2. Let G2 be an (|St|+2)× l2 torus. Color the vertices {(c0, 0), (c1, 1), . . . , (cl2−1,
l2 − 1)} in G2 with color |St| + 1.

3. For j = 0, 1, . . . , l2 − 1 and for i = 1, 2, . . . , |St| + 1, color vertex ((cj +
i) mod (|St| + 2), j) in G2 with color i− 1.

4. Let x and y be two nonnegative integers such that l1 = x(|St|+1)+y(|St|+2).
Tile x copies of G1 and y copies of G2 vertically to get an l1 × l2 torus G. Note that
then G has been t-interleaved using at most |St| + 2 distinct integers.

Example 3.4. We use Construction 3.2 to t-interleave a 7 × 6 torus G, where
t = 2. The first step is to use Construction 3.1 to t-interleave a 3 × 6 torus G1. Say
the offset sequence selected in Construction 3.1 is S = “QQQ” =“1,2,1,2,1,2”; then
G1 is as shown in Figure 3.3. Then the 4 × 6 torus G2 is as shown in the figure. By
tiling one copy of G1 and one copy of G2 vertically, we get the t-interleaved torus G.
|St| + 2 = 4 distinct integers are used to interleave G.

Theorem 3.6. Construction 3.2 is correct.
Proof. It is a known fact that for any two relatively prime positive integers A and

B, any integer C no less than (A−1)(B−1) can be expressed as C = xA+yB, where x
and y are nonnegative integers. Therefore in Construction 3.2, since l1 ≥ |St|(|St|+1),
l1 indeed can be expressed as l1 = x(|St| + 1) + y(|St| + 2), as shown in the last step
of Construction 3.2. Thus the construction can be executed from beginning to end
successfully. Now we prove that the construction does t-interleave G; that is, for any
two vertices (a1, b1) and (a2, b2) both of color i in G, the Lee distance between them
is at least t. We consider three cases.

Case 1: b1 = b2, which means that (a1, b1) and (a2, b2) are in the same column
of G. We see every column of G as a ring of length l1 (because it is toroidal). Then,
observe the colors in a column of G, and we can see that on the column, the color
following color |St|+1 and before the next color |St|+1 must be the following, where

OPTIMAL INTERLEAVING ON TORI 861

the pattern 0, 1, . . . , |St| appears at least once:

0, 1, . . . , |St|, 0, 1, . . . , |St|, , 0, 1, . . . , |St|.

Therefore since (a1, b1) and (a2, b2) have the same color, the Lee distance between
them must be at least |St| + 1 > t.

Case 2: b1 �= b2, and i �= |St|+1. In this case, let us first observe two conclusions:
• The interleaving on G2 (defined in Construction 3.2) is a t-interleaving. This

can be proved as follows: Any two vertices of the same color in G2 can be
expressed as ((cj1 + i0) mod (|St| + 2), j1) and ((cj2 + i0) mod (|St| + 2), j2)
(see steps 2 and 3 of Construction 3.2); then, dG2(((cj1 + i0) mod (|St| +
2), j1), ((cj2 + i0) mod (|St|+ 2), j2)) = dG2((cj1 , j1), (cj2 , j2)) ≥ dG1((cj1 , j1),
(cj2 , j2)) ≥ t.

• Let (α, j) and (β, j) be two vertices respectively in G1 and G2, which both
have the same color. Then it is simple to see that β = α or β = α+ 1. Since
G1 has |St| + 1 rows and G2 has |St| + 2 rows, we have dG2((β, j), (0, j)) ≥
dG1

((α, j), (0, j)) and dG2
((β, j), (|St|+ 1, j)) ≥ dG1

((α, j), (|St|, j)). That is,
if u and v are two vertices respectively in G1 and G2, both of which are in
the jth column and have the same color, then the vertical distance from v to
either the top or bottom of G2 is no less than the vertical distance from u
to the top or bottom of G1.

According to Construction 3.2, G is obtained by vertically tiling x copies of
G1 and y copies of G2. Let us call each of those x + y tori a component torus of
G. Now, if (a1, b1) and (a2, b2) are in the same component torus of G, we know
that the Lee distance between them in G is no less than the Lee distance between
them in that component torus, which is at least t because that component torus is
t-interleaved. If (a1, b1) and (a2, b2) are not in the same component torus of G, we
do the following. We first construct a torus G′, which is obtained by vertically tiling
x+y copies of G1. It is simple to see that G′ is t-interleaved. We call each of the x+y
copies of G1 in G′ a component torus of G′. Let us say that (a1, b1) and (a2, b2) are
respectively in the k1th and k2th component torus of G. Let (c1, b1) and (c2, b2) be
the two vertices of color i that are respectively in the k1th and k2th component torus
of G′. Observe the shortest path between (a1, b1) and (a2, b2) in G, and we see that
it can be split into such three intervals: from (a1, b1) to a border of the k1th compo-
nent torus, from the border of the k1th component torus to the border of the k2th
component torus, and from the border of the k2th component torus to (a2, b2). There
is a corresponding (not necessarily shortest) path connecting (c1, b1) and (c2, b2) in
G′, which can be split into such three intervals similarly. Furthermore, each of the
three intervals of the first path is at least as long as the corresponding interval of the
second path. G′ is t-interleaved, and so the second path’s length is at least t. Thus
the Lee distance between (a1, b1) and (a2, b2) in G is at least t.

Case 3: b1 �= b2 and i = |St| + 1. In this case, it is simple to see that the two
vertices in G, (a1 + 1 mod l1, b1) and (a2 + 1 mod l1, b2), both have color 0. Based
on the conclusion of Case 2, dG((a1 + 1 mod l1, b1), (a2 + 1 mod l1, b2)) ≥ t. Thus
dG((a1, b1), (a2, b2)) = dG((a1 + 1 mod l1, b1), (a2 + 1 mod l1, b2)) ≥ t.

Thus Construction 3.2 correctly t-interleaved G.
As a result of Construction 3.2, we get the following theorem.
Theorem 3.7. When l1 ≥ |St|(|St| + 1) and l2 ≥ � t

2�(�
t
2� + 1)(|St| + 1), the

t-interleaving number of an l1 × l2 (or l2 × l1) torus is at most |St| + 2.
By combining Construction 2.2 (the construction for perfect t-interleaving) and

862 A. JIANG, M. COOK, AND J. BRUCK

Construction 3.2, we can t-interleave any sufficiently large torus with at most one
more than the optimal number of colors.

4. Optimal interleaving on large tori. In the previous section, it is shown
that when l2 is large enough, an (|St|+1)× l2 torus can be t-interleaved using |St|+1
integers. In this section, we will construct a [k(|St| + 1) − 1] × l2 torus (for some
integer k) which is also t-interleaved using |St|+ 1 integers, by using an operation we
call removing a zigzag row. Those two tori have a special property: When they (or
multiple copies of them) are tiled vertically to get a larger torus, the larger torus is
also t-interleaved with |St|+ 1 colors. Since |St|+ 1 and k(|St|+ 1)− 1 are relatively
prime, a large enough l1 must be a linear combination of those two numbers with
nonnegative integral coefficients, and therefore an l1 × l2 torus can be t-interleaved
using |St|+ 1 integers in this way. We present constructions to optimally t-interleave
such tori, and as a parallel result, the existence of Region I (see the Introduction) is
proved.

All the results of this section can be split into two parts: one for the case when
t is odd, and the other for the case when t is even. Those two cases can be analyzed
with very similar methods; however, their analysis and results differ in details. For
succinctness, in this section, we only analyze in detail the case when t is odd, which
should suffice for illustrating all the ideas. So in the first three subsections here
(subsections 4.1, 4.2, and 4.3), we always assume that t is odd. In subsection 4.4, we
present just the final result for the case when t is even. We list the major intermediate
results for the case when t is even in Appendix II (section 8).

4.1. Removing a zigzag row in a torus. Below we define zigzag rows and
the concept of removing a zigzag row in a torus.

Definition 4.1. A zigzag row in an l1 × l2 torus is a set of l2 vertices of the
torus: {(a0, 0), (a1, 1), . . . , (al2−1, l2−1)}, where 0 ≤ ai ≤ l1−1 for i = 0, 1, . . . , l2−1.

For example, {(2, 0), (3, 1), (0, 2), (0, 3), (3, 4)} is a zigzag row in a 4 × 5 torus.
Definition 4.2. Let T be an l1× l2 torus. Let {(a0, 0), (a1, 1), . . . , (al2−1, l2−1)}

be a zigzag row in T . Let there be an interleaving on T , which colors T ’s vertex (b, c)
with color I(b, c), for b = 0, 1, . . . , l1 − 1 and c = 0, 1, . . . , l2 − 1. Then a torus G is
said to be obtained by removing the zigzag row {(a0, 0), (a1, 1), . . . , (al2−1, l2 − 1)} in
T if and only if these two conditions are satisfied:

• G is an (l1 − 1) × l2 torus.
• For i = 0, 1, . . . , l1 − 2 and j = 0, 1, . . . , l2 − 1, the vertex (i, j) in G has color
I(i, j) if i < aj, and color I(i + 1, j) if i ≥ aj.

Example 4.1. In Figure 4.1, a 6×5 torus T is shown. A zigzag row {(3, 0), (2, 1),
(1, 2), (3, 3), (1, 4)} in T is circled in the figure. Figure 4.1 shows a torus G obtained
by removing the zigzag row {(3, 0), (2, 1), (1, 2), (3, 3), (1, 4)} in T .

It can be readily observed that G can be seen as being derived from T in the
following way: First, delete the zigzag row in T that is circled in Figure 4.1; then in
each column of T , move the vertices below the circled vertex upward.

In order to get our final results, we present three rules to follow for devising a
zigzag row. Let B be an l0 × l2 torus which is t-interleaved by Construction 3.1. Note
that this means l0 = |St|+1. Let S =“s0, s1, . . . , sl2−1” be the offset sequence utilized
by Construction 3.1 when it was t-interleaving B. Let H be an l1 × l2 torus obtained
by tiling several copies of B vertically. Let m = � t

2�. Then the three rules for devising
a zigzag row in H, {(a0, 0), (a1, 1), . . . , (al2−1, l2 − 1)}, are the following:

• Rule 1. For any j such that 0 ≤ j ≤ l2 − 1, if the integers sj , s(j+1) mod l2 ,
. . . , s(j+m−1) mod l2 do not all equal t, then aj ≥ a(j+m) mod l2 + m.

OPTIMAL INTERLEAVING ON TORI 863

4

4 6

1 3 5 2 4

2 4 6 3 5

3 5 1

6 2 5 1

5 1 3 6 2

6 2 4 1 3

T

2

3

5

6

3

4

6

1

2

5

1

2

3

4

2

3

4

6

1

4

6

1

2

3

1

G

Fig. 4.1. Removing a zigzag row {(3, 0), (2, 1), (1, 2), (3, 3), (1, 4)} in T .

• Rule 2. For any j such that 0 ≤ j ≤ l2 − 1, if exactly one of the integers
sj , s(j+1) mod l2 , . . . , s(j+m) mod l2 equals t + 1, then aj ≤ a(j+m+1) mod l2 −
(m− 1).

• Rule 3. For any j such that 0 ≤ j ≤ l2 − 1, m ≤ aj ≤ l1 −m− 1.
Lemma 4.3. Let B be a torus t-interleaved by Construction 3.1. Let H be a torus

obtained by tiling copies of B vertically, and let T be a torus obtained by removing a
zigzag row in H, where the zigzag row in H follows the three rules listed above. Let
G be a torus obtained by tiling copies of B and T vertically. Then, both T and G are
t-interleaved.

Proof. When t = 1, the proof is trivial. So we assume t ≥ 3 in the rest of the
proof. It is simple to see that H is t-interleaved, because H is obtained by tiling B, a
t-interleaved torus. We assume that B is an l0× l2 torus (where l0 = |St|+1), H is an
l1× l2 torus (where l1 is a multiple of l0), T is an lT × l2 torus (where lT = l1−1), and
G is an lG × l2 torus. Let m = � t

2�. Let S =“s0, s1, . . . , sl2−1” be the offset sequence
utilized by Construction 3.1 when it was t-interleaving B.

(1) In this part, we will prove that T is t-interleaved. Let (x1, y1) and (x2, y2) be
two vertices in T both of color r. We need to prove that dT ((x1, y1), (x2, y2)) ≥ t.

Let {(a0, 0), (a1, 1), . . . , (al2−1, l2−1)} denote the zigzag row removed in H to get
T . If ay1 ≤ x1, then let z1 = x1 + 1; otherwise let z1 = x1. Similarly, if ay2 ≤ x2,
then let z2 = x2 + 1; otherwise let z2 = x2. Clearly, the two vertices in H, (z1, y1)
and (z2, y2), also have color r.

We need to consider only the following three cases.
Case 1: y1 = y2. In this case, dH((z1, y1), (z2, y2)) is a multiple of |St| + 1 (the

number of rows in B), and dT ((x1, y1), (x2, y2)) ≥ dH((z1, y1), (z2, y2)) − 1 ≥ |St| =
t2+1

2 > t.
Case 2: y1 �= y2 and dT ((x1, y1), (x2, y2)) ≤ dH((z1, y1), (z2, y2)) − 2. Without

loss of generality, we assume x1 ≥ x2. Then, based on the definition of removing a
zigzag row, it is simple to verify that the following must be true: dT ((x1, y1), (x2, y2))
= dH((z1, y1), (z2, y2)) − 2, ay2 < z2 < z1 < ay1 , (z2 − z1 mod l1) ≤ (z1 − z2 mod l1).
By Rule 3, any vertex in the removed zigzag row is neither in the first m rows nor
in the last m rows of H, so (z2 − z1 mod l1) ≥ 2m + 3. Thus dT ((x1, y1), (x2, y2)) =
dH((z1, y1), (z2, y2)) − 2 > (z2 − z1 mod l1) − 2 ≥ 2m + 1 = t.

Case 3: y1 �= y2 and dT ((x1, y1), (x2, y2)) ≥ dH((z1, y1), (z2, y2)) − 1. We know
that dH((z1, y1), (z2, y2)) ≥ t. So to show that dT ((x1, y1), (x2, y2)) ≥ t, we just need
to prove that if dH((z1, y1), (z2, y2)) = t, then dT ((x1, y1), (x2, y2)) ≥ dH((z1, y1), (z2,

864 A. JIANG, M. COOK, AND J. BRUCK

y2)). By Lemma 3.2, there are only two nontrivial subcases to consider, without loss
of generality, as follows.

Subcase 3.1: y2 − y1 ≡ m mod l2, z2 − z1 ≡ −(m + 1) mod l1, dH((z1, y1), (z2,
y2)) = (y2−y1 mod l2)+(z1−z2 mod l1) = t, and sy1 , s(y1+1) mod l2 , s(y1+2) mod l2 , . . . ,
s(y1+m−1) mod l2 do not all equal t. If z1 > z2 (which means z1 = z2 + (m + 1)), then
from Rule 1, it is simple to see that x1 − x2 = z1 − z2, and so dT ((x1, y1), (x2, y2)) =
dH((z1, y1), (z2, y2)) = t. If z1 < z2 (which means that (z1, y1) and (z2, y2) are
respectively in the first and last m + 1 rows of H), since the first and last m rows of
H and T must be the same, we get that (x1−x2 mod lT) = (z1− z2 mod l1) = m+1,
and so dT ((x1, y1), (x2, y2)) = dH((z1, y1), (z2, y2)) = t.

Subcase 3.2: y2 − y1 ≡ m+ 1 mod l2, z2 − z1 ≡ m mod l1, dH((z1, y1), (z2, y2)) =
(y2 − y1 mod l2) + (z2 − z1 mod l1) = t, and exactly one of sy1 , s(y1+1) mod l2 ,
s(y1+2) mod l2 , . . . , s(y1+m) mod l2 equals t + 1. If z1 < z2 (which means z1 = z2 −m),
then from Rule 2, it is simple to see that x2−x1 = z2−z1, and so dT ((x1, y1), (x2, y2))
= dH((z1, y1), (z2, y2)) = t. If z1 > z2 (which means that (z1, y1) and (z2, y2) are re-
spectively in the last and first m rows of H), since the first and last m rows of H and
T must be the same, we get that (x2 − x1 mod lT) = (z2 − z1 mod l1) = m, and so
dT ((x1, y1), (x2, y2)) = dH((z1, y1), (z2, y2)) = t.

Thus T is t-interleaved.
(2) In this part, we will prove that G is t-interleaved. First let us make an ob-

servation: When a t-interleaved torus K is tiled with other tori vertically to get a
larger torus Ĝ, for any two vertices μ and ν in K (which are now also in Ĝ) of
the same color, the Lee distance between them in Ĝ, dĜ(μ, ν), is clearly no less than t.
Let us also notice that the torus obtained by tiling one copy of B and one copy of T ver-
tically is t-interleaved, which can be proved with exactly the same proof as in part (1).

G is obtained by tiling multiple copies of B and T . Let us call each copy of B
or T in G a component torus. Let (x1, y1) and (x2, y2) be two vertices in G of the
same color. Assume dG((x1, y1), (x2, y2)) ≤ t. Then since both B and T have more
than t rows, (x1, y1) and (x2, y2) must be either in the same component torus or in
two adjacent component tori. Now if (x1, y1) and (x2, y2) are in the same component
torus, let K denote that component torus; if (x1, y1) and (x2, y2) are in two adjacent
component tori, let K be the torus obtained by vertically tiling those two component
tori; let Ĝ be the same as G. By using the observation in the previous paragraph, we
can readily prove that dG((x1, y1), (x2, y2)) ≥ t. Thus G is t-interleaved.

4.2. Constructing the zigzag row. We presented three rules on devising a
zigzag row in the previous subsection. But specifically, how can one construct a zigzag
row that follows all those rules? In this subsection, we present such constructions.

Before the formal presentation, let us go over a few concepts. An offset sequence
is a string of P ’s and Q’s, where P and Q are strings of integers depending on t. For
example, when t = 5, P =“5, 6” and Q =“5, 5, 6.” Then an offset sequence “PPQ”
can also be written as “5, 6, 5, 6, 5, 5, 6.” Let us also express the offset sequence “PPQ”
as “s0, s1, s2, s3, s4, s5, s6,” where s0 = 5, s1 = 6, . . . , s6 = 6. Then for i = 0, 1, . . . , 6
we will call si the (i + 1)th element of the offset sequence. Also, we will say that s2

is the first element of a P , because it is the first element of the second P in the offset
sequence. For the same reason, s0 is the first element of a P (this time, the first P in
the offset sequence), s1 is the second (or last) element of a P (the first P in the offset
sequence), s4 is the first element of a Q, and so on.

Now we begin the formal presentation of the constructions. Let B be an l0 × l2
torus that is t-interleaved by Construction 3.1, so l0 = |St| + 1. Let H be an l1 × l2

OPTIMAL INTERLEAVING ON TORI 865

torus obtained by tiling z copies of B vertically, so l1 = zl0 = z(|St| + 1). Let
S =“s0, s1, . . . , sl2−1” be the offset sequence utilized by Construction 3.1 when it was
t-interleaving B. We say that the offset sequence S consists of p P ’s and q Q’s, where
we require p > 0 and q > 0. We require that in the offset sequence the P ’s and Q’s be
interleaved very evenly. To be specific, in the offset sequence, between any two nearby
P ’s (including between the last P and the first P , because we see the offset sequence
as being toroidal), there must be either
 q

p� or � q
p� consecutive Q’s; and between any

two nearby Q’s (including between the last Q and the first Q), there must be either

p
q � or �p

q � consecutive P ’s. Also, we require the offset sequence to start with a P
and to end with a Q. For example, an offset sequence consisting of three P ’s and
five Q’s that satisfies the above requirements is “PQQPQQPQ.” Let m = t−1

2 . Let
L = m + m
p

q � if p ≥ q, and let L = m + (m − 1)
 q
p� if p < q. Below we present

two constructions—Constructions 4.1 and 4.2—for constructing a zigzag row in H,
applicable respectively when p ≥ q and when p < q. If l1 is too small, there may not
exist a zigzag row in H that follows the three rules. To make our constructions work,
we require that

l1 ≥
(⌈

p

q

⌉
+ 1

)
m2 + 2m + 1

if p ≥ q, and also that

l1 ≥
(⌈

q

p

⌉
+ 1

)
m2 + m +

(
2 −

⌈
q

p

⌉)

if p < q. Note that the constructed zigzag row is denoted by {(a0, 0), (a1, 1), . . . ,
(al2−1, l2 − 1)}. Also note that both constructions require t > 3. The analysis for the
case t = 3, a somewhat special case, is presented in Appendix I (section 7).

Construction 4.1. Constructing a zigzag row in H, when t is odd, t > 3, and
p ≥ q > 0.

1. Let sx1 , sx2 , . . . , sxp+q be the integers such that 0 = x1 < x2 < · · · < xp+q =
l2 −m− 1 and each sxi (1 ≤ i ≤ p + q) is the first element of a P or Q in the offset
sequence S.

Let ax1 = L. For i = 2 to p+ q, if sxi−1 is the first element of a Q, let axi = L.
For i = 2 to p+ q, if sxi−1

is the first element of a P , then let axi = axi−1 −m.
2. For i = 2 to m and for j = 1 to p + q, let axj+i−1 = axj+i−2 + L.
3. Let sy1 , sy2 , . . . , syq be the integers such that y1 < y2 < · · · < yq = l2 − 1 and

each syi (1 ≤ i ≤ q) is the last element of a Q in the offset sequence S.
For i = 1 to q, let ayi = mL + m.
Now we have fully determined the zigzag row, {(a0, 0), (a1, 1), . . . , (al2−1,

l2 − 1)}, in the torus H.
The zigzag row constructed by Construction 4.1 has a quite regular structure.

We show it with an example.
Example 4.2. We use this example to illustrate Construction 4.1. In this example,

t = 5, and B is an 14 × 18 torus as shown in Figure 4.2(a). B is t-interleaved by
Construction 3.1 by using the offset sequence S =“PPPQPPPQ”=“5, 6, 5, 6, 5, 6,
5, 5, 6, 5, 6, 5, 6, 5, 6, 5, 5, 6.” The torus H is shown in Figure 4.2(b). H is an 28×18
torus obtained by tiling two copies of B vertically. The rest of the parameters used by
Construction 4.1 are p = 6, q = 2, m = 2, and L = 8. It is not difficult to verify that
the zigzag row in H constructed by Construction 4.1 is {(8, 0), (16, 1), (6, 2), (14, 3),
(4, 4), (12, 5), (2, 6), (10, 7), (18, 8), (8, 9), (16, 10), (6, 11), (14, 12), (4, 13), (12, 14),

866 A. JIANG, M. COOK, AND J. BRUCK

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

H(b)

P P P Q P P P Q

10

11

12

13

10

11

12

13

9

0

1

2

3

4

5

6

7

8

9

11

12

13

10

0

1

2

3

4

5

6 0

1

2

4

5

6

0

1

2

3

4

5

6 0

1

3

4

5

1

2

3

4

5

6 0

1

2

3

4

5 0

1

2

3

4

5

7

8

9

10

11

12

13

3

7

8

9

10

11

12

13

7

8

9

10

11

12

13

6

7

8

9

10

11

12

13

2

7

8

9

11

12

13

10

6

7

8

9

10

11

12

13

6

7

8

9

10

11

12

13

9

0

0

1

2

3

4

5

6

7

8

9

11

12

13

10

0

1

2

3

4

5

6 0

1

2

4

5

6

0

1

2

3

4

5

6 0

1

3

4

5

1

2

3

4

5

6 0

1

2

3

4

5 0

1

2

3

4

5

7

8

9

10

11

12

13

3

7

8

9

10

11

12

13

7

8

9

10

11

12

13

6

7

8

9

10

11

12

13

2

7

8

9

11

12

13

10

6

7

8

9

10

11

12

13

6

7

8

9

10

11

12

13

0

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

(a) B

9

10

11

12

130

1

2

3

4

5

6

7

8

9

11

12

13

10

0

1

2

3

4

5

6 0

1

2

4

5

6

0

1

2

3

4

5

6 0

1

3

4

5

1

2

3

4

5

6 0

1

2

3

4

5 0

1

2

3

4

5

7

8

9

10

11

12

13

3

7

8

9

10

11

12

13

7

8

9

10

11

12

13

6

7

8

9

10

11

12

13

2

7

8

9

11

12

13

10

6

7

8

9

10

11

12

13

6

7

8

9

10

11

12

13

0

Fig. 4.2. An example of Construction 4.1.

OPTIMAL INTERLEAVING ON TORI 867

(2, 15), (10, 16), (18, 17)}. In Figure 4.2(b), the vertices in the zigzag row are shown
in solid circles, solid hexagons, or dashed circles.

Now we briefly analyze the structure of the zigzag row in H. Let us write the
offset sequence S as S =“s0, s1, . . . , s17.” Then for i = 0, 1, . . . , 17, we can see that si
actually shows the offset between the ith column and the (i + 1)th column of H. In
other words, if we shift the integers in the ith column of H down (toroidally) by si
units, we get the (i + 1)th column of H, so we can think of si as spanning from the
ith column to the (i + 1)th column of H. And let us say that a P or Q in the offset
sequence spans the columns that all its elements span. Then, since the offset sequence
here is “PPPQPPPQ,” the range spanned by each is as indicated in Figure 4.2(b).

Let us observe the vertices in the zigzag row that are in solid circles. If we
indicate them by (ax1

, x1), (ax2 , x2), . . . , (axp+q , xp+q), where x1 < x2 · · · < xp+q,
then we can see that sx1 , sx2 , . . . , sxp+q are the first elements of the P ’s and Q’s in the
offset sequence (namely, each of them is the first element of a P or a Q in the offset
sequence). And we can see that the vertices in solid circles have a regular structure:
The vertical position climbs up by m = 2 units from one vertex to the next, and
drops to a base-position if it is between the spanned ranges of a Q and a P . Now
let us observe the vertices in solid hexagons. We can see that they correspond to
the second elements of the P ’s and Q’s in the offset sequence, and they also have
a regular structure. To be specific, the positions of the vertices in solid hexagons
can be obtained by shifting the positions of the vertices in solid circles horizontally
by one unit and then down by L = 8 units. In general, those vertices in a zigzag
row that correspond to the (i + 1)th elements of P ’s and Q’s can be obtained by
shifting the positions of the vertices that correspond to the ith elements of P ’s and
Q’s horizontally by one unit and down by L unit (here 0 ≤ i < m). As for the
vertices in dashed circles, they correspond to the last elements of the Q’s in the offset
sequence, and they are all in the same row. The above observations can be extended
in an obvious way to the general outputs of Construction 4.1.

Now we present the second construction.
Construction 4.2. Constructing a zigzag row in H, when t is odd, t > 3, and

0 < p < q.
1. Let sx1 , sx2 , . . . , sxp+q be the integers such that 0 = x1 < x2 < · · · < xp+q =

l2 −m− 1, and each sxi (1 ≤ i ≤ p + q) is the first element of a P or Q in the offset
sequence S.

Let ax1 = L.
For i = 2 to p + q, if sxi is the first element of a P , let axi = L; if sxi−1 is the

first element of a P , let axi = L−
 q
p�(m− 1); otherwise, let axi = axi−1 + (m− 1).

2. For i = 2 to m and for j = 1 to p + q, let axj+i−1 = axj+i−2 + L.
3. Let sy1

, sy2
, . . . , syq

be the integers such that y1 < y2 < · · · < yq = l2 − 1 and
each syi

(1 ≤ i ≤ q) is the last element of a Q in the offset sequence S.
For i = 1 to q, let ayi = ayi−1 + L.
Now we have fully determined the zigzag row, {(a0, 0), (a1, 1), . . . , (al2−1,

l2 − 1)}, in the torus H.
Like Construction 4.1, the zigzag row constructed by Construction 4.2 also has a

regular (and similar) structure.
Theorem 4.4. The zigzag rows constructed by Constructions 4.1 and 4.2 follow

all the three rules listed above (Rules 1, 2, and 3).
The above theorem can be proved with straightforward verification. So we skip

its proof.

868 A. JIANG, M. COOK, AND J. BRUCK

4.3. Optimal interleaving when t is odd. In this subsection, we prove that
when t is odd, for a torus whose size is large enough in both dimensions, its t-
interleaving number is at most one more than the sphere packing lower bound, |St|.
We also present the corresponding optimal t-interleaving construction.

Lemma 4.5. In equation set (3.1) (the equation set in Construction 3.1), let the
values of t, m, and l2 be fixed. Let p = p0, q = q0 be a solution that satisfies the
equation set (3.1). Then, another solution, p = p1, q = q1, also satisfies the equation
set (3.1) if and only if there exists an integer c such that p1 = p0 + c(m + 1)(2m2 +
2m + 2) ≥ 0 and q1 = q0 − cm(2m2 + 2m + 2) ≥ 0.

Proof. We can easily prove that “p = p1, q = q1 is a solution that satisfies the
equation set (3.1) if p1 = p0 + c(m + 1)(2m2 + 2m + 2) ≥ 0 and q1 = q0 − cm(2m2 +
2m + 2) ≥ 0 for some integer c,” by plugging p = p1, q = q1 into the equation set
(3.1). Now let us prove the other direction.

Assume that p = p1, q = q1 is a solution that satisfies the equation set (3.1). Let
x = p1 − p0 and y = q1 − q0. By the first equation in (3.1), p1m + q1(m + 1) =
l2 = p0m + q0(m + 1), and therefore (p1 − p0)m = −(q1 − q0)(m + 1), which is
xm = −y(m + 1). So x is a multiple of m + 1, and y is a multiple of m. Thus there
exists an integer a such that x = a(m + 1) and y = −am.

Now let us look at the second equation in (3.1), p1(2m
2 +m+1)+q1(2m

2 +3m+
2) ≡ 0 mod (2m2 +2m+2). Note that 2m2 +m+1 ≡ −(m+1) mod (2m2 +2m+2)
and 2m2 + 3m+ 2 ≡ m mod (2m2 + 2m+ 2). So −p1(m+ 1) + q1m ≡ 0 mod (2m2 +
2m + 2). Since p1 = p0 + x = p0 + a(m + 1) and q1 = q0 + y = q0 − am, we get
−[p0 + a(m+ 1)](m+ 1) + (q0 − am)m ≡ [−p0(m+ 1) + q0m]− [a(m+ 1)2 + am2] ≡
−a(2m2 + 2m+ 1) ≡ 0 mod (2m2 + 2m+ 2). Since 2m2 + 2m+ 1 and 2m2 + 2m+ 2
must be relatively prime, we get 2m2+2m+2|a. So there exists an integer c such that
a = c(2m2+2m+2). Then p1 = p0+x = p0+a(m+1) = p0+c(m+1)(2m2+2m+2) ≥ 0
and q1 = q0+y = q0−am = q0−cm(2m2+2m+2) ≥ 0, these two inequalities coming
from the last condition in (3.1). That completes the proof of the other direction of
this lemma.

Lemma 4.6. In equation set (3.1) (the equation set in Construction 3.1), let
the values of t, m, and l2 be fixed. Let ΔP = (m + 1)(2m2 + 2m + 2) and ΔQ =
m(2m2 + 2m + 2). If there exists a solution of p and q that satisfies the equation set
(3.1), then there exists a solution p = p∗, q = q∗ that satisfies not only (3.1) but also
one of the following two inequalities:

l2
2m + 1

− ΔQ

2
< q∗ ≤ p∗ <

l2
2m + 1

+
ΔP

2
,(4.1)

l2
2m + 1

− ΔP

2
≤ p∗ < q∗ ≤ l2

2m + 1
+

ΔQ

2
.(4.2)

Proof. Assume that there is a solution p= p0, q= q0 that satisfies equation set
(3.1). Trivially, either p0 ≥ q0 or p0 <q0. First, let us assume that p0 ≥ q0. If p0 ≥ l2

2m+1

+ ΔP , then q0 = l2−p0m
m+1 ≤ l2−[l2/(2m+1)+ΔP]m

m+1 = l2−[l2/(2m+1)+(m+1)(2m2+2m+2)]m
m+1 =

l2
2m+1 −ΔQ (and vice versa), so then by Lemma 4.5, p = p0 −ΔP , q = q0 +ΔQ is also

a solution to (3.1), and, what is more, p0 − ΔP ≥ l1
2m+1 ≥ q0 + ΔQ. Based on the

above observation, we can see that there must exist a solution p = p1, q = q1 such that
l2

2m+1−ΔQ < q1 ≤ p1 < l2
2m+1+ΔP . If p1 < l2

2m+1+ΔP

2 , then q1 > l2
2m+1−

ΔQ

2 , so then

we can simply let p∗ = p1 and let q∗ = q1. If p1 ≥ l2
2m+1 + ΔP

2 , then q1 ≤ l2
2m+1 −

ΔQ

2 ,

OPTIMAL INTERLEAVING ON TORI 869

so then we will let p∗ = p1 − ΔP and let q∗ = q1 + ΔQ, in which case we will have
l2

2m+1 − ΔP

2 ≤ p∗ < l2
2m+1 < q∗ ≤ l2

2m+1 +
ΔQ

2 . So when p0 ≥ q0, this lemma holds.
The case that p0 < q0 can be analyzed similarly.

Theorem 4.7. Let t be a positive odd integer. Let m = t−1
2 . Define A as

max
{ (⌈ l2+(m+1)(2m+1)(m2+m+1)

l2−m(2m+1)(m2+m+1)

⌉
+ 1

)
m2 + 2m + 1,(⌈ l2+m(2m+1)(m2+m+1)

l2−(m+1)(2m+1)(m2+m+1)

⌉
+ 1

)
m2 + m + 2 −

⌈ l2+m(2m+1)(m2+m+1)
l2−(m+1)(2m+1)(m2+m+1)

⌉}
.

Then when

l2 ≥ (m + 1)(2m + 1)(m2 + m + 1) + 1

and

l1 ≥ (2m2 + 2m + 1)

(⌈
A

2m2 + 2m + 2

⌉
(2m2 + 2m + 2) − 2

)
,

the t-interleaving number of an l1 × l2 (or l2 × l1) torus is either |St| or |St| + 1.
Proof. This theorem is trivially correct when t = 1. When t = 3, by the result

of Appendix I (Theorem 7.1), we can also easily verify that this theorem is correct.
Thus in the following analysis, we assume that t > 3.

Let us first define a few variables for the ease of expression. Let ΔP = (m +

1)(2m2 + 2m + 2), ΔQ = m(2m2 + 2m + 2), B = l2+(m+1)(2m+1)(m2+m+1)
l2−m(2m+1)(m2+m+1) , C =

l2+m(2m+1)(m2+m+1)
l2−(m+1)(2m+1)(m2+m+1) , D = (
B� + 1)m2 + 2m + 1, and E = (
C� + 1)m2 + m +

2 −
C�. Then clearly A = max{D,E}.
When l2 ≥ (m+1)(2m+1)(m2+m+1)+1 = (m+ 1

2)(m+1)(2m2+2m+2)+1 >
m(m+1)(2m2+2m+2) = � t

2�(�
t
2�+1)(|St|+1), by Theorem 3.4, there exists at least

one solution of p and q that satisfies equation set (3.1). Then by Lemma 4.6, there

exists a solution p = p∗, q = q∗ to (3.1) that satisfies either the condition l2
2m+1−

ΔQ

2 <

q∗ ≤ p∗ < l2
2m+1 + ΔP

2 or the condition l2
2m+1 − ΔP

2 ≤ p∗ < q∗ ≤ l2
2m+1 +

ΔQ

2 . We
analyze the two cases below.

• Case 1. There is a solution p = p∗, q = q∗ to equation set (3.1) that satisfies

the condition l2
2m+1 − ΔQ

2 < q∗ ≤ p∗ < l2
2m+1 + ΔP

2 . We use Construction
3.1 to t-interleave an (|St| + 1) × l2 torus G1. Note that when l2 ≥ (m +

1)(2m + 1)(m2 + m + 1) + 1, l2
2m+1 − ΔQ

2 > 0, so q∗ > 0. Also note that
p∗

q∗ < l2/(2m+1)+ΔP /2
l2/(2m+1)−ΔQ/2 = B, so D ≥ (
p∗

q∗ � + 1)m2 + 2m + 1. Let G2 be a

[
 D
|St|+1�(|St|+1)]×l2 torus obtained by tiling
 D

|St|+1� copies of G1 vertically.

We use Construction 4.1 to find a zigzag row in G2; then by removing the
zigzag row in G2, we get a torus G3 whose size is [
 D

|St|+1�(|St|+ 1)− 1]× l2.

Clearly the number of rows in G1, |St| + 1, and the number of rows in G3,

 D
|St|+1�(|St| + 1) − 1, are relatively prime. So for any l0 × l2 torus G where

l0 ≥ (|St|+1−1)(
 D
|St|+1�(|St|+1)−1−1) = |St|(
 D

|St|+1�(|St|+1)−2), it can

be obtained by tiling copies of G1 and G3 vertically, and so by Lemma 4.3,
G is t-interleaved, using |St| + 1 colors.

• Case 2. There is a solution p = p∗, q = q∗ to equation set (3.1) that satisfies

the condition l2
2m+1 − ΔP

2 ≤ p∗ < q∗ ≤ l2
2m+1 +

ΔQ

2 . We use Construction 3.1
to t-interleave an (|St| + 1) × l2 torus G1. Note that when l2 ≥ (m + 1) ·

870 A. JIANG, M. COOK, AND J. BRUCK

(2m + 1)(m2 + m + 1) + 1, l2
2m+1 − ΔP

2 > 0, so p∗ > 0. Also note that
q∗

p∗ ≤ l2/(2m+1)+ΔQ/2
l2/(2m+1)−ΔP /2 = C, so E ≥ (
 q∗

p∗ �+1)m2+m+(2−
 q∗

p∗ �). Let G2 be an

[
 E
|St|+1�(|St|+1)]×l2 torus obtained by tiling
 E

|St|+1� copies of G1 vertically.

We use Construction 4.2 to find a zigzag row in G2; then by removing the
zigzag row in G2, we get a torus G3 whose size is [
 E

|St|+1�(|St|+ 1)− 1]× l2.

Clearly the number of rows in G1, |St| + 1, and the number of rows in G3,

 E
|St|+1�(|St| + 1) − 1, are relatively prime. So for any l0 × l2 torus G where

l0 ≥ (|St|+1−1)(
 E
|St|+1�(|St|+1)−1−1) = |St|(
 E

|St|+1�(|St|+1)−2), it can

be obtained by tiling copies of G1 and G3 vertically, and so by Lemma 4.3,
G is t-interleaved, using |St| + 1 colors.

Now let G be an l1 × l2 torus, where l2 ≥ (m + 1)(2m + 1)(m2 + m + 1) + 1 and

l1 ≥ (2m2 +2m+1)(
 A
2m2+2m+2�(2m2 +2m+2)−2) = |St|(
max{D,E}

|St|+1 �(|St|+1)−2).

Based on the analysis for Cases 1 and 2, we know that G’s t-interleaving number is
at most |St| + 1. By the sphere-packing lower bound, G’s t-interleaving number is at
least |St|. So G’s t-interleaving number is either |St| or |St| + 1.

For easy reference, we show the method for optimally t-interleaving a large torus
as a construction below. Note that the construction below is applicable only when
t ≥ 5 (and, by default, t is odd). When t = 1, any torus can be t-interleaved with
1 integer in a trivial way. When t = 3, the torus can be t-interleaved with the
construction to be presented in Appendix I.

Construction 4.3. Optimal t-interleaving on a large torus.
Input: An odd integer t such that t ≥ 5. An integer m such that m = t−1

2 . An
l1 × l2 torus, where

l2 ≥ (m + 1)(2m + 1)(m2 + m + 1) + 1

and

l1 ≥ (2m2 + 2m + 1)

(⌈
A

2m2 + 2m + 2

⌉
(2m2 + 2m + 2) − 2

)
.

The parameter A is as defined in Theorem 4.7.
Output: An optimal t-interleaving on the l1 × l2 torus.
Construction:
1. If both l1 and l2 are multiples of |St|, then the l1 × l2 torus’ t-interleaving

number is |St|. In this case, we use Construction 2.2 to t-interleave the l1 × l2 torus
with |St| distinct integers.

2. If either l1 or l2 is not a multiple of |St|, then the l1 × l2 torus’ t-interleaving
number is |St|+ 1. In this case, we t-interleave the torus with |St|+ 1 integers in the
following way: First, we t-interleave an (|St|+1)× l2 torus, B, by using Construction
3.1 (note that |St|+1 = 2m2 +2m+2); second, we let H be an [
 A

|St|+1�(|St|+1)]× l2

torus, which is obtained by tiling
 A
|St|+1� copies of B vertically, and use Construction

4.1 or Construction 4.2 (depending on which is applicable) to find a zigzag row in
H; third, we remove the zigzag row in H to get a [
 A

|St|+1�(|St| + 1) − 1] × l2 torus

T ; and finally, we find nonnegative integers x and y such that l1 = x(|St| + 1) +
y[
 A

|St|+1�(|St| + 1) − 1] and get an l1 × l2 torus by tiling x copies of B and y copies

of T vertically. The resulting interleaving on the l1 × l2 torus is a t-interleaving.

4.4. Optimal interleaving when t is even. When t is even, the optimal t-
interleaving on large tori can be analyzed in a very similar way as in the case of odd

OPTIMAL INTERLEAVING ON TORI 871

t. The main result for even t is shown in the following theorem. For succinctness,
we leave the major steps and intermediate results of the corresponding analysis to
Appendix II.

Theorem 4.8. Let t be a positive even integer. Let m = t
2 . Define A as

max
{ (⌈ 2l2+(m+1)(2m+1)(2m2+1)

2l2−m(2m+1)(2m2+1)

⌉
+ 1

)
m2 +

(
3 −

⌈ 2l2+(m+1)(2m+1)(2m2+1)
2l2−m(2m+1)(2m2+1)

⌉)
m− 3,(⌈ 2l2+m(2m+1)(2m2+1)

2l2−(m+1)(2m+1)(2m2+1)

⌉
+ 1

)
m2 +

(
3 −

⌈ 2l2+m(2m+1)(2m2+1)
2l2−(m+1)(2m+1)(2m2+1)

⌉)
m− 1

− 2
⌈ 2l2+m(2m+1)(2m2+1)

2l2−(m+1)(2m+1)(2m2+1)

⌉}
.

Then when

l2 >
(m + 1)(2m + 1)(2m2 + 1)

2

and

l1 ≥ 2m2

(⌈
A

2m2 + 1

⌉
(2m2 + 1) − 2

)
,

the t-interleaving number of an l1 × l2 (or l2 × l1) torus is either |St| or |St| + 1.

5. General bounds on interleaving numbers. We have shown that for a
torus whose size is large enough in both dimensions (Theorems 4.7 and 4.8), its t-
interleaving number is at most |St|+1. If the requirement on the torus’ size is loosened
to some extent (Theorem 3.7), then its t-interleaving number is at most |St|+2. Does
that mean that for a torus of any size its t-interleaving number is always at most |St|
plus a small constant? The answer is no. The following theorem shows bounds on
t-interleaving numbers.

Theorem 5.1. (1) The t-interleaving numbers of two-dimensional tori are |St|+
O(t2) in general. And that upper bound is tight, even if the number of rows or the
number of columns of the torus approaches infinity. (2) When both l1 and l2 are of
the order Ω(t2), the t-interleaving number of an l1 × l2 torus is |St| + O(t).

Proof. (1) First, let us show that the t-interleaving numbers of two-dimensional
tori are |St| + O(t2) in general. Let G be an l1 × l2 torus. First we assume that t is
even and l1 ≥ t, l2 ≥ t. Let K1 = � l1

t �, K2 = � l2
t �. We see G as being tiled by small

blocks in the way shown in Figure 5.1, where the blocks are labeled by A or B. Note

A B A A B

B A B A B

B

B A A

B

A

A B A A B

B A B

1l

l2

G

Fig. 5.1. See G as being tiled by small blocks.

872 A. JIANG, M. COOK, AND J. BRUCK

that two blocks both labeled A are not necessarily of the same size, nor are two blocks
both labeled B necessarily of the same size. For every block labeled as A (respectively,
B), the four blocks around it (to its left, right, above, and below) are all labeled as B
(respectively, A). Each block consists of either
 l1

2K1
� or � l1

2K1
� rows and either
 l2

2K2
�

or � l2
2K2

� columns. Note that
 l1
2K1

� =
K1t+(l1 mod t)
2K1

� = t
2 +
 l1 mod t

2K1
�, � l1

2K1
� =

t
2 + � l1 mod t

2K1
�,
 l2

2K2
� = t

2 +
 l2 mod t
2K2

�, and � l2
2K2

� = t
2 + � l2 mod t

2K2
�. We see each block

as a torus of its corresponding size. Thus for a block whose size is α×β, its vertices are
denoted by (i, j) for i = 0, 1, . . . , α− 1 and j = 0, 1, . . . , β− 1, just as a torus’ vertices
are normally denoted. Now we interleave all the blocks following these two rules: (i)
only integers in the set {1, 2, . . . ,
 l1

2K1
� ·
 l2

2K2
�} are used to interleave any block A,

and only integers in the set {
 l1
2K1

� ·
 l2
2K2

�+1,
 l1
2K1

� ·
 l2
2K2

�+2, . . . , 2 ·
 l1
2K1

� ·
 l2
2K2

�}
are used to interleave any block B; (ii) for all the blocks labeled by A (respectively,
B) and for any i and j, the vertices denoted by (i, j) in them (provided they exist) all
have the same color. It is very easy to see that G is t-interleaved in this way, using
2 ·
 l1

2K1
� ·
 l2

2K2
� = 2(t

2 +
 l1 mod t
2K1

�)(t
2 +
 l2 mod t

2K2
�) ≤ 2(t

2 +
 t−1
2 �)(t

2 +
 t−1
2 �) = 2t2 =

|St| + 3
2 t

2 distinct colors. So G’s t-interleaving number is |St| + O(t2).
Now we assume that t is even and l1 < t or l2 < t. Without loss of generality, let

us say l1 < t. Then we see G as being tiled horizontally by smaller tori A1, A2, . . . , An,
where each Ai (for i = 1, 2, . . . , n− 1) is an l1 × t torus, and An is an l1 × (l2 mod t)
torus. We interleave A1, A2, . . . , An−1 in exactly the same way and assign l1 × t
distinct colors to each of them. We interleave An with a disjoint set of l1 × (l2 mod t)
colors. Clearly G is t-interleaved in this way, using l1 · t+ l1 · (l2 mod t) = |St|+O(t2)
distinct colors. So again, G’s t-interleaving number is |St| + O(t2).

Finally we assume that t is odd. We can (t+1)-interleave G using |St+1|+O((t+

1)2) = (t+1)2

2 +O((t+1)2) = t2+1
2 +O(t2) = |St|+O(t2) distinct colors. t+1 is even,

and a (t+ 1)-interleaving is also a t-interleaving. So G’s t-interleaving number is still
|St| + O(t2).

Now let us show that the above bound on t-interleaving numbers, |St|+O(t2), is
tight, no matter whether t is even or odd. Consider an l1 × l2 torus, where l1 is the
largest even integer that is no greater than � 3

2 t� and l2 is any integer greater than or
equal to � 3

4 t�. We are first going to show that a t-interleaving can place a color at
most twice in any � 3

4 t� consecutive columns of the torus.
Assume that a t-interleaving places the same color on three vertices in � 3

4 t� con-
secutive columns of the torus. Without loss of generality, let us say that those three
vertices are (0, 0), (a, b), and (c, d), where 0 ≤ b ≤ � 3

4 t� − 1 and 0 ≤ d ≤ � 3
4 t� − 1;

see Figure 5.2. Since the interleaving is a t-interleaving, the Lee distance between
any two of those three vertices is at least t. Let e = l1

2 and f = � 3
4 t� − 1. It is

not difficult to see that the Lee distance between (a, b) and (e, f) is at most min{(e−
a) mod l1, (a−e) mod l1}+(f−b) = l1

2 −min{(0−a) mod l1, (a−0) mod l1}+(f−b)

= l1
2 + f − [min{(0 − a) mod l1, (a− 0) mod l1} + b]. Since the Lee distance between

(0, 0) and (a, b) is at most min{(0 − a) mod l1, (a − 0) mod l1} + b, we know that
min{(0 − a) mod l1, (a − 0) mod l1} + b ≥ t. Therefore the Lee distance between
(a, b) and (e, f) is at most l1

2 + f − t ≤ � 3
2 t�/2 + � 3

4 t� − 1 − t < t
2 . Similarly, the

Lee distance between (c, d) and (e, f) is also less than t
2 . Therefore the Lee distance

between (a, b) and (c, d) is less than t, which is a contradiction. So a t-interleaving
can place each color on at most two vertices in � 3

4 t� consecutive columns of the
torus.

Any � 3
4 t� consecutive columns of the l1 × l2 torus contain l1 × � 3

4 t� ≥ (3
2 t− 2) ×

OPTIMAL INTERLEAVING ON TORI 873

l 2

(0,0)

(a,b)

(c,d)

(e,f)

l 1

3
4

t

Fig. 5.2. Four vertices in an l1 × l2 torus.

(3
4 t − 1) = 9

8 t
2 − 3t + 2 vertices, where each color is placed at most twice by a t-

interleaving. Therefore the t-interleaving number of the torus is at least
9
8 t

2−3t+2

2 =
9
16 t

2 − 3
2 t + 1 = t2+1

2 + 1
16 t

2 − 3
2 t + 1

2 ≥ |St| + 1
16 t

2 − 3
2 t + 1

2 = |St| + Θ(t2), which
matches the upper bound |St|+O(t2). Since here l2 can be any integer that is no less
than � 3

4 t�, the upper bound is tight even if the number of columns (or equivalently,
the number of rows) of the torus approaches infinity. The first part of this theorem
has been proved by now.

(2) Let us prove the second part of this theorem. In the previous part of this proof,
a method for t-interleaving an l1 × l2 torus has been proposed for the case when t is
even and l1 ≥ t, l2 ≥ t. That method uses 2(t

2 +
 l1 mod t
2K1

�)(t
2 +
 l2 mod t

2K2
�) colors.

Note that K1 = � l1
t � and K2 = � l2

t �. When both l1 and l2 are of the order Ω(t2),

both K1 and K2 are of the order of Ω(t), and then 2(t
2 +
 l1 mod t

2K1
�)(t

2 +
 l2 mod t
2K2

�) =

2(t
2 + O(1))(t

2 + O(1)) = t2

2 + O(t) = |St| + O(t). When t is odd, we can t-interleave
an l1 × l2 torus, where l1 = Ω(t2) = Ω((t + 1)2) and l2 = Ω(t2) = Ω((t + 1)2), by

(t+1)-interleaving it using |St+1|+O(t+1) = (t+1)2

2 +O(t) = t2+1
2 +O(t) = |St|+O(t)

colors. So no matter whether t is even or odd, when both l1 and l2 are of the order
Ω(t2), the t-interleaving number of an l1 × l2 torus is |St| + O(t).

6. Discussion. In this paper, we have studied the t-interleaving problem for two-
dimensional tori. It has applications in both distributed data storage and burst error
correction. This is the first time that the t-interleaving problem has been studied
for graphs with modular structures, and consequently, novel interleaving methods
different from traditional techniques (e.g., the widely used lattice-interleaver schemes
in early works [8], [10], [17]) have been developed for optimal t-interleaving. The
necessary and sufficient condition for tori that can be perfectly t-interleaved was
proved, and the corresponding perfect t-interleaving construction was presented, based
on the method of sphere-packing. The most important contribution of this paper is
to prove that for tori whose sizes are large in both dimensions, which constitute by
far the majority of all existing cases, their t-interleaving numbers are at most one
more than the sphere-packing lower bound. Optimal t-interleaving constructions for
such tori were presented, based on the method of removing-a-zigzag-row and tori-
tiling. Then, some additional bounds on the t-interleaving numbers were shown.
Those results together give a general characterization of the t-interleaving problem
for two-dimensional tori.

874 A. JIANG, M. COOK, AND J. BRUCK

The importance of the t-interleaving method based on removing-a-zigzag-row and
tori-tiling is not limited to the results in Theorems 4.7 and 4.8. Those two theorems
should be seen as a lower bound for the performance of the t-interleaving method.
By analyzing the performance of the corresponding t-interleaving constructions more
carefully, and furthermore, by keeping the main idea of the t-interleaving method but
tuning its specific parameters on a case-by-case basis, we can improve the bounds
derived in Theorems 4.7 and 4.8. The content of Appendix I can serve as an example
in this regard. What is more, the t-interleaving method can be used to optimally
t-interleave some tori whose sizes do not fall within the derived bounds.

We are interested in studying the t-interleaving problem for higher-dimensional
tori, as well as finding more t-interleaving constructions. Those remain as our future
research.

7. Appendix I. The optimal t-interleaving construction for odd t, Construction
4.3, if applicable only when t ≥ 5. In this appendix, we present the optimal t-
interleaving construction when t = 3, thus completing the result for t-interleaving on
large tori while t is odd. We also use this case, t = 3, as an example to show how
previous results can be improved if the t-interleaving problem is analyzed case by case
and more carefully.

We will show that when l1 ≥ 20 and l2 ≥ 15 (or equivalently, when l1 ≥ 15 and
l2 ≥ 20), an l1 × l2 torus’ 3-interleaving number is either 5 or 6. Note that |S3| = 5.
Below we present an construction that can optimally 3-interleave any l1 × l2 torus
where l1 ≥ 20 and l2 ≥ 15, except when l2 = 19.

Construction 7.1. Optimally 3-interleave an l1 × l2 torus, where l1 ≥ 20, l2 ≥ 15,
and l2 �= 19.

1. If both l1 and l2 are multiples of 5, then the l1 × l2 torus’ 3-interleaving
number is |St| = 5. In this case, 3-interleave the l1 × l2 torus with five colors by using
Construction 2.2.

If l1 or l2 is not a multiple of 5, then use steps 2–4 below to 3-interleave the
l1 × l2 torus with six colors.

2. Find nonnegative integers x1 and x2 such that l1 = 5x1+6x2. Find nonnegative
integers y1, y2, and y3 such that l2 = 5y1 + 8y2 + 12y3.

3. There are six tori shown in Figure 7.1(a): a 5 × 5 torus A, a 5 × 8 torus B, a
5 × 12 torus C, a 6 × 5 torus A′, a 6 × 8 torus B′, and a 6 × 12 torus C ′.

Get a 5× l2 torus M1 by tiling horizontally y1 copies of A, y2 copies of B, and
y3 copies of C (whose order can be arbitrary).

Get a 6 × l2 torus M2 by tiling horizontally y1 copies of A′, y2 copies of B′,
and y3 copies of C ′, whose order needs to satisfy this rule: for i = 1 to y1 + y2 + y3,
if the ith module-torus in M1 is an A (respectively, a B or a C), then the ith module
in M2 is an A′ (respectively, a B′ or a C ′).

4. Get an l1× l2 torus by tiling x1 copies of M1 and x2 copies of M2 (whose order
can be arbitrary) vertically. The interleaving on the l1 × l2 torus is a 3-interleaving.

Example 7.1. We use Construction 7.1 to 3-interleave an l1 × l2 torus, where
l1 = 11 and l2 = 25. l1 is not a multiple of |St|, so the torus’ 3-interleaving number
is greater than 5. Since l1 = 5 + 6 and l2 = 5 + 8 + 12, the variables in Construction
7.1 can be set as follows: x1 = 1, x2 = 1, y1 = 1, y2 = 1, and y3 = 1. Furthermore,
we can let the torus M1 have the form of [ABC] and let the torus M2 have the form
of [A′B′C ′]. We then tile M1 and M2 to get the l1 × l2 torus, which is of the form

[A B C
A′ B′ C′]. This 3-interleaved torus is shown in Figure 7.1(b). The interleaving

used 6 = |S3| + 1 colors.

OPTIMAL INTERLEAVING ON TORI 875

1

2

2

3

4 1

2

3

30

4

5

5

0

1

0

1

2

3

5

0

5

0

1

2

A

2

1

3

2

3

4

1

5

1

3

4

2

0 3 5 1 3

2

3

4

5

4

5

0

2

0

1

3

4

2

4

5

0

5

0

1

2

0

5

0

B

5

4

2

1

0 2 5 1 4 0 3 5 2 4 1 3

3

5

0

1

0

1

3

4

2

5

0

5

0

2

3

1

3

4

5

4

5

1

2

0

2

3

4

3

4

0

1

5

1

2

3

2

3

5

0

4

0

1

2

4

C

1

2

3

4

5

2

3

4

5

0

1

4

5

0

1

2

3

1

2

3

4

5

0

3

4

5

0

1

2

0

A
,

2

1

4

3

5

2

3

4

0

1

5

1

3

5

4

0

2

0 3 5 1 3

1

2

3

4

5

4

5

0

1

2

0

1

2

3

4

2

3

4

5

0

4

5

0

1

2

0

B
,

5

4

3

2

1

0 2 5 1 4 0 3 5 2 4 1 3

3

4

5

0

1

0

1

2

3

4

2

3

5

0

5

0

1

2

3

1

2

3

4

5

4

5

0

1

2

0

1

2

3

4

3

4

5

0

1

5

0

1

2

3

2

3

4

5

0

4

5

0

1

2

4

C
,

1

2

2

3

4 1

2

3

30

4

5

5

0

1

0

1

2

3

5

0

5

0

1

2

2

1

3

2

3

4

1

5

1

3

4

2

0 3 5 1 3

2

3

4

5

4

5

0

2

0

1

3

4

2

4

5

0

5

0

1

2

0

5

0

5

4

2

1

0 2 5 1 4 0 3 5 2 4 1 3

3

5

0

1

0

1

3

4

2

5

0

5

0

2

3

1

3

4

5

4

5

1

2

0

2

3

4

3

4

0

1

5

1

2

3

2

3

5

0

4

0

1

2

4

1

2

3

4

5

2

3

4

5

0

1

4

5

0

1

2

3

1

2

3

4

5

0

3

4

5

0

1

2

0

5

4

3

2

1

0 2 5 1 4 0 3 5 2 4 1 3

3

4

5

0

1

0

1

2

3

4

2

3

5

0

5

0

1

2

3

1

2

3

4

5

4

5

0

1

2

0

1

2

3

4

3

4

5

0

1

5

0

1

2

3

2

3

4

5

0

4

5

0

1

2

4

2

1

4

3

5

2

3

4

0

1

5

1

3

5

4

0

2

0 3 5 1 3

1

2

3

4

5

4

5

0

1

2

0

1

2

3

4

2

3

4

5

0

4

5

0

1

2

0

(a) Modules

(b) Tiling of modules

Fig. 7.1. Using modules for 3-interleaving. (a) The 6 modules, (b) tiling the modules.

Clearly, since 25 = 5 × 5 + 8 × 0 + 12 × 0, another choice for tiling the 11 × 25

torus is [A A A A A
A′ A′ A′ A′ A′].

Construction 7.1 constructs a 3-interleaved l1 × l2 torus by tiling copies of the
six module-tori shown in Figure 7.1(a). It can be readily verified that when those
six tori are tiled following the rule in Construction 7.1, the resulting interleaving on
the l1 × l2 torus is indeed a 3-interleaving. There are only a limited number of cases
to analyze for the verification, so we skip the details. We comment that Construction
7.1 does not work for the case l2 = 19, because 19 cannot be written as a linear
combination of 5, 8, and 12 with nonnegative coefficients, and therefore an l1 × 19
torus cannot be obtained by tiling the module-tori. We present the construction for
the case l2 = 19 below.

Construction 7.2. Optimally 3-interleave an l1 × 19 torus, where l1 ≥ 20.

876 A. JIANG, M. COOK, AND J. BRUCK

0

1

2

4

5

2 4 3 5 1 3 4 0 2 1 3 5 1 4

3

5

0

1

0

1

2

3

1

2

3

4

5

4

5

0

2

0

1

3

4

2

4

5

0

5

0

1

2

0

1

2

3

4

4

5

1

5

0

2

3

2

3

1

3

4

5

4

5

0

1

5

0

1

2

3

2

3

4

0

4

5

1

2

0

2

3

4

3

4

5

0

5

0

1

3

0

1

2

3

4

5

2 4 0 3 5 1 3 5 4 0 2 4 1 3 5 1 4

3

4

5

0

1

5

0

1

2

3

1

2

3

4

5

4

5

0

1

2

0

1

2

3

4

2

3

4

5

0

4

5

0

1

2

0

1

2

3

4

4

5

0

1

5

0

1

2

3

2

3

1

2

3

4

5

3

4

5

0

1

5

0

1

2

3

2

3

4

5

0

4

5

0

1

2

0

1

2

3

4

2

3

4

5

0

5

0

1

2

3

F

F

,

Fig. 7.2. Two modules used for 3-Interleaving an l1 × 19 torus, where l1 ≥ 20.

Construction: Find nonnegative integers x1 and x2 such that l1 = 5x1 + 6x2.
There are two tori shown in Figure 7.2: a 5 × 19 torus F and a 6 × 19 torus F ′.
Construct an l1 × 19 torus by tiling x1 copies of F and x2 copies of F ′ vertically
(whose order can be arbitrary). The resulting interleaving on the l1 × 19 torus is a
3-interleaving.

The correctness of Construction 4.5 can be easily verified, so we skip the details.
Based on the previous two constructions, we readily get the following conclusion for
3-interleaving.

Theorem 7.1. When l1 ≥ 20 and l2 ≥ 15, or when l1 ≥ 15 and l2 ≥ 20, an
l1 × l2 torus’ 3-interleaving number is either |S3| or |S3| + 1.

We comment that the result obtained here is comparatively better than the result
derived in section 4. For example, if Theorem 4.7 is applied for the case t = 3, then
the bound for l2 would be 19, but here our bound for l2 is 15. However, we should
notice that the t-interleaving method used here is the same as the method used for
t > 3 per se. We can see that the module-tori A, B, C in Figure 7.1(a) and F in
Figure 7.2 are obtained by removing a zigzag row from A′, B′, C ′, and F ′. The zigzag
rows are shown in circles in those two figures. Both the interleaving method here and
the method in section 4 are based on torus tiling. The improvement attained here is
made by better tuning of construction parameters and more careful analysis of the
bounds. The construction used for t = 3 does not follow all the requirements used in
section 4. For example, the zigzag row in Figure 7.2 does not follow Rule 3. In section
4, while endeavoring to optimally tune all the parameters, we also need to ensure that
the construction will work for all the cases of t > 3. If the interleaving problem is
analyzed case by case (specifically, for each value of t, l1, and l2), the interleaving
construction has room for further optimization.

8. Appendix II. In this appendix, we show how to optimally t-interleave large
tori when t is even. The process is similar to the case where t is odd, differing only
in details. For this reason, we just present a succinct description of the process and
results. This appendix’s content is parallel to that of the first three subsections of
section 4, so comparative reading should help the understanding greatly.

OPTIMAL INTERLEAVING ON TORI 877

We assume that t is even throughout the remainder of this appendix. The defini-
tions of a zigzag row and removing a zigzag row are the same as in Definitions 4.1 and
4.2.

Let B be an l0 × l2 torus which is t-interleaved by Construction 3.1 utilizing the
offset sequence S = “s0, s1, . . . , sl2−1.” Let H be an l1 × l2 torus obtained by tiling
several copies of B vertically. Let m = t

2 . There are four rules to follow for devising
a zigzag row (denoted by {(a0, 0), (a1, 1), . . . , (al2−1, l2 − 1)}) in H:

• Rule 1. For any j such that 0 ≤ j ≤ l2 − 1, if the integers sj , s(j+1) mod l2 ,
. . . , s(j+m−1) mod l2 do not all equal t− 1, then aj ≥ a(j+m) mod l2 + m− 1.

• Rule 2. For any j such that 0 ≤ j ≤ l2 − 1, if exactly one of the integers
sj , s(j+1) mod l2 , . . . , s(j+m) mod l2 equals t, then aj ≤ a(j+m+1) mod l2−(m−2).

• Rule 3. For any j such that 0 ≤ j ≤ l2 − 1, if sj = t − 1, then aj ≤
a(j+1) mod l2 − (2m− 2).

• Rule 4. For any j such that 0 ≤ j ≤ l2 − 1, 2m− 2 ≤ aj ≤ l1 − 1− (2m− 2).
Lemma 8.1. Let B be a torus t-interleaved by Construction 3.1. Let H be a torus

obtained by tiling copies of B vertically, and let T be a torus obtained by removing a
zigzag row in H, where the zigzag row in H follows the four rules listed above. Let G
be a torus obtained by tiling copies of B and T vertically. Then, both T and G are
t-interleaved.

Now we present two constructions for finding a zigzag row, which are the coun-
terparts of Construction 4.1 and 4.2. Let B be an l0 × l2 torus which is t-interleaved
by Construction 3.1 utilizing the offset sequence S = “s0, s1, . . . , sl2−1.” Let H be an
l1 × l2 torus obtained by tiling z copies of B vertically. We say the offset sequence S
consists of p P ’s and q Q’s, where p > 0 and q > 0. We require that in S the P ’s and
Q’s are interleaved very evenly, and that S starts with a P and ends with a Q. Let
m = t

2 . Let L = (2m−2)+(m−1)
p
q � if p ≥ q, and let L = (2m−2)+(m−2)
 q

p�+1

if p < q. We require that l1 ≥ (
p
q � + 1)m2 + (3 −
p

q �)m − 3 if p ≥ q and that

l1 ≥ (
 q
p�+1)m2+(3−
 q

p�)m−(2
 q
p�+1) if p < q. Below we present two constructions

for constructing a zigzag row, which is denoted by {(a0, 0), (a1, 1), . . . , (al2−1, l2−1)},
in H, applicable respectively when p ≥ q and p < q.

Construction 8.1. Constructing a zigzag row in H, when t is even, t > 2, and
p ≥ q > 0.

1. Let sx1
, sx2

, . . . , sxp+q
be the integers such that 0 = x1 < x2 < · · · < xp+q =

l2 −m− 1 and each sxi (1 ≤ i ≤ p + q) is the first element of a P or Q in the offset
sequence S.

Let ax1
= L. For i = 2 to p+q, if sxi−1

is the first element of a Q, let axi
= L.

For i = 2 to p + q, if sxi−1
is the first element of a P , then let axi

= axi−1
−

(m− 1).
2. For i = 2 to m and for j = 1 to p + q, let axj+i−1 = axj+i−2 + L−m + 1.
3. Let sy1 , sy2 , . . . , syq be the integers such that y1 < y2 < · · · < yq = l2 − 1 and

each syi
(1 ≤ i ≤ q) is the last element of a Q in the offset sequence S.

For i = 1 to q, ayi
= L + (m− 1)(L−m + 1) + (m− 1).

Now we have fully determined the zigzag row, {(a0, 0), (a1, 1), . . . , (al2−1,
l2 − 1)}, in the torus H.

Construction 8.2. Constructing a zigzag row in H, when t is even, t > 2, and
0 < p < q.

1. Let sx1 , sx2 , . . . , sxp+q be the integers such that 0 = x1 < x2 < · · · < xp+q =
l2 −m− 1 and each sxi (1 ≤ i ≤ p + q) is the first element of a P or Q in the offset
sequence S.

878 A. JIANG, M. COOK, AND J. BRUCK

Let ax1
= L. For i = 2 to p + q, if sxi

is the first element of a P , then let
axi = L; if sxi−1 is the first element of a P , then let axi = L −
 q

p�(m − 2) − 1;

otherwise, let axi = axi−1 + (m− 2).
2. For i = 2 to m and for j = 1 to p + q, let axj+i−1 = axj+i−2 + L−m + 1.
3. Let sy1

, sy2 , . . . , syq be the integers such that y1 < y2 < · · · < yq = l2 − 1 and
each syi

is the last element of a Q in the offset sequence S.
For i = 1 to q, ayi = ayi−1 + L−m + 1.
Now we have fully determined the zigzag row, {(a0, 0), (a1, 1), . . . , (al2−1,

l2 − 1)}, in the torus H.
Theorem 8.2. The zigzag rows constructed by Constructions 8.1 and 8.2 follow

all four rules: Rules 1, 2, 3, and 4.
Lemma 8.3. In equation set (3.2) (which is in Construction 3.1), let the values

of t, m, and l2 be fixed. Let p = p0, q = q0 be a solution that satisfies (3.2). Then,
another solution p = p1, q = q1 also satisfies (3.2) if and only if there exists an integer
c such that p1 = p0 + c(m + 1)(2m2 + 1) ≥ 0 and q1 = q0 − cm(2m2 + 1) ≥ 0.

Lemma 8.4. In equation set (3.2) (which is in Construction 3.1), let the values of
t, m, and l2 be fixed. Let ΔP = (m+1)(2m2+1) and ΔQ = m(2m2+1). If there exists
a solution of p and q that satisfies (3.2), then there exists a solution p = p∗, q = q∗

that satisfies not only (3.2) but also one of the following two inequalities:

l2
2m + 1

− ΔQ

2
< q∗ ≤ p∗ <

l2
2m + 1

+
ΔP

2
,(8.1)

l2
2m + 1

− ΔP

2
≤ p∗ < q∗ ≤ l2

2m + 1
+

ΔQ

2
.(8.2)

The above results lead to the main conclusion, Theorem 4.8.
We skip the specific construction of optimally t-interleaving large tori here, be-

cause of its similarity to Construction 4.3. But we present its sketch: If the torus can
be perfectly t-interleaved, then it can be optimally t-interleaved using Construction
2.2. If the torus cannot be perfectly t-interleaved and t ≥ 4, then it can be optimally
t-interleaved using the tori-tiling method. The only remaining case is if the torus can-
not be perfectly t-interleaved and t = 2. In that case, we can optimally t-interleave
the torus (say it is an l1 × l2 torus) using |St| + 1 = 3 distinct colors in the following
way: First, interleave a ring of l1 vertices and a ring of l2 vertices using three colors
(0, 1, and 2) such that no two adjacent vertices in those two rings are assigned the
same color. Second, for i = 1, 2, . . . , l1 (respectively, for i = 1, 2, . . . , l2), use I(i)
(respectively, use J(i)) to denote the color assigned to the ith vertex in the ring of l1
(respectively, l2) vertices. Third, for i = 0, 1, . . . , l1 − 1 and j = 0, 1, . . . , l2 − 1, color
the vertex (i, j) in the l1 × l2 torus with color (I(i+1)+J(j +1)) mod 3. This yields
an optimal 2-interleaving of the torus.

Acknowledgments. The authors thank the anonymous reviewers for their very
careful and thoughtful comments.

REFERENCES

[1] K. A. S. Abdel-Ghaffar, Achieving the Reiger bound for burst errors using two-dimensional
interleaving schemes, in Proceedings of the IEEE International Symposium on Information
Theory, Germany, 1997, IEEE Press, Piscataway, NJ, p. 425.

OPTIMAL INTERLEAVING ON TORI 879

[2] B. F. AlBdaiwi and B. Bose, Quasi-perfect Lee distance codes, IEEE Trans. Inform. Theory,
49 (2003), pp. 1535–1539.

[3] C. Almeida and R. Palazzo, Two-dimensional interleaving using the set partition technique,
in Proceedings of the IEEE International Symposium on Information Theory, Trondheim,
Norway, 1994, IEEE Press, Piscataway, NJ, p. 505.

[4] J. Astola, An Elias-type bound for Lee codes over large alphabets and its applications to
perfect codes, IEEE Trans. Inform. Theory, 28 (1982), pp. 111–113.

[5] E. R. Berlekamp, Algebraic Coding Theory, Aegean Park Press, Walnut Creek, CA, 1984.
[6] M. Blaum and J. Bruck, Correcting two-dimensional clusters by interleaving of symbols, in

Proceedings of the IEEE International Symposium on Information Theory, Trondheim,
Norway, 1994, IEEE Press, Piscataway, NJ, p. 504.

[7] M. Blaum, J. Bruck, and P. G. Farrell, Two-dimensional Interleaving Schemes with Repeti-
tions, Electrical Technical Report 016, Distributed Information Systems Group, California
Institute of Technology, 1997; available online at http://www.paradise.caltech.edu/papers/
etr016.pdf.

[8] M. Blaum, J. Bruck, and A. Vardy, Interleaving schemes for multidimensional cluster errors,
IEEE Trans. Inform. Theory, 44 (1998), pp. 730–743.

[9] S. Borkar, R. Cohn, G. Cox, S. Gleason, T. Gross, H. T. Kung, M. Lam, B. Moore, C.

Perterson, J. Pieper, L. Rankin, P. S. Tseng, J. Sutton, J. Urbanski, and J. Webb,
iWarp: An integrated solution to high-speed parallel computing, in Proceedings of IEEE
Supercomputing’88, Orlando, FL, 1988, IEEE Press, Piscataway, NJ, 1988, pp. 330–339.

[10] T. Etzion and A. Vardy, Two-dimensional interleaving schemes with repetitions: Construc-
tions and bounds, IEEE Trans. Inform. Theory, 48 (2002), pp. 428–457.

[11] S. W. Golomb and L. R. Welch, Perfect codes in the Lee metric and the packing of polyomi-
noes, SIAM J. Appl. Math., 18 (1970), pp. 302–317.

[12] A. Jiang and J. Bruck, Diversity coloring for distributed data storage in networks, IEEE
Trans. Inform. Theory, 2003, submitted.

[13] A. Jiang and J. Bruck, Multicluster interleaving on paths and cycles, IEEE Trans. Inform.
Theory, 51 (2005), pp. 597–611.

[14] A. Jiang and J. Bruck, Network file storage with graceful performance degradation, ACM
Trans. Storage, 1 (2005), pp. 171–189.

[15] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-correcting Codes, Elsevier
Science, New York, 1977.

[16] R. J. McEliece, The Theory of Information and Coding, Cambridge University Press, Cam-
bridge, UK, 2002.

[17] Y. Merksamer and T. Etzion, On the optimality of coloring with a lattice, in Proceedings
of IEEE International Symposium on Information Theory, Chicago, 2004, IEEE Press,
Piscataway, NJ, 2004, p. 21.

[18] W. Oed, Massively Parallel Processor System CRAY T3D, technical report, Cray Research
Inc., Seattle, WA, 1993.

[19] M. Schwartz and T. Etzion, Optimal 2-dimensional 3-dispersion lattices, in Lecture Notes
in Comput. Sci. 2643, Springer, NY, 2003, pp. 216–225.

[20] C. L. Seitz, W. C. Athas, K. M. Chandy, A. J. Martin, M. Rem, and S. Taylor, Submi-
cron Systems Architecture Project Semi-annual Technical Report, Caltech-CS-TR-88-18,
California Institute of Technology, Pasadena, CA, 1988.

[21] A. Slivkins and J. Bruck, Interleaving schemes on circulant graphs with two offsets, IEEE
Trans. Inform. Theory, to appear; available online at http://www.paradise.caltech.edu/
papers/etr054.pdf.

[22] Tera Computer Systems, Overview of the Tera Parallel Computer, technical report, 1993.
[23] D. B. West, Introduction to Graph Theory, Prentice–Hall, Englewood Cliffs, NJ, 1996.
[24] W. Xu and S. W. Golomb, Optimal interleaving schemes for correcting 2-d cluster errors,

in Proceedings of IEEE International Symposium on Information Theory, Chicago, IEEE
Press, Piscataway, NJ, 2004, p. 23.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 4, pp. 880–892

ON BUDGETED OPTIMIZATION PROBLEMS∗

ALPÁR JÜTTNER†

Abstract. In this paper we give a method for solving certain budgeted optimization problems
in strongly polynomial time. The method can be applied to several known budgeted problems, and in
addition we show two new applications. The first one extends Frederickson’s and Solis-Oba’s result
[G. N. Frederickson and R. Solis-Oba, Combinatorica, 18 (1998), pp. 503–518] to (poly)matroid
intersections from single matroids. The second one is the budgeted version of the minimum cost
circulation problem.

Key words. budgeted optimization, inverse problems, matroid intersections, submodular flows

AMS subject classifications. 90C31, 90C35

DOI. 10.1137/S0895480104445071

1. Introduction. A typical optimization problem in combinatorial optimization
consists of minimizing (or maximizing) a linear objective function over some combina-
torial objects. Classical problems, like shortest paths, maximum flows, and minimum
cost circulations can be interpreted this way.

There are, however, results dealing with other type of optimization problems over
the same combinatorial objects. For example, it is well known that if we are given a
directed graph G = (V,E), a capacity function w : E −→ R, and two nodes s, t ∈ V ,
then the minimum s-t cut can be found algorithmically in strongly polynomial time.
Fulkerson [12] introduced and solved the so-called budgeted version of this minimum
cut problem. In this case we are also given a cost function c : E −→ R and a budget
constraint B > 0, and the task is to increase the amount of the minimum s-t cut as
much as possible by increasing the components of the capacity function w individually.
If we increase the capacity of an edge e by δ, it costs us δc(e) and the total cost of
increasing the capacities of the edges is bounded by B. Later Ahuja and Orlin [1]
gave a more efficient polynomial algorithm for this problem.

Other papers have also been devoted to similar problems. Fulkerson and Harding
[13] and Harding [16] solved the same budgeted version of the shortest s-t path prob-
lem. Later Frederickson and Solis-Oba solved the budgeted version of the minimum
spanning tree problem [8]. In contrast with the budgeted versions of the minimum
cut and the shortest s-t path problem—which were both transformed essentially to
the minimum cost flow problem—the solution of the budgeted version of the mini-
mum spanning tree problem needed deeper considerations. Later they extended their
method to arbitrary matroids in [9, 10].

It would be natural to extend of this result to the problem of decreasing the
maximum weight common base of two matroids. The algorithm presented in [10]
does not seem to extend to this case. As a main contribution of this paper, we
propose a different approach that can solve this latter problem in strongly polynomial
time. In contrast with [10], this solution does not depend on any substantial property

∗Received by the editors July 8, 2004; accepted for publication (in revised form) February 28,
2006; published electronically December 5, 2006. This research was supported by the Hungarian
National Foundation for Scientific Research grant OTKA T 037547.

http://www.siam.org/journals/sidma/20-4/44507.html
†Department of Operations Research, Eötvös University, Pázmány Péter sétány 1/C, Budapest,

Hungary H-1117, and Ericsson Traffic Laboratory, Irinyi J. u. 4-20, Budapest, Hungary H-1117
(alpar@cs.elte.hu).

880

ON BUDGETED OPTIMIZATION PROBLEMS 881

of matroids or matroid intersections; thus the same scheme can be also used to solve
other budgeted optimization problems including all the problems mentioned above.

Therefore it is worth considering the problem above in the following general form.
(In order to be consistent with [9, 10], we use an equivalent form, where the problem is
to decrease the weight of the maximum weight element.) We are given an underlying
set E and a combinatorial optimization problem called the basic problem (i.e., the
common bases of two given matroids in the latter example). We assume that the
convex hull P of the feasible solution is a polyhedron. (This holds in the case of
the problems mentioned above.) Then, for a given weight function w : E −→ R,
cost function c : E −→ R, and budget constraint B > 0, the corresponding budgeted
optimization problem is to compute the value

α := min{max{(w − y)x : x ∈ P} : y ∈ R
E , y ≥ 0, cy ≤ B}(1.1)

along with the minimizing vector y∗.
It will be pointed out that this problem essentially leads to the bounded version

of the basic problem, that is, the problem of finding a maximum weight element in
the polyhedron

Pu := P ∩ {x ∈ R
E : x ≤ u},(1.2)

where u ∈ R
E is an arbitrary constraint vector. More exactly, the following will be

proven.
Theorem 1.1. If there exists an algorithm which is able to find a maximum

weight element in Pu along with a dual optimal solution (with respect to a linear
programming description of Pu) in time T for an arbitrary vector u and this algorithms
satisfies the so-called linearity condition (see section 2.1 for the precise definition),
then there exists an algorithm for solving problem (1.1) in time O(T 2).

Note bene: in this paper the word “linear” does not refer to the running time.
In section 3, problem (1.1) will be reduced to a parametric problem using La-

grangian relaxation; that is, we will show that problem (1.1) can be transformed to
the maximization of the function

L(λ) := max{wx : x ∈ Pλc} − λB(1.3)

with only one variable.
To do this maximization, one may use, e.g., the binary search technique. This

gives the value of the optimal solution, but more effort is still necessary to find the op-
timal solution itself. In addition, the focus is on strongly polynomial time algorithms
in this paper, and binary search does not give such an algorithm.

Thus, in section 4 we will give another way to construct an algorithm A′ to
maximize L(λ) and to find an optimal solution to (1.1) in strongly polynomial time.
The algorithm is based on Megiddo’s parametric search method. This technique uses
a separation subroutine, and not only does it consider this subroutine, but also it
uses its inner structure to construct the algorithm A′. Advantages of this technique
are the straightforward bound on the running time and that it can be used in very
general context (see, e.g., [20, 4]), but the separation subroutine must satisfy the
linearity condition. This assumption is not a strong restriction in the sense that
most combinatorial optimization problems that can be solved in strongly polynomial
time can also be solved with linear algorithms. In section 2 we give a sketch of

882 ALPÁR JÜTTNER

Megiddo’s technique in general, give the definition of linear algorithms, and show
linear algorithms for some combinatorial optimization problems.

In section 5 a slightly more general problem will be discussed, when the modifi-
cation of some components of the weight function can be prohibited.

In section 6 the presented method will be applied to some already solved prob-
lems, and we will show two new applications. The first new problem is the budgeted
optimization problem of the minimum cost circulation problem, and the second one
extends the Frederickson and Solis-Oba result [8, 9, 10] to matroid intersections from
single matroids. Moreover, this method can be used for budgeted submodular opti-
mization problems as well.

Finally, let us mention a similar class of budgeted optimization problem examined
by Burkard, Klinz, and Zhang [2]. In this case the set B ⊆ {0, 1}E ; i.e., B is a family
of subsets of E. A bottleneck-type objective function is used instead of a linear one,
and the overall cost of an increment is defined in a rather general way. This cost
model is able to handle linear and nonlinear cost functions such as, for example,
componentwise increasing separable cost, maximum-like (time limit), or step-like cost
function. (See [2] for more details.) This problem is also transformed to a parametric
problem, which is solved using Megiddo’s scheme.

2. Megiddo’s principle.
Definition 2.1. A real number λ∗ is said to be given by a separation algorithm

A(λ) if A(λ) decides whether λ < λ∗, λ = λ∗, or λ > λ∗ by answering −1, 0, or +1.
Solving combinatorial problems, one often comes across the problem of computing

the explicit value of a number λ∗ ∈ R given by a strongly polynomial time separation
algorithm. Without some restrictions, only approximation-like algorithms can be
given for this problem. For example, it is easy to see that for λ∗ :=

√
2 there exists

a separation algorithm that uses only comparisons, additions, and multiplications of
rational numbers and the input number, but λ∗ cannot be obtained through these
operations.

Megiddo [18] showed that, roughly, if one can avoid multiplications in the separa-
tion algorithm, then λ∗ can also be computed in strongly polynomial time. Namely,
he proved the following theorem.

Theorem 2.2. Suppose that we are given a λ∗ ∈ R through a separation algorithm
A(λ). If A is linear in λ and works in time T , then there exists an algorithm that
runs in time O(T 2) and computes the explicit value of λ∗.

The idea of this method is to simulate the steps of the execution of A on the
input λ∗ by using only the necessary partial information about the input in each step
of the algorithm. At the end of this procedure from this partial information we will
be able to determine the right value of λ∗.

For this, however, it is necessary to require the linearity of the algorithm. The
precise definition of this assumption comes in the next section; then the theorem will
be proven in section 2.2.

2.1. Linear algorithms. To define the notion of a linear algorithm we use a
RAM machine which has an additional storage called limited access memory (LAM).
It may store real numbers, but an algorithm which runs on this machine has only a
limited access to this storage. Namely, it can reach the contents of the LAM only
through the following operations:

• It can write an element of the RAM or LAM into an element of the LAM,
• it can multiply an element of the LAM with an element of the RAM and store

the result in the LAM,

ON BUDGETED OPTIMIZATION PROBLEMS 883

• it can add an element of the LAM to another element of the LAM and store
the result in the LAM,

• it can compare two elements of the LAM.
However, for example, it cannot multiply two elements of the LAM, and it cannot
read them (that is it cannot copy an element of LAM into the RAM).

Definition 2.3. Let A(x, y) be an algorithm, where x and y are its input vectors.
We say that A is linear in x if it gets x in the LAM and also puts the output in the
LAM. The algorithm has full access to the other part of the input; in other words, it
gets it in the RAM.

It can be seen that most of the basic operations of data structures can be im-
plemented on a LAM machine; for example, we can choose the minimal element of a
set of numbers stored in the LAM, and we can also sort its elements. However, we
cannot compute the determinant of a matrix with a LAM machine because we cannot
avoid the multiplications of two elements of the matrix. (The determinant itself is a
nonlinear polynomial of the elements of the matrix.)

The following claims are given to demonstrate the capability of linear algorithms.
Claim 2.1. There exists an implementation of Dijkstra’s algorithm to find a

shortest s-t path in a weighted directed graph G = (V,E,w) which is linear in the
weight function.

Proof. During its execution, Dijkstra’s algorithm builds a shortest path tree T
from the node s. First, T consists of only the node s. Then in each round it finds the
node v ∈ V \ V (T) whose path constructed from a path in T and one additional edge
has the smallest weight, and it puts v and the last edge of the corresponding path
towards T . This can be done, because we can calculate the weight of these paths in the
LAM, and we can also choose the path having the smallest weight using only compari-
sons.

Claim 2.2. The strongly polynomial time Edmonds–Karp algorithm [7] for the
MAX-FLOW problem can be implemented in such a way that it is linear in the capacity
function.

Proof. The algorithm starts with the zero flow, and it repeats the following steps
until the maximum flow is found. First, it constructs an auxiliary digraph from
the original graph by comparing the current edge-values of the flow with the edge-
capacities and with zero. Then it looks for a shortest source-sink path in this graph
and increases the amount of the flow by modifying its value on the edges of this paths,
which can be done using a minimum calculation and some additions.

Claim 2.3. Goldberg and Tarjan’s strongly polynomial time cycle canceling al-
gorithm [14] for the minimum cost circulation problem can be implemented in such a
way that it is linear in the cost function. It also can be implemented in such a way
that it is linear in the bounding vectors. In addition, these algorithms compute the
corresponding linear programming dual optimal solution.

Proof. This algorithm starts with an arbitrary feasible circulation; then in each
iteration an auxiliary digraph is constructed and the circulation is improved on the
edges of a minimum mean cycle of the auxiliary graph. All this can be done without
multiplying the elements of the cost function to each other and also without multi-
plying the elements of the bounding vectors to each other.

It is worth mentioning that there cannot exist a strongly polynomial time algo-
rithm for this problem which is linear both in the cost function and in the bounding
vectors, because we cannot avoid multiplying the elements of the bounding vectors
with their corresponding costs.

884 ALPÁR JÜTTNER

A common generalization of maximum cost circulations, maximum cost bases of
a matroid, and maximum cost common base of two polymatroids is submodular flows
[6]. One of its several equivalent definitions is the following. (See, e.g., [11].)

Definition 2.4. A family F ⊆ 2V is called a crossing family over the underlying
set V if for each crossing X,Y ∈ F (i.e., X,Y ∈ F , X ∩Y 	= ∅, X\Y 	= ∅, Y \X 	= ∅,
and X ∪ Y 	= V) we have X ∪ Y , X ∩ Y ∈ F . A function b : F −→ R on the crossing
family F is called crossing-submodular if for each crossing X,Y ∈ F we have the
submodularity inequality

b(X) + b(Y) ≥ b(X ∪ Y) + b(X ∩ Y).(2.1)

Definition 2.5. Let G = (V,E) be a directed graph with a vertex set V and an
edge set E. Let f, g : E −→ R∪{±∞} be a lower and an upper capacity function, and
let w : E −→ R be a cost function. Let F ⊆ 2V be a crossing family with ∅, V ∈ F ,
and b : F −→ R be a crossing-submodular function with b(∅) = b(V) = 0. The
submodular flow problem is described as follows:

max wx(2.2a)

f ≤ x ≤ g,(2.2b)

�x(X) − δx(X) ≤ b(X) for all X ⊆ V,(2.2c)

where �x(X) and δx(X) are the sum of the components of x corresponding to the edges
entering X and leaving X, respectively.

The following claim is straightforward to check.
Claim 2.4. The strongly polynomial time algorithm for the minimum cost sub-

modular flow problem described in [11] can be implemented in such a way that it will be
linear in the bounding functions f and g. This algorithm also gives the corresponding
linear programming dual optimal solution.

2.2. Parametric search. In this section Theorem 2.2 is proven by giving an
algorithm A′ that computes the value of λ∗. The new idea of the parametric search
developed by Megiddo [18] is that instead of making an independent “optimizer”
algorithm that repeatedly calls the separation algorithm A during its execution, A′

will “simulate” how A would run on the value λ∗. Therefore we now give a scheme
of how to construct the algorithm A′ from the linear separation algorithm A.

First, we replace each element of the LAM with a pair of real numbers called para-
metric numbers. Addition and subtraction of these numbers are defined in the same
way as the usual vector addition and vector subtraction, while the multiplications and
divisions of these numbers are avoided by the linearity assumption on the algorithm
A. When a real number x is put into an element of the LAM, it is converted to the
parametric number (x, 0). The multiplication of a real number c and a parametric
one (x, y) is defined to be (cx, cy).

The only undefined part of A′ is when it compares two values in the LAM, namely
when it inquires about whether (x1, y1) ≤ (x2, y2). In this case

• if y1 = y2, then we answer true if and only if x1 ≤ x2;
• if y1 > y2, then we call A with the value λ := x2−x1

y1−y2
; we answer true if and

only if A returns that λ∗ < λ;
• if y1 < y2, then we call A with the value λ := x2−x1

y1−y2
. We answer true if and

only if A returns that λ∗ > λ.
If A happens to return that λ = λ∗, we stop, since we found λ∗.

ON BUDGETED OPTIMIZATION PROBLEMS 885

The idea behind this construction is that a parametric number (x, y) means the
linear expression x + yλ∗. The algebraic operations are defined to be consistent with
the result of the same operations on the corresponding linear expressions.

A comparison (x1, y1) ≤ (x2, y2) means that x1 + y1λ
∗ ≤ x2 + y2λ

∗, which is
equivalent to λ∗ ≤ x2−x1

y1−y2
, λ∗ ≥ x2−x1

y1−y2
or x1 ≤ x2, depending on the value of sgn(y1 −

y2). So, we can make decision by a simple comparison or using the original A with
λ := x2−x1

y1−y2
as input.

Now, let us run A′ with the parametric number (0, 1) as the input.
Claim 2.5. A′ ((0, 1)) calls A with λ∗ during its execution.
Proof. Let us suppose that it is not so. In this case A′ returns with a value

when it terminates. A stored the return value originally in the LAM, so A′ returns a
parametric number, i.e., a linear function of λ.

During the execution each comparison involved in calling A gives us a half-line
as a set of possible places of λ∗. Let Λ be the intersection of these closed half-lines.
Λ is a (closed) interval and λ∗ ∈ Λ. On the other hand, it is easy to see that for any
λ ∈ Λ the steps of A′ ((0, 1)) correspond to the steps of A(λ). So, the value returned
by A′ is right for all λ ∈ Λ. Moreover, it is a linear expression of λ, and for λ∗ it is
equal to 0. These, together with the fact that the result is ±1 or 0 for all λ, yield
that Λ should be equal to {λ∗}. However, this is only possible if A was called with
λ∗ during the execution of A′, contradicting to the assumption.

Finally, let T denote the running time of A. The running time of the main
algorithm is the sum of the time used by A′ itself and the time required by the
comparisons. Each comparison can be computed by a simple execution of A, the
number of the comparisons is at most T , and the number of the steps taken by A′ is
O(T). Thus the total time required by the algorithm is O(T 2).

In special cases the running time often can be significantly improved in several
different ways. See [19] or [21] for more detail.

We also mention a theorem of Norton, Plotkin, and Tardos, which extends this
result to any higher (but fixed) dimension.

Theorem 2.6 (see [20]). Let the closed convex set P ∈ R
d be given through a

separation algorithm which is linear in its input and runs in time T . Then there is
an algorithm which in O(T d+1) time either finds a point x ∈ P maximizing cx, or
concludes that max{cx : x ∈ P} is unbounded.

3. The Lagrangian relaxation of the problem. In this section we show how
problem (1.1) can be transformed to a parametric problem. Let

L(λ) = max
z∈Pλc

wz − λB(3.1)

and

L∗ := max
λ≥0

L(λ).(3.2)

Theorem 3.1. L∗ = α, where α is the optimal solution of the budgeted optimiza-
tion problem (1.1).

Proof. From now on let Ax ≤ b be a linear description of P; that is,

P = {x ∈ R
n : Ax ≤ b}.(3.3)

It is worth mentioning that the inequalities defining P need not be given explicitly,
and there is no constraint on the number of them.

886 ALPÁR JÜTTNER

By the duality theorem,

max
x∈P

(w − y)x = min{πb : π ≥ 0, πA = w − y}.(3.4)

So, the problem (1.1) is equivalent to the following linear program:

min πb(3.5)

π, y ≥ 0,

πA + y = w,

yc ≤ B.

From (3.1) and (3.2) it follows that

L∗ = maxwz − λB,(3.6)

λ ≥ 0,

z ≤ λc,

Az ≤ b,

which is the dual problem of (3.5).

4. Maximization of L(λ). In this section we give an algorithm which maxi-
mizes the function L(λ) and gives an optimal solution to (3.5).

First, using the duality theorem, we get that

L(λ) = minπb + λ(cy −B)(4.1)

π, y ≥ 0,

πA + y = w.

Let Lopt denote the set of λ’s maximizing L(λ). Obviously Lopt is a (closed)
interval. For the sake of simplicity the following notation is used.

Definition 4.1. λ ≤ Lopt if and only if λ ≤ x for all x ∈ Lopt. λ ≥ Lopt, λ < Lopt,
and λ > Lopt are defined similarly.

Claim 4.1. Let π0, y0 be an optimal solution to (4.1) for some λ ≥ 0. Then
• if cy0 > B, then λ ≤ Lopt;
• if cy0 < B, then λ ≥ Lopt.

Proof. Let us suppose that cy0 > B and λ′ < λ. Therefore

L(λ) = π0b + λ(cy0 −B) > π0b + λ′(cy0 −B) ≥ L(λ′),(4.2)

proving that λ′ 	∈ Lopt. The second implication can be proven similarly.
Claim 4.2. Let π0, y0 be an optimal solution to (4.1) for some λ ≥ 0, and let

cy0 = B. Then it is also an optimal solution to (3.5); that is, y0 is an optimal
decrement of the weight vector w in problem (1.1).

Proof. The feasibility of π0, y0 is clear. Let π∗, y∗ be an optimal solution to (3.5).
Then

α = π∗b ≤ π0b = π0b + λ(cy0 −B) ≤ π∗b + λ(cy∗ −B) ≤ π∗b = α(4.3)

implies the optimality.

ON BUDGETED OPTIMIZATION PROBLEMS 887

If L(λ) = −∞, that is, the polyhedron Pλc is empty, a certification of its emptiness
is a vector (π¬, y¬) for which

π¬, y¬ ≥ 0,(4.4)

π¬A + y¬ = 0,

π¬b + y¬λc < 0.

Claim 4.3. Suppose that Pλc is empty for some λ ≥ 0, and let π¬, y¬ be a
certification of its emptiness (i.e., a solution to (4.4)). Then

• if cy¬ ≥ 0, then λ < Lopt;
• if cy¬ ≤ 0, then λ > Lopt.

Proof. π¬, y¬ is also certification of emptiness of Pλ′c for all λ′ ≤ λ or for all
λ′ ≥ λ, depending on whether cy¬ ≥ 0.

Now, we are ready to prove our original theorem.
Theorem 1.1 (Restated). Let A(λ) be an algorithm linear in λ and with running

time T , which computes L(λ) along with a dual optimal solution (4.1) or a certification
of the emptiness of Pλc if L(λ) = −∞. Then there exists an algorithm for solving
problem (1.1) in time O(T 2).

Proof. Claim 4.2 shows that to solve problem (1.1) it is enough to find a multiplier
λ∗ maximizing the function L(λ) and an optimal solution π∗, y∗ to (4.1) with λ∗ in
place of λ with the property that cy∗ = B.

We apply Megiddo’s parametric search for the maximization of the function L(λ),
but a small technical difficulty arises because we are not able to check directly whether
or not λ ∈ Lopt for an arbitrary λ.

Apart from the comparisons, we construct A′ from A in the same way as in
section 2.

The only difference occurs when the algorithm makes a comparison which is in-
volved in calling A with the input λ := x2−x1

y1−y2
. In this case we do the following:

• If we get L(λ) = −∞, then we use Claim 4.3 to decide whether λ < λ∗ or
λ > λ∗.

• If A happens to consider λ to be optimal, that is, we get a solution πλ, yλ

of (4.1) such that cyλ = B, then by Claim 4.2, (πλ, yλ) is also an optimal
solution to (3.5), and so the execution can be finished.

• If cyλ > B, then by Claim 4.1 it means that λ < Lopt unless λ ∈ Lopt, so we
accept if the question was λ ≤ λ∗ and reject if the question was λ ≥ λ∗.

• In the case when cyλ < B we give opposite answers.
For some technical reasons, the algorithm also has to take care to avoid the

redundant executions of A; i.e., if the outcome of a comparison can be derived from
the outcomes of the previous ones, then we make decision based on the previous
comparisons rather then on calling A once more.

Now let us run A′. During the execution, each comparison which is involved in
calling A gives us a half-line as a set of possible values of λ∗. Let Λ be the intersection
of these closed half-lines. Λ is a (closed) interval and Lopt ⊆ Λ. Since we never made
redundant comparisons, intΛ 	= ∅. (intΛ is the set of the interior points of Λ.)

On the other hand, it is easy to see that for any λ ∈ intΛ the steps of A′ correspond
to the steps of A(λ). So, at the end of its execution A′ gives us the optimum value,
which parametric number. Thus, it corresponds to a linear function of λ and is equal
to L(λ) for all λ ∈ intΛ. Moreover, because of the continuity of L(λ), this holds for
all λ ∈ Λ. A′ also gives us an optimal solution (π(λ), y(λ)) to (4.1) as two vectors

888 ALPÁR JÜTTNER

of linear functions of λ. These are right optimal solutions to (4.1) for all λ ∈ intΛ.
Again, because of continuity, it follows that they are right for all λ ∈ Λ.

From the above considerations it follows that one of the extrema of Λ maximizes
the function L(λ). Denote it by λo and let (πo, yo) be the solution A returned when it
was called with λo. Because Λ is a subset of the half-line defined by yo and because λo

maximizes L(λ) over the set Λ, it follows that cyo −B and cy(λo)−B have opposite
signs. So, there exists a suitable coefficient 0 ≤ μ ≤ 1 such that cy∗ = B, where
π∗ := μπo + (1 − μ)π(λo) and y∗ = μyo + (1 − μ)y(λo). Since both (πo, yo) and
(π(λo), y(λo)) are optimal solutions to (4.1) with λo in place of λ, (π∗, y∗) is also an
optimal solution. Finally, Claim 4.2 ensures that (π∗, y∗) is an optimal solution to
(3.5) as well. To sum up, y∗ is an optimal solution to problem (1.1).

The bound on the running time can be obtained in the same way used in section
2.2.

Remark 1. Using Theorem 2.6, Norton, Plotkin, and Tardos also proved the
following.

Theorem 4.2 (see [20]). Suppose that for a certain vector a and matrix A there
exists an algorithm to solve the linear program max{ax : Ax ≤ b} for arbitrary b, that
runs in time t, and is linear in b. Then for any fixed d, there is an algorithm which
runs in O(td+2) time and solves the linear program max{ax + cz : Ax + Cz ≤ b} for
any vector c and matrix C with d columns.

Although this theorem could be applied to (3.6) to compute the value L∗, a self-
contained proof was given for two reasons. First, obtaining the dual solution is very
essential to us, but in [20] the authors do not deal with this problem. Second, it
reduces the running time from O(T 3) to O(T 2).

On the other hand, a straightforward extension of the above algorithm gives
an alternative proof to Theorem 4.2 when d = 1 in time t2. Moreover, it extends
to arbitrary d. The resulting algorithm runs in time O(td+1), which improves the
running time O(td+2) presented in [20]. See [17] for more details.

5. When some components of the cost are fixed. In this section we extend
the problem (1.1), so that the modification of some components of the weight function
can be prohibited. The main benefit of this extension is that it enables us to use
auxiliary variables to define the polyhedron P for the basic problem.

Let P := {(x1, x2) ∈ R
n+m : Ax1 + Cx2 ≤ b}. We are looking for the optimal

solution to the problem

α := min {max {(w1 − y)x1 + w2x2 : (x1, x2) ∈ P} : y ≥ 0, cy ≤ B} .(5.1)

As in section 3 this can be transformed to the following linear program:

min πb(5.2)

π, y ≥ 0,

πA + y = w1,

πB = w2,

yc ≤ B.

ON BUDGETED OPTIMIZATION PROBLEMS 889

The corresponding Lagrangian relaxation of this problem is

L(λ) = min πb + λ(cy −B)(5.3)

π, y ≥ 0,

πA + y = w1,

πB = w2,

and by the duality theorem,

L(λ) = max{w1z1 + w2z2 : (z1, z2) ∈ Pλ} − λB,(5.4)

where Pλ := {(x1, x2) ∈ P : x1 ≤ λc}. The following theorem can be proven similarly
to Theorem 3.1.

Theorem 5.1. L∗ = α, where

L∗ := max
λ≥0

L(λ).(5.5)

Finally, the maximization of L(λ) can be done in the same way as in section 4.

6. Applications. The algorithm presented in the previous sections can be used
for a wide range of problems. It is enough to check whether we are able to optimize
on the corresponding bounded polyhedron using an algorithm which is linear in the
bounding vector (or more generally, using an algorithm that uses λc as the bounding
vector and which is linear in λ).

First, as an example, we show how Theorem 1.1 can be applied to Fulkerson’s
and Harding’s problem. Then, sections 6.2 and 6.3 present two new applications,
the budgeted minimum cost circulation and the budgeted polymatroid intersection
problem. The later one extends the problem examined in [10].

Let us mention that the direct use of Theorem 1.1 gives worse running time than
those obtained in [1, 13] and in [10] for the budgeted maximum flow, minimum source-
sink path, and matroid optimization problems. However, these running times can be
improved in several ways in special cases. See [19] and [21] for these techniques.

6.1. Maximizing the minimum source-sink path. Fulkerson and Harding
[13] and Harding [16] solved the case of budgeted optimization problems when we
have a non-negative length and a cost function on the edges of a directed graph and
we want to increase the length of the minimum length path between two predefined
nodes as much as possible by increasing the lengths of the edges keeping the budget
constraint.

The minimum length s-t path problem can be formulated as an uncapacitated
minimum cost flow problem. So, the computation of L(λ) is a capacitated minimum
cost flow problem, for which there exists a strongly polynomial time algorithm which
is linear in its constraint vector. It also gives back the dual solution which is in the
suitable form we need in (4.1).

6.2. Increasing the cost of the minimum cost circulation. We are given
a directed graph G = (V,E), a cost function c : E −→ R, and a lower and an upper
bound l, u : E −→ R on its edges. Moreover, we are given a cost function cm : E −→ R

of the modification and a budget constraint B > 0. The task is to find an increment
of the cost function c within the budget constraint which increases the cost of the
c-minimal cost circulation as much as possible.

890 ALPÁR JÜTTNER

This problem can also be handled with the method because the corresponding
parametric problem is a minimum cost circulation problem on the graph G with
the cost function c, lower bound l, and upper bound uλ(e) := min(u(e), λcm(e)),
which can be computed by a strongly polynomial time algorithm which is linear in λ.
The dual optimal solution returned by this algorithm can be easily transformed to a
solution of (4.1) in the same way as is discussed in the following section.

6.3. Polymatroid intersection and submodular flows. A natural extension
of the problem examined in [10] is the budgeted matroid intersection problem. In this
case we are given two matroids M1 = (E, I1) and M2 = (E, I2) with a common ground
set, a weight and a cost function w, c : E −→ R, and a budget constraint B > 0, and
we want to decrease the weight of the maximum weight common base of M1 and M2

as much as possible by decreasing independently the weight of the elements of the
ground set with the side constraint that the total cost of the decreasing must be at
most B.

The common generalization of this problem and the problem presented in sec-
tion 6.2 is the case of a budgeted optimization problem when we are given a submod-
ular flow problem and we are looking for a modification of its cost function which
increases the cost of the minimum cost feasible flow as much as possible.

Namely, using the notation of Definition 2.5, we are given an additional cost
function c : E −→ R and a budget constraint B, and the problem is to find

min{max{(w − y)x : x ∈ P} : y ≥ 0, cy ≤ B},(6.1)

where

P := {x ∈ R
E : f ≤ x ≤ g , �x(X) − δx(X) ≤ b(X) for all X ⊆ V }.(6.2)

The corresponding bounded problem is

max wx(6.3a)

�x(X) − δx(X) ≤ b(X) for all X ⊆ V,(6.3b)

x ≤ −f,(6.3c)

x ≤ g,(6.3d)

x ≤ u,(6.3e)

where f and g are the lower and the upper capacities and u is the bounding vector.
This is also a submodular flow problem with gu(e) := min(g(e), u(e)) in place of

g. Using Claim 2.4, we get a strongly polynomial time algorithm that is linear in u
and computes an optimal flow x and an optimal dual solution (π, z1, z2), that is, a
solution to

min
∑
X⊆V

πXb(X) − z1f + z2g
u,(6.4a)

π ∈ R
2V

, z1, z2 ∈ R
E ,(6.4b)

π, z1, z2 ≥ 0,(6.4c) ∑
X:e∈δ(X)

πX −
∑

X:e∈�(X)

πX − z1(e) + z2(e) = w(e) for all e ⊆ E,(6.4d)

where πX denotes the component of π corresponding to the subset X ⊆ V .

ON BUDGETED OPTIMIZATION PROBLEMS 891

Although π is an exponential-size vector, the optimal solution computed by the
algorithm consists of at most |E| nonzero elements and is given by the set of nonzero
coordinates and their corresponding values.

Finally, (π, z1, z2) can be transformed into a dual optimal solution (π, ν1, ν2, y)
to (6.3), where

ν1 := z1,(6.5a)

ν2(e) :=

{
z2(e) if x(e) = g(e),
0 otherwise,

(6.5b)

y(e) :=

{
z2(e) if x(e) < g(e),
0 otherwise.

(6.5c)

To sum up, we get a strongly polynomial time algorithm for the bounded version
of the submodular flow problem, so Theorem 1.1 provides a strongly polynomial time
algorithm for the budgeted submodular flow problem (problem (6.1)).

7. An open problem. Finally, we pose a natural problem to which no strongly
polynomial time algorithm is known.

The budgeted maximum matching problem is the following. We are given a graph
G = (V,E), a cost and a weight function c, w : E −→ R on its edges, and a budget
constraint B, and we are looking for a vector z ≥ 0, cz ≤ B which minimizes the
weight of the (w − z)-maximal weight matching.

If G is a bipartite graph, then the problem can be reduced either to the budgeted
minimum cost circulation problem or to the budgeted matroid intersection problem,
so it can be solved in strongly polynomial time, but the general case is still open.

According to Theorem 1.1 it would be enough to give a linear strongly polynomial
time algorithm to the following bounded maximum weight matching problem. We are
given a graph G = (V,E), a weight, and a capacity function w, u : E −→ R on its
edges, and the problem is to find

max{wx : x ∈ P, x ≤ u},(7.1)

where P is a matching polyhedron, that is, the convex hull of the incidence vectors
of the matchings of G.

Acknowledgment. The author would like to thank András Frank and Zsuzsa
Weiner for their several very useful comments.

REFERENCES

[1] R. K. Ahuja and J. B. Orlin, A capacity scaling algorithm for the constrained maximum flow
problem, Networks, 25 (1995), pp. 89–98.

[2] R. E. Burkard, B. Klinz, and J. Zhang, Bottleneck capacity expansion problems with general
budget constraints, RAIRO Oper. Res., 35 (2001), pp. 1–20.

[3] E. Cheng and W. H. Cunningham, A faster algorithm for computing the strength of a network,
Inform. Process. Lett., 49 (1994), pp. 209–212.

[4] E. Cohen and N. Megiddo, Strongly polynomial-time and NC algorithms for detecting cycles
in dynamic graphs, J. ACM, 40 (1993), pp. 791–832.

[5] W. H. Cunningham, Optimal attack and reinforcement of a network, J. ACM, 32 (1985),
pp. 549–561.

[6] J. Edmonds and R. Giles, A min-max relation for submodular functions on graphs, Ann.
Discrete Math., 1 (1977), pp. 185–204.

[7] J. Edmonds and R. M. Karp, Theoretical improvements in algorithmic efficiency for network
flow problems, J. ACM, 19 (1972), pp. 248–264.

892 ALPÁR JÜTTNER

[8] G. N. Frederickson and R. Solis-Oba, Increasing the weight of minimum spanning trees,
J. Algorithms, 33 (1999), pp. 244–266.

[9] G. N. Frederickson and R. Solis-Oba, Efficient algorithms for robustness in matroid opti-
mization, in Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, New Orleans, LA, 1997, SIAM, Philadelphia, 1997, pp. 659–668.

[10] G. N. Frederickson and R. Solis-Oba, Algorithms for measuring perturbability in matroid
optimization, Combinatorica, 18 (1998), pp. 503–518.

[11] S. Fujishige, Submodular Functions and Optimization, Elsevier Science, New York, 1991.
[12] D. R. Fulkerson, Increasing the capacity of a network: The parametric budget problem,

Management Sci., 5 (1959), pp. 472–483.
[13] D. R. Fulkerson and G. C. Harding, Maximizing the minimum source-sink path subject to

a budget constraint, Math. Programming, 13 (1975), pp. 116–118.
[14] A. V. Goldberg and R. E. Tarjan, Finding minimum-cost circulations by canceling negative

cycles, J. ACM, 36 (1989), pp. 873–886.
[15] M. Grötschel, L. Lovász, and A. Schrijver, The ellipsoid method and its consequences in

combinatorial optimization, Combinatorica, 1 (1981), pp. 169–197.
[16] G. C. Harding, Some Budgeted Optimization Problems and the Edge Disjoint Branchings

Problem, Ph.D. dissertation, Cornell University, Ithaca, NY, 1977.
[17] A. Jüttner, Optimization with additional variables and constraints, Oper. Res. Lett., 33

(2005), pp. 305–311.
[18] N. Megiddo, Combinatorial optimization with rational objective functions, Math. Oper. Res.,

4 (1979), pp. 414–424.
[19] N. Megiddo, Applying parallel computation algorithms in the design of serial algorithms,

J. ACM, 30 (1983), pp. 852–865.

[20] C. H. Norton, S. A. Plotkin, and É. Tardos, Using separation algorithms in fixed dimen-
sion, J. Algorithms, 13 (1992), pp. 79–98.

[21] T. Radzik, Fractional combinatorial optimization, in Handbook of Combinatorial Optimiza-
tion, Vol. 1, D. Z. Du and P. Pardalos, eds., Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1998.

[22] É. Tardos, A strongly polynomial minimum cost circulation algorithm, Combinatorica, 5
(1985), pp. 247–255.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 4, pp. 893–912

{0, 1
2
}-CUTS AND THE LINEAR ORDERING PROBLEM:

SURFACES THAT DEFINE FACETS∗

SAMUEL FIORINI†

Abstract. We find new facet-defining inequalities for the linear ordering polytope generalizing
the well-known Möbius ladder inequalities. Our starting point is to observe that the natural deriva-
tion of the Möbius ladder inequalities as {0, 1

2
}-cuts produces triangulations of the Möbius band and

of the corresponding (closed) surface, the projective plane. In that sense, Möbius ladder inequalities
have the same “shape” as the projective plane. Inspired by the classification of surfaces, a classic
result in topology, we prove that a surface has facet-defining {0, 1

2
}-cuts of the same “shape” if and

only if it is nonorientable.

Key words. linear ordering problem, {0, 1
2
}-cut, surface, cyclic order, matching theory

AMS subject classifications. 05C70, 05C20, 05C62, 05C10, 90C57

DOI. 10.1137/S0895480104440985

1. Introduction. Let X be a finite set of cardinality n ≥ 3, and let Dn =
(X,An) denote a complete digraph with node set X and arc set An. Given nonnegative
weights wij for each arc ij ∈ An, the minimum linear ordering problem (MIN-LOP) is
to find a linear order � on X whose total weight

∑
i≺j wij is minimum. The maximum

linear ordering problem (MAX-LOP) is defined similarly. Both problems are strongly
NP-hard [14]. Because a linear order � is an optimum solution of a MIN-LOP instance
if and only if its reverse � is an optimum solution of the MAX-LOP instance with the
same weights, both problems are equivalent as regards exact algorithms. Nevertheless,
computing approximate solutions seems to be easier for MAX-LOP [22] than for MIN-
LOP [25]. Note that MIN-LOP is essentially the minimum dicycle cover problem
(which is also known as the minimum feedback arc set problem), and MAX-LOP is
essentially the maximum acyclic subgraph problem. Henceforth, we mainly focus on
MIN-LOP and prefer to regard the linear ordering problem as a minimization problem.
The standard formulation of MIN-LOP as an integer programming problem has one
variable xij per arc ij ∈ An, with xij = 1 if i ≺ j and xij = 0 otherwise, and reads

minimize
∑

ij∈An

wijxij

subject to xij ≥ 0 ∀ij ∈ An,(1.1)

xij + xjk + xki ≥ 1 ∀ij, jk, ki ∈ An,(1.2)

xij + xji = 1 ∀ij ∈ An,(1.3)

xij ∈ Z ∀ij ∈ An.(1.4)

The standard formulation of MAX-LOP as an integer program is identical to the one
above, except that the goal is to maximize and that constraints (1.1) and (1.2) are

∗Received by the editors February 11, 2004; accepted for publication (in revised form) March 30,
2006; published electronically December 5, 2006.

http://www.siam.org/journals/sidma/20-4/44098.html
†Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139. Cur-

rent address: Département de Mathématique, Université Libre de Bruxelles, CP 216, Boulevard
du Triomphe, B-1050 Brussels, Belgium (sfiorini@ulb.ac.be). This work was supported by a Fel-
lowship of the Belgian American Educational Foundation and the Fonds National de la Recherche
Scientifique.

893

894 SAMUEL FIORINI

usually written in an equivalent form, as xij ≤ 1 and xij +xjk +xki ≤ 2, respectively.
The MAX-LOP formulation was introduced by Grötschel, Jünger, and Reinelt [12, 13]
and Reinelt [24], and studied more recently by Goemans and Hall [11] and Newman
and Vempala [23]. The convex hull of the points satisfying (1.1)–(1.4) is denoted by
Pn

LO, or sometimes PX
LO, and is known as the linear ordering polytope or binary choice

polytope; see [9, 8] for a survey. This polytope has one vertex per linear ordering on
X; hence the name.

A fair number of facet-defining inequalities of the linear ordering polytope have
been determined, including k-fence inequalities [13, 5], t-reinforced k-fence inequalities
[26, 18], α-critical fence inequalities [15], Möbius ladder inequalities [13], and the
inequalities obtained from these by symmetries of the polytope [2, 7]. In this list, the
only class of inequalities for which a polynomial time separation algorithm has been
published are the Möbius ladder inequalities [3]. By making n + 1 calls to any such
algorithm, one can solve the separation problem for all inequalities obtained from
Möbius ladder inequalities by symmetries. For a more direct approach, see [8]. It is
very tempting to look for generalizations of the Möbius ladder inequalities. This is
the aim of the present article. The following examples illustrate our approach.

∞

1
63

5
2

4
1

∞b.

2

a.

4 5

3 6 1

21

2

M

Fig. 1.1. A Möbius ladder and the corresponding triangulation of the projective plane.

Example 1. Let X = {1, 2, 3, 4, 5, 6} and M = {12, 23, 34, 41, 45, 56, 63, 61, 25}
(see Figure 1.1(a)). Note that in the figure, some vertices have to be identified. The
inequality ∑

ij∈M

2xij ≥ 4(1.5)

is a Möbius ladder inequality. (A definition of these inequalities is given below, in
subsection 4.2.) It defines a facet of the linear ordering polytope. We now give a
cutting plane proof of the fact that the inequality is valid. More precisely, we show
that it is a {0, 1

2}-cut for the system (1.1)–(1.3).
If we sum (1.1) for ij ∈ {23, 41, 45, 63, 61, 25} and (1.2) for ijk ∈ {123, 341, 634,

456, 561, 125}, and substract (1.3) for ij ∈ {31, 46, 15}, the resulting valid inequality
reads ∑

ij∈M

2xij ≥ 3.(1.6)

Because at a vertex of the linear ordering polytope the left-hand side of (1.6) is an
even integer, we can add 1 to the right-hand side of (1.6) while preserving its validity.
Hence we have proved that (1.5) is valid. In order to visualize the derivation better, we
associate with each inequality xij ≥ 0 that was used the oriented triangle ij∞, where

{0, 1
2
}-CUTS AND THE LINEAR ORDERING PROBLEM 895

∞ /∈ X, and to each inequality xij +xjk +xki ≥ 1 that was used the oriented triangle
ijk. The resulting collection of oriented triangles is represented in Figure 1.1(b). Now
the crucial observation is that our cutting plane proof produces a triangulation of a
surface, namely, the projective plane (see Figure 1.2(a)).

b. N2

N1
a.

Fig. 1.2. A representation of the projective plane (left) and the Klein bottle (right).

a. b.K

1

2 1

24

6

5

7

67

83 9

5

∞

4

A

983

7 6 ∞

∞∞ 7 6

B

C

1

2 1

2
A B

C

Fig. 1.3. The support graph of a new facet-defining inequality and the corresponding triangu-
lation of the Klein bottle.

Example 2. Let X = {1, 2, 3, 4, 5, 6, 7, 8, 9, A,B,C} and K = {12, 23, 2B, 34, 41,
45, 56, 58, 67, 74, 78, 83, 89, 96, 9A,A5, AB,BC,C1, C9} (see Figure 1.3(a)). By a cut-
ting plane proof similar to that used in Example 1, the inequality∑

ij∈K

2xij ≥ 8

can be proved to be valid. This time, we sum (1.1) for ij ∈ {23, 2B, 41, 56, 78, 74, 83,
96, A5, AB,C1, C9} and (1.2) for ijk ∈ {124, 234, 345, 358, 456, 467, 679, 789, 58A, 89A,
9AB, 9BC, 2BC, 12C}, and substract (1.3) for ij ∈ {24, 35, 46, 79, 8A, 9B, 2C}. If we
use the same convention as above to represent the derivation, a triangulation is re-
vealed (see Figure 1.3(b)). This time the corresponding surface is the Klein bottle
(see Figure 1.2(b)). It is an interesting exercise to show that the inequality above—
which was unknown before—defines a facet of the linear ordering polytope (see the
beginning of the proof of Proposition 5.5 for a hint).

In this article, we consider {0, 1
2}-cuts derived from the system (1.1)–(1.3). Our

motivation for studying these cuts is threefold. First, the cuts generalize known
facet-defining inequalities, including Möbius ladder inequalities, although they are not

896 SAMUEL FIORINI

guaranteed to be facet-defining in general. This observation raises the possibility of
finding a generalization of the Möbius ladder inequalities whose corresponding separa-
tion problem is still tractable. Second, they possess interesting structural properties.
For instance, some of them naturally define surfaces. It turns out that the topological
properties of these surfaces and the polyhedral properties of the corresponding cuts are
related. To our knowledge, this is the first connection of this type observed between
topology and polyhedral combinatorics. Third, it is interesting to find new facet-
defining inequalities which simultaneously have complex structures and short validity
proofs. Since they have short cutting plane proofs, {0, 1

2}-cuts are good candidates.
In section 2, we define {0, 1

2}-cuts and then note some basic results on the {0, 1
2}-

cuts obtained from (1.1)–(1.3). In section 3, we give some background on simplicial
complexes and surfaces. We begin section 4 by relating {0, 1

2}-cuts for the linear
ordering problem to certain pure two-dimensional simplicial complexes. The rest
of the section focusses on surface-shaped {0, 1

2}-cuts, i.e., cuts whose corresponding
complex is a triangulation of some surface. We establish two necessary conditions for
such a {0, 1

2}-cut to define a facet of the linear ordering polytope. We then use these
necessary conditions to prove that no {0, 1

2}-cut engendered by an orientable surface
is facet-defining. Finally, in section 5, we show how to transform any factor-critical
graph into a facet-defining {0, 1

2}-cut which is nearly surface-shaped. As a corollary,
we prove that for every nonorientable surface, there is a facet-defining cut with the
same “shape.”

2. {0, 1
2
}-cuts. In this section, we formally define {0, 1

2}-cuts. We then gather

some initial results on the {0, 1
2}-cuts for the linear ordering problem arising from its

standard linear relaxation (1.1)–(1.3). More specifically, we give a system of linear
equations on F2 = GF (2) describing all cuts for a certain value of n.

2.1. {0, 1
2
}-cuts in general. Consider a system Ax ≥ b of linear inequalities

with A ∈ Z
p×q and b ∈ Z

p, let P be the polyhedron defined by Ax ≥ b, and let
PI = conv(P ∩ Z

q) denote the integer hull of P . A {0, 1
2}-cut [3] for Ax ≥ b is an

inequality of the form

uTAx ≥ uT b + 1,(2.1)

where u ∈ {0, 1}p, each component of uTA is even, and uT b is odd. Every {0, 1
2}-cut

is valid for PI . This definition of {0, 1
2}-cut is slightly nonstandard. In the usual

definition, u belongs to {0, 1
2}p, and the resulting inequality is 1

2 times (2.1).
Perhaps because they rely on a simple, widely applicable principle, {0, 1

2}-cuts are
very common in combinatorial optimization; see, e.g., [3, 4]. For recent progress on
{0, 1

2}-cuts and their separation, see [17, 16]. A multiplier is any 0/1-vector u ∈ {0, 1}p
such that uTA ≡ 0T (mod 2) and uT b ≡ 1 (mod 2), where 0 denotes a zero column
vector of compatible size. We denote by M(A, b) the set of all multipliers of Ax ≥ b.
This set forms an affine subspace of the affine space F

p
2 = GF (2)p = AG(p, 2) that we

call the multiplier space of Ax ≥ b.

2.2. {0, 1
2
}-cuts for the linear ordering problem. Henceforth, Ax ≥ b de-

notes the system formed by (1.1), (1.2) and

−xij − xji ≥ −1 ∀{i, j} ⊆ X.(2.2)

We could equally well replace (1.3) by pairs of inequalities, but this would make no
essential difference in our discussion. We index the inequalities of Ax ≥ b as follows.
Let Y = X ∪ {∞}, where ∞ is any element not in X. The first (n + 1)n(n − 1)/3

{0, 1
2
}-CUTS AND THE LINEAR ORDERING PROBLEM 897

inequalities are indexed by the tricycles on Y , i.e., the triples of distinct elements of
Y taken up to cyclic rotations of their coordinates. In the introduction, we have been
using “oriented triangle” to mean “tricycle.” The tricycle corresponding to (i, j, k) is
denoted by ijk. So ijk, jki, and kij denote the same tricycle. In our indexing scheme,
inequality xij ≥ 0 corresponds to tricycle ∞ij, and inequality xij + xjk + xki ≥ 1 to
tricycle ijk. The last n(n−1)/2 inequalities are indexed by the unordered pairs of dis-
tinct elements in X. Inequality −xij −xji ≥ −1 corresponds to unordered pair {i, j}.
Thus we write any multiplier as u =

(
v
w

)
for some vector v with (n+1)n(n−1)/3 com-

ponents and some vector w with n(n−1)/2 components. Our first result describes the
structure of the multiplier space M(A, b). For convenience, we let M = M(A, b) for the
rest of the text. Below, ≤ denotes any linear order on Y whose largest element is ∞.

Proposition 2.1. The multiplier space M is defined by the following equations
on F2:

w{i,j} =
∑
k∈Y
k �=i,j

vijk ∀i, j in X with i < j,(2.3)

∑
k∈Y
k �=i,j

vijk +
∑
k∈Y
k �=i,j

vjik = 0 ∀i, j in Y with i < j,(2.4)

∑
i,j,k∈Y
i<j<k

vijk = 1.(2.5)

Proof. Let u be a multiplier, and let i, j be two distinct elements of X. Then we have

(uTA)Tij =
∑
k∈Y
k �=i,j

vijk − w{i,j} ≡ 0 (mod 2) and

(uTA)Tji =
∑
k∈Y
k �=i,j

vjik − w{i,j} ≡ 0 (mod 2).

Consequently (2.3) hold, as do (2.4), except perhaps for j = ∞. Consider the multi-
graph with vertex set Y \{i} in which two vertices j and k are connected by one edge if
either vijk = 1 or vjik = 1 but not both, and by two parallel edges if vijk = vjik = 1.
The degree of vertex j in this graph is given by the left-hand side of (2.4). So all
the vertices of the multigraph except perhaps ∞ have even degree. Because every
multigraph has an even number of vertices of odd degree, the degree of ∞ is even,
and thus (2.4) hold for all i, j in Y .

Because u is a multiplier, it also has to satisfy the condition uT b ≡ 1 (mod 2).
This condition can be rewritten as follows in F2:∑

i,j,k∈X
i<j<k

vijk +
∑

i,j,k∈X
i<j<k

vkji +
∑
i,j∈X
i<j

w{i,j} = 1

⇐⇒
∑

i,j,k∈X
i<j<k

vijk +
∑

i,j,k∈X
i<j<k

vkji +
∑
i,j∈X
i<j

∑
k∈Y
k �=i,j

vijk = 1

⇐⇒
∑

i,j,k∈X
i<j<k

vijk +
∑

i,j,k∈X
i<j<k

vkji +
∑

i,j,k∈X
i<j<k

vkji +
∑
i,j∈X
i<j

vij∞ = 1

⇐⇒
∑

i,j,k∈Y
i<j<k

vijk = 1.

898 SAMUEL FIORINI

Consider a multiplier u =
(
v
w

)
in M . By Proposition 2.1, u is entirely determined

by v. In other words, it suffices to specify the set of tricycles ijk for which vijk = 1
holds in order to determine a multiplier. This set of tricycles has to satisfy the two
conditions given by (2.4) and (2.5). In particular, it follows from (2.4) that each
unordered pair {i, j} ⊆ Y has to be contained in an even number of tricycles of the
set. As will be shown later, restricting this number of tricycles to be equal to 0 or 2
already gives rise to a host of interesting inequalities.

The next corollary is a simple application of Proposition 2.1. Although it is not
of much use here, we state it because it spawns intriguing questions (see section 6).

Corollary 2.2. The dimension and the cardinality of the multiplier space are
respectively given by

dimM = 2

(
n + 1

3

)
−
(
n

2

)
− 1 and |M | = 2dimM .

Proof. It suffices to show that the matrix of system (2.4)–(2.5) has rank
(
n
2

)
+ 1.

If we order the variables vijk in such a way that whenever i < j < k, vijk has position
� if and only if vkji has position �+

(
n+1

3

)
, then the matrix of system (2.4)–(2.5) takes

the form

N =

(
B B
1T 0T

)
,

where the columns of B are the characteristic vectors of the triangles of the complete
graph Kn+1 on Y . So the columns of B span the cycle space of Kn+1, and hence B
has rank

(
n+1

2

)
− (n + 1) + 1 =

(
n
2

)
[6]. So N has rank

(
n
2

)
+ 1, as claimed.

3. Simplicial complexes and surfaces. In the preceding section, we proved
that {0, 1

2}-cuts for the linear ordering problem correspond to sets of tricycles (or
oriented triangles) on Y = X∪{∞} satisfying certain conditions. This section provides
some basic notions and results from topology which will help in recognizing facet-
defining cuts on the basis of their global structure.

3.1. Simplicial complexes. An (abstract) simplicial complex with vertex set
V is a collection K of subsets of V such that (i) F ∈ K and G ⊆ F imply G ∈ K,
and (ii) v ∈ V implies {v} ∈ K. We will always assume that V is finite. A set in K
is called a face, and a k-face if its cardinality is k + 1. The dimension of a k-face is
k. The dimension of K is the maximum dimension of any of its faces. Note that one-
dimensional simplicial complexes correspond to simple graphs. A simplicial complex
is said to be pure if all its inclusionwise maximal faces have the same dimension. Let
v be a vertex of K. The link of v is the simplicial complex link(v,K) = {F − v : v ∈
F ∈ K}. Every simplicial complex K with vertex set V can be canonically realized
as a topological space, for instance, as a subspace of R

2d+1, where d denotes the
dimension of K [20]. Consider any topological space S. If the canonical realization of
K is homeomorphic to S, then K is referred to as a triangulation of S.

3.2. Surfaces: Definition, invariants, and classification. A combinatorial
surface is a pure two-dimensional simplicial complex such that the link of every vertex,
regarded as a simple graph, is a cycle. In particular, in a combinatorial surface, every
1-face is contained in precisely two 2-faces. A surface is a connected compact Hausdorff
topological space locally homeomorphic to R

2. Every surface has a triangulation; see,
e.g., [21] for a short proof. Moreover, any triangulation of a surface is a combinatorial
surface.

{0, 1
2
}-CUTS AND THE LINEAR ORDERING PROBLEM 899

Let S be a surface and K be any triangulation of S. The Euler characteristic of
triangulation K is defined by

χ(K) = f0 − f1 + f2,(3.1)

where fk denotes the number of k-faces of K for 0 ≤ k ≤ 2. If K′ is another triangula-
tion of S, then we have χ(K) = χ(K′) [1]. So we can define the Euler characteristic of
surface S by letting χ(S) = χ(K). The second main invariant of surfaces is orientabil-
ity. An oriented 1-face is simply an arc, that is, an ordered pair of distinct elements.
Arcs uv and vu are said to be opposite. An oriented 2-face or oriented triangle is a
tricycle, that is, an ordered triple of distinct elements taken up to cyclic rotations of its
coordinates. There are two tricycles on three points, namely, uvw = vwu = wuv and
its opposite wvu = vuw = uwv. Tricycle uvw determines three arcs: uv, vw, and wu.
Two tricycles are said to be adjacent if they have exactly two elements in common.
Two adjacent tricycles are said to be compatibly oriented if the arcs they determine
on their common elements are opposite. For instance, uvw and wvu′ are adjacent and
compatibly oriented, provided that u �= u′. Otherwise they are opposite. An orienta-
tion of K is a collection �K of tricycles such that for each 2-face F = {u, v, w} in K we

have either uvw ∈ �K or wvu ∈ �K. (This definition also applies in case K is any pure

two-dimensional simplicial complex.) We say that �K is coherent if all pairs of adjacent

tricycles in �K are compatibly oriented. Triangulation K is said to be orientable if it
has a coherent orientation. Two cases are possible for S: either all its triangulations
are orientable, in which case S is orientable, or none of its triangulations is coherently
orientable, in which case S is nonorientable [1].

Let Sh denote the surface obtained from the sphere by adding h ≥ 0 handles,
and let Nb denote the surface obtained from the sphere by removing b > 0 discs
and replacing them by Möbius bands. All these surfaces are well-defined, up to
homeomorphism. The surfaces S1, N1, and N2 are known as the torus, projective
plane, and Klein bottle, respectively.

Theorem 3.1 (the classification of surfaces [1, 21]). Let S be a surface with Euler
characteristic χ. If S is orientable, then it is homeomorphic to Sh for h = 1 − 1

2χ.
If S is nonorientable, then it is homeomorphic to Nb for b = 2 − χ. No two of the
surfaces S0, S1, N1, S2, N2, . . . are homeomorphic.

4. Surface-shaped cuts. In this section, we use the terminology introduced
in the preceding section to motivate, define, and study surface-shaped cuts. Central
in our discussion is the question of characterizing the surface-shaped cuts which are
facet-defining. Two main necessary conditions are given. Each of these is proved
by reinterpreting surface-shaped cuts from a different standpoint. An important im-
plication of the necessary conditions is that no orientable surface can engender a
facet-defining cut.

4.1. Regarding cuts as oriented simplicial complexes. Let Ax ≥ b be
defined as in subsection 2.2. Consider a multiplier u =

(
v
w

)
in M(A, b). Let �K = �K(u)

denote the set of tricycles ijk on Y = X ∪ {∞} such that vijk = 1. As was noted

above, u is entirely determined by �K.
Lemma 4.1. If �K = �K(u) contains a tricycle and its opposite, then the cut defined

by the multiplier u is implied by (1.1)–(1.3).

Proof. Without loss of generality, we assume that �K contains both ijk and kji,
where i, j, and k are three distinct elements of X. Inequality (2.1) is clearly implied
by (1.1)–(1.3) and ūTAx ≥ ūT b+1, where ū is the vector obtained from u by replacing

900 SAMUEL FIORINI

all its coordinates by zeroes except the ones corresponding to ijk and kji. Since the
inequality ūTAx ≥ ūT b + 1 reads

(xij +xjk +xki)+(xkj +xji+xik) ≥ 3 ⇐⇒ (xij +xji)+(xjk +xkj)+(xki+xik) ≥ 3,

it is implied by (1.3). Hence the {0, 1
2}-cut uTAx ≥ uT b+ 1 is implied by (1.1)–(1.3).

The lemma follows.
If �K does not contain a pair of opposite tricycles, then we say that u is simple.

From now on, we will restrict ourselves to simple multipliers. When u is simple,
its corresponding set of tricycles �K can be regarded as an orientation of the pure
two-dimensional simplicial complex K = K(u) whose inclusionwise maximal faces are

the sets {i, j, k} with vijk = 1 or vkji = 1. Because u is a multiplier, �K satisfies
certain conditions. For instance, (2.4) requires that for each 1-simplex {i, j} in K
the number of oriented 2-simplices of the form ijk in �K and the number of oriented
2-simplices of the form jik in �K have the same parity. In particular, it follows that
in K each 1-simplex is contained in an even number of 2-simplices. If, moreover,
K is a combinatorial surface, then we call multiplier u and the corresponding cut
surface-shaped.

Conversely, we can start with any combinatorial surface K whose vertex set is
included in Y and define a multiplier u such that K(u) = K, as follows. Consider

any orientation �K of K. Let u =
(
v
w

)
denote the 0/1-vector with v determined by

vijk = 1 if ijk ∈ �K, vijk = 0 otherwise, and w determined by (2.3). Then either u is

a multiplier or replacing an odd number of tricycles in �K by their opposite yields a
0/1-vector u which is a multiplier. By construction, we have �K(u) = �K and K(u) = K.
Note that the multipliers obtained in this way are always simple.

4.2. The case of Möbius ladder inequalities. A digraph D = (N(D), A(D))
is a Möbius ladder if there are a positive integer k and dicycles1 C0, C1, . . . , Ck−1 in
D such that A(D) = C0 ∪ C1 ∪ · · · ∪ Ck−1 and the following conditions are satisfied
for all i, j:
(M1) k ≥ 3 and k is odd;
(M2) Ci ∩ Ci+1 contains exactly one arc, denoted by ei;
(M3) Ci ∩ Cj = ∅ if j /∈ {i− 1, i, i + 1};
(M4) |Ci| ∈ {3, 4};
(M5) the total degree of each node in D is greater or equal to 3;
(M6) if Ci and Cj have a node v in common and i �= j, then either Ci, Ci+1, . . . ,

Cj−1, Cj have node v in common, or Cj , Cj+1, . . . , Ci−1,Ci have node v in
common, but not both;

(M7) D − {ei+1, ei+3, . . . , ei−2} contains exactly one dicycle, namely, Ci.
The above definition is due to Reinelt [24]. It is perhaps not very intuitive.

Notably, (M1)–(M7) imply that A(D)−{e0, . . . , ek−1} is a semicycle, that is, a set of
arcs obtained by reversing certain arcs of a dicycle of length at least three. Whenever
N(D) ⊆ X, the Möbius ladder D = (N(D), A(D)) has a corresponding Möbius ladder
inequality which reads ∑

ij∈A(D)

xij ≥
k + 1

2
.(4.1)

Every Möbius ladder inequality defines a facet of the linear ordering polytope [24]
and can be derived as a {0, 1

2}-cut from (1.1)–(1.3), as in Example 1. The resulting

1Throughout this article, dicycles are regarded as sets of arcs.

{0, 1
2
}-CUTS AND THE LINEAR ORDERING PROBLEM 901

a.

1

2

1

2

∞

∞

1

2

1

2

b.

Fig. 4.1. A Möbius ladder and a corresponding triangulation of N1.

collections of tricycles yield triangulations of the projective plane (see Figure 4.1 for
a further example). In other words, the following result holds.

Proposition 4.2. Every Möbius ladder inequality is a surface-shaped {0, 1
2}-cut

whose underlying surface is the projective plane N1.

4.3. Interpreting the cuts using complete cyclic orders. Let u be a surface-
shaped multiplier, and let K = K(u) and �K = �K(u). Consider the graph G = G(u)
which has one vertex per 2-face of K and in which two 2-faces form an edge if the
corresponding tricycles in �K are adjacent and compatibly oriented. Each connected
component of G determines a subcomplex of K, which is referred to as a zone of u.
The zone graph of u has one vertex per zone and one edge per pair of zones contain-
ing a common 1-simplex, and is denoted by Z(u). The aim of this subsection is to
prove the following lemma. Quite naturally, we call a multiplier facet-defining if the
corresponding {0, 1

2}-cut defines a facet of the linear ordering polytope.
Lemma 4.3. Let u be a facet-defining surface-shaped multiplier. Then every zone

of u is a triangulated cycle.
The meaning of “triangulated cycle” should be clear. If not, a formal definition

is given below. Triangulated cycles are the simplicial complexes which are recursively
defined as follows. The simplicial complex {∅, {i0}, {i1}, {i2}, {i0, i1}, {i0, i2}, {i1, i2},
{i0, i1, i2}} is a triangulated cycle with vertex sequence i0i1i2i0. If a simplicial com-
plex L is a triangulated cycle with vertex sequence i0i1 · · · im−1i0, then for each
α ∈ {0, . . . ,m − 1} and all j not in the vertex set of L, the simplicial complex
L ∪ {{j}, {iα, j}, {j, iα+1}, {iα, j, iα+1}} is a triangulated cycle with vertex sequence
i0i1 · · · iαjiα+1 · · · im−1i0 (indices are taken modulo m).

Note that Lemma 4.3 in particular implies that every facet-defining surface-
shaped multiplier has at least two zones. This is due to the fact that a triangulated
cycle is not a combinatorial surface because it has a boundary. The technique we use
to prove Lemma 4.3 generalizes that used in the proof of Lemma 4.1. Namely, if the
cut defined by a multiplier u is facet-defining, then replacing one or several nonzero
coordinates of u by zeroes should cause (2.1) to lose its validity. In order to formalize
this idea in the most informative way, we resort to complete cyclic orders.

A set C of tricycles is said to be asymmetric if ijk ∈ C implies kji /∈ C, transitive
if ijk, ik� ∈ C and j �= � imply ij� ∈ C, a cyclic order if it is asymmetric and transitive,
and complete if ijk /∈ C implies kji ∈ C. Complete cyclic orders are combinatorial
structures encoding the relative positions of distinct points on a oriented closed curve.

902 SAMUEL FIORINI

Given a set of distinct points on such a curve, we obtain a complete cyclic order by
setting ijk ∈ C whenever j lies in the open path which goes from i to k in the
prescribed orientation. A set of tricycles is said to be extendable if it is contained in
some complete cyclic order. Determining whether a set of tricycles is extendable or
not is an NP-complete problem [10]. We call a set of tricycles minimally nonextendable
if it is nonextendable and each of its proper subsets is extendable.

The complete cyclic order polytope, denoted by PY
CCO, is the convex hull of the

0/1 characteristic vectors of all complete cyclic order orders on Y = X ∪ {∞} in the
real vector space which has one coordinate yijk per tricycle ijk on Y . The polytopes
PX

LO and PY
CCO are affinely equivalent, the equivalence being given by

x �→ y with yijk =

{
xij + xjk + xki − 1 if i, j, k �= ∞,
xij if k = ∞.

(4.2)

A set C of tricycles on Y is nonextendable if and only if its dual Cd = {kji : ijk ∈ C}
is nonextendable, that is, if and only if the nonextendable set of tricycles (NEST)
inequality, ∑

ijk∈C

yijk ≥ 1,(4.3)

is valid for the complete cyclic order polytope. Indeed, the inequality is valid if
and only if every vertex of the polytope has yijk = 1 for some ijk∈C. Since all
vertices of PY

CCO satisfy yijk + ykji = 1, the latter condition holds if and only if Cd is
nonextendable or, equivalently, if and only if C is nonextendable. NEST inequalities
were introduced by the author in [8]. Note that (4.3) is valid for PY

CCO if and only if
the inequality∑

ij∞∈C

xij +
∑

ijk∈C
i,j,k �=∞

(xij + xjk + xki) ≥ |{ijk ∈ C : i, j, k �= ∞}| + 1(4.4)

obtained from it by expressing the y variables in terms of the x variables using (4.2) is
valid for PX

LO. We also refer to (4.4) as a NEST inequality. Now the key observation
is that, modulo (1.3), the cut determined by a multiplier u is exactly the NEST

inequality (4.4) with C = �K(u). Hence, �K(u) has to be minimally nonextendable
whenever (2.1) is facet-defining.

Proof of Lemma 4.3. Let K = K(u), �K = �K(u), and G = G(u). Consider any
inclusionwise maximal subset U of V (G) such that G[U] is connected and U determines
a subcomplex L of K which is a triangulated cycle. Let i0i1 · · · im−1i0 denote the

vertex sequence of L, and let �L denote the orientation of L determined by u. If U is
a connected component of G, then there is nothing to prove. Otherwise, there is an
index α ∈ {0, . . . ,m−1} and a vertex j of K such that the 2-face {iα, j, iα+1} belongs
to K but not to U and is adjacent to some element of U in G. By maximality of U ,
vertex j has to belong to L. It follows that �L is nonextendable, and hence �K is not
minimally nonextendable, a contradiction.

4.4. Interpreting the cuts in terms of matching theory. As in the preced-
ing subsection, we reconsider surface-shaped cuts from a different angle. Again, this
yields a necessary condition for a cut to be facet-defining. An important consequence
is that no orientable surface can give rise to a facet-defining cut. We begin with some
classic definitions and results from matching theory.

Let G = (V,E) be a graph. A matching is a set of pairwise independent edges.
When a matching covers every vertex, it is said to be perfect. An edge cover is a

{0, 1
2
}-CUTS AND THE LINEAR ORDERING PROBLEM 903

set of edges covering every vertex. The maximum cardinality of a matching and the
minimum cardinality of an edge cover are respectively denoted by ν(G) and ρ(G).
Whenever G has no isolated vertex, we have ν(G)+ρ(G) = |V |. If G−v has a perfect
matching for all vertices v, then G is called factor-critical. A set of vertices S is said
to be matchable to G − S if the graph with vertex set S ∪ C(G − S) and edge set
{{s, C} : ∃c ∈ C s.t. sc ∈ E(G)} contains a matching covering S, where C(G − S)
denotes the collection of all connected components of G−S. We will use the following
structural result on matchings [6].

Theorem 4.4. Every graph G contains a set of vertices S with the following two
properties: (i) S is matchable to G− S, and (ii) every component of G− S is factor-
critical.

The link between surface-shaped {0, 1
2}-cuts and matching theory relies on the

concept of a 2-packing, i.e., a collection of dicycles on some finite set such that each
arc is contained in at most two dicycles of the collection. Whenever C is a 2-packing
with an odd number of dicycles whose ground set is included in X, the 2-packing
inequality

∑
ij∈∪C

2xij ≥ |C| + 1(4.5)

is valid for the linear ordering polytope. By Lemma 4.3, if a surface-shaped multiplier
u is facet-defining, then each zone of u determines a dicycle on Y = X ∪ {∞}. Let
C denote the collection of all those dicycles which do not contain ∞. Then C is a
2-packing, and it is easy to check that (2.1) and (4.5) coincide. For i ∈ Y , let Z ′

i(u)
denote the subgraph of the zone graph of u induced by the zones which do not contain
i. It emerges from our discussion that Z ′

∞(u) plays a special role. We call it the
restricted zone graph of u. We are now ready to state and prove our second necessary
condition for a surface-shaped cut to define a facet of the linear ordering polytope.

Lemma 4.5. Let u be a facet-defining surface-shaped multiplier. Then the follow-
ing hold:

(i) the restricted zone graph Z ′
∞(u) is factor-critical;

(ii) the graph Z ′
i(u) is factor-critical for all i ∈ Y ;

(iii) the zone graph Z(u) is factor-critical.
Proof. We claim that it suffices to prove (i). Indeed, as we can exchange the roles

of any element of X and ∞ by a symmetry of the linear ordering polytope [7], (ii)
follows from (i). Moreover, we can assume that ∞ is not a vertex of K(u) by adding
one new element to X and then exchanging the roles of this new element and ∞ by
a symmetry of the polytope. In virtue of the trivial lifting lemma [24], the resulting
surface-shaped multiplier is still facet-defining. Hence (iii) also follows from (i).

We now prove (i). Again, let C denote the collection of dicycles on Y defined by
the zones of u which do not contain ∞. By contradiction, suppose that the restricted
zone graph of u is not factor-critical. Then, by Theorem 4.4, there is a partition of
C into nonempty subsets S, C1, . . . , Cm such that |Cα| is odd for 1 ≤ α ≤ m and no
dicycle of Cα has an arc in common with any dicycle of Cβ if α �= β. This is easily
seen by considering the graph which has one vertex per dicycle of C, two vertices
being adjacent when the corresponding dicycles share an arc. The parity condition
on the cardinality of Cα for 1 ≤ α ≤ m is due to the (trivial) fact that factor-critical
graphs have an odd number of vertices. Note that by assertion (i) of Theorem 4.4,
we have m ≥ |S|. Moreover, note that in (2.1), uT b exactly counts the number of
dicycles in C, so |C| = uT b is odd. It follows that we have m ≥ |S| + 1 ≥ 2. By

904 SAMUEL FIORINI

summing the 2-packing inequalities corresponding to C1, . . . , Cm and perhaps some
trivial inequalities of the form xij ≥ 0, we obtain the inequality

∑
ij∈∪C

2xij ≥
m∑

α=1

|Cα| + m = |C| − |S| + m.

Because the right-hand side of the latter inequality is at least |C| + 1, it follows that
the {0, 1

2}-cut determined by u, which coincides with inequality (4.5), is implied by
the 2-packing inequalities of C1, . . . , Cm and the trivial inequalities, a contradiction.
In conclusion, the restricted zone graph of u has to be factor-critical.

We can now prove the consequential result which was announced in the beginning
of this subsection.

Theorem 4.6. Let u be a surface-shaped multiplier. If its associated complex is
orientable, then u is not facet-defining.

Proof. Suppose otherwise. The zone graph of u has to be factor-critical by Lemma
4.5, and bipartite because K(u) is orientable. Hence the zone graph of u is a one-vertex
graph, so u has only one zone. This contradicts Lemma 4.3.

5. Facet-defining cuts for nonorientable surfaces. In the preceding section,
we gave conditions that all facet-defining surface-shaped cuts have to satisfy. In
particular, we showed that the underlying surface of any such cut is nonorientable. It
is then natural to ask which nonorientable surfaces admit a facet-defining cut. As we
show in this section, all of them do. For each nonorientable surface, we will construct
a surface-shaped facet-defining cut whose corresponding surface is the given surface.
Before diving into the details, we give the intuition behind the construction. The
idea is to prove a partial converse to Lemma 4.5(i). We fix a nontrivial factor-critical
graph and try to find a facet-defining multiplier whose restricted zone graph is the
given graph. We show that this can be done if we first modify the given graph by
substituting a path of length 3 for each edge. Despite this restriction, and despite the
fact that not all obtained multipliers are surface-shaped, our constructive results allow
us to easily build facet-defining surface-shaped cuts of any (nonorientable) “shape.”

5.1. Prescribing the restricted zone graph. Let G be any graph. Later on,
we will assume that G is a nontrivial factor-critical graph, but for the moment we
assume just that G has minimum degree at least 2 and an odd number of vertices.
A digraph D without isolated nodes is a representation of G if it has a collection
C = {Cv : v ∈ V (G)} of dicycles satisfying the following properties for all vertices v
and w of G:
(R1) the length of Cv equals 2 deg(v);
(R2) every arc of D is either contained in one dicycle of C (simple arc) or in two

dicycles of C (double arc);
(R3) if v and w are nonadjacent, then Cv and Cw are node-disjoint, and if v and w

are adjacent, then Cv and Cw have two nodes and one arc in common.
As is easily verified, every graph without pending or isolated vertices has at least

one representation. We now state some key properties of representations following
from (R1)–(R3). Let D be any representation of G, and let C = {Cv : v ∈ V (G)} de-
note the corresponding collection of dicycles. By (R3), each edge {v, w} of G uniquely
determines a double arc in D, namely, the arc shared by Cv and Cw. Conversely, (R2)
and (R3) together imply that every double arc in D uniquely determines an edge in
G. Since the dicycle Cv contains one double arc per neighbor of v in G, the respective

{0, 1
2
}-CUTS AND THE LINEAR ORDERING PROBLEM 905

positions of these double arcs in Cv determine a complete cyclic order on the neighbor-
hood of each vertex v of G (and also on the edges of G incident to v). In fact, these
complete cyclic orders determine the representation up to isomorphism. It follows
from (R3) that in each dicycle of C simple and double arcs alternate. Therefore, every
vertex of D has either indegree one and outdegree two or indegree two and outdegree
one. Each arc of D contains one vertex of each type, so D is bipartite. Moreover, in
every dipath or dicycle of D simple and double arcs alternate.

Condition (R2) obviously implies that the collection C of dicycles associated with
the representation D is a 2-packing. By triangulating arbitrarily each dicycle of C
(without new vertices), we obtain a certain set of tricycles. We then add to this set

of tricycles the tricycle ∞ij for each simple arc ij of D. Let �K denote the resulting
set of tricycles, and let u =

(
v
w

)
denote the 0/1-vector with v determined by vijk = 1

if ijk ∈ �K and vijk = 0 otherwise, and w determined by (2.3).
Lemma 5.1. Let G, D, C, and u be defined as above, and let K = K(u). Then

the following hold:
(i) u is a multiplier;
(ii) the restricted zone graph of u is precisely G;
(iii) the cut determined by u coincides with the 2-packing inequality of C,
(iv) the link of every vertex in K is a cycle, except perhaps that of ∞;
(v) the Euler characteristic of K is |V (G)| − |E(G)| + 1.

Proof.2 As is easily verified, the zones of u not containing ∞ are in one-to-one
correspondence with the dicycles of C. Moreover, two zones have a common 1-face if
and only if the corresponding dicycles share a double arc in D. Assertion (ii) follows.
Now let Ax ≥ b denote the system defined in subsection 2.2. Equations (2.3) hold by
definition of u. Since in K every 1-face is contained in exactly two 2-faces, equations
(2.4) hold. Finally, (2.5) holds because uT b counts the number of zones of u, which
is an odd number (recall that we assume that G has an odd number of vertices).
Assertion (i) thus follows from Proposition 2.1. We already observed that (iii) holds
in subsection 4.4.

We now turn to (iv). Let v be a vertex of K distinct from ∞. Then v is contained
in exactly two zones of u not containing ∞, say P and Q. These two zones intersect
in a common 1-face. Let i0i1 · · · ip−1i0 and j0j1 · · · jq−1j0 respectively denote the
vertex sequences of P and Q, with i0 = j0 = v and i1 = j1. Vertex v is contained
in exactly two 2-faces of K through ∞, namely, {i0, ip−1,∞} = {v, ip−1,∞} and
{j0, jq−1,∞} = {v, jq−1,∞}. Now we see that the link of v in K is some i1-ip−1 path
in P followed by the path with vertex sequence ip−1∞jq−1 followed by some jq−1–j1
path in Q (see Figure 5.1). Hence link(v,K) is a cycle, and (iv) holds.

Finally, in order to prove (v), we compute the number of 0-faces (vertices), 1-faces,
and 2-faces of K as follows:

f0 = 1 +
∑

v∈V (G)

deg v = 1 + 2|E(G)|,

f1 =
∑

v∈V (G)

(
9

2
deg v − 3

)
= 9|E(G)| − 3|V (G)|,

f2 =
∑

v∈V (G)

(3 deg v − 2) = 6|E(G)| − 2|V (G)|.

2At several places in this proof we implicitly use the properties of representations stated above.
The reader is encouraged to form a mental image of what a representation looks like before reading on.

906 SAMUEL FIORINI

v
i1 = j1

j3 . . .

j2
jq−1

∞

ip−1

. . .

i4 i5

i3

i2

Fig. 5.1. A view of K around vertex v �= ∞.

DG

1

2

3

5

4

C3

C2

C1

C4

C5

Fig. 5.2. A graph G and a representation D of graph G.

Therefore, we have χ(K) = |V (G)| − |E(G)| + 1, and (v) holds.
Note that link(∞,K) is not always a cycle. For instance, if we start with the

representation depicted in Figure 5.2, the link of ∞ in K is the disjoint union of two
cycles.

5.2. Turning factor-critical graphs into facets. In this subsection we show
that the multipliers u that we have constructed in the preceding subsection are facet-
defining, provided that G is obtained from a nontrivial factor-critical graph G0 by
replacing each edge by a path of length 3, and that the representation we choose for
G renders no vertex “extra-bad.”

Let G be a nontrivial factor-critical graph, let D be a representation of G, and
let C = {Cv : v ∈ V (G)} denote the corresponding collection of dicycles of D. We
begin by noting further useful properties of representations. Consider an s-t dipath
P in D. Then P determines a subgraph H = H(P) of G. The edges of H are those
which correspond to double arcs in P , and the vertices of H are the endpoints of these
edges. We say that a vertex v of H is primary if P contains a simple arc of Cv and
secondary otherwise. If H has at most one primary vertex, then P ⊆ Cv for some
v. Otherwise there is a sequence of vertices and edges v0e0v1e1 . . . em−1vm in H such
that vα is primary for all α ≤ m, v0 and vm are respectively the first and last primary
vertices of H, eα = {vα, vα+1} for all α < m, and eα �= eβ for all distinct α and β less
than m. Consequently, H always contains a v0-vm path on its primary vertices. The
above definitions and observations can be readily adapted to the case s = t, that is,
when P is a dicycle in D.

{0, 1
2
}-CUTS AND THE LINEAR ORDERING PROBLEM 907

Now let D be any digraph. A feedback arc set (or dicycle cover) of D is a set of
arcs F such that D − F is acyclic. The minimum cardinality of a feedback arc set of
D is denoted by τ(D). The next lemma is a first step towards the main result of this
subsection, namely, Proposition 5.5.

Lemma 5.2. Let G0 be a nontrivial factor-critical graph, let G be the graph ob-
tained from G by replacing each edge by a path of length 3, let D be any representation
of G, and let C = {Cv : v ∈ V (G)} denote the corresponding collection of dicycles of
D. Then G is a nontrivial factor-critical graph, and we have

τ(D) = ρ(G) = (|V (G)| + 1)/2 = (|C| + 1)/2.(5.1)

Therefore, the face of the linear ordering polytope defined by the 2-packing inequality
of C is nonempty.

Proof. It is obvious that G is a nontrivial factor-critical graph. If we show that
(5.1) holds, then the face defined by the 2-packing inequality of C, inequality (4.5), is
necessarily nonempty. This is due to the fact that the minimum value of the left-hand
side of (4.5) for a point of the linear ordering polytope is 2τ(∪C) = 2τ(D). Note that
the second equality in (5.1) directly follows from the fact that G is factor-critical, and
that the third holds by the definition of a representation.

It remains to prove that we have τ(D) = ρ(G). Let F be a feedback arc set of
D containing only double arcs. Such a feedback arc set exists because if F contains
some simple arc, we can replace it with some double arc contained in the same dicycle
of C. Feedback arc set F determines a set of edges of G which necessarily covers all
vertices of G. So we have ρ(G) ≤ τ(D). In order to prove the converse inequality,
consider any minimum edge cover N of G. Then N determines a set of arcs F in D,
namely, the set of double arcs corresponding to the edges of N . We claim that F is
a feedback arc set. By contradiction, suppose that D − F has a dicycle C. Because
N is an edge cover, F hits all dicycles in C. Hence C is not a member of C. It follows
that H(C) contains a cycle. By construction of G, this cycle has to contain a vertex
v with degG(v) = 2. In particular, one of the two edges incident to v has to belong to
N , so the corresponding double arc belongs to F , but it also belongs to C, a contra-
diction.

As above, let G be a nontrivial factor-critical graph. A vertex v of G is said to be
bad if we can partition δG(v) = {e ∈ E(G) : v ∈ e} into two nonempty subsets B and
R such that no minimum edge cover of G intersects B and R simultaneously. Now
consider some representation D of G. Then a vertex v is called extra-bad if it is bad
and, moreover, B and R are intervals in the complete cyclic order on δG(v) determined
by D (see the paragraph following the definition of representation in subsection 5.1).
The following lemma characterizes factor-critical graphs with a bad vertex.

Lemma 5.3. Let G be a factor-critical graph, and let v be a vertex of G such
that there is a partition of δG(v) into two possibly empty subsets B and R such that
in every minimum edge cover of G the edges incident to v are contained either in B
or in R. Then G = GB ∪GR for some factor-critical graphs GB and GR having only
vertex v in common and such that δGB

(v) = B and δGR
(v) = R.

Before proving Lemma 5.3, we state the following theorem on ear decompositions
of factor-critical graphs [19]. It plays a central role in the proof of the lemma.

Theorem 5.4. Let G be a factor-critical graph. There is a sequence G1, . . . , Gr

of graphs such that G1 is the one-vertex graph, Gi is obtained from Gi−1 by gluing
a single path with an odd number of edges having only its endvertices v and w in
common with Gi−1 (we allow the case v = w), and Gr = G. All graphs G1, . . . , Gr

are factor-critical.

908 SAMUEL FIORINI

Proof of Lemma 5.3. In the proof, we will refer to edges in B and R as blue and red
edges, respectively. If a subgraph of G through v intersects both B and R, then it will
be called bichromatic; otherwise it will be called monochromatic. We prove the lemma
by induction on the number r of ears in an ear decomposition of G; see Theorem 5.4.
The result holds trivially if r = 0. Now suppose that G can be obtained from some of
its factor-critical subgraphs H by the addition of one ear P . If v is not a vertex of H,
then the result holds. Assume now that v is a vertex of H. Note that H cannot have
a bichromatic minimum edge cover, because otherwise the same would be true for G.
By the induction hypothesis, H has two factor-critical subgraphs HB and HR such
that H = HB ∪HR, HB and HR have only vertex v in common, δHB

(v) = B ∩E(H),
and δHR

(v) = R ∩ E(H). Up to symmetry, we have to treat four cases.
Case 1. The endpoints of P are both equal to v. Ear P has to be monochromatic

because otherwise there would be a minimum edge cover of G that intersects both B
and R. If δP (v) ⊆ B, then we let GB = HB ∪ P and GR = HR. Else δP (v) ⊆ R, and
we let GB = HB and GR = HR ∪ P .

Case 2. One endpoint of P is v and the other in HB−v. In this case the edge of P
incident to v has to be blue because otherwise G would have a bichromatic minimum
edge cover. We take GB = HB ∪ P and GR = HR.

Case 3. Both endpoints of P are in HB − v. Then we simply let GB = HB ∪ P
and GR = HR.

Case 4. One endpoint of P is in HB − v and the other in HR − v. This case
is impossible because we can easily construct a bichromatic minimum edge cover of
G.

The next result is the main result of this subsection. It enables us, with the help
of Lemma 5.3, to transform any nontrivial factor-critical graph into a facet-defining
{0, 1

2}-cut for the linear ordering polytope which is nearly surface-shaped.
Proposition 5.5. Let G0 be a nontrivial factor-critical graph, let G be the

graph obtained from G0 by replacing each edge by a path of length 3, let D be any
representation of G with vertex included in X, and let C = {Cv : v ∈ V (G)} denote
the collection of dicycles associated to D. Then the 2-packing inequality of C is facet-
defining for the linear ordering polytope whenever G has no extra-bad vertex with
respect to D.

Proof. By a standard technique for proving that certain inequalities define facets
of the linear ordering polytope (see Reinelt [24]), it suffices to show the following
claims:

(i) for each dicycle Cv in C there is a perfect matching of G−v and a corresponding
set of arcs in D whose removal kills all dicycles of D except Cv;

(ii) whenever s and t are nodes of D such that neither st nor ts is an arc of D, there
is a minimum feedback arc set which intersects every s-t dipath and every t-s
dipath.

It is fairly easy to prove claim (i) by adapting the proof of Lemma 5.2. Indeed, let
M be a perfect matching of G− v, and let F be the corresponding set of double arcs
in D. Then D − F cannot contain a dicycle other than Cv because otherwise there
would exist a cycle in G and a vertex w on this cycle with degG(w) = 2 which is not
covered by M and distinct from v, a contradiction.

We now prove claim (ii). Let es = {vs, ws} and et = {vt, wt} be the unique edges
of G such that s is incident to the double arc corresponding to es and t is incident to
the double arc corresponding to et. Because neither st nor ts is an arc of D, we have
es �= et. Let d denote the minimum distance in G between an endvertex of es and an
endvertex of et.

{0, 1
2
}-CUTS AND THE LINEAR ORDERING PROBLEM 909

Case 1. d ≥ 3. Let N be a minimum edge cover of G, and let F be the corre-
sponding minimum feedback arc set of D. For every s-t dipath or t-s dipath P in D,
the corresponding subgraph H(P) of G contains a path whose length is at least three.
Because of the way G was constructed, this path has an internal vertex v of degree 2
in G. One of the two edges incident to v has to be included in N , so F intersects P .

Case 2. d = 2. There is a path in G from es to et that has length 2. Let z be the
intermediate vertex of this path. Any length-2 path from es to et must coincide with
the latter path because the girth of G is at least 9. Let N be a minimum edge cover
of G containing one of the two edges of the length-2 path from es to et, and let F
denote the corresponding minimum feedback arc set. Now it is not difficult to verify
that F intersects every s-t dipath and every t-s dipath.

Case 3. d = 1. Without loss of generality we can assume that vs and vt are
adjacent. Any other path from es to et has length at least 6 because G has girth at
least 9. Let N be any minimum edge cover of G containing {vs, vt}, and let F denote
the corresponding minimum feedback arc set of D. Again, it is quite clear that F
intersects every s-t dipath and every t-s dipath.

Case 4. d = 0. Without loss of generality, we can assume that vs = vt. For
convenience, let us refer to the vertex vs = vt as vertex v. Then es and et determine
two intervals in the complete cyclic order at v, namely, the intervals determined by
the double arcs on sCvt and tCvs, respectively. Because G has no extra-bad vertex,
v is not extra-bad, and there is a minimum edge cover N of G containing edges from
both intervals. Let F be the minimum feedback arc set of D corresponding to N .
Then F intersects every s-t dipath and every t-s dipath in D.

Avoiding extra-bad vertices in G is always possible. Indeed, if G has no cutvertex,
then Lemma 5.3 implies that G has no bad vertices. Whenever a cutvertex v of G
is extra-bad, we can “repair” it with the help of Lemma 5.3 by moving one of the
blue edges into the middle of the interval of red edges in the complete cyclic order on
δG(v) determined by the representation.

Assume now that G0 is any graph with minimum degree at least 2. Again, let
G be the graph obtained from G0 by substituting a path of length 3 for each edge.
Then G admits a representation D. Let C denote the associated 2-packing. Since it
may be that G has an even number of vertices, instead of considering the 2-packing
inequality of C we consider the valid inequality∑

ij∈D

2xij ≥ 2τ(D) ⇐⇒
∑
ij∈D

xij ≥ τ(D).(5.2)

Using essentially the same arguments as above, we can show that (5.2) is facet-defining
only if G (and hence G0) is factor-critical and has no extra-bad vertices. In this case,
(5.2) coincides with the 2-packing inequality of C.

5.3. Constructing a facet for each nonorientable surface. Let G0, G,
D, and C be as in Proposition 5.5. By Lemma 5.3, representation D can always
be chosen in such a way that G has no extra-bad vertices. Then, by Proposition
5.5, the 2-packing inequality of C is facet-defining. It follows from Lemma 5.1 that
this inequality is a {0, 1

2}-cut. Furthermore, the same lemma implies that the cor-
responding multiplier u is surface-shaped, provided that the link of ∞ in K = K(u)
is a cycle. A last consequence of Lemma 5.1 is that we have χ(K) = 2 − r, where
r = |E(G)| − |V (G)| + 1 denotes the number of ears in any ear decomposition of G.
Therefore, proving our final result is just a matter of choosing G0 and D carefully
enough.

910 SAMUEL FIORINI

b.

v1

v4 v5 v6 v7 v8

v9

v3v2

v1

v4 v5 v6 v7 v8

v9

v3v2

a.

Fig. 5.3. The graphs G0 and G used in the proof of Theorem 5.6.

8

3

1

2

4

3
4

56

5 6 8 7 9 A

A 9

2

1

7

Fig. 5.4. A representation of the graph G in Figure 5.3.

Theorem 5.6. Each nonorientable surface S has a triangulation K such that
K = K(u) for some facet-defining multiplier u.

Proof. Let b = 2−χ(S). If b = 1, then S is homeomorphic to N1 and the theorem
follows from Proposition 4.2. Else, consider the graph G0 obtained from a odd cycle
with vertices v1, v2, . . . , v2b−1 by attaching b − 1 ears P1, . . . , Pb−1 of length 3 to
the cycle, with endpoints v1 and v2 for P1, and with both endpoints equal to v2α for
Pα, α > 1. Note that G0 is factor-critical. An example for b = 5 is given in Figure
5.3(a). Let G be the graph obtained from G0 by replacing each edge by a path of
length 3 (see Figure 5.3(b)). Now let D be a representation of G with the following
properties. First, the node set of D has to be included in X (this is obviously always
possible if we assume that n is large enough). Second, none of the vertices v4, v6, . . . ,
v2b−2 should be extra-bad. There is essentially one way to achieve this (see Figure
5.4). By Lemma 5.3, if none of the latter vertices is extra-bad, then no vertex of G
is extra-bad. Let u denote any multiplier obtained from D as in subsection 5.1 and
let K = K(u). Our third and last requirement on representation D is that the cyclic
orderings on the neighborhoods of v1 and v2 determined by the representation should
be such that the link of ∞ in K is a cycle. Once again, this can be done (see Figure
5.4). The theorem now follows from Lemma 5.1 and Proposition 5.5.

6. Conclusion. We have studied {0, 1
2}-Chvátal–Gomory cuts derived from the

standard relaxation of the linear ordering polytope. Certain of these cuts correspond
to triangulated surfaces. We have shown that a surface has a triangulation yielding a
facet of the linear ordering polytope if and only if it is nonorientable. Along the way,
we have obtained a host of new facets. Indeed, most facets produced by Proposition
5.5 were not known before. Among the many questions raised by our findings, we
note the following three:

{0, 1
2
}-CUTS AND THE LINEAR ORDERING PROBLEM 911

(Q1) How can we estimate the number of facet-defining {0, 1
2}-cuts, as a function of

n? (Simulation is possible here.)
(Q2) Let S be a nonorientable surface and K be a triangulation of S. Is there always

a facet-defining orientation of K? More generally, what are the facet-defining
orientations of K?

(Q3) Is there a polynomial time algorithm solving the separation problem for a su-
perclass of the facet-defining inequalities produced by Proposition 5.5?

Acknowledgments. We thank the two anonymous referees for providing many
suggestions which greatly helped the author to improve the article. We also thank
Jean-Paul Doignon, Michel Goemans, and Andreas Schulz for their early interest in
the results of this article.

REFERENCES

[1] M. Armstrong, Basic Topology, Undergrad. Texts Math. 42, Springer-Verlag, New York, 1983.
[2] G. Bolotashvili, M. Kovalev, and E. Girlich, New facets of the linear ordering polytope,

SIAM J. Discrete Math., 12 (1999), pp. 326–336.
[3] A. Caprara and M. Fischetti, {0, 1

2
}-Chvátal-Gomory cuts, Math. Program., 74A (1996),

pp. 221–235.
[4] A. Caprara, M. Fischetti, and A. Letchford, On the separation of maximally violated

mod-k-cuts, Math. Program., 87A (2000), pp. 37–56.
[5] M. Cohen and J.-C. Falmagne, Random utility representation of binary choice probabilities:

A new class of necessary conditions, J. Math. Psychol., 34 (1990), pp. 88–94.
[6] R. Diestel, Graph Theory, 2nd ed., Grad. Texts in Math., 173, Springer-Verlag, New York,

2000.
[7] S. Fiorini, Determining the automorphism group of the linear ordering polytope, Discrete Appl.

Math., 112 (2001), pp. 121–128.
[8] S. Fiorini, Polyhedral Combinatorics of Order Polytopes, Ph.D. thesis, Department of Math-

ematics, Université Libre de Bruxelles, Brussels, Belgium, 2001.
[9] P. Fishburn, Induced binary probabilities and the linear ordering polytope: A status report,

Math. Social Sci., 23 (1992), pp. 67–80.
[10] Z. Galil and N. Megiddo, Cyclic ordering is NP-complete, Theoret. Comput. Sci., 5 (1977),

pp. 179–182.
[11] M. Goemans and L. Hall, The strongest facets of the acyclic subgraph polytope are unknown,

Integer Programming and Optim., 1084 (1996), pp. 415–429.
[12] M. Grötschel, M. Jünger, and G. Reinelt, A cutting plane algorithm for the linear ordering

problem, Oper. Res., 32 (1984), pp. 1195–1220.
[13] M. Grötschel, M. Jünger, and G. Reinelt, Facets of the linear ordering polytope, Math.

Programming, 33 (1985), pp. 43–60.
[14] R. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computa-

tions, Plenum Press, New York, 1972, pp. 85–103.
[15] M. Koppen, Random utility representation of binary choice probabilities: Critical graphs yield-

ing critical necessary conditions, J. Math. Psychol., 39 (1995), pp. 21–39.
[16] A. Letchford, Binary clutter inequalities for integer programs, Math. Programming, 98

(2003), pp. 201–221.
[17] A. Letchford and A. Lodi, Polynomial-time separation of simple comb inequalities, in Integer

Programming and Combinatorial Optimization 9, W. Cook and A. Schulz, eds., Lecture
Notes in Comput. Sci., 2337, Springer, NY, 2002, pp. 93–108.

[18] J. Leung and J. Lee, More facets from fences for linear ordering and acyclic subgraph poly-
topes, Discrete Appl. Math., 50 (1994), pp. 185–200.

[19] L. Lovász and M. Plummer, Matching Theory, Ann. Discrete Math., 29, North–Holland,
Amsterdam, 1986.

[20] J. Matousek, Using the Borsuk–Ulam Theorem, Lect. Topol. Methods Combin. Geom.,
Springer, New York, 2003.

[21] B. Mohar and C. Thomassen, Graphs on Surfaces, John Hopkins University Press, Baltimore,
MD, 2001.

[22] A. Newman, Approximating the Maximum Acyclic Subgraph, Master’s thesis, Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,

912 SAMUEL FIORINI

Cambridge, MA, 2000.
[23] A. Newman and S. Vempala, Fences are futile: On relaxations for the linear ordering problem,

in Integer Programming and Combinatorial Optimization, K. Aardal and B. Gerards, eds.,
Lecture Notes in Comput. Sci., 2081, 2001, pp. 333–347.

[24] G. Reinelt, The Linear Ordering Problem: Algorithms and Applications, Res. Exp. Math., 8,
Heldermann-Verlag, Berlin, 1985.

[25] P. Seymour, Packing directed circuits fractionally, Combinatorica, 15 (1995), pp. 281–288.
[26] R. Suck, Geometric and combinatorial properties of the polytope of binary choice probabilities,

Math. Social Sci., 23 (1992), pp. 81–102.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 4, pp. 913–919

MOD-2 CUTS GENERATION YIELDS THE CONVEX HULL OF
BOUNDED INTEGER FEASIBLE SETS∗

C. GENTILE† , P. VENTURA† , AND R. WEISMANTEL‡

Abstract. This paper focuses on the outer description of the convex hull of all integer solutions
to a given system of linear inequalities. It is shown that if the given system contains lower and upper
bounds for the variables, then the convex hull can be produced by iteratively generating so-called
mod-2 cuts only. This fact is surprising and might even be counterintuitive, since many integer
rounding cuts exist that are not mod-2, i.e., representable as the {0, 1

2
} combination of the given

constraint system. The key, however, is that in general many more rounds of mod-2 cut generation
are necessary to produce the final description than in the traditional integer rounding procedure.

Key words. integer programming, mod-2 cuts, convex hull

AMS subject classifications. 90C10, 90C57, 52B05

DOI. 10.1137/04061831X

1. Introduction. One of the fundamental results in the theory of linear integer
programming states that the convex hull of all integer points in the intersection of
finitely many rational half-spaces is a polyhedron. This polyhedron, which we denote
by PI in the following, can be described by linear inequalities that one obtains in
finitely many steps by integer rounding [8].

Let P0 = P = {x ∈ R
n|Ax ≤ b} be a relaxation of PI ; a single step of the integer

rounding procedure consists of taking all inequalities uTAx ≤ �uT b� with u ∈ R
n
+ and

uTA ∈ Z
n and adding them to P0, obtaining the next relaxation P1, to which we

refer as the first closure of P.

It has been recently shown in [6] that optimizing over the first closure of a poly-
hedron is NP-hard. This explains that one cannot expect to turn this nice concept
of integer rounding into an effective and stand-alone algorithmic tool. The question
emerges whether instead of considering the first closure of a polyhedron, one can re-
sort to a weaker relaxation that is algorithmically more tractable. One relaxation
that appears particularly appealing for many combinatorial optimization problems is
defined as the closure of a polyhedron associated with a special family of rounding
cuts. These cuts have been introduced in [3] and are referred to as mod-2 cuts.

More precisely, if P = {x ∈ R
n|Ax ≤ b} with A ∈ Z

m×n, then a mod-2 cut is an
inequality of the form 1

2u
TAx ≤ � 1

2u
T b�, where ui ∈ {0, 1} for all i = 1, . . . ,m and

1
2u

TA ∈ Z
n; i.e., uTA ≡ 0 mod 2.

Among the many important examples of mod-2 cuts we mention the blossom
inequalities for the matching problem, the comb inequalities for the traveling salesman
problem, the odd-cycle inequalities for the stable set problem or for the set covering
problem, and the odd-cycle inequalities in quadratic 0-1 optimization [1].

∗Received by the editors May 13, 2005; accepted for publication (in revised form) June 5, 2006;
published electronically December 5, 2006. This work has been partially supported by the UE Marie
Curie Research Training Network 504438 ADONET.

http://www.siam.org/journals/sidma/20-4/61831.html
†Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti” del CNR, Viale Manzoni 30,

00185 Rome, Italy (gentile@iasi.cnr.it, ventura@iasi.cnr.it).
‡Department for Mathematics/IMO, Otto-von-Guericke-Universität Magdeburg, Univer-

sitätsplatz 2, 39106 Magdeburg, Germany (weismant@imo.math.uni-magdeburg.de).

913

914 C. GENTILE, P. VENTURA, AND R. WEISMANTEL

Mod-2 cuts are a particular subclass of the more general mod-k cuts, which are
defined as the inequalities of the form 1

ku
TAx ≤ � 1

ku
T b�, with ui ∈ {0, . . . , k− 1} for

all i = 1, . . . ,m and 1
ku

TA ∈ Z
n; i.e., uTA ≡ 0 mod k.

Although the problem of separating mod-2 cuts is NP-hard in general, it can
be solved in polynomial time if the constraint matrix meets certain properties (see
[3] and [9]). Interestingly, [4] showed that there is a polynomial time algorithm for
separating a subclass of mod-k cuts for any prime number k. Computational studies
about the effectiveness of mod-k cuts and mod-2 cuts in particular are shown in [7],
[12], and [11].

These results suggest that mod-2 cuts are an interesting object to study in further
depth. Our paper contributes to this topic by showing that under mild assumptions a
description of the integer polyhedron can be obtained by iteratively generating mod-2
cuts only.

In the remainder of this paper we will focus on bounded integer programming
problems in inequality form. We will, in addition, assume that lower and upper
bounds for the variables are available. More precisely, for A ∈ Z

m×n, b ∈ Z
m, and

v ∈ Z
n, the feasible set of integer points is described as

P = {x ∈ Z
n : Ax ≤ b, −Ix ≤ 0, Ix ≤ v}.

We define PI = conv(P ∩ Z
n).

Definition 1.1. Let A ∈ Z
m×n, b ∈ Z

m, v ∈ Z
n,

Ã =

⎛
⎝ A

−I
I

⎞
⎠ and b̃ =

⎛
⎝ b

0
v

⎞
⎠ .

We denote an initial system with

S = S(0) = (Ã, b̃).

The first mod-2 closure of the system S is

S(1) =

(
Ã, b̃
1
2u

T Ã, � 1
2u

T b̃� for all u ∈ {0, 1}m+2n s.t. 1
2u

T Ã ∈ Z
n

)
.

For t ∈ Z+, t ≥ 2, we define recursively S(t) = (S(t−1))(1) to be t-th mod-2 closure of
S.

Given any system S = (A, b), let P(S) denote the corresponding polyhedron
{x ∈ R

n : Ax ≤ b}.
Remark 1.1. Without loss of generality, we can assume that each column of

matrix A contains at least one positive entry. In fact, if this is not the case, i.e., there
exists a column ai ≤ 0, we can apply the variable substitution x′

i = vi − xi.

The main result of this paper is a proof of the fact that, by generating mod-2
cuts iteratively, we can produce the convex hull of the integer feasible solutions.

Theorem 1.1. There exists t ∈ Z+ such that P(S(t)) = PI .

Our proof requires that we make use of properties of the mod-2 closure that we
summarize in section 2. Section 3 is devoted to the proof of the main theorem.

MOD-2 CUTS YIELD THE CONVEX HULL OF INTEGER SETS 915

2. Properties of the mod-2 closure. This section develops structural prop-
erties of mod-2 closures of polyhedra. In particular, we first show that the iterative
applications of mod-2 cuts provide a respective dominating inequality for any inequal-
ity of the starting system S(0) that is not a lower bound.

Lemma 2.1. Let S(0) be a system as introduced in Definition 1.1, and let xi ≤ vi
be an upper bound inequality contained in S(0). There exists a finite integer t such
that S(t) contains both the inequalities xi ≤ vi and xi ≤ v′i, with v′i ∈ Z and v′i ≤ vi.

Proof. By Remark 1.1, there exists an inequality

aTx ≤ a0(1)

of the system Ax ≤ b such that ai > 0. Then, S(1) contains the inequality a′
T
x ≤ a′0,

obtained as a mod-2 cut from the sum of (1), lower bound inequalities for variables
xj with j 	= i such that aj > 0 and aj odd, and upper bounds for variables xj such
that aj < 0 and aj odd. Iterating this procedure, after a finite number of steps t′ we
get an upper bound inequality xi ≤ vi + δ. If δ ≤ 0, the proof is complete; otherwise,
in subsequent rounds we generate mod-2 cuts with multipliers 1

2 from

xi ≤ vi,
xi ≤ vi + δ.

This gives

xi ≤ vi +

⌊
1

2
δ

⌋
.

The argument applies iteratively and shows that after
log2(δ)� steps a second copy
of xi ≤ vi is included in some system S(t).

Lemma 2.2. Let S(0) be a system as introduced in Definition 1.1, and let aTx ≤ a0

be an inequality of the system Ax ≤ b that is not an upper or a lower bound. There
exists t ∈ Z+ such that S(t) contains both the inequalities aTx ≤ a0 and aTx ≤ a′0,
with a′0 ∈ Z and a′0 ≤ a0.

Proof. The system S(1) contains the inequality

n∑
i=1

ai even

ai
2
xi +

n∑
i=1

ai odd

ai − 1

2
xi ≤

⌊a0

2

⌋
.(2)

Then the system S(2) contains two copies of inequality (2). If we consider the original
inequality aTx ≤ a0, the two copies of inequality (2), and the upper bounds constraints
xi ≤ vi for all i such that ai is odd, and sum them up with multipliers 1

2 , we derive

that an inequality of the form aTx ≤ a0 + δ, where δ ∈ Z, is contained in S(3). If
δ ≤ 0, we are done; otherwise, we apply the same procedure described in the proof
of Lemma 2.1, obtaining a second copy of aTx ≤ a0 included in the system S(t), for
some t ∈ Z+.

Our next example illustrates that upper bounds on the variables are needed for
Lemma 2.2 to be true.

Example 2.1. Consider the feasible set described as

{(x1, x2) ∈ Z
2
+| − 3x1 + 5x2 ≤ 8}.(3)

916 C. GENTILE, P. VENTURA, AND R. WEISMANTEL

One may observe that, using only lower bounds and the initial inequality, it is not
possible to derive a copy of −3x1 + 5x2 ≤ 8. The reason is that both numbers −3
and 5 are odd. Therefore, all the inequalities belonging to any mod-2 closure attain
a ratio of the two coefficients that is strictly less than −3/5. In order to prove this,
we use induction on the number t. Suppose that the generic system S(t) does not
contain any inequality aTx ≤ a0 with a1 ≤ 0, a2 ≥ 0, and a1

a2
≥ − 3

5 , except the
original inequality −3x1 + 5x2 ≤ 8. We prove that this property also applies to
S(t+1). To this end let āTx ≤ ā0 be any inequality in the system S(t+1). In order to
achieve a highest possible ratio ā1/ā2, we can assume that āTx ≤ ā0 is a mod-2 cut
from the initial constraint −3x1 + 5x2 ≤ 8 and some other inequalities of S(t). Let
bTx ≤ b0 denote the sum of these other inequalities in S(t) that we need to derive the
mod-2 cut āTx ≤ ā0. From the hypothesis of the induction we conclude that b1

b2
< − 3

5
with b1 and b2 odd. It then follows from elementary algebraic manipulations that
ā1

ā2
= (−3+b1)/2

(5+b2)/2
< − 3

5 . This shows that upper bounds on the variables are needed for

Lemma 2.2 to be true.
By Lemma 2.1 and Lemma 2.2, the two observations below easily follow.
Observation 2.1. Let aTx ≤ a0 be derived by the inequalities of system S(0)

summed up with multipliers u ∈ {0, 1, . . . , k − 1}m+2n, with k ∈ Z+. By Lemma 2.1
and Lemma 2.2, there exists t ∈ Z+ such that S(t) contains, for each inequality of S(0)

that is not a lower bound, 2ui copies of a dominating constraint. Therefore, S(t+1)

contains an inequality dominating aTx ≤ a0.
Observation 2.2. Consider a mod-2 cut aTx ≤ a0 obtained with multipliers

u ∈ {0, 1
2}m+2n from the system S(0) of inequalities. If we substitute one of the

inequalities of the system with an inequality that dominates it, we obtain a mod-2
cut dominating aTx ≤ a0. This is possible by adding or removing some lower bound
inequalities on the variables with odd coefficients in the left-hand side.

To finally prove the key lemma, we first need the following result.
Lemma 2.3. If x is prime and y mod x 	= 0, there exist i, j, γ ∈ Z+ such that

ix + jy = 2γ ; i.e., ix + jy is a power of 2.
Proof. Fermat’s little theorem (FLT) states that if p is prime and a ∈ Z, with a

mod p 	= 0, then there exists α ∈ Z+ such that ap−1 = 1 + αp. Therefore, if we first
apply FLT with p = x and a = y, then there exists α ∈ Z such that

yx−1 = 1 + αx.(4)

Then by applying FLT with a = 2q, for some number q and p = x, there exists β ∈ Z

such that

(2q)x−1 = 1 + βx,(5)

and, for a sufficiently large value of q, β > α. Let us now subtract (4) from (5),

(β − α)x + yx−1 = (2q)x−1 = 2q(x−1),

and then fix i = β − α, j = yx−2, and γ = q(x− 1). This proves the lemma.
Resorting to Lemmas 2.1, 2.2, 2.3, and to Observations 2.1 and 2.2, we are now

ready to prove that every mod-k cut can be obtained by generating mod-2 cuts iter-
atively.

Lemma 2.4. Let S(0) be a system as introduced in Definition 1.1. Let aTx ≤ a0

be a mod-k cut for P(S); i.e., aT = 1
ku

T Ã ∈ Z
n and a0 = � 1

ku
T b̃� with u ∈

MOD-2 CUTS YIELD THE CONVEX HULL OF INTEGER SETS 917

{0, 1, . . . , k − 1}m+2n. There exists a number t ∈ Z+ such that an inequality domi-
nating aTx ≤ a0 is part of the system S(t).∗

Proof. The inequality uT Ãx ≤ uT b̃ can be represented as

kaTx ≤ ka0 + r,(6)

where r ∈ {0, 1, . . . , k − 1}.
Without loss of generality we may assume that k is prime. In fact, if k is not

prime, by using induction on the prime factorization of k, let k1 > 1 and k2 > 1 be
two integers such that k1k2 = k. By Observation 2.1, there exists t′ ∈ Z+ such that
S(t′) contains an inequality qTx ≤ q0 that dominates (6). By Observation 2.2, the
inequality obtained from qTx ≤ q0 by applying two successive integer roundings

with k1 and k2 dominates aTx ≤ a0; indeed, aTx ≤ a0 +� �r/k1�
k2

� and 0 ≤ � �r/k1�
k2

� ≤
� r
k � = 0.

In the following we will sometimes refer to Observation 2.2 in order to claim that
a certain inequality aTx ≤ a0 is included in a certain system S(t). In order to be
precise, we mean that S(t) either contains the inequality aTx ≤ a0 or contains an
inequality dominating it. We do not distinguish between these cases, in order to keep
our notation simple.

By Observation 2.1, there exists a finite integer t′ such that S(t′) contains kaTx ≤
ka0+r. The mod-2 cut obtained from the latter inequality, lower bounds for variables
xi with ai > 0 and ai odd, and upper bounds for variables xj with aj < 0 and aj odd,
dominates an inequality of the form �k

2 � aTx ≤ c0, for some c0 ∈ Z. Therefore, we

assume in the following that �k
2 � aTx ≤ c0 is contained in the system S(t′+1).

Let π0 be the integer odd (and positive) number such that k = 2α0π0 + 1, for
some α0 ∈ Z+. Then the inequality

π0a
Tx ≤ π0a0 + δ0(7)

is contained in S(t′+α0). If δ0 ≤ 0, then the proof is finished. So we assume δ0 > 0.
In the next iterations, by considering mod-2 cuts obtained from inequalities (6)

and (7) with multipliers 1
2 , we will produce a mod-2 inequality of the form π1a

Tx ≤
π1a0 + δ1, where π12

α1 = (k + π0) with α1 ∈ Z+, π1 ∈ Z+, π1 odd, and, since δ1 is
obtained by α1 consecutive mod-2 roundings, 0 ≤ δ1 ≤ � r+δ0

2α1
�.

The crucial observation here is that, if δ0
π0

≥ 1, then δ1
π1

< δ0
π0

− 1
2k ; i.e., the ratio

δ0
π0

is decreased by, at least, the fixed amount 1
2k . In fact, since r ≤ k− 1 and k > π0,

we obtain this relation by applying the following manipulations:

δ0
π0

− δ1
π1

≥ δ0
π0

−
⌊
r + δ0
2α1

⌋
1

π1
=

δ0
π0

−
⌊

(r + δ0)π1

k + π0

⌋
1

π1
≥ δ0

π0
− r + δ0

k + π0

≥ δ0
π0

− k − 1 + δ0
k + π0

=
δ0k − kπ0 + π0

π0(k + π0)

≥ π0k − kπ0 + π0

π0(k + π0)
=

1

k + π0
>

1

2k
.

∗Note added in proof: Recently Sanjeeb Dash communicated to us that a similar result was shown
in [2], also for mod-q cuts with q > 2 (note that this generalization is easily derivable also from our
proof). However, the proof of Lemma 2.4 is stronger as (a) we use only {0, 1

2
} multipliers, while in

[2] all values k/2, for any k ∈ Z+, are considered; (b) in [2], the upper bounds −xi ≥ −1 are used
to determine the necessary inequality α ≥ s0, while we use the upper bounds on the variables only
to produce copies of the original inequalities. In particular, if one assumes that copies of the initial
inequalities can be generated someway (e.g., by considering the hypothesis of {0, 1

2
} multipliers),

then the result also applies to the unbounded case.

918 C. GENTILE, P. VENTURA, AND R. WEISMANTEL

Therefore, repeating the above procedure, after a finite number β of iterations we will
produce a system S(t′′) that contains the inequalities

kaTx ≤ ka0 + r and
πβa

Tx ≤ πβa0 + δβ with δβ/πβ < 1.

Then, since k is prime and πβ < k, by Lemma 2.2 and Lemma 2.3, there exists a

number t′′′ ≥ t′′ such that S(t′′′) contains i copies of kaTx ≤ ka0 + r and j copies of
πβa

Tx ≤ πβa0 + δβ , where ik + jπβ = 2γ .

Then S(t′′′+γ) contains the inequality

ik + jπβ

2γ
aTx ≤ ik + jπβ

2γ
a0 + δ,

with 0 ≤ δ ≤ � ir+jδβ
2γ �. Since r ≤ k−1 and δβ ≤ πβ−1, � ir+jδβ

2γ � = 0. This completes
the proof.

Example 2.2. Consider the feasible set described as

{(x1, x2) ∈ Z
2
+|7x1 + 14x2 ≤ 20}.

The inequality x1 + 2x2 ≤ 2 can be derived from multiplying 7x1 + 14x2 ≤ 20 by 1/7
and rounding the right-hand-side. Following Lemma 2.4, with one mod-2 operation,
we obtain the first inequality of type (7):

3x1 + 6x2 ≤ 10.

We then produce the next inequality by using the previous two,

5x1 + 10x2 ≤ 15.

Iterating the procedure, we generate

3x1 + 6x2 ≤ 8,

which is another inequality of type (7), where π2 = 3, δ2 = 2, and β = 2; that is,
δ2/π2 < 1. Finally, we consider one copy of 7x1 + 14x2 ≤ 20 and three copies of
3x1 + 6x2 ≤ 8, we divide by 16 (corresponding to 4 consecutive mod-2 operations),
and obtain x1 + 2x2 ≤ 2.

3. Proof of the main theorem.
Theorem 3.1. Let S(0) be a system as introduced in Definition 1.1. There exists

t ∈ Z+ such that P(S(t)) = PI .
Proof. It suffices to show that there exists t1 ∈ Z+ such that the inequalities

describing the first Chvátal–Gomory closure P1 are part of the system S(t1). The
polyhedron P1 is described by the Gomory cuts

P1 = {x ∈ R
n|uTAx ≤ �uT b� for all u ≥ 0, uTA ∈ Z

n}.

Every such inequality uTAx ≤ �uT b� with u = (p1/q1, . . . , pm/qm) and pi ∈ Z+,
qi ∈ Z+ \ {0} is a mod-k cut with k =

∏m
i=1 qi. In fact, there is a finite representation

for P1 (see [10]) as P1 = {x ∈ R
n| uTAx ≤ �uT b�, for all u ∈H(C)}, where H(C) is

the Hilbert basis of the cone C = {uTA|u∈R
m
+}.

MOD-2 CUTS YIELD THE CONVEX HULL OF INTEGER SETS 919

By Lemma 2.4 every inequality uTAx ≤ �uT b� with u ∈ H(C) is contained in
S(t′) for some t′ ∈ Z+. Therefore, there exists t1 ∈ Z+ such that S(t1) contains all
the inequalities uTAx ≤ �uT b� for all u ∈ H(C), i.e., P(S(t1)) ⊆ P1.

By a theorem of Chvátal [5], PI = Pτ for some integer τ ∈ Z+. Therefore, we
can repeat the same argument for P2, . . . ,Pτ by finding systems S(t2), . . . , S(tτ) such
that P(S(ti)) ⊆ Pi for all i = 2, . . . , τ . This gives the result.

Our proof of Theorem 3.1 strongly relies on Lemma 2.2. As Example 2.1 illus-
trates, Lemma 2.2 is not true if upper bounds on the variables are not present. As
a consequence, the proof of Theorem 3.1 does not apply to systems without upper
bounds. It is, however, straightforward to extend the proof to the case in which we
allow multipliers {0, 1

2 , 1} for generating cuts as opposed to having {0, 1
2} multipliers

only.
However, in the case of Example 2.1, for instance, the facet defining inequality

−2x1 + 3x2 ≤ 4, derivable as a mod-5 cut from the starting system, can still be
obtained as a mod-2 cut in the system S(7). This fact might indicate that even an
extension of Theorem 3.1 to the unbounded integer programming case could be true.

Acknowledgments. We thank Giovanni Rinaldi for his helpful suggestions. We
also thank the anonymous referees for their useful remarks.

REFERENCES

[1] E. Boros, Y. Crama, and P.L. Hammer, Chvátal cuts and odd cycle inequalities in quadratic
0-1 optimization, SIAM J. Discrete Math., 5 (1992), pp. 163–177.

[2] S. R. Buss and P. Clote, Cutting planes, connectivity, and threshold logic, Arch. Math. Logic,
35 (1996), pp. 33-62.

[3] A. Caprara and M. Fischetti, {0, 1
2
}-Chvátal–Gomory cuts, Math. Program., 74 (1996),

pp. 221–235.
[4] A. Caprara, M. Fischetti, and A. N. Letchford, On the separation of maximally violated

mod-k cuts, Math. Program., 87 (2000), pp. 37–56.
[5] V. Chvátal, Edmonds polytopes and a hierarchy of combinatorial problems, Discrete Math.,

4 (1973), pp. 305–337.
[6] F. Eisenbrand, On the membership problem for the elementary closure of a polyhedron, Com-

binatorica, 19 (1999), pp. 297–300.
[7] M. Fischetti and A. Lodi, Optimizing over the first Chvátal closure, in Integer Programming

and Combinatorial Optimization, Proceedings of the 11th International IPCO Conference,
Berlin, Germany, 2005, Lecture Notes in Comput. Sci., M. Jünger and V. Kaibel, eds.,
Springer, New York, 2005, pp. 12–22.

[8] R. E. Gomory, Outline of an algorithm for integer solutions to linear programs, Bull. Amer.
Math. Soc., 64 (1958), pp. 275–278.

[9] A. N. Letchford, Binary clutter inequalities for integer programs, Math. Program., 98 (2003),
pp. 201–221.

[10] A. Schrijver, Theory of Linear and Integer Programming, Wiley, New York, 1986.
[11] A. M. Verweij, Selected Applications of Integer Programming: A Computational Study, Ph.D.

thesis, Utrecht University, Utrecht, The Netherlands, 2000.
[12] K. Wenger, Generic Cut Generation Methods for Routing Problems, Ph.D. thesis, University

of Heidelberg, Heidelberg, Germany, 2003.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 4, pp. 920–931

FACTORING FINITE ABELIAN GROUPS BY SUBSETS WITH
MAXIMAL SPAN∗

SÁNDOR SZABÓ†

Abstract. We say that a finite abelian group has the Rédei property if it does not admit
factorization into two normalized subsets that both span the whole group. It will be shown that
subgroups inherit the Rédei property from the group. Then four constructions are described to
exhibit groups without the Rédei property. Using these we further narrow the list of p-groups that
might have the Rédei property.

Key words. factorization of finite abelian groups, Rédei property, full-rank tilings

AMS subject classifications. Primary, 20K01; Secondary, 52C22

DOI. 10.1137/05063828X

1. Introduction. Let G be a finite abelian group written multiplicatively with
identity element e. Let A1, . . . , An be subsets of G. If each g ∈ G is uniquely
representable in the form

g = a1 · · · an, a1 ∈ A1, . . . , an ∈ An,

then we say that the equation G = A1 · · ·An is a factorization of G. A subset A of
G is called normalized if e ∈ A. A factorization is called normalized if each factor is
a normalized subset. In 1965, Rédei [7] proved that if G = A1 · · ·An is a normalized
factorization, where G is a finite abelian group and each |Ai| is a prime, then at least
one of the factors is a subgroup of G.

If G is a direct product of cyclic groups of orders t1, . . . , tn, then we say that G
is of type (t1, . . . , tn). In order to avoid trivial direct factors we assume that ti ≥ 2
for each i, 1 ≤ i ≤ n. When each of t1, . . . , tn is a power of a prime p, then G
is a p-group and n is called the rank of G. A group of type (p, . . . , p) is called an
elementary p-group. In 1970, Rédei [8, 9] asked if G is of type (p, p, p) and G = AB
is a normalized factorization, then does it follow that either 〈A〉 �= G or 〈B〉 �= G.
Here 〈A〉 stands for the span of A in G, that is, for the smallest subgroup of G that
contains A. (See Problem 5 in [8].) In general we say that a finite abelian group
has the Rédei property if it does not admit factorization into two normalized subsets
that both span the whole group. If G = {e}, then from a normalized factorization
G = AB it follows that A = B = {e} and 〈A〉 = 〈B〉 = G. Therefore by our definition
G does not have the Rédei property. It seems reasonable to modify the definition of
the Rédei property such that in the |G| = 1 singular case G has the Rédei property
by definition.

In 1972 Swenson [15] (independently of Rédei) raised the question whether each
finite cyclic group has the Rédei property. In 1979 Sands [10] proved that groups
of type (pα, qβ), where p, q are distinct primes have the Rédei property. Fraser and
Gordon [5] have shown that elementary p-groups of rank (p + 1) do not have the
Rédei property provided p ≥ 5. In 1985 Szabó [11] exhibited cyclic groups without

∗Received by the editors August 17, 2005; accepted for publication (in revised form) July 14,
2006; published electronically December 5, 2006. This work was supported by TET Foundation
grant OMFB 00746/06.

http://www.siam.org/journals/sidma/20-4/63828.html
†Institute of Mathematics and Informatics, University of Pécs, Ifjúság u. 6, 7624 Pécs, Hungary

(sszabo7@hotmail.com).

920

FACTORING FINITE ABELIAN GROUPS 921

the Rédei property. The question of which elementary 2-groups possess the Rédei
property originated in coding theory around 1996. (See [1] and [3].) This happened
without knowledge of the above-mentioned developments. Recently Österg̊ard and
Vardy [6] settled this problem. They proved that an elementary 2-group has the
Rédei property if and only if its rank is at most 9. The Rédei property of finite cyclic
groups has appeared in a work of Tijdeman [16] in connection with Fourier analysis
and in a work of De Felice [4] related to variable length codes. Further details on the
history can be found in [2].

In [12] it was established that only a small fraction of the finite abelian groups
can have the Rédei property. In this paper we will show that subgroups inherit the
Rédei property of the group. Then we present constructions to further narrow the
family of finite abelian groups that can have the Rédei property.

2. Extending a factorization. In this section we will show that the family of
finite abelian groups with the Rédei property is closed under the operations of forming
subgroups and factor groups.

Theorem 1. Let G be a finite abelian group and let H be a subgroup of G. If H
does not have the Rédei property, then neither does G.

Proof. We divide the proof into smaller steps.
(1) Let G be a finite abelian group and let H be a subgroup of G with prime

order. Let A, B be normalized subsets of G such that G/H = (AH)/H · (BH)/H is
a factorization of G/H. Here

(AH)/H = {aH : a ∈ A},
(BH)/H = {bH : b ∈ B}.

There are various choices for A and B. However, we require that A and B have only
one element from each coset of G/H. From a given coset we can choose any element
as a representative freely. Assume that

〈(AH)/H〉 = 〈(BH)/H〉 = G/H

and there is an element a ∈ A \ {e} such that [(A \ {a})H]/H spans G/H. In other
words we assume that (AH)/H spans G/H even if we remove the coset aH. Choose
an h ∈ H \ {e} and set A1 =

(
A \ {a}

)
∪ {ah}, B1 = BH. We claim the following.

(i) G = A1B1 is a normalized factorization.
(ii) 〈B1〉 = G.
(iii) There is a choice of A and h for which 〈A1〉 = G.
In order to prove (i) note that from the factorization G/H = (AH)/H · (BH)/H

it follows that for each g ∈ G the coset gH can be represented in the form

gH = (aH)(bH), a ∈ A, b ∈ B,

and so the elements of the product AB form a complete set of representatives in G
modulo H. This means G = (AB)H. The computation

A1B1 = A1(BH)
= (A1H)B
=

[
(A \ {a}) ∪ {ah}

]
HB

=
[
(AH \ aH) ∪ ahH

]
B

=
[
(AH \ aH) ∪ aH

]
B

= (AH)B
= (AB)H
= G

922 SÁNDOR SZABÓ

gives that G = A1B1. On the other hand, the equations

|G| = |A||B||H|,
|A1| = |A|,
|B1| = |B||H|

clearly hold because we required that A and B have only one element from each coset
of G/H. Therefore, G = A1B1 is a factorization of G.

To prove (ii) note that from 〈(BH)/H〉 = G/H it follows that for each g ∈ G
there are elements b1, . . . , bs ∈ B and integers β(1), . . . , β(s) such that gH can be

represented in the form gH = (b
β(1)
1 H) · · · (bβ(s)

s H). Thus g = b
β(1)
1 · · · bβ(s)

s h1 with

some h1 ∈ H. From b
β(1)
1 · · · bβ(s)

s ∈ 〈B〉 and h1 ∈ H we can see that g ∈ 〈BH〉 = 〈B1〉.
This gives that 〈B1〉 = G.

To verify (iii) set A∗ = A\{a}. Since 〈(A∗H)/H〉 = G/H, for each g ∈ G there are

a1, . . . , as ∈ A∗ and integers α(1), . . . , α(s) such that gH = (a
α(1)
1 H) · · · (aα(s)

s H) and

consequently g = a
α(1)
1 · · · aα(s)

s h1 for some h1 ∈ H. This means that each coset gH
contains an element from 〈A∗〉. Therefore G = 〈A∗〉H and consequently G = 〈A1〉H.
If there is a coset gH that contains two distinct elements c1, c2 from 〈A∗〉, then there is
an h1 ∈ H such that c1c

−1
2 = h1. From c1, c2 ∈ 〈A∗〉 it follows that h1 ∈ 〈A∗〉 ⊂ 〈A1〉.

Here h1 �= e since c1 �= c2. In this case H ⊂ 〈A1〉 and we get G = 〈A1〉. We may
assume that each coset gH contains exactly one element from 〈A∗〉. In particular the
coset aH contains exactly one element c from 〈A∗〉. Suppose first that ah �= c for
some h ∈ H \ {e}. Then there is an h1 ∈ H for which (ah)c−1 = h1. From ah ∈ 〈A1〉
and c ∈ 〈A∗〉 ⊂ 〈A1〉 it follows that h1 ∈ 〈A1〉. But h1 �= e as ah �= c. Therefore
H ⊂ 〈A1〉 and so 〈A1〉 = G. Let us turn to the case when ah = c for each h ∈ H \{e}.
It can happen only when |H| = 2. In this case let us choose A such that c is the
representative in A chosen from the coset aH. Now a = c and consequently ah �= c
for h �= e. We can conclude as before that 〈A1〉 = G.

(2) For a finite abelian group G a factor group of G is always isomorphic to a
subgroup of G. Thus the result in step (1) can be reformulated in the following way.
Let H be a subgroup of G with prime index. If H = AB is a normalized factorization,
〈A〉 = 〈B〉 = H, there is an element a ∈ A\{e} such that 〈A\{a}〉 = H, or there is an
element b ∈ B \ {e} such that 〈B \ {b}〉 = H, then there is a normalized factorization
G = A1B1 with 〈A1〉 = 〈B1〉 = G.

For each subgroup H of G there is a chain of subgroups

H = H0 ⊂ H1 ⊂ · · · ⊂ Hn = G

such that the index |Hi+1 : Hi| is a prime for each i, 1 ≤ i ≤ n− 1. The construction
above can be used several times unless each element of Ai \ {e} is needed to span Hi

and each element of Bi \ {e} is needed to span Hi.
(3) Let G be a finite abelian group and let H be a subgroup of G. We assume that

H does not have the Rédei property and we want to show that G does not have the
Rédei property either. If |H| = 1, then by definition H has the Rédei property and
so for the remaining part of the proof we may assume that |H| ≥ 2. We claim that if
H = AB is a normalized factorization, where |A| ≥ 2, |B| ≥ 2, and each element of
A \ {e} is needed to span H and each element of B \ {e} is needed to span H, then H
has the Rédei property. Phrasing it differently, if the construction described in step
(2) is obstructed, then H has the Rédei property under which circumstances one does
not wish to carry out the construction. This claim has already been proved by Dinitz
in the proof of Theorem 9 of [2].

FACTORING FINITE ABELIAN GROUPS 923

This completes the proof.

3. Four constructions. In this section we describe four factorization construc-
tions we will use later.

Theorem 2. Let G be a group whose type is one of the following:

(ab, cd, 2, 2, 2), a ≥ 2, b ≥ 3, c ≥ 2, d ≥ 2,
(a, bc, 2, 2, 2, 2), a ≥ 3, b ≥ 2, c ≥ 2, a is odd ,
(ab, 2, 2, 2, 2, 2, 2), a ≥ 2, b ≥ 4,
(a, 2, 2, 2, 2, 2, 2, 2), a ≥ 5, a is odd .

Then G does not have the Rédei property.
Proof. The proof is elementary and constructive.
(1) Let G be a group of type (ab, cd, 2, 2, 2), where a ≥ 2, b ≥ 3, c, d ≥ 2 with

basis elements x, y, z1, z2, z3 such that |x| = ab, |y| = cd, |z1| = |z2| = |z3| = 2. Set

A1 = {e, x, x2, . . . , xa−1}, H1 = 〈xa〉,
A2 = {e, y, y2, . . . , yc−1}, H2 = 〈yc〉,
A3 = {e, z2, z3, z1z2z3}, H3 = 〈z1〉,
A = A1A2A3, H = H1H2H3.

Note that

A1H1 = 〈x〉,
A2H2 = 〈y〉,
A3H3 = 〈z1, z2, z3〉.

We will use these observations several times later. The computation

AH = (A1A2A3)(H1H2H3)
= (A1H1)(A2H2)(A3H3)
= 〈x〉〈y〉〈z1, z2, z3〉
= G

shows that G = AH is a factorization of G.
We modify the subgroup H to get a subset B. We remove the subsets

xa(b−1)H2,
yc(d−1)H3, xayc(d−1)H3,
z1H1

from H and add the subsets

xa(b−1)H2y,
yc(d−1)H3z2, xayc(d−1)H3z3,
z1H1x

to H to get the subset B from H. We claim that

xa(b−1)H2A = xa(b−1)yH2A,
yc(d−1)H3A = yc(d−1)z2H3A,
xayc(d−1)H3A = xayc(d−1)z3H3A,
z1H1A = z1xH1A.

924 SÁNDOR SZABÓ

The next routine computation verifies the first equation. The remaining three can be
checked in a similar way and we leave them for the reader.

xa(b−1)yH2A = xa(b−1)yH2(A1A2A3)
= xa(b−1)y(H2A2)A1A3

= xa(b−1)y〈y〉A1A3

= xa(b−1)〈y〉A1A3

= xa(b−1)(H2A2)A1A3

= xa(b−1)H2(A1A2A3)
= xa(b−1)H2A.

We claim that the subsets

xa(b−1)H2A,
yc(d−1)H3A, xayc(d−1)H3A,
z1H1A

are pairwise disjoint. Since the arguments are similar we will show that the first two
subsets are disjoint and leave the remaining ones for the reader. First note that

xa(b−1)H2A = xa(b−1)H2(A1A2A3)
= xa(b−1)(H2A2)A1A3

= xa(b−1)〈y〉A1A3,
yc(d−1)H3A = yc(d−1)H3(A1A2A3)

= yc(d−1)(H3A3)A1A2

= yc(d−1)〈z1, z2, z3〉A1A2.

Assume the contrary—that g is a common element of these subsets. Considering the
x-component of g leads to a contradiction.

It follows that G = AB is a normalized factorization of G. It is plain that

x, y, z2, z3, z1z2z3 ∈ A,

and so 〈A〉 = G. Then

yc(d−1)z2 ∈ B, yc(d−1)z1z2 ∈ 〈B〉 imply z1 ∈ 〈B〉,
xz1 ∈ B, z1 ∈ 〈B〉 imply x ∈ 〈B〉,
xa(b−1)y ∈ B, x ∈ 〈B〉 imply y ∈ 〈B〉,
yc(d−1)z2 ∈ B, y ∈ 〈B〉 imply z2 ∈ 〈B〉,
xayc(d−1)z3 ∈ B, x, y ∈ 〈B〉 imply z3 ∈ 〈B〉.

Therefore 〈B〉 = G. This completes the construction.
We illustrate the construction in the a = 2, b = 4, c = d = 2 special case. The

type of G is (8, 4, 2, 2, 2). The element xαyβz
γ(1)
1 z

γ(2)
2 z

γ(3)
3 of G is recorded simply by

the exponents (α, β, γ(1), γ(2), γ(3)). The elements of the sets A, H, B are listed in
Tables 1(a)–1(c). The modified subsets in H and B are highlighted using (), [], { },

 �, respectively.

(2) Let a, b, c be integers such that a ≥ 3, b, c ≥ 2, and a is odd. Let G be a group
of type (a, bc, 2, 2, 2, 2) with basis elements x, y, z1, z2, z3, u, where |x| = a, |y| = bc,
|z1| = |z2| = |z3| = |u| = 2. Set

A1 = {e, xu}, H1 = 〈x〉,
A2 = {e, y, y2, . . . , yb−1}, H2 = 〈yb〉,
A3 = {e, z2, z3, z1z2z3}, H3 = 〈z1〉,
A = A1A2A3, H = H1H2H3.

FACTORING FINITE ABELIAN GROUPS 925

Table 1(a)

A
00000 00010 00001 00111
10000 10010 10001 10111
01000 01010 01001 01111
11000 11010 11001 11111

Table 1(b)

H
00000 [00100] {02000} {02100}
20000 [20100] �22000� �22100�
40000 [40100] 42000 42100

(60000) [60100] (62000) 62100

Table 1(c)

B
00000 [10100] {02010} {02110}
20000 [30100] �22001� �22101�
40000 [50100] 42000 42100

(61000) [70100] (63000) 62100

Note that

A1H1 = 〈x, u〉,
A2H2 = 〈y〉,
A3H3 = 〈z1, z2, z3〉.

We can see that G = AH is a factorization of G.
We modify the subgroup H to get a subset B. We remove the subsets

xa−1H2,
yb(c−1)H3, xyb(c−1)H3,
z1H1

from H and add the subsets

xa−1H2y,
yb(c−1)H3z2, xyb(c−1)H3z3,
z1H1u

to H to get the subset B from H. It turns out that

xa−1H2A = xa−1yH2A,
yb(c−1)H3A = yb(c−1)z2H3A,
xyb(c−1)H3A = xyb(c−1)z3H3A,
z1H1A = z1uH1A

and that the subsets

xa−1H2A,
yb(c−1)H3A, xyb(c−1)H3A,
z1H1A

are pairwise disjoint. From this it follows that G = AB is a normalized factorization
of G. It is clear that 〈B〉 = G. Note that xu ∈ A1. Since a is odd it follows that

926 SÁNDOR SZABÓ

Table 2(a)

A
000000 000100 000010 001110
100001 100101 100011 101111
010000 010100 010010 011110
110001 110101 110011 111111

Table 2(b)

H
000000 [001000] {020000} {021000}
100000 [101000] �120000� �121000�

(200000) [201000] (220000) 221000

Table 2(c)

B
000000 [001001] {020100} {021100}
100000 [101001] �120010� �121010�

(210000) [201001] (230000) 221000

(xu)a = u. This gives that x, u ∈ 〈A〉. Then one can verify that 〈A〉 = G, completing
the construction.

We illustrate the construction in the a = 3, b = c = 2 numerical case. The type of
G is (3, 4, 2, 2, 2, 2). The elements of the sets A, H, B are listed in Tables 2(a)–2(c).

(3) Let G be a group of type (ab, 2, 2, 2, 2, 2, 2), where a ≥ 2, b ≥ 4 with basis
elements x, y1, y2, y3, z1, z2, z3 such that |x| = ab, |y1| = |y2| = |y3| = 2, |z1| =
|z2| = |z3| = 2. Set

A1 = {e, x, x2, . . . , xa−1}, H1 = 〈xa〉,
A2 = {e, y2, y3, y1y2y3}, H2 = 〈y1〉,
A3 = {e, z2, z3, z1z2z3}, H3 = 〈z1〉,
A = A1A2A3, H = H1H2H3.

Let us observe that

A1H1 = 〈x〉,
A2H2 = 〈y1, y2, y3〉,
A3H3 = 〈z1, z2, z3〉.

Note that G = AH is a factorization of G.
We modify the subgroup H to get a subset B by removing the subsets

xa(b−1)H2, xa(b−2)H2,
y1H3, xay1H3,
z1H1

from H and adding the subsets

xa(b−1)H2y2, xa(b−2)H2y3,
y1H3z2, xay1H3z3,
z1H1x

FACTORING FINITE ABELIAN GROUPS 927

Table 3(a)

A
0000000 0000010 0000001 0000111
1000000 1000010 1000001 1000111
0010000 0010010 0010001 0010111
1010000 1010010 1010001 1010111
0001000 0001010 0001001 0001111
1001000 1001010 1001001 1001111
0111000 0111010 0111001 0111111
1111000 1111010 1111001 1111111

Table 3(b)

H
0000000 [0000100] {0100000} {0100100}
2000000 [2000100] �2100000� �2100100�
�4000000� [4000100] �4100000� 4100100
(6000000) [6000100] (6100000) 6100100

Table 3(c)

B
0000000 [1000100] {0100001} {0100101}
2000000 [3000100] �2100010� �2100110�
�4001000� [5000100] �4101000� 4100100
(6010000) [7000100] (6110000) 6100100

to H to get the subset B from H. One can verify that

xa(b−1)H2A = xa(b−1)H2y2A,
xa(b−2)H2A = xa(b−2)H2y3A,
y1H3A = y1H3z2A,
xay1H3A = xay1H3z3A,
z1H1A = z1xH1A

and that the subsets

xa(b−1)H2A, xa(b−2)H2A,
y1H3A, xay1H3A,
z1H1A

are pairwise disjoint. From this we can deduce that G = AB is a normalized factor-
ization of G. The reader can show that 〈A〉 = G and 〈B〉 = G which completes the
construction.

We work out the a = 2, b = 4 case in detail. In this case G is of type (8, 2, 2, 2, 2, 2, 2).
The sets A, H, B are depicted in Tables 3(a)–3(c).

(4) Let a be an integer such that a ≥ 5 and a is odd. Let G be a group of type
(a, 2, 2, 2, 2, 2, 2, 2) with basis elements x, y1, y2, y3, z1, z2, z3, u, where |x| = a,
|y1| = |y2| = |y3| = 2, |z1| = |z2| = |z3| = |u| = 2. Set

A1 = {e, xu}, H1 = 〈x〉,
A2 = {e, y2, y3, y1y2y3}, H2 = 〈y1〉,
A3 = {e, z2, z3, z1z2z3}, H3 = 〈z1〉,
A = A1A2A3, H = H1H2H3.

928 SÁNDOR SZABÓ

The basic observations we use are the following:

A1H1 = 〈x, u〉,
A2H2 = 〈y1, y2, y3〉,
A3H3 = 〈z1, z2, z3〉.

Obviously G = AH is a factorization of G.
We modify the subgroup H to get a subset B by removing the subsets

xa−1H2, xa−2H2,
y1H3, xy1H3,
z1H1

from H and adding the subsets

xa−1H2y2, xa−2H2y3,
y1H3z2, xy1H3z3,
z1H1u

to H to get the subset B from H. One can verify that

xa−1H2A = xa−1H2y2A,
xa−2H2A = xa−2H2y3A,
y1H3A = y1H3z2A,
xy1H3A = xy1H3z3A,
z1H1A = z1uH1A

and that the subsets

xa−1H2A, xa−2H2A,
y1H3A, xy1H3A,
z1H1A

are pairwise disjoint. It is a consequence that G = AB is a normalized factorization
of G. The reader can check that 〈B〉 = G. Using xu ∈ A1 and that a is odd it follows
that (xu)a = u ∈ 〈A〉. Then x ∈ 〈A〉. One can see that 〈A〉 = G which completes the
construction.

The a = 5 case serves as an illustration. In this case G is of type (5, 2, 2, 2, 2, 2, 2, 2).
Tables 4(a)–4(c) list the elements of the sets A, H, B.

Table 4(a)

A
00000000 00000100 00000010 00001110
10000001 10000101 10000011 10001111
00100000 00100100 00100010 00101110
10100001 10100101 10100011 10101111
00010000 00010100 00010010 00011110
10010001 10010101 10010011 10011111
01110000 01110100 01110010 01111110
11110001 11110101 11110011 11111111

FACTORING FINITE ABELIAN GROUPS 929

Table 4(b)

H
00000000 [00001000] {01000000} {01001000}
10000000 [10001000] �11000000� �11001000�
20000000 [20001000] 21000000 21001000

(30000000) [30001000] (31000000) 31001000
�40000000� [40001000] �41000000� 41001000

Table 4(c)

B
00000000 [00001001] {01000100} {01001100}
10000000 [10001001] �11000010� �11001010�
20000000 [20001001] 21000000 21001000

(30100000) [30001001] (31100000) 31001000
�40010000� [40001001] �41010000� 41001000

4. p-groups. Let p be a prime. Let Fp be a family of p-groups whose types are
on the following list or a subgroup of such a group.

p = 2, (2α, 2β , 2, 2), α ≥ 3, β ≥ 2,
(2α, 2, 2, 2, 2, 2), α ≥ 3,
(22, 22, 2, 2, 2, 2, 2, 2, 2),

p = 3, (3α, 3β , 3), α ≥ 2, β ≥ 2,
(3α, 3, 3, 3), α ≥ 2,
(3, 3, 3, 3, 3),

p ≥ 5, (pα, pβ , p), α ≥ 1, β ≥ 1.

Theorem 3. Let p be a prime and let G be a finite abelian p-group. If G has the
Rédei property, then G is a member of the Fp family.

Proof. Let G be a finite abelian p-group with the Rédei property. Let H be a
subgroup of G. By Theorem 1, if H does not posses the Rédei property, then neither
does G. So we may assume that H has the Rédei property. In the remaining part of
the proof we deal with the p = 2, p = 3, p ≥ 5 cases separately.

(1) In the p = 2 case H does not have the Rédei property if its type is one of the
following:

(22, 22, 22), (23, 22, 2, 2, 2),
(23, 2, 2, 2, 2, 2, 2), (2, 2, 2, 2, 2, 2, 2, 2, 2, 2).

Theorem 4 of [12] and Theorem 1 of [6] settle the first and the last cases, respectively.
The remaining cases follow from Theorem 2. Suppose that the type of G is(

2α(1), . . . , 2α(r), 2β(1), . . . , 2β(s), 2γ(1), . . . , 2γ(t)
)
,

where

α(1), . . . , α(r) ≥ 3, β(1) = · · · = β(s) = 2, γ(1) = · · · = γ(t) = 1.

If r+s ≥ 3, then the type of H can be chosen to be (22, 22, 22), and so by Theorem 1,
G does not have the Rédei property. This contradiction shows that r + s ≤ 2. There
are three possible choices for r + s and six choices for r and s.

If r = s = 0 and t ≥ 10, then H can be taken to be an elementary 2-group of
rank 10 and so G does not have the Rédei property. Therefore in the r = s = 0 case

930 SÁNDOR SZABÓ

t ≤ 9. If r = 1, s = 0, t ≥ 6, then the type of H can be chosen to be (23, 2, 2, 2, 2, 2, 2),
and so G does not have the Rédei property. Thus in the r = 1, s = 0 cases t ≤ 5.
Continuing in this way we can verify the claim of the theorem in the p = 2 particular
case.

(2) In the p = 3 case by Theorem 2 of [12], H does not have the Rédei property
if its type is one of the following:

(32, 32, 32), (32, 32, 3, 3),
(32, 3, 3, 3, 3), (3, 3, 3, 3, 3, 3).

Suppose that the type of G is(
3α(1), . . . , 3α(r), 3β(1), . . . , 3β(s)

)
,

where

α(1), . . . , α(r) ≥ 2, β(1) = · · · = β(s) = 1.

If r ≥ 3, then the type of H can be set to be (32, 32, 32), and so G does not have the
Rédei property. Thus r ≤ 2. This leaves three choices for r. If r = 0 and s ≥ 6, then
H can be chosen to be an elementary 3-group of rank 6 and consequently G does not
have the Rédei property. This contradiction implies that in the r = 0 case s ≤ 5 must
hold. The remaining two cases can be treated in a similar way.

(3) In the p ≥ 5 case we proceed as in the p = 3 case. However in [2] it was
established that a group of type (p, p, p, p) does not have the Rédei property. This
sorts out further groups.

The proof is complete.
Let p be a prime and let G be an elementary p-group of rank n. When p = 2, the

picture is complete. Namely, by the main result of [6], G has the Rédei property for
n ≤ 9 and G does not have the Rédei property for n ≥ 10. When p = 3 by Theorem
2.3 of [14], G has the Rédei property for n ≤ 4 and by Theorem 3, G does not have
the Rédei property for n ≥ 6. The n = 5 case is undecided. When p ≥ 5 by Rédei’s
theorem, G has the Rédei property for n ≤ 2 and by a construction of [2], G does not
have the Rédei property for n ≥ 4. The n = 3 case is undecided. It is a conjecture of
Rédei from 1970 that G does have the Rédei property for n = 3. This conjecture is
verified for p ≤ 11 in [13].

Problem 1. Characterize all elementary p-groups with the Rédei property.
Problem 2. Find all p-groups with the Rédei property.

REFERENCES

[1] G. D. Cohen, S. Litsyn, A. Vardy, and G. Zémor, Tiling of binary spaces, SIAM J. Discrete
Math., 9 (1996), pp. 393–412.

[2] M. Dinitz, Full rank tilings of finite abelian groups, SIAM J. Discrete Math., 20 (2006), pp. 160–
170.

[3] T. Etzion and A. Vardy, On perfect codes and tilings: Problems and solutions, SIAM J.
Discrete Math., 11 (1998), pp. 205–223.

[4] C. De Felice, An application of Hajós factorization to variable length codes, Theoret. Comput.
Sci., 164 (1996), pp. 223–252.

[5] O. Fraser and B. Gordon, Solution to a problem of A. D. Sands, Glas. Math. J., 20 (1979),
pp. 115–117.

[6] P. R. J. Österg̊ard and A. Vardy, Resolving the existence of full-rank tilings of binary
Hamming spaces, SIAM J. Discrete Math., 18 (2004), pp. 382–387.

FACTORING FINITE ABELIAN GROUPS 931

[7] L. Rédei, Die neue Theorie der endlichen abelschen Gruppen und Verallgemeinerung des
Hauptsatzes von Hajós, Acta Math. Acad. Sci. Hungar., 16 (1965), pp. 329–373.

[8] L. Rédei, Lückenhafte Polynome über Endlichen Körpern, Birkhäuser Verlag, Basel, 1970.
[9] L. Rédei, Lacunary Polynomials over Finite Fields, North–Holland, Amsterdam, 1973.

[10] A. D. Sands, On Keller’s conjecture for certain cyclic groups, Proc. Edinburgh Math. Soc., 22
(1979), pp. 17–21.

[11] S. Szabó, A type of factorization of finite abelian groups, Discrete Math., 54 (1985), pp. 121–
125.

[12] S. Szabó, Constructions related to the Rédei property of groups, J. London Math. Soc., 73
(2006), pp. 701–715.

[13] S. Szabó and C. Ward, Factoring elementary groups of prime cube order into subsets, Math.
Comp., 67 (1998), pp. 1199–1206.

[14] S. Szabó and C. Ward, Factoring groups having periodic maximal subgroups, Bol. Soc. Mat.
Mexicana 3, 5 (1999), pp. 327–333.

[15] C. B. Swenson, Direct Sum Subset Decompositions of Abelian Groups, Ph.D. thesis, Washing-
ton State University, Pullman, WA, 1972.

[16] R. Tijdeman, Decomposition of the integers as a direct sum of two subsets, in Number Theory
(Paris 1992–1993), S. David, ed., London Math. Soc. Lecture Note Ser. 215, Cambridge
University Press, Cambridge, UK, 1995, pp. 261–276.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 4, pp. 932–946

COMPUTING THE TUTTE POLYNOMIAL ON GRAPHS OF
BOUNDED CLIQUE-WIDTH∗

OMER GIMÉNEZ† , PETR HLINĚNÝ‡ , AND MARC NOY†

Abstract. The Tutte polynomial is a notoriously hard graph invariant, and efficient algorithms
for it are known only for a few special graph classes, like for those of bounded tree-width. The
notion of clique-width extends the definition of cographs (graphs without induced P4), and it is a
more general notion than that of tree-width. We show a subexponential algorithm (running in time
expO(n1−ε)) for computing the Tutte polynomial on graphs of bounded clique-width. In fact, our
algorithm computes the more general U -polynomial.

Key words. Tutte polynomial, cographs, clique-width, subexponential algorithm, U polynomial

AMS subject classifications. 05C85, 68R10

DOI. 10.1137/050645208

1. Introduction. The Tutte polynomial T (G;x, y) of a graph G is a powerful
invariant with many applications, not only in graph theory but also in other fields
such as knot theory and statistical physics. One important feature of the Tutte
polynomial is that by evaluating T (G;x, y) at special points in the plane one obtains
several parameters of G. For example, T (G; 1, 1) is the number of spanning trees of
G and T (G; 2, 1) is the number of forests (that is, spanning acyclic subgraphs) of G.

A question that has received much attention is whether the evaluation of T (G;x, y)
at a particular point of the (x, y) plane can be done in polynomial time. Jaeger, Verti-
gan, and Welsh [9] showed that evaluating the Tutte polynomial of a graph is #P-hard
at every point except those lying on the hyperbola (x− 1)(y − 1) = 1 and eight special
points, including at (1, 1) which gives the number of spanning trees. In each of the
exceptional cases the evaluation can be done in polynomial time. On the other hand,
the Tutte polynomial can be computed in polynomial time for graphs of bounded tree-
width. This was obtained independently by Andrzejak [2] and Noble [13]. Recently
Hliněný [8] has obtained the same result for matroids of bounded branch-width repre-
sentable over a fixed finite field, which is a substantial generalization of the previous
results; see [6] for additional references on this subject.

In this paper we study the problem of computing the Tutte polynomial for
cographs and, more generally, for graphs of bounded clique-width. A graph has clique-
width ≤ k if it can be constructed using k labels and the following four operations:
create a new vertex with label i, take the disjoint union of several labeled graphs, add
all edges between vertices of label i and label j, and relabel all vertices with label i to
have label j. An expression defining a graph G built from the above four operations

∗Received by the editors November 15, 2005; accepted for publication (in revised form) May 18,
2006; published electronically December 11, 2006. An extended abstract has been published in [15].

http://www.siam.org/journals/sidma/20-4/64520.html
†Department of Applied Mathematics, Technical University of Catalonia, Jordi Girona 1–3, 08034

Barcelona, Spain (omer.gimenez@upc.edu, marc.noy@upc.edu). The work of the first author was
supported by Beca Fundació Crèdit Andorrà and Project MTM2005-08618-C02-01. The work of the
second author was supported by Project MTM2005-08618-C02-01.

‡Faculty of Informatics, Masaryk University, Botanická 68a, 602 00 Brno, Czech Republic
(hlineny@fi.muni.cz). This author’s work was supported by Czech research grant GAČR 201/05/0050
(VŠB–TU Ostrava), and by the Institute of Theoretical Computer Science, project 1M0545.

932

COMPUTING THE TUTTE POLYNOMIAL 933

using k labels is a k-expression for G. When we say that a graph G has clique-width
≤ k, we always assume that a k-expression for G is given.

A cograph is a graph of clique-width at most two; equivalently, it is a graph
containing no induced path P4 on four vertices (see section 4).

Although a class of graphs with bounded tree-width has also bounded clique-
width, the converse is not true. For instance, complete graphs have clique-width
two. It is well known that all problems expressible in monadic second order logic
of incidence graphs become polynomial time solvable when restricted to graphs of
bounded tree-width. For bounded clique-width less is true: all problems become
polynomial time solvable if they are expressible in monadic second-order logic using
quantifiers on vertices but not on edges (adjacency graphs) [3].

Our main results are as follows.

Theorem 1.1. The Tutte polynomial of a cograph with n vertices can be computed
in time exp

(
O(n2/3)

)
.

Theorem 1.2. Let G be a graph with n vertices of clique-width k along with a
k-expression for G as an input. Then the Tutte polynomial of G can be computed in
time exp

(
O(n1−1/(k+2))

)
.

Theorem 1.2 is not likely to hold for the class of all graphs, since it would imply
the existence of a subexponential algorithm for 3-coloring, hence also for 3-SAT; which
is considered highly unlikely in the computer science community. Of course, the main
open question is whether there exists a polynomial time algorithm for computing the
Tutte polynomial of graphs of bounded clique-width. We discuss this issue in the last
section.

In fact, our algorithms compute not only the Tutte polynomial, but the so-called
U polynomial (see [14]), which is a stronger polynomial invariant. Moreover, we may
skip the requirement of having a k-expression for G as an input in Theorem 1.2,
if we do not care about an asymptotic behavior in the exponent: Just to prove a
subexponential upper bound we may use the approximation algorithm for clique-
width by Oum [15] and Seymour [16] (see section 4).

Since our algorithms are quite complicated, for an illustration, we first present in
section 2 a simplified algorithm computing the number of forests in a cograph, that
is, evaluating T (G; 2, 1) for graphs of clique-width ≤ 2. In section 3 we extend the
algorithm to the computation of the full Tutte polynomial on cographs. Section 4
then discusses more closely the notion of graph clique-width. Finally, in section 5 we
prove our main result, Theorem 1.2.

2. Forests in cographs. The problem of computing the number of spanning
forests in an arbitrary graph is #P -hard [9]. In this section we show the existence of
a subexponential algorithm for the class of cographs.

2.1. Definition and signatures. The class of cographs is defined recursively as
follows:

1. A single vertex is a cograph.
2. A disjoint union of two cographs is a cograph.
3. A complete union of two cographs is a cograph.

Here a complete union of two graphs G�H means the operation of taking a disjoint
union G ∪̇H, and adding all edges between V (G) and V (H). (We will avoid using
the notation ⊕ at all since in the context of clique-width it is used to denote a
disjoint union while in some other areas it denotes a complete union.) A cograph
G can be represented by a tree, whose internal nodes correspond to operations (2)

934 OMER GIMÉNEZ, PETR HLINĚNÝ, AND MARC NOY

and (3) above, and whose leaves correspond to single vertices. We call such a tree an
expression for G.

For example, all cliques are cographs, and the complement of a cograph is a
cograph again. Cographs have a long history of theoretical and algorithmic research.
In particular, they are known to be exactly the graphs without induced paths on four
vertices (P4-free).

Let us call a signature a multiset of positive integers. The size ‖α‖ of a signature
α is the sum of all elements in α, respecting repetition in the multiset. A signature α
of size n is represented by the characteristic vector α = (a1, a2, . . . , an), where there
are ai ≥ 0 elements i in α, and

∑n
i=1 i · ai = n. (On the other hand, the cardinality

of α is |α| =
∑n

i=1 ai, as usual.) An important fact we need is the following. Recall
that Θ(f) is a usual shortcut for all functions having the same asymptotic growth
rate as f .

Lemma 2.1. There are 2Θ(
√
n) distinct signatures of size n.

Proof. Each signature actually corresponds to a partition of n into an unordered
sum of positive integers. It is well known [11, Chapter 15] that there are 2Θ(

√
n) of

those.
We call a double-signature a multiset of ordered pairs of nonnegative integers,

excluding the pair (0, 0). The size ‖β‖ of a double-signature β is the sum of all
(x + y) for (x, y) ∈ β, respecting repetition in the multiset. We, moreover, need to
prove the following.

Lemma 2.2. There are exp
(
Θ(n2/3)

)
distinct double-signatures of size n.

Lemma 2.2 is a particular case of Lemma 5.1, which is proved in section 5.
Lemma 2.3. A double-signature β of size n has at most exp

(
O(n2/3)

)
different

submultisets (i.e., of different characteristic vectors).
Proof. Just count all double-signatures of size ≤ n.

2.2. Forest signature table. Let us now consider a graph G and a forest U ⊂
G. The signature α of U is the multiset of sizes of the connected components of U .
(Obviously, α has size |V (G)| if U spans all the vertices.) We call a (spanning) forest
signature table of the graph G a vector T (realized as an array T [. . .]); such that T
records, for each signature α of size |V (G)|, the number of spanning forests U ⊂ G
having signature α (as T [α]). For simplicity we usually skip the word “spanning” if
it is clear from the context. We are going to compute the forest signature table of a
cograph G recursively along the way G has been constructed. For that we describe
two algorithms.

Let us denote by ΣG the set of all signatures of size |V (G)|. It is important to keep
in mind that signatures are considered as multisets, which also concerns set operations.
For instance, a multiset union γ	δ is obtained as the sum of the characteristic vectors
of γ and δ, and a multiset difference γ \ δ is defined by the nonnegative difference of
those.

Algorithm 2.4. Combining the spanning forest signature tables of graphs F and
G into the one of the disjoint union H = F ∪̇G.
Input: Graphs F,G, and their forest signature tables T F ,TG.
Output: The forest signature table TH of H = F ∪̇G.

create empty table TH of forest signatures of size |V (H)|;
for all signatures αF ∈ ΣF , αG ∈ ΣG do

set α = αF 	 αG (a multiset union);
add TH [α] += T F [αF] · TG[αG];

done.

COMPUTING THE TUTTE POLYNOMIAL 935

�

�

�

�

�

�
�

�

�
V1 V2

Fig. 2.1. An illustration of a spanning forest (solid edges) in a graph partitioned into V1 (white)
and V2 (black); this forest has double-signature {(2, 1), (1, 2), (0, 1), (1, 1)}.

The running time of this algorithm is proportional to the number of pairs of sig-
natures (αF , αG), which is exp

(
O(n2/3)

)
, where n = |V (H)|; this is due to Lemma 2.2

and the fact that we have the O() expression in the exponent.
The second algorithm is, on the other hand, more complicated. It involves double-

signatures with the following meaning: Consider a graph H with vertices partitioned
into two parts V (H) = V1 ∪ V2, and a forest U ⊂ H. The double-signature of U
(w.r.t. V1, V2) is the multiset of pairs

(
|V (C) ∩ V1|, |V (C) ∩ V2|

)
over all connected

components C of U ; see an illustration in Figure 2.1.
The idea behind the algorithm is to obtain the double-signatures (for V1 = V (F)

and V2 = V (G)) of the spanning forests in H = F � G from the signatures of the
spanning forests in F and G. For every pair of forests UF ⊂ F and UG ⊂ G, the
algorithm iteratively counts the different ways in which each component of UG can
be joined to components of UF . During the process, double-signatures are needed to
distinguish between former vertices of F and of G in already joined components. In
fact, the algorithm works with pairs of signatures αF and αG, that is, with whole
classes of forests instead of particular forests. We also remark that a submultiset is
considered among all possible selections of repeated elements, as if they were pairwise
distinct.

Algorithm 2.5. Combining the spanning forest signature tables of graphs F and
G into the one of the complete union H = F � G.
Input: Graphs F,G, and their forest signature tables T F ,TG.
Output: The forest signature table TH of H = F � G.

create empty table TH of forest signatures of size |V (H)|;
for all signatures αF ∈ ΣF , αG ∈ ΣG do

set z = |V (F)|;
create empty table X of forest double-signatures of size z;

// Imagine particular forests UF ⊂ F , UG ⊂ G of signature αF ,αG,
// and a selected component C ⊂ UG of size c.

set X
[
double-signature {(a, 0) : a ∈ αF }

]
= 1;

for each c ∈ αG (with repetition) do

create empty table X ′ of forest double-signatures of size z + c;
for all double-signatures β of size z s.t. X[β] > 0 do

for(†) all submultisets γ ⊆ β (with repetition) do

set d1 =
∑

(x,y)∈γ x, d2 =
∑

(x,y)∈γ y;

set double-signature β′ = (β \ γ) 	 {(d1, d2 + c)};
add(*) X ′[β′] += X[β] ·

∏
(x,y)∈γ cx;

done

done

936 OMER GIMÉNEZ, PETR HLINĚNÝ, AND MARC NOY

set X = X ′, z = z + c; dispose X ′;

done

for all double-signatures β of size |V (H)| do

set signature α0 = {x + y : (x, y) ∈ β};
add TH [α0] += X[β] · T F [αF] · TG[αG];

done

done.

Proof of Algorithm 2.5. We now explain the algorithm and show its correctness. It
is more easily understood if one imagines particular forests (representatives) UF ⊂ F
and UG ⊂ G in the place of the signatures αF and αG chosen in the first for cycle.
Then one may routinely verify that all subsequent computations depend only on the
forest signatures αF , αG (not on the particular forests), and hence it is correct to
finally multiply the computed values in X by the numbers T F [αF] · TG[αG].

In the tables X,X ′ we iteratively compute the numbers of all spanning forests
in H that result by adding some edges between the forests UF and UG. For a particular
iteration, imagine a new forest component of size c in G which is to be joined with
another forest component in F �G which has x vertices in V (F). There are c ·x edges
to consider between the components, and we have to select exactly one connecting
edge to maintain acyclicity, so there are cx choices there. These numbers are naturally
multiplied (*) when joining more components together; see the steps in Figure 2.2.

So the core of the algorithm in the second cycle “for each c ∈ αG . . . ” reads:
We consider an arbitrary order C1, C2, . . . , Ck on the connected components of UG.
For i = 1, 2, . . . , k, we take the component Ci, and count all possible ways how to
connect Ci by selected edges to a subset (†) of components of each of the previously
constructed forests on V (F ∪ C1 ∪ · · · ∪ Ci−1) which are recorded in the table X.
The other ends of those selected edges are considered only among vertices in V (F).
(Recall that the complete union H = F � G has added all edges between V (F) and
V (Ci).) We then record (*) numbers of all the new forests on V (F ∪C1 ∪ · · · ∪Ci) in
a new table X ′ that will play the role of X in the next iteration.

More precisely, after finishing iteration i = 1, 2, . . . , k described in the previous
paragraph, each entry X ′[β] equals the number of all forests U ′ of signature β span-
ning V (F ∪C1∪· · ·∪Ci) such that U ′ �V (F) = UF and U ′ �V (G) = UG �C1∪· · ·∪Ci.
This follows easily by an induction from the previous arguments. At the end we count
each spanning forest U ⊆ H such that U �V (F) = UF and U �V (G) = UG exactly
once. Finally, the double-signatures in the table X partition the vertices into V (F)

F � G

�

� �

� �

�

� �

�

�

�

C1

C2

9 choices

F � G

�

� �

� �

�

� �

�

�

�
C2

6 · 2 choices

F � G

�

� �

� �

�

� �

�

�

�

resulting forest

Fig. 2.2. An illustration of inner iterations of Algorithm 2.5: Particular spanning forests
UF , UG are chosen in F and G (other edges are not shown here), and the components C1, C2 of UG

are then joined to some of the four components of UF . Possible choices of edges for these joins are
shown in dotted lines.

COMPUTING THE TUTTE POLYNOMIAL 937

and V (G), but that is no longer needed so we “simplify” them—we record the resulting
numbers only by the (single) forest signatures in the resulting table TH .

2.3. Time analysis. To get a fine time-complexity analysis of Algorithm 2.5,
we have to insert a slight modification. (A problem may occur in the original Algo-
rithm 2.5 in the fourth nested cycle “for all submultisets γ ⊆ β” if β consists, say,
of n/2 copies of the element 2. Then there are up to exp

(
Θ(n)

)
submultisets γ to

consider.)
Algorithm 2.6. Same as Algorithm 2.5, except the program line (†) now reads

for all different submultisets γ ⊆ β do,

and the line (*) reads

add X ′[β′] += X[β] ·
∏

(x,y)∈γ
cx ·

∏
(x,y)∈〈β〉

(
μβ(x, y)

μγ(x, y)

)
,

where 〈α〉 denotes the ordinary set formed by elements of a multiset α, and μαz is
the repetition of an element z in α.

Proof of Algorithm 2.6. We prove that this algorithm computes the same results
as Algorithm 2.5. Notice that the outcome of the computation between the lines (†)
and (*) depends only on the characteristic vector of γ. Hence instead of all γ ⊆ β,
it is enough to consider (much less of) pairwise different submultisets γ ⊆ β, and
then multiply the resulting number by all possible choices (combinations) of repeated
elements of γ from β, as we do here in Algorithm 2.6.

Now, since we use O() in the exponent, it is enough to argue that each of the
for cycles in Algorithm 2.6 (2.5) is iterated at most exp

(
O(n2/3)

)
times. This follows

easily from Lemmas 2.1, 2.2, and 2.3.
Lemma 2.7. Algorithm 2.6 runs in time exp

(
O(n2/3)

)
, where n = |V (H)|.

We remark that the improvement presented in Algorithm 2.6 has been fully in-
corporated in the subsequent algorithms, without further notices.

Theorem 2.8. The number of spanning forests in an n-vertex cograph can be
computed in time exp

(
O(n2/3)

)
.

Proof. Consider a cograph G and a tree expression defining it. The forest sig-
nature table of a single vertex is trivial, and by Algorithms 2.4 and 2.6, the forest
signature tables of a union or a complete union of two cographs can be computed in
time claimed. Finally, knowing the forest signature table T of G, the number of all
spanning forests of G is computed by adding up the entries of T .

Here we should note that the expression defining a cograph can be found in linear
time [5], and hence we do not require it on the input.

3. The Tutte polynomial of a cograph. The Tutte polynomial can be defined
in a number of equivalent ways. For our purposes, given a graph G = (V,E) we define
the Tutte polynomial as

T (G;x, y) =
∑
F⊆E

(x− 1)r(E)−r(F)(y − 1)|F |−r(F),

where r(F) = |V | − k(F) and k(F) is the number of connected components of the
spanning subgraph induced by the edge-subset F . It is clear that knowing T (G;x, y)
is the same as knowing, for every i and j, how many spanning subgraphs with the
edge set F in G are there with |F | = i and k(F) = j.

938 OMER GIMÉNEZ, PETR HLINĚNÝ, AND MARC NOY

Consider a spanning subgraph W ⊂ G determined on V (W) = V (G) by an
arbitrary subset F ⊂ E(G), F = E(W). The sizes of the connected components of W
define a signature of size |V (G)|. In the (spanning) subgraph signature table S of G, for
each signature α of size |V (G)| and each number of edges f ∈ {0, 1, 2, . . . , |E(G)|},
we record the number S[α, f] of all spanning subgraphs of G having f edges and
having component sizes according to the signature α. We abbreviate by γ � i the
multiset formed by all the ith coordinates (repetitions accounted for) of the elements
of a double-signature γ.

In order to prove Theorem 1.1 we need analogues of Algorithms 2.4 and 2.5
for computing subgraph signature tables. The algorithm for disjoint unions is again
straightforward and we omit it; the one for complete unions comes next.

Besides adding an edge number as the second index to the signature tables, the
only other major difference of this algorithm from Algorithm 2.5 is that the single
line (*) is replaced with another for cycle calling a procedure CellSel of further
Algorithm 3.2.

Algorithm 3.1. A modification of Algorithm 2.6 (2.5) for computing the (span-
ning) subgraph signature table of the complete union H = F � G.

Input: Graphs F,G, and their subgraph signature tables SF ,SG.
Output: The subgraph signature table SH of H = F � G.

create empty table SH of subgraph signatures of size |V (H)|;
for all αF ∈ ΣF , and eF = 0, 1, . . . , |E(F)| s.t. SF [αF , eF] > 0 do

for all αG ∈ ΣG, and eG = 0, . . . , |E(G)| s.t. SG[αG, eG] > 0 do

set z = |V (F)|;
create empty table Y of subgraph double-signature of size z;

set Y
[
double-signature {(a, 0) : a ∈ αF }, eF

]
= 1;

for each c ∈ αG (with repetition) do

create empty table Y ′ of subgraph double-signature of size z + c;

for all β of size z, and e s.t. Y [β, e] > 0 do

for all different submultisets γ ⊆ β do

set r =
∏

(x,y)∈〈β〉

(
μβ(x, y)

μγ(x, y)

)
;

set d1 = ‖γ �1‖ =
∑

(x,y)∈γ x, d2 = ‖γ �2‖ =
∑

(x,y)∈γ y;

set double-signature β′ = (β \ γ) 	 {(d1, d2 + c)};
for f = |γ|, |γ| + 1, . . . , c · d1 do

set multiset D = c · (γ �1) = {cx : (x, y) ∈ γ};
call Algorithm 3.2: p = CellSel(D, f);

add Y ′[β′, e + f] += Y [β, e] · r · p;
done

done

done

set Y = Y ′, z = z + c; dispose Y ′;

done

for all double-signature β of size |V (H)|, and f , s.t. Y [β, f] > 0 do

set signature α0 = {x + y : (x, y) ∈ β};
add SH [α0, f + eG] += Y [β, f] · SF [αF , eF] · SG[αG, eG];

done

done

done.

COMPUTING THE TUTTE POLYNOMIAL 939

Proof of Algorithm 3.1. This algorithm is similar to the improved version of
Algorithm 2.6, and so we only sketch the proof here. The main new difficulty lies in
counting the different ways in which a connected component of c vertices in αG can
be connected with f edges to the selected components of signatures (x, y) ∈ γ. Recall
that when counting forests we had no such difficulty, since we joined the component
of αG to each component of γ with exactly one edge; thus we used exactly f = |γ|
edges chosen in

∏
(x,y)∈γ cx different ways. The procedure “CellSel(D, f)” counts

this for spanning subgraphs, and we defer the explanation to Algorithm 3.2; see also
Figure 3.1.

Finally, notice that the edge numbers in tables Y , Y ′ do not account for the edges
from E(G), since we do not know how many edges each one has of the components
of αG. Those edges are summed up at the end, when obtaining the signatures for H
from the double-signatures stored in Y .

Algorithm 3.2. Computing the number of cellular selections: We are selecting
� elements from the union C1 ∪C2 ∪ · · · ∪Ck, where Ci for i = 1, 2, . . . , k are pairwise
disjoint cells of sizes di = |Ci|, and we require that some element is selected from
every cell.

Input: A multiset D = {d1, d2, . . . , dk} of cell sizes, and a number �.
Output: The number CellSel(D, �) of all such possible selections.

create table u[1..k][1..�], filled with 0;

for j = 1, 2, . . . , d1 do set u[1][j] =
(
d1

j

)
;

set z = d1;
for i = 2, 3, . . . , k do

add z += di;
for j = i, i + 1, . . . ,min(�, z) do

for s = 1, 2, . . . ,min
(
j − (i− 1), di

)
do

add u[i][j] += u[i− 1][j − s]·
(
di

s

)
;

done

done

done

return u[k][�].

Proof of Algorithm 3.2. Let ui,j = u[i][j] be the number of cellular selections of j
elements chosen among the first i cells. These numbers satisfy the recurrence relation

ui,j =

r∑
s=1

ui−1,j−s ·
(
di
s

)
,

where r is the maximum number of elements than can be selected from the ith cell
to obtain a total of j elements. Since the ith cell has di elements available, and the
i− 1 previous cells contributed at least one element each to the resulting j elements,
it follows that r = min{j − (i− 1), di}.

Algorithm 3.2 applies the previous recurrence in a correct order, and avoids use-
less computations like with values of j too small or too large. It runs in O(k�2)
steps.

Proof of Theorem 1.1. As in Theorem 2.8, the subgraph signature table S of a
cograph can be computed in time proportional to the number of all possible double-
signatures of size n, i.e., in exp

(
O(n2/3)

)
. Then, summing the entries of S, we com-

pute the numbers of spanning subgraphs with a given number of edges and a number
of components. As we have remarked previously, these numbers give (efficiently) the
Tutte polynomial.

940 OMER GIMÉNEZ, PETR HLINĚNÝ, AND MARC NOY

F � G

�

� �

� �

�

�

� �

�

�

�

F � G

�

� �

� �

�

�

� �

�

�

�

Fig. 3.1. How cellular selections arise in Algorithm 3.1 when adding edges to a spanning
subgraph; here we are selecting f = 7 edges out of cell sizes {6, 4, 2, 2} (possible edge choices shown
in dotted lines).

The U polynomial of an n-vertex graph G is defined in [14] as

U(G;x, y) =
∑
F⊆E

xn1 · · ·xnk
(y − 1)|F |−r(F),

where n1, . . . , nk are the vertex sizes of the components of the spanning subgraph
(V, F). If we let x1 = · · · = xn = x− 1 in the expression above, we recover the Tutte
polynomial T (G;x, y) up to a power of x− 1. It is clear that the subgraph signature
table of a graph is precisely equivalent to the U polynomial, hence in the statement
of Theorem 1.1 we can replace “U polynomial” for “Tutte polynomial.”

4. Graph clique-width. In this section we give a more precise definition of
clique-width and some of its properties.

Graphs from now on are labeled on the vertices; Vi(G) denotes the set of vertices
in G that have label i. A graph has clique-width ≤ k if it can be constructed using k
labels and the following four operations:

1. v(i): creates a new vertex with label i.
2. ∪̇ : produces the union of several disjoint graphs, without modifying the

labels.
3. ηi,j , i �= j: joins all the vertices labeled i to all the vertices labeled j. This

operation does not create multiple edges.
4. ρi,j : all vertices labeled i are relabeled to have label j. It allows one to merge

two label classes into one, thus freeing a label for later use.
An expression defining a graph G built from the above four operations using k labels
is a k-expression for G.

Now we explain why cographs have clique-width at most two. Operations 1 and
2 are analogous to rules 1 and 2 for cographs introduced in section 2.1. In order to
perform the complete union G � H of two cographs (rule 3), one relabels all vertices
of G to have label 1 and all vertices of H to have label 2 (using operations ρi,j), and
then applies the operation η1,2. The interested reader may check why the path P4

has clique-width greater than two. Furthermore, we show in Figure 4.1 examples of
the graphs C5 and C7 having clique-width 3 and 4, respectively. (Actually, all cycles
have clique-width at most 4.)

A k-expression for G is irredundant if, whenever operation ηi,j is applied, no
vertex with label i has been previously joined to any vertex of label j. It can be
shown [4] that for every k-expression, one can construct an irredundant k-expression
defining the same graph. Hence in the next section we assume that graphs with
bounded clique-width are defined by means of irredundant expressions.

COMPUTING THE TUTTE POLYNOMIAL 941

� �

� �

1

1

2

3

∪̇ , η2,3−→

� �

� �

1

1

2

3

ρ3,2, v(3)
−→

� �

� �

1

1

2

�

2

3

η1,3−→

� �

� �

1

1

2

�

2

3

�

�

�

�

1

2

3

4
ρ3,2, ρ4,3−→

�

�

�

�

1

2

�

2

3 4
η3,4,...
−→

�

�

�

�

1

2

�

2

3 4 . . .

�

�

�

�

1

2

�

�

�

2

2 2

3

4

η1,4−→

�

�

�

�

1

2

�

�

�

2

2 2

3

4

Fig. 4.1. An example—optimal expressions defining the cycles C5 and C7 (starting from triv-
ially constructed subgraphs on the left).

Another important question concerns computing the clique-width of a graph, and
more importantly, finding a defining k-expression. Until recently [16], algorithms
running on graphs of bounded clique-width needed a corresponding k-expression on
the input. The first (and currently only known) efficient way of approximating [16,
15] the expression for a graph of bounded clique-width uses a new notion of rank-
width [16]. It is remarkable how close is the computation of rank-width on graphs [15]
to the computation of branch-width on binary matroids [7]. It is that rank-width of
a bipartite graph which equals branch-width of the matroid formed by the associated
binary adjacency matrix minus one, and a simple translation can be used for general
graphs. However, this interesting topic is far beyond the scope of our paper, and so
we refer interested readers to the cited papers.

5. The Tutte polynomial for bounded clique-width. In this section we
prove Theorem 1.2. Analogously to section 2, the most involved part is Algorithm 5.4,
which corresponds to adding edges in the operation ηi,j .

Instead of double-signatures, we need k-signatures to mark the different labels of
the vertices belonging to the components of a subgraph. A k-signature is a multiset
of k-tuples of nonnegative integers, excluding the k-tuple (0, . . . , 0). The size ‖β‖
of a k-signature β is the sum of all (x1 + · · · + xk) for (x1, . . . , xk) ∈ β, respecting
repetition in the multiset. As in the case of double-signatures we have the following
lemma.

Lemma 5.1. There are exp
(
Θ(nk/(k+1))

)
distinct k-signatures of size n, for each

fixed k.

Since the subsequent proof is quite involved, it is worth mentioning that an easy
encoding argument gives an upper bound of exp

(
O(nk/(k+1) log n)

)
, which is almost

as good: We limit the number of nonzero entries of the characteristic vector of a
k-signature. In the worst case, at most all those Θ(tk) entries corresponding to
(c1, . . . , ck) are nonzero where 0 ≤ ci ≤ t, and t is such that Θ(tk+1) = n (the
size of the signature). Hence the characteristic vector of a k-signature has at most
Θ
(
nk/(k+1)

)
nonzero entries, and we may encode all k-signatures of size n by choosing

those nonzero entries in all possible ways, and then trying all values between 1 and n
for each;

(
nk

Θ(nk/(k+1))

)
· nΘ(nk/(k+1)) = nΘ(k·nk/(k+1)) = exp

(
O(nk/(k+1) log n)

)
.

942 OMER GIMÉNEZ, PETR HLINĚNÝ, AND MARC NOY

Proof of Lemma 5.1. The proof is based on generating functions and complex
analysis. Let pn be the number of distinct k-signatures of size n. The associated
generating function is equal to

P (z) =
∑
n≥0

pnz
n =

∏
n≥1

1

(1 − zn)(
n+k−1
k−1)

.

The reason is that the number of nonnegative (ordered) solutions of x1 + · · ·+xk = n
is equal to

(
n+k−1

n

)
=

(
n+k−1
k−1

)
. The infinite product encodes the fact that we are

taking multisets of those k-tuples.
According to a result of Meinardus (see [1, Theorem 6.2]), the asymptotic behavior

of pn is determined by the associated Dirichlet series

D(s) =
∑
n≥1

(
n+k−1
k−1

)
ns

.

Provided some analytical conditions on D(s) hold, that in our case are easy to check,
we have

pn ∼ Cnγ exp
(
Knρ/(ρ+1)

)
,

where C, γ,K are constants and ρ is the unique (simple) pole of D(s) in a suitable
region Re(s) > −C0, where 0 < C0 < 1.

Now it is clear that D(s) can be expressed as a linear combination of ζ(s − k +
1), ζ(s−k+2), . . . , ζ(s), where ζ(s) =

∑
n≥1 n

−s is the Riemann zeta function. Since
ζ(s) has a unique simple pole at s = 1 for Re(s) > 0, the pole of D(s) we are looking
for is at ρ = k, and this proves the result.

The next two algorithms, which correspond to the operations ∪̇ and ρi,j , need
no special analysis.

Algorithm 5.2. Combining the spanning subgraph k-signature tables of k-labeled
graphs F and G into the one of the disjoint union H = F ∪̇G.
Input: Graphs F,G, and their subgraph k-signature tables SF ,SG.
Output: The subgraph k-signature table SH of H = F ∪̇G.

create empty table SH of subgraph k-signatures of size |V (H)|;
for all k-signatures αF ∈ Σk

F , and eF = 0, 1, . . . , |E(F)| do

for all k-signatures αG ∈ Σk
G, and eG = 0, 1, . . . , |E(G)| do

set α = αF 	 αG (a multiset union);
add SH [α, eF + eG] += SF [αF , eF] · SG[αG, eG];

done.

Algorithm 5.3. Modifying the spanning subgraph k-signature table of a k-labeled
graph G into the one of ρi,j, the relabeling 1 → 2 of G.
Input: A k-labeled graph G and its subgraph k-signature table SG.
Output: The subgraph k-signature table SH of H = ρ1,2(G).

create empty table SH of subgraph k-signatures of size |V (G)|;
for all k-signatures αG ∈ Σk

G, and eG = 0, 1, . . . , |E(G)| do

set k-signature α′
G = {(0, a1 + a2, . . . , ak) : (a1, a2, . . . , ak) ∈ αG};

add SH [α′
G, eG] += SG[αG, eG];

done.

The next algorithm computes the k-signature table of the graph H = η1,2(G)
from that of G, assuming that there were no edges in G between vertices with labels

COMPUTING THE TUTTE POLYNOMIAL 943

�

�

�

�

�

�

�

�

�
� �

�

0

1

2

43

� �

�

�

�

�

�

�

�

�
� �

�

0

1

2

43

�1

Fig. 5.1. Two steps illustrating the method of counting all spanning subgraphs of H = η1,2(G);
the hollow vertices are not processed yet (label 0), and the dotted edges show possible choices of new
edges from the marked vertex (v).

1 and 2 (like in an irredundant expression). To understand the main idea, let us
consider the following method for obtaining all the spanning subgraphs in H such
that their restriction to G gives a certain subgraph Gα. Start by relabeling every
vertex with label 1 in G to 0, meaning that these vertices have not been processed
yet. Then choose a vertex v with label 0, relabel to 1, and consider all the different
subgraphs of H we can generate from the original one by adding new edges from v
to some (selected) vertices with label 2. Obviously, the restriction of any of these
subgraphs to G still gives Gα. Iterate the process for every generated subgraph and
for every vertex with label 0 until none remains; see an illustration of the method in
Figure 5.1.

Algorithm 5.4 essentially follows this process, but it improves the running time
by working with the signatures instead of subgraphs, and with connected components
instead of single vertices, as has been done in Algorithms 2.5 and 3.1.

The algorithm counts all spanning subgraphs of H such that their restriction to G
is of a signature α, for every possible α. A (k + 1)-signature table Y is used to store
all intermediate results of the computation (together). Instead of processing a vertex
v one at a time, we choose a component B with some labels 0 from a signature β in
Y , and then we choose a submultiset γ ⊆ β signing the components that B will be
joined to, using exactly f of the new edges of H. Procedure CellSel (Algorithm 3.2)
computes efficiently the number of ways this can be done. We add the resulting
signatures and numbers to the table Y and we repeat until no signature with vertices
labeled 0 remains in Y . We then update the table SH with the signatures computed
in the table Y and we start again from a new signature α of G.

Algorithm 5.4. Updating the subgraph k-signature table of a k-labeled graph G,
such that there is no edge between the labels 1 and 2 in G, into the one of the graph
H obtained from G by adding all edges between the labels 1 and 2.

Input: A k-labeled graph G, and its subgraph k-signature table SG.
Output: The subgraph k-signature table SH of H = η1,2(G).

create empty table SH of subgraph k-signatures of size |V (H)|;
for all α ∈ Σk

G, and e = 0, 1, . . . , |E(G)| s.t. SG[α, e] > 0 do

// Imagine a particular spanning subgraph in G of a k-signature α with e edges.

create empty table Y of subgraph (k + 1)-signatures of size |V (H)|;
set (k + 1)-signature α0 =

{
(a1, 0, a2, . . . , ak) : (a1, a2, . . . , ak) ∈ α

}
;

set Y [α0, e] = 1;

944 OMER GIMÉNEZ, PETR HLINĚNÝ, AND MARC NOY

while there exists β ∈ Σk+1
H , b = (b0, b1, . . . , bk) ∈ β, and e′,

such that Y [β, e′] > 0 and b0 > 0 do

select such β, e′, and b, with maximal ‖β �0‖;
// Imagine a particular spanning subgraph in H with e′ edges and
// a (k + 1)-signature β, and its component B corresponding to b:
// b0 of the vertical of B are going to be “joined to” labels 2 in H.

set y = Y [β, e′], Y [β, e′] = 0, β′ = β \ {b};
for all different submultisets γ ⊆ β′ such

that c2 > 0 for each (c0, c1, c2, . . . , ck) ∈ γ do

// We connect B to all components in γ.

set r =
∏

d∈〈β′〉

(
#β′ d

#γ d

)
;

for i = 0, 1, . . . , k do di = ‖γ �i‖ =
∑

(c0,...,ck)∈γ ci;

set d = (d0, d1 + b0 + b1, d2 + b2, . . . , dk + bk);
set (k + 1)-signature δ =

(
β′ \ γ

)
	 {d};

set multiset D = b0 · (γ �2) = {b0c2 : (c0, c1, c2, . . . , ck) ∈ γ};
for f = |γ|, |γ| + 1, . . . , b0 · (d2 + b2) do

// We count all the cellular selections from D � {b2} here,
// but we allow to select nothing from {b2} as well.

call Algorithm 3.2:
p =(‡) CellSel(D 	 {b2}, f) + CellSel(D, f);

add Y [δ, e′ + f] += y · r · p;
done

done

done

for all β ∈ Σk+1
H , and f , such that Y [β, f] > 0 do

set signature α0 = {(b1, . . . , bk) : (b0, b1, . . . , bk) ∈ β};
add SH [α0, f] += Y [β, f] · SG[α, e];

done

done.

Proof of Algorithm 5.4. The idea is analogous to the proofs of Algorithms 2.5
and 3.1. The only noticeable differences are the following two:

• Since we are now adding edges inside the same graph (instead of composing
two previously disjoint graphs), we need an artificial new label 0 for marking
those vertices that still have to be processed, among those having original
label 1. One little advantage of the extra label is that now we can store all
intermediate results of our computation in the same (k + 1)-signature table
Y , and to control the computation we just need one large while cycle.

• Unlike for cographs, we now have to consider the possibility that our selected
component B has vertices of both labels 0 and 2, and hence we may want to
add some edges induced on V (B) as well. This is taken care of on the line
(‡) of the algorithm.

Again, it is easier to imagine a particular spanning subgraph Gα with e edges
in the place of the signature α, since subsequent computations do not depend on
a particular choice of Gα. Under this assumption table Y counts (k + 1)-labeled
subgraphs of H whose restriction to G is Gα. It is convenient to see table Y as a set

of subgraphs, stored according to signature for the sake of efficiency.
This set Y contains at the beginning the subgraph Gα, where vertices of label 1

receive label 0 to mark that they are unprocessed. At every iteration of the while cycle

COMPUTING THE TUTTE POLYNOMIAL 945

we choose some subgraphs of Y and process some of its vertices of label 0, marking
them with label 1 and considering all possible ways of joining them to vertices of label
2. The resulting subgraphs are stored in the table Y in place of the former ones. The
while loop ends when no subgraph in Y has vertices of label 0.

To be more precise, at every iteration of the while loop we choose subgraphs
of (k + 1)-signature β and e′ edges. (Imagine again a particular subgraph Gβ .) We
select a component B with b0 > 0 vertices of label 0. We process component B by
joining its vertices of label 0 to some of the ‖β �2‖ vertices of label 2 in Gβ . Hence
the components containing the vertices of label 2 may be joined to B. The for loop
iterates over all suitable subsets γ of such components to account for all possible
resulting signatures. Components not in γ receive no edge from B, while components
in γ receive at least one edge, so we call procedure CellSel to count efficiently the
number of ways γ may be joined to B. In fact, CellSel is called twice, since the
vertices of label 0 and 2 in B itself may be joined by either none or some edges.

Observe that a pair of descendants of, say, Gβ differ in at least one edge joining
vertices of labels 1 and 2, and further descendants of them will still differ at the same
edge, since new edges are only added between vertices of labels 0 and 2. This implies
that Y is free of duplicates, because all subgraphs have a common ancestor Gα. So,
at the end, in the Table Y , we count exactly once each spanning subgraph W ⊆ H
such that W �G = Gα. After multiplying by SG[α, e], we record in SH the number
of all spanning subgraphs of H having their restriction to G of signature α, for each
α.

Proof of Theorem 1.2. The idea is the same as in the proof of Theorem 1.1 at the
end of section 3. In the while cycle we always choose signature β among those with
the maximal number of unprocessed vertices (‖β �0‖), and then we strictly decrease
the number of those. Hence we never process the same pair (β, e) twice. So time
complexity is again dominated by the lengths of the tables involved. Since we need a

table of (k+1)-signatures, the complexity exp
(
O(n(k+1)/(k+1+1))

)
= exp

(
O(n1− 1

k+2)
)

follows from Lemma 5.1.
Finally we remark that, exactly as in the case of cographs, the algorithm computes

the full U polynomial on graphs of bounded clique-width.

6. Concluding remarks. We have shown that the Tutte and U polynomials
can be computed in subexponential time for cographs, and more generally for graphs
with bounded clique-width. Such a result is very unlikely to hold for all graphs. Of
course, the important question of whether the Tutte polynomial can be computed in
polynomial time, or the problem is #P-hard even for graphs of bounded clique-width,
remains open. (The U polynomial is obviously not computable in polynomial time
due to its size.)

On the other hand, the chromatic polynomial for graphs of bounded clique-width
can be computed in polynomial time (although not FPT). This follows by adapting
the algorithm in [10] for computing the chromatic number, keeping track also of the
number of r-colorings for r = 1, . . . , n, where n is the number of vertices; see in [12].
To our knowledge, that is possibly the only currently known natural example of graph
classes other than chordal graphs, where the chromatic polynomial can be computed in
polynomial time, but the complexity of computing the Tutte polynomial is undecided.

REFERENCES

[1] G. E. Andrews, The Theory of Partitions, Cambridge University Press, Cambridge, UK, 1984.

946 OMER GIMÉNEZ, PETR HLINĚNÝ, AND MARC NOY

[2] A. Andrzejak, An algorithm for the Tutte polynomials of graphs of bounded treewidth, Discrete
Math., 190 (1998), pp. 39–54.

[3] B. Courcelle, J. A. Makowsky, and U. Rotics, Linear time solvable optimization problems
on graphs of bounded clique-width, Theory Comput. Systems, 33 (2000), pp. 125–150.

[4] B. Courcelle and S. Olariu, Upper bounds to the clique width of graphs, Discrete Appl.
Math., 101 (2000), pp. 77–114.

[5] D. G. Corneil, Y. Perl, and L. K. Stewart, A linear recognition algorithm for cographs,
SIAM J. Comput., 14 (1985), pp. 926–934.

[6] O. Giménez and M. Noy, On the complexity of computing the Tutte polynomial of bicircular
matroids, Combin. Probab. Comput., 15 (2006), pp. 385–395.

[7] P. Hliněný, A parametrized algorithm for matroid branch-width, SIAM J. Comput., 35 (2005),
pp. 259–277 (electronic).

[8] P. Hliněný, The Tutte polynomial for matroids of bounded branch-width, Combin. Probab.
Comput., 15 (2006), pp. 397–409.

[9] F. Jaeger, D. L. Vertigan, D. J. A. Welsh, On the computational complexity of the Jones
and Tutte polynomials, Math. Proc. Cambridge Philos. Soc., 108 (1990), pp. 35–53.

[10] D. Kobler and U. Rotics, Edge dominating set and colorings on graphs with fixed clique-
width, Discrete Appl. Math., 126 (2003), pp. 197–221.

[11] J. H. van Lint and R. M. Wilson, A Course in Combinatorics, Cambridge University Press,
Cambridge, UK, 1992.

[12] J. A. Makowsky and U. Rotics, Computing the Chromatic Polynomial on Graphs of Bounded
Clique-Width, preprint, 2005.

[13] S. D. Noble, Evaluating the Tutte polynomial for graphs of bounded tree-width, Combin.
Probab. Comput., 7 (1998), pp. 307–321.

[14] S. D. Noble and D. J. A. Welsh, A weighted graph polynomial from chromatic invariants of
knots, Ann. Inst. Fourier (Grenoble), 49 (1999), pp. 1057–1087.

[15] S.-I. Oum, Approximating rank-width and clique-width quickly, in Lecture Notes in Comput.
Sci. 3787, Springer, Berlin, 2005, pp. 49–58.

[16] S.-I. Oum and P. D. Seymour, Approximating clique-width and branch-width, J. Combin.
Theory Ser. B, 96 (2006), pp. 514–528.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 4, pp. 947–959

MULTIVARIABLE CODES OVER FINITE CHAIN RINGS:
SERIAL CODES∗

E. MARTÍNEZ-MORO† AND I. F. RÚA‡

Abstract. The structure of multivariate serial codes over a finite chain ring R is established
using the structure of the residue field R̄. Multivariate codes extend in a natural way the univariate
cyclic and negacyclic codes and include some nontrivial codes over R. The structure of the dual
codes in the serial abelian case is also derived, and some conditions for the existence of self-dual
codes over R are studied.

Key words. finite chain ring, multivariate codes, serial codes

AMS subject classifications. 11T71, 13M10, 94B99

DOI. 10.1137/050632208

1. Introduction. The relevance of finite rings in algebraic coding theory, origi-
nally restricted to codes over binary (or finite field) alphabets, has been progressively
noticed. For instance, many classical codes can be seen as ideals in certain alge-
bras over a finite field [1, 7, 18]. On the other hand, the theory of error-correcting
codes over finite rings has gained certain relevance since the realization that some
nonlinear codes over finite fields can be constructed from linear codes over such rings
[4, 9, 13, 14, 15]. This paper is a contribution to both lines of research, and its purpose
is to describe a class of multivariate codes over a finite chain ring R.

Throughout the paper a multivariate serial code over R is an ideal in a particular
type of R-algebras. Generally, this ideal is not a semisimple module over R, but
its image code over the residue ring R̄ is semisimple. We use the known machinery
for semisimple codes to decompose our codes as a direct sum of uniserial (or chain)
modules; hence the name serial [20].

Our study is based on Poli’s decomposition of the roots of the defining ideal
in cyclotomic classes [19, 18]. Thus our codes extend the definition of cyclic and
negacyclic codes over finite chain rings to the multivariable case [8]. Gröbner bases
over rings could be also used in the study of our codes (see, for example, [3]), but we
follow Poli’s approach since his technique reveals directly the underlying cyclotomic
structure of the codes.

The paper is organized as follows. In section 2 we collect the basic results needed
on finite chain rings. Section 3 is devoted to the definition of the codes and their
ambient space as well as the description of their structure. In section 4 we study the
duals of abelian semisimple codes. Finally in section 5 we characterize those nontrivial
abelian semisimple codes that are self-dual.

∗Received by the editors May 24, 2005; accepted for publication (in revised form) May 30, 2006;
published electronically December 11, 2006.

http://www.siam.org/journals/sidma/20-4/63220.html
†Departamento de Matemática Aplicada, Universidad de Valladolid, 47002 Valladolid, Spain

(edgar@maf.uva.es). This author’s work was partially supported by MEC MTM2004-00876 and
MTM2004-00958 I+D projects.

‡Departamento de Matemáticas, Estad́ıstica y Computación Universidad de Cantabria, 39005
Santander, Spain (i.f.rua@unican.es). This author’s work was partially supported by MTM2004-
08115-C04-01 and FICYT (IB05-186) I+D projects.

947

948 E. MARTÍNEZ-MORO AND I. F. RÚA

2. Preliminaries. In this section we fix our notation and recall some basic facts
about finite chain rings (see [2, 12] for a complete account). In this paper all rings will
be associative, commutative, and with identity. A ring R is called a local ring if it has
a unique maximal ideal. A local ring is a chain ring if its lattice of ideals is a chain.
In this case, since the ideals are linearly ordered by inclusion, the ring is also called
uniserial [20]. It can be shown [8, Proposition 2.1] that R is a finite commutative
chain ring if and only if R is a local ring and its maximal ideal is principal. In such a
case, let a ∈ R be a fixed generator of the maximal ideal, and let t be its nilpotency
index (notice that a is a nilpotent element). Then the chain of ideals of R is

〈0〉 =
〈
at
〉

�
〈
at−1

〉
� · · · �

〈
a1
〉

�
〈
a0
〉

= R.(2.1)

In what follows, R will always be a finite commutative chain ring and a will be the
generator of its maximal ideal. Also, Fq = R̄ = R/ 〈a〉 will be the residue field of
R, where q = pl, for a prime number p. We will denote by R[X] the polynomial
ring in the indeterminate X with coefficients in R. We can extend the natural ring
homomorphism r �→ r̄ = r + 〈a〉 as follows:

R ↪→ R[X]
¯↓ ¯↓
Fq ↪→ Fq[X].

(2.2)

Two polynomials f1, f2 ∈ R[X] are coprime if 〈f1, f2〉 = R[X], where 〈f1, f2〉 is the
ideal generated by the polynomials fi, i = 1, 2. A polynomial f ∈ R[X] is called basic
irreducible if it is not a zero divisor and f̄ ∈ Fq[X] is irreducible. We will use the
known Hensel lemma in the following form. (See [2, Theorem 3.2.6] for a proof.)

Theorem 2.1 (Hensel’s lemma). Let f ∈ R[X] be a monic polynomial such
that f̄ = g1g2 . . . gr, where the polynomials gi ∈ R̄[X] are monic and pairwise co-
prime. Then there exist pairwise coprime monic polynomials fi ∈ R[X] such that
f = f1f2 . . . fr and f̄i = gi for all i = 1, . . . , r. This decomposition is unique up to a
permutation of the factors, which are called lifting factors of f .

Let S be an extension of R, i.e., a ring containing R. If T ⊆ S, with T 	= ∅
of finite cardinality, then the extension of R generated by T , denoted R(T), is the
smallest subring of S containing R∪T . If S is a finite local ring with residue field K,
then K is a field extension of Fq. If this field extension is separable, then S is called
a separable extension of R.

If f(X) ∈ R[X] is a basic irreducible polynomial, then 〈a, f(X)〉 is a maximal
ideal of R[X] [2, Remark after Lemma 3.2.10]. Therefore, the homomorphism (2.2)
induces the following isomorphism:

R[X]/ 〈a, f(X)〉 ∼= Fq[X]/
〈
f(X)

〉 ∼= Fq(α),

where f(α) = 0. Hence S = R[X]/ 〈f(X)〉 is a local ring with maximal ideal
〈a, f(X)〉 + 〈f(X)〉 = 〈a〉 + 〈f(X)〉; i.e., it is a finite local chain ring. Moreover,
it is a separable extension of R, since the field extension Fq(α)|Fq is separable. Since
the element A = X + 〈f(X)〉 ∈ S is a root of the polynomial f(X) ∈ S[X] that lifts
α (i.e., A = α ∈ S), we can write S = R(A).

In our paper we consider monic polynomials ti(Xi) ∈ R[Xi] (i = 1, . . . , r). Usu-
ally, we will require t̄i(Xi) ∈ Fq[Xi] to be square-free, i.e., ti(Xi) =

∏ri
j=1 gij(Xi),

where gij(Xi) ∈ Fq[Xi] are pairwise coprime. In this case, from Hensel’s lemma,

ti(Xi) =

ri∏
j=1

fij(Xi),(2.3)

MULTIVARIABLE CODES OVER FINITE CHAIN RINGS 949

where fij(Xi) are pairwise coprime monic basic irreducible polynomials such that
f ij = gij . This decomposition is unique up to a relabeling of the factors. If K
is an extension of Fq and μ is a root of ti(Xi), we shall denote by Irr(μ,K) the
minimal polynomial of μ over the field K. This polynomial divides ti(Xi) and, more
specifically, divides one of the factors gij(Xi).

3. Multivariable serial codes. In this section we will obtain the structure of
a multivariable serial code over the finite chain ring R; i.e., we will describe explic-
itly the ideals of the quotient ring R = R[X1, . . . , Xr]/ 〈t1(X1), . . . , tr(Xr)〉. This
structure has been studied in [18, 19], in the case where the ring R is the finite field
Fq. In that case, the square-free condition on the polynomials ti(Xi) is known as the
“semisimple condition,” because of the semisimple structure of the ring R. (A ring
is called semisimple if it can be decomposed as a direct sum of simple ideals.) In the
general case, the square-free condition on the polynomials ti(Xi) leads to a similar
decomposition of the ring R. It is a direct sum of finite chain rings, and so it is a
serial ring [20]. This decomposition is based on the corresponding decomposition of
the semisimple ring Fq[X1, . . . , Xr]/

〈
t1(X1), . . . , tr(Xr)

〉
(obtained in [18, 19]).

3.1. Decomposition of R. From now on

I = 〈t1(X1), . . . , tr(Xr)〉 � R[X1, . . . , Xr]

will be the ideal generated by the polynomials ti(Xi), i = 1, . . . , r, where ti(Xi) is
square-free. Let Hi be the set of roots of t̄i(Xi) in a suitable extension field Ki of Fq

(notice that t̄i(Xi) has no multiple roots).
Definition 3.1. Let μ = (μ1, . . . , μr) ∈ H1 × · · · ×Hr; then we define the class

of μ as

C(μ) =
{

(μqs

1 , . . . , μqs

r) | s ∈ N

}
.(3.1)

Proposition 3.2 (see [19]). If μ = (μ1, . . . , μr) ∈ H1 × · · · ×Hr and di is the
degree of Irr(μi,Fq) for i = 1, . . . , r, then

|C(μ)| = l.c.m.(d1, d2, . . . , dr) = [Fq(μ1, . . . , μr) : Fq],

where l.c.m. stands for least common multiple. Moreover, the set of classes C(μ) is a
partition of H1 × · · ·×Hr, and for any ideal J � Fq[X1, . . . , Xr]/ 〈t̄1(X1), . . . , t̄r(Xr)〉
the affine variety V (J) of common zeros of the elements in J is a union of C(μ)
classes.

Proof. See [19, Chapter 5, Propositions 1, 2, and 3].
Definition 3.3. If μ = (μ1, . . . , μr) ∈ H1 × · · · ×Hr, then for all i = 1, . . . , r

let pμ,i(Xi) denote the polynomial Irr(μi,Fq). Additionally, for all i = 2, . . . , r, con-
sider the polynomials bμ,i(Xi) = Irr(μi,Fq(μ1, . . . , μi−1)) ∈ Fq(μ1, . . . , μi−1)[Xi] =

Fq[μ1, . . . , μi−1, Xi] and b̃μ,i(Xi) =
pμ,i(Xi)
bμ,i(Xi)

. Then, define the polynomials

wμ,i(X1, . . . , Xi), πμ,i(X1, . . . , Xi) ∈ Fq[X1, . . . , Xi]

obtained from bμ,i(Xi) and b̃μ,i(Xi), substituting μi by Xi.

Remark 1. Notice that, if μ′ ∈ C(μ), then pμ,i = pμ′,i, bμ,i = bμ′,i, b̃μ,i = b̃μ′,i,

wμ,i = wμ′,i, and πμ,i = πμ′,i. So, we can write pC,i = pμ,i, bC,i = bμ,i, b̃C,i =

b̃μ,i, wC,i = wμ,i, and πC,i = πμ,i, where C = C(μ) is the class of μ.

950 E. MARTÍNEZ-MORO AND I. F. RÚA

Remark 2. For all i = 1, . . . , r, since pC,i | ti, we have that ti = pC,ip̂C,i, where

the polynomials pC,i, p̂C,i are coprime. Also, for all i = 2, . . . , r, we have that bC,i, b̃C,i

are coprime.
Remark 3. The following ring isomorphism holds:

Fq[X1, . . . , Xr]/ 〈pC,1, wC,2, . . . , wC,r〉 ∼= Fq(μ1, . . . , μr).(3.2)

Definition 3.4. If C is the class of μ ∈ H1 × · · · ×Hr, then for all i = 1, . . . , r
we define qC,i as the Hensel’s lifting of the polynomial pC,i to R[Xi] with respect to the
factorization of Remark 2, i.e., ti = qC,iq̂C,i. Also, for all i = 2, . . . , r, consider the

lifting factors vC,i, ṽC,i of the factorization pC,i = bC,ib̃C,i ∈ Fq(μ1, . . . , μi−1)[Xi] to
Ri−1[Xi], where Ri−1 is the local ring R(θ1, . . . , θi−1) (θi is a root of qC,i lifting μi).
Since vC,i, ṽC,i ∈ R[θ1, . . . , θi−1, Xi], we can substitute θi by Xi to get polynomials

zC,i(X1, . . . , Xi), σC,i(X1, . . . , Xr) ∈ R[X1, . . . , Xi].

Remark 4. The ring T = R[X1, . . . , Xr]/ 〈qC,1, zC,2, . . . , zC,r〉 is local with maxi-
mal ideal M = 〈a, qC,1, zC,2, . . . , zC,r〉 + 〈qC,1, zC,2, . . . , zC,r〉 and quotient ring

T/M ∼= Fq(μ1, . . . , μr).(3.3)

From now on, we shall denote the ideal 〈qC,1, zC,2, . . . , zC,r〉 by IC .
Lemma 3.5. If C is the class of μ ∈ H1 × · · · × Hr, then the quotient ring

R[X1, . . . , Xr]/IC is a finite commutative chain ring with maximal ideal 〈a + IC〉,
residue field Fq(μ1, . . . , μr), and precisely the following ideals:

〈0〉 =
〈
at + IC

〉
�

〈
at−1 + IC

〉
� · · · �

〈
a1 + IC

〉
= M �

〈
a0 + IC

〉
.(3.4)

Proof. It is a straightforward conclusion of the discussion in Remark 4.
Definition 3.6. If C is the class of μ ∈ H1 × · · · × Hr, then we define the

following polynomial in R[X1, . . . , Xr]:

hC(X1, . . . , Xr) =

r∏
i=1

ti(Xi)

qC,i(Xi)

r∏
i=2

σC,i(X2, . . . , Xr).(3.5)

Proposition 3.7. If C is the class of μ ∈ H1 × · · · ×Hr, then the annihilator of
〈hC + I〉 in R[X1, · · · , Xr]/I is

Ann (〈hC + I〉) = IC + I.(3.6)

Proof. Clearly IC +I ⊆ Ann (〈hC + I〉). On the other hand, if g+I ∈ Ann(〈hC +
I〉), then ghμ ∈ Ī = 〈t̄1(X1), . . . , t̄r(Xr)〉, and so ḡ + Ī ∈ Ann(〈h̄C + Ī〉) = 〈q̄C,1,
z̄C,2, . . . , z̄C,r〉 [19, Chapter 5, Proposition 6]. Hence g + I ∈ 〈IC + 〈a〉〉 + I and thus
Ann 〈〈hC + I〉〉 = 〈IC + 〈as〉〉 + I for some s ∈ {0, . . . , t}. Now, if θi is a root of qC,i

lifting μi and we denote Θ = (θ1, . . . , θr), then hC(Θ) 	∈ 〈a〉 (since h̄C(μ) 	= 0 [19,
Chapter 5, Proposition 7]), and therefore we can conclude Ann (〈hC + I〉) = IC +I as
desired (otherwise s < t, and so at−1 = asat−1−s ∈ Ann (〈hC + I〉) implies at−1hC ∈ I
and 0 = at−1hC(Θ), i.e., hC(Θ) ∈ 〈a〉, a contradiction).

Lemma 3.8. Let C be the set of classes C(μ), where μ ∈ H1 × · · · ×Hr, and let
C,C ′ ∈ C. Then, the set of zeros of h̄C is H1 × · · · ×Hr \ C, and the set of zeros of
ĪC is C. Moreover, we have the following:

MULTIVARIABLE CODES OVER FINITE CHAIN RINGS 951

1. 〈t1(X1), . . . , tr(Xr)〉 =
⋂

C∈C IC .
2. IC , IC′ are comaximal if C 	= C ′, i.e., 〈IC , IC′〉 = R[X1, . . . , Xr].

Proof. The proof is a direct translation of [19, Chapter 5, Proposition 7]. Note
that the ideal Ī = 〈t̄1(X1), . . . , t̄r(Xr)〉 is a radical ideal in Fq[X1, . . . , Xr], and that
the following equality of affine varieties holds:

V (〈t̄1(X1), . . . , t̄r(Xr)〉) =
⊔
C∈C

C = V (ĪC).(3.7)

Thus, 〈t̄1(X1), . . . , t̄r(Xr)〉 =
⋂

C∈C ĪC .
1. Clearly 〈t1(X1), . . . , tr(Xr)〉 ⊆

⋂
C∈C IC . On the other hand, if f ∈

⋂
C∈C IC ,

then by Proposition 3.7 we have that f + I ∈ Ann (〈hC + I〉), i.e., fhC ∈ I,
for all C ∈ C. The result now follows.

2. This claim arises from the fact that the union in (3.7) is disjoint.
Theorem 3.9. Let C be the set of classes C(μ), where μ ∈ H1 × · · · ×Hr, and

let I = 〈t1(X1), . . . , tr(Xr)〉. For all C ∈ C, let IC = 〈qC,1, zC,2, . . . , zC,r〉 and hC be
as in (3.5). Then, the following isomorphism holds:

R[X1, . . . , Xr]/I ∼=
⊕
C∈C

〈hC + I〉 ,(3.8)

where 〈hC + I〉 ∼= R[X1, . . . , Xr]/IC is a finite commutative chain ring with maximal
ideal 〈a + IC〉.

Proof. The result follows from the Chinese remainder theorem:

R[X1, . . . , Xr]/I = R[X1, . . . , Xr]/
⋂
C∈C

IC ∼=
⊕
C∈C

R[X1, . . . , Xr]/IC .

Remark 5. This theorem extends the corresponding result for cyclic codes (R =
Fq, r = 1, t(X) = xi1 − 1). In that case the decomposition of Fq[X]/

〈
Xi1 − 1

〉
can

also be obtained from the discrete Fourier decomposition of the algebra. Indeed, the
decomposition of the ring R[X1, . . . , Xr]/I is equivalent to the existence of primitive
orthogonal idempotents elements eC ∈ R =R[X1, . . . , Xr]/I (one for each class C ∈ C)
such that 1 =

∑
C∈C eC and eCR ∼= 〈hC + I〉 [2, Proposition 3.1.3]. We consider

polynomials gC , C ∈ C, such that the idempotent eC is the element gChC + I, so that
gChC + IC = 1 + IC .

3.2. Description of the codes. As mentioned in the Introduction, codes over
a finite field are the main object of study of classical coding theory (the textbook [11]
is a good introduction to the topic). Natural modifications lead us to codes over finite
rings [2].

For the finite commutative chain ring R, let Rn be the R-module of n-uples. We
say that a subset K of Rn is a linear code if K is an R-submodule of Rn. Given an
ideal J �R[X1, . . . , Xr] such that the algebra R[X1, . . . , Xr]/J has finite rank n as an
R-module, and given an ordering on the set of terms, each element of R[X1, . . . , Xr]/J
can be identified with an n-uple in Rn.

The scalar product of the elements x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn is
x · y = x1y1 + · · · + xnyn ∈ R. We say that x,y are orthogonal if x · y = 0, and for
a linear code K we define the dual code as K⊥ = {x ∈ Rn | x · c = 0 ∀c ∈ K}. The
code K is called self-dual if K = K⊥.

Definition 3.10 (multivariable serial code). Let ti(Xi) ∈ R[Xi] be monic poly-
nomials over the finite chain ring R, i = 1, . . . , r. A multivariable code is an ideal K

952 E. MARTÍNEZ-MORO AND I. F. RÚA

of the ring R[X1, . . . , Xr]/ 〈t1(X1), . . . , tr(Xr)〉. If the polynomials t̄i(Xi) are square-
free, then we shall say that the code is serial.

We shall see later (Corollary 3.11) that any multivariable serial code is a sum of
finite commutative chain rings, i.e., of uniserial rings. This explains the name of the
codes.

Multivariable codes include, among others, cyclic and negacyclic semisimple codes
[8], as well as multivariable semisimple codes over finite fields [19]. Next we present
an example of nontrivial codes that belong to this class too.

Example 1 (see [16]). Let R = GR(q2, 22) (q = 2l) be the Galois ring of cardinality
q2 and characteristic 22 [12], and let S = GR(q2m, 22) be its Galois extension of odd
degree m ≥ 3. Both R and S are finite commutative chain rings with maximal ideals
2R and 2S and residue fields R = GF (q) and S = GF (qm), respectively. The set
Γ(S) = {βqm = β | β ∈ S} is known as Teichmüller coordinate set (TCS). Any element
β ∈ S can be decomposed as β = γ0(β) + 2γ1(β), where γi(β) ∈ Γ(S). Moreover,
if ⊕ : Γ(S) × Γ(S) → Γ(S) is defined as β ⊕ ε = γ0(β + ε), then (Γ(S),⊕, ·) is the
finite field GF (qm). If λ ∈ Γ(S) is a generator of the cyclic group Γ(S)∗, then its
multiplicative order is τ = qm−1. The TCS of R, Γ(R) = {βq = β | β ∈ R} = {w0 =
0, w1, . . . , wq−1}, is the unique subfield GF (q) of Γ(S). Let Tr : S → R be the trace
function from S onto R. We define the (shortened) R-base linear code

L = {(Tr(ξ) + β,Tr(ξλ) + β, . . . ,Tr(ξλτ−1) + β) | ξ ∈ S, β ∈ R}.

It is an R-linear code of length τ and cardinality q2(m+1). The (shortened) generalized
Kerdock code is the projection of L in Γ(R)τq with the help of τ copies of the RS-map:

γ∗(β) = (γ1(β), γ1(β) ⊕ w1γ0(β), . . . , γ1(β) ⊕ wq−1γ0(β)), β ∈ R.

It is a GF (q)-nonlinear code of length τq, cardinality q2(m+1), and Hamming distance
q−1
q (n−

√
n) − q.

This generalized Kerdock code can be presented in a polycyclic form. To do this
we consider a multivariable code over the finite chain ring R. The multiplicative group
U = 1+2R = {u0 = 1, u1, . . . , uq−1} is a direct product 〈η1〉×· · ·×〈ηl〉 of l subgroups
of order 2. Let r = l + 1, and consider the ideal I of R[X1, . . . , Xr] generated by the
polynomials

t1(X1) = Xτ
1 − 1, t2(X2) = X2

2 − 1, . . . , tr(Xr) = X2
r − 1.

If we denote
−→
U = (u0, . . . , uq−1) and

−→
β ⊗ −→

U = (β1
−→
U , . . . , βq

−→
U) ∈ Rqτ , for any

−→
β ∈ Rτ , then the multivariable code K � R[X1, . . . , Xr]/I given by

K =

{
τ−1∑
i1=0

1∑
i2=0

. . .

1∑
ir=0

(
(Tr(ξλi1) + β)ηi21 . . . ηirl

)
Xi1

1 Xi2
2 . . . Xir

r | ξ ∈ S, β ∈ R

}

is equivalent to the code L⊗−→
U . Moreover, the shortened generalized Kerdock code is

equivalent to the polycyclic code γqτ
1 (K). Notice that this code is not serial, though.

Next we describe the structure of multivariable serial codes. The following two
results are straightforward corollaries of Theorem 3.9.

Corollary 3.11. If I = 〈t1(X1), . . . , tr(Xr)〉 such that t̄i(Xi) is square-free,
then any semisimple serial code K � R[X1, . . . , Xr]/I is a sum of ideals of the form〈

ajChC + I
〉
, 0 ≤ jC ≤ t, C ∈ C,(3.9)

MULTIVARIABLE CODES OVER FINITE CHAIN RINGS 953

where t is the nilpotency index of the maximal ideal 〈a〉 of R, and C, hC are as in
Theorem 3.9.

Corollary 3.12. In the conditions of the previous corollary, there are (t+ 1)N

multivariable serial codes in R[X1, . . . , Xr]/I, where N = |C|.
We shall now obtain an explicit description of multivariable serial codes in terms

of polynomials of the ring R[X1, . . . , Xr].
Theorem 3.13. If K is a multivariable serial code in R[X1, . . . , Xr]/I, then there

exists a family of polynomials G0, . . . , Gt ∈ R[X1, . . . , Xr] such that

I =

t⋂
i=0

Ann 〈Gi + I〉 and K =
〈
G1, aG2, . . . , a

t−1Gt

〉
+ I.(3.10)

The ideals 〈Gi + I〉 are uniquely determined, and the ideals Ann 〈Gi + I〉, Ann 〈Gj + I〉
are comaximal; i.e., 〈Ann(Gi + I),Ann(Gj + I)〉 = R. Moreover, K = 〈G + I〉,
where G =

∑t−1
i=0 a

iGi+1.
Proof. By Corollary 3.11, K is a direct sum of ideals of the form

〈
ajChC + I

〉
,

where 0 ≤ jC ≤ t and C ∈ C. If N = |C| is the number of classes in C, then, reordering
the classes in C if necessary, we have

K =
〈
hCk1+1

+ I
〉
⊕ · · · ⊕

〈
hCk1+k2

+ I
〉

⊕
〈
ahCk1+k2+1

+ I
〉
⊕ · · · ⊕

〈
ahCk1+k2+k3

+ I
〉
⊕ · · ·

⊕
〈
at−1hC∑t

i=1 ki+1
+ I

〉
⊕ · · · ⊕

〈
at−1hCN

+ I
〉
,

where ki ≥ 0, for all i = 1, 2, . . . , t, and
∑t

i=1 ki + 1 ≤ N . Let k0 = 0 and kt+1 =

N −
∑t

i=1 ki, and define

Gi =

k0+···+ki+1∑
j=k0+···+ki+1

gCjhCj ,

where gCj ∈ R[X1, . . . , Xr], j = k0 + · · ·+ ki + 1, . . . , k0 + · · ·+ ki+1, i = 0, . . . , t, are
the polynomials defining the primitive orthogonal idempotents of Remark 5. Then

〈Gi + I〉 =

k0+···+ki+1∑
j=k0+···+ki+1

〈
hCj

+ I
〉
,

and so we have K =
〈
G1, aG2, . . . , a

t−1Gt

〉
+ I and

t⋂
i=0

Ann 〈Gi + I〉 =

t⋂
i=0

k0+···+ki+1⋂
j=k0+···+ki+1

Ann
(〈
hCj

+ I
〉)

=

N⋂
k=0

ICk
+ I= I.

Moreover, the ideals Ann 〈Gi + I〉, Ann 〈Gj + I〉 are comaximal, in view of Lemma
3.8. The uniqueness of the ideals 〈Gi + I〉 follows from fact that the decomposition
in Theorem 3.9 is unique and from Corollary 3.11. Finally, the equality K = 〈G + I〉
is satisfied, since each element Gi is a sum of primitive idempotent orthogonals of
the ring. Let us notice that adding the elements aiGi−1 to get one single generator
is similar to the technique used in [5, Corollary after Theorem 6]. The fact that the
ideal is principal was also proved in [6] for certain cases.

954 E. MARTÍNEZ-MORO AND I. F. RÚA

With this description in hand we can obtain the cardinality of any multivariable
serial code.

Corollary 3.14. In the conditions of Theorem 3.13, R[X1, . . . , Xr]/I is a prin-
cipal ideal ring and, for any multivariable serial code K, we have

|K| = |R̄|
∑t−1

i=0(t−i)Ni ,

where Ni is the number of zeros μ ∈ H1 × · · · ×Hr of Ḡi, i = 0, . . . , t− 1.
Proof. For i = 0, . . . , t− 1, we have

〈
aiGi+1 + I

〉
=

(
|R|

| 〈ai〉 |

)rankR(〈Gi+I〉)
= |R̄|(t−i)rankR(〈Gi+I〉).

Since rankR(〈Gi + I〉) = dimR̄

〈
Ḡi + Ī

〉
, the result follows from [19].

3.3. Hamming distance of the codes. For c ∈ Rn we denote by wt(c) the
Hamming weight of c, that is, the cardinality of supp(c) = {i | ci 	= 0}, the support
of c. The minimum distance of a code K ∈ Rn, i.e., the minimum Hamming weight
of the nonzero elements in K, will be denoted by d(K).

Definition 3.15. The socle S(K) of an R-linear code K is defined as the sum
of all its irreducible R-submodules.

According to [10], the equality

S(K) = {c ∈ K | Mc = 0}

holds for any R-linear code K. So we may consider S(K) as a linear space over the
field Fq, where r̄ · c = rc, for all r̄ ∈ Fq, c ∈ S(K).

Lemma 3.16 (see [10]). If K is an R-linear code of length n, then the socle S(K)
is a linear code of length n over the field Fq and d(K) = d(S(K)).

Proof. For the proof, see [10, Proposition 5].
Proposition 3.17. In the conditions of Theorem 3.13, d(K) = d(L), where L is

the code
〈
G1, . . . , Gt

〉
+ I in Fq[X1, . . . , Xr]/

〈
t1(X1), . . . , tr(Xr)

〉
.

Proof. The socle of the code K is S(K) =
〈
at−1G1, a

t−1G2, . . . , a
t−1Gt

〉
+ I,

which can be seen as a linear code over Fq. Consider the Fq-vector space isomorphism
φ : at−1R[X1, . . . , Xr]/I → Fq[X1, . . . , Xr]/I, given by at−1g+ I → g+ I, to conclude
the result.

In general, we can not state that the minimum distance of a semisimple code K is
equal to the minimum distance of the code K. The most we can say is that, if K 	= 0,
then d(K) ≤ d(K). However, there is one class of multivariable serial codes for which
the equality holds.

Definition 3.18. In the conditions of Theorem 3.13, the code K is called the
Hensel lift of a multivariable semisimple code if 〈G1 + I〉 	= I and 〈Gi + I〉 = 0, for
all i = 2, . . . , t.

Notice that, although a Hensel lift code lifts a semisimple code over a field, it is
not semisimple. It is a serial ring, as we have seen at the beginning of this section.

This notion extends the definition of a Hensel lift of a cyclic code introduced in
[17]. For this class of codes we have the following result, which naturally generalizes
[17, Corollary 4.3].

Corollary 3.19. If K 	= 0 is a Hensel lift of a multivariable semisimple code,
then d(K) = d(K).

MULTIVARIABLE CODES OVER FINITE CHAIN RINGS 955

Proof. As noticed above, the inequality d(K) ≤ d(K) holds. On the other hand,
since K is a Hensel lift of a multivariable semisimple code, we have that L = K, and
the result follows from Proposition 3.17.

All classical bounds on distances for multivariable semisimple codes over fields
(Bose–Ray-Chaudhuri–Hocquenghem, Hartmann–Tzeng, Roos, etc.) also apply to
their Hensel lifts. Note that these bounds can be stated in the multivariable abelian
case due to Proposition 8 in [19, Chapter 6], which we recall in Proposition 3.21 below.

Definition 3.20. A multivariable code K � R[X1, . . . , Xr]/I is called abelian if
I =

〈
Xi1

1 − 1, . . . , Xir
r − 1

〉
, where i1, . . . , ir ∈ N.

Let
⊔l

i=1

⊔si
j=1 C

(i,j) be the set of defining roots of a multivariable semisimple

abelian code in Fq[X1, . . . , Xr]/I [19], where C(i,j) = C(μ(i,j)) ∈ C such that pC(i,j),1 =

pC(k,l),1 if and only if i = k. Consider, for all C(i,j), the polynomial

t̄1(X1)

pC(i,j),1(X1)

(
r∏

k=2

t̄k(Xk)

pC(i,j),k(Xk)

r∏
k=2

πC(i,j),k(X2, . . . , Xr)

)

=
t̄1(X1)

pC(i,j),1(X1)
(Fij(X2, . . . , Xr)) .

Here pC(i,j),k and πC(i,j),k are as in the previous section. The polynomial Fij ∈
Fq[X2, . . . , Xr] is uniquely determined by the class C(i,j). Let us consider the finite
field

F
(i) = Fq(X1)/pC(i,1),1(X1)

and the code Ji generated by
∑si

j=1 Fij in the algebra F
(i)[X2, . . . , Xr]/ 〈t̄2, . . . , t̄r〉,

i = 1, . . . , l. We have the following result.
Proposition 3.21 (see [19]). The minimum weight of a multivariable semisimple

code over a field Fq and of its Hensel lift over the ring R is at least min1≤i≤l{di · δi},
where di is the minimum weight of the code in Fq[X1]/t̄(X1) generated by

t̄1(X1)

pC(i,1),1(X1) · · · · · pC(l,1),1(X1)

and δi is the minimum weight of the code Ji.
Proof. The proof is a straightforward generalization of Lemma 3 and Proposition

8 in [19, Chapter 6].
Remark 6. Notice that, in view of this result, the computation of the minimum

distance of a multivariable serial abelian code in r variables is reduced to computations
of minimum distances of multivariable semisimple abelian codes over a finite field in
fewer variables.

4. Dual codes of multivariable serial abelian codes. In this section we
describe the dual codes of multivariable serial abelian codes. Notice that any defining
ideal I of a multivariable serial abelian code, as in Definition 3.20, must satisfy the
following property: (ij , p) = 1 for all j = 1, . . . , r, since the code is serial. On the
other hand, any multivariable abelian code (not necessarily serial) can be seen also
as a group code, i.e., as an ideal of a certain group ring, namely the group ring
R(Ci1 × · · · × Cir), where Cs is the cyclic group of order s.

Definition 4.1. Let R[X1, . . . , Xr]/I be a multivariable serial abelian code with
I =

〈
xi1

1 − 1, . . . , Xir
r − 1

〉
. Then we define the ring automorphism τ of R[X1, . . . ,

Xr]/I given by τ(f(X1, . . . , Xr)) = f(X−1
1 , . . . , X−1

r) = f(Xi1−1
1 , . . . , Xir−1

r).

956 E. MARTÍNEZ-MORO AND I. F. RÚA

It is clear that this automorphism preserves the Hamming weights.
Theorem 4.2. If K =

〈
G1, aG2, . . . , a

t−1Gt

〉
+ I is a multivariable serial abelian

code in the conditions of Theorem 3.13, then its dual code is

K⊥ =
〈
τ(G0), aτ(Gt), . . . , a

t−1τ(G2)
〉

+ I,

where the polynomials τ(Gi), i = 0, 2, 3, . . . , t, are also in the conditions of Theorem
3.13.

Proof. Let us first prove that K⊥ = τ(Ann(K)). For all F + I ∈ R[X1, . . . , Xr]/I
we have that F + I ∈ τ(Ann(K)) if and only if, for all Q + I ∈ K,

I = Qτ(F) + I

=
∑

l1,...,lr

ql1,...,lrX
l1
1 . . . X lr

r

∑
j1,...,jr

fj1,...,jrX
i1−j1
1 . . . Xir−jr

r + I

=
∑

k1,...,kr

⎛
⎝ ∑

l1,...,lr

ql1,...,lrfl1−k1 (mod i1),...,lr−kr (mod ir)

⎞
⎠Xk1

1 . . . Xkr
r + I

=
∑

k1,...,kr

(q · zk1,...,kr)X
k1
1 . . . Xkr

r + I,

where q and zk1,...,kr denote, respectively, the vectors of coefficients of Q and Xk1
1 . . .

Xkr
r F , in a fixed ordering of the terms in R[X1, . . . , Xr]/I. Hence, F +I ∈ τ(Ann(K))

if and only if, for all Q + I ∈ K and for all 0 ≤ k1 < i1, . . . , 1 ≤ kr < ir, q ·
zk1,...,kr = 0, i.e., yk1,...,kr · f = 0, where yk1,...,kr denotes the vector of coefficients of

X−k1
1 . . . X−kr

r Q; that is if and only if F + I ∈ K⊥.
Notice that the polynomials τ(Gi), i = 0, . . . , t, are in the conditions of Theorem

3.13, and so it is enough to see that aiGt+1−i + I ∈ Ann(K), i = 0, . . . , t − 1, to
conclude the result (here we denote Gt+1 = G0). Let i, j = 0, . . . , t − 1, if i + j ≥
t; then (aiGt+1−i + I)(ajGj+1 + I) = ai+j(Gt+1−iGj+1) + I = I and, if i + j <
t, then 〈Gt+1−i + I〉 	= 〈Gj+1 + I〉. Thus (aiGt+1−i + I)(ajGj+1) = I, from the
decomposition of K in Theorem 3.13.

Corollary 4.3. In the conditions of the previous theorem,

|K⊥| = |R̄|
∑t−1

i=0 iNi ,

where Ni is the number of zeros μ ∈ H1 × . . . Hr of Ḡi, i = 0, . . . , t − 1, and K⊥ =〈
τ(G0) + aτ(Gt) + · · · + at−1τ(G2) + I

〉
.

Proof. The result follows from [8, Proposition 2.11] and the fact that the polyno-
mials τ(Gi) are in the conditions of Theorem 3.13.

Remark 7. In view of Theorem 4.2, all the remarks concerning the distance of
a multivariable serial abelian code observed in the previous section can be applied
also to its dual. Of course, the results about the minimum distance of a code and
the minimum distance of its dual involving the MacWilliams identity for codes over
quasi-Frobenius modules [10] also apply in our case. For the sake of brevity we will
not get into details, though.

5. Self-dual abelian serial codes. In the previous section we have described
explicitly the dual code of a multivariable serial abelian code K. We now want to study
conditions on K to be self-dual. Notice first that if the nilpotency index t of a is even,
then there always exists a trivial self-dual code 〈a t

2 〉. On the other hand, remember

MULTIVARIABLE CODES OVER FINITE CHAIN RINGS 957

that any abelian code is also a group code, and so the problem of existence of self-dual
multivariable serial abelian codes can be reduced to the existence of self-dual group
codes. This problem has been solved for some classes of rings R. In this direction an
interesting work is [21], where the existence of self-dual codes is characterized when R
is a Galois ring. The proof of this characterization is based on group representation
theory, and it can be also applied when R is a finite commutative chain ring. Namely,
the following result holds.

Theorem 5.1. Let R be a commutative finite chain ring with maximal ideal 〈a〉
of nilpotency index t, quotient ring R = Fpl , and let G be a finite group. Then RG
contains a self-dual group code (that is, an ideal K � RG such that x · y = 0 for all
x, y ∈ K) if and only if either p is odd and t even, or p and t|G| are even.

Proof. The proof is exactly the same as in the case of R being a Galois ring
[21]. This is due to the following two facts: any finite commutative chain ring R is a
Frobenius ring [22], and for any finite group G we have a filtration

0 � at−1RG � · · · � a1RG � RG.

In view of this result we can only expect to find nontrivial self-dual codes in the
serial abelian case if and only if either p and |G| are even, or t is even. The first case
is clearly impossible, since |G| =

∏r
j=1 ij even implies that there exists an exponent ij

even, and the code is not serial (notice that p = 2). So we have only to study the case
when t is an even number. As a consequence of Theorem 4.2 we have the following
result.

Corollary 5.2. Let K =
〈
G1, aG2, . . . , a

t−1Gt

〉
+ I be a multivariable serial

abelian code in the conditions of Theorem 3.13. Then K is self-dual if and only if
〈Gi + I〉 = 〈τ(Gj) + I〉 when i + j ≡ 1 (mod t + 1).

Proof. By Theorem 4.2 we have K⊥ =
〈
τ(G0), aτ(Gt), . . . , a

t−1τ(G2)
〉
+I. There-

fore, if 〈Gi + I〉 = 〈τ(Gj) + I〉 with i + j ≡ 1 (mod t + 1), then K = K⊥, and
the code is self-dual. Conversely, if K = K⊥, then

〈
G1, aG2, . . . , a

t−1Gt

〉
+ I =〈

τ(G0), aτ(Gt), . . . , a
t−1τ(G2)

〉
+ I, and the result follows from the uniqueness of the

ideals in Theorem 3.13.
Theorem 5.3. If t is an even number, then there exist nontrivial self-dual mul-

tivariable serial abelian codes if and only if there exists μ ∈ H1 × · · · ×Hr such that
C(μ) 	= C(μ−1), where μ−1 = (μ−1

1 , . . . , μ−1
r).

Proof. Let us first assume that there exists μ ∈ H1 × · · · × Hr such that
C(μ) 	= C(μ−1). Let G + I be a generator of the multivariable serial abelian code⊕

C
=C(μ),C(μ−1) 〈hC + I〉, and consider

K =
〈
a

t
2−1hC(μ), a

t
2G, a

t
2+1hC(μ−1)

〉
+ I.

Since
〈
τ(hC(μ−1)) + I

〉
=

〈
hC(μ) + I

〉
and 〈τ(G) + I〉 = 〈G + I〉 we have, from the

previous corollary, that K is a nontrivial self-dual multivariable serial abelian code.
Conversely, if K =

〈
G1, aG2, . . . , a

t−1Gt

〉
+ I is a self-dual multivariable se-

rial abelian code, then for all i, j such that i + j ≡ 1 (mod t + 1) we have that
〈Gi + I〉 = 〈τ(Gj) + I〉. Assume now that C(μ) = C(μ−1), for any μ ∈ H1 ×
· · · × Hr. Then

〈
hC(μ) + I

〉
=

〈
hC(μ−1) + I

〉
=

〈
τ(hC(μ)) + I

〉
, and so 〈Gj + I〉 =

〈τ(Gj) + I〉 = 〈Gi + I〉 for all i, j such that i + j ≡ 1 (mod t + 1). From the de-

composition of Theorem 3.13 we obtain that K = 〈a t
2 + I〉 is the trivial self-dual

code.

958 E. MARTÍNEZ-MORO AND I. F. RÚA

The existence of nontrivial self-dual multivariable serial abelian codes can be
eventually reduced to an arithmetic problem, as the following result shows.

Corollary 5.4. If t is an even number, then there exist nontrivial self-dual
multivariable serial abelian codes if and only if qj 	≡ −1 (mod l.c.m(i1, . . . , ir)) for all
j ∈ N.

Proof. From the previous theorem we have that nontrivial self-dual multivariable
serial abelian codes do not exist if and only if C(μ) = C(μ−1) for all μ ∈ H1×· · ·×Hr.
If ξj is an ijth primitive root of unity, then this condition is equivalent to the following

one: for all 0≤ kj <ij , j = 1, . . . , r, there exists a natural number l such that ξ
−kj

j =

ξ
qlkj

j ; i.e., qlkj ≡ −kj (mod ij). Therefore nontrivial self-dual multivariable serial
abelian codes do not exist if and only if there exists a natural number l such that
ql ≡ −1 (mod ij) for all j = 1, . . . , r; that is, qj ≡ −1 (mod l.c.m.(i1, . . . , ir)).

This result extends Theorem 4.4 in [8] for the case of self-dual cyclic codes. In
this work it is also included a discussion about pairs of natural numbers (q, n) for
which qj 	≡ −1 (mod n), for all natural numbers j, when q is a prime number. The
search of conditions for a pair of numbers to satisfy this property when q is a power
of a prime number is an open problem.

REFERENCES

[1] S. D. Berman, On the theory of group codes, Cybernetics, 3 (1969), pp. 25–31.
[2] G. Bini and F. Flamini, Finite Commutative Rings and Their Applications, Kluwer Int. Ser.

Engrg. Comput. Sci. 680, Kluwer Academic Publishers, Boston, MA, 2002.
[3] E. Byrne and P. Fitzpatrick, Gröbner bases over Galois rings with an application to decoding

alternant codes, J. Symbolic Comput., 31 (2001), pp. 565–584.
[4] A. R. Calderbank, A. R. Hammons, Jr., P. V. Kumar, N. J. A. Sloane, and P. Solé,

A linear construction for certain Kerdock and Preparata codes, Bull. Amer. Math. Soc.
(N.S.), 29 (1993), pp. 218–222.

[5] A. R. Calderbank and N. J. A. Sloane, Modular and p-adic codes, Des., Codes Cryptogr.,
6 (1995), pp. 21–35.

[6] J. Cazaran and A. V. Kelarev, Generators and weights of polynomial codes, Arch. Math.,
69 (1997), pp. 479–486.

[7] P. Charpin, Une généralisation de la construction de Berman des codes de Reed et Muller
p-aires, Comm. Algebra, 16 (1988), pp. 2231–2246.

[8] H. Q. Dinh and S. R. López-Permouth, Cyclic and negacyclic codes over finite chain rings,
IEEE Trans. Inform. Theory, 50 (2004), pp. 1728–1744.

[9] A. R. Hammons, Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, and P. Solé,
The Z4-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform.
Theory, 40 (1994), pp. 301–319.

[10] V. L. Kurakin, A. S. Kuzmin, V. T. Markov, A. V. Mikhalev, and A. A. Nechaev,
Linear codes and polylinear recurrences over finite rings and modules (a survey), in Applied
Algebra, Algebraic Algorithms and Error-correcting Codes (Honolulu, HI, 1999), Lecture
Notes in Comput. Sci. 1719, Springer, Berlin, 1999, pp. 365–391.

[11] F. J. MacWilliams and N.J.A. Sloane, The Theory of Error-correcting Codes, North–
Holland, Amsterdam, 1977.

[12] B. R. McDonald, Finite Rings with Identity, Marcel Dekker, New York, 1974.
[13] A. A. Nechaev, Trace function in Galois ring and noise stable codes, in Proceedings of the

V. All-Union Symposium on Theory of Rings, Algebras and Modules (Novosibirsk., 1982),
p. 97 (in Russian).

[14] A. A. Nechaev, Kerdock’s code in cyclic form, Diskret. Mat., 1 (1989), pp. 123–139.
[15] A. A. Nechaev and A. S. Kuzmin, Linearly presentable codes, in Proceedings of the 1996

IEEE International Symposium or Information Theory and Applications, Victoria, BC,
Canada, 1996, IEEE Press, Piscataway, NJ, pp. 31–34.

[16] A. A. Nechaev and A. S. Kuzmin, Formal duality of linearly presentable codes over a Galois
field, in Applied Algebra, Algebraic Algorithms and Error-correcting Codes (Toulouse,
1997), Lecture Notes in Comput. Sci. 1255, Springer, Berlin, 1997, pp. 263–276.

MULTIVARIABLE CODES OVER FINITE CHAIN RINGS 959

[17] G. H. Norton and A. Sălăgean, On the Hamming distance of linear codes over a finite chain
ring, IEEE Trans. Inform. Theory, 46 (2000), pp. 1060–1067.

[18] A. Poli, Important algebraic calculations for n-variables polynomial codes, Discrete Math., 56
(1985), pp. 255–263.

[19] A. Poli and L. Huguet, Codes Correcteurs: Théorie et Applications, Masson, Paris, 1988.
[20] G. Puninski, Serial Rings, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001.
[21] W. Willems, A note on self-dual group codes, IEEE Trans. Inform. Theory, 48 (2002),

pp. 3107–3109.
[22] J. A. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J.

Math., 121 (1999), pp. 555–575.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 4, pp. 960–976

ON IDENTITIES CONCERNING THE NUMBERS OF CROSSINGS
AND NESTINGS OF TWO EDGES IN MATCHINGS∗

MARTIN KLAZAR†

Abstract. Let M,N be two matchings on [2n] (possibly M = N). For an integer l ≥ 0, let
T (M, l) be the set of those matchings on [2n + 2l] which can be obtained from M by successively
adding l times the first edge, and similarly for T (N, l). Let s, t ∈ {cr, ne}, where cr is the statistic
of the number of crossings in a matching and ne is the statistic of the number of nestings (possibly
s = t). We prove that if the statistics s and t coincide, respectively, on the sets of matchings T (M, l)
and T (N, l) for l = 0, 1, then they coincide on these sets for every l ≥ 0; similar identities hold for
the joint statistic of cr and ne. These results are instances of a general identity for crossings and
nestings weighted by elements from an abelian group.

Key words. matching, crossing, nesting

AMS subject classifications. 05A15, 05A18

DOI. 10.1137/050625357

1. Introduction and formulation of the main result. In this article we
investigate distributions of the numbers of crossings and nestings of two edges in
matchings. For example, it is known that for each k and n there are as many matchings
M on {1, 2, . . . , 2n} with k crossings as there are with k nestings. All matchings form
an infinite tree T rooted in the empty matching ∅, in which the children of M are
the matchings obtained from M by adding to M in all ways the new first edge. The
problem we address is this: Given two (not necessarily distinct) matchings M and N
on {1, 2, . . . , 2n}, when is it the case that the numbers of crossings (or nestings, or
crossings versus nestings) have identical distributions on the levels of the two subtrees
of T rooted in M and N? Our main result is Theorem 1.1, which determines when this
happens, in fact in a more general setting. Before formulating it we give definitions
and fix notation.

We denote the set {1, 2, 3, . . . } by N, the set N ∪ {0} by N0, and (for n ∈ N) the
set {1, 2, . . . , n} by [n]. The cardinality of a set A is denoted |A|. By a multiset we
understand a “set” in which repetitions of elements are allowed. This can be modeled
by a pair H = (X,m), where X is a set, the groundset of the multiset H, and the
mapping m : X → N determines multiplicities of the elements in H. However, we will
not need this formalism and will record multiplicities by repetitions. A matching M
on [2n] is a set partition of [2n] into n two-element blocks which we also call edges. The
set of all matchings on [2n] is denoted M(n); we define M(0) = {∅}. Two distinct
blocks A and B of M form a crossing (they cross) if minA < minB < maxA < maxB
or minB < minA < maxB < maxA. Similarly, they form a nesting (they are nested)
if minA < minB < maxB < maxA or minB < minA < maxA < maxB. We draw
a diagram of M in which we put the elements 1, 2, . . . , 2n as points on a line, from
left to right, and connect by a semicircular arc lying above the line the two points

∗Received by the editors February 25, 2005; accepted for publication (in revised form) June 5,
2006; published electronically December 11, 2006.

http://www.siam.org/journals/sidma/20-4/62535.html
†Institute for Theoretical Computer Science (ITI) and Department of Applied Mathematics

(KAM), Faculty of Mathematics and Physics of Charles University, Malostranské náměst́ı 25, 118 00
Praha, Czech Republic (klazar@kam.mff.cuni.cz). ITI is supported as project 1M0021620808 by the
Ministry of Education of the Czech Republic.

960

CROSSINGS AND NESTINGS IN MATCHINGS 961

� � � � � � � � � �

� �
� �

� �
�� ��

Fig. 1. Matching with three crossings and two nestings.

of each block. For two crossing blocks the corresponding arcs intersect, and for two
nested blocks one of the arcs covers the other; see Figure 1.

By cr(M), respectively ne(M), we denote the number of crossings, respectively
nestings, in M . The n edges of M ∈ M(n) are naturally ordered by their first
elements. The first edge of M is {1, x}, and the last edge is one whose first vertex is
the last one among the n first vertices.

We investigate distribution of the numbers cr(M) and ne(M) on M(n) and on
the subsets of M(n) defined by prescribing the matching formed by the last k edges
of M . The total number of matchings in M(n) is

|M(n)| = (2n− 1)!! = 1 · 3 · 5 · · · · · (2n− 1).

It is known that the number of matchings on [2n] with no crossing equals the number
of matchings with no nesting, and that it is the nth Catalan number; see Stanley
[15, Problems 6.19o and 6.19ww] (in fact, Problem 6.19ww in [15] encodes nonnesting
matchings in M(n) in the obvious way by standard Young tableaux of shape (n, n)):

|{M ∈ M(n) : cr(M) = 0}| = |{M ∈ M(n) : ne(M) = 0}| =
1

n + 1

(
2n

n

)
.

The more general result that for each k and n

|{M ∈ M(n) : cr(M) = k}| = |{M ∈ M(n) : ne(M) = k}|

was derived by de Sainte-Catherine in [13]. Even more is true because the joint
statistic is symmetric:

|{M ∈ M(n) : cr(M) = k, ne(M) = l}| = |{M ∈ M(n) : cr(M) = l, ne(M) = k}|

for every k, l ∈ N0 and n ∈ N. A simple proof for this symmetry can be given by
adapting the Touchard–Riordan method [17], [12], which encodes matchings and their
numbers of crossings by weighted Dyck paths (Klazar and Noy [9]), or see Kasraoui
and Zeng [6] for more general result. Here we put these results in a more general
framework.

By the tree of matchings T = (M, E, r) we understand the infinite rooted tree
with the vertex set

M =
∞⋃

n=0

M(n),

which is rooted in the empty matching r = ∅ and in which directed edges in E(T)
are the pairs (M,N) such that M ∈ M(n), N ∈ M(n + 1), and N arises from M by
adding a new first edge; that is, we relabel the vertices of M as {2, 3, . . . , 2n+2}\{x}
for some x ∈ {2, 3, . . . , 2n + 2} and add to M the block {1, x}; see Figure 2.

962 MARTIN KLAZAR

∅

� ��������

�������

� 	� 	 � 	� 	 � �
 ��
��

�
��

�
�

�
�

�
��

�
��

�
�

�
�

�
��

�
��

�
�

�
�

...
...

...

Fig. 2. Tree of matchings T .

Each vertex N ∈ M(n) has 2n + 1 children and, if n > 0, is a child of a unique
vertex M ∈ M(n − 1). A level in a rooted tree is the set of vertices with the same
distance from the root. In T the levels are the sets M(n). The subtree T (M) of
T rooted in M ∈ M(n) is the rooted subtree on the vertex set N ⊂ M consisting
of M and all its descendants; that is, N contains M and all matchings obtained
from M by successively adding each new first edge. In other words, T (M) consists
of all N ∈ M in which the last n edges form a matching (order-isomorphic to) M .
Clearly, T (∅) = T . We denote the lth level of T (M) by T (M, l). For M ∈ M(n)
we have T (M, 0) = {M}, and T (M, 1) is the set of children of M in T . Also,
|T (M, l)| = (2n + 1)(2n + 3) . . . (2n + 2l − 1).

Besides the statistics cr(M) ∈ N0 and ne(M) ∈ N0 on M we consider the joint
statistics cn(M) = (cr(M), ne(M)) ∈ N

2
0 and nc(M) = (ne(M), cr(M)) ∈ N

2
0. Two

statistics s, u on two subsets N1,N2 ⊂ M coincide (have the same distribution) if
s(N1) = u(N2) as multisets, that is, if for every element e we have

|{M ∈ N1 : s(M) = e}| = |{M ∈ N2 : u(M) = e}|.

Notational convention. If f : X → Y is a mapping and Z ⊂ X, the symbol f(Z)
usually denotes the image Im(f |Z) = {f(z) : z ∈ Z}. In this article we use f(Z) to
denote the multiset whose ground set is Im(f |Z) and in which each element y = f(z),
z ∈ Z, appears with the multiplicity |f−1(y)∩Z|. So in our f(Z) each element y has
the proper multiplicity in which it is attained as a value of f on Z.

Let A = (A,+) be an abelian group and α, β ∈ A be its two elements. The most
general statistic on matchings that we consider is sα,β : M → A given by

sα,β(M) = cr(M)α + ne(M)β.

Our main result is the next theorem.

Theorem 1.1. Let M,N ∈ M(n) be two (not necessarily distinct) matchings
and, for α, β ∈ A, sα,β be the statistic sα,β(M) = cr(M)α + ne(M)β.

1. If sα,β(T (M, l)) = sα,β(T (N, l)) for l = 0 and 1, then this identity holds for
all l ≥ 0.

2. If sα,β(T (M, l)) = sβ,α(T (N, l)) for l = 0 and 1, then this identity holds for
all l ≥ 0.

CROSSINGS AND NESTINGS IN MATCHINGS 963

In words, for the statistic sα,β to coincide level by level on the subtrees T (M) and
T (N) it suffices if it coincides on the first two levels, and similarly for the pair of
statistics sα,β , sβ,α.

Specializing, we obtain identities for the statistics cr, ne, cn, and nc.
Theorem 1.2. Let M,N ∈ M(n) be two (not necessarily distinct) matchings

and s, t ∈ {cr, ne}, u, v ∈ {cn, nc} be statistics on matchings (we allow s = t and
u = v).

1. If s(T (M, l)) = t(T (N, l)) for l = 0, 1, then s(T (M, l)) = t(T (N, l)) for all
l ≥ 0.

2. If u(T (M, l)) = v(T (N, l)) for l = 0, 1, then u(T (M, l)) = v(T (N, l)) for all
l ≥ 0.

Proof. 1. Let A = (Z,+). Setting α = 1, β = 0 and α = 0, β = 1 and using points
1 and 2 of Theorem 1.1, we obtain the identities for cr and ne.

2. Let A = (Z2,+). Setting α = (1, 0), β = (0, 1) and α = (0, 1), β = (1, 0) and
using 1 and 2 of Theorem 1.1, we obtain the identities for cn and nc.

We illustrate the last theorem by four examples. We mentioned the first two
already, the result of de Sainte-Catherine and the symmetry cn = nc.

Corollary 1.3. For every k ∈ N0 and n ∈ N there are as many matchings on
[2n] with k crossings as those with k nestings.

Proof. Set M = N = ∅ and s = cr, t = ne. The assumption of the theorem is
satisfied because cr(∅) = ne(∅) = 0 and cr(M(1)) = ne(M(1)) = {0}.

Corollary 1.4. For every k, l ∈ N0 and n ∈ N there are as many matchings on
[2n] with k crossings and l nestings as there are with l crossings and k nestings; the
joint statistic is symmetric.

Proof. Set M = N = ∅ and s = cn, t = nc. The assumption of the theorem is
satisfied because cn(∅) = nc(∅) = (0, 0) and cn(M(1)) = nc(M(1)) = {(0, 0)}.

Corollary 1.5. For every k ∈ N0 and n ∈ N there are as many matchings on
[2n] which have k crossings and have the last two edges nested as there are which have
k nestings and have the last two edges separated (neither crossing nor nested).

Proof. Set M = {{1, 4}, {2, 3}}, N = {{1, 2}, {3, 4}}, s = cr, and t = ne. The
assumption of the theorem is satisfied because cr(M) = ne(N) = 0 and the values of
cr on the five children of M are 0, 0, 1, 1, 2, which coincide with the values of ne on
the five children of N .

Corollary 1.6. Let M = {{1, 2}, {3, 5}, {4, 6}} and N = {{1, 3}, {2, 4}, {5, 6}}.
For every k, n ∈ N there are as many matchings on [2n] with k crossings in which the
last three edges form a matching order-isomorphic to M as there are in which the last
three edges form a matching order-isomorphic to N .

Proof. Set the matchings M,N as given and s = t = cr. Then cr(M) = cr(N) = 1
and cr(T (M, 1)) = cr(T (N, 1)) = {1, 1, 1, 2, 2, 2, 3}.

We call two matchings M,N ∈ M(n) crossing-similar and write M ∼cr N if
cr(T (M, l)) = cr(T (N, l)) for all l ≥ 0. Similarly we define the nesting-similarity ∼ne.
These two relations are equivalences and partition M(n) into equivalence classes. We
use Theorem 1.2 to characterize these classes and to count them. In Theorems 3.3
and 3.5 we prove that the numbers of classes in M(n)/ ∼cr and M(n)/ ∼ne are,
respectively,

2n−2

((
n

2

)
+ 2

)
and 2 · 4n−1 − 3n− 1

2n + 2

(
2n

n

)
.

These two numbers differ; the latter is roughly a square of the former. On the first
level of description of the enumerative complexity of crossings and nestings, that of

964 MARTIN KLAZAR

the numbers cr(M) and ne(M), symmetry reigns as shown in Corollaries 1.3 and 1.4.
On the next level of description, that of the similarity classes, symmetry is broken
because |M(n)/∼ne | is much bigger than |M(n)/∼cr |; in Proposition 3.7 we show
that ∼ne is a refinement of ∼cr. From this point of view nestings are definitely more
complicated than crossings; see also Theorem 4.4.

We prove Theorem 1.1 in section 2. The method we employ is induction on
the number of edges. In section 3 we prove Theorems 3.3 and 3.5, enumerating the
crossing-similarity and nesting-similarity classes. In section 4 we give further applica-
tions of the main theorem in Proposition 4.1, which characterizes the matchings M,N
such that cr(T (M, l)) = ne(T (N, l)) for every l ≥ 0; in Corollary 4.3, which deals
with the statistic of pairs of separated edges; and in Theorem 4.4, which enumerates
the classes of mod 2 crossing-similarity and mod 2 nesting-similarity. In section 5 we
give some concluding comments.

2. The proof of Theorem 1.1. For a set X let S(X) be the set of all finite
multisets with elements in X. By the sum

X1 + X2 + · · · + Xr =

r∑
1

Xi

of the multisets X1, X2, . . . , Xr ∈ S(X) we mean the union of their groundsets with
multiplicities of the elements added. Any function f : X → S(Y) naturally extends
to

f : S(X) → S(Y) by f(U) =
∑
x∈U

f(x),

where the summand f(x) appears with the multiplicity of x in U . Now if Z ⊂ X, we
can understand the symbol f(Z) in two ways—as the image of f |Z or as the value of
the extended f on Z. Due to our convention, both ways give the same result.

In this section, A shall denote an abelian group (A,+), and A∗ will be the set of
finite sequences over A. We shall work with functions from A∗ to S(A) or to S(A∗),
which we will extend in the mentioned way, often without explicit notice, to functions
defined on S(A∗). If u = x1x2 . . . xt ∈ A∗ and y ∈ A, by x1x2 . . . xt + y, we define the
sequence (x1 + y)(x2 + y) . . . (xt + y) obtained by adding y to each term of u.

Definition 2.1. For α, β ∈ A and i ∈ N we define the mapping Rα,β,i :⋃
l≥i A

l →
⋃

l≥i+2 A
l by

Rα,β,i(x1x2 . . . xl) = xi(x1x2 . . . xi + xi − x1 + α)(xixi+1 . . . xl + xi − x1 + β)

and the mapping Rα,β : A∗ → S(A∗) by

Rα,β(x1x2 . . . xl) = {Rα,β,i(x1x2 . . . xl) : 1 ≤ i ≤ l}.

Thus Rα,β(x1x2 . . . xl) is an l-element multiset of sequences with length l + 2.
Let M ∈ M(n) be a matching. The gaps of M are the first gap before 1, the

2n−1 gaps between two consecutive elements of [2n], and the last (2n+1)th gap after
2n; M has 2n+1 gaps. For α, β ∈ A we assign to every matching N ∈ M(n), n ∈ N0,
a sequence seqα,β(N) ∈ A∗ with length 2n + 1. If n = 0, we set seqα,β(∅) = 0 = 0A.
Let n ≥ 1 and (M,N) ∈ E(T), M ∈ M(n− 1), which means that N is obtained from
M by adding a new first edge e = {1, x}, where x is inserted in the ith gap of M for
some i ∈ [2n− 1]. We set

seqα,β(N) = Rα,β,i(seqα,β(M)).

CROSSINGS AND NESTINGS IN MATCHINGS 965

For example, if M = {{1, 3}, {2, 4}}, then seqα,β(M) = α, 2α, 3α, 2α + β, α + 2β.
For u ∈ A∗ we denote by Rl

α,β(u) = Rα,β(Rα,β(. . . (Rα,β(u)) . . .)) the lth iteration
of the mapping Rα,β (which we extend to S(A∗)). The next lemma is immediate from
the definitions.

Lemma 2.2. For every α, β ∈ A, M ∈ M, and l ∈ N0 we have

Rl
α,β(seqα,β(M)) = seqα,β(T (M, l)).

The next lemma relates the sequences seqα,β(M) and the statistic sα,β on M.
Lemma 2.3. For every α, β ∈ A and N ∈ M(n) the first term of the sequence

seqα,β(N) equals sα,β(N) = cr(N)α + ne(N)β.
Proof. For n = 0 this holds. For n ≥ 1 we proceed by induction on n. Suppose

that (M,N) ∈ E(T) and that N arises by adding new first edge {1, x} to M , where
x is inserted in the ith gap. Let seqα,β(M) = a1a2 . . . a2n−1.

We claim that in

aj − a1 = ujα + vjβ

the number uj counts the edges in M covering the jth gap, and vj counts the edges
in M lying to the left of the jth gap.

Suppose that this claim holds. Then cr(N) = cr(M)+ui and ne(N) = ne(M)+vi.
Since cr(M)α + ne(M)β = a1 (by induction), the first term of seqα,β(N) is ai =
ai − a1 + a1 = uiα + viβ + cr(M)α + ne(M)β = cr(N)α + ne(N)β, as we wanted to
show.

It suffices to prove the claim by induction on n. For n = 0 it holds trivially. We
assume that it holds for seqα,β(M) and deduce it for seqα,β(N); M , N , and i are as
before. Let seqα,β(N) = b1b2 . . . b2n+1. We first describe the changes in gaps caused
by the addition of {1, x} to M . A new first gap appears; it is of course covered by no
edge and has no edge to its left. For 1 ≤ j ≤ i the jth gap turns into the (j + 1)th
gap; these gaps get covered by one more edge and have the same numbers of edges to
their left as before. The ith gap is split in two, which creates a new gap, the (i+2)th;
it is covered by as many edges as the ith gap in M , but it has one more edge to its
left. For i + 1 ≤ j ≤ 2n − 1 the jth gap turns into the (j + 2)th one; these gaps are
covered by as may edges as before, but they have one more edge to their left.

By the definition of Rα,β,i, b1 = ai, bj = aj−1 + ai − a1 +α for 2 ≤ j ≤ i+ 1, and
bj = aj−2+ai−a1+β for i+2 ≤ j ≤ 2n+1. Thus b1−b1 = 0, bj−b1 = aj−1−a1+α =
(uj−1+1)α+vj−1β for 2 ≤ j ≤ i+1, and bj−b1 = aj−2−a1+β = uj−2α+(vj−2+1)β
for i + 2 ≤ j ≤ 2n + 1. This agrees with the described changes in gaps, and so the
claim holds for seqα,β(N).

Let us denote by f0
0 : A∗ → A the function taking the first term of a sequence,

and by f1
0 : A∗ → S(A) the function creating the multiset of all terms of a sequence.

By the definitions and Lemmas 2.2 and 2.3, if seqα,β(M) = a1a2 . . . a2n+1, then

sα,β(T (M, 1)) = f0
0 (Rα,β(seqα,β(M))) = {a1, a2, . . . , a2n+1} = f1

0 (seqα,β(M)).

For the induction argument we will need more complicated functions besides f0
0 and

f1
0 . For an integer r ≥ 0 and γ ∈ A we define the function fr

γ : A∗ → S(A) by

fr
γ (x1x2 . . . xl) = {xa1 +xa2 + · · ·+xar − (r− 1)x1 + γ : 1 ≤ a1 ≤ a2 ≤ · · · ≤ ar ≤ l}.

So f0
0 (x1x2 . . . xl) = {x1}, and f1

γ (x1x2 . . . xl) is the multiset {x1+γ, x2+γ, . . . , xl+γ}.

966 MARTIN KLAZAR

Lemma 2.4. Let X,Y ∈ S(A∗) (possibly X = Y) be two multisets such that
fr
γ (X) = fr

γ (Y) for every r ≥ 0 and γ ∈ A. Then for every mapping Rα,β of Defini-
tion 2.1 we have

1. fr
γ (Rα,β(X)) = fr

γ (Rα,β(Y)),
2. fr

γ (Rα,β(X)) = fr
γ (Rβ,α(Y))

for every r ≥ 0 and γ ∈ A.
Proof. We prove only the second identity with Rα,β and Rβ,α; the proof of the

first identity is similar and easier. We proceed by induction on r. The case r = 0 is
clear since f0

γ (Rα,β(X)) = f1
γ (X) for every X ∈ S(A∗) and γ ∈ A. We assume that

r ≥ 1 and that for every s, 0 ≤ s < r, and γ ∈ A we have fs
γ(Rα,β(X)) = fs

γ(Rβ,α(Y)).
We consider only the function fr

0 ; the proof for general γ is similar.
We split the multisets U = fr

0 (Rα,β(X)) and V = fr
0 (Rβ,α(Y)), which arise

by summation, into several contributions and show that, after rearranging, the cor-
responding contributions to U and V are equal. U is the multiset of elements
ya1 + ya2

+ · · ·+ yar
− (r− 1)y1, where the sequence y1y2 . . . yl runs through Rα,β(X)

and the indices ai run through the r-tuples 1 ≤ a1 ≤ a2 ≤ · · · ≤ ar ≤ l, and similarly
for V . The first contribution C is defined by the condition a1 = 1. C contributes to
U the elements

y1 + ya2 + · · · + yar − (r − 1)y1 = ya2 + · · · + yar − (r − 2)y1,

where y1y2 . . . yl runs through Rα,β(X) and the indices ai run through the (r − 1)-
tuples 1 ≤ a2 ≤ a3 ≤ · · · ≤ ar ≤ l. Thus C contributes fr−1

0 (Rα,β(X)). To V
it contributes fr−1

0 (Rβ,α(Y)). Hence C contributes equally to U and V because
fr−1
0 (Rα,β(X)) = fr−1

0 (Rβ,α(Y)) by the inductive assumption.
Each v = y1y2 . . . yl ∈ Rα,β(X) is in Rα,β(u) for some u = x1x2 . . . xl−2 ∈ X and

(by the definition of Rα,β) consists of three segments: It starts with a term xi of u,
then it comes x1 . . . xi termwise incremented by xi − x1 + α, and the third segment
of v is xi . . . xl−2 termwise incremented by xi − x1 + β; similarly for v ∈ Rβ,α(Y).
We split the rest of U and V (in which a1 > 1, i.e., every yai

lies in the second or
in the third segment) into r + 1 disjoint contributions Ct according to the number t,
0 ≤ t ≤ r, of the yai ’s lying in the second segment. By the definition of Rα,β , Ct

contributes to U the elements

xb1 + · · · + xbr + t(xi − x1 + α) + (r − t)(xi − x1 + β) − (r − 1)xi

= xb1 + · · · + xbr + xi − rx1 + tα + (r − t)β,

where u = x1x2 . . . xl−2 runs through X, the indices bj run through the r-tuples
satisfying 1 ≤ b1 ≤ · · · ≤ bt ≤ i ≤ bt+1 ≤ · · · ≤ br ≤ l − 2, and i runs through
1 ≤ i ≤ l − 2. (The length l − 2 depends on u.) Effectively the indices bj and i run
through all weakly increasing (r+1)-tuples of numbers from [l−2]. Thus Ct contributes
to U the elements fr+1

γ (X), where γ = tα + (r − t)β. By the definition of Rβ,α, Ct

contributes to V the elements fr+1
γ′ (Y), where γ′ = tβ+(r− t)α. So Ct contributes to

U and V in general differently, but (by the assumption on X and Y) the contributions
of Ct to U and Cr−t to V are equal. By symmetry,

∑r
0 Ci contributes the same amount

to U and V . Since U and V are covered by equal and disjoint contributions C and∑r
0 Ci, we conclude that U = V , i.e., fr

0 (Rα,β(X)) = fr
0 (Rβ,α(Y)).

The proof of point 1 is similar and easier, because now Ct contributes equally to
U = fr

0 (Rα,β(X)) and V = fr
0 (Rα,β(Y)).

Next we show that for the equality of all functions fr
γ on two one-element sets it in

fact suffices that f0
0 and f1

0 are equal. We prove it in two lemmas. Let gr : A∗ → S(A)

CROSSINGS AND NESTINGS IN MATCHINGS 967

be defined by

gr(x1x2 . . . xl) = {xa1
+ xa2

+ · · · + xar
: 1 ≤ a1 ≤ a2 ≤ · · · ≤ ar ≤ l}.

Lemma 2.5. If u, v ∈ A∗ are such that g1(u) = g1(v), then gr(u) = gr(v) for all
r ≥ 1.

Proof. Let g1(u) = g1(v) and r ∈ N. For ā = (a1, . . . , as) ∈ As we denote by (ā)
the multiset {a1, . . . , as}, and if n̄ = (n1, . . . , ns) ∈ N

s, then n̄ · ā = n1a1+ · · ·+nsas ∈
A. For s ∈ N, X ∈ S(A), and u = x1x2 . . . xl ∈ A∗ we define

S(s,X, u) = {x̄ = (xa1 , . . . , xas) : 1 ≤ a1 < a2 < · · · < as ≤ l, (x̄) = X}.

For r, s ∈ N we define

N(r, s) = {(n1, . . . , ns) ∈ N
s : n1 + · · · + ns = r}.

Now we can rewrite gr(u) and gr(v) as

gr(u) = {n̄ · ā : s ∈ [r], X ∈ S(A), n̄ ∈ N(r, s), ā ∈ S(s,X, u)},
gr(v) = {n̄ · ā : s ∈ [r], X ∈ S(A), n̄ ∈ N(r, s), ā ∈ S(s,X, v)}.

We claim that (i) for every fixed s ∈ [r] and X ∈ S(A) the multiset

m(ā) = {n̄ · ā : n̄ ∈ N(r, s)}

is the same for all ā ∈ As with (ā) = X, and that (ii) for every fixed s ∈ [r] and
X ∈ S(A) we have |S(s,X, u)| = |S(s,X, v)|. This will prove that gr(u) = gr(v).

To show (i), we take ā, b̄ ∈ As with (ā) = (b̄) = X. Then ā can be obtained from
b̄ by permuting coordinates: ā = π(b̄) for some π ∈ Ss, and n̄ · b̄ = π(n̄) · ā. If n̄
runs through N(r, s), so does π(n̄). Hence m(ā) = m(b̄). To show (ii), we suppose
that X consists of the distinct elements x1, . . . , xt with multiplicities n1, . . . , nt, where
n1 + · · ·+nt = s (else |S(s,X, u)| = |S(s,X, v)| = 0), and denote by ma(u) and ma(v)
the numbers of occurrences of a ∈ A in u and v. Because ma(u) = ma(v) for every
a ∈ A, we have indeed

|S(s,X, u)| =

t∏
i=1

(
mxi(u)

ni

)
=

t∏
i=1

(
mxi(v)

ni

)
= |S(s,X, v)|.

Lemma 2.6. If X,Y ∈ S(A∗) are one-element sets such that f0
0 (X) = f0

0 (Y) and
f1
0 (X) = f1

0 (Y), then fr
γ (X) = fr

γ (Y) for every r ≥ 0 and γ ∈ A.
Proof. We need to prove that if u, v ∈ A∗ are two sequences beginning with the

same term and having equal numbers of occurrences of each a ∈ A, then fr
γ (u) = fr

γ (v)
for every r ≥ 0 and γ ∈ A. It suffices to consider functions fr

0 ; the proof with general
γ is similar. Since u and v start with the same term, by the definition of fr

0 it suffices
to prove that gr(u) = gr(v) for every r ≥ 1. This is true by Lemma 2.5.

Proof. Proof of Theorem 1.1. We prove only claim 2; the proof of 1 is very similar
and easier. Let sα,β(T (M, l)) = sβ,α(T (N, l)) for l = 0, 1. By Lemma 2.3 and the fol-
lowing remark, this means that f0

0 (seqα,β(M)) = f0
0 (seqβ,α(N)) and f1

0 (seqα,β(M)) =
f1
0 (seqβ,α(N)). By Lemma 2.6, fr

γ (seqα,β(M)) = fr
γ (seqβ,α(N)) for every r ∈ N0 and

γ ∈ A. By repeated application of Lemma 2.4.2 we get

fr
γ (Rl

α,β(seqα,β(M))) = fr
γ (Rl

β,α(seqβ,α(N)))

968 MARTIN KLAZAR

for every l, r ∈ N0 and γ ∈ A. In particular,

f0
0 (Rl

α,β(seqα,β(M))) = f0
0 (Rl

β,α(seqβ,α(N))).

But by Lemma 2.2 we have

Rl
α,β(seqα,β(M)) = seqα,β(T (M, l)) and Rl

β,α(seqβ,α(N)) = seqβ,α(T (N, l)).

Thus, by Lemma 2.3,

sα,β(T (M, l)) = sβ,α(T (N, l))

for every l ≥ 0, which we wanted to prove.
We give a formulation of Theorem 1.1 in terms of the sequences seqα,β(M).
Theorem 2.7. Let M,N ∈ M(n) be two (not necessarily distinct) matchings

and α, β ∈ A be two elements of the abelian group.
1. We have sα,β(T (M, l)) = sα,β(T (N, l)) for all l ≥ 0 iff sα,β(M) = sα,β(N)

and the sequences seqα,β(M) and seqα,β(N) are equal as multisets (when order is
neglected).

2. We have sα,β(T (M, l)) = sβ,α(T (N, l)) for all l ≥ 0 iff sα,β(M) = sβ,α(N)
and the sequences seqα,β(M) and seqβ,α(N) are equal as multisets.

3. The numbers of similarity classes. In this section, we determine the car-
dinalities |M(n)/∼cr | and |M(n)/∼ne |. Let A = (Z,+). For M ∈ M we define
its crossing sequence crs(M) by crs(M) = seq1,0(M) − a1, where a1 is the first
term of seq1,0(M), and its nesting sequence nes(M) by nes(M) = seq0,1(M) − b1,
where b1 is the first term of seq0,1(M). Recall that (by the proof of Lemma 2.3)
the ith term of crs(M) is the number of edges in M covering the ith gap, and the
ith term of nes(M) is the number of edges lying to the left of the ith gap. For
example, M = {{1, 4}, {2, 5}, {3, 6}} has crs(M) = (0, 1, 2, 3, 2, 1, 0) and nes(M) =
(0, 0, 0, 0, 1, 2, 3). By Theorems 1.2 and 2.7, M ∼cr N ⇐⇒ cr(M) = cr(N) and
f1
0 (crs(M)) = f1

0 (crs(N)); that is, M and N are crossing-similar iff they have the
same numbers of crossings and their crossing sequences are equal as multisets; an
analogous result holds for the nesting-similarity.

Let e = {a, d}, f = {b, c} ∈ M , 1 ≤ a < b < c < d ≤ 2n, be a nesting in
M ∈ M(n). We define its width as min(b−a, d−c). We define the width of a crossing
in the same way, only {a, d} is replaced with {a, c} and {b, c} with {b, d}. Suppose
that the nesting e, f has the minimum width among all nestings in M and that its
width is realized by b− a. Switching the first vertices of the edges e and f , we obtain
another matching N . If the width of e, f is realized by d − c, we switch the second
vertices of e and f . This transformation M � N is called the n-c transformation. In
the same way, by switching the first or the second vertices of the edges in a crossing
with minimum width, we define the c-n transformation.

Lemma 3.1. Let M,N ∈ M(n), where N is obtained from M by the n-c (c-n)
transformation. Then N has the same sets of first and second vertices of the edges
as M and ne(N) = ne(M) − 1, cr(N) = cr(M) + 1 (ne(N) = ne(M) + 1, cr(N) =
cr(M) − 1).

Proof. The first claim about N is obvious. Let e = {a, c}, f = {b, d} ∈ M ,
1 ≤ a < b < c < d ≤ 2n, be a crossing in M with the minimum width which is equal
to b − a (if it is equal to d − c, the argument is similar). The c-n transformation
replaces e by e′ = {b, c} and f by f ′ = {a, d}. Because of the minimality of the width,
every edge of M that has one endpoint between a and b must have the other endpoint

CROSSINGS AND NESTINGS IN MATCHINGS 969

�
��	

		�
��

�
��	

		�
��

�
��	

		�
��	

		
	

		�
��	

		
	

		�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
..

........

Fig. 3. Dyck path with semilength seven and two marked tunnels.

between a and b as well. It follows that e′ crosses the same edges distinct from f as
e does, and similarly for f ′ and f . The edge e′ is covered by the same edges different
from f ′ as e, and similarly for f ′ and f . The edge e′ does not cover the edges lying
between a and b which were covered by e, but these are now covered by f ′ and were
not covered by f . If we do not consider the pairs e, f and e′, f ′, M and N have the
same numbers of crossings and the same numbers of nestings. Since e, f is a crossing
and e′, f ′ is a nesting, in total N has one less crossing and one more nesting than M .
The argument for the n-c transformation is similar and is left to the reader.

We use Dyck paths to encode crs(M) and nes(M). Recall that a Dyck path D
with semilength n ∈ N is a lattice path D = (d0, d1, . . . , d2n), where di ∈ Z

2, from
d0 = (0, 0) to d2n = (2n, 0) that makes n up-steps di − di−1 = (1, 1), n down-steps
di − di−1 = (1,−1), and never gets below the x axis (so, in fact, di ∈ N

2
0). We denote

the set of Dyck paths with semilength n by D(n); |D(0)| = 1. We think of D ∈ D(n)
also as a broken line in the plane that connects (0, 0) with (2n, 0) and consists of 2n
straight segments si = didi+1; see Figure 3. A tunnel in D is a horizontal segment
t that has altitude n + 1

2 for some n ∈ N0, lies below D, and intersects D only in
its endpoints. Each D ∈ D(n) has exactly n tunnels. Note that projections of two
tunnels on the x axis either are disjoint or are in inclusion (as in the example in
Figure 3). If the latter happens, we say that the tunnel with larger projection covers
the other tunnel.

Deleting from D ∈ D(n), n ≥ 1, the first up-step and the first down-step at which
D visits the x axis again, we obtain, shifting appropriately the resulting two parts of
D, a unique decomposition of D into a pair of Dyck paths E,F , where E ∈ D(m) for
0 ≤ m < n and F ∈ D(n− 1−m). This decomposition of Dyck paths can be used for
inductive proofs of their properties.

We associate with every Dyck path D = (d0, d1, . . . , d2n) its sequence of altitudes
als(D) = (dy0, d

y
1, . . . , d

y
2n) ∈ N

2n+1
0 , where di = (dxi , d

y
i), and its profile pr(D) =

(a1, a2, . . . , am) ∈ N
m, where m is the maximum term of als(D) and ai is half of

the number of segments si of D that lie in the horizontal strip i − 1 ≤ y ≤ i. It
follows that a1 + a2 + · · ·+ am = n and pr(D) is a composition of n. It follows easily
by induction on m that for every composition a = (a1, a2, . . . , am) of n there is a
D ∈ D(n) with pr(D) = a. For example, the Dyck path in Figure 3 has als(D) =
(0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 1, 0) and pr(D) = (2, 3, 2).

There is a natural surjective mapping F : M(n) → D(n) defined as follows. We
take the diagram of M ∈ M(n) and travel the baseline l from −∞ to ∞. Simul-
taneously we construct, step by step, a lattice path D. We start D at (0, 0), and
when we encounter on l the first (second) vertex of an edge, we make in D an up-step
(down-step). In the end we get a Dyck path D ∈ D(n) and set F (M) = D. Using

970 MARTIN KLAZAR

the decomposition of Dyck paths and induction, it is easy to prove that F is sur-
jective. Clearly, the preimages F−1(D) consist exactly of the matchings sharing the
same sets of first and second vertices. Another important property of F is that for
every D ∈ D(n) there is exactly one noncrossing (i.e., with cr(M) = 0) M ∈ F−1(D),
namely the M whose edges correspond in the obvious way to the tunnels in D. This
follows by the decomposition of Dyck paths.

Lemma 3.2. Let n ∈ N and F : M(n) → D(n) be the aforementioned mapping.
1. For every M ∈ M(n) we have crs(M) = als(F (M)).
2. For every M,N ∈ M(n) we have f1

0 (crs(M)) = f1
0 (crs(N)) iff pr(F (M)) =

pr(F (N)).
3. For every composition a = (a1, a2, . . . , am) of n and every i ∈ N0, 0 ≤ i ≤∑m

i=1(i−1)ai, there is an M ∈ M(n) such that pr(F (M)) = a and cr(M) = i. There
exist no a and no M such that pr(F (M)) = a and cr(M) >

∑m
i=1(i− 1)ai.

Proof. 1. This is clear from the definitions of crs(M) and als(D).
2. Using 1, we look at f1

0 (als(D)), where D = F (M). Let pr(D) = (a1, a2, . . . , am)
and ri be the multiplicity of i ∈ N0 in als(D). It is clear that r0 = a1+1 and rm = am.
We claim that for 0 < i < m we have ri = ai + ai+1. In the strip i − 1 ≤ y ≤ i
we have v = 2ai segments s1, s2, . . . , sv of D, and in the strip i ≤ y ≤ i + 1 we
have w = 2ai+1 segments t1, t2, . . . , tw. The occurrences of i in als(D) are due to
the upper endpoints of the sj ’s and due to the lower endpoints of the tj ’s. But
for each sj its upper endpoint coincides with the upper endpoint of sj−1 or with
that of sj+1 or with the lower endpoint of some tk, and similarly for the lower end-
points of the tj ’s. So i appears (v + w)/2 = ai + ai+1 times. On the other hand,
ai = ri−1 − ri−2 + · · ·+ (−1)ir1 + (−1)i+1(r0 − 1) for every 1 ≤ i ≤ m. Therefore the
ri’s are completely determined by the composition pr(D) and vice versa.

3. Let a composition a = (a1, a2, . . . , am) of n be given. We take an arbitrary
D ∈ D(n) with pr(D) = a. It follows by the decomposition of Dyck paths and
induction that the sum

S(a) =

m∑
i=1

(i− 1)ai

counts the ordered pairs t1, t2 of distinct tunnels in D where t1 covers t2. For the
unique noncrossing M ∈ F−1(D) we have ne(M) = S(a) because nestings in M
are in 1-1 correspondence with the pairs of tunnels, one of them covering the other.
So cr(M) = 0, ne(M) = S(a), F (M) = D, pr(F (M)) = a. For any given i ∈
{0, 1, . . . , S(a)}, using repeatedly the n-c transformation of Lemma 3.1, we transform
M into N such that cr(N) = i, ne(N) = S(a) − i, and F (N) = F (M) = D. Now
suppose that there is an M ∈ F−1(D) with cr(M) = c > S(a). Using the c-n
transformation of Lemma 3.1, we transform it into N ∈ F−1(D) with cr(N) = 0 and
ne(N) = ne(M)+ c > S(a). This contradicts the unicity of the noncrossing matching
in F−1(D).

Theorem 3.3. For n ∈ N the set M(n)/∼cr of crossing-similarity classes has

2n−2

((
n

2

)
+ 2

)

elements.
Proof. By the previous lemma, |M(n)/∼cr | equals∑
a

(1 + a2 + 2a3 + · · · + (m− 1)am) = 2n−1 +
∑
a

(a2 + 2a3 + · · · + (m− 1)am),

CROSSINGS AND NESTINGS IN MATCHINGS 971

where we sum over all compositions a1 +a2 + · · ·+am = n, which are 2n−1 in number.
The last sum is the coefficient of xn in the expansion of(

d

dy

∑
m≥0

x

1 − x
· xy

1 − xy
· xy2

1 − xy2
· · · · · xym

1 − xym

)∣∣∣∣
y=1

.

Differentiating the product in the summand by the Leibniz rule and using that(
d

dy

xyi

1 − xyi

)∣∣∣∣
y=1

=
ix

(1 − x)2
,

we obtain that the expansion equals

1

1 − x

∑
m≥0

(
m + 1

2

)(
x

1 − x

)m+1

.

Using the binomial expansion (1 − z)−r =
∑

n≥0

(
r+n−1

n

)
zn, we simplify this to

x2

(1 − 2x)3
=

∑
n≥0

(
n + 2

2

)
2nxn+2,

and the result follows.
The values of |M(n)/∼cr | form the sequence (1, 3, 10, 32, 96, 276, . . .). Subtract-

ing 2n−1, we get the sequence (0, 1, 6, 24, 80, 240, . . .), which counts crossing-similarity
classes in M(n) for matchings with at least one crossing. This sequence is entry
A001788 of [14] and counts, for example, also 4-cycles in the (n + 1)-dimensional
hypercube.

The situation for nestings is simpler, and the number of similarity classes is bigger
because nesting sequences are nondecreasing and therefore f1

0 (nes(M)) = f1
0 (nes(N))

iff nes(M) = nes(N). By Theorems 1.2 and 2.7, M ∼ne N iff M and N have the same
numbers of nestings and the same nesting sequences. For D ∈ D(n) we define ne(D)
to be the number of ordered pairs t1, t2 of distinct tunnels in D such that t1 covers t2.
The down sequence dos(D) of D = (d0, d1, . . . , d2n) is (v0, v1, . . . , v2n), where vi is the
number of down-steps dj − dj−1 = (1,−1) for 1 ≤ j ≤ i. For example, for the Dyck
path in Figure 3 we have ne(D) = 7 and dos(D) = (0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, 6, 7).

Lemma 3.4. Let n ∈ N and F : M(n) → D(n) be the mapping defined above.
1. For every M ∈ M(n) we have nes(M) = dos(F (M)). There is a bijection

between the sets {nes(M) : M ∈ M(n)} and D(n).
2. For every Dyck path D ∈ D(n) and every i ∈ N0, 0 ≤ i ≤ ne(D), there is an

M ∈ F−1(D) such that ne(M) = i. There is no M ∈ F−1(D) with ne(M) > ne(D).
Proof. 1. The first claim follows at once from the definitions. It is also clear that

dos(D) is uniquely determined by D and vice versa.
2. We know from the proof of Lemma 3.2.3 that ne(D) = ne(M) for the unique

noncrossing M ∈ F−1(D). Now we argue as in the proof of Lemma 3.2.3.
Theorem 3.5. For n ∈ N the set M(n)/∼ne of nesting-similarity classes has

2 · 4n−1 − 3n− 1

2n + 2

(
2n

n

)

elements.

972 MARTIN KLAZAR

Proof. By the previous lemma,

|M(n)/∼ne | =
∑

D∈D(n)

(1 + ne(D)) = |D(n)| +
∑

D∈D(n)

ne(D).

We claim that this number is equal to the coefficient of xn in the expansion of the
expression

C + x2(2xC ′ + C)2C,

where C = C(x) =
∑

n≥0 |D(n)|xn = 1 + x + 2x2 + 5x3 + · · · . It is well known that

C = (1−
√

1 − 4x)/2x =
∑

n≥0
1

n+1

(
2n
n

)
xn. Using the relations xC2 −C + 1 = 0 and

2xCC ′ + C2 = C ′, we simplify the expression to

2C(x) +
1/2

1 − 4x
− 3/2√

1 − 4x
.

Using the expansion of C(x), geometric series, and (1 − 4x)−1/2 =
∑

n≥0

(
2n
n

)
xn, we

obtain the formula.
To establish the claim, recall that

∑
D∈D(n) ne(D) counts the triples (D, t1, t2),

where D ∈ D(n) and t1, t2 are two distinct tunnels in D such that t1 covers t2. Let
the segments of D supporting ti be ri (up-step) and si (down-step). Let the lower
endpoints of the segments ri (si) be ai (bi), and their upper endpoints be a′i (b′i),
i = 1, 2. The deletion of the interiors of the segments r1, s1, r2, and s2 splits D into
five lattice paths L1, . . . , L5, where L1 starts at (0, 0) and ends in a1, L2 starts at
a′1 and ends at a2, L3 starts at a′2 and ends at b′2, L4 starts at b2 and ends at b′1,
and L5 starts at b1 and ends at (2n, 0). Each Li is nonempty but may be just a
single lattice point. The concatenation L1L5, where L5 is appropriately shifted so
that a1 and b1 are identified in one distinguished point, is a Dyck path, and similarly
for L2L4 with a2 and b2 identified and distinguished. L3 is a Dyck path by itself
(after an appropriate shift). We see that the triples (D, t1, t2) in question are in a 1-1
correspondence with the triples (E1, E2, E3), where Ei ∈ D(ni), ni ∈ N0, are such
that n1 + n2 + n3 = n − 2, and moreover E1 and E2 have one distinguished lattice
point (out of 2n1 + 1, respectively 2n2 + 1, points). It follows that the number of the
triples (E1, E2, E3) is the coefficient of xn−2 in (2xC ′ + C)2C.

The values of |M(n)/∼ne | form the sequence (1, 3, 12, 51, 218, 926, . . .). Subtract-
ing the Catalan numbers Cn = |D(n)|, we get the sequence (0, 1, 7, 37, 176, 794, . . .),
which counts nesting-similarity classes in M(n) for matchings with at least one nest-
ing. This sequence is entry A006419 of [14] and appears in Welsh and Lehman [18,
Table VIb] in enumeration of planar maps. We summarize this identity in the next
proposition.

Proposition 3.6. For n = 1, 2, . . . the formula

2 · 4n−1 − 3n + 1

2n + 2

(
2n

n

)

counts the following objects:
1. the triples (D, t1, t2), where D is a Dyck path with semilength n and t1, t2

are two distinct tunnels in D such that t1 covers t2,
2. the nesting-similarity classes in {M ∈ M(n) : ne(M) > 0}/ ∼ne,
3. the vertex-rooted planar maps with two vertices and n faces, which are edge

2-connected and may have loops and multiple edges. See Figure 4 for the case n = 3.

CROSSINGS AND NESTINGS IN MATCHINGS 973

�

�

�

�
��

	

� �

�

�

�

�
��

	

� �

�

�

�

�
��

	

� �

�

�

�

�
��

	

� �

�

�

�

�
��

	

� �

�

�

�

�
��

	

� �

�

�

�

�

�

�

Fig. 4. Rooted and edge 2-connected planar maps with two vertices and three faces.

Proof. Claims 1 and 2 follow from the proof of Theorem 3.5, and 3 follows by
checking the formulas in [18]. Alternatively, it is not too hard to establish bijection
between the triples in 1 and the maps in 3.

The present author proved in [7, Theorem 3.1] that the number of the triples
(T, v1, v2), where T is a rooted plane tree with n vertices and v1, v2 are two (not
necessarily distinct) vertices of T such that v1 lies on the path joining the root of T
and v2, equals

4n−1 +
(
2n−2
n−1

)
2

.

It is straightforward to relate Dyck paths and rooted plane trees and to derive the
formula of Theorem 3.5 from this.

Not only are there more equivalence classes in M(n)/∼ne than in M(n)/∼cr,
but also ∼ne is in fact a refinement of ∼cr. To show this we consider another statistic
ca(M), where M ∈ M(n), counting camels, which are (unordered) pairs of edges in
M order-isomorphic to {{1, 2}, {3, 4}}. Note that cr(M)+ne(M)+ ca(M) =

(
n
2

)
and

that ca(M) is uniquely determined by the Dyck path F (M) = D = (d0, d1, . . . , d2n)
because it is the number of pairs (di, dj), where i < j, di is a down-step and dj is an
up-step.

Proposition 3.7. For every n the partition M(n)/ ∼ne refines the partition
M(n)/∼cr.

Proof. Suppose that M,N ∈ M(n) satisfy M ∼ne N . Then nes(M) = nes(N)
and ne(M) = ne(N). By Lemma 3.4 we know that F (M) = F (N) = D for a common
Dyck path D. By Lemma 3.2, crs(M) = crs(N); hence f1

0 (crs(M)) = f1
0 (crs(N)).

Also, by the above remark on statistic ca(·), cr(M) =
(
n
2

)
− ne(M) − ca(M) =(

n
2

)
− ne(N) − ca(N) = cr(N). Thus M ∼cr N .

4. Further applications. Corollary 1.5 presents two matchings M and N such
that the distribution of cr on the levels of T (M) equals the distribution of ne on the
levels of T (N). We show that there are no other substantially different examples.

Proposition 4.1. Let M,N ∈ M(n) be two matchings. We have cr(T (M, l)) =
ne(T (N, l)) for every l ≥ 0 iff M = Mn = {{1, 2n}, {2, 2n − 1}, . . . , {n, n + 1}} and
N = Nn = {{1, 2}, {3, 4}, . . . , {2n− 1, 2n}}.

Proof. The if part is clear by Theorem 1.2: cr(Mn) = ne(Nn) = 0 and

cr(T (Mn, 1)) = ne(T (Nn, 1)) = {0, 0, 1, 1, 2, 2, . . . , n− 1, n− 1, n}

974 MARTIN KLAZAR

because

crs(Mn) = (0, 1, 2, . . . , n− 1, n, n− 1, . . . , 2, 1, 0),

nes(Nn) = (0, 0, 1, 1, 2, 2, . . . , n− 1, n− 1, n).

To show the only if part, we prove that the only matchings M,N ∈ M(n) sat-
isfying cr(M) = ne(N) and f1

0 (crs(M)) = f1
0 (nes(N)) are Mn and Nn. Since for

every N ∈ M(n) the sequence nes(N) ends with n, we must have n in crs(M),
which means that the middle gap of M must be covered by all edges. Thus all
first vertices of the edges in M must precede all second vertices, and crs(M) =
(0, 1, 2, . . . , n− 1, n, n− 1, . . . , 2, 1, 0).

Thus f1
0 (nes(N)) = {0, 0, 1, 1, 2, 2, . . . , n − 1, n − 1, n}, which forces N = Nn.

Thus cr(M) = ne(N) = ne(Nn) = 0, which forces M = Mn.
Therefore we have no other examples of equidistribution of cr and ne on the levels

of T (M) than M = ∅ and M = {{1, 2}}, because Mn = Nn only for n = 0, 1. We
call the matchings M ∈ M(n) encountered in the proof in which all edges cover the
middle gap, equivalently which have f1

0 (crs(M)) = {0, 0, 1, 1, 2, 2, . . . , n− 1, n− 1, n},
permutational matchings; they are in 1-1 correspondence with the permutations of [n]
and are n! in number.

Because |M(n)| = (2n − 1)!! = nn(2/e + o(1))n and the numbers of crossing-
similarity and nesting-similarity classes are only exponential, we have very many
examples as in Corollary 1.6 when cr (or ne) has equal distributions on the levels of
T (M) and T (N) for M �= N . The next corollary follows from the asymptotics of the
numbers of similarity classes given in Theorems 3.3 and 3.5.

Corollary 4.2. Every set of matchings X ⊂ M(n) contains a subset of |X|/(2+
o(1))n mutually crossing-similar matchings and a subset of |X|/(4 + o(1))n mutually
nesting-similar matchings.

An explicit example of a big similarity class is provided by permutational match-
ings in M(n). They all share the same crossing sequence (0, 1, 2, . . . , n − 1, n, n −
1, . . . , 2, 1, 0) and the same nesting sequence (0, 0, . . . , 0, 1, 2, . . . , n − 1, n). Hence at
least

n!(
n
2

)
+ 1

= nn(1/e + o(1))n

of them are mutually crossing-similar, and at least so many of them are mutually
nesting-similar.

Recall that ca(M) is the number of pairs of separated edges in M . This statistic
behaves on the levels of the subtrees of T in the same way as cr and ne do.

Corollary 4.3. Let M,N ∈ M(n) be two matchings such that ca has the same
distribution on the first two levels of the subtrees T (M) and T (N). Then ca has the
same distribution on all levels.

Proof. For M ∈ M(n) we have ca(M) =
(
n
2

)
− (cr(M)+ne(M)). Thus this result

follows by Theorem 1.1.1 if we set A = (Z,+) and α = β = 1.
Note that while the number of M ∈ M(n) with cr(M) = 0 (or with ne(M) = 0)

is the Catalan number 1
n+1

(
2n
n

)
, the number of M ∈ M(n) with ca(M) = 0 is much

bigger, namely n! (these are exactly permutational matchings).
It is possible to investigate the general similarity relation ∼A,α,β on M(n) defined,

for an abelian group A = (A,+) and two its elements α, β ∈ A, by M ∼A,α,β N
iff sα,β(T (M, l)) = sα,β(T (N, l)) for every l ≥ 0. We consider here only the case
A = (Z2,+) and define the statistics cr2(M), ne2(M) ∈ {0, 1} as parity of the numbers

CROSSINGS AND NESTINGS IN MATCHINGS 975

cr(M), ne(M). We define the sequences crs2(M) and nes2(M) of M by reducing
crs(M) and nes(M) modulo 2. For two matchings M,N ∈ M(n) we define M ∼cr,2 N
iff cr2(T (M, l)) = cr2(T (N, l)) for every l ≥ 0, and similarly for M ∼ne,2 N . By
Theorems 1.1 and 2.7, M ∼cr,2 N iff cr2(M) = cr2(N) and crs2(M) and crs2(N)
are equal as multisets after forgetting the order of terms, and similarly for ∼ne,2.
(Now nes2(M) is not nondecreasing, and we may have f1

0 (nes2(M)) = f1
0 (nes2(N))

for nes2(M) �= nes2(N).) We determine the numbers of equivalence classes for ∼cr,2

and ∼ne,2.
Theorem 4.4. We have |M(1)/∼cr,2 | = 1 and |M(n)/∼cr,2 | = 2 for n ≥ 2.

The two classes of mod 2 crossing-similarity have ((2n−1)!!+1)/2 and ((2n−1)!!−1)/2
elements. We have |M(1)/∼ne,2 | = 1, |M(2)/∼ne,2 | = 3, and |M(n)/∼ne,2 | = 2n
for n ≥ 3.

Proof. By the definition of crs(M), crs2(M) = (0, 1, 0, 1, 0, . . . , 1, 0) for every
matching M . Thus the classes of mod 2 crossing-similarity are determined only by
cr2(M) and, for n ≥ 2, we have two of them. The fact that

|{M ∈ M(n) : cr2(M) = 0}| − |{M ∈ M(n) : cr2(M) = 1}| = 1

for every n ≥ 1 was proved by Riordan [12] by generating functions; a simple proof
by involution was given by Klazar [8].

To handle nestings modulo 2, recall that nes(M) = dos(D), where D = F (M)
and that nesting sequences of the matchings M ∈ M(n) are in bijection with the
Dyck paths D ∈ D(n) (Lemma 3.4). We claim that the n Dyck paths

D1 = udun−1dn−1, D2 = u2dun−2dn−1, . . . , Dn−1 = un−1dudn−1, Dn = undn

(u is the up-step and d is the down-step) realize all possible numbers of 1’s and 0’s
in the sequences {dos2(D) : D ∈ D(n)} and hence in the sequences {nes2(M) :
M ∈ M(n)}. The number of 1’s (0’s) in dos2(Di), i = 1, 2, . . . , n, is n + �n/2� − i
(1 + i + �n/2�). It suffices to show that no dos2(D) has fewer than �n/2� 1’s and
fewer than 2+ �n/2� 0’s. In every D each of the n down-steps contributes to dos2(D)
exactly one 1 (by one of its endpoints), and each of these 1’s may belong to at most
two down- steps. Thus we must have at least �n/2� 1’s. The argument for 0’s is
similar, but now the 0 contributed by the first down-step is never shared (with the
next down-steps) and there is one more 0 contributed by the first up-step. So we have
at least 1 + 1 + �n/2� 0’s. Thus, for every n ≥ 1, |{f1

0 (nes2(M)) : M ∈ M(n)}| = n.
If n ≥ 3, for each Di there are M,M ′ ∈ F−1(Di) with ne(M ′) = ne(M) − 1. (We
take for M the noncrossing matching in F−1(Di), which has at least one nesting,
and apply the n-c transformation.) Thus, for n ≥ 3, there are 2n classes of mod 2
nesting-similarity. The cases n = 1, 2 are easy to treat separately.

5. Concluding remarks. An interesting result for crossings and nestings of
higher order was obtained by Chen et al. in [2], where it is proved that for every
k, l, n ∈ N the number of matchings in M(n) with no k-crossing and no l-nesting is
the same as the number of matchings with no k-nesting and no l-crossing (the same
result is obtained in [2] for set partitions); here k-crossing is a k-tuple of pairwise
crossing edges and similarly for k-nesting. Another generalization of crossings and
nestings was investigated by Jeĺınek [4] who is interested in numbers of matchings
M ∈ M(n) such that M does not contain a fixed permutational matching N ∈ M(3)
as an ordered submatching. For further recent results on crossings and nestings,
see Bousquet-Mélou and Xin [1], Corteel [3], Jonsson [5], Kasraoui and Zeng [6],
Krattenthaler [10], de Mier [11], and Stanley [16].

976 MARTIN KLAZAR

It may be interesting to try to extend the results and methods of the present
article to crossings and nestings of higher order. Another research direction may be
to apply our method to other structures besides matchings. Finally, one may try to
go to higher levels of the description of the enumerative complexity of crossings and
nestings—denoting by G : M → M/ ∼cr the mapping sending M to its equivalence
class, when is it the case that G(T (M, l)) = G(T (N, l)) for every l ≥ 0; and similarly
for ∼ne.

Acknowledgments. I am grateful to Marc Noy for his hospitality during my
two visits in UPC Barcelona in 2004 and for stimulating discussions. I thank two
anonymous referees for careful reading of my manuscript; one of them suggested
Proposition 3.7.

REFERENCES

[1] M. Bousquet-Mélou and G. Xin, On partitions avoiding 3-crossings, Sém. Lothar. Combin.,
54 (2005/06), paper B54e.

[2] W. Y. C. Chen, E. Y. P. Deng, R. R. X. Du, R. P. Stanley, and C. H. Yan, Crossings and
nestings of matchings and partitions, Trans. Amer. Math. Soc., to appear.

[3] S. Corteel, Crossings and alignments of permutations, Adv. Appl. Math., to appear.
[4] V. Jeĺınek, Dyck paths and pattern-avoiding matchings, European J. Combin., 28 (2007), pp.

202–213.
[5] J. Jonsson, Generalized triangulations and diagonal-free subsets of stack polyominoes, J. Com-

bin. Theory, Ser. A, 112 (2005), pp. 117–142.
[6] A. Kasraoui and J. Zeng, Distribution of crossings, nestings, and alignments of two edges

in matchings and partitions, Electron. J. Combin., 13 (2006), paper R33.
[7] M. Klazar, Twelve countings with rooted plane trees, European J. Combin., 18 (1997), pp.

195–210.
[8] M. Klazar, Counting even and odd partitions, Amer. Math. Monthly, 110 (2003), pp. 527–532.
[9] M. Klazar and M. Noy, On the Symmetry of Joint Distribution of Crossings and Nestings

in Matchings, manuscript.
[10] Ch. Krattenthaler, Growth diagrams, and increasing, and decreasing chains in fillings of

Ferrers shapes, Adv. Appl. Math., 37 (2006), pp. 404–431.
[11] A. de Mier, k-noncrossing and k-nonnesting graphs and fillings of Ferrers diagrams, online

preprint http://arxiv.org/abs/math.CO/0602195.
[12] J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle,

Math. Comput., 29 (1975), pp. 215–222.
[13] M. de Sainte-Catherine, Couplages et Pfaffiens en Combinatoire, Physique et Informatique,

Ph.D. thesis, University of Bordeaux I, Talence, France 1983.
[14] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published online at

http://www.research.att.com/˜njas/sequences, AT&T Labs, 2005.
[15] R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, Cambridge,

UK, 1999.
[16] R. P. Stanley, Increasing and decreasing subsequences of permutations and their variants, in

Proceedings of the ICM’06, to appear.
[17] J. Touchard, Sur un problème de configurations et sur les fractions continues, Canadian J.

Math., 4 (1952), pp. 2–25.
[18] T. R. S. Welsh and A. B. Lehman, Counting rooted maps by genus. III: Nonseparable maps,

J. Combin. Theory, Ser. B, 18 (1975), pp. 222–259.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 4, pp. 977–998

ON COST MATRICES WITH TWO AND THREE DISTINCT
VALUES OF HAMILTONIAN PATHS AND CYCLES∗

SANTOSH N. KABADI† AND ABRAHAM P. PUNNEN‡

Abstract. A polynomial time testable characterization of cost matrices associated with a com-
plete digraph on n nodes such that all the Hamiltonian cycles (tours) have the same cost is well
known. Tarasov [U.S.S.R. Comput. Maths. Math. Phys., 21 (1981), pp. 167–174.] obtained a char-
acterization of cost matrices where tour costs take two distinct values. We provide a simple alternative
characterization of such cost matrices, which can be tested in O(n2) time. We also provide analogous
results where tours are replaced by Hamiltonian paths. When the cost matrix is skew-symmetric, we
provide polynomial time testable characterizations such that the tour costs take three distinct values.
Corresponding results for the case of Hamiltonian paths are also given. Using these results, special
instances of the asymmetric traveling salesman problem (ATSP) are identified that are solvable in
polynomial time and that have improved constant factor approximation schemes. In particular,
we observe that the 3/2 performance guarantee of the Christofides algorithm extends to all metric
Hamiltonian symmetric matrices. Further, we identify special classes of ATSP for which polynomial

ε-approximation algorithms are available for ε ∈ {3/2, 4/3, 4τ, 3τ2

2
, 4+δ

3
}, where τ > 1/2 and δ ≥ 0

are constants.

Key words. combinatorial optimization, graphs, Hamiltonian cycles, Hamiltonian paths, ap-
proximation algorithms

AMS subject classifications. 90C27, 90C57, 90C35

DOI. 10.1137/S0895480104445332

1. Introduction. Let G be a directed graph with node set V (G) = {1, 2, . . . , n}
and arc set E(G). For each arc (i, j) ∈ E(G) a cost cij is prescribed. Let C be the
cost matrix associated with G such that the (i, j)th element of C is cij if (i, j) ∈ E(G)
and ∞ if (i, j) /∈ E(G). If G is an undirected graph, then the matrix C is symmetric.
For any Hamiltonian cycle (tour) H of G the cost of H corresponding to C is given
by C(H) =

∑
(i,j)∈H cij . Cost matrix C is said to be a k distinct cost tour matrix

(DTC(k) matrix) if and only if the number of distinct values of costs of tours in G is
exactly k. In particular, C is a DTC(1) matrix if and only if every tour in G has the
same cost.

It is easy to see that, for any digraph G and any arbitrary mappings a, b : V (G) →
�, if a cost matrix C associated with G is defined as

(1.1) cij = ai + bj for all (i, j) ∈ E(G),

then all tours in G have the same value. Interestingly, Gabovich [6] proved that this
condition totally characterizes the class of DTC(1) matrices when G is a complete
digraph. He attributes the result for the undirected case to [20] and [24]. For fu-
ture reference we summarize the characterization of DTC(1) matrices for a complete
digraph below.

∗Received by the editors July 24, 2004; accepted for publication (in revised form) June 5, 2006;
published electronically December 11, 2006. This work was supported by NSERC research grants.

http://www.siam.org/journals/sidma/20-4/44533.html
†Faculty of Business Administration, University of New Brunswick, Fredericton, NB, Canada

E3B 5A3 (kabadi@unb.ca).
‡Department of Mathematics, Simon Fraser University, 14th Floor Central City Tower, 13450

102nd Ave., Surrey, BC, Canada V3T 5X3 (punnen@unbsj.ca).

977

978 SANTOSH N. KABADI AND ABRAHAM P. PUNNEN

Theorem 1.1 (after [6]). If G is a complete digraph with associated cost matrix
C, then the following statements are equivalent:

(1) All tours in G have the same cost β with respect to C.
(2) There exist {ai, bi : i = 1, 2, . . . , n} such that cij = ai+bj for all (i, j) ∈ E(G)

and
∑n

i=1(ai + bi) = β.
(Note that by a complete digraph we mean a digraph in which each two vertices

are joined by two oppositely oriented arcs.) It is easy to see that if C is symmetric,
we can choose ai = bi for all i, and if C is skew-symmetric we can choose ai = −bi.
Independent proofs of Theorem 1.1 are reported in [5, 7, 12]. Independent proofs for
the undirected case are also reported in [16, 23]. Condition (2) in Theorem 1.1 can
be tested in O(n2) time.

A cost matrix C associated with G is said to be a k distinct cost Hamiltonian path
matrix (DPC(k) matrix) if and only if the number of distinct values of costs of Hamil-
tonian paths in G is exactly k. Thus if C is a DPC(1) matrix, then every Hamiltonian
path in G has the same cost. The structure of a DPC(1) matrix associated with a
complete digraph is much simpler than that of a DTC(1) matrix.

Lemma 1.2 (see [12]). A cost matrix C associated with a complete digraph G
is a DPC(1) matrix if and only if it is a constant matrix (i.e., all the nondiagonal
elements of C are identical).

In view of Theorem 1.1 and Lemma 1.2, a natural question is to identify the
structure of DTC(k) and DPC(k) matrices associated with complete digraphs for
k ≥ 2. Tarasov [26] provided an elegant characterization of DTC(2) matrices. His
proof is inductive in nature with a base case for n = 5, the validity of which is
established by complete enumeration using a computer. In this paper we provide an
alternative characterization of DTC(2) matrices associated with complete digraphs.
Our characterization is simple and can be tested in O(n2) time. Further, our proof
does not use complete enumeration. We also provide a complete characterization
of DPC(2) matrices associated with complete digraphs and establish a relationship
between DTC(2) and DPC(2) matrices.

Tarasov [26] also obtained a characterization of cost matrices associated with the
assignment problem (minimum weight bipartite matching problem) [18] with three
distinct objective function values. However, no corresponding results are known for
Hamiltonian cycles. We give a complete characterization of DTC(3) and DPC(3)
skew-symmetric cost matrices associated with complete digraphs. It is also shown
that there are no skew-symmetric DPC(2) matrices of size greater than 3.

Given a digraph G and an associated cost matrix C, the well known traveling
salesman problem (TSP) is to find a tour H in G such that its cost C(H) is as small
as possible. If the graph G is undirected or, equivalently, the matrix C is symmetric,
the resulting TSP is called a symmetric traveling salesman problem (STSP). Thus
STSP is a special case of TSP. To emphasize the fact we are considering a directed
graph, we some times refer to TSP as an asymmetric traveling salesman problem
(ATSP).

The general TSP is well known to be NP-hard [19]. It is NP-hard even to find
an ε-approximate solution for this problem for any constant ε > 0 [19]. However,
there are several special cases of TSP that are solvable in polynomial time [11], and
several special cases that are solvable using polynomial time approximation schemes
(PTAS) or ε-approximation algorithms for constant ε > 0 in polynomial time. The
books edited by Lawler et al. [19] and by Gutin and Punnen [8] provide the state
of the art on the topic. Polynomial solvability of an instance of TSP and existence
of a polynomial ε-approximation algorithm for it depend on the properties of the

TSP WITH TWO OR THREE DISTINCT TOUR VALUES 979

associated cost matrix. Note that some polynomially solvable classes of TSP are
characterized in terms of the structure of the underlying (di)graph. However, any
such characterization can be rephrased in terms of properties of the cost matrix. For
a comprehensive study on polynomially solvable cases of TSP, we refer to [11].

The simplest of all the polynomially solvable cases of TSP is the constant TSP,
where the cost matrix is a DTC(1) matrix corresponding to a complete digraph, since
in this case every tour is optimal. We show that the characterizations of DTC(2) and
DTC(3) cost matrices discussed above identify new polynomially solvable cases of the
TSP. In addition, we show that these also help us in solving some instances of ATSP
as STSP. It is well known that any ATSP on n nodes can be formulated as an STSP
on 2n nodes. However, we show that for special ATSP, our results make it possible
to find equivalent STSP of the same size.

For any tour H = (u1, u2, . . . , un, u1), we denote its reversal (un, un−1, . . . , u1, un)
by H∗. We say that a digraph G is symmetrical if and only if for any arc (i, j) in
E(G) the arc (j, i) is also in E(G); and we say that G is Hamiltonian symmetrical if
and only if for any tour H in G its reversal H∗ is also in G. Thus, every symmetrical
digraph is Hamiltonian symmetrical. A cost matrix C associated with a Hamiltonian
symmetrical digraph G is said to be Hamiltonian symmetrical [9] if and only if C(H) =
C(H∗) for every tour H in G. Recently, Halskau [9] showed that the cost matrix C
associated with a complete digraph G is Hamiltonian symmetrical if and only if there
exist mappings a, b : V (G) → � such that

(1.2) cij = ai + bj + dij ,

where D = (dij) is a symmetric matrix of the same size as C. He also showed that
this condition can be tested easily in O(n2) time. From (1.2) it can be seen that

(1.3) C(H) = D(H) + α for all tours H ∈ G.

Thus, as observed by Halskau [9], solving ATSP with cost matrix C is equiv-
alent to solving STSP with cost matrix D. If α �= 0, the transformation given by
(1.2) (and hence (1.3)) does not preserve ε-optimality. We construct a simple trans-
formation from ATSP to STSP that characterizes Hamiltonian symmetrical matrices
associated with symmetrical digraphs. This transformation preserves ε-optimality as
well as τ -triangular inequality [1] and range inequality [17]. Thus known performance
guarantees of various approximation algorithms for the STSP extend to the more
general class of Hamiltonian symmetric TSPs. In particular, for metric ATSP with a
Hamiltonian symmetric cost matrix, we observe that a 3/2-approximate solution can
be obtained using the Christofides algorithm [19]. It is an open question to find a
polynomial ε-approximation algorithm for the metric ATSP for any constant ε [14].
The best known performance ratio for a polynomial approximation algorithm for such
an instance of ATSP is 4/3 log3 n ≈ 0.842 log2 n [13]. When C is Hamiltonian sym-
metrical and satisfies the weak τ -triangle inequality (see section 4), we observe that
the performance ratio becomes min{4τ, 3

2τ
2} for constant τ ≥ 1, and when C satis-

fies the weak range inequality (see section 4) the performance ratio becomes 4+δ
3 for

constant δ ≥ 0.
Kabadi and Punnen [12] introduced a special class of graphs called SC-Hamiltonian

graphs, that includes complete (di)graphs, complete bipartite (di)graphs, etc., for
which Theorem 1.1 continues to hold. We observe that the transformation from
ATSP to STSP discussed above extends easily to all symmetrical SC-Hamiltonian

980 SANTOSH N. KABADI AND ABRAHAM P. PUNNEN

digraphs. We also consider relationships between ATSP and STSP when G is a com-
plete digraph and |C(H) − C(H∗)| = 0 or α for some positive number α. Using the
notion of DTC(2) and skew-symmetric DTC(3) matrices, we identify special classes
of ATSP on n nodes for which an optimal solution can be obtained by solving n/2
symmetric TSPs on n nodes.

The major contributions of the paper are summarized below:
• A simple alternative characterization of DTC(2) matrices associated with

complete digraphs is given along with a simple proof. This further enhances
the knowledge of structural properties of this class of matrices.

• Complete polynomially testable characterizations of DPC(2) matrices, skew-
symmetric DPC(3) matrices, and skew-symmetric DTC(3) matrices associ-
ated with complete digraphs are given.

• New special cases of ATSP are identified that can be solved in polyno-
mial time. Further, using known constant factor approximation algorithms
for STSP, special classes of ATSP are identified for which polynomial ε-
approximation algorithms are available for ε ∈ {3/2, 4/3, 4τ, 3/2τ2, 4+δ

3 },
where τ > 1/2 and δ ≥ 0 are constants.

It would be interesting to find simple proofs for our characterization of skew-
symmetric DTC(3) and DPC(3) matrices associated with complete digraphs. Fur-
ther, it is a challenging problem to identify polynomially testable characterizations of
DTC(k) and DPC(k) matrices (if they exist) for k ≥ 3. (It may be noted that for
k = 3, we give such characterizations only for skew-symmetric matrices.)

The paper is organized as follows. In section 2 we discuss our characterization
of DTC(2) and DPC(2) matrices associated with complete digraphs. Section 3 deals
with our characterization of DTC(3) and DPC(3) skew-symmetric matrices associated
with complete digraphs. Special ATSPs are considered in section 4, and concluding
remarks are given in section 5.

We conclude this section by introducing some notation and tour construction
schemes. For any (di)graph G, its vertex set is denoted by V(G), and its edge set is
denoted by E(G). Unless otherwise specified, throughout the rest of this paper we
assume that G is a complete digraph, and thus all the nondiagonal elements of the
associated cost matrix C are finite. For any cost matrix C associated with G and any
subgraph H of G, we denote its cost

∑
ij∈H cij by C(H). By elements of a cost matrix

we mean its nondiagonal elements with finite values. Let H = (u1, u2, . . . , un, u1) be
a tour in G. We describe below four schemes for constructing new tours from H.
These constructions are used extensively in the subsequent sections. (See Figure 1 for
illustrations of these schemes.)

Scheme 1 (ordered 3-exchange): Let (i, j) be a given arc not in H. Without loss
of generality, we assume that i = u1. Let j = ur for some 2 < r < n. Choose some
integer � such that r ≤ � ≤ n. Then the new tour obtained by this construction is
given by H ′ = (u1, ur, ur+1, . . . , u�, u2, u3, . . . , ur−1, u�+1, u�+2, un, u1).

Scheme 2 (arc reversal): Let (i, j) be an arc in H. Without loss of generality, we
assume that i = u1 and j = u2. Then the new tour obtained by this construction is
given by H̄ = (u2, u1, u3, u4, . . . , un−1, un, u2).

Scheme 3 (inverse arc reversal): Let (i, j) be an arc in H. Without loss of
generality, we assume that i = u1 and j = u2. Then the new tour obtained by this
construction is given by Ĥ = (u1, u2, un, un−1, . . . , u4, u3, u1).

Scheme 4 (path reversal): Consider a path (ur, ur+1, . . . , us) in H for some 1 ≤
r, s,≤ n. (Here, indices of u are taken modulo n.) Then the new tour obtained by
this construction is given by H̃ = (us, us−1, . . . , ur, us+1, . . . ur−1, us). Note that in

TSP WITH TWO OR THREE DISTINCT TOUR VALUES 981

u1 u3

u5

u6

u7

u8
u4

u2

u1 u3

u5

u6

u7

u8
u4

u2

u1 u3

u5

u6

u7

u8
u4

u2

u1 u3

u5

u6

u7

u8
u4

u2

u1 u3

u5

u6

u7

u8
u4

u2

A Tour H

Arc Reversal Inverse Arc Reversal

Ordered 3-Exchange with r = 4, � = 6

Path Reversal
(with r = 4 and s = 6)

Fig. 1. Examples of Schemes 1 to 4.

Scheme 4, if we choose ur = i and s = r + 1, we get Scheme 2, and if we set ur = j
and s = r − 1, we get Scheme 3.

2. DTC(2) and DPC(2) matrices for complete digraphs. In this section
we discuss our characterizations of DTC(2) and DPC(2) matrices associated with
complete digraphs. Thus, throughout this section, all nondiagonal elements of cost
matrices considered are finite.

For any cost matrix C and any r ∈ {1, 2, . . . , n}, define ar = 0, br = 0, ai = cir
for i �= r, and bi = cri for i �= r. Define the matrix Ĉ = (ĉij)n×n, as ĉij = cij −ai−bj .

We call Ĉ the r-reduced matrix of C. For the r-reduced matrix Ĉ, it can be seen that
ĉrj = ĉjr = 0 for j ∈ {1, 2, . . . , n}, j �= r. We call the (n− 1)× (n− 1) submatrix C0

of Ĉ obtained by deleting its rth row and rth column the r-reduced submatrix of C.
For convenience, we refer to the n-reduced matrix and the n-reduced submatrix of C
as simply the reduced matrix and the reduced submatrix of C, respectively.

To motivate the study of DTC(2) and DPC(2) matrices, let us start with an
example. Consider the cost matrix C given below and its reduced matrix Ĉ:

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∞ 6 4 5 9 1 5
5 ∞ 5 6 10 2 6
3 5 ∞ 4 8 0 3
6 8 6 ∞ 11 3 7
11 13 11 12 ∞ 8 12
8 10 8 9 13 ∞ 9
5 7 4 6 10 2 ∞

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Ĉ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∞ −6 −5 −6 −6 −6 0
−6 ∞ −5 −6 −6 −6 0
−5 −5 ∞ −5 −5 −5 0
−6 −6 −5 ∞ −6 −6 0
−6 −6 −5 −6 ∞ −6 0
−6 −6 −5 −6 −6 ∞ 0
0 0 0 0 0 0 ∞

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It is difficult to see that the tour costs corresponding to the cost matrix C above have
only two distinct values. Now look at the reduced matrix Ĉ. Its reduced submatrix

982 SANTOSH N. KABADI AND ABRAHAM P. PUNNEN

contains only two distinct elements −5 and −6. This is no accident, and we will show
that the reduced submatrix of a DTC(2) matrix always contains exactly two distinct
elements. However, this is not enough to characterize DTC(2) matrices. Obviously,
if these two distinct elements are distributed arbitrarily, the corresponding tour costs
could have a large number distinct values. So the question is, in what patterns are
the two distinct elements distributed within the reduced submatrix, and the answer
to this yields the required characterization. The following facts are easy to verify.
Fact 1. For any r ∈ {1, 2, . . . , n}, the r-reduced matrix of a skew-symmetric n × n

matrix is a skew-symmetric matrix, and the r-reduced matrix of a symmetric
n× n matrix is a symmetric matrix.

Fact 2. For any positive integer k, if we subtract a constant from all entries in any row
or column of a DTC(k) matrix, then the resulting matrix is also a DTC(k)
matrix.

Fact 3. For any positive integer k and any r ∈ {1, 2, . . . , n}, an n × n matrix C is a
DTC(k) matrix if and only if its r-reduced matrix Ĉ is a DTC(k) matrix.

We now give a characterization of DTC(k) matrices in terms of DPC(k) matrices.
Theorem 2.1. If an n×n cost matrix C is a DTC(k) matrix, then its r-reduced

submatrix is a DPC(k) matrix for every r ∈ {1, 2, . . . , n}. Conversely, if there exists
an r ∈ {1, 2, . . . , n} such that the r-reduced submatrix of C is a DPC(k) matrix, then
C is a DTC(k) matrix.

Proof. For any n × n cost matrix C and any r ∈ {1, 2, . . . , n}, let Ĉ and C0 be
the r-reduced matrix and the r-reduced submatrix, respectively, of C. Let G0 be the
digraph obtained from G by deleting node r. Then C0 is a cost matrix associated
with complete digraph G0. Since row r and column r of Ĉ have all zero nondiagonal
entries, any Hamiltonian path P in G0 can be extended to a Hamiltonian cycle H
in G such that C0(P) = Ĉ(H), and conversely, for any Hamiltonian cycle H in G,
the Hamiltonian path P in G0 obtained by deleting the node r has Ĉ(H) = C0(P).
Hence, Ĉ is a DTC(k) matrix if and only if C0 is a DPC(k) matrix. The result follows
in view of Fact 3.

The following corollary of Theorem 1.1, Lemma 1.2, and Theorem 2.1 can be
easily verified and will be useful in this section and the next.

Corollary 2.2. Let C be an n× n skew-symmetric cost matrix associated with
a complete digraph G. Then C is a DPC(1) matrix if and only if all its nondiagonal
elements are zero. If every nondiagonal element of C is either 0 or ±x for some
positive value x, then C is a DTC(1) matrix if and only if there exists S ⊆ N =
{1, 2, . . . , n} such that for any i, j ∈ {1, 2, . . . , n}, i �= j,

cij =

⎧⎨
⎩

−α
α
0

if i /∈ S and j ∈ S,
if i ∈ S and j /∈ S,
otherwise

for α ∈ {−x, x}.
Our main results in this section are polynomially testable characterizations of

DTC(2) and DPC(2) matrices. Theorem 2.1 provides a characterization of DTC(2)
matrices in terms of DPC(2) matrices. We shall give a characterization of DPC(2)
matrices that can be verified in polynomial time. For this, we need a characterization
of a special class of DTC(2) matrices with only two types of nondiagonal entries α
and β and such that the two distinct values of tour costs are {nα, (n − 1)α + β} or
{nβ, (n− 1)β + α}. Such a DTC(2) matrix is called an elementary DTC(2) matrix.

Theorem 2.3. A cost matrix C is an elementary DTC(2) matrix if and only if
the following three conditions are satisfied:

TSP WITH TWO OR THREE DISTINCT TOUR VALUES 983

(1) The nondiagonal elements of C have only two distinct values, α and β.
(2) C is not a DTC(1) matrix.
(3) Either the set of arcs with cost α or the set of arcs with cost β is one of

the following three types: (i) {(i, j), (j, i)} for some pair i, j of nodes; (ii)
{(i, u) : u ∈ S}, where i ∈ N , S ⊂ V (G)\{i}, and S �= ∅; (iii) {(u, i) : u ∈ S},
where i ∈ N , S ⊂ V (G) \ {i}, and S �= ∅.

Proof. If a cost matrix C satisfies the conditions of the theorem, then it is easy to
verify that the set of distinct tour costs is either {nα, (n−1)α+β} or {nβ, (n−1)β+α}.

Conversely, suppose that C is an elementary DTC(2) matrix with nondiagonal
elements of values α and β, and neither the set of arcs with cost α nor the set of arcs
with cost β is of the above three types. Then, since C is not a DTC(1) matrix, there
exists a pair of arcs (i, j), (u, v) of cost α and a pair of arcs (x, y), (s, t) of cost β with
i �= u, j �= v, x �= s, and y �= t. It can be verified that there exists a tour containing
both the arcs (i, j) and (u, v) and a tour containing both the arcs (x, y) and (s, t),
contradicting the fact that D is an elementary DTC(2) matrix.

Lemma 2.4. If C is a DPC(2) matrix and H is any tour in G, then arcs of H
have at most two distinct costs.

(It may be noted that in the statement of Lemma 2.4, C is a DPC(2) matrix, but
H is a tour and not a Hamiltonian path.)

Proof. If possible, let H contain three arcs, say e, f , and g, with distinct costs,
say x, y, and z. By deleting these arcs one at a time, we get three Hamiltonian paths
in G with distinct costs C(H) − x, C(H) − y, and C(H) − z. This contradicts the
fact that C is a DPC(2) matrix, and hence the result follows.

Using Lemma 2.4, we now prove a stronger result.
Lemma 2.5. If C is a DPC(2) matrix and n > 3, then the arcs of G have exactly

two distinct costs.
Proof. Obviously, arcs of G have at least two distinct costs. If possible, let there

be more than two distinct costs. Then it is possible to find a tour H containing arcs
with at least two distinct costs, say α and β. By Lemma 2.4, arcs of H have exactly
two distinct costs, α and β. Let (i, j) be an arc of G not in H with cost γ, where
γ �= α, β. Using Scheme 1 of the previous section, with u1 = i and � = n, generate tour
H ′. Clearly, H ′ contains at least one and at most three arcs of cost γ. By Lemma 2.4,
all other arcs of H ′ have cost precisely one of α or β. Let us assume it is α. Then, H
contains at most three arcs of cost β. Thus the cost of H is (n−x)α+xβ, and the cost
of H ′ is (n−y)α+yγ for some x, y such that 1 ≤ x, y ≤ 3. Since n > 3, it can be verified
that the collection of all Hamiltonian paths, obtained from H and H ′ by deleting an
arc, have at least three distinct costs, contradicting the fact that C is a DPC(2)
matrix.

If n = 3, it is possible to have a DPC(2) matrix with more than two distinct
elements. For example consider the matrix

C∗ =

⎡
⎣∞ 0 1

1 ∞ 2
0 1 ∞

⎤
⎦ .

All the Hamiltonian paths in the complete digraph G on three nodes with C∗ as
the cost matrix have cost either 0 or 2; yet C∗ has nondiagonal elements with three
distinct values. However, Lemma 2.5 can be shown to hold even for n = 3 if C is a
symmetric matrix.

984 SANTOSH N. KABADI AND ABRAHAM P. PUNNEN

Theorem 2.6. For any integer n > 3, an n × n matrix C associated with a
complete digraph G is a DPC(2) matrix if and only if it satisfies one of the following
two conditions:

(1) C is a DTC(1) matrix, and nondiagonal elements of C have exactly two
distinct values.

(2) C is an elementary DTC(2) matrix.
Proof. Suppose that C satisfies conditions (1) or (2). We must show that C is a

DPC(2) matrix. If condition (1) is satisfied, then all the tours in G have the same cost,
say δ, and C contains elements of value, say α and β, only. Then the Hamiltonian
paths in G have costs δ − α and δ − β, and hence C is a DPC(2) matrix. Suppose
that condition (1) is not satisfied but condition (2) is satisfied. Thus arcs of G have
exactly two distinct costs, say α and β, and the set of distinct values of costs of tours
in G is {nα, (n − 1)α + β} or {nβ, (n − 1)β + α}. Thus the set of distinct values of
costs of Hamiltonian paths in G is {(n−1)α, (n−2)α+β} or {(n−1)β, (n−2)β+α}.
Thus C is a DPC(2) matrix.

Conversely, assume that C is a DPC(2) matrix. By Lemma 2.5 the elements of
C must be either α or β for some α and β. Suppose that C does not satisfy any of
the conditions (1) and (2). Then there exist two tours H1 and H2 in G with costs
C(H1) = xα + (n − x)β and C(H2) = yα + (n − y)β such that {0, 1} �= {x, y} �=
{n− 1, n}. Without loss of generality, let y < x. If x = n and y = 0, then choose an
arc (i, j) in G of cost β and using Scheme 1 given in the previous section, generate
tour H ′ from the tour H1 with i = u1, j = ur, and � = n. The cost of the tour H ′ is
zα + (n − z)β for some n − 3 ≤ z < n. It is easy to see that by removing from each
of H1, H2, and H ′ an arc of each type, we get Hamiltonian paths of at least three
distinct costs. We thus have a contradiction.

We thus have to consider the following cases: (i) y = 0 and 1 < x < n, (ii)
1 ≤ y < x − 1, and (iii) 1 ≤ y = x − 1 < n − 1. In each of these cases, by removing
from each of H1 and H2 an arc of each type, we get Hamiltonian paths of at least
three distinct costs. This contradicts the fact that C is a DPC(2) matrix, and hence
the result follows.

In the case of symmetric matrices, Theorem 2.6 can be shown to hold even for
the case n = 3.

We get the following interesting corollary of Theorem 2.6, Fact 1, Theorem 2.1,
and Corollary 2.2.

Corollary 2.7. There is no DPC(2) skew-symmetric matrix of size n ≥ 4, and
no DTC(2) skew-symmetric matrix of size n ≥ 5.

Proof. Let C be an n×n skew-symmetric matrix for some n ≥ 4. It follows from
Corollary 2.2 that C cannot be a DTC(1) matrix with exactly two distinct types of
elements, and it follows from Theorem 2.3 that it cannot be an elementary DTC(2)
matrix. Hence, by Theorem 2.6, C cannot be a DPC(2) matrix. The second part of
this corollary now follows from Fact 1 and Theorem 2.1.

The following is an example of a 3 × 3 skew-symmetric DPC(2) matrix:⎡
⎣∞ 1 −1
−1 ∞ 1
1 −1 ∞

⎤
⎦ .

Theorem 2.6 gives a characterization of the class of DPC(2) matrices in terms of
the classes of DPC(1) and elementary DTC(2) matrices. A complete characterization
of the class of DPC(1) matrices is given in Lemma 1.2 and a complete character-
ization of elementary DTC(2) matrices is given in Theorem 2.3. Thus we have a

TSP WITH TWO OR THREE DISTINCT TOUR VALUES 985

complete characterization of DPC(2) matrices, and hence by Theorem 2.1 we have a
complete characterization of the class of DTC(2) matrices. We now observe that, us-
ing our characterizations, we can recognize DTC(2) and DPC(2) matrices in strongly
polynomial time.

Given an n×n matrix C, we can check whether it is a DTC(2) matrix as follows.
Construct the reduced matrix Ĉ of C, obtain the (n− 1)× (n− 1) reduced submatrix
C0 by deleting row n and column n, and verify whether C0 satisfies the conditions (i)
or (ii) of Theorem 2.6 (which can be easily done in O(n2) time). By Theorem 2.1, C0

satisfies one of these conditions if and only if C is a DTC(2) matrix. If C0 satisfies
one of the conditions of Theorem 2.6, then it is possible to construct two Hamiltonian
paths in G0 of distinct costs in O(n2) time. These paths can be extended to tours
in G of distinct costs with respect to C. The smaller of these tours is an optimal
solution to the corresponding instance of TSP on G. All these computations can be
performed in O(n2) time.

It may be noted that if C is a DTC(2) matrix, then any tour with objective
function value greater than or equal to the average value of all tours is an optimal
solution to the corresponding instance of TSP. It is known that several well-known
heuristics for TSP produce solutions with objective function value no worse than the
average cost of all tours [22]. Thus any such heuristic guarantees an optimal solution
when the cost matrix of a given instance TSP is a DTC(2) matrix.

3. Skew-symmetric DTC(3) and DPC(3) matrices for complete di-
graphs. Tarasov [26] gave a complete characterization of distance matrices for the
assignment problem (minimum weight bipartite matching problem) [18] with three
distinct objective function values. No corresponding results for Hamiltonian cycles
are available. In this section we provide complete characterization of such skew-
symmetric cost matrices. As we show in section 4, skew-symmetric matrices are
useful in converting some special ATSPs into STSPs.

We first prove several lemmas that allow us to present the proof of our main
result in a simple way. Throughout this section, we assume that the digraph G under
consideration is a complete digraph and that the associated cost matrix C is skew-
symmetric. Our first aim is to establish that a skew-symmetric DPC(3) matrix will
not contain more than three distinct elements.

The following lemma is easy to verify.
Lemma 3.1. For a skew-symmetric cost matrix C, if there exists a Hamiltonian

path (tour) of cost α, then its reversal has a cost of −α. Hence, if C is a DPC(k)
(DTC(k)) matrix for some k ≥ 3, then the corresponding distinct costs of Hamiltonian
paths (tours) will be {±α1,±α2, . . . ,±αs} if k is even and {0,±α1,±α2, . . . ,±αs} if
k is odd, for some 0 < α1 < α2 < · · · < αs, where s =
k

2 �. In particular, if C is a
DPC(3) (DTC(3)) matrix, then the corresponding distinct costs of Hamiltonian paths
(tours) will be {0,±α1} for some α1 > 0.

Lemma 3.2. If C is a DPC(3) matrix, then no tour in G contains more than
three arcs of distinct costs.

Proof. Let H be a tour in G containing four arcs with distinct costs w, x, y, z.
Then G contains Hamiltonian paths of distinct values C(H)−w, C(H)− x, C(H)−
y, C(H) − z. This contradicts the fact that C is a DPC(3) matrix.

Lemma 3.3. If C is DPC(3) and n ≥ 5, then no tour in G contains arcs of costs
x,−x, and y for any distinct nonzero x,−x, y.

Proof. Without loss of generality assume x > 0. Suppose that there exists a tour
H in G containing arcs of costs x,−x, and y. Renumber the nodes in G if necessary

986 SANTOSH N. KABADI AND ABRAHAM P. PUNNEN

to make H = (1, 2, . . . , n, 1). From Lemma 3.2 all arcs of H have weight x,−x, or y.
Let C(H) = θ. Then by removing different arcs from the tour, we get Hamiltonian
paths of distinct costs θ− x, θ + x, and θ− y. It follows from Lemma 3.1 that one of
these Hamiltonian paths has cost zero, and hence θ equals x, − x, or y. We consider
three mutually exclusive and exhaustive cases.

Case 1: −x < y < x. In this case, by Lemma 3.1, θ = y and θ − x(= y − x) =
−(θ + x)(= −(y + x)), which implies that y = 0, a contradiction.

Case 2: x < y. In this case, by Lemma 3.1, θ = x, y = 3x, and the three distinct
costs of Hamiltonian paths are {−2x, 0, 2x}. For each z ∈ {−x, x, y}, let n(z) =
number of arcs in the tour H of cost z. Then n(−x) = 3n(y) + n(x) − 1. We now
consider three different subcases.

Subcase 1: n(y) ≥ 2 and there exists a pair of nonadjacent arcs in H, one of cost
x and the other of cost y. From such a pair of arcs, choose the one, say arc (i, j), of
cost y. Construct a tour Ĥ from H using the arc (i, j) and Scheme 3. Then the tour
Ĥ contains at least one arc of cost y, at least 3 + n(x) arcs of cost x, and at least
one and at most 2 + n(x) arcs of cost −x. Hence, each arc in Ĥ has cost x, −x, or

y, and the cost θ̂ of the new tour satisfies θ̂ ≥ 4x. The cost of the Hamiltonian path,
obtained from Ĥ by deleting an arc of cost x, is at least 3x and therefore is not in
the set {−2x, 0, 2x}, contradicting the fact that C is a DPC(3) matrix.

Subcase 2: n(y) = 2 and the unique arc in H of cost x is adjacent to both the arcs
in H of cost y. Let us assume without loss of generality that the arcs in H of cost y
are (1, 2) and (3, 4). The arc in H of cost x is then (2, 3). Construct a tour H̄ from
H using the arc (1, 2) as (i, j) and Scheme 2. The tour H̄ contains arcs of costs −y,
y, and −x. Using this tour and case (i) above, we get a contradiction.

Subcase 3: n(y) = 1. In this case, n(−x) = 2 + n(x) ≥ 3. Let us assume without
loss of generality that the arc in H of cost y is (1, 2). We consider five possibilities
designated as Subcases 3.1–3.5.

Subcase 3.1: At least one neighbor and at least one nonneighbor in H of the arc
(1, 2) has cost x. Construct a tour Ĥ from H using the arc (1, 2) as (i, j) and Scheme
3. Then the tour Ĥ contains at least one arc of cost y, at least 1 + n(x) arcs of cost
x, and at least one and at most 1 + n(x) arcs of cost −x. Hence, each arc in Ĥ has

cost x, −x, or y, and the cost θ̂ of the new tour satisfies θ̂ ≥ 3x. Repeating Case 2
with the tour Ĥ, we get a contradiction.

Subcase 3.2: n(x) = 2 and both the neighbors in H of the arc (1, 2) have cost x.
In this case, n = 7 and arc (3, 4) has cost −x. Construct tour H̄ from H using the
arc (3, 4) as (i, j) and Scheme 2. Then the tour H̄ contains at least one arc of cost y,
at least two arcs of cost x, and at least two arcs of cost −x, and at least one neighbor
and at least one nonneighbor in H̄ of the arc (1, 2) have cost x. Hence, each arc in Ĥ
has cost x, −x, or y. If the cost θ̄ of the new tour is not x, then by repeating Case 2
with this new tour, we arrive at a contradiction. Else, by repeating the Subcase 3.2
with the new tour, we arrive at a contradiction.

Subcase 3.3: n(x) = 2 and none of the neighbors in H of the arc (1, 2) has cost x.
Suppose there exists an arc (s, t) = (a, b) (other than the arc (2, 1)) that is not in H
and has some cost z /∈ {−x, x}. If the set {(a, a + 1), (b− 1, b)} contains all the arcs
in H of cost x or if it contains the arc (1, 2), then instead of the arc (a, b) consider
the arc (b, a) and denote it by (s, t) and its cost by z. The set {(b, b + 1), a − 1, a)}
will then not contain the arc (1, 2), nor will it contain all the arcs in H of cost x.
Construct tour H ′ from H using the Scheme 1 with arc (s, t) as (i, j) and choosing
� such that H ′ contains the arc (1, 2) and at least one arc of cost x. Then the tour

TSP WITH TWO OR THREE DISTINCT TOUR VALUES 987

H ′ contains at least one arc of each of the costs −x, x, y, z. Hence, z = y and the
tour H ′ contains at least two arcs of cost y and at least one arc of each of the costs
−x and x. Repeating Subcase 1 or Subcase 2 of Case 2 with H ′, we then arrive at
a contradiction. Hence, the only arcs in G of cost other than −x and x are (1, 2) of
cost y and arc (2, 1) of cost −y.

If there exists a tour H2 in G containing (1, 2) and all other arcs of cost x, then by
deleting an arc of value x from H2 we get a Hamiltonian path of value (n+1)x ≥ 6x,
contradicting the fact that C is a DPC(3) matrix. If there exists a tour H3 in G
containing (1, 2) and all other arcs of cost −x, then by deleting arc (1, 2) from H3 we
get a Hamiltonian path of value (1− n)x ≤ −4x, a contradiction. Thus every tour in
G containing the arc (1, 2) contains at least one arc of each of the costs x and −x. If
the cost of any such tour is not x, then by repeating Case 2 with this tour, we arrive at
a contradiction. Else, let G0 be the graph obtained by contracting the arc (1, 2) in G
to a pseudonode 0. Then every Hamiltonian tour in G0 has cost −2x. Let C0 be the
distance matrix associated with G0 with rows/ columns arranged in order (0, 3, . . . , n).
Then all the nondiagonal elements of C0 are ±x. Let S1 = {i : 3 ≤ i < n : c0in = x}
and S2 = {i : 3 ≤ i < n : c0in = −x}. Let D be the reduced submatrix matrix of C0.
Then by Theorem 2.1 and Corollary 2.2, all the nondiagonal elements of D must equal
0. This implies that c0ij = 2x for all i ∈ S1, j ∈ S2; c0ij = −2x for all i ∈ S2, j ∈ S1;

and c0ij = 0 for all i ∈ S1, j ∈ S1 and for all i ∈ S2, j ∈ S2. But this contradicts the

fact that all the nondiagonal elements of C0 are ±x.
Subcase 3.4: n(y) = 1, n(x) = 1, and the arcs in H of costs x and y are neighbors.

In this case, n = 5. Suppose the arc (2, 3) has cost x. The tour H1 = (1, 2, 4, 3, 5, 1)
has at least one arc of each of the costs −x, x, and y. Hence, its total cost must be
x, which implies that each of the arcs (2, 4) and (3, 5) has cost −x. Now, the tour
H2 = (1, 2, 3, 5, 4, 1) has at least one arc of each of the costs −x, x, and y. Hence, its
total cost must be x, which implies that the cost of the arc (4, 1) is −3x = −y. The
tour H2 thus contains arcs with four distinct costs, which contradicts Lemma 3.2.

Now, suppose the arc (5, 1) has cost x. The tour H1 = (1, 2, 3, 5, 4, 1) has at least
one arc of each of the costs −x, x, and y. Hence, its total cost must be x, which implies
that each of the arcs (3, 5) and (4, 1) has cost −x. Now, the tour H2 = (1, 2, 4, 3, 5, 1)
has at least one arc of each of the costs −x, x, and y. Hence, its total cost must be x,
which implies that the cost of the arc (2, 4) is −3x = −y. The tour H2 thus contains
arcs with four distinct costs, a contradiction.

Subcase 3.5: n(y) = 1, n(x) = 1, and the arcs in H of costs x and y are non-
neighbors. In this case too, n = 5. Suppose that the arc (3, 4) has cost x. The tour
H1 = (1, 2, 5, 4, 3, 1) has at least one arc of each of the costs −x, x, and y. Hence,
its total cost must be x, which implies that each of the arcs (2, 5) and (3, 1) has cost
−x. Similarly, the tour H2 = (1, 2, 5, 3, 4, 1) has at least one arc of each of the costs
−x, x, and y. Hence, its total cost must be x, which implies that each of the arcs
(5, 3) and (4, 1) has cost −x. Now, the tour H3 = (1, 2, 3, 5, 4, 1) has at least one arc
of each of the costs −x, x, and y, and its total cost is 3x, a contradiction.

Now, suppose that the arc (4, 5) has cost x. The tour H1 = (1, 2, 5, 4, 3, 1) has
at least one arc of each of the costs −x, x, and y. Hence, its total cost must be x,
which implies that each of the arcs (2, 5) and (3, 1) has cost −x. Similarly, the tour
H2 = (1, 2, 5, 4, 3, 1) has at least one arc of each of the costs −x, x, and y. Hence,
its total cost must be x, which implies that each of the arcs (2, 4) and (5, 3) has cost
−x. Now, the tour H3 = (1, 2, 4, 3, 5, 1) has at least one arc of each of the costs −x,
x, and y, and its total cost is 3x, a contradiction.

988 SANTOSH N. KABADI AND ABRAHAM P. PUNNEN

Case 3: y < −x. In this case, by considering the reversal H∗ of H and repeating
Case 2, we arrive at a contradiction.

This completes the proof.
Lemma 3.4. If C is DPC(3) and n ≥ 5, then no tour in G contains arcs of costs

x, y, and z for any distinct nonzero real numbers x, y, z.
Proof. If possible let G contain a tour H with arcs having costs x, y, and z.

Without loss of generality, let us assume that H = (1, 2, . . . , n, 1). From Lemma 3.2,
H does not contain any arc of cost other than x, y, and z.

Case 1: H contains a pair of nonadjacent arcs (a, a + 1) and (b, b + 1) with the
same cost. Let the cost of each of these arcs be x. If there exists some arc in H of cost
y or z that is not in {(a− 1, a), (a+ 1, a+ 2)}, then set (i, j) = (a, a+ 1). Else, since
n ≥ 5, there exists some arc in H of cost y or z that is not in {(b−1, b), (b+1, b+2)},
and therefore set (i, j) = (b, b + 1). Construct a tour H̄ from H using Scheme 2 and
the chosen arc (i, j). The tour H̄ contains arcs of costs {−x, x, y} or {−x, x, z}.
However, this contradicts Lemma 3.3.

The condition of Case 1 is always satisfied if H contains three arcs of the same
cost or n ≥ 7.

Case 2: n = 6 and the tour H contains exactly two arcs of each of the costs
x, y, z. By deleting different arcs from H, we get Hamiltonian paths of three different
costs 2x + 2y + z, 2x + y + 2z, and x + 2y + 2z. Without loss of generality, let
us assume that x < y < z. Then Lemma 3.1 implies that 2x + y + 2z = 0 and
x + 2y + 2z = −(2x + 2y + z). But this implies that x = −z and y = 0; we have a
contradiction.

Case 3: n = 5 and the tour H contains exactly two arcs of cost x that are adjacent
and exactly two arcs of cost y that are adjacent. By deleting different arcs from H,
we get Hamiltonian paths of three different costs 2x+ 2y, 2x+ y + z, and x+ 2y + z.
Without loss of generality, let us assume that x < y.

Subcase 1: x < y < z. In this case, Lemma 3.1 implies that 2x + y + z = 0 and
x+2y+z = −(2x+2y). These imply that y > 0, x = −3y, and z = 5y, and therefore
the distinct costs of Hamiltonian paths are {−4y, 0, 4y}. Suppose that the arcs of cost
x are (1, 2) and (2, 3) and the arcs of cost y are (3, 4) and (4, 5). Construct a tour Ĥ
from H using Scheme 3 with arc (2, 3) as arc (i, j). Then by Lemma 3.2 it follows
that Ĥ contains only arcs of costs x, −y, and −z. Deleting from Ĥ an arc of cost −y,
we get a Hamiltonian path of cost no more than −8y, contradicting the fact that C
is a DPC(3) matrix.

Subcase 2: x < z < y. In this case, Lemma 3.1 implies that 2x + 2y = 0, which
implies that x = −y. We thus have a contradiction.

Subcase 3: z < x < y. In this case, consider the reversal H∗ of H which sat-
isfies the condition of Subcase 1, a contradiction. This completes the proof of the
lemma.

Lemma 3.5. If C is DPC(3), then no tour in G contains arcs of cost 0, x, and
y, where x and y are nonzero values with |x| �= |y|.

Proof. Suppose that G contains a tour H with arcs of costs 0, x, and y. From
Lemma 3.2, no arc in H can have cost other than 0, x, or y. By deleting different
arcs from H, we can generate Hamiltonian paths of distinct costs C(H), C(H) −
x, C(H) − y. Without loss of generality, let us assume that x < y.

If 0 < x < y, then C(H)− y < C(H)− x < C(H). Then Lemma 3.1 implies that
C(H) − x = 0 or C(H) = x, which is impossible.

If x < y < 0, then Lemma 3.1 implies that C(H) − y = 0 or C(H) = y, which is
again impossible.

TSP WITH TWO OR THREE DISTINCT TOUR VALUES 989

If x < 0 < y, then Lemma 3.1 implies that C(H) = 0 and hence C(H)− y = −y,
which (by Lemma 3.1) equals −C(H) + x = x, a contradiction. This proves the
result.

Lemma 3.6. If C is a DPC(3) skew-symmetric matrix with more than three
distinct values of nondiagonal elements and n ≥ 5, then no tour in G contains arcs
of cost 0, x, and −x for any positive value x.

Proof. Suppose G contains a tour H with arcs with costs 0, x, and −x for some
positive value x. Lemma 3.2 implies that no arc in H can have cost other than 0, x,
or −x. We can generate from H Hamiltonian paths of distinct costs C(H)−x, C(H),
and C(H) + x. Lemma 3.1 therefore implies that C(H) = 0, and therefore H con-
tains an equal number (say α) of arcs of values x and −x. Since C contains more
than three distinct values of nondiagonal elements, there exists an arc (s, t) in G of
some value y /∈ {−x, 0, x}. It is easy to see that we can construct from H using
Scheme 1, either arc (s, t) or arc (t, s) as arc (i, j), and a proper choice of �, a Hamil-
tonian path containing either arcs of costs x,−x, y or arcs of costs 0, x, y. In either
case, we arrive at a contradiction using Lemma 3.3 or Lemma 3.5. This proves the
lemma.

Theorem 3.7. If C is an n × n skew-symmetric DPC(3) matrix where n ≥ 5,
then the number of distinct values of nondiagonal elements of C is no more than
three.

Proof. If possible let C be an n × n skew-symmetric DPC(3) matrix with n ≥ 5
and more than three distinct values of nondiagonal elements. Then it will contain
nondiagonal elements of four distinct values of the type {−x, x,−y, y} for some posi-
tive distinct values x and y. It is easy to see that G contains a tour H with at least
two arcs of distinct costs.

If H contains three arcs of distinct costs, we have a contradiction by one of
Lemmas 3.3, 3.5, 3.5, and 3.6.

Suppose that H contains exactly two arcs of distinct costs, say α and β. Since
n ≥ 5, at least three of the arcs will have same cost, say α. If β �= −α, we can
construct a tour H1 as in the proof of Lemma 3.4, containing arcs of costs α,−α, β. If
β = −α, then again we can construct a tour in G containing α,−α, γ for some γ such
that |γ| �= |α|. In either case we obtain a contradiction to Lemma 3.3. This proves
the theorem.

We shall now give polynomially testable characterizations of DPC(3) and DTC(3)
matrices. For this, we need a characterization of a special class of skew-symmetric
DTC(3) matrices with nondiagonal elements 0, x, − x for some positive x such that
(i) the three distinct values of tour costs are {−x, 0, x} and (ii) every tour of cost
x contains precisely one arc of cost x and the remaining arcs of cost 0. (By skew-
symmetry, it follows that the same is true for −x.) We call such a DTC(3) matrix
an elementary DTC(3) matrix. The following property of tours associated with a
DTC(3) matrix is useful in characterizing this class of matrices.

Lemma 3.8. If C is an elementary DTC(3) matrix with nondiagonal elements
0, x, and −x for x �= 0, then no tour in G has two adjacent arcs of cost x or two
adjacent arcs of cost −x.

Proof. If possible, let H be a tour in G where at least two arcs of cost x are
adjacent in H. Without loss of generality assume that H contains the path 1− 2− 3
and c12 = c23 = x. Let � and t be two nodes in G such that arcs (�, 1) and (3, t) are
in H. Let P (t, �) denote the path from t to � in H, and let C(P (t, �)) = θ. Since C is
an elementary DTC(3) matrix, C(H) = 0. Let H1 be the tour obtained from H by

990 SANTOSH N. KABADI AND ABRAHAM P. PUNNEN

reversing the path 1 − 2 − 3 (Scheme 4). Then

(3.1) C(H) = 2x + θ + c�1 + c3t = 0

and

(3.2) C(H1) = −2x + θ + c1t + c�3 = 0.

From (3.1) and (3.2) we have

(3.3) 4x = c1t + c�3 − c�1 − c3t.

Since elements of C are x,−x, or 0, from (3.3) we have c1t = c�3 = x and c�1 = c3t =
−x, and hence from (3.1), θ = 0. Now construct a tour H2 from H by reversing arc
(1, 2) (Scheme 2). We have

(3.4) C(H2) = −2x + c13 + c�2 = 0.

From (3.4), c13 = c�2 = x. Now the tour � − 2 − 3 − 1 − t − P (t, �) has cost 2x, a
contradiction to the fact that C is an elementary DTC(3) matrix.

Because we are dealing with skew-symmetric matrices, if at least two arcs of
cost −x are adjacent in H, then using the reversal of H in place of H in the above
argument, we get a contradiction. This completes the proof.

An immediate consequence of Lemma 3.8 is that if the cost matrix C is an ele-
mentary DTC(3) matrix, then for any node i of G, each arc coming into i has cost in
{0, α} for some α ∈ {x,−x}. Otherwise, if there exist arcs (i, j), (i, t) with cij = x
and cit = −x, then any tour containing the path t − i − j will violate Lemma 3.8.
This property is crucial to the proof of our characterization of elementary DTC(3)
matrices. We summarize the matrix version of this property in the following corollary.

Corollary 3.9. If C is an elementary DTC(3) matrix, then no row (or column)
contains both x and −x.

Theorem 3.10. A skew-symmetric cost matrix C with nondiagonal elements
0, x, − x for some x > 0 is an elementary DTC(3) matrix if and only if there
exist some r ∈ N and a nonempty proper subset S of N − {r} such that for any
i, j ∈ {1, 2, . . . , n}, i �= j,

cij =

⎧⎨
⎩

α
−α
0

if i ∈ S and j = r,
if i = r and j ∈ S,
otherwise

for α ∈ {x,−x}.
Proof. Let C be a skew-symmetric with nondiagonal elements 0, x, −x for some

x > 0. If C satisfies the condition of the theorem, then consider any tour H in G.
Let the arcs in H incident to node r be {(i, r), (r, j)}. If {i, j} ⊆ S or {i, j} ∩ S = ∅,
then C(H) = 0. If |{i, j} ∩ S| = 1, then for some α ∈ {x,−x}, C(H) = α and the
tour contains precisely one arc of cost α and the other arcs of cost 0. Thus, C is an
elementary DTC(3) matrix.

Conversely, suppose C is an elementary DTC(3) matrix. It follows from Corol-
lary 3.9 that for each i ∈ V (G), the cost of each outgoing arc of node i belongs
to {0, α}, and the cost of each incoming arc of node i belongs to {0,−α} for some
α ∈ {x,−x}. Thus we can renumber the nodes such that for the corresponding re-
ordering of the rows and columns of C, the modified matrix (which we shall also

TSP WITH TWO OR THREE DISTINCT TOUR VALUES 991

denote by C for convenience) has the form such that

C =

⎛
⎝ O1 O2 A

O3 O4 O5

−A O6 O7

⎞
⎠ ,

where O2, O3, O5, O6 are matrices with all entries zero; O1, O4, O7 are matrices with
all nondiagonal entries zero; and A is a matrix with all entries 0, x or all entries 0,−x
and with no row or column with all zero entries. For definiteness, we assume without
loss of generality that entries of A are 0, x. Let the columns of O1 be indexed by set
S1 = {1, 2, . . . , p}, columns of O2 by set S2 = {p+1, p+2, . . . , p+ q}, and columns of
A by set S3 = {p + q + 1, p + q + 2, . . . , n}. If S2 = ∅, then the matrix A has at least
one zero element. For if A has no zero element, then by subtracting x from each row
in S1 and adding x to each column in S1, we can reduce all the nondiagonal elements
of the matrix to zero, and hence C is a DTC(1) matrix, a contradiction. If A has
exactly one row or one column, then C is of the required type. Thus A has at least
two rows and columns.

Case 1: A contains at least one zero entry. Then there exist i ∈ S1, j ∈ S3

such that cij = 0, and there exist z ∈ S1 and t ∈ S3 such that z �= i, t �= j, and
cit = czj = x. Now construct a tour containing the path z − j − i − t. If C(H) = x
or −x, we have a contradiction to the fact that C is an elementary DTC(3) matrix.
Thus C(H) = 0. Now construct the tour Ĥ from H by reversing arc (i, j) (Scheme
2). Since czi = cjt = 0, C(Ĥ) = −2x, a contradiction.

Case 2: All entries of A are x. In this case S2 �= ∅. Choose i ∈ S2 and t, z ∈
S3; t �= z. Then c1,i = czi = 0 and c1,t = c2,z = x. Construct a tour H in G
containing the path 2 − z − i − 1 − t. If C(H) = x or −x, we have a contradiction.
Thus C(H) = 0. Construct a tour Ĥ from H by reversing the path z − i − 1. Then
C(Ĥ) = −2x, a contradiction. This completes the proof.

Theorem 3.11. Let C be a skew-symmetric n× n cost matrix corresponding to
the complete digraph G on node set N = {1, 2, . . . , n}, where n ≥ 5. Then C is a
DPC(3) matrix if and only if one of the following holds:

(1) C is a DTC(1) matrix with nondiagonal elements {0, x,−x} for some x > 0.
(2) C is an elementary DTC(3) matrix.
Proof. If C satisfies any one of the two conditions of the theorem, then it can

be readily verified that the distinct values of costs of Hamiltonian paths in G are
{x,−x, 0}.

Conversely suppose that C is a skew-symmetric DPC(3) matrix with n ≥ 5. Then
C contains at least two distinct elements, and by Theorem 3.7 it does not contain
more than three distinct elements. Thus the distinct elements of C are either of the
form x,−x or of the form 0, x,−x for some x > 0, and the cost of each tour and
Hamiltonian path in G is of the form px for some integer p.

If C is a DTC(1) matrix, then by Corollary 2.2 it follows that C must contain
nondiagonal elements of values x,−x, 0. By Corollary 2.7, C cannot be a DTC(2)
matrix.

Suppose that C is a DTC(k) matrix for some k ≥ 3. Choose a tour H in G of
cost px with largest possible value of p. The tour H must contain at least one arc of
cost x.

Case 1: p = n. The tour H contains only arcs of values x. Hence, there exists a
Hamiltonian path of cost (n − 1)x. Choose any arc (i, j) in H and construct a new
tour H̄ using Scheme 2. The new tour has arcs of cost x,−x and has a total cost of

992 SANTOSH N. KABADI AND ABRAHAM P. PUNNEN

p̄x for some (n−2) ≥ p̄ ≥ (n−6) ≥ −1 (since n ≥ 5). Hence, there exist Hamiltonian
paths of costs (p̄− 1)x, (p̄+ 1)x. If 0 ≤ p̄ < n− 2, then we have Hamiltonian paths of
four distinct costs −(n−1)x,−(p̄+1)x, (p̄+1)x, (n−1)x. If p̄ = n−2 or −1, then we
have Hamiltonian paths of four distinct costs −(n− 1)x,−(p̄− 1)x, (p̄− 1)x, (n− 1)x.
In either case, we have contradiction to the fact that C is a DPC(3) matrix.

Case 2: 2 ≤ p < n. In this case, there exist Hamiltonian paths of four distinct
costs −(p+α)x,−(p−1)x, (p−1)x, (p+α)x, where α = 1 if the tour H contains arcs
of cost −x and α = 0 if it contains arcs of cost 0. We thus have a contradiction.

Case 3: p = 1. By Lemma 3.1, C must be a DTC(3) matrix with distinct values
of tour costs 0,±x. If there exist tours of cost x containing arcs of costs −x and 0,
then since such a tour contains an arc of cost x, we get Hamiltonian paths of costs 0,
±x,±2x, contradicting the fact that C is a DPC(3) matrix. Suppose a tour of cost x
contains an arc of cost −x. Then there exist Hamiltonian paths of costs 0, ± 2x. In
this case, if any tour of cost 0 contains an arc of cost x or −x, or if any tour of cost
x contains an arc of cost 0, then we get Hamiltonian paths of costs ±x, contradicting
the fact that C is a DPC(3) matrix. Hence, every tour of cost 0 contains all arcs of
cost 0, and every tour of cost x contains only arcs of cost ±x. Choose an arc (i, j) of
cost 0 and contract it in G to a pseudonode “0” (i.e., delete nodes i and j from G,
add the new node “0,” and for every node z, z �= i, j, 0 add an arc (z, 0) with cost
equal to czi and an arc (0, z) with cost equal to cjz.) Then in any tour in the resultant
digraph if we replace the pseudonode “0” by the arc (i, j), we get a tour in the original
digraph of the same cost and containing the arc (i, j) of cost 0. Since every arc in the
resultant digraph lies in some tour, all the arcs in the resultant digraph therefore have
cost 0. Since C is skew-symmetric, this implies that all the nondiagonal elements of
C are zero, a contradiction. Hence, every tour in G of cost x contains only one arc of
cost x and all other arcs of cost 0. Thus, C is an elementary DTC(3) matrix. This
proves the theorem.

Corollary 3.12. For any integer n ≥ 6, an n×n skew-symmetric matrix C is a
DTC(3) matrix if and only if there exists an r ∈ {1, 2, . . . , n} such that the r-reduced
submatrix of C is an elementary DTC(3) matrix.

Proof. If an r-reduced submatrix of C is an elementary DTC(3) matrix, then
by Theorem 3.11, this r-reduced submatrix is a DPC(3) matrix, and therefore, by
Theorem 2.1, C is a DTC(3) matrix.

Conversely, suppose that C is a DTC(3) matrix. Let Ĉ and C0 be its reduced,
(i.e., n-reduced) matrix and submatrix, respectively. Then by Theorem 2.1, C0 is a
DPC(3) matrix. Hence, it satisfies condition (i) or condition (ii) of Theorem 3.11. If
C0 is an elementary DTC(3) matrix, then we have the desired result with r = n. Else,
suppose C0 is a DTC(1) matrix with nondiagonal elements {0, x,−x} for some x > 0.
Then C0 has the structure specified in Corollary 2.2 for some proper nonempty subset
S of {1, 2, . . . , n−1}. It is easy to see that for any r ∈ {1, 2, . . . , n−1}, the r-reduced
matrix of Ĉ (which is the same as the r-reduced matrix of C) is an elementary DTC(3)
matrix. This proves the result.

4. Special asymmetric TSPs. In this section we consider some special ATSPs
that can be solved as one or more symmetric TSPs of the same size. The digraph G
in this section is not necessarily complete. Note that this means that Theorem 1.1
does not hold, as it requires G to be a complete digraph, as is shown below, for a
general digraph testing if an associated cost matrix C is DTC(1) is NP-hard.

Two cost matrices C and D associated with the same digraph G are said to be
tour value equivalent if and only if C(H) = D(H) for every tour H in G. Clearly, C

TSP WITH TWO OR THREE DISTINCT TOUR VALUES 993

and D are tour value equivalent if and only if C − D is a DTC(1) matrix with all
tours costs equal to zero.

For arbitrary graphs, testing tour value equivalence of two cost matrices is NP-
hard. To see this, suppose a polynomial time oracle exists which, with input C,D and
the associated digraph G, tells us “yes” if the matrices are tour value equivalent and
“no” if they are not. For a given digraph G, let C and D be associated cost matrices
with cij = 0 and dij = 1 for each (i, j) ∈ E(G). Invoke the oracle with C,D, and G as
input. If the oracle answers “yes,” then G has no Hamiltonian tours, else G contains
at least one tour. Since testing Hamiltonicity of a digraph is NP-hard, testing tour
value equivalence is also NP-hard. It may be noted that, given two cost matrices C
and D and a digraph G, the decision problem “Are C and D tour value equivalent?”
is not known to be in NP. But this problem belongs to the class co-NP.

In spite of this negative result, for a large class of (di)graphs, called SC-Hamiltonian
graphs [12], tour value equivalence can be tested in polynomial time. A digraph G, not
necessarily complete, is said to be separable constant Hamiltonian (SC-Hamiltonian)
if and only if it is Hamiltonian and, for any DTC(1) matrix associated with it, there
exist mappings a, b : V (G) → � such that cij = ai + bj for all (i, j) in E(G). An
undirected graph G is said to be SC-Hamiltonian if and only if it is Hamiltonian
and for any associated DTC(1) matrix C there exists a mapping a : V (G) → �
such that cij = ai + aj for all (i, j) in E(G). Obviously, testing whether a given
(di)graph is SC-Hamiltonian is NP-hard. Kabadi and Punnen [12] identified a large
class of graphs and digraphs that are SC-Hamiltonian. This class includes complete
(di)graphs, complete bipartite (di)graphs, etc.

Theorem 4.1. Two distance matrices C and D associated with an SC-Hamiltonian
digraph are tour value equivalent if and only if there exist mappings a, b : V (G) → �
such that cij − dij = ai + bj for all (i, j) in E(G), and

∑n
i=1(ai + bi) = 0.

Proof. By definition, C and D are tour value equivalent if and only if C(H) =
D(H) for every tour H in G, which is true if and only if (C −D)(H) = 0 for every
tour H in G. Let Q = C −D. Since G is SC-Hamiltonian, Q(H) = 0 for every tour
H in G if and only if there exist mappings a, b : V (G) → � such that qij = ai + bj
and

∑n
i=1(ai + bi) = 0.

Since ai’s and bj ’s of Theorem 4.1 can be obtained in O(n2) time, the tour value
equivalence of two cost matrices associated with an SC-Hamiltonian graph can be
verified in O(n2) time.

It is easy to show that tour value equivalence is reflexive, symmetric, and transitive
and hence an equivalence relation. Thus tour value equivalence partitions the space
of cost matrices of a digraph G into equivalence classes. It can be verified that each
of these equivalence classes is a convex set.

Let C be a cost matrix associated with a symmetrical digraph G. Recall from
Section 1 that C is Hamiltonian symmetrical if and only if C(H) = C(H∗) for every
tour H in G, where H∗ is the reversal of H. Since C(H∗) = CT (H), C is Hamiltonian
symmetrical if and only if C and CT are tour cost equivalent. Recently, Halskau [9]
showed that when G is complete, C is Hamiltonian symmetrical if and only if there
exist mappings a, b : V (G) → � such that cij = ai + bj + dij , where D = (dij)
is a symmetric matrix. It can be verified that this characterization extends to all
symmetrical SC-Hamiltonian digraphs. Halskau [9] provided other characterizations
of Hamiltonian symmetrical cost matrices for a complete digraph, as given in the
following theorem.

Theorem 4.2 (see [9]). Let C be any n×n cost matrix associated with a complete
digraph G. Then the following statements are equivalent:

994 SANTOSH N. KABADI AND ABRAHAM P. PUNNEN

(1) C is Hamiltonian symmetrical
(2) C = K + D, where K is a DTC(1) matrix and D is a symmetric matrix.
(3) Sk(C) is symmetrical for any node k, where Sk(C) is the savings matrix

associated with C and the (i, j)th element of Sk(C) is cik + ckj − cij.
(4) cij − cji = 1

n (Ri(C) − Ki(C)) − (Rj(C) − Kj(C)) for all i, j, i �= j, where
Ri(C) is the ith row sum of C and Ki(C) is the ith column sum on C.

It may be noted that Sk(C), the savings matrix associated with C, is the neg-
ative of k-reduced matrix of C discussed in section 2. We now give another simple
characterization of Hamiltonian symmetrical matrices.

Theorem 4.3. Let C be a cost matrix associated with a symmetrical digraph
G. Then C is Hamiltonian symmetrical if and only if C and A = 1

2 (C + CT) are
tour value equivalent. If, in addition, G is SC-Hamiltonian, then the Hamiltonian
symmetry of C can be tested in O(n2) time.

Proof. Note that C is Hamiltonian symmetrical if and only if C(H) = CT (H)
for all tours H in G. Since any matrix C can be written as C = 1/2(C + CT) +
1/2(C−CT), the proof of the first part of the theorem follows. Since for symmetrical
SC-Hamiltonian graphs tour value equivalence can be tested in O(n2) time, the proof
of the second part follows.

The characterization above is valid for all symmetrical digraphs. But for digraphs
that are not SC-Hamiltonian, verification of the condition above is difficult. In fact,
for arbitrary symmetrical digraphs, it can be shown that this verification is NP-hard.
The characterization of Theorem 4.3 has important applications in approximation
algorithms.

The arc weights of G are said to satisfy the τ -triangle inequality if and only if
for any three nodes i, j, and k of G, τ(cij + cjk) ≥ cik [1]. When τ = 1, τ -triangle
inequality reduces to the triangle inequality. For 1/2 ≤ τ < 1, τ -triangle inequality
is a restriction of the triangle inequality, and for τ > 1 it is a relaxation of the
triangle inequality. We now consider a further relaxation of the τ -triangle inequality.
A matrix C satisfies weak τ -triangle inequality if and only if, for any triplet (i, j, k)
with i �= j �= k,

(4.1) τ(cij + cji + cjk + ckj) ≥ cki + cik.

In the above definition, if τ = 1, we say that C satisfies weak triangle inequality.
Lemma 4.4. Let C be a cost matrix and A = (C + CT)/2.
(1) The matrix A satisfies τ -triangle inequality if and only if the matrix C satisfies

weak τ -triangle inequality.
(2) If C satisfies τ -triangle inequality, then it satisfies weak τ -triangle inequality.
(3) If C is Hamiltonian symmetrical, then C satisfies weak triangle inequality if

and only if C satisfies triangle inequality.
Proof. Consider the triplet (i, j, k) corresponding to three nodes of G. Then A

satisfies τ -triangle inequality if and only

τ(aij + ajk) ≥ aik ⇔ τ

(
cij + cji

2
+

cjk + ckj
2

)
≥ cik + cki

2

⇔ τ(cij + cji + cjk + ckj) ≥ cki + cik.

This completes the proof of part (1). If C satisfies τ -triangle inequality, then

(4.2) τ(cij + cjk) ≥ cik

TSP WITH TWO OR THREE DISTINCT TOUR VALUES 995

and

(4.3) τ(ckj + cji) ≥ cki.

Adding inequalities (4.2) and (4.3), we get the proof of (2).
Let us now prove part (3). Since C is Hamiltonian symmetrical, we have C =

A+X, where X = (C−CT)/2 is a DTC(1) skew-symmetric matrix. Thus there exist
a1, a2, . . . , an such that xij = ai − aj . (See the discussion after Theorem 1.1.) Hence
the elements of X satisfy the triangle equality. Now suppose that C satisfies the weak
triangle inequality. Then by part (1), A satisfies the triangle inequality. Thus A+X
(and hence C) satisfies triangle inequality. The converse of part (3) follows from part
(2) of the lemma.

It may be noted that from Lemma 4.4, if C satisfies τ -triangle inequality, then
A = (C + CT)/2 also satisfies τ -triangle inequality. Further, part (3) of the above
lemma says for Hamiltonian symmetrical matrices, the τ -triangular inequality and
weak τ -triangular inequality are equivalent if τ = 1. But we like to point out that for
τ �= 1 this equivalence need not hold even for Hamiltonian symmetrical matrices.

The best known performance bound for a polynomial time ε-approximation algo-
rithm for the metric ATSP is ε = 4/3 log3 n ≈ 0.842 log2 n [13]. When C is Hamilto-
nian symmetrical and satisfies triangle inequality, we can obtain a 3/2-approximate so-
lution for the ATSP by applying Christofides algorithm on the cost matrix (C+CT)/2.
Thus Lemma 4.4 and Theorem 4.3 extend the applicability of the Christofides bound
beyond the class of symmetric matrices. It may be noted that Lemma 4.4 need not
hold for the symmetric matrix D obtained by Halskau [9] if we want to use D in place
of A. When the edge costs satisfy the τ -triangle inequality, Bender and Chekuri [2]
obtained a 4τ -approximation algorithm, and Andreae and Bandelt [1] obtained a
(3τ2/2 + τ/2)-approximation algorithm for the STSP. Thus in view of Theorem 4.3
and Lemma 4.4, these results extend to Hamiltonian symmetric matrices satisfying a
weak τ -triangle inequality.

Another application of Theorem 4.3 is when the arc costs satisfy the weak range
inequality, i.e.,

(4.4) max
ij

{cij + cji} ≤ τ min
ij

{cij + cji},

where τ > 1. The concept of weak range inequality is a generalization of the range
inequality considered by Kumar and Rangan, which is given by

(4.5) max
ij

cij ≤ τ min
ij

cij .

Kumar and Rangan [17] introduced the above inequality for τ = 2 + ε, ε ≥ 0.
For STSP satisfying range inequality with τ = 2 + ε and ε ≥ 0, they showed that
the Christofides algorithm produces a 4/3-optimal solution when ε = 0, and the cycle
cover algorithm [4] produces a 4+ε

3 solution for all ε ≥ 0.
Lemma 4.5. Let C be a cost matrix and A = (C + CT)/2.
(1) The matrix A satisfies range inequality if and only if C satisfies weak range

inequality.
(2) If C satisfies range inequality, then it satisfies weak range inequality.
Proof. The proof of part (1) follows from the definition. Proof of part (2) follows

from the inequality:

max
ij

{cij + cji} ≤ 2 max
ij

{cij} ≤ 2τ min
ij

{cij} ≤ τ min
ij

{cij + cji}.

996 SANTOSH N. KABADI AND ABRAHAM P. PUNNEN

Thus by applying the cycle cover algorithm [4] on the cost matrix A = (C+CT)/2,
we get a 4+ε

3 -approximate solution for ATSP when the cost matrix C is Hamiltonian
symmetrical and satisfies the weak range inequality for τ = 2 + ε, and ε ≥ 0. Again,
it may be noted that not all symmetric matrices D obtained in [9] satisfy the weak
range inequality even if C satisfies the weak range inequality.

For the maximization version of the TSP, the best known polynomial time ap-
proximation algorithm has a performance ratio of 2/3 for the ATSP [13] and 3/4
bound for the STSP [3]. Thus from Theorem 4.3, the maximization TSP when C is
Hamiltonian symmetrical can be approximated by the 3/4-approximation algorithm
given in [25] for the STSP. In addition, if C satisfies the triangle inequality, this bound
can be improved to 7/8 by using the algorithm of Hassin and Rubinstein [10] on the
matrix (C + CT)/2. Several polynomially solvable cases of the symmetric TSP can
be exploited (for both maximization and minimization versions) to solve the ATSP
with cost matrix C whenever 1/2(C + CT) satisfies the required conditions [3, 11].

The discussion above exploits properties of DTC(1) matrices. The next theorem
takes advantage of our characterization of skew-symmetric DTC(3) matrices. We first
state a lemma that can be easily proved.

Lemma 4.6. Let C be an n×n cost matrix associated with a symmetrical digraph
G. Then D = C −CT is a cost matrix associated with G, and for any 0 ≤ α1 < α2 <
· · · < αk for some positive integer k the following statements are equivalent:

(1) For any tour H in G, |C(H)−C(H∗)| = αi for some i ∈ {1, 2, . . . , k}, and for
any i ∈ {1, 2, . . . , k} there exists a tour H in G such that |C(H) −C(H∗)| =
αi.

(2) The set of distinct values of costs of tours in G with respect to cost matrix D
is precisely {±α1,±α2, . . . ,±αk}. Thus the number of distinct tour values in
G with respect to D is 2k if α1 > 0 and (2k − 1) if α1 = 0.

Theorem 4.7. Let C be an n × n cost matrix associated with the complete
digraph G on node set N = {1, 2, . . . , n} such that, for some x > 0, (i) every tour
H in G satisfies |C(H) − CT (H)| = 0 or x; (ii) there exists at least one tour H1 in
G with C(H1) − CT (H1) = 0; and (iii) there exists at least one tour H2 in G with
|C(H2)−CT (H2)| = x. Then a minimum (maximum) cost tour in G can be identified
by solving at the most n/2 symmetric TSPs on n nodes.

Proof. Suppose that C satisfies the condition of the theorem. Let D = C − CT .
Then by Lemma 4.6, D is a DTC(3) matrix with tour costs 0,±x. By Corollary 3.12, it
follows that there exist distinct r, � ∈ N and S ⊂ N−{r, �} such that the nondiagonal
elements of the r-reduced matrix D0 of D satisfy

d0
ij =

⎧⎨
⎩

α
−α
0

if i ∈ S and j = �,
if i = � and j ∈ S,
otherwise

for α ∈ {x,−x}. Since D is skew-symmetric, D(H) = D0(H) for any tour H in G.
Also D0(H) = ±x if and only if the subpath j − � − i of H satisfies |{i, j} ∩ S| = 1,
and these are precisely the tours that satisfy |C(H) − CT (H)| = x. We call such
a tour a type I tour, and the remaining tours type II tours. Thus for every type

II tour H, C(H) − CT (H) = 0. Let A = C+CT

2 . Then for every type I tour H,
A(H) = C(H) ± x/2, and for every type II tour A(H) = C(H).

Suppose we want to find a tour H̄ in G such that C(H̄) is minimum. Find a tour
Ĥ such that A(Ĥ) is minimum. If the tour is of type I, then the tour H̄ ∈ {Ĥ, Ĥ∗}
such that C(H̄) = A(Ĥ)− x/2 is the desired tour. (It may be recalled that Ĥ∗ is the

TSP WITH TWO OR THREE DISTINCT TOUR VALUES 997

reverse of Ĥ.) If the tour Ĥ is of type II, then we need to find a minimum cost type
I tour. This can be done as follows.

For each u ∈ S, define the matrix Au with nondiagonal elements as follows:

auij =

⎧⎨
⎩

aij −M/n
−M
aij

if i = �, j ∈ N − S − {�} or i ∈ N − S − {�}, j = �,
if i = �, j = u or i = u, j = �,
otherwise.

Let Hu be the minimum cost tour in G with respect to cost matrix Au. Then it is
easy to see that Hu is a minimum cost type I tour with respect to A containing the arc
(�, u). Choose v such that A(Hv) = min{A(Hu) : u ∈ S}. Then, Hv is a type I tour
with minimum cost with respect to A. If C(Ĥ) ≤ A(Hv)−x/2, then Ĥ is a minimum
cost tour in G with respect to C. Else H̃ ∈ {Hv, Hv∗} with C(H̃) = A(Hv) − x/2 is
a minimum cost tour in G with respect to C.

The maximization case can be proved analogously.

5. Conclusion. We have obtained an alternative characterization of DTC(2)
matrices, and our proof of validity is relatively easy. Complete characterizations of
DTC(2) matrices, skew-symmetric DTC(3) matrices, and skew-symmetric DPC(3) are
given. These characterizations leads to new polynomially solvable special cases of the
TSP. Our characterization of skew-symmetric matrices can be used to solve ATSPs
with special structures as a sequence of at most n/2 closely related STSPs. We also
identified special classes of ATSPs for which polynomial ε-approximation algorithms
exist for constant ε.

An interesting and challenging question is to study characterization of general
DTC(k) and DPC(k) matrices for k ≥ 3, and we leave this question open.

Acknowledgment. We thank the referees for their constructive comments.

REFERENCES

[1] T. Andreae and H.-J. Bandelt, Performance guarantees for approximation algorithms de-
pending on parametrized triangle inequalities, SIAM J. Discrete Math., 8 (1995), pp. 1–16.

[2] M. A. Bender and C. Chekuri, Performance guarantees for the TSP with a parameterized
triangle inequality, Inform. Process. Lett., 73 (2000), pp. 17–21.

[3] A. Barvinok, E. Kh. Gimadi, and A. I. Serdyukov, The maximum TSP, in The Traveling
Salesman Problem and Its Variations, G. Gutin and A. P. Punnen, eds., Kluwer Academic
Publishers, Boston, Chapter 12, 2002, pp. 585–604.

[4] H.-J. Böckenhauer, J. Hromkovič, R. Klasing, S. Seibert, and W. Unger, An improved
lower bound on the approximability of metric TSP and approximation algorithms for the
TSP with sharpened triangle inequality, in Proceedings of STACS 2000, Lille, France,
Lecture Notes in Comput. Sci. 1770, Springer, New York, 2000, pp. 382–394.

[5] R. Chandrasekaran, Recognition of Gilmore-Gomory traveling salesman problem, Discrete
Appl. Math., 14 (1986), pp. 231–238.

[6] E. Y. Gabovich, Constant discrete programming problems on substitution sets, Translated
from Kibernetika, 5 (1976), pp. 128–134 (in Russian).

[7] P. C. Gilmore, E. L. Lawler, and D. B. Shmoys, Well solved special cases, in The Traveling
Salesman Problem: A Guided Tour of Combinatorial Optimization, E. L. Lawler, J. K.
Lenstra, A. G. H. Rinnooy Kan, and D. B. Shmoys, eds., Wiley, New York, 1985.

[8] G. Gutin and A. Punnen, eds., The Traveling Salesman Problem and Its Variations, Kluwer
Academic Publishers, Boston, 2002.

[9] O. Halskau, Decompositions of Traveling Salesman Problems, Ph.D. Thesis, Norwegian School
of Economics and Business Administration, Bergen, Norway, 2000.

[10] R. Hassin and S. Rubinstein, A 7/8-approximation algorithm for metric max TSP, Inform.
Process. Lett., 81 (2002), pp. 247–251.

998 SANTOSH N. KABADI AND ABRAHAM P. PUNNEN

[11] S. N. Kabadi, Polynomially solvable cases of the TSP, in The Traveling Salesman Problem
and Its Variations, G. Gutin and A. P. Punnen, eds., Kluwer Academic Publishers, Boston,
2002, pp. 489–584.

[12] S. N. Kabadi and A. P. Punnen, Weighted graphs with Hamiltonian cycles of same length,
Discrete Math., 271 (2003), pp. 129–139.

[13] H. Kaplan, M. Lewenstein, N. Shafrir, and M. Sviridenko, Approximation algorithms
for asymmetric TSP by decomposing directed regular multigraphs, J. ACM, 52 (2005),
pp. 602–626.

[14] R. M. Karp, The fast approximate solution of hard combinatorial problems, in Proceedings of
6th South Eastern Conference on Combinatorics, Graph Theory and Computing, Utilitas
Mathematica, Winnipeg, 1975, pp. 15–21.

[15] A. V. Kostochka and A. I. Serdyukov, Polynomial algorithms with estimates 3/4 and 5/6
for the traveling salesman problem of the maximum, Upravlyaemye Sistemy, 26 (1985),
pp. 55–59 (in Russian).

[16] S. Krynski, Graphs in which all Hamiltonian cycles have the same length, Discrete Appl.
Math., 55 (1994), pp. 87–89.

[17] D. A. Kumar and C. P. Rangan, Approximation algorithms for the traveling salesman prob-
lem with range condition, Theoret. Inform. Appl., 34 (2000), pp. 173–181.

[18] E. L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Win-
ston, New York, 1976.

[19] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnoy Kan, and D. B. Shmoys, eds., The Traveling
Salesman Problem—A Guided Tour of Combinatorial Optimization, Wiley, Chichester,
UK, 1985.

[20] V. K. Leont’ev, Investigation of an algorithm for solving the travelling salesman problem, Zh.
Vychisl. Mat. Mat. Fiz., 5 (1973).

[21] M. Lewenstein and M. Sviridenko, A 5/8 approximation algorithm for the maximum asym-
metric TSP, SIAM J. Discrete Math., 17 (2003), pp. 237–248.

[22] A. P. Punnen, F. Margot, and S. N. Kabadi, TSP heuristics: Domination analysis and
complexity, Algorithmica, 35 (2003), pp. 111–127.

[23] M. Queyranne and Y. Wang, Hamiltonian path and symmetric travelling salesman polytopes,
Math. Program., 58 (1993), pp. 89–110.

[24] V. I. Rublinetskii, Estimates of the accuracy of procedures in the travelling salesman problem,
Comput. Math. Computers, 4 (1973), pp. 11–15 (in Russian).

[25] A. I. Serdyukov, An algorithm with an estimate for the traveling salesman problem of the
maximum, Upravlyaemye Sistemy, 25 (1984), pp. 80–86 (in Russian).

[26] S. P. Tarasov, Properties of the trajectories of the appointments problem and the travelling
salesman problem, U.S.S.R. Comput. Maths. Math. Phys., 21 (1981), pp. 167–174.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 4, pp. 999–1014

TORIC SURFACE CODES AND MINKOWSKI SUMS∗

JOHN LITTLE† AND HAL SCHENCK‡

Abstract. Toric codes are evaluation codes obtained from an integral convex polytope P ⊂ R
n

and finite field Fq . They are, in a sense, a natural extension of Reed–Solomon codes, and have
been studied recently in [V. Diaz, C. Guevara, and M. Vath, Proceedings of Simu Summer Institute,
2001], [J. Hansen, Appl. Algebra Engrg. Comm. Comput., 13 (2002), pp. 289–300; Coding Theory,
Cryptography and Related Areas (Guanajuato, 1998), Springer, Berlin, pp. 132–142], and [D. Joyner,
Appl. Algebra Engrg. Comm. Comput., 15 (2004), pp. 63–79]. In this paper, we obtain upper
and lower bounds on the minimum distance of a toric code constructed from a polygon P ⊂ R

2

by examining Minkowski sum decompositions of subpolygons of P . Our results give a simple and
unifying explanation of bounds in Hansen’s work and empirical results of Joyner; they also apply to
previously unknown cases.

Key words. toric variety, coding theory, Minkowski sum

AMS subject classifications. Primary 14G50; Secondary, 14M25, 94B27

DOI. 10.1137/050637054

1. Introduction. In [8], J. Hansen introduced the notion of a toric surface code.
Let P ⊂ R

2 be an integral convex polygon and Fq a finite field such that, after
translation, P ∩ Z

2 is properly contained in the square [0, q − 2] × [0, q − 2] with
sides of length q − 1, which we denote q−1. Then a code is obtained by evaluating
monomials with exponent vector in P ∩ Z

2 at some subset (usually all) of the points
of (F ∗

q)2. We formalize this as follows.
Definition 1.1. Let Fq be a finite field with primitive element ξ. For 0 ≤ i, j ≤

q − 2 let Pij = (ξi, ξj) in (F ∗
q)2. For each m = (m1,m2) ∈ P ∩ Z

2, let

e(m)(Pij) = (ξi)m1(ξj)m2 .

The toric code CP (Fq) over the field Fq associated with P is the linear code of block
length n = (q − 1)2 spanned by the vectors in {(e(m)(Pij))0≤i,j≤q−2 : m ∈ P ∩ Z

2}.
If the field is clear from the context, we will often omit it in the notation and simply
write CP .

The properties of these codes are closely tied to the geometry of the toric surface
XP associated with the normal fan ΔP of the polygon P . For example, intersection
theory on XP can be used to derive information about the minimum distance of
toric codes. The monomials e(m) which are evaluated to produce the generating
codewords correspond to the lattice points P ∩ Z

2 and can be interpreted as sections
of a certain line bundle on XP . In [9], J. Hansen studies several specific families of
polygons, depicted in Figure 1 (notice that some families are completely contained in
others). The minimum distance for these codes is determined by exhibiting codewords
of weight equal to a lower bound obtained from intersection theory.

∗Received by the editors May 26, 2005; accepted for publication (in revised form) June 16, 2006;
published electronically December 11, 2006.

http://www.siam.org/journals/sidma/20-4/63705.html
†Department of Mathematics and Computer Science, College of the Holy Cross, Worcester, MA

01610 (little@mathcs.holycross.edu).
‡Department of Mathematics, Texas A&M University, College Station, TX 77843-3368 (schenck@

math.tamu.edu). The work of this author was partially supported by NSF DMS 03-11142, NSA MDA
904-03-1-0006, and ATP 010366-0103.

999

1000 JOHN LITTLE AND HAL SCHENCK

q-1

2d

d
d

d

q-1

q-1

q-1

q-1

e

d

e

d

q-1

q-1

Fig. 1.

In this paper, we give upper and lower bounds on the minimum distance for toric
surface codes. Our formulas generalize the results of [9] and also provide theoretical
explanations for the some of the values tabulated in [12]. Codewords of small weight
come from sections of the corresponding line bundle that have many zeroes in (F ∗

q)2.
A natural way to try to obtain these is to consider sections that factor into products
of sections of related bundles (we will call these reducible sections in the following).
Such reducible sections come from polygons P ′ ⊆ P that decompose as Minkowski
sums of other smaller polygons. The definition of the Minkowski sum of polytopes will
be reviewed in section 2 below. In Proposition 2.3, we derive an upper bound on the
minimum distance of a toric surface code when P has a subpolygon that decomposes
as a Minkowski sum of other polygons. We then apply these methods in sections 3
and 4 to study the minimum distances of a number of examples, including all toric
surface codes from smooth toric surfaces X with rank Pic(X) = 2 or 3.

In section 5, we derive a statement complementary to the upper bound of Propo-
sition 2.3, giving a lower bound on the minimum distance of toric codes constructed
from Minkowski-decomposable polygons. The Hasse–Weil bound on the number of
Fq-rational points on a curve shows that for any given polygon P there exists a lower
bound on q such that reducible sections of the corresponding line bundle necessarily
have more zeroes in (F ∗

q)2 than irreducible sections. For precise statements here, see
Proposition 5.2 and Corollary 5.3 below. This leads to our main theorem.

Theorem 1.2. Let Fq be a finite field, and let P ⊂ R
2 be an integral convex

polygon strictly contained in q−1. Assume that q is sufficiently large (i.e., the bound
(1) from Proposition 5.2 applies). Let � be the largest positive integer such that there
is some P ′ ⊆ P that decomposes as a Minkowski sum P ′ = P1 + P2 + · · · + P� with
nontrivial Pi. Then there exists some P ′ ⊆ P of this form such that

d(CP (Fq)) ≥
�∑

i=1

d(CPi
(Fq)) − (�− 1)(q − 1)2.

We then apply this result to some additional, less straightforward, examples.
To relate our approach to other previous work, we note that two very general

TORIC SURFACE CODES AND MINKOWSKI SUMS 1001

Fig. 2.

methods for obtaining bounds on the minimum distance of codes obtained from a
higher dimensional variety X appear in recent work of S. Hansen [10]. The first
method requires finding the multipoint Seshadri constant for the line bundle whose
sections are evaluated to obtain the code. The second method consists of covering
the Fq-rational points of X with curves and then counting points on these curves via
inclusion-exclusion; of course, this depends on being able to find “good” curves on
X. The methods we introduce here depend on finding sections which factor, so they
relate to the second technique.

The methods we use here make use of properties of toric surfaces in an essential
way. First, a key fact about complete toric varieties is that all the higher cohomology of
a globally generated line bundle vanishes. The lattice points in a polygon correspond
to global sections of such a line bundle, so the Riemann–Roch theorem provides a
relation (see section 5) between lattice points and intersection theory. We also make
use of the Hasse–Weil bounds on the number of Fq-rational points of a curve; to apply
the formula we need the arithmetic genus of an irreducible section. The adjunction
formula [7, p. 91] gives the arithmetic genus in terms of polytopal data.

2. Minkowski sums. In this section, we give a brief discussion of the Minkowski
sum operation, referring to Ziegler [17] for more details. For facts on toric varieties,
our basic references are Fulton [7] and Sturmfels [16].

Definition 2.1. Let P and Q be two subsets of R
n. The Minkowski sum is

obtained by taking the pointwise sum of P and Q:

P + Q = {x + y | x ∈ P, y ∈ Q}.

We write conv to denote the convex hull of a set of points: the set of all convex
combinations of the points.

Example 2.2. Let Q be the square conv{(0, 0), (1, 0), (0, 1), (1, 1)}, and let P be
the triangle conv{(0, 0), (1, 2), (2, 1)}. Then

P + Q = conv{(0, 0), (1, 0), (3, 1), (3, 2), (2, 3), (1, 3), (0, 1)},

as shown in Figure 2.
If f is a polynomial in two variables,

f(x, y) =
∑

(a,b)∈Z
2
≥0

cabx
ayb,

then

NP (f) = conv{(a, b) : cab �= 0}

1002 JOHN LITTLE AND HAL SCHENCK

is called the Newton polygon of f . It is a direct consequence of the definition that
if f, g are two polynomials, then NP (fg) = NP (f) + NP (g), where the sum on the
right is the Minkowski sum.

Similarly, in the language of toric surfaces, it is easy to see that if P1 and P2 are
polygons, then the normal fan ΔP1+P2 is the common refinement of the fans ΔP1 and
ΔP2

. Thus, the lattice points in P1 + P2 correspond to a basis of the global sections
of a certain line bundle O(D) on the toric surface XP1+P2

, and the lattice points in
P1 and P2 correspond to bases of global sections for two other line bundles O(D1)
and O(D2) on XP1+P2 (see [7, p. 67]). If D1 and D2 are divisors on the toric surface
X corresponding to polygons P1 and P2 with s1 ∈ H0(O(D1)) and s2 ∈ H0(O(D2)),
then

s1s2 ∈ H0(O(D1)) ⊗H0(O(D2)) ⊆ H0(O(D1 + D2)),

which corresponds to the Minkowski sum P1 + P2. (Indeed, if the Di are globally
generated, then H0(O(D1))⊗H0(O(D2)) = H0(O(D1 +D2)); see [7, p. 69].) A good
exercise for toric experts is to work this out for the previous example.

A first observation concerning the connection between the minimum distance of
CP and Minkowski sums is the following.

Proposition 2.3. Let
∑�

i=1 Pi ⊆ P , and let X be the toric surface corresponding
to P . Let mi be the maximum number of zeroes in (F ∗

q)2 of a section of the line bundle
on X corresponding to Pi, and assume that there exist sections si with sets of mi zeroes
that are pairwise disjoint in (F ∗

q)2. Then

d(CP) ≤
�∑

i=1

d(CPi) − (�− 1)(q − 1)2.

Proof. By definition we have d(CPi) = (q− 1)2 −mi. As noted above, NP (fg) =
NP (f) + NP (g), so the product s = s1s2 · · · s� is a section of the line bundle O(D)

corresponding to
∑�

i=1 Pi. Moreover, s has exactly m = m1 + · · ·+m� zeroes in (F ∗
q)2

by hypothesis. There is a codeword of the toric code CP with weight

w = (q − 1)2 −m =

�∑
i=1

d(CPi) − (�− 1)(q − 1)2,

obtained by evaluating s. Hence

d(CP) ≤
�∑

i=1

d(CPi) − (�− 1)(q − 1)2,

which is what we wanted to show.
Of course, the proof of the proposition can be extended to handle the case where

pairs of the si have common zeroes in (F ∗
q)2. However, the resulting bounds on d(CP)

will involve the inclusion-exclusion principle and are harder to state in that generality.
This upper bound also extends immediately to m-dimensional toric codes for all m ≥ 2
(that is, toric codes constructed from polytopes P ⊂ R

m).

3. First results and examples. In this section we will present several results
on minimum distances of toric codes via Minkowski sum decompositions. These cases
can be handled without using Theorem 1.2, and hence involve no hypothesis on q
other than that needed to ensure P ⊂ q−1.

TORIC SURFACE CODES AND MINKOWSKI SUMS 1003

Fig. 3.

Proposition 3.1. Let P = conv{(0, 0), (a, 0)} be a line segment (a polygon of
dimension one). Then for all q > a + 1, d(CP (Fq)) = (q − 1)2 − a(q − 1).

Proof. The corresponding codes CP are products of q−1 copies of a Reed–Solomon
code, and the formula for the minimum distance follows directly. Note that P is also
a Minkowski sum of a line segments of length 1.

Our next result deals with the codes CP from triangles, as in Figure 3.
Proposition 3.2. Let P be the integral triangle P = conv{(0, 0), (a, 0), (b, c)}.

If a, b, c ≥ 0 and a ≥ b + c, then for all q > a + 1 (so P ⊂ q−1),

d(CP (Fq)) = (q − 1)2 − a(q − 1).

Proof. Note that CP may be viewed as a subcode of the code CΔa , where

Δa = conv{(0, 0), (a, 0), (0, a)}.

The toric surface corresponding to the triangle Δa is the a-tuple Veronese embedding
of P

2. By a result of Serre [15], for all q the curve of degree a in P
2 having the

maximum possible number of Fq-rational points is a reducible curve composed of a
concurrent lines. When the point of intersection of the a lines lies at infinity or on one
of the coordinate axes in the affine plane, then the corresponding curve has a(q − 1)
Fq-rational points in (F ∗

q)2. Hence d(CP) ≥ d(CΔa
) = (q − 1)2 − a(q − 1). Letting

P ′ = conv{(0, 0), (a, 0)}, Proposition 2.3 shows that d(CP) ≤ (q − 1)2 − a(q − 1) as
well.

The code C(Δa) is also considered in [9], where the result d(CΔa) = (q − 1)2 −
a(q − 1) is obtained in a different way.

If P ′ is any integral triangle obtained from P by a unimodular integer affine
transformation (so P and P ′ are lattice equivalent polygons), then the same formula
applies to give d(CP ′). This follows from the observation that if P and P ′ are lattice
equivalent polygons, then CP and CP ′ are monomially equivalent codes [13]. Propo-
sitions 3.1 and 3.2 give a large collection of “building blocks” to use in constructing
other polygons. We illustrate this by considering a standard class of toric surfaces
and toric codes studied in [9].

Example 3.3. If P = conv{(0, 0), (d, 0), (0, e), (d, e + rd)} for some r ∈ N, then P
determines a Hirzebruch surface, denoted Hr. We assume e+dr < q−1. The polygon
P can be written as the Minkowski sum of a line segment L = conv{(0, 0), (0, e)} and
a triangle T = conv{(0, 0), (d, 0), (d, rd)}; see Figure 4. We now apply our results
to this P = T + L to determine the minimum distance of d(CP). The triangle
T is lattice equivalent to conv{(0, 0), (rd, 0), (0, r)}. By Proposition 3.2, for all q,
d(CT) = (q−1)2−rd(q−1). (The reducible sections of the line bundle corresponding

to T defined by xd
∏rd

j=1(y − αj), αj distinct in F
∗
q , have exactly rd(q − 1) zeroes in

1004 JOHN LITTLE AND HAL SCHENCK

Fig. 4.

(F ∗
q)2. The xd corresponds to a trivial Minkowski summand and does not contribute

to the minimum distance.) Similarly, Proposition 3.1 shows d(CL) = (q−1)2−e(q−1).
Thus, by Proposition 2.3,

d(CP) ≤ (q−1)2−e(q−1)+(q−1)2−rd(q−1)− (q−1)2 = (q−1)2− (rd+e)(q−1).

The polygon P is a subset of a polygon lattice equivalent to the equilateral triangle
Δrd+e. Hence CP is monomially equivalent to a subcode of CΔrd+e

. It follows that
the opposite inequality also holds, and hence

d(CP) = (q − 1)2 − (rd + e)(q − 1).

Theorem 1.5 of [9] gives d(CP) for the codes from the Hirzebruch surfaces Hr as
the minimum of two terms. Since the first term given there is always larger than the
second if r > 0, the minimum distance we obtain from the Minkowski sum decompo-
sition agrees exactly with the value given in [9]. If r = 0, then the triangle T reduces
to a horizontal line segment, and the Minkowski sum T +L is a d× e rectangle. The
corresponding toric code has minimum distance

d(CP) = (q − 1)2 − (d + e)(q − 1) + de

(see [9]). The minimum weight codewords come from evaluating reducible sections

d∏
i=1

(x− αi)

e∏
j=1

(y − βj),

where the αi are distinct and the βj are distinct in F
∗
q . Note that this is one case

where the factors have common zeroes, so Proposition 2.3 does not apply directly.
For future reference, we note that by a result of Arkinstall [1], the only lattice

polygons with no interior lattice points are triangles lattice equivalent to Δ2 or to
conv{(0, 0), (p, 0), (0, 1)} for some p ≥ 1, or quadrilaterals with two parallel sides.
Any such quadrilateral is lattice equivalent to one of the quadrilaterals defining a
Hirzebruch surface with d = 1, or to a 1 × e rectangle for some e ≥ 1. Hence by our
discussion in Example 3.3, we know d(CP) for all toric codes from polygons P with
no interior lattice points.

4. Further examples: Smooth surfaces with rank Pic(X) = 3. The Hirze-
bruch surfaces from Example 3.3 satisfy rank Pic(Hr) = 2 and, up to isomorphism,

TORIC SURFACE CODES AND MINKOWSKI SUMS 1005

(0,1)

(−1,0)

(1,r)

(0,1)

(−1,0)(−1,0)

(1,1)

(0,−1) (0,−1)

(1,r)

(1,r+1)

(0,−1)
(−1,−1)

(0,1)

(1,r)

(−1,0)

(0,−1)

I II

III IV

(−1,−2)

(−1,1)

(−1,−1)

Fig. 5.

account for all smooth toric surfaces with this property. In this section, we work
out another extended family of examples and study the toric codes from the next
most complicated toric surfaces, those with rank Pic(X) = 3. We will use some facts
about toric surfaces, and refer to section 2.5 of [7] for proofs. Recall that any smooth
complete toric surface X may be obtained from P

2 or some Hr by a succession of
blow-ups at torus-fixed points. The Picard number of such a surface is n−2, where n
is the number of one-dimensional cones in the fan defining X. This description makes
it reasonably straightforward to write down the fans for all smooth complete toric
surfaces with rank Pic(X) = 3; either we add a single ray to the fan of Hr or a pair of
rays to the fan for P

2, in such a way that for any two adjacent rays the determinant
of the corresponding two-by-two matrix is ±1. The possibilities appear in Figure 5.

These fans are the outer normal fans of families of polygons. Polygons with these
normal fans can “scale” in size; for example, the fan with rays {(±1, 0), (0,±1)} is
the normal fan for any rectangle of the form conv{(0, 0), (a, 0), (0, b), (a, b)}. In other
words, the polytopes vary with parameters. We will see in a moment that these
polygons all have Minkowski sum decompositions as sums of triangles and lines.

For each fan, we want to determine the polygons whose edges are normal to the
given rays in the fan. For the fan I pictured in Figure 5, polygons with this outer

1006 JOHN LITTLE AND HAL SCHENCK

(0,a)

(b+c,a+b)

(0,a)

(b,a+b)

(r(a+b)+b+c,0)
(0,0)(0,0)

(0,a+b) (c,a+b)

(0,a)

(a,0) (c+r(a+b),0)

(0,b)

(0,0) (br,0) (a,0) (ar,0)
(0,0) (c,0)

(0,b)

(−a,a)

(0,0) (a,b−a)

(0,a+b) (c,a+b)

(0,0)

(c+(r+1)b,a)

(c+ra+(r+1)b,0)

(0,0)

(0,b)

(0,b(r+1))

(0,a)

(0,0) (ar,0)
(0,0) (c,0)

I:

II:

III:

IV:

(0,0) (b(r+1),0)

(0,0) (c,0)

(ra,0)

(0,a)

(b,b)

(a,2b−2a)

(2b−a,0) (2b−a,0)

(c,0)

(2b−a+c,0)

(0,2b−a+c) (0,c)

(0,0)

(a,b−a)

Fig. 6.

normal fan are obtained as the sets of solutions of inequalities as follows:

(1, r) · (x, y) ≥ α,

(0, 1) · (x, y) ≥ β,

(−1, 1) · (x, y) ≥ γ,

(−1, 0) · (x, y) ≥ δ,

(0,−1) · (x, y) ≥ ε,

for some α, β, γ, δ, ε ≥ 0. Taking δ = ε = 0, γ = a > 0, β = a + b with b > 0, and
α = r(a + b) + b + c with c > 0, we get a polygon as in Figure 6.

Now we are ready to examine Minkowski sum decompositions for polygons cor-
responding to the fans in Figure 5. For instance, in case I, we find that the pentagon

P = conv{(0, 0), (r(a + b) + b + c, 0), (b + c, a + b), (b, a + b), (0, a)}

can be decomposed as a Minkowski sum of the triangles

P1 = conv{(0, 0), (ra, 0), (0, a)}, P2 = conv{(0, 0), (b(r + 1), 0), (b, b)}

and the line segment P3 = conv{(0, 0), (c, 0)}. There are similar decompositions in
each of the other cases as well.

TORIC SURFACE CODES AND MINKOWSKI SUMS 1007

Theorem 4.1. Consider toric surface codes corresponding to the families of
polygons I, II, III, IV above, where a, b, c, r ≥ 1 are integers and q is sufficiently large
so that the polygon is contained in q−1.

1. In case I, for all such q,

d(CP) = (q − 1)2 − (r(a + b) + b + c)(q − 1).

2. In case II, for all such q,

d(CP) = (q − 1)2 −m(q − 1),

where m = max{a + b, c + (r − 1)a + rb}.
3. In case III, if b > a as in Figure 6, then

d(CP) = (q − 1)2 − (2b + c− a)(q − 1).

4. In case IV, for all such q,

d(CP) = (q − 1)2 − (c + ra + (r + 1)b)(q − 1).

Proof. We sketch how the value in case I can be established using the methods
presented in sections 2 and 3. We see first that the stated value is an upper bound
for d(CP) using the Minkowski sum decomposition given in Figure 6, Proposition 2.3,
Proposition 3.1 for the line segment, and Proposition 3.2 for the triangles. Then,
the fact that the given value for d(CP) is the exact minimum distance follows, as in
Example 3.3. The polygon here is contained in the equilateral triangle Δr(a+b)+b+c.
Hence the minimum distance for CP is bounded below by the minimum distance for
the code CΔr(a+b)+b+c

. We leave it as an exercise for the reader to provide detailed
proofs for the other parts. In each case, the minimum weight codewords come from
evaluation of reducible sections of the corresponding line bundles. For instance, the
sections of O(D) with the maximal number of Fq-rational points in case III are given
by (y − α1x) · · · (y − α2b+c−ax) with αi ∈ F

∗
q distinct.

5. Main theorem. In this section we prove our main result, Theorem 1.2. The
essential idea is to combine the Minkowski sum construction with the Hasse–Weil
bounds on the number of Fq-rational points of a curve: If Y is a smooth, absolutely
irreducible curve over Fq, then

1 + q − 2g
√
q ≤ |Y (Fq)| ≤ 1 + q + 2g

√
q,

where g is the genus of Y . In [2], the same inequalities are demonstrated for abso-
lutely irreducible but possibly singular curves, provided that g is interpreted as the
arithmetic genus of Y .

The intuition behind our results is quite simple: From the Hasse–Weil bound, if
P is fixed and q is sufficiently large, then sections which are reducible must have more
zeroes than irreducible sections.

We will use the following notation. For a polygon P , v(P) will denote the area
(two-dimensional volume) of P , #(P) = |P ∩ Z

2| will denote the number of lattice
points in P , ∂(P) will denote the number of lattice points in the boundary of P , and
I(P) = #(P) − ∂(P) will denote the number of lattice points in the interior of P .
Pick’s theorem for lattice polygons in R

2 is the equality

v(P) = #(P) − 1

2
∂(P) − 1.

1008 JOHN LITTLE AND HAL SCHENCK

Recall that we have seen that all polygons P with I(P) = 0 correspond to toric
surfaces for which the minimum distance of CP is known by results from sections 2
and 3. Hence, in the following we will assume I(P) > 0.

In section 2 we noted that if O(Di), i ∈ {1, . . . , n}, are globally generated line
bundles on a toric surface, then the global sections of O(

∑
Di) correspond to the

Minkowski sum of the polygons Pi defined by H0(O(Di)). Our starting data is a
lattice polygon P , and to find reducible sections, our strategy is to work backwards:
We look for Minkowski sums

∑n
i=1 Pi = P ′ ⊆ P with n large.

In order to use algebraic geometry, we will first pass to a smooth surface. The
toric surface XΔ defined by the outer normal fan Δ to P need not be smooth. How-
ever, we can refine Δ to a fan Δ′ such that XΔ′ is smooth, and the line bundle O(D)
on XΔ′ corresponding to P is generated by global sections (see [7, p. 90] or [4]).
The numerical invariants D2 and DK discussed in the next paragraphs have simple
interpretations on the smooth surface XΔ′ ; most importantly, they depend only on P .

Finally, when we deal with subpolygons Pi of P , in order to make the same set-up
work, we will refine the fan Δ′ to include the outer normals to Pi, and then further
subdivide the result (for smoothness) to a fan Δ′′. The key point is that ([7, p. 73])
the Pi correspond to globally generated line bundles on the smooth surface XΔ′′ . So
henceforth we will be working with globally generated line bundles on a smooth toric
surface.

Proposition 5.1. Let X be a smooth toric surface, and K = KX a canonical
divisor. Let C be an irreducible curve on X of arithmetic genus gC such that the
corresponding line bundle is globally generated, with P the polytope corresponding to
H0(O(C)). Then the following hold:

1. gC = C2+CK
2 + 1.

2. h0(O(C)) = C2−CK
2 + 1.

3. gC = 2v(P) + 2 − #(P) = I(P).
Proof. The first formula is simply adjunction; see [11, V.1.5] or [7, p. 91]. Since

all the higher cohomology of a globally generated line bundle on a toric variety van-
ishes, and because a toric surface is rational, if O(C) is globally generated, then the
Riemann–Roch theorem for surfaces ([11, V.1.6]) yields the second formula. Adding
the first two formulas shows that h0(O(C)) + gC = C2 + 2. Since h0(O(C)) = #(P)
and C2 = 2v(P) (see [7, p. 111]), the last formula follows from Pick’s theorem.

One other fact that will be useful for us is that on a smooth toric surface X, the
anticanonical divisor class −K is given by the sum of the divisors corresponding to
the one-dimensional cones in the fan defining X [7, p. 85]. Now,

(F∗
q)

2 = X \
⋃

τ �={0}
V (τ),

where V (τ) is the closure of the torus orbit of the cone τ ⊆ Δ; see [7, section 3.1]. In
particular, a toric surface decomposes as the union of a two-dimensional torus with a
finite set of curves, which correspond exactly to the rays of Δ. Hence, the intersection
number −KC accounts for points on C in the complement of the torus in X.

Our first result shows that if q is sufficiently large, then reducible sections with
more irreducible components necessarily have more zeroes in (F ∗

q)2 than sections with
fewer irreducible components. In what follows, we write V (s) for the zero locus of a
section s.

Proposition 5.2. Let P be a lattice polygon in R
2 with I(P) > 0, and let

P ′ =
∑m

i=1 P
′
i and P ′′ =

∑�
k=1 P

′′
k (with P ′

i and P ′′
k nontrivial) be two polygons

TORIC SURFACE CODES AND MINKOWSKI SUMS 1009

contained in P . Let X be a smooth toric surface obtained by refining the normal fan
Δ of P as described above, so that P ′ and P ′′ correspond to line bundles O(D′) and
O(D′′) on X. Let s′ = s′1s

′
2 . . . s

′
m ∈ H0(O(D′)) and s′′ = s′′1s

′′
2 . . . s

′′
� ∈ H0(O(D′′))

be reducible sections with V (s′i) and V (s′′k) irreducible. If m > � and

q ≥ (4I(P) + 3)2,(1)

then

|V (s′) ∩ (F ∗
q)2| > |V (s′′) ∩ (F ∗

q)2|.

Proof. Let D′
i be the divisor corresponding to V (s′i), and D′′

k be the divisor
corresponding to V (s′′k). We write gi = g(D′

i) and g′′k = g(D′′
k). Our starting point is

the observation that

|V (s′) ∩ (F ∗
q)2| ≥

m∑
i=1

(
(q + 1) − 2g′i

√
q
)
−
∑
i<j

D′
iD

′
j + D′K.

This follows because

|V (s′) ∩ (F ∗
q)2| =

m∑
i=1

|V (s′i)| − T −B,

where T is the number of common intersection points of the curves inside the torus
(F ∗

q)2 and B is the number of points of D′ in the “boundary” X \ (F ∗
q)2. Since

the number of common intersection points of D′
i and D′

j is the intersection number
D′

iD
′
j , T ≤

∑
i<j D

′
iD

′
j . As noted earlier, the number of points of D′ outside the

torus is −D′K, so that B ≤ −D′K (note that D′
iD

′
j and −D′K do not distinguish

Fq rational points, so they may well overcount). Substituting the Hasse–Weil lower
bound |V (s′i)| ≥ q + 1 − 2g′i

√
q gives the result. Similarly, by the Hasse–Weil upper

bound,

�∑
k=1

(
(q + 1) + 2g′′k

√
q
)
≥ |V (s′′) ∩ (F ∗

q)2|.

Hence if q satisfies

(m− �)(q + 1) > 2

(∑
i

g′i +
∑
k

g′′k

)
√
q +

∑
i<j

D′
iD

′
j −D′K,(2)

then the conclusion of the proposition follows. Write

β =
1

m− �

(∑
i

g′i +
∑
k

g′′k

)
.

By Proposition 5.1.3, g′i = I(P ′
i), and so∑

i

g′i =
∑
i

I(P ′
i) ≤ I(P ′) ≤ I(P),

and similarly for
∑

i g
′′
i . Because m− � ≥ 1, we see that

β ≤ 2

m− �
I(P) ≤ 2I(P).(3)

1010 JOHN LITTLE AND HAL SCHENCK

The inequality (2) is quadratic in
√
q, so by the quadratic formula, (2) will hold if

√
q > β +

√
β2 +

∑
i<j

D′
iD

′
j −D′K + 1

≥ β +

√√√√√β2 +
1

m− �

⎛
⎝∑

i<j

D′
iD

′
j −D′K

⎞
⎠ + 1.

Since D′ =
∑

D′
i, we have

∑
i<j

D′
iD

′
j =

(D′)2 −
∑

i(D
′
i)

2

2
.(4)

Now we apply (4) and Proposition 5.1:

∑
i<j

D′
iD

′
j −D′K + 1 =

(D′)2 −D′K

2
−

∑
i

(
(D′

i)
2 + D′

iK
)

2
+ 1

= h0(O(D′)) −
∑
i

g′i + m

= (#(P ′) −
∑
i

I(P ′
i)) + m

≤ 2#(P).

The last step follows because m ≤ #(P) (each time we add in a new Minkowski
summand, we get at least one new lattice point in the Minkowski sum), and because
(#(P ′) −

∑
i I(P

′
i)) ≤ #(P ′) ≤ #(P). Now we use the theorem of Scott [14],

#(P) ≤ 3I(P) + 7,

for a lattice polygon P such that I(P) > 0. From the above, we see∑
i<j

D′
iD

′
j −D′K + 1 ≤ 6I(P) + 14.

Hence if the lower bound (1) holds, since I(P) > 0 we have

√
q ≥ 2I(P) + 2I(P) + 3

= 2I(P) +
√

4I(P)2 + 12I(P) + 9

> 2I(P) +
√

4I(P)2 + 6I(P) + 14

≥ β +

√
β2 +

∑
i<j

D′
iD

′
j −D′K + 1 by (3),

which is what we wanted to show.
A number of very crude estimates were used to show that (1) implies the conclu-

sion here. Our lower bound on q will rarely be sharp. Much smaller lower bounds on
q can be obtained if we know more about possible factorizations of sections of O(D).
For instance, we have the following statement.

TORIC SURFACE CODES AND MINKOWSKI SUMS 1011

Corollary 5.3. In the situation of Proposition 5.2, suppose that g′i = I(P ′
i) = 0

and g′′k = I(P ′′
k) = 0 for all i, k. Then the conclusion of Proposition 5.2 holds for all

q > #(P) + m.
Proof. In this case β = 0 in the proof of Proposition 5.2.
Theorem 1.2 follows almost immediately from Proposition 5.2.
Proof of Theorem 1.2. Let d = d(CP). Given P , the proposition shows that under

the hypothesis (1) on q, the number of zeroes of a section can always be increased
by finding a reducible section in H0(O(D)) with more nontrivial factors, if there
is one. Hence the sections with the largest number of zeroes in (F ∗

q)2 must come
from nontrivial factorizations with the largest possible number of factors. Say s =
s1s2 · · · sm is a nonzero section with the maximum number of zeroes (q − 1)2 − d.
Then, counting the number of zeroes,

(q − 1)2 − d ≤
m∑
i=1

mi,

where mi is the number of zeroes of si. We have d(CPi
) ≤ (q − 1)2 −mi for each i.

Hence

m∑
i=1

mi ≤ m(q − 1)2 −
m∑
i=1

d(CPi
).

Rearranging the inequalities gives

d ≥
m∑
i=1

d(CPi) − (m− 1)(q − 1)2,

as claimed.
We have not tried to account for common zeroes of the si in the proof of the the-

orem. Moreover, in applying this statement, it is important to realize that there may
be several different subpolygons with the maximal number of Minkowski summands.
The bound in Theorem 1.2 is only guaranteed to hold for the one that minimizes

m∑
i=1

d(CPi) − (m− 1)(q − 1)2.

Example 5.4. Consider the polygon

P = Q1 + Q2 := conv{(0, 0), (1, 1), (2, 1), (1, 2)} + conv{(0, 0), (1, 0)}.

Taking P ′ = P and

P ′′ = P1 + P2 := conv{(1, 1), (1, 2)} + conv{(0, 0), (1, 0)} ⊂ P

gives two different Minkowski-decomposable subpolygons of P with the same number
m = 2 of nontrivial summands. However, since I(Q1) = 1, the sections having
Newton polygon equal to Q1 have arithmetic genus 1 and can have more zeroes in
(F ∗

q)2 than the rational curves corresponding to the summands in P ′′. So in applying
Theorem 1.2 to this example, we should use the decomposition P = Q1 + Q2 rather
than P ′′ = P1 +P2. In fact, we see this already for fields such as F8, where q is much

1012 JOHN LITTLE AND HAL SCHENCK

Fig. 7.

smaller than the bound from Proposition 5.2. Indeed, by a Magma computation using
the routines from [12],

d(CP (F8)) = 33,

while
∑2

i=1 d(CQi(F8)) − (q − 1)2 = 33 and
∑2

i=1 d(CPi(F8)) − (q − 1)2 = 35.
Next we will show that our results shed some additional light on the good examples

of toric surface codes tabulated in [12].
Example 5.5. In Example 3.9 of [12], Joyner gives an example of a toric code over

F8 with k = 11 and d = 28. These parameters were better than any known code in
Brouwer’s tables [3] at the time his article was written. The convex hull of the integral
points is a triangle P = conv{(0, 0), (1, 4), (4, 1)}. Note that P contains a translate of
the triangle Δ3. Applying Propositions 2.3 and 3.2, we obtain d(CP (Fq)) ≤ (q−1)2−
3(q−1) for all q, so d(CP (F8)) ≤ 28. The lower bound d(CP (Fq)) ≥ (q−1)2−3(q−1)
also holds for q sufficiently large, by Theorem 1.2. Joyner’s computations show that
this bound on d is also valid for q = 8, but our general statements are not quite strong
enough to prove this.

The following example gives an indication of some additional interesting behavior
that can occur for small q.

Example 5.6. Consider the polygon pictured in Figure 7:

P = conv{(1, 0), (2, 0), (0, 1), (1, 2), (3, 2), (3, 3)}.

Note that P ⊂ q−1 for all q ≥ 5. We see that P contains a pair of Minkowski-
decomposable subpolygons: the 1 × 2 rectangle P ′ = conv{(1, 0), (2, 0), (1, 2), (2, 2)}
and the 2 × 1 parallelogram P ′′ = conv{(1, 0), (1, 1), (3, 2), (3, 3)}. P ′ can be written
as the Minkowski sum of two vertical line segments of length 1 and a horizontal line
segment of length 1. Each Pi gives d(CPi) = (q − 1)2 − (q − 1). P ′′ has a similar
decomposition with three summands. There are no other Minkowski-decomposable
subpolygons of P with more than three Minkowski summands, and there are no
Minkowski summands with interior lattice points. Hence we have

d(CP (Fq)) ≥ (q − 1)2 − 3(q − 1)

for q > #(P) + 3 = 12 by Corollary 5.3.
Both of these subpolygons give rise to reducible sections of the corresponding

line bundles. For instance, from P ′ we obtain reducible sections of the form s =
x(x − a)(y − b)(y − c). If a, b, c ∈ F

∗
q and b �= c, then s has 3(q − 1) − 2 zeroes in

(F ∗
q)2. Hence, by reasoning like that used in the proof of Proposition 2.3 (but in the

case where the factors do have some common zeroes), we have

d(CP (Fq)) ≤ (q − 1)2 − 3(q − 1) + 2.

TORIC SURFACE CODES AND MINKOWSKI SUMS 1013

Computations using Magma show that

d(CP (F5)) = 6 vs. 42 − 3 · 4 + 2 = 6,

d(CP (F7)) = 20 vs. 62 − 3 · 6 + 2 = 20,

d(CP (F8)) = 28 vs. 72 − 3 · 7 + 2 = 30,

d(CP (F9)) = 42 vs. 82 − 3 · 8 + 2 = 42,

d(CP (F11)) = 72 vs. 102 − 3 · 10 + 2 = 72.

The dimension is k = #(P) = 9 in each case.
The case q = 8 is the most interesting one here. We may ask: Where does a

section with 49 − 28 = 21 zeroes in (F ∗
8)2 come from? By examining the minimum

weight codewords of this code, we find exactly 49 such words. One of them comes,
for instance, from the evaluation of

x + x3y3 + y2 ≡ x(1 + x2y3 + x6y2) mod 〈x7 − 1, y7 − 1〉
≡ x(1 + x2y3 + (x2y3)3) mod 〈x7 − 1, y7 − 1〉.

Here 〈x7 − 1, y7 − 1〉 is the ideal of the F8-rational points of the two-dimensional
torus. So 1 + x2y3 + (x2y3)3 has exactly the same zeroes in (F ∗

8)2 as x + x3y3 + y2.
Recall that 1 + u + u3 is one of the two irreducible polynomials of degree 3 in F2[u],
and hence F8

∼= F2[u]/〈1 + u + u3〉. Hence if β is a root of 1 + u + u3 = 0 in F8, then

1 + x2y3 + (x2y3)3 = (x2y3 − β)(x2y3 − β2)(x2y3 − β4),

and there are exactly 3 · 7 = 21 points in (F ∗
8)2 where this is zero. It is interesting to

note that it is still a sort of reducibility that is producing a section with the largest
number of zeroes here, even though the reducibility only appears when we look modulo
the ideal 〈x7 − 1, y7 − 1〉. We also note that these minimum weight codewords come
from curves with many rational points over the field F8 as in the construction used
in [5]. Similar phenomena will occur for many other P with q small.

Acknowledgments. This collaboration began while both authors were members
of Mathematical Sciences Research Institute during the commutative algebra program
in 2003. We also thank the Institute for Scientific Computation at Texas A&M for
logistical support, and two anonymous referees for careful readings and suggestions.

REFERENCES

[1] J. Arkinstall, Minimal requirements for Minkowski’s theorem in the plane, Bull. Austral.
Math. Soc., 22 (1980), pp. 259–283.

[2] Y. Aubry and M. Perret, A Weil theorem for singular curves, in Arithmetic, Geometry, and
Coding Theory, R. Pellikaan, M. Perret, and S. G. Vladut, eds., de Gruyter, Berlin, 1996,
pp. 1–7.

[3] A. E. Brouwer, Bounds on linear codes, in Handbook of Coding Theory, Elsevier, New York
1998, pp. 295–461; updates online at http://www.win.tue.nl/∼aeb/voorlincod.html.

[4] T. Beck and J. Schicho, Sparse parametrization of plane curves, Appl. Algebra Engrg. Comm.
Comput., to appear.

[5] P. Beelen and R. Pellikaan, The Newton polygon of plane curves with many rational points,
Des. Codes Cryptogr., 21 (2000), pp. 41–67.

[6] V. Diaz, C. Guevara, and M. Vath, Codes from n-Dimensional Polyhedra and n-Dimensional
Cyclic Codes, in Proceedings of the SIMU Summer Institute, 2001.

[7] W. Fulton, Introduction to Toric Varieties, Princeton University Press, Princeton, NJ, 1993.
[8] J. Hansen, Toric surfaces and error-correcting codes, in Coding theory, Cryptography and

Related Areas (Guanajuato, 1998), Springer, Berlin, 2000, pp. 132–142.

1014 JOHN LITTLE AND HAL SCHENCK

[9] J. Hansen, Toric varieties Hirzebruch surfaces and error-correcting codes, Appl. Algebra
Engrg. Comm. Comput., 13 (2002), pp. 289–300.

[10] S. Hansen, Error-correcting codes from higher-dimensional varieties, Finite Fields Appl., 7
(2001), pp. 531–552.

[11] R. Hartshorne, Algebraic Geometry, Springer, New York, 1977.
[12] D. Joyner, Toric codes over finite fields, Appl. Algebra Engrg. Comm. Comput., 15 (2004),

pp. 63–79.
[13] J. Little and R. Schwarz, On m-dimensional toric codes, preprint, available online from

http://arxiv.org/abs/cs.IT/0506102.
[14] P. R. Scott, On convex lattice polygons, Bull. Austral. Math. Soc., 15 (1976), pp. 395–399.
[15] J. P. Serre, Lettre à M. Tsfasman, Journées Arithmétiques, 1989 (Luminy, 1989), Astérisque,

198-200 (1991), pp. 351–353.
[16] B. Sturmfels, Gröbner Bases and Convex Polytopes, AMS University Lectures Series, Vol. 8,

AMS, Providence, RI, 1995.
[17] G. Ziegler, Lectures on Polytopes, Springer-Verlag, Berlin, 1995.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 4, pp. 1015–1030

ONLINE BIN PACKING WITH CARDINALITY CONSTRAINTS∗

LEAH EPSTEIN†

Abstract. We consider a one-dimensional storage system where each container can store a
bounded amount of capacity as well as a bounded number of items k ≥ 2. This defines the (stan-
dard) bin packing problem with cardinality constraints, which is an important version of bin packing.
Following previous work on the unbounded space online problem, we establish the exact best com-
petitive ratio for bounded space online algorithms for every value of k. This competitive ratio is a
strictly increasing function of k which tends to Π∞ +1 ≈ 2.69103 for large k. Lee and Lee showed in
1985 [J. ACM, 32 (1985), pp. 562–572] that the best possible competitive ratio for online bounded
space algorithms for the classical bin packing problem is the sum of a series, and tends to Π∞ as
the allowed space (number of open bins) tends to infinity. We further design optimal online bounded
space algorithms for variable sized bin packing, where each allowed bin size may have a distinct
cardinality constraint, and for the resource augmentation model. All algorithms achieve the exact
best possible competitive ratio possible for the given problem and use constant numbers of open
bins. Finally, we introduce unbounded space online algorithms with smaller competitive ratios than
the previously known best algorithms for small values of k, for the standard cardinality constrained
problem. These are the first algorithms with competitive ratio below 2 for k = 4, 5, 6.

Key words. online algorithms, bin packing, cardinality constraints

AMS subject classifications. 68Q25, 68W40

DOI. 10.1137/050639065

1. Introduction. The classical bin packing problem [20, 5, 3] assumes no limit
on the number of items which may be packed into a single bin. In practice, many
applications require such a bound either due to overheads or additional constraints
that are not modeled. For example, a disk cannot keep more than a certain number
of files, even if these files are indeed very small. A processor cannot run more than
a given number of tasks during a given time, even if all tasks are very short. The
problem where there is a given bound k > 1 on the number of items which can coexist
in one bin is called “bin packing with cardinality constraints” [12, 1]. We consider
several versions of this problem.

We first define the classical online bin packing problem. In this problem, we
receive a sequence σ of items p1, p2 . . . pn, arriving one by one. The values pi are the
sizes of the items. We have an infinite supply of bins, each of which is of unit size.
An item must be assigned to a bin upon arrival, so that the sum of items in no bin
exceeds 1. A bin is empty if no item is assigned to it; otherwise it is used. The goal
is to minimize the number of bins used. In the cardinality constrained bin packing
problem, an additional constraint is introduced. A parameter k bounds the number
of items that can be assigned to a single bin.

The standard measure of algorithm quality for online bin packing is the asymptotic
competitive ratio, which we now define. For a given input sequence σ, let A(σ) (or
A) be the number of bins used by algorithm A on σ. Let OPT (σ) (or OPT) be the
cost of an optimal offline algorithm which knows the complete sequence of items in

∗Received by the editors August 28, 2005; accepted for publication (in revised form) June 5,
2006; published electronically December 15, 2006. A preliminary version of this paper appeared in
the Proceedings of the 13th European Symposium on Algorithms, Palma de Mallorca, Spain, 2005,
Lecture Notes in Comput. Sci. 3669, Springer, New York, 2005, pp. 604–615.

http://www.siam.org/journals/sidma/20-4/63906.html
†Department of Mathematics, University of Haifa, 31905 Haifa, Israel (lea@math.haifa.ac.il).

1015

1016 LEAH EPSTEIN

advance, i.e., the minimum possible number of bins used to pack items in σ. The
asymptotic performance ratio for an algorithm A is defined to be

R(A) = lim sup
n→∞

sup
σ

{
A(σ)

OPT (σ)
|OPT (σ) = n

}
.

In the resource augmented bin packing problem, the online algorithm is supplied
with larger bins at its disposal than those of the offline algorithm that it is compared
to. The competitive ratio then becomes a function of the bin size. All online bins are
of the same size, and all the offline bins are of the same size, but these two sizes are
not necessarily the same.

In the variable-sized bin packing problem, there is a supply of several bin sizes
that can be used to pack the items. The cost of an algorithm is the sum of sizes of
used bins. In this problem, the generalization into cardinality constrained packing
assumes that each bin size si ≤ 1 is associated with a parameter ki which bounds the
number of items that can be packed into such a bin.

We stress the fact that items arrive online; this means that each item must be
assigned in turn, without knowledge of the next items. We consider bounded space
algorithms, which have the property that they have only a constant number of bins
available to accept items at any point during processing; these bins are also called
“open bins.” The bounded space assumption is a quite natural one. Essentially the
bounded space restriction guarantees that output of packed bins is steady, and that
the packer does not accumulate an enormous backlog of bins which are only output
at the end of processing.

Previous results. Cardinality constrained bin packing was studied in the offline
environment as early as 1975 by Krause, Shen, and Schwetman [13, 14]. They showed
that the performance guarantee of the well-known first fit algorithm is at most 2.7− 12

5k .
Additional results were offline approximation algorithms of performance guarantee 2.
These results were later improved in two ways. Kellerer and Pferschy [12] designed
an improved offline approximation algorithm with performance guarantee 1.5, and
finally an APTAS (asymptotic polynomial time approximation scheme) was designed
in [2] (for a more general problem). On the other hand, Babel et al. [1] designed
a simple online algorithm with competitive ratio 2 for any value of k. They also

designed improved algorithms for k = 2, 3 of competitive ratios 1+
√

5
5 ≈ 1.44721 and

1.8, respectively. The same paper [1] also proved an almost matching lower bound
of

√
2 ≈ 1.41421 for k = 2 and mentioned that the lower bounds of [23, 21] for

the classical problem hold for cardinality constrained bin packing as well. The lower
bound of 1.5 given by Yao [23] holds for small values of k > 2, and the lower bound
of 1.5401 given by Van Vliet [21] holds for sufficiently large k. No other lower bounds
are known.

For the classical bin packing problem, Lee and Lee [15] presented an algorithm
called Harmonic, which partitions items into K > 1 classes and uses bounded space
of at most K − 1 open bins. For any ε > 0, there is a number K1 such that the
Harmonic algorithm that uses K = K1 classes has a performance ratio of at most
(1 + ε)Π∞ [15], where Π∞ ≈ 1.69103 is the sum of a series (see section 2). They
also showed there is no bounded space algorithm with a performance ratio below Π∞.
Currently the best known unbounded space upper bound is 1.58889 due to Seiden [18].

The first to investigate the variable-sized bin packing problem were Friesen and
Langston [10]. Csirik [4] proposed the Variable Harmonic algorithm and showed
that it has performance ratio at most Π∞. Seiden [17] showed that this algorithm

ONLINE BIN PACKING WITH CARDINALITY CONSTRAINTS 1017

is optimal among bounded space algorithms. Unbounded space variable-sized bin
packing was studied also in [19].

The resource augmented bin packing problem was studied by Csirik and Woegin-
ger [6]. They showed that the optimal bounded space asymptotic performance ratio
is a function ρ(b) of the online bin size b. Unbounded space resource augmented bin
packing was studied also in [8].

Our results. We consider bounded space algorithms. We are interested in the
best competitive ratio that can be achieved using some constant number of open bins.
For every value of k, we find the best competitive ratio of any online bounded space
algorithm. We show that K = k − 1 bins are sufficient to achieve this best possible
competitive ratio (and it is not only achieved in the limit as it is for the classical
problem [15]). The competitive ratio is a strictly increasing function of k, and for
large enough k it approaches 1 + Π∞ ≈ 2.69103, where Π∞ is the best competitive
ratio shown by [15] for the classical bounded space problem. This is a surprising
feature of the problem, since one would expect this value to simply tend to Π∞ as k
grows.

We further consider the resource augmented problem where the online algorithm
may use larger bins compared to the optimal offline algorithm. We design optimal
online algorithms for this problem as well. For large enough values of k, the compet-
itive ratios again approach values which differ by 1 from the best competitive ratios
for the classical resource augmented problem [6]. We show that the competitive ratios
for our problem never drop below 1 (unlike the case studied in [6]) and identify the
cases where the competitive ratio is exactly 1.

For the variable-sized bin packing problem, we design algorithms of the exact
optimal competitive ratios (among bounded space algorithms) for any set of bins and
cardinality constraints. An interesting feature is that we prove that the algorithms
have optimal competitive ratios, even though we do not know what these ratios are.

A main difference between our results for bounded space algorithms and the
results of [15, 6, 17] is that our algorithms have exactly the best possible competitive
ratio achievable by bounded space online algorithms. The algorithms for variants
of the classical problem have competitive ratios which tend to the best competitive
ratio as the number of open bins grows without bound. Our algorithms need just a
constant number of open bins to achieve the best competitive ratios. Therefore we
need to be very careful in the analysis since, unlike the classical problem, we may not
lose any small constants, which depend on the number of open bins, in the analysis.

For small values of k we design several new unbounded space algorithms, based
on combination of large and small items together in bins (see [15, 16, 18]), according
to sizes of small items. We prove that the competitive ratios of our algorithms for
k = 3, 4, 5, 6 are 7

4 = 1.75, 71
38 ≈ 1.86842, 771

398 ≈ 1.93719, 287
144 ≈ 1.99306 (respectively).

This improves on the bounds 9
5 = 1.8 (k = 3) and 2 (k = 4, 5, 6) of [1].

2. Optimal algorithms for bounded space packing. In this section we de-
fine bounded space algorithms of optimal competitive ratio for each value of k > 1.
For every k > 1, we define an online bounded space algorithm which packs at most k
items in each bin and uses at most k − 1 open bins. We show that this algorithm is
the best possible among bounded space algorithms. We use the well-known sequence
πi, i ≥ 1, which is often used for bin packing, let π1 = 2, πi+1 = πi(πi − 1) + 1, and
let Π∞ =

∑∞
i=1

1
πi−1 ≈ 1.69103.

This sequence was used by Lee and Lee in [15] and by Van Vliet [21]. Adaptations
of this sequence were later used in several papers including [6, 19]. The sequence is

1018 LEAH EPSTEIN

constructed in a way that 1 −
∑j

i=1
1
πi

= 1
πj+1−1 (which can be easily shown by

induction using the sequence definition). This means that each time the next value
πi is picked to be an integer, such that all items 1

πj
for j ≤ i can fit together in a bin

leaving some empty space. Note that Π∞ is a lower bound on the best competitive
ratio for classical bounded space bin packing, and there exists a sequence of bounded
space algorithms with an increasing sequence of open bins whose competitive ratios
tend to this value [15, 22]. The algorithms in this section are based on the algorithms
in [15] with some differences in the construction and proof due to the cardinality
constraint (which also increases the competitive ratio by 1 for large values of k). We
also would like to achieve the best possible bound for every value of k separately, and
not only in the limit.

Let Rk =
∑k

i=1 max
{

1
πi−1 ,

1
k

}
. We show that for every value of k, the best

competitive ratio is exactly Rk. We start with some properties of Rk as a function
of k.

Theorem 1. The value of Rk is a strictly increasing function of k ≥ 2 such that
3
2 ≤ Rk < Π∞ + 1 and limk→∞ Rk = Π∞ + 1 ≈ 2.69103.

Proof. We first find the value of R2. Since π1 = 2 and π2 = 3, we have R2 = 3
2 =

1.5. Note also that R3 = 11
6 ≈ 1.83333,R4 = 2,R5 = 2.1, and R6 = 13

6 ≈ 2.16666.
Next we show the monotonicity of Rk. For a given k, let jk = min1≤j≤k{j| 1k ≥

1
πj−1}. The value jk exists for all k since πk − 1 ≥ k for all k. Then we have

Rk =
∑jk−1

i=1
1

πi−1 +
∑k

i=jk
1
k =

∑jk−1
i=1

1
πi−1 + k−jk+1

k . By definition of the values

ji, clearly jk ≤ jk+1. Therefore Rk+1 −Rk =
∑jk+1−1

jk
1

πi−1 + k−jk+1+2
k+1 − k−jk+1

k >
jk+1−jk

k+1 + 1−jk+1

k+1 − 1−jk
k = jk−1

k − jk−1
k+1 ≥ 0. We deduce the strict inequality above

by πi − 1 < k + 1, which holds for i < jk+1.

An upper bound on Rk follows from Rk =
∑k

i=1 max
{

1
πi−1 ,

1
k

}
<

∑k
i=1

1
πi−1

+
∑k

i=1
1
k < Π∞ + 1. We next show that Rk tends to this value. For a given ε > 0,

let � be a value such that
∑�

i=1
1

πi−1 ≥ Π∞ − ε
2 and � ≥ 2

ε . Let k = �2; then

Rk ≥
∑�

i=1
1

πi−1 +
∑k

i=�+1
1
�2 ≥Π∞ − ε

2 + �2−�
�2 ≥ Π∞ − ε

2 + 1− ε
2 = Π∞ + 1− ε.

Next we define the algorithm Cardinality Constrained Harmonick (CCHk),
which is an adaptation of the algorithm Harmonick defined originally by Lee and
Lee [15]. The fundamental idea of “harmonic-based” algorithms is to first classify
items by size and then pack an item according to its class (as opposed to letting the
exact size influence packing decisions).

For the classification of items, we partition the interval (0, 1] into subintervals.
We use k − 1 subintervals of the form (1

i+1 ,
1
i] for i = 1, . . . , k − 1 and one final sub-

interval (0, 1
k]. Each bin will contain items from only one subinterval (type). Items

in subinterval i are packed i to a bin for i = 1, . . . , k− 1, thus keeping the cardinality
constraint. The items in interval k are packed k to a bin. A bin which received the
full number of items (according to its type) is closed, and therefore at most k−1 bins
are open simultaneously (one per interval, except for (1

2 , 1]).

To prove the upper bound on the competitive ratio, we use a simplified version
of Theorem 9 stated in section 5. We use the technique of weighting functions. This
technique was originally introduced for one-dimensional bin packing algorithms [20].
The version we use is as follows.

Theorem 2. Consider a bin packing algorithm. Let w be a weight measure.
Assume that for every input of the algorithm the number of bins used by an algorithm
ALG is bounded by X(σ)+c for some constant c, where X(σ) is the sum of weights of

ONLINE BIN PACKING WITH CARDINALITY CONSTRAINTS 1019

all items in the sequence according to weight measure w. Denote by W the supremum
amount of weight that can be packed into a single bin of an offline algorithm according
to measure w, i.e., the supremum total weight of a set of items whose total size is at
most 1. Then the competitive ratio of the algorithm is upper bounded by W.

We define weights as follows. The weight of item x is denoted w(x). The weight
of an item in interval (1

i+1 ,
1
i], for i = 1, . . . , k − 1, is 1

i . The weight of an item in

interval (0, 1
k] is 1

k . Recall that, except for k−1 open bins that may not receive the full
number of items, each output bin receives a total weight of 1. A closed bin for items
in interval (1

i+1 ,
1
i] receives i items, of weight 1

i each. A closed bin for items in interval

(0, 1
k] receives k items, of weight 1

k each. Therefore we get CCHk(σ) ≤ X(σ) + k− 1.

Theorem 3. For every k ≥ 2, the competitive ratio of CCHk is Rk, and no
online algorithm which uses bounded space can have a better competitive ratio.

Proof. We prove the upper bound first. Let ε > 0 a very small constant such
that ε � 1

kπk+1
We claim that the maximum weight of a single bin is achieved for the

following set of items: f1 ≥ · · · ≥ fk, so that fi = 1
πi

+ ε. This set of items fits in a
single bin according to the definition of the sequence πj . The sum of their weights is

exactly Rk =
∑k

i=1 max
{

1
πi−1 ,

1
k

}
.

To show that the maximum weight of any bin is indeed Rk, consider an arbitrary
set S of � ≤ k items which fits into one bin. If � �= k, we add k − � items of size
zero and give them weight 1

k . For this, we extend the packing rules and pack items
of size zero together with other items of the first interval. The change may only
result in an increase in the sum of weights. Let g1 ≥ · · · ≥ gk be the sorted list of
items. If gi ∈ (1

πi
, 1
πi−1] holds for all i such that πi ≤ k, and gi ∈ [0, 1

k] for all i
such that πi > k, then the weight of the items of S is exactly Rk. Otherwise let i be
the first index of an item that does not satisfy the above. If w(gi) = 1

k , we get that∑k
j=1 w(gj) =

∑i−1
j=1 w(gj)+

∑k
j=i w(gj) =

∑i−1
j=1 w(fj)+

∑k
j=i

1
k ≤

∑k
j=1 w(fj) = Rk.

Otherwise, assume w(gi) > 1
k . Due to the greedy construction of the sequence

πj , and since gi /∈ (1
πi
, 1
πi−1], we get that gi ≤ 1

πi
and therefore w(gi) <

1
πi−1 = w(fi).

Let i′ be the smallest index such that w(gi′) = 1
k (this value exists as mentioned

above since k ≤ πk − 1). If i′ = i + 1, we get that w(gi) < w(fi), and for j ≥ i′,
1
k = w(gj) ≤ w(fj). In this case we have

∑k
j=1 w(gi) <

∑k
j=1 w(fi) = Rk. Otherwise

consider the values of j such that i ≤ j ≤ i′ − 1. We have gj ≤ 1
πi

, and therefore

according to the weight definition for x > 1
k ,

w(gj)
gj

≤ πi+1
πi

for i ≤ j ≤ i′−1. Given that

for j < i, gj ∈ (1
πj
, 1
πj−1], we have

∑k
j=i gj ≤ 1

πi−1 and therefore
∑i′−1

j=i w(gj) ≤ πi+1
π2
i
−πi

.

However, w(fi)+w(fi+1) = 1
πi−1 + 1

πi+1−1 = 1
πi−1 + 1

π2
i
−πi

= πi+1
π2
i
−πi

. Summarizing, we

get
∑k

j=1 w(gj) =
∑i−1

j=1 w(gj) +
∑i′−1

j=i w(gj) +
∑k

j=i′ w(gj) ≤
∑i−1

j=1 w(fj) + w(fi) +

w(fi+1) +
∑k

j=i′
1
k ≤

∑k
j=1 w(fi) = Rk.

The proof of the lower bound is similar to previously known lower bound proofs
for bounded space algorithms; see [15, 6]. To prove the lower bound, let N be a large
constant and δ > 0 a very small constant such that δ � 1

kπk+1
. We construct the

following sequence. The sequence has k phases. Phase i contains N items of size
1
πi

+ δ. Let K be the number of bins that may be open simultaneously. Except for
at most K bins, all bins of each phase are closed after the phase. Such bins can be
filled by a maximum number of min{πi − 1, k} items. Therefore phase i contributes
at least N

min{πi−1,k} − K = N max{ 1
πi−1 ,

1
k} − K closed bins to the output. The

optimal packing of the sequence contains N identically packed bins with one item of

1020 LEAH EPSTEIN

each phase per bin. We get that the competitive ratio is at least Rk − kK
N . This

approaches Rk for large enough N .

3. Extension to resource augmentation. Following the work of [6], which
studied resource augmentation for the classical bin packing problem, we show that
the algorithms defined in the previous section are optimal in a resource augmented
environment as well.

We compare an online algorithm which uses bins of size 1 to an optimal offline
algorithm whose bins are of size 1

b . We assume that all item sizes are bounded by
1
b . This problem definition is equivalent to the alternative definition where items
have sizes in (0, 1], the online algorithm uses bins of size b, and the offline algorithm
uses bins of size 1. The competitive ratio for bounded cardinality k is measured as
a function of b > 1. The best competitive ratios for bounded space algorithms and
unrestricted online algorithms are denoted Rk(b) and rk(b) (respectively). We note
a fundamental difference between the resource augmented problem associated with
the classical bin packing problem and the problem studied in this paper. As we show
later in this section, the competitive ratio is never below 1 for our problem, whereas
the classical problem has a competitive ratio below 1 for b ≥ 2 [6, 8].

We show that the competitive ratio (even for unbounded space algorithms) cannot
actually reach 1 if b < k, and is exactly 1 for b ≥ k.

Theorem 4. For all values of b, k such that b < k and k ≥ 2, we have Rk(b) ≥
rk(b) > 1. For all values of b, k such that b ≥ k, we have rk(b) = Rk(b) = 1.

Proof. It is easy to see that the functions rk(b) and Rk(b) are monotonically
decreasing in b and that Rk(b) ≥ rk(b). Therefore, given b < k, we can prove the first
part for b′ = max{b, k− 1

2} ≥ b; i.e., we prove that rk(b
′) > 1 and therefore rk(b) > 1.

Let x = b′+k
2kb′ < 1

b′ , and let ε = 1−xb′

b′(k−1) > 0. Let N be a large enough integer.

The input sequence consists of a first phase with Nk(k − 1) items of size ε, possibly
followed by a second phase with Nk items of size x. Denote the optimal offline cost
after the first phase by OPT1 and after the second phase by OPT2. We get that
OPT1 = N(k − 1) since kε < 1

b′ , and OPT2 = Nk since x + (k − 1)ε = 1
b′ . Let R be

the competitive ratio of an online algorithm A. Let Yi (1 ≤ i ≤ k) be the number of
bins into which algorithm A packed exactly i items during the first phase. Note that∑k

i=1 iYi = Nk(k − 1). If the sequence stops here, we have
∑k

i=1 Yi ≤ R · OPT1 =

RN(k − 1). If
∑k

i=1 Yi(k − i) > Nk, we get
∑k

i=1 kYi > Nk(k − 1) + Nk = Nk2,

which gives R > k
k−1 . Otherwise if the sequence continues,

∑k
i=1 Yi(k − i) is exactly

the number of larger items that can fit into the existing bins of the online algorithm.
Since this number is at most Nk, the other items need to be packed into new bins.
Note that kx = b′+k

2b′ > 1. Therefore the best packing can be with k − 1 items per
bin. This results in a packing of size

k∑
i=1

Yi +
Nk −

∑k
i=1 Yi(k − i)

k − 1
≤ R ·OPT2 = RNk.

We get
∑k

i=1(k − 1)Yi + Nk −
∑k

i=1 Yi(k − i) = Nk +
∑k

i=1(i− 1)Yi ≤ RNk(k − 1).

Combining with
∑k

i=1 Yi ≤ RN(k − 1), we have Nk2 = Nk + Nk(k − 1) = Nk +∑k
i=1 iYi ≤ RN(k2 − 1) or R ≥ k2

k2−1 > 1.

For the second part we simply use the algorithm Next-Fit [11]. Since 1
b ≤ 1

k and all
item sizes are at most 1

b , each bin receives exactly k items. Given a sequence of f items,

we get
⌈
f
k

⌉
packed bins. However, due to the cardinality constraint, OPT ≥

⌈
f
k

⌉
, and

ONLINE BIN PACKING WITH CARDINALITY CONSTRAINTS 1021

therefore the competitive ratio is at most 1. Consider now a sequence of Nk items of
size 1

b . No algorithm can pack them into less than N bins (no matter how large b is).
Since OPT = N as well we get that rk(b) = Rk(b) = 1 for the case b ≥ k.

The algorithms are defined exactly as in the previous section. However, this
means that some of the defined classes do not exist if b is large enough. Note that the
algorithm for the case b ≥ k becomes exactly Next Fit as described in Theorem 4.

To define the competitive ratio, we first define sequences πi(b) and Πi(b), origi-
nally defined by [6] as follows: Π0(b) = 0, π1(b) = 	b
 + 1, Π1(b) = 1

π1(b)
, πi(b) =⌊

1
1
b−Πi−1(b)

⌋
+ 1, and Πi(b) = Πi−1(b) + 1

πi(b)
. The intuition behind this function

is to find a sequence of integers such that the next integer at each point is picked
greedily to be minimal and the sum of their reciprocals is less than 1

b . The values
of πi(b) satisfy πi(b) > b. We can show that the values are strictly increasing as a
function of b. Clearly the values are nondecreasing. If two values are the same, we let
πi(b) = πi+1(b) = f be these identical values. Then we argue that πi(b) should have
been chosen to be at most f −1. To see that, note that 1

b − Πi−1(b) >
2
f ≥ 1

f−1 . This
holds for all f ≥ 2.

Csirik and Woeginger [6] introduced the function ρ(b) =
∑∞

i=1
1

πi(b)−1 and showed

that this is the best possible competitive ratio with resource augmentation b for the
classical bin packing problem. Note that ρ(1) = Π∞ ≈ 1.69103. We can prove the
following theorems.

Theorem 5. For every k ≥ 2, the competitive ratio of CCHk (defined in the

previous section) is Rk(b) =
∑k

i=1 max
{

1
πi(b)−1 ,

1
k

}
, and no online algorithm which

uses bounded space can have a better competitive ratio.
Theorem 6. The value of Rk(b) for a fixed value of b is an increasing function

of k ≥ 2 such that 1 ≤ Rk(b) < ρ(b) + 1 and limk→∞ Rk = ρ(b) + 1.
Proof of Theorem 5. We again use Theorem 2. The weights are defined as in the

previous section. We prove the upper bound first. Let ε > 0 be a very small constant
such that ε � 1

kπk+1(b)
We claim that the maximum weight of a single bin is achieved

for the following set of items: f1 ≥ · · · ≥ fk, so that fi = 1
πi(b)

+ ε. This set of items

fits in a single bin of size 1
b according to the definition of the sequence πj(b). The

sum of their weights is exactly Rk(b) =
∑k

i=1 max
{

1
πi(b)−1 ,

1
k

}
.

To show that the maximum weight of any bin is indeed Rk(b) consider an arbitrary
set S of � ≤ k items which fits into one bin of size 1

b . If � �= k, we add k − � items
of size zero and give them weight 1

k . For this, we extend the packing rules and pack
items of size zero together with other items of the first interval. The change may only
result in an increase in the sum of weights.

Let g1 ≥ · · · ≥ gk be the sorted list of items. If gi ∈ (1
πi(b)

, 1
πi(b)−1] holds for all i

such that πi(b) ≤ k, and gi ∈ [0, 1
k] for all i such that πi(b) > k, then the weight of

the items of S is exactly Rk(b).
Otherwise let i be the first index of an item that does not satisfy the above. If

w(gi) = 1
k , we get that

∑k
j=1 w(gj) =

∑i−1
j=1 w(gj) +

∑k
j=i w(gj) =

∑i−1
j=1 w(fj) +∑k

j=i
1
k ≤

∑k
j=1 w(fj) = Rk(b). Otherwise, assume w(gi) > 1

k . Due to the greedy

construction of the sequence πj , and since gi /∈ (1
πi(b)

, 1
πi(b)−1], we get that gi ≤

1
πi(b)

and therefore w(gi) < 1
πi(b)−1 = w(fi). Let i′ be the smallest index such that

w(g′i) = 1
k . If such an index does not exist, we let i′ = k + 1. If i′ = i + 1, we get

that w(gi) < w(fi), and for i′ ≤ j ≤ k, 1
k = w(gj) ≤ w(fj). In this case we have∑k

j=1 w(gi) <
∑k

j=1 w(fi) = Rk(b). Otherwise consider the values of j such that

1022 LEAH EPSTEIN

i ≤ j ≤ i′ − 1. We have gj ≤ 1
πi(b)

, and therefore according to the weight definition

for x > 1
k ,

w(gj)
gj

≤ πi(b)+1
πi(b)

. Given that for j < i, gj ∈ (1
πj(b)

, 1
πj(b)−1], we have∑k

j=i gj ≤ 1
b −Πi−1(b) ≤ 1

πi(b)−1 and
∑k

j=i+1 gj ≤ 1
b −Πi(b) = 1

b −Πi−1(b)− 1
πi(b)

≤
1

πi+1(b)−1 . Using gj ≤ 1
πi(b)

again, we get
∑k

j=i gj ≤ 1
πi+1(b)−1 + 1

πi(b)
. This gives∑i′−1

j=i w(gj) ≤
(πi(b)+1

πi(b)

)(∑k
j=i+1 gj

)
≤ 1

πi(b)(πi(b)−1) + 1
πi(b)

+ 1
πi+1(b)−1 = 1

πi(b)−1 +
1

πi+1(b)−1 . However, we have w(fi) +w(fi+1) = 1
πi(b)−1 + 1

πi+1(b)−1 . Summarizing, we

get
∑k

j=1 w(gj) =
∑i−1

j=1 w(gj) +
∑i′−1

j=i w(gj) +
∑k

j=i′ w(gj) ≤
∑i−1

j=1 w(fj) + w(fi) +

w(fi+1) +
∑k

j=i′
1
k ≤

∑k
j=1 w(fi) = Rk(b).

To prove the lower bound, let N be a large constant and δ > 0 a very small
constant such that δ � 1

kπk+1(b)
. We construct the following sequence. The sequence

has k phases. Phase i contains N items of size 1
πi(b)

+ δ. Let K be the number of bins

that may be open simultaneously. Except for at most K bins, all bins of each phase
are closed after the phase. Such bins can be filled by a maximum of min{πi(b)− 1, k}
items. Therefore phase i contributes at least N

min{πi(b)−1,k}−K = N max{ 1
πi−1 ,

1
k}−K

closed bins to the output. The optimal packing of the sequence contains N identically
packed bins with one item of each phase per bin. We get that the competitive ratio
is at least Rk(b) − kK

N . This approaches Rk(b) for large enough N .
Proof of Theorem 6. As shown above, the value of Rk(b) is at least 1. Next

we show the monotonicity of Rk(b) for a fixed value of b as a function of k. If
k ≤ b, the value of the function is 1; therefore we need to prove monotonicity for
k > b. Note that for every k and b, πk(b) > k. This holds since if πk ≤ k, we get

that
∑k

t=1
1

πk(b) ≥ 1 > b. We therefore need to consider the case πk(b) ≥ k + 1,

πk+1(b) ≥ k + 2. For k′ = k, k + 1, let j′k = min1≤j≤k′{j| 1
k′ ≥ 1

πj(b)−1}. We have

Rk =
∑jk−1

i=1
1

πi(b)−1 +
∑k

i=jk
1
k =

∑jk−1
i=1

1
πi(b)−1 + k−jk+1

k . By definition of the values

ji, clearly jk ≤ jk+1. Therefore Rk+1−Rk =
∑jk+1−1

jk
1

πi(b)−1 + k−jk+1+2
k+1 − k−jk+1

k >
jk+1−jk

k+1 + 1−jk+1

k+1 − 1−jk
k = jk−1

k − jk−1
k+1 ≥ 0. The strict inequality above follows from

πi(b) − 1 < k + 1 for i < jk+1.

An upper bound on Rk follows from Rk =
∑k

i=1 max
{

1
πi(b)−1 ,

1
k

}
≤

∑k
i=1

1
πi(b)−1

+
∑k

i=1
1
k < ρ(b) + 1. We next show that Rk tends to this value. For a given

ε > 0, let � be a value such that
∑�

i=1
1

πi(b)−1 ≥ ρ(b) − ε
2 and � ≥ 2

ε . Let k = �2;

then Rk ≥
∑�

i=1
1

πi(b)−1 +
∑k

i=�+1
1
�2 ≥ ρ(b) − ε

2 + �2−�
�2 ≥ ρ(b) − ε

2 + 1 − ε
2 = ρ(b) +

1 − ε.

4. Extension to variable-sized bins. Following the work of Seiden [17] we
design optimal online bounded space algorithms for the case of variable-sized bins.
Similarly to that case and other work on variable-sized bins [7], we design an algorithm
for any set of bin sizes, and we prove the optimality of these algorithms; however, we
do not know their competitive ratios. Our algorithms are based on the Variable

Harmonic algorithms of Csirik [4]. The optimality of these algorithms among the
class of bounded space algorithms was proved in [17]. As in previous sections, the
main difference between these algorithms and our algorithms is in the way that small
items are packed. As in previous sections, our algorithms have the exact best possi-
ble competitive ratio for a given set of bins and cardinality constraints, this with a
constant number of open bins that can be easily computed (as a function of the bins
sizes and constraints). The algorithms for the classical problem get close to the best

ONLINE BIN PACKING WITH CARDINALITY CONSTRAINTS 1023

possible competitive ratio as the number of open bins grows without bound.
In order to define our general algorithm Cardinality Constrained Variable

Harmonic (CCVH) we use some definitions. Let the bins sizes be s1 < · · · < sm = 1.
Let their cardinality constraints be k1, . . . , km (respectively). We define a set of critical
sizes for each bin in the following way. Let Ti = { si

j |1 ≤ j ≤ ki} and T =
⋃

1≤i≤m Ti.

Let |T | = M , and the members of T be 1 = t1 > t2 > · · · > tM . The type of a size
tr is defined to a value i(r) such that tr ∈ Ti(r) (ties are broken arbitrarily). In this

case the order of tr is �(r) ≤ ki such that tr =
si(r)
�(r) .

We again classify items into intervals whose right endpoint is a critical size. This
associates an item with a type and order. Afterwards we pack an item according to
its type and order (here as well as in the previous sections, the exact size does not
influence packing decisions). Each bin will contain items of a single interval.

Since M = |T | ≤
∑m

i=1 ki, there is a bounded number of pairs of type and order.
For the classification of items, we partition the interval (0, 1] into subintervals. The
“small” interval is (0, tM]. The other intervals are (tj+1, tj] for j = 1, . . . ,M−1. Each
bin will contain items from only one pair of type and order. Items in the subinterval
whose right endpoint is tr are packed into bins of size si(r). The items in this interval
are packed �(r) to a bin, thus keeping the cardinality constraints. Note that at most
M − m bins are open simultaneously, since a bin which received the full amount of
items (according to its type) is closed.

The differences between our algorithm and algorithms for the classical variable-
sized bin packing problem are as follows. The condition for an item to be “small” (i.e.,
in the “small” interval) is determined by the cardinality constraints. Items cannot be
packed using Next Fit, due to these constraints. Moreover, in [17] the smallest items
are packed into bins of size 1. In that case it is actually possible to pack the small
items into any type of bin. Here the type of bin for the small items must be si(M).
(If there exists another size i′ such that tM ∈ T ′

i , that size can be used for the small
items as well.)

The following theorem is used in [17] to prove upper bounds on the competitive
ratio of algorithms for variable-sized bins.

Theorem 7. Consider a bin packing algorithm. Let w be a weight measure.
Assume that, for every output of the algorithm, the cost of all the bins used by the
algorithm ALG is bounded by X(σ) + c for some constant c, where X(σ) is the sum
of weights of all items in the sequence according to weight measure w. Denote by Wi

the supremum amount of weight that can be packed into a (valid) single bin of size
si of an offline algorithm according to measure w. Then the competitive ratio of the
algorithm is upper bounded by max1≤i≤m

{
Wi

si

}
.

We assign weights to items in the following way. The weight of an item x is
again denoted by w(x). An item of interval (0, tM] receives weight

si(M)

�(M) (note that

�(M) = ki(M)). An item of interval (tj+1, tj] receives weight
si(j)
�(j) . Each closed bin of

interval (0, tM] is of size si(M); it receives �(M) items, and thus the weight of items
packed in it is equal to its size. Each closed bin of interval (tj+1, tj] is of size si(j).
It receives �(j) items, and thus the weight of items packed in it is equal to its size.
Therefore the cost of the algorithm differs from the total weight of all items by the
cost of all open bins, which is clearly bounded by M −m.

We can now use Theorem 7 to prove the following theorem.
Theorem 8. For a given set of bins sizes and cardinality constraints, the algo-

rithm CCVH is an optimal online algorithm.
Proof. Let s = si be the bin size which maximizes the expression max1≤i≤m

{
Wi

si

}
.

1024 LEAH EPSTEIN

Let k = ki be the cardinality constraint of this bin size. We allow the bin to contain
items of size 0, and we give them the weight

si(M)

�(M) as the weight of other very small

items. Assume therefore that a bin which contains a maximum amount of weight has
exactly k items. Let b1, . . . , bk be their sizes. Let N be a large enough integer. Con-
sider an offline packing with N bins of size s identically packed with items b1, . . . , bk.
The cost of this algorithm is Ns.

We show that any bounded space online algorithm is forced to have competitive
ratio of at least

(∑k
y=1 w(by)

)
/s. The input sequence is sorted so that it consists of

k phases. Phase y has N identical items of size by. Let K be the number of bins
that can be open simultaneously. For each bin size sa, we compute the maximum
number of items of size by that can be packed in a closed bin of size sa. This number
is Q(y, a) = min{ka, 	 sa

by

}. Let tj(y) be the upper bound of the interval for by.

According to the above weight definitions, w(by) = tj(y). For 1 ≤ a ≤ m such that
sa ≥ by, let x(y, a) be the smallest integer such that by ≤ tx(y,a) and i(x(y, a)) = a.

We charge an item of size by, which the online algorithm packs in a bin of size
sa, with sa

Q(y,a) . In this way the cost for all items packed in closed bins is exactly

the cost of the online algorithm for the closed bins. We claim that for pairs y, a for
which x(y, a) is defined, tx(y,a) = sa

Q(y,a) and x(y, a) ≤ j(y) hold. If Q(y, a) = ka,

then sa
by

≥ ka. Therefore sa
ka

≥ by and tx(y,a) = sa
ka

. Otherwise sa
by

− 1 < Q(y, a) ≤ sa
by

.

Therefore sa
Q(y,a)+1 < by and sa

Q(y,a) ≥ by. This is exactly the definition of tx(y,a). Since

j(y) is the largest index that satisfies tj(y) ≥ by, we get that x(y, a) ≤ j(y). We got
that an item of size by in a bin of size ba is charged with sa

Q(y,a) = tx(y,a) ≥ tj(y). Let

κ = max1≤i≤m{ki}. At most Kκ items are in open bins after phase y; therefore the
cost for this phase is at least Ntj(y)−Kκ = Nw(by)−Kκ. Summing over all phases,

we get the cost
∑k

y=1(Nw(by)−Kκ) = N
∑k

y=1 w(by)−Kkκ. The competitive ratio
is therefore at least ∑k

y=1 w(by)

s
− Kkκ

sN
.

This value approaches ∑k
y=1 w(by)

s

for large enough N .

5. Improved unbounded space algorithms for small values of k.

5.1. k = 3. In this section we design an algorithm for k = 3. Already the
algorithm of [1] has a competitive ratio lower than the best bounded space algorithm
(9
5 = 1.8, which is smaller than 11

6). We design an algorithm that uses a more careful
partition into classes and has competitive ratio 7

4 = 1.75. The algorithm is based on
the idea of the Harmonic algorithm and its generalizations (see [15, 16, 18, 9]). In
these generalizations, items of two intervals are combined together in the same bins.
We would like to use a similar approach; however, the boundaries of intervals are
chosen in accordance with the cardinality constraints.

We use the following five intervals: A = (2
3 , 1], B = (1

2 ,
2
3], C = (1

3 ,
1
2], D = (1

6 ,
1
3],

E = (0, 1
6]. Items which belong to an interval I are called items of type I, type I

items, or simply I items. Items of types A,C, and D are packed independently of any
other items, at one, two, and three items per bin, respectively. Note that it is always

ONLINE BIN PACKING WITH CARDINALITY CONSTRAINTS 1025

possible to combine one item of type B with two items of type E. Therefore, each
item of type E receives a color upon arrival, white or red. White items are packed in
separate bins (three per bin), whereas red items are packed two per bin and combined
with one type B item. If there exists such an open bin, the red type E items are added
there. Otherwise once a type B item arrives later, it is added to a bin with two type
E items. The colors are assigned so that an α fraction of the type E items are red.
We use α = 1

4 . Therefore every fourth type E item is red, and all others are white.
We define a bin as incomplete in the four following packings:
• a bin with a single C item,
• a bin with only one or two D items,
• a bin with one or two white E items,
• a bin with a single red E item (and possibly a B item as well).

At every time, the algorithm can have at most four incomplete bins, one for each
combination. Therefore upon termination, except for at most four incomplete bins,
every bin is packed according to one of the following options:

• a single A item,
• two C items,
• three D items,
• one B item,
• two red E items,
• three white E items,
• one B item and two red E items.

According to the definition of the algorithm, we never have a situation where one
bin has only a B item, and another bin has two red E items. This is true since a new
bin is opened for such items only if they cannot join a previously opened bin.

The algorithm is therefore at one of the following two situations: 1. there are no
bins with two red E items with no B item; 2. there are no bins with one B item and
no E items.

We assign two weights to each item, according to the two scenarios. The weights
are assigned according to types of items. We use w1(I) and w2(I) to denote the
weights of type I items according to the two weight functions. Let

w1(A) = w2(A) = 1,

w1(B) = 1, w2(B) = 0,

w1(C) = w2(C) =
1

2
,

w1(D) = w2(D) =
1

3
,

w1(E) =
1 − α

3
=

1

4
, w2(E) =

1 − α

3
+

α

2
=

α + 2

6
=

3

8
.

The weights are defined so that in the first scenario, on average all bins (but at
most four) have a total amount of weight of at least 1 packed into them according
to the first weight measure, and otherwise the same property holds according to the
second weight measure.

We use the following theorem; see Seiden [18].
Theorem 9. Consider a bin packing algorithm. Let w1, w2 be two weight mea-

sures. Assume that for every output of the algorithm, there exists i (i = 1 or i = 2)

1026 LEAH EPSTEIN

such that the number of bins used by the algorithm ALG is bounded by Xi(σ) + c
for some constant c, where Xi(σ) is the sum of weights of all items in the sequence
according to weight measure wi. Denote by Wi the supremum amount of weight that
can be packed into a (valid) single bin according to measure wi (i = 1, 2). Then the
competitive ratio of the algorithm is upper bounded by max(W1,W2).

Proof. Given an input, let i be the value that satisfies the theorem for this input.

Clearly OPT (σ) ≥ Xi(σ)
Wi

. We get ALG ≤ Xi(σ) + c ≤ WiOPT + c.
To use the theorem, we need to prove that for every input, ALG ≤ Xi(σ) + c for

some i. We ignore the (at most four) incomplete bins, which adds at most 5 to the
constant c. The weight of a bin is the sum of weights of items assigned to it. In both
scenarios, bins with one A item have weight 1, bins with two C items have weight 1,
and so do bins with three D items.

We remove from the sequence items of incomplete bins. Denote the numbers of B
items by n(B), and of E items by n(E). The number of red E items is denoted n(ER),
and the number of white E items n(EW) (i.e., n(E) = n(EW) + n(ER)). According
to the color assignments, and since at most two white items and one red item were
removed, 3n(ER) ≤ n(EW) ≤ 3n(ER) + 6. In the first scenario, no bins contain red

E items only. The total weight of B and E items is n(B)+ n(E)
4 . The number of bins

used for these types is n(B) + n(EW)
3 ≤ n(B) + n(E)+2

4 (using n(EW) ≤ 3n(ER) + 6
which gives 4n(EW) ≤ 3n(E) + 6). In this case we get ALG < X1 + 5. In the
second scenario, no bins contain a B item only. The total weight of B and E items is
3n(E)

8 . The number of bins used for these types is n(ER)
2 + n(EW)

3 = n(E)
3 + n(ER)

6 ≤
n(E)(1

3 + 1
24) = 3n(E)

8 (using 3n(ER) ≤ n(EW), which gives 4n(ER) ≤ n(E)). In
this case we get ALG < X2 + 4.

Next we analyze the maximum amount of weight that a bin can contain according
to the two weight measures. In both weight measures, if no item has weight 1, the
total weight of three items does not exceed 3

2 . Using w1, the smallest item of weight
1 is slightly larger than 1

2 . If there is a C item, then there can be no D item but only
an E item. We therefore get 1 + 1

2 + 1
4 . If there is no C item, the worst case is two

extra D items. This gives 1 + 2
3 . We therefore get W1 = 7

4 = 1.75. Using w2, the
smallest item of weight 1 is slightly larger than 2

3 . There can be no B or C items.
The worst case is two extra E items, and we get W2 = 1 + 2 · 3

8 = 1.75.
We have proved the following theorem.
Theorem 10. The competitive ratio of the above algorithm for k = 3 is at most

1.75.

5.2. k = 4, 5, 6. In this section we introduce a general algorithm and analyze
it for three values of k. The algorithm is a generalization of the algorithm for k = 3
with additional options. The intervals (also called classes) are defined as follows. The
interval of largest items is A = (1 − 1

k , 1]. The next interval, of smaller large items is
B = (1

2 , 1 − 1
k]. Intervals C2, . . . , Ck−1 are Ci = (1

i+1 ,
1
i]. Intervals E1, . . . , Ek−1 are

defined to be Ei = (1
k(i+1) ,

1
ki] for i < k − 1 and Ek−1 = (0, 1

k(k−1)].

We use parameters αi for intervals Ei. An αi fraction of the items of interval
Ei are colored red, and all others are colored white. All these values are rational,
so if αi = pi

qi
is a minimal rational representation of αi, then the input items of this

interval are partitioned into sets of qi items, out of which the first qi − pi are colored
white and the next pi are colored red.

The packing is done as follows. Items of class Ci are packed i per bin. White
items of classes Ei are packed k per bin. Red items of class Ei are packed i per bin.

ONLINE BIN PACKING WITH CARDINALITY CONSTRAINTS 1027

This means that a bin never contains more than k − 1 red items, and they occupy a
space of at most 1

k . These items can always be combined with type B items. Basically,
items of class B are packed one per bin, but when possible, they are combined with
one of the types Ei. When we need to open a bin for red Ei items for some i, we first
check whether there exists a bin with only a class B item, and if so, the red items are
added to that bin. Otherwise a new bin is opened for them. When an item of class B
arrives, we try to add it into a bin of red items that still has not received a B item,
and open a new bin if it does not exist.

A bin is complete if it received its full number of items, or if it contains a B item,
or if it contains the full number of red items (possibly without a B item). We can
neglect bins that are not complete, since their number is at most 3k−4. This amount
is caused by at most k− 1 bins for intervals Ci for 1 ≤ i ≤ k− 1, k− 1 bins for white
items of k − 1 types, and k − 2 bins for red items of k − 2 types (a bin with a red
E1 item cannot be incomplete). As in the algorithm for k = 3, only one of the two
situations can occur. Either there are no complete bins with red items without a class
B item, or there are no bins with a class B item and no red items.

We define weights as follows. Assign two weights to each item, according to the
two scenarios. The weights are assigned according to types of items. We again use
w1(I) and w2(I) to denote the weights of type I items according to the two weight
functions. Let w1(A) = w2(A) = 1, w1(B) = 1, w2(B) = 0, w1(Ci) = w2(Ci) =
1
i , w1(Ei) = 1−αi

k , w2(Ei) = 1−αi

k + αi

i = i+(k−i)αi

ik .

The weights are defined so that in the first scenario, on average all bins (ne-
glecting the bins which are not complete) have a total weight of at least 1 packed in
them according to the first weight measure, and otherwise the same property holds
according to the second weight measure.

To use Theorem 9, we need to prove that the conditions of the theorem hold.

Lemma 11. For every input σ, ALG(σ) ≤ Xi(σ) + c holds for some i.

Neglecting the incomplete bins (which affect only the constant c), we would like
to show that ALG ≤ Xi + c. For both weight measures cases, bins with one A item
have weight 1, and bins with i class C items have weight 1. Denote the number of
B items by n(B), and of Ei items by n(Ei). The number of red Ei items is denoted
n(ERi), and the number of white Ei items n(EWi) (i.e., (n(Ei) = n(EWi)+n(ERi)).

According to the color assignments, let αi = pi

qi
(a minimal rational representation

of αi). Then αi(n(Ei)−(qi−pi)) ≤ n(ERi) ≤ αin(Ei), and (1−αi)n(Ei) ≤ n(EWi) ≤
(1−αi)n(Ei)+qi−pi. In the first scenario, no complete bins contain red Ei items only.

The total weight of B and Ei items for all i is n(B)+
∑k−1

i=1
1−αi

k ·n(Ei). The number of

bins used for these types is n(B)+
∑k−1

i=1
n(EWi)

k ≤ n(B)+ ·
∑k−1

i=1 (1−αi

k n(Ei)+
qi−pi

k).
In this case we get ALG < X1 + c1, where c1 depends on the number of neglected
incomplete bins, which is constant (for a given choice of the pi, qi values). In the
second scenario, no bins contain a B item only. The total weight of B and E items is∑k−1

i=1
i+(k−i)αi

ik · n(Ei). The number of bins used for these types is
∑k−1

i=1

(n(EWi)
k +

n(ERi)
i

)
≤

∑k−1
i=1

(1−αi)n(Ei)+qi−pi

k + αin(Ei)
i =

∑k−1
i=1 n(Ei)

i+(k−i)αi

ki + qi−pi

k . In this
case we get ALG < X2 + c2, where c2 is a constant which depends on the number of
incomplete bins and on the values chosen for qi, pi, 1 ≤ i ≤ k − 1.

Next we would like to analyze the maximum amount of weight that a bin can
contain according to the two weight measures. We do that separately for k = 4, 5, 6.
We always assume that there are exactly k items in each bin. This is done by allowing
items of size 0 that belong to the class Ek−1. Note also that we will have ranges of

1028 LEAH EPSTEIN

sizes where weights are fixed to be monotonically nondecreasing functions of size;
therefore in these cases, we do not need to consider options where a single item can
be replaced by a smaller one.

The case k = 4. We are aiming at the competitive ratio R(4) = 71
38 ≈ 1.86842.

Define the following values: α1 = 1
19 , α2 = 3

19 , α3 = 9
19 . This implies the weights

w1(E1) = 9
38 , w1(E2) = 8

38 , w1(E3) = 5
38 , w2(Ei) = 11

38 for i = 1, 2, 3.

We compute the maximum amount of weight in a single bin with respect to w2

first. If no item in the bin is of class A, then the largest weight of any item can be 1
2 .

However, a bin can contain at most two such items. All other items have weights of
at most 1

3 . This gives a total of at most 5
3 < R(4). Next, if a class A item is present,

all other others are of classes E1, E2, E3. They all have identical weight. At most
three more items can exist, and thus we get the total weight 1 + 3 · 11

38 = R(4).

Next, we compute the maximum weight with respect to w1. If no item of weight
1 is present, then all weights are upper bounded by the weights of the same items
with respect to w2, and therefore this case is covered by the calculation done for w2.
Otherwise, an item of weight 1 occupies a space of more than 1

2 . If an item of class
C2 exists, it occupies a space of more than 1

3 , and the two other items are of types
E1, E2, E3. Moreover, there is room for only one item of either class E1 or E2 (these
items are larger than 1

12). Since weights are monotone for all sizes, the worst case is
one item of each class B,C2, E1, E3 whose sum of weights is 1 + 1

2 + 9
38 + 5

38 = R(4).
If there is no item of C2, there are three other items, only one of them can be a C3

item. This gives the worst case bound 1 + 1
3 + 2 · 9

38 < 69
38 < R(4).

The case k = 5. We are aiming at the competitive ratio R(5) = 771
398 ≈ 1.93719.

Define the following values: α1 = 9
199 , α2 = 24

199 , α3 = 54
199 , α4 = 114

199 . This implies

the following weights: w1(E1) = 76
398 , w1(E2) = 70

398 , w1(E3) = 58
398 , w1(E4) = 34

398 ,
w2(Ei) = 94

398 for i = 1, 2, 3 and w2(E4) = 91
398 .

We compute the maximum amount of weight in a single bin with respect to w2

first. If no item in the bin is of class A, then the largest weight of any item can be 1
2 .

However, a bin can contain at most two such items, and at most three items larger
than 1

4 (two of which may be of size larger than 1
3). The weight of three items larger

then 1
4 is therefore at most 2 · 1

2 + 1
3 . All other items have weight of at most 1

4 , which
gives a total of at most 4

3 + 2 · 1
4 = 11

6 < R(5). Next, if a class A item is present, all
others are of classes E1, E2, E3, E4. Four more items are present, but at least one of
them must be in class E4. Items in E1, E2, E3 all have weight 47

199 , and thus we get
the total weight of at most 1 + 3 · 47

199 + 91
398 = R(5).

Next, we compute the maximum weight with respect to w1. If no item of weight 1
is present, then again all weights are bounded from above by the weights of the same
items with respect to w2, and therefore this case is covered by the calculation done
for w2. Otherwise, an item of weight 1 occupies a space of more than 1

2 .

If an item of class C2 exists, it occupies a space of more than 1
3 , and the three

other items are of types E1, E2, E3, E4. Moreover, if there is a class E1 item, then
there is no class E2 item and at most one class E3 item. This gives a total weight of
1 + 1

2 + 38
199 + 29

199 + 17
199 = 765

398 < R(5). If there is no class E1 item, then if we have a
class E2 item, we can have another item of either class E2 or E3 and a class E4 item,
which gives the weight of at most 1 + 1

2 + 2 · 35
199 + 17

199 = R(5). Finally if there are no
E1 and E2 items, then the weight is at most 1 + 1

2 + 3 · 29
199 = R(5).

If no item of class C2 exists but there is a class C3 item, we have the following
options. If there is a C4 item as well, then the occupied area is already more than
0.95, so the other two items are of classes E4, and this gives weight of at most

ONLINE BIN PACKING WITH CARDINALITY CONSTRAINTS 1029

1+ 1
3 + 1

4 +2 · 17
199 < 699

398 < R(5). If there is no C4 item, then the largest weight of the
additional three items can be 38

199 each, which bounds the weight by 1 + 1
3 + 3 · 38

199 <
759
398 < R(5).

If no items of classes C2, C3 exist, there can be at most two C4 items, and other
items have weight at most 38

199 , which together bounds the weight by 1+2· 1
4 +2 · 38

199 <
749
398 < R(5).

The case k = 6. We are aiming at the competitive ratio R = 287
144 ≈ 1.99306.

Define the following values: α1 = 2
48 = 1

24 , α2 = 5
48 , α3 = 10

48 = 5
24 , α4 = 20

48 = 5
12 ,

α5 = 30
48 = 5

8 . This implies the following weights: w1(E1) = 46
288 , w1(E2) = 43

288 ,

w1(E3) = 38
288 , w1(E4) = 28

288 , w1(E5) = 18
288 , w2(Ei) = 58

288 for i = 1, 2, 3, 4 and

w2(E5) = 54
288 = 3

16 .

We compute the maximum amount of weight in a single bin with respect to w2

first. If no item in the bin is of class A, then a bin can contain at most two such items
larger than 1

3 , or at most three items larger than 1
4 , or at most four items larger than

1
5 . The worst case gives two items of class C2, one of C3 and one of C4. The two
other items have weight of at most 29

144 (since 1
5 < 29

144), which gives a total of at most
2 · 1

2 + 1
3 + 1

4 + 2 · 29
144 = 286

144 < R(6). Next, if a class A item is present, all others are
of classes Ei, 1 ≤ i ≤ 5. Five more items are present, but at least one of them must
be in class E5. Items in E1, E2, E3, E4 all have weight 29

144 , and thus we get the total
weight of at most 1 + 4 · 29

144 + 27
144 = R(6).

Next, we compute the maximum weight with respect to w1. If no item of weight 1
is present, then again all weights are upper bounded by the weights of the same items
with respect to w2, and therefore this case is covered by the calculation done for w2.
Otherwise, an item of weight 1 occupies a space of more than 1

2 . Consider the other
contents of the bin. We replace an item of class Ci with an item of size 1

i+1 (without
changing its weight). Similarly we replace an item of class Ei with an item of size

1
6(i+1) for i < k−1 and with an item of size 0 if i = 5. We only decrease sizes of items;

therefore they all fit into the bin. We define the expansion of an item of size x of

weight w to be r(x,w) =
w− 1

16

x , and for x = 0 the expansion is 0. Note that the weight

of a set of i items of total size S and of maximum expansion s is at most Ss + i
16 .

The expansions for classes C2, . . . , C5 are 189
144 = 1.3125, 156

144 ≈ 1.08333, 135
144 =

0.9375, 33
40 = 0.825 (respectively). The expansions for classes E1, . . . , E5 are 7

6 ≈
1.166667, 25

16 = 1.5625, 5
3 ≈ 1.66667, 150

144 ≈ 1.041667, 0 (respectively).

Let e2 and e3 be the numbers of items of classes E2 and E3. If there is no class
C2 item, we can bound the weight as follows. There are i − e2 − e3 other items;
therefore the weight is bounded by 1 + e2

43
288 + e3

19
144 + 5−e1−e2

16 + (1
2 − e2

18 − e3
24) · 7

6 =
91
48 + 19

864e2+ 18
864e3. If e2+e3 ≤ 4, we get at most 857

432 < R(6). Otherwise, if e1+e2 = 5,
we do not have any other items except for an item of weight 1 and five items of weight
43
288 or 38

288 , which gives a total of at most 503
288 < R(6).

If there is an item of class C2, the empty space left is less than 1
6 . This means

that i = e2 + e3 ≤ 3 and e2 ≤ 2. We get a total weight of at most 1.5 + e2
43
288 +

e3
19
144 + 4−e2−e3

16 +(1
6 −

e2
18 + e3

24) · 7
6 = 35

18 + 19
864e2 + 18

864e3. If e2 + e3 ≤ 2, we can bound
the weight by 859

432 < R(6). We are left with the cases e2 = 2, e3 = 1, e2 = 1, e3 = 2,
e2 = 0, e3 = 3. In the first two cases, only an item of class E5 can be added to the bin.
In the last case, an item of class E4 or E5 can be added. Therefore we need to consider
two cases, where the four small items are of classes E2, E2, E3, E5 and E3, E3, E3, E4.
We get total weights 1.5 + 2 · 43

288 + 19
144 + 1

16 = R(6) and 1.5 + 3 · 19
144 + 14

144 = R(6).

We summarize with the following theorem.

1030 LEAH EPSTEIN

Theorem 12. The competitive ratios of the above algorithm are at most 71
38 ≈

1.86842 for k = 4, 771
398 ≈ 1.93719 for k = 5, and 287

144 ≈ 1.99306 for k = 6.

6. Conclusion. The main open question is whether an algorithm with compet-
itive ratio strictly better than 2 can be designed for all values of k. In this paper we
showed that such an algorithm cannot be bounded space (unless k ≤ 3). We note that
the methods used in this paper for small values of k cannot be extended for larger k.

REFERENCES

[1] L. Babel, B. Chen, H. Kellerer, and V. Kotov, Algorithms for on-line bin-packing problems
with cardinality constraints, Discrete Appl. Math., 143 (2004), pp. 238–251.

[2] A. Caprara, H. Kellerer, and U. Pferschy, Approximation schemes for ordered vector
packing problems, Naval Research Logistics, 92 (2003), pp. 58–69.

[3] E. G. Coffman, M. R. Garey, and D. S. Johnson, Approximation algorithms for bin packing:
A survey, in Approximation Algorithms, D. Hochbaum, ed., PWS Publishing Company,
Boston, 1997, pp. 46–93.

[4] J. Csirik, An online algorithm for variable-sized bin packing, Acta Inform., 26 (1989), pp. 697–
709.

[5] J. Csirik and G. J. Woeginger, On-line packing and covering problems, in Online Algorithms:
The State of the Art, A. Fiat and G. J. Woeginger, eds., Lecture Notes in Comput. Sci.
1442, Springer, NY, 1998, pp. 147–177.

[6] J. Csirik and G. J. Woeginger, Resource augmentation for online bounded space bin packing,
J. Algorithms, 44 (2002), pp. 308–320.

[7] L. Epstein and R. van Stee, On variable-sized multidimensional packing, in Proceedings of
the 12th Annual European Symposium on Algorithms (ESA2004), Bergen, Norway, 2004,
Lecture Notes in Comput. Sci. 3221, Springer, New York, 2004, pp. 287–298.

[8] L. Epstein and R. van Stee, Online bin packing with resource augmentation, in Proceedings
of the 2nd Workshop on Approximation and Online Algorithms (WAOA 2004), Bergen,
Norway, 2004, Lecture Notes in Comput. Sci. 3351, Springer, New York, 2004, pp. 48–60.

[9] L. Epstein and R. van Stee, Optimal online bounded space multidimensional packing, in
Proceedings of 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’04),
New Orleans, LA, 2004, SIAM, Philadelphia, 2004, pp. 207–216.

[10] D. K. Friesen and M. A. Langston, Variable sized bin packing, SIAM J. Comput., 15 (1986),
pp. 222–230.

[11] D. S. Johnson, Fast algorithms for bin packing, J. Comput. System Sci., 8 (1974), pp. 272–314.
[12] H. Kellerer and U. Pferschy, Cardinality constrained bin-packing problems, Ann. Oper.

Res., 92 (1999), pp. 335–348.
[13] K. L. Krause, V. Y. Shen, and H. D. Schwetman, Analysis of several task-scheduling algo-

rithms for a model of multiprogramming computer systems, J. ACM, 22 (1975), pp. 522–
550.

[14] K. L. Krause, V. Y. Shen, and H. D. Schwetman, Errata: “Analysis of several task-
scheduling algorithms for a model of multiprogramming computer systems, J. ACM, 24
(1977), pp. 527–527.

[15] C. C. Lee and D. T. Lee. A simple online bin packing algorithm, J. ACM, 32 (1985), pp. 562–
572.

[16] P. Ramanan, D. J. Brown, C. C. Lee, and D. T. Lee, Online bin packing in linear time, J.
Algorithms, 10 (1989), pp. 305–326.

[17] S. S. Seiden, An optimal online algorithm for bounded space variable-sized bin packing, SIAM
J. Discrete Math., 14 (2001), pp. 458–470.

[18] S. S. Seiden, On the online bin packing problem, J. ACM, 49 (2002), pp. 640–671.
[19] S. S. Seiden, R. van Stee, and L. Epstein, New bounds for variable-sized online bin packing,

SIAM J. Comput., 32 (2003), pp. 455–469.
[20] J. D. Ullman, The Performance of a Memory Allocation Algorithm, Technical Report 100,

Princeton University, Princeton, NJ, 1971.
[21] A. van Vliet, An improved lower bound for online bin packing algorithms, Inform. Process.

Lett., 43 (1992), pp. 277–284.
[22] G. Woeginger, Improved space for bounded-space, online bin packing, SIAM J. Discrete Math.,

6 (1993), pp. 575–581.
[23] A. C. C. Yao, New algorithms for bin packing, J. ACM, 27 (1980), pp. 207–227.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 4, pp. 1031–1041

SET SYSTEMS WITH NO SINGLETON INTERSECTION∗

PETER KEEVASH† , DHRUV MUBAYI‡ , AND RICHARD M. WILSON†

Abstract. Let F be a k-uniform set system defined on a ground set of size n with no singleton
intersection; i.e., no pair A,B ∈ F has |A ∩ B| = 1. Frankl showed that |F| ≤

(n−2
k−2

)
for k ≥ 4 and

n sufficiently large, confirming a conjecture of Erdős and Sós. We determine the maximum size of F
for k = 4 and all n, and also establish a stability result for general k, showing that any F with size
asymptotic to that of the best construction must be structurally similar to it.

Key words. extremal set theory, restricted intersections

AMS subject classification. 05D05

DOI. 10.1137/050647372

1. Introduction. Say that a set system F is L-intersecting if for every A,B ∈ F
we have |A ∩ B| ∈ L. Ray-Chaudhuri and Wilson [18] and Frankl and Wilson [10]
obtained tight bounds for L-intersecting set systems. They showed that if L is a set
of s nonnegative integers and F is an L-intersecting system on [n] = {1, . . . , n}, then
|F| is at most

∑s
i=0

(
n
i

)
, and at most

(
n
s

)
if F is k-uniform for some k, i.e., |A| = k

for each A ∈ F . Equality can hold in these bounds when L = {0, . . . , s − 1}. It is
natural to ask for the best possible bound for each specific set L, and in general it is
an open problem to even determine the order of magnitude. A detailed compilation
of results on the uniform version of this problem can be found in [9].

We will consider the problem of finding the largest k-uniform family with no
singleton intersection, i.e., L-intersecting with L = {0, 2, 3, . . . , k}. One construction
of such a family is to take all k-subsets of [n] that contain two specified points; this
gives a family of

(
n−2
k−2

)
sets with no singleton intersection, which also happens to have

no empty intersection. Erdős and Sós (see [4]) conjectured that this is the maximum
number for k ≥ 4 and sufficiently large n, and this was proved by Frankl [6]. (Note
that when n = 3 the maximum number is n, which can be achieved when n is divisible

by 4 by taking n/4 vertex disjoint copies of K
(3)
4 , i.e., the complete triple system on

4 points.)
For a more complete understanding of the problem, one might hope to find the

maximum number for all n and to describe the structure of the maximum systems.
Our first theorem achieves this when k = 4, and our approach gives some additional
structural information for general k. Our basic idea is to consider a maximum match-
ing and estimate the rest of the family based on the intersections of its sets with this
matching. The same technique has recently been successful for various other extremal
problems, such as in [13] and [16].

Before stating our first theorem, we should mention the fundamental intersection
theorem of Erdős, Ko, and Rado [5]. Say that a set system F is t-intersecting if

∗Received by the editors December 12, 2005; accepted for publication (in revised form) June 5,
2006; published electronically December 15, 2006.

http://www.siam.org/journals/sidma/20-4/64737.html
†Department of Mathematics, Caltech, Pasadena, CA 91125 (keevash@caltech.edu, rmw@caltech.

edu). The first author’s research was supported in part by NSF grant DMS-0555755.
‡Department of Mathematics, Statistics and Computer Science, University of Illinois, Chicago, IL

60607 (mubayi@math.uic.edu). This author’s research was supported in part by NSF grant DMS-
0400812 and by an Alfred P. Sloan fellowship.

1031

1032 PETER KEEVASH, DHRUV MUBAYI, AND RICHARD M. WILSON

for every A,B ∈ F we have |A ∩ B| ≥ t. They showed that, if F is k-uniform and
t-intersecting on [n] with n sufficiently large, then |F| ≤

(
n−t
k−t

)
. (The case t = 2 is

pertinent to our current discussion.) Confirming a conjecture of Erdős, Wilson [19]
showed that this bound in fact holds for n ≥ (t+1)(k−t+1) (which is the best possible
strengthening), and furthermore that the unique maximum system consists of all k-
sets containing some fixed t-set. To describe the complete solution for all n we need to
define the t-intersecting systems Fk,t

i (n) = {A ⊂ [n] : |A| = k, |A∩ [t+2i]| ≥ t+ i} for
0 ≤ i ≤ k − t. The complete intersection theorem, conjectured by Frankl and proved
by Ahlswede and Khachatrian [1], is that a maximum size k-uniform t-intersecting

family on [n] is isomorphic to Fk,t
i (n), for some i which can easily be computed given

n. Note that Fk,t
0 (n) is the system of all k-sets containing some fixed t-set. These

constructions also appear in our analysis for 4-uniform systems with no singleton
intersection.

Theorem 1.1. Suppose that F is a 4-uniform set system on [n] with no pair
A,B ∈ F satisfying |A ∩B| = 1. Then

|F| ≤

⎧⎪⎪⎨
⎪⎪⎩

(
n
4

)
, n = 4, 5, 6,

15, n = 7,
17, n = 8,(
n−2

2

)
, n ≥ 9.

Furthermore, the only cases of equality are K
(4)
n for n = 4, 5, F4,2

2 (n) = K
(4)
6 for

n = 6, 7, F4,2
1 (8) for n = 8, and F4,2

0 (n) for n ≥ 9.

Many extremal problems have a property known as stability, meaning that not
only do they have a unique maximizing construction, but also any family with size
asymptotic to that of the best construction must be structurally similar to it. Sta-
bility theorems can be useful tools for establishing exact results (e.g., [15]) and for
enumerating discrete structures (e.g., [3]). They are also interesting in their own
right, as they provide information about the problem that is structural, rather than
just numerical, and they often motivate new proof techniques where the original ones
do not suffice.

A strong stability version of the Erdős–Ko–Rado theorem was obtained by Frankl
[7], extending an earlier result of Hilton and Milner [11]. A similar result with different
assumptions on the parameters was also obtained by Anstee and Keevash [2]. A
simple consequence of Frankl’s theorem (which is also easy to prove directly) is that
for any k there is c(k) such that, if F is k-uniform and t-intersecting on [n] with
|F| > c(k)nk−t−1 and n sufficiently large, then there is a set of t points that is
contained in every set of F .

These stability theorems are stronger than the usual stability paradigm in two
senses: first the supposed lower bound on |F| is of a lower order of magnitude than
the maximum possible (rather than asymptotic to it), and second the conclusion is
that F is contained in the best construction (rather than structurally similar to it).
An example of a stability theorem for set systems that is not strong was given by
Mubayi [17]. Also, a strong stability theorem cannot hold for our problem of having
no singleton intersection. To see this, note that if A and B are families on disjoint
sets X and Y with no singleton intersection, then A ∪ B is a family on A ∪ Y with
no singleton intersection. If X ∪ Y = [n] and |Y | = o(n), we can take |A| ∼

(
n−2
k−2

)
,

but there need not be two points that belong to all of the sets. Our next result is a
(normal) stability theorem for systems having no singleton intersection.

NO SINGLETON INTERSECTION 1033

Theorem 1.2. For any ε > 0 there is δ > 0 such that if F is a k-uniform family
on [n] with no singleton intersection and |F| ≥ (1−δ)

(
n−2
k−2

)
, then there are two points

x, y so that all but at most εnk−2 sets of F contain both x and y.
A result that is useful in the proof of Theorem 1.2, and is of independent interest,

is the following bound, which is slightly suboptimal but has the advantage of being
valid for all n.

Theorem 1.3. Let F be a k-uniform family on [n] with no singleton intersection,
where k ≥ 3. Then |F| ≤

(
n

k−2

)
.

The rest of this paper is organized as follows. We start, in the next section, by
quickly deducing Theorem 1.3 from a result of Frankl and Wilson [10]. Then we prove
Theorem 1.1 in section 3. Some lemmas used in the proof of Theorem 1.2 are given
in section 4, and the proof itself in section 5.

Notation. We write [n] = {1, . . . , n}. Typically F is a k-uniform set system (or
family, or hypergraph) with ground set [n]. Given A ⊂ [n], the link of F from A
is F(A) = {F\A : A ⊂ F ∈ F}. The complete r-uniform hypergraph on s vertices

is denoted K
(r)
s . For 0 ≤ i ≤ k − t we define Fk,t

i (n) = {A ⊂ [n] : |A| = k,
|A ∩ [t + 2i]| ≥ t + i}.

2. A bound for all n. In this section we prove Theorem 1.3. It is a simple
consequence of the following theorem of Frankl and Wilson, implicit in [10]. For the
convenience of the reader we briefly reproduce their proof.

Theorem 2.1. Suppose that p is prime, k ∈ N, L ⊂ {0, . . . , k − 1}, and f(x)
is an integer-valued polynomial of degree d ≤ k such that f(�) ≡ 0 mod p for � ∈ L
and f(k)
≡ 0 mod p. If F is a k-uniform L-intersecting set system on [n], then
|F| ≤

(
n
d

)
.

Proof. Let Wi,j be the matrix with rows indexed by the i-subsets of [n] and
columns by the j-subsets of [n], where, given |A| = i and |B| = j, the entry Wi,j(A,B)
is 1 if A ⊂ B and 0 if A
⊂ B. Let V be the row space of Wd,k. The identity

Wi,dWd,k =
(
k−i
d−i

)
Wi,k implies that V contains the row space of Wi,k for all i ≤ d. Since

f is integer-valued there are integers a0, . . . , ad such that f(x) =
∑d

i=0 ai
(
x
i

)
, where

(
x
i

)
is the polynomial 1

i!x(x−1) · · · (x−i+1). Consider the matrix M =
∑d

i=0 aiW
T
i,kWi,k.

The row space of M is contained in V , so rank M ≤ dimV ≤
(
n
d

)
. On the other hand,

given k-sets A,B, we have M(A,B) =
∑d

i=0 ai
(|A∩B|

i

)
= f(|A ∩ B|). Let M0 be the

submatrix of M consisting of elements M(A,B) with A,B ∈ F . By our assumptions
M(A,B) ≡ 0 mod p for A
= B and M(A,A)
≡ 0 mod p, and so M0 is nonsingular.
Therefore |F| = rank M0 ≤ rank M ≤

(
n
d

)
.

Proof of Theorem 1.3. Let p be a prime that divides k − 1 and f(x) =
(
x−2
k−2

)
, a

polynomial of degree k−2. Then f(i) = 0 for 2 ≤ i ≤ k−1, f(0) = (−1)k−2(k−1) ≡ 0
mod p, and f(k) = 1. By Theorem 2.1, if F is a k-uniform family on [n] with no
singleton intersection, then |F| ≤

(
n

k−2

)
.

3. Solution for 4-uniform families. Throughout we suppose that F is a 4-
uniform set system on [n] with no singleton intersection; i.e., there is no pair A,B ∈ F
with |A ∩ B| = 1. In this section we will prove Theorem 1.1, which describes such
families F of maximum size. We start by discussing the small values of n. Trivially

K
(4)
n is the maximum family for n = 4, 5, 6. Also, when n = 7 then F cannot contain

two disjoint sets and so is 2-intersecting, and the complete intersection theorem shows

that the maximum family is F4,2
2 (7) = K

(4)
6 . Next suppose that n = 8. If F does not

contain two disjoint sets, then as before it is 2-intersecting and so contains at most

1034 PETER KEEVASH, DHRUV MUBAYI, AND RICHARD M. WILSON

17 sets, with equality only for F4,2
1 (8). In fact, this is the maximum family, as shown

by the case t = 2 of the next lemma.
Lemma 3.1. Suppose that F is a 4-uniform family on [n] with no singleton

intersection and contains a perfect matching A1, . . . , At, with t ≥ 2. Then |F| ≤
3
(
2t
2

)
− 2t.

Proof. We argue by induction on t. First we do the base case, where t = 2 and
it is required to show that |F| ≤ 14. Note that every set in F other than A1 or A2

has two points in each of A1 and A2. Given a pair uv in A1, let F(uv) be its link in
A2, i.e., the set of pairs xy in A2 for which uvxy is in F , and write d(uv) = |F(uv)|.
Since F has no singleton intersection the links have the following properties:

(i) If uv and wx are disjoint pairs in A1 and a, b, c are distinct points of A2, then
we do not have ab ∈ F(uv) and ac ∈ F(wx).

(ii) If ab and cd are disjoint pairs in A2 and u, v, w are distinct points of A1, then
we do not have ab ∈ F(uv) and cd ∈ F(uw).

We consider cases according to the maximum value of d(uv). The above properties
imply that if there is a pair uv in A1 with d(uv) = 6, then d(u′v′) = 0 for all other pairs
u′v′ in A1, and if there is a pair uv in A1 with d(uv) = 5, then d(u′v′) ≤ 1 for all other
pairs u′v′ in A1. In either case we have |F| = 2 +

∑
u,v∈A1

d(uv) < 14. Otherwise, if
d(uv) ≤ 4 for all pairs uv in A1, we claim that for any two opposite pairs uv,wx in
A1 we have d(uv) + d(wx) ≤ 4. To see this, we can suppose that, say, d(uv) ≥ 3. But
now, if ab ∈ F(wx), by property (i) F(uv) can contain only ab or A2\ab, contradicting
the assumption that d(uv) ≥ 3. Therefore d(wx) = 0, so d(uv) + d(wx) ≤ 4. Since
K4 can be decomposed into 3 matchings, |F| = 2 +

∑
u,v∈A1

d(uv) ≤ 2 + 3 · 4 = 14,
as required.

Now suppose t ≥ 3. By the case t = 2, for every 1 ≤ i ≤ t− 1 there are at most
12 sets with 2 points in each of Ai and At. Thus there are at most 12(t− 1) + 1 sets

incident to At. By an induction hypothesis there are at most 3
(
2(t−1)

2

)
− 2(t− 1) sets

within ∪t−1
i=1Ai, so in total we have at most 3

(
2t
2

)
− 2t.

The heart of the proof of Theorem 1.1 is contained in the following theorem,
which in the case when F is not intersecting gives a stronger bound on its size. We
define

b2(n) = 13 + max

{
7(n− 8),

(
n− 6

2

)}
and

bt(n) = 3

(
2t

2

)
− 2t− 1 + max

{
3t(n− 4t),

(
n− 4t + 2

2

)}
for t ≥ 3.

Theorem 3.2. Suppose that F is a 4-uniform family on [n] with no singleton
intersection. Let A1, . . . , At be a maximum matching in F , and suppose t ≥ 2. Then
|F| ≤ bt(n).

Proof. Let A = ∪t
i=1Ai and B = [n]\A. By maximality of t there are no sets of F

contained in B. The sets contained within A may be estimated by Lemma 3.1: there
are at most 3

(
2t
2

)
− 2t of them. The remaining sets intersect both A and B, and since

there are no singleton intersections they have two possible types: 2 points in some Ai

and 2 in B, or 3 points in some Ai and 1 in B.
Say that a pair xy in B has color i if there is a pair ab in Ai such that abxy is a set

of F . Note that a pair may have more than one color or be uncolored. Let M be the
set of all pairs xy in B which are colored but do not intersect any other colored pair.
Thus M is a perfect matching on some set D ⊂ B. Now if a pair xy has more than

NO SINGLETON INTERSECTION 1035

one color, there can be no set of F that intersects it in one point: this would create
a singleton intersection. In this case all sets in F meeting xy consist of xy together
with a pair in some Ai, so there are at most 6t such sets. On the other hand, if xy
has a unique color i, then all sets meeting it are contained in Ai ∪{x, y}, so there are
at most

(
6
4

)
− 1 = 14 such sets. Thus the number of sets of F meeting a colored pair

xy is at most max{6t, 14}. Setting d = |D| = 2|M |, this gives at most max{3td, 7d}
sets of F meeting D.

All other colored pairs are contained in B\D. Let Gi be those of color i and Ci

be those vertices contained in some pair of Gi. Note that Ci can be empty. The
crucial observation of the proof is that C1, . . . , Ct are disjoint (and so the same is true
of G1, . . . , Gt). To see this, suppose to the contrary that x ∈ Ci ∩ Cj . Then xy ∈ Gi

and xz ∈ Gj for some y, z. If y
= z, then we would have a singleton intersection in F .
On the other hand, if y = z, we note that since xy /∈ M there is another colored pair
P that intersects it. A color of P is different from at least one of i and j, so again we
have a singleton intersection. Thus C1, . . . , Ct are disjoint.

Let C = ∪t
i=1Ci and E = B\(C ∪ D). Any set in F meeting E has 1 point in

E and 3 points in some Ai, which must be uniquely specified to avoid a singleton
intersection. Thus there are at most 4e such sets, where e = |E|. All other sets in F
meet C, so are contained in Ai ∪ Ci for some i.

Next we note that the sets in F within Ai ∪ Ci form a 2-intersecting family; for
there are no singleton intersections, and if Ai ∪ Ci contained two disjoint sets, we
could enlarge the matching A1, . . . , At. Let ci = |Ci|, so that |Ai ∪Ci| = ci + 4. Note
that ci is either 0 or ≥ 3, as ci = 2 would correspond to a colored pair that does
not intersect any other colored pair, but by definition these pairs belong to D, not
C. By the complete intersection theorem, the number of sets within Ai ∪ Ci is at
most f(ci), defined to be

(
ci+2

2

)
for ci ≥ 5, 17 for ci = 4, 15 for ci = 3, 1 for ci = 0.

Now, given |C| = c =
∑t

i=1 ci, we claim that
∑t

i=1 f(ci) ≤ f(c) + t− 1, with equality
holding when ci = c for some i, and cj = 0 otherwise. This follows from a variational
argument, using the inequalities f(a + 1) + f(b− 1) ≥ f(a) + f(b) for a ≥ b ≥ 4 and
f(a + 3) + f(0) ≥ f(a) + f(3) for a ≥ 3, which are easy to verify. Excluding the sets
A1, . . . , At, we conclude that the number of sets in F meeting C is at most f(c) − 1.

Putting everything together, we have |F| ≤ 3
(
2t
2

)
−2t+max{3td, 7d}+4e+f(c)−1,

where n = 4t+c+d+e. For t ≥ 3 we can write |F| ≤ 3
(
2t
2

)
−2t+3t(n−4t−c)+f(c)−1.

This is a quadratic in c with positive coefficient of c2 for 5 ≤ c ≤ n − 4t, so in this
range its maximum occurs at c = 5 or c = n− 4t. Furthermore, it is easy to see that
the value at c = 0 is larger than at c = 3, 4, 5 (and c = 2 is impossible as no ci equals
1 or 2). Therefore the overall maximum occurs at c = 0 or c = n − 4t, which gives
the stated bound. The bound for t = 2 follows in the same way, replacing 3td by 7d
in the upper bound for F .

Proof of Theorem 1.1. Suppose that F is a 4-uniform family on [n] with no single-
ton intersection. If F is intersecting, then it is 2-intersecting, and so we are done by
the complete intersection theorem. Otherwise, suppose that the maximum matching
has size t ≥ 2, so n ≥ 8. We have an upper bound on |F| given in Theorem 3.2, and
we claim that this is always less than

(
n−2

2

)
.

First we consider the case t = 2. When n = 8 we have
(
n−2

2

)
= 15 and b2(n) =

14; when n = 9 we have
(
n−2

2

)
= 21 and b2(n) = 20. For n ≥ 10 we note that(

n−2
2

)
−
(
n−1−2

2

)
= n− 3 and b2(n)− b2(n− 1) ≤ max{7, n− 6} ≤ n− 3, where we use

the inequality max{a, b}−max{a′, b′} ≤ max{a− a′, b− b′}. Therefore b2(n) <
(
n−2

2

)
for all n ≥ 8.

1036 PETER KEEVASH, DHRUV MUBAYI, AND RICHARD M. WILSON

For general t, when n = 4t we have
(
n−2

2

)
− bt(4t) = (2t− 3)(t− 1) > 0. Also, for

n > 4t we have
(
n−2

2

)
−
(
n−1−2

2

)
= n−3 and bt(n)− bt(n−1) ≤ max{3t, n−4t+1} ≤

n− 3, so bt(n) <
(
n−2

2

)
for all n ≥ 4t.

4. Three lemmas. Here we prove some lemmas that will be used in the next
section. Our first lemma concerns a multicolored version of our problem, in the sense
of [12].

Lemma 4.1. Suppose that F1, . . . ,Fc are k-uniform families on [n] so that there
is no X ∈ Fi, Y ∈ Fj with |X ∩ Y | = 1 for any i
= j. Then

∑
|Fi| ≤ c

(
n

k−2

)
+
(
n
k

)
.

Proof. Let A be the family of sets that occur in more than one Fi, and B the
family of sets that occur in exactly one Fi. Then A has no singleton intersection, so
|A| ≤

(
n

k−2

)
by Theorem 1.3. Therefore

∑
|Fi| ≤ c|A| + |B| ≤ c

(
n

k−2

)
+
(
n
k

)
.

Remark. By analogy with [14] one might expect that the bound can be improved
to max{c

(
n

k−2

)
,
(
n
k

)
}, but we do not need such a bound here.

Next we have a lemma on matchings. The argument is similar to one given by
Frankl [8, Proposition 11.6]. Here also, it should be possible to replace the summation
with a maximum.

Lemma 4.2. Suppose that X and Y are disjoint sets with |X| = x, |Y | = y and
F is a set system on X ∪ Y such that |F ∩X| = s, |F ∩ Y | = t for every F ∈ F . If
F contains no matching of size m, then |F| < m(

(
x−1
s−1

)(
y
t

)
+
(
y−1
t−1

)(
x
s

)
).

Proof. We argue by induction on s, t, x, y. First we note that in the case x ≤ ms
the number of possible intersections of a set F with X is

(
x
s

)
≤ m

(
x−1
s−1

)
, so trivially

|F| ≤
(
x
s

)(
y
t

)
< m(

(
x−1
s−1

)(
y
t

)
+

(
y−1
t−1

)(
x
s

)
). Similarly we are done when y ≤ mt. To

complete the base of the induction, note that in the case s = t = 1 the system F is
a bipartite graph with no matching of size m, and it is easy to see (e.g., by König’s
theorem) that |F| < mmax{x, y} ≤ m(x + y).

For the general case, we use the compression method of Erdős, Ko, and Rado [5].
Define arbitrary linear orders <X on X and <Y on Y . Given a, b ∈ X a <X b, we
define the ab-shift Sab by Sab(F) = {Sab(F) : F ∈ F}, where Sab(F) is equal to
F ′ = F \ {b} ∪ {a} if F ′ /∈ F , but equal to F if F ′ ∈ F . The same definition applies
for a, b ∈ Y with a <Y b. Clearly |Sab(F)| = |F|. A well-known easy property of the
shift is that the maximum matching in Sab(F) is no larger than that in F . Iterating
these shifts will eventually produce a family which is invariant with respect to Sab,
for any a, b ∈ X or a, b ∈ Y . We can assume that F has this property.

Suppose, without loss of generality, that s > 1. Let a be the maximal element of
X. Consider the systems F0 = {F : a /∈ F ∈ F} and F1 = {F \ {a} : a ∈ F ∈ F}
defined on X \ {a} ∪ Y . Since F0 does not have a matching of size m we have
|F0| ≤ m(

(
x−2
s−1

)(
y
t

)
+

(
y−1
t−1

)(
x−1
s

)
) by induction. Also F1 contains no matching of

size m. Suppose that F1, . . . , Fm are disjoint sets in F1. Each has s − 1 points in
X, so we can find distinct points a1, . . . , am in X \ ∪m

i=1Fi. Since F is invariant
with respect to ab-shifts with a, b ∈ X, it contains the sets Fi ∪ {ai}. However,
these form a matching, so indeed F1 contains no matching of size m. Therefore
|F1| ≤ m

((
x−2
s−2

)(
y
t

)
+
(
y−1
t−1

)(
x−1
s−1

))
by induction.

We conclude that |F| = |F0| + |F1| ≤ m
((

x−1
s−1

)(
y
t

)
+
(
y−1
t−1

)(
x
s

))
.

Finally, we give a simple optimization lemma concerning sums of binomial coef-
ficients.

Lemma 4.3. Consider a function f(z) =
∑m

j=1 cj
(
z+sj
tj

)
, where cj ≥ 0 and sj , tj

are nonnegative integers with sj ≥ tj−1 for all j. For any positive integers x1, . . . , xn,
writing x =

∑n
i=1 xi, we have

∑n
i=1 f(xi) ≤ f(x) + (n− 1)f(0).

NO SINGLETON INTERSECTION 1037

Proof. Note that
(
xi+1+sj

tj

)
+
(
xi′−1+sj

tj

)
−
((

xi+sj
tj

)
+
(
xi′+sj

tj

))
=

(
xi+sj
tj−1

)
−
(
xi′−1+sj

tj−1

)
≥ 0 if xi ≥ xi′ − 1. So starting from any sequence x1, . . . , xn, we can move to the
sequence x, 0, . . . , 0 without decreasing the function

∑n
i=1 f(xi), and the final value

gives the stated upper bound.

5. A stability result. In this section we prove Theorem 1.2, which states the
following: for any ε > 0 there is δ > 0 such that if F is a k-uniform family on [n]
with no singleton intersection and |F| ≥ (1 − δ)

(
n−2
k−2

)
, then there are two points x, y

so that all but at most εnk−2 sets of F contain both x and y.
Proof of Theorem 1.2. Suppose that F is a k-uniform family on [n] with no

singleton intersection, and |F| ≥ (1− δ)
(
n−2
k−2

)
. We can suppose in all estimates that δ

is sufficiently small and n is sufficiently large (by making δ small). Let A1, . . . , At be
a matching in F with t as large as possible. If t = 1, then F is intersecting, and thus
2-intersecting. As we mentioned in the Introduction, a result of Frankl implies that
there is a constant c(k) such that if F is 2-intersecting and |F| > c(k)nk−3, then there
are two points x, y contained in every set of F . Since |F| ≥ (1 − δ)

(
n−2
k−2

)
> c(k)nk−3

for large n, we are done in the case t = 1. Now suppose t ≥ 2. Let A = ∪t
i=1Ai,

B = [n]\A. Note that all sets in F meet A, and if they meet any Ai, they meet it in
at least 2 points.

Let F ′ ⊂ F be the family of sets meeting exactly one Ai, i.e.,

F ′ = {F ∈ F : ∃1 ≤ i(F) ≤ t, F ∩Ai(F)
= ∅, F ∩Aj = ∅ ∀j
= i(F)}.

Let G = {F ∩ B : F ∈ F ′}. Say that G ∈ G has color i if G = F ∩ B for some F
that meets Ai. (A set can have more than one color.) For b ∈ B a “flower” on b
is a system {G1, . . . , Gk−2} ⊂ G, so that Gi ∩ Gj = {b} for every i
= j. The key
observation is that if there is a flower on b, then there is a unique i so that all sets
in G containing b have color i and no other color. To see this, first note that all the
sets in the flower must have the same color (say i), and no other, to avoid a singleton
intersection. Now consider any G ∈ G that contains b. Then |G| ≤ k− 2, so there are
at most k− 3 sets in the flower that intersect G in a point other than b. Therefore we
can find 1 ≤ j ≤ k − 2 so that Gj ∩ G = b, and so to avoid a singleton intersection,
Gj and G cannot have two different colors; i.e., both have only color i.

Let Xi be the set of all b for which there is a flower of color i on b. It follows
from the above observation that X1, . . . , Xt are pairwise disjoint. We also note for
future reference that there are no two disjoint sets of F contained in Ai∪Xi for any i;
otherwise we could use them instead of Ai to find a larger matching in F . Since there
are no singleton intersections, the sets of F contained in Ai∪Xi form a 2-intersecting
family. Write X = ∪t

i=1Xi, x = |X|, xi = |Xi|, Y = B\X, y = |Y |.
Estimate of |F ′|. (1) First we count sets corresponding to those elements of G

contained within X and thus within Xi for some i. By Theorem 1.3, Ai∪Xi contains
at most

(
xi+k
k−2

)
sets. (In fact, we have noted that these sets form a 2-intersecting

family, so we could even obtain a stronger bound from the complete intersection
theorem mentioned in the introduction, but this expression will be more convenient.)

(2) Next we count sets corresponding to J = {G : G ∈ G, G ⊂ Y }. Let J s =
{G : G ∈ J , |G| = s}, and partition J s = J s

1 ∪ J s
2 , where J s

1 contains those G with
exactly one color and J s

2 those with more than one color. Now J s
2 has no singleton

intersection, or there would be corresponding sets in F ′′ with singleton intersection, so
|J s

2 | ≤
(

y
s−2

)
by Theorem 1.3. It follows that at most t

(
k
s

)(
y

s−2

)
sets in F ′ correspond

to sets of J s
2 .

1038 PETER KEEVASH, DHRUV MUBAYI, AND RICHARD M. WILSON

Also, for each a ∈ Y , s ≥ 2 the link J s
1 (a) is a (s− 1)-uniform system on Y with

no matching of size k − 2. This is immediate from the definition of X, as if J s
1 (a)

has a matching of size k − 2, then there is a flower on a; i.e., a ∈ X. By Lemma 4.2,
|J s

1 (a)| ≤ (k − 2)
(
y−1
s−2

)
. Therefore the number of sets in F ′ corresponding to sets of

J s
1 is at most

(
k
s

)∑
a |J s

1 (a)| <
(
k
s

)
y(k−2)

(
y−1
s−2

)
. (In fact, we are even overestimating

by an extra factor of s corresponding to the different choices of a in a set of J s
1 .) For

s = 1 we clearly have |J 1
1 | ≤ y, corresponding to at most ky sets of F ′.

In total, the number of sets in F ′ corresponding to elements of J is at most

ky +

k−2∑
s=2

(
t

(
k

s

)(
y

s− 2

)
+

(
k

s

)
y(k − 2)

(
y − 1

s− 2

))
< ky + (t + ky)

(
y + k

k − 4

) k−2∑
s=2

(
k

s

)

< 2k(ky + t)

(
y + k

k − 4

)
.

(3) Finally, consider those sets corresponding to K, defined as those G ∈ G that
meet both X and Y . Such a G is contained in Xi ∪ Y for some i and has color
i but no other color. For 2 ≤ s ≤ k − 2, let Ks

i = {G : G ∈ K, |G| = s, G ⊂
Xi ∪ Y }. As in estimate (2), for each a ∈ Y , s ≥ 2 the link Ks

i (a) is a (s − 1)-
uniform system with no matching of size k−2. Considering each possible intersection
size with Xi and Y separately, we apply Lemma 4.2 to get |Ks

i (a)| ≤
∑s−2

α=1(k − 2)((
xi−1
α−1

)(
y−1

s−α−1

)
+

(
y−2

s−α−2

)(
xi

α

))
. Applying Lemma 4.3, we can bound the number of

sets in F ′ corresponding to elements of K by

t∑
i=1

k−2∑
s=2

∑
a∈Y

(
k

s

)
|Ks

i (a)| =

k−2∑
s=2

(
k

s

) ∑
a∈Y

t∑
i=1

|Ks
i (a)|

≤
k−2∑
s=2

(
k

s

)
y

t∑
i=1

s−2∑
α=1

(k − 2)

((
xi

α− 1

)(
y

s− α− 1

)

+

(
y

s− α− 2

)(
xi

α

))

≤
k−2∑
s=2

(
k

s

)
y(k − 2)

s−2∑
α=1

((
x

α− 1

)(
y

s− α− 1

)

+

(
y

s− α− 2

)(
x

α

))

≤
k−2∑
s=2

(
k

s

)
y(k − 2) · 2

(
x + y

s− 2

)

< 2k+1ky

(
x + y + k

k − 4

)
.

Adding the estimates (1), (2), and (3), we have

|F ′| ≤
t∑

i=1

(
xi + k

k − 2

)
+ 2k(ky + t)

(
y + k

k − 4

)
+ 2k+1ky

(
x + y + k

k − 4

)
.

Estimate of |F\F ′|. Suppose that 2 ≤ α ≤ t and β = (β1, . . . , βα) with βj ≥ 2
and β∗ =

∑α
j=1 βi ≤ k are given. Let Hβ be the collection of all sets H ⊂ ∪iAi such

NO SINGLETON INTERSECTION 1039

that the list |H ∩ Ai|, 1 ≤ i ≤ t, consists of β and t− α zeroes, in some order. Then

|Hβ | ≤ α!
(
t
α

)∏α
j=1

(
k
βj

)
< 2k

2

tα, where we crudely estimate that each product term(
k
βj

)
is at most 2k and that there are at most k terms (as β∗ ≤ k).

We can obtain a matching of size t in Hβ as follows. For 1 ≤ i ≤ t let A1
i , . . . , A

α
i

be disjoint subsets of Ai with |Aj
i | = βj for 1 ≤ j ≤ α. Let Mγ = ∪α

j=1A
j
γ+j

for 1 ≤ γ ≤ t, where Aγ+j is to be interpreted as Aγ+j−t for γ + j > t. Then
M = {M1, . . . ,Mt} is a matching in Hβ . Let Gγ = {F ∩B : F ∩ ∪iAi = Mγ}. Then
Gγ for 1 ≤ γ ≤ t are (k−β∗)-uniform systems satisfying the hypothesis of Lemma 4.1,
which thus have total size

t∑
γ=1

|Gγ | ≤ t

(
n− kt

k − β∗ − 2

)
+

(
n− kt

k − β∗

)
.

Now we average this estimate over all possible isomorphic choices of the matching
M in Hβ . Let m be the number of such matchings, and m′ be the number of such
matchings that contain some fixed set M ∈ Hβ (this is independent of M). By
counting pairs (M,M), where M is a maximum matching containing a set M , we see
that mt = |Hβ |m′. Writing

Fβ = {F ∈ F : F ∩ ∪iAi ∈ Hβ},

we have (recalling that Fβ(M) denotes the link of Fβ from M)

|Fβ | =
∑

M∈Hβ

|Fβ(M)| =
∑

M∈Hβ

1

m′

∑
M�M

|Fβ(M)|

=
1

m′

∑
M

∑
M∈M

|Fβ(M)| ≤ m

m′

(
t

(
n− kt

k − β∗ − 2

)
+

(
n− kt

k − β∗

))

= |Hβ |
((

n− kt

k − β∗ − 2

)
+ t−1

(
n− kt

k − β∗

))
.

Since β∗ =
∑

j βj satisfies 2α ≤ β∗ ≤ k and α ≥ 2 we have

|F\F ′| ≤
∑
α,β

|Fβ | ≤
∑
α,β

2k
2

tα
((

n− kt

k − β∗ − 2

)
+ t−1

(
n− kt

k − β∗

))

≤ 2k
2

max
α

tα(nk−2α−2 + t−1nk−2α) ·
∑
α,β

1

< 23k2

nk−3,

where we crudely estimate that there are at most kk+1 < 22k2

ways to choose the
numbers α, β1, . . . , βα.

Adding the estimates for |F ′| and |F\F ′|, we obtain

|F| ≤
t∑

i=1

(
xi + k

k − 2

)
+ δ

(
n

k − 2

)
,

for n sufficiently large. By the hypothesis of the theorem, this gives
∑t

i=1

(
xi+k
k−2

)
≥

(1 − 2δ)
(
n−2
k−2

)
.

1040 PETER KEEVASH, DHRUV MUBAYI, AND RICHARD M. WILSON

Suppose, without loss of generality, that x1 ≥ xi for all i. Now some routine
calculations imply that x1 > (1− 8δ)n. For the convenience of the reader we will give
the details here, but the casual reader may skip to the last paragraph of the proof.
Write 1/(r + 1) < x1/n ≤ 1/r for some natural number r. It follows easily from

Lemma 4.3 and induction that
∑t

i=1

(
xi+k
k−2

)
≤ r

(
n/r+k
k−2

)
+ 1t>r(t − r)

(
k

k−2

)
. This is

less than (1− 2δ)
(
n−2
k−2

)
if r ≥ 2 (since k ≥ 4), and so we have r = 1. Now Lemma 4.3

gives

t∑
i=1

(
xi + k

k − 2

)
≤

(
x1 + k

k − 2

)
+

(
x− x1 + k

k − 2

)
+ (t− 2)

(
k

k − 2

)
.

From the identity
(
a+b
c

)
=

∑
i

(
a
i

)(
b

c−i

)
we have

(
x1 + k

k − 2

)
+

(
x− x1 + k

k − 2

)
≤

(
x + 2k

k − 2

)
− (x− x1 + k)

(
x1 + k

k − 3

)
,

and so

(1 − 3δ)

(
n− 2

k − 2

)
≤

(
x + 2k

k − 2

)
− (x− x1 + k)

(
x1 + k

k − 3

)
.

In particular, (1 − 3δ)
(
n−2
k−2

)
≤

(
x+2k
k−2

)
, so x > (1 − 4δ)n. Also, since

(
x+2k
k−2

)
< (1 +

δ)
(
n−2
k−2

)
, we must have (x − x1 + k)

(
x1+k
k−3

)
< 4δ

(
n−2
k−2

)
. Now f(q) = (x − q + k)

(
q+k
k−3

)
is a concave function of q; to see this, note that

f(q)2

f(q − 1)f(q + 1)
=

(q + 4)(q + k)(x− q + k)2

(q + 3)(q + k + 1)((x− q + k)2 − 1)
>

(q + 4)(q + k)

(q + 3)(q + k + 1)
> 1.

If x1 ≤ (1−8δ)n, since x1 ≥ n/2, it follows that f(x1) ≥ min{f(n/2), f((1−8δ)n)} >
4δ
(
n−2
k−2

)
, contradiction. Therefore x1 > (1 − 8δ)n, as claimed.

The number of sets of F not contained in A1 ∪ X1 is at most
∑t

i=2

(
xi+k
k−2

)
+

δ
(

n
k−2

)
<

(
8δn+k
k−2

)
+ (t − 2)

(
k

k−2

)
+ δ

(
n

k−2

)
< εnk−2 for small δ. Also, the sets of F

contained in A1 ∪X1 form a 2-intersecting family, and as in the first paragraph of the
proof, it follows that there are two points x, y such that every set in A1 ∪X1 contains
both x and y. This completes the proof.

Remarks.
1. The proof shows not only that there are at most εnk−2 sets that do not contain

both x and y, but also that all such sets intersect a set A1 ∪X1 of size at most say εn.
2. A more careful analysis of the argument gives a new proof of Frankl’s result,

and some numerical experiments indicate that the smallest n for which the proof
works is considerably smaller than his value; perhaps n = k5 will do, compared with
kΘ(k). We will not attempt to present these calculations here, as the main goal should
be to prove the result for all n.

REFERENCES

[1] R. Ahlswede and L. H. Khachatrian, The complete intersection theorem for systems of
finite sets, European J. Combin., 18 (1997), pp. 125–136.

[2] R. P. Anstee and P. Keevash, Pairwise intersections and forbidden configurations, European
J. Combin., 27 (2006), pp. 1225–1362.

NO SINGLETON INTERSECTION 1041

[3] J. Balogh, B. Bollobás, and M. Simonovits, The number of graphs without forbidden sub-
graphs, J. Combin. Theory Ser. B, 91 (2004), pp. 1–24.

[4] P. Erdős, Problems and results in graph theory and combinatorial analysis, in Proceedings
of the Fifth British Combinatorial Conference (University Aberdeen, 1975), Congressus
Numerantium 15, Utilitas Mathematics, Winnipeg, MB, 1976, pp. 169–192.

[5] P. Erdős, C. Ko, and R. Rado, Intersection theorems for systems of finite sets, Quart. J.
Math. Oxford Ser., 12 (1961), pp. 313–320.

[6] P. Frankl, On families of finite sets no two of which intersect in a singleton, Bull. Austral.
Math. Soc., 17 (1977), pp. 125–134.

[7] P. Frankl, On intersecting families of finite sets, J. Combin. Theory Ser. A, 24 (1978), pp.
146–161.

[8] P. Frankl, Extremal set systems, in Handbook of Combinatorics, Elsevier, Amsterdam, 1995,
pp. 1293–1329.

[9] P. Frankl, K. Ota, and N. Tokushige, Exponents of uniform L-systems, J. Combin. Theory
Ser. A, 75 (1996), pp. 23–43.

[10] P. Frankl and R. M. Wilson, Intersection theorems with geometric consequences, Combina-
torica, 1 (1981), pp. 357–368.

[11] A.J.W. Hilton and E. C. Milner, Some intersection theorems for systems of finite sets,
Quart. J. Math. Oxford Ser., 18 (1967), pp. 369–384.

[12] P. Keevash, M. Saks, B. Sudakov, and J. Verstraete, Multicolour Turan problems, Adv.
Appl. Math., 33 (2004), pp. 238–262.

[13] P. Keevash and B. Sudakov, Local density in graphs with forbidden subgraphs, Combin.
Probab. Comput., 12 (2003), pp. 139–153.

[14] P. Keevash and B. Sudakov, Set systems with restricted cross-intersections and the minimum
rank of inclusion matrices, SIAM J. Discrete Math., 18 (2005), pp. 713–727.

[15] P. Keevash and B. Sudakov, The Turán number of the Fano plane, Combinatorica, 25 (2005),
pp. 561–574.

[16] D. Mubayi, Erdős-Ko-Rado for three sets, J. Combin. Theory Ser. A, 113 (2006), pp. 547–550.
[17] D. Mubayi, Structure and stability of triangle-free set systems, Trans. Amer. Math. Soc., 359

(2007), pp. 275–291.
[18] D. K. Ray-Chaudhuri and R. M. Wilson, On t-designs, Osaka J. Math., 12 (1975), pp.

735–744.
[19] R. M. Wilson, The exact bound in the Erdős-Ko-Rado theorem, Combinatorica, 4 (1984), pp.

247–257.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 4, pp. 1042–1045

ROTA’S BASIS CONJECTURE FOR PAVING MATROIDS∗

JIM GEELEN† AND PETER J. HUMPHRIES‡

Abstract. Rota conjectured that, given n disjoint bases of a rank-n matroid M , there are n
disjoint transversals of these bases that are all bases of M . We prove a stronger statement for the
class of paving matroids.

Key words. Rota’s basis conjecture, paving matroids

AMS subject classification. 05B35

DOI. 10.1137/060655596

1. Introduction. We prove the following theorem.
Theorem 1.1. Let B1, . . . , Bn be disjoint sets of size n ≥ 3, and let M1, . . . ,Mn

be rank-n paving matroids on
⋃

i Bi such that Bi is a basis of Mi for each i ∈
{1, . . . , n}. Then there exist n disjoint transversals A1, . . . , An of (B1, . . . , Bn) such
that Ai is a basis of Mi for each i ∈ {1, . . . , n}.

A paving matroid M is a matroid in which each circuit has size r(M) or r(M)+1,
where r(M) is the rank of M . Theorem 1.1 implies Rota’s basis conjecture for paving
matroids.

Conjecture 1.2 (Rota (see [6])). Given n disjoint bases B1, . . . , Bn in a rank-n
matroid M , there exist n disjoint transversals A1, . . . , An of (B1, . . . , Bn) that are all
bases of M .

For n = 2, Conjecture 1.2 follows immediately from basis exchange in matroids.
Chan [2] proved the conjecture for n = 3. Wild [9] proved a stronger conjecture for
the class of strongly base-orderable matroids, while more recently a slightly weaker
result was proved for a general matroid (Ponomarenko [8]). Further partial results
may be found in [1], [3], [4], [5], and [9].

Theorem 1.1 fails for both n = 2 and matroids in general. When n = 2, if we take
B(M1) = {{e, f}, {e, g}, {f, h}, {g, h}} and B(M2) = {{e, f}, {e, h}, {f, g}, {g, h}},
then {e, f}, {g, h} is the only pair of disjoint bases. In the second instance, if rM1(E−
B1) = 0, then there are no M1-independent transversals of (B1, . . . , Bn).

The remainder of this paper is taken up with the proof of the theorem. In sec-
tion 2, we prove that Theorem 1.1 holds when n = 3. This result is used, in section 3,
as the base case of an inductive proof of Theorem 1.1. The induction argument is
surprisingly straightforward and can be read independently of section 2.

2. The case n = 3. For basic concepts in matroid theory, the reader is referred
to Oxley [7]. We follow the same notation as Oxley throughout this paper.

A closed set in a matroid is commonly known as a flat. We will primarily be
interested in rank-2 flats, or lines. In the proof of Theorem 2.1, we make frequent use

∗Received by the editors March 29, 2006; accepted for publication (in revised form) June 19, 2006;
published electronically December 15, 2006. This research was partially supported by grants from
the Natural Sciences and Engineering Research Council of Canada and the New Zealand Marsden
Fund.

http://www.siam.org/journals/sidma/20-4/65559.html
†Department of Combinatorics and Optimization, University of Waterloo, Waterloo, ON, Canada

N2L 3G1.
‡Department of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand

(pjh96@student.canterbury.ac.nz).

1042

ON ROTA’S BASIS CONJECTURE 1043

of the fact that if rM (X) = rM (Y) = 2 and |X ∩Y | ≥ 2, then X and Y are contained
in the same line in M .

Theorem 2.1. Theorem 1.1 holds for n = 3.

Proof. Assume that the theorem is false. Then there exist bases B1 =
{a1, a2, a3}, B2 = {b1, b2, b3}, B3 = {c1, c2, c3} of rank-3 paving matroids M1,M2,M3,
respectively, with common ground set E = B1∪B2∪B3, that provide a counterexam-
ple. The rank of a set X in Mi will be denoted by ri(X) and the closure by cli(X). A
three-element subset of E will be called a transversal if it meets each of B1, B2, and
B3. Note that we may assume that every nontrivial line in each matroid contains a
transversal, since all nontrivial lines not containing a transversal may be relaxed to
provide an alternative counterexample (see [7, section 1.5, Exercise 3]).

2.1.1. Let X ⊆ E be a set that meets each of B1, B2, B3. If ri(X) = 3, then X
contains an Mi-independent transversal.

Subproof. Let T ⊆ X be a transversal, and suppose that T is Mi-dependent.
Then since ri(X) = 3, there is some e ∈ X such that e /∈ cli(T). Without loss of
generality, e ∈ B1, so let f be the unique element in T ∩B1. Then ri((T −f)∪e) = 3,
and we are done.

2.1.2. If no M1-dependent transversal contains both a1 and b1, then there exists
e ∈ B3 such that r2(E − {a1, b1, e}) = 2.

Subproof. For each a ∈ B1 and b ∈ B2, there exists c ∈ B3 such that {a, b, c} is
M3-independent (since r3(B3) = 3). In particular, there exist e, f, g ∈ B3 such that
{a2, b3, e}, {a3, b3, f}, and {a2, b2, g} are M3-independent. Then, by 2.1.1, {a3, b2} ∪
(B3 − {e}), {a2, b2} ∪ (B3 − {f}), and {a3, b3} ∪ (B3 − {g}) all have rank 2 in M2

(since otherwise we would find the required partition into transversals). The second
and third of these sets both have two points in common with the first, and so they
are all contained in a common line in M2.

Suppose that M1 has a line L containing at least seven elements. Since r1(B1) = 3,
|L − B1| ≥ 5. Up to symmetry, we may assume that b1, b2, c1, c2, c3 ∈ L and that
a1 /∈ cl1(L). Now neither {a1, b1} nor {a1, b2} is in an M1-dependent transversal.
So by 2.1.2, r2({a2, a3, b2, b3}) = r2({a2, a3, b1, b3}) = 2, contradicting the fact that
r2(B2) = 3. Thus none of M1, M2, and M3 contains a line on seven or more elements.

2.1.3. Every pair e ∈ Bi, f /∈ Bi is contained in some Mi-dependent transversal.

Subproof. Suppose that no M1-dependent transversal contains both a1 and b1.
Then, by 2.1.2 and symmetry, we may assume that r2(E − {a1, b1, c1}) = 2. Let
X = E − {a1, b1, c1} and Y = X − B1. Each transversal in {a2, a3, b2, b3, c1} is
M2-independent, for otherwise E − {a1, b1} is a seven-point line in M2. Since each
transversal in {a1, b1, c2, c3} is M1-independent, there is no M3-independent transver-
sal in X; thus r3(X) = 2. Similarly, since each transversal in {a2, a3, b1, c2, c3} is M2-
independent and each transversal in {a2, a3, b2, b3, c1} is M3-independent, we conclude
that r1(Y ∪{a1}) = 2. Without loss of generality, a2 /∈ cl1(Y), and so both {a2, b2, c2}
and {a2, b3, c3} are M1-independent. This means that {a1, b1, c2} and {a1, b1, c3} are
M2-dependent, for otherwise we again have three disjoint transversals that are inde-
pendent in their respective matroids. Thus r2({a1, b1, c2, c3}) = 2, and E−{c1} is an
eight-point line in M2, which is a contradiction.

Assume that B2 is dependent in M1. Thus, some line L in M1 contains B2; we may
assume that L also contains a1 and c1, since any nontrivial line contains a transversal.
There must be some element a3, say, of B1 that is not in cl1(L), but then no transversal
containing both a3 and c1 is dependent in M1, leading to a contradiction by 2.1.3.
Thus each of B1, B2, and B3 is independent in all three matroids. This provides

1044 JIM GEELEN AND PETER J. HUMPHRIES

additional symmetry, since we may now permute (B1, B2, B3).
Suppose next that M1 contains a five- (or six-) point line L. By the conclusion

of the last paragraph, we may assume that a1, b1, b2, c1, c2 ∈ L and that a3 /∈ cl1(L).
Now, since there is an M1-dependent transversal containing a3, b1, we have that
{a3, b1, c3} must be M1-dependent. Likewise {a3, b2, c3} is M1-dependent, and thus
r1({a3, b1, b2, c3}) = 2, contradicting the fact that a3 /∈ cl1(L). Hence, none of M1,
M2, and M3 have lines containing more than four points.

We suppose now that the transversal {a3, b3, c3} is M2-independent and M3-
dependent. Since r1(E − {a3, b3, c3}) = 3, we may assume that {a1, b1, c1} is M1-
independent, and also that r3({a2, b2, c2}) = 2, for otherwise we have the required
disjoint bases. Now, at most one of a3, b3, and c3 may be contained in cl3({a2, b2, c2}),
so without loss of generality both {a2, b3, c2} and {a3, b2, c2} are M3-independent.
Then {a3, b2, c3} and {a2, b3, c3} are both M2-dependent. The transversal {a2, b2, c3}
must now be M2-independent, for otherwise we get a line in M2 containing {a3, b3, c3}.
Thus r3({a3, b3, c2}) = 2, and further r3({a3, b3, c2, c3}) = 2. Then both of {a2, b2, c3}
and {a3, b2, c3} are M3-independent, for otherwise there is a line in M3 that contains
E−{a1, b1, c1}. So we have r2({a3, b3, c2}) = r2({a2, b3, c2}) = 2. This, together with
the dependence of {a3, b2, c3} and {a2, b3, c3} in M2, further implies that {a3, b3, c3}
is M2-dependent, which is a contradiction.

From now on, we may assume that M1, M2, and M3 are the same matroid M ,
since they share the same set of independent transverals. Suppose that M contains
the four-point line {a3, b3, c2, c3}. Without loss of generality, we may assume that
{a1, b1, c1} is independent in M , but then both {a2, b3, c3} and {a3, b2, c2} are also
independent in M , so we are done.

Thus, the rank-2 flats in M each contain at most three points. Let {a3, b3, c3} be
a dependent transversal of M . By 2.1.1, the set {a3, b2, c1, c2} contains a transversal
that is independent in M . Suppose without loss of generality that {a3, b2, c2} is such
a transversal. Then, again by 2.1.1, the set {a1, a2, b1, c1} contains an M -independent
transversal, {a1, b1, c1} say. Finally, {a2, b3, c3} is also independent, for otherwise we
get a four-point line, and we have the three required transversals.

3. Proof of Theorem 1.1. Before proving Theorem 1.1, we require two further
lemmas. These allow us to apply induction with Theorem 2.1 as the base case. Let
B(M) denote the set of bases of a matroid M .

Lemma 3.1. Let B1 ∈ B(M1), B2 ∈ B(M2) be disjoint bases of rank-n paving
matroids on the same ground set, where n ≥ 3. Let X be a two-element subset
of B1. Then there is some x ∈ X, y ∈ B2 such that (B1 − x) ∪ y ∈ B(M1) and
(B2 − y) ∪ x ∈ B(M2).

Proof. Since M1,M2 are paving matroids, (B1 −X)∪ y is M1-independent for all
y ∈ B2. Suppose that both (B1 − x) ∪ y and (B1 − x′) ∪ y are circuits in M1, where
x, x′ are distinct elements of X. Then by circuit elimination, B1 is also a circuit of
M1. Hence for each y ∈ B2, at least one of (B1 − x) ∪ y and (B1 − x′) ∪ y must be a
basis of M1.

Let y1, y2, y3 be distinct elements of B2. Then without loss of generality (B1 −
x)∪ y1, (B1 − x)∪ y2 ∈ B(M1). Also, one of (B2 − y1)∪ x and (B2 − y2)∪ x is a basis
of M2, so we are done.

Lemma 3.2. Let B1, . . . , Bn be disjoint sets of size n ≥ 3, and let M1, . . . ,Mn

be rank-n paving matroids on
⋃

i Bi such that Bi is a basis of Mi for each i ∈
{1, . . . , n}. Then there is an ordering of the elements of B1 as a1, . . . , an and
a transversal {b2, . . . , bn} of (B2, . . . , Bn) such that for all j ∈ {2, . . . , n} the set

ON ROTA’S BASIS CONJECTURE 1045

(B1 − {a2, . . . , aj}) ∪ {b2, . . . , bj} is a basis of M1, and (Bj − bj) ∪ aj is a basis of
Mj.

Proof. For j = 2, the lemma follows immediately from Lemma 3.1. Suppose now
that the lemma holds for some j ∈ {2, . . . , n− 1}, so that B′ = (B1 − {a2, . . . , aj}) ∪
{b2, . . . , bj} ∈ B(M1). Then |B1∩B′| ≥ 2, and so by Lemma 3.1 there is some element
aj+1 ∈ B1 ∩ B′ and some bj+1 ∈ Bj+1 such that (B′ − aj+1) ∪ bj+1 ∈ B(M1) and
(Bj+1 − bj+1) ∪ aj+1 ∈ B(Mj+1), thus proving the lemma.

Lemma 3.2 is stated for j ∈ {2, . . . , n} to simplify the induction process. We need
the result only for j = n to prove main theorem of this paper.

Proof of Theorem 1.1. Assume that the theorem is true for some m ≥ 3, and take
n = m+ 1. Let B1 = {a1, . . . , an} and bi ∈ Bi for each i ∈ {2, . . . , n}. By Lemma 3.2
we may assume that A1 = {a1, b2, . . . , bn} is a basis of M1 and that B′

i = (Bi−bi)∪ai
is a basis of Mi for each i ∈ {2, . . . , n}.

Now let X = E − (B1 ∪ A1) and M ′
i = (Mi/ai)|X for each i ∈ {2, . . . , n}. Then

each M ′
i is a rank-m paving matroid having Bi − bi as a basis. By our induction

hypothesis, there are disjoint transversals A′
2, . . . , A

′
n of these m bases such that A′

i is
a basis of M ′

i . Hence Ai = A′
i ∪ ai is a basis of Mi for each i ∈ {2, . . . , n}. Moreover,

the bases A1, . . . , An are disjoint transversals of (B1, . . . , Bn), as required.

Acknowledgment. The authors thank the anonymous referees for their helpful
comments.

REFERENCES

[1] R. Aharoni and E. Berger, The intersection of a matroid and a simplicial complex, Trans.
Amer. Math. Soc., 358 (2006), pp. 4895–4917.

[2] W. Chan, An exchange property of matroid, Discrete Math., 146 (1995), pp. 299–302.
[3] T. Chow, On the Dinitz conjecture and related conjectures, Discrete Math., 145 (1995), pp. 73–

82.
[4] A. A. Drisko, On the number of even and odd Latin squares of order p + 1, Adv. Math., 128

(1997), pp. 20–35.
[5] A. A. Drisko, Proof of the Alon-Tarsi conjecture for n = 2rp, Electron. J. Combin., 5 (1998),

paper R28.
[6] R. Huang and G.-C. Rota, On the relations of various conjectures on Latin squares and

straightening coefficients, Discrete Math., 128 (1994), pp. 225–236.
[7] J. G. Oxley, Matroid Theory, Oxford University Press, New York, 1992.
[8] V. Ponomarenko, Reduction of jump systems, Houston J. Math., 30 (2004), pp. 27–33.
[9] M. Wild, On Rota’s problem about n bases in a rank n matroid, Adv. Math., 108 (1994),

pp. 336–345.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 4, pp. 1046–1055

REPRESENTING SMALL IDENTICALLY SELF-DUAL MATROIDS
BY SELF-DUAL CODES∗

CARLES PADRÓ† AND IGNACIO GRACIA†

Abstract. The matroid associated with a linear code is the representable matroid that is
defined by the columns of any generator matrix. The matroid associated with a self-dual code is
identically self-dual, but it is not known whether every identically self-dual representable matroid can
be represented by a self-dual code. This open problem was proposed in [R. Cramer et al., Advances
in Cryptology, Lecture Notes in Comput. Sci. 3621, Springer, New York, 2005, pp. 327–343], where
it was proved to be equivalent to an open problem on the complexity of multiplicative linear secret
sharing schemes. Some contributions to its solution are given in this paper. A new family of identically
self-dual matroids that can be represented by self-dual codes is presented. Additionally, we prove
that every identically self-dual matroid on at most eight points is representable by a self-dual code.

Key words. identically self-dual matroids, self-dual codes, multiparty computation, multiplica-
tive linear secret sharing schemes

AMS subject classifications. 05B35, 94A62, 94B05

DOI. 10.1137/05064309X

1. Introduction.

1.1. Self-dual codes and identically self-dual matroids. Let C be an [n, k]
linear code over a finite field K, where n and k are, respectively, the length and the
dimension of C. A generator matrix of C is any k × n matrix M with entries in K

whose rows span the codewords in C. That is, the vectors of the form x = uM ∈ K
n,

where u ∈ K
k, are precisely the codewords in C. The columns of the matrix M

define a K-representable matroid M(M) on the set of points Q = {1, . . . , n}. (Some
basic definitions and results on matroid theory are given in section 2.) All generator
matrices of the code C define the same matroid, and hence M(M) is said to be the
matroid associated with the code C and is denoted by M(C). In addition, we say
that the code C is a K-representation of the matroid M. While a unique matroid is
associated with a linear code C, different codes can represent the same matroid.

Greene’s theorem [6], which relates the weight enumerator of a code to the Tutte
polynomial of its associated matroid, is the most well-known result about that con-
nection between codes and matroids. Several works have appeared more recently on
that subject (see, for instance, the list of references in [4]). Among them, the work
by Duursma [5] contains ideas that can be useful for finding new results on the open
problem studied here.

Let N be a parity-check matrix of the code C, that is, any (n − k) × n matrix
N with maximum rank such that MN� = 0, where N� denotes the transpose of N .
Then N is the generator matrix of an [n, n−k] linear code that is called the dual code

∗Received by the editors October 19, 2005; accepted for publication (in revised form) June 19,
2006; published electronically December 15, 2006. This work was partially supported by the Spanish
Ministerio de Ciencia y Tecnoloǵıa under project TIC 2003-00866.

http://www.siam.org/journals/sidma/20-4/64309.html
†Department of Applied Mathematics IV, Technical University of Catalonia, Barcelona, Spain

(cpadro@ma4.upc.edu, ignacio@ma4.upc.edu). The work of the first author occurred during a sab-
batical stay at CWI, Amsterdam. This stay was funded by the Secretaŕıa de Estado de Educación
y Universidades of the Spanish Ministry of Education.

1046

SMALL SELF-DUAL MATROIDS AND SELF-DUAL CODES 1047

of C and is denoted by C⊥. If C⊥ = C, we say that C is a self-dual code. Of course,
n = 2k in every self-dual code.

It is well known that the matroid associated with the dual code C⊥ is the dual
matroid of the matroid associated with C. Then the matroid associated with a self-dual
code is identically self-dual. Nevertheless, it is not known whether every identically
self-dual representable matroid can be represented by a self-dual code. Specifically,
the following open problem was stated in [4].

Open Problem 1.1. Determine whether every identically self-dual K-representable
matroid can be represented by a self-dual linear code over some finite extension of K.

Matroids that are represented by a self-dual code over the field K will be said
to be self-dually K-representable. Since every Z2-representable matroid admits a
unique code representing it over Z2, all identically self-dual Z2-representable ma-
troids are self-dually Z2-representable. The uniform matroids Uk,2k form another
family of identically self-dual matroids for which the answer to Open Problem 1.1 is
affirmative. Moreover, if M1 and M2 are self-dually K-representable matroids, the
2-sum M = M1 ⊕2 M2 of these matroids is self-dually L-representable, where L is
a finite extension of K with [L : K] ≤ 2. As a consequence of this fact and other
properties of the 2-sum of matroids, solving Open Problem 1.1 can be restricted to
indecomposable matroids, that is, those that can not be expressed as the 2-sum of two
smaller matroids [4]. Finally, identically self-dual bipartite matroids were proved to
be self-dually representable in [4].

1.2. Ideal multiplicative linear secret sharing schemes. The interest of
Open Problem 1.1 is increased by its relation to the multiplicative property of linear
secret sharing schemes. That property was introduced by Cramer, Damg̊ard, and
Maurer [3] in order to construct efficient secure multiparty computation protocols for
a general (that is, not necessarily threshold-based) adversary. Readers are referred
to [11, 3, 4] for more information about secret sharing, the multiplicative property,
and secure multiparty computation.

A K-linear secret sharing scheme Σ with access structure Γ on the set P of players
is said to be multiplicative if every player i ∈ P can compute a value ci from its shares
si, s

′
i corresponding to two shared secret values s, s′ ∈ K in such a way that the product

ss′ is a linear combination of the values (ci)i∈P . Such schemes can be constructed
if and only if the set of players is not the union of two unqualified subsets [7, 3]. In
this case, we say that the access structure of the scheme is Q2. One of the key results
in [3] is a method for constructing, from any K-linear secret sharing scheme with Q2

access structure, a multiplicative K-linear secret sharing scheme with the same access
structure and whose complexity is only twice the complexity of the original scheme.
One of the main open problems about this topic is to determine for which Q2 access
structures there are multiplicative schemes with the same complexity as the best linear
schemes. This problem has been studied in [4] for minimally Q2 access structures that
can be realized by an ideal linear secret sharing scheme, that is, a scheme in which
all shares have the same length as the secret. The next open problem is proposed in
that paper, where it is proved to be equivalent to Open Problem 1.1.

Open Problem 1.2. Determine whether there exists, for every minimally Q2

access structure Γ that can be realized by an ideal K-linear secret sharing scheme, an
ideal multiplicative linear secret sharing scheme over some finite extension of K.

The equivalence between these two problems is due to the close relation between
ideal linear secret sharing schemes, linear codes, and matroids. Actually, an ideal
linear secret sharing scheme can be identified with a linear code. The access structure

1048 CARLES PADRÓ AND IGNACIO GRACIA

of the scheme is then determined by the matroid associated with the code. The con-
nection between ideal secret sharing schemes and matroids, which applies to nonlinear
schemes as well, was discovered by Brickell and Davenport [2] and has been studied
afterwards in many other works including [11, 10, 8, 1]. It plays a key role in one of the
main open problems in secret sharing: the characterization of the access structures of
ideal secret sharing schemes.

In addition, the notion of duality that applies to codes and matroids is extended
to access structures. Self-dual access structures coincide with the minimally Q2 ones.
Moreover, every self-dual code defines an ideal multiplicative linear secret sharing
scheme with self-dual access structure.

1.3. Our results. The aim of this paper is to provide new results towards the
solution of Open Problem 1.1.

A new family of indecomposable self-dually representable matroids is presented
in section 5. By using some of the matroids in that family and other techniques we
get our main result: the answer to Open Problem 1.1 is affirmative for matroids on
at most eight points.

Theorem 1.3. Let M be an identically self-dual connected matroid on at most
eight points (or, equivalently, with rank at most four). Then M is representable.
Moreover, if M is K-representable, then M can be represented by a self-dual linear
code over some finite extension of K.

This is proved by enumerating all nonisomorphic identically self-dual matroids
with rank at most four and checking that the result holds for every one of them.

By taking into account the equivalence between Open Problems 1.1 and 1.2, the
following result is a direct consequence of Theorem 1.3.

Corollary 1.4. Let Γ be a self-dual access structure on a set P with at most
seven players. Assume that Γ can be realized by an ideal secret sharing scheme over a
finite field K. Then for some finite extension L of K there exists an ideal multiplicative
L-linear secret sharing scheme with access structure Γ.

1.4. Organization of the paper. Some basic definitions and facts about ma-
troid theory are recalled in section 2. Sections 3 and 4 contain some technicalities
that are needed in the proofs in the following sections. A new family of self-dually
representable matroids is introduced in section 5. Finally, section 6 contains the proof
of Theorem 1.3, our main result.

2. Basics on matroid theory. Matroid theory abstracts many concepts from
linear algebra, including independent sets, bases, and subspaces. The reader is re-
ferred to [9] for a detailed account of this field. There exist many different equivalent
definitions of a matroid. The one we present here uses the concept of basis.

Definition 2.1. A matroid M is a finite set Q together with a family B of
subsets of Q such that

1. B is nonempty,
2. for every B1, B2 ∈ B and i ∈ B1 − B2, there exists j ∈ B2 − B1 such that

(B1 − {i}) ∪ {j} is in B.

The set Q is the ground set of the matroid M, and the sets in B are called the
bases of M. All sets in B have the same number of elements, which is the rank of M
and is denoted r(M). The simplest examples of matroids are the uniform ones. The
uniform matroid Uk,n is the matroid on a set Q of n points whose bases are all sets
with exactly k points.

SMALL SELF-DUAL MATROIDS AND SELF-DUAL CODES 1049

A subset X ⊆ Q is said to be independent if there exists a basis B ∈ B with
X ⊆ B, while we say that X ⊆ Q is a spanning subset if B ⊆ X for some basis B ∈ B.
The dependent subsets are those that are not independent. A point p ∈ Q is called
a loop if {p} is a dependent subset, and a coloop is a point p ∈ Q such that p ∈ B
for every basis B ∈ B. A circuit is a minimally dependent subset, and the maximally
independent subsets are the bases. The rank of X ⊆ Q, which is denoted r(X), is
the maximum cardinality of the subsets of X that are independent. Observe that the
rank of Q is the rank of the matroid M that was defined before. A matroid is said to
be connected if, for every two points i, j ∈ Q, there exists a circuit C with i, j ∈ C.

We say that X ⊆ Q is a flat if r(X ∪ {i}) > r(X) for every i /∈ X. The flat
cl(X) = {i ∈ Q : r(X ∪ {i}) = r(X)} is called the closure of X. If X is a flat, any
maximally independent subset B ⊆ X is called a basis of the flat X.

If M is a matroid on the set Q, with family of bases B, then B∗ = {Q−B : B ∈ B}
is the family of bases of a matroid M∗ on Q, which is called the dual of M. A self-dual
matroid is isomorphic to its dual, while an identically self-dual matroid is equal to its
dual. Observe that |Q| = 2r(M) if the matroid is self-dual.

Let K be a finite field and M be a k×n matrix over K with rank k. A matroid M
on the set Q = {1, . . . , n} is defined from the matrix M by considering that a subset
B = {i1, . . . , ik} ⊆ Q is a basis if and only if the corresponding columns of M form a
basis of K

k. In this situation, we say that the matrix M is a K-representation of the
matroid M. The matroids that can be defined in this way are called representable.
As was said before, all generator matrices of a linear code C define the same matroid
M = M(C). In this case, we say that C is a K-representation of M, or that C
represents M over K.

3. Almost self-dual codes. We say that a [2k, k] linear code C with gen-
erator matrix M is almost self-dual if there exists a nonsingular diagonal matrix
D = diag(λ1, . . . , λ2k) such that MD is a parity check matrix. Since the matrices M
and MD represent the same matroid, the matroid associated to an almost self-dual
code is identically self-dual. By the next proposition, in order to prove that a matroid
is self-dually representable, it is enough to prove that it can be represented by an
almost self-dual code.

Proposition 3.1. If an identically self-dual matroid M can be represented over
a finite field K by an almost self-dual code, then M can be represented by a self-dual
code over some finite field that extends K.

Proof. Let C be an almost self-dual code over a finite field K. Let M be a generator
matrix and D = diag(λ1, . . . , λ2k) the nonsingular diagonal matrix such that MD is a
parity check matrix. Let us consider, in an extension field L ⊃ K, the diagonal matrix
D1 = diag(

√
λ1, . . . ,

√
λ2k). Then M1 = MD1 is a generator matrix of a self-dual

code C1. The matroids associated with C and to C1 are equal.
Let C be an [n, k] linear code with generator matrix M , and let us set E = K

k. In
the dual space E∗, that is, the vector space formed by all linear forms π:E → K, let
us consider the linear forms π1, . . . , πn such that uM = (π1(u), . . . , πn(u)) for every
u ∈ E. Observe that these linear forms correspond to columns of M ; thus, we write
M = (π1, . . . , πn).

If π ∈ E∗, then π ⊗ π denotes the symmetric bilinear form π ⊗ π:E × E → K

defined by (π ⊗ π)(u,v) = π(u)π(v). Let S(E) denote the symmetric bilinear forms
on E. The dimension of S(E) is k(k + 1)/2, where k = dimE. The following lemma
is proved in [4].

Lemma 3.2. Let M = (π1, . . . , π2k) be a generator matrix of a [2k, k] linear code

1050 CARLES PADRÓ AND IGNACIO GRACIA

C, and let Q = {1, . . . , 2k}. Suppose that the matroid associated with C is identically
self-dual and connected. Then in the space S(E), the vectors {πj ⊗ πj : j ∈ Q− {i}}
are linearly independent for every i ∈ Q. In addition, the code C is almost self-dual if
and only if the vectors {πj ⊗ πj : j ∈ Q} are linearly dependent.

Let C be a code for which the associated matroid is identically self-dual and
connected. We now present a method for proving that C is almost self-dual. Let
M = (π1, . . . , π2k) be a generator matrix of C. From Lemma 3.2, it is enough to
check that the subspace 〈π1 ⊗π1, . . . , π2k ⊗π2k〉 ⊆ S(E) has dimension 2k− 1. Every
symmetric bilinear form Λ ∈ S(E) can be represented by the symmetric k× k matrix
M(Λ) = (λij) such that Λ(x1,x2) = x1M(Λ)x�

2 for every x1,x2 ∈ E. One can
prove that dim〈π1 ⊗ π1, . . . , π2k ⊗ π2k〉 = 2k− 1 by exhibiting dimS(E)− (2k− 1) =
(k−1)(k−2)/2 linearly independent linear equations of the form

∑
1≤i≤j≤k cijλij = 0

that are satisfied by the coefficients (λij)1≤i≤j≤k of each of the bilinear forms πi⊗πi.
Observe that, if π = (v1, . . . , vk) ∈ E∗, then the coefficients of the bilinear form π⊗π
are λij = vivj , so the code C is almost self-dual if the components of each of the
vectors π1, . . . , π2k satisfy (k − 1)(k − 2)/2 linearly independent quadratic equations
of the form

∑
1≤i≤j≤k cij vivj = 0.

To illustrate this method we apply it to proving the well-known result that the
uniform matroid Uk,2k can be K-represented by an almost self-dual code for every
finite field with |K| ≥ 2k. Take 2k different elements x1, . . . , x2k ∈ K and, for every
� = 1, . . . , 2k, the linear form π� = (1, x�, x

2
� , . . . , x

k−1
�) ∈ E∗. From the properties

of the Vandermonde matrix, it is clear that the code C defined by these linear forms
is a K-representation of Uk,2k. Moreover, all vectors π� satisfy the (k − 1)(k − 2)/2
linearly independent quadratic equations vivj = vi−1vj+1, where 2 ≤ i ≤ j ≤ k − 1,
and hence the code C is almost self-dual.

4. Sum of matroids and flat-partitions. Let M1 and M2 be matroids on
the sets Q1 and Q2, respectively. Let B1 and B2 be their families of bases. Suppose
that Q1 ∩ Q2 = {p} and that p is neither a loop nor a coloop of Mi. The 2-sum of
M1 and M2 at the point p, which will be denoted by M = M1⊕2M2, is the matroid
with ground set Q = (Q1 ∪Q2) − {p} whose family of bases is B = B′

1 ∪ B′
2, where

• B′
1 = {B1 ∪ C2 ⊆ Q : B1 ∈ B1, C2 ∪ {p} ∈ B2},

• B′
2 = {C1 ∪B2 ⊆ Q : C1 ∪ {p} ∈ B1, B2 ∈ B2}.

It is not difficult to check that B satisfies the axioms in Definition 2.1, that M is
connected if both M1 and M2 are connected, and that r(M) = r(M1) + r(M2)− 1.
Observe that, if M2 is the uniform matroid U1,2, then M1 ⊕2 U1,2

∼= M1. This is
said to be a trivial 2-sum. A connected matroid is said to be indecomposable if it is
not isomorphic to any nontrivial 2-sum of matroids. The matroid M = M1 ⊕2 M2 is
identically self-dual if and only if both M1 and M2 are identically self-dual [4]. The
next proposition was also proved in [4].

Proposition 4.1. If the matroids M1 and M2 can be represented over a field K

by almost self-dual codes, then so can their 2-sum M. Moreover, if M1 and M2 are
self-dually K-representable, then M is self-dually L-representable for some extension
L of K with [L : K] ≤ 2.

Let M be a matroid with ground set Q, and let (X1, X2) be a partition of Q. We
say that (X1, X2) is a flat-partition of M if Xi �= ∅ and X1 and X2 are flats of M.
If M is connected and ∅ �= X � Q, then r(X) + r(Q − X) > r(M) [9, Proposition
4.2.1]. The following lemma is a direct consequence of this fact.

Lemma 4.2. Let M be a connected matroid, and let (X1, X2) be a flat-partition
of M. Then r(X1) + r(X2) > r(M) and r(Xi) > 1 for i = 1, 2.

SMALL SELF-DUAL MATROIDS AND SELF-DUAL CODES 1051

The next proposition, which is a consequence of [9, Theorem 8.3.1], provides a
characterization of indecomposable identically self-dual matroids in terms of their
flat-partitions.

Proposition 4.3. Let M be a connected identically self-dual matroid. Then M
is indecomposable if and only if r(X1) + r(X2) > r(M) + 1 for every flat-partition
(X1, X2) of M. Moreover, if there exists a flat-partition of M with r(X1) + r(X2) =
r(M) + 1, then there exist two connected identically self-dual matroids M1, M2 with
r(Mi) = r(Xi) and M = M1 ⊕2 M2.

A cyclic flat of a matroid is a flat that is a union of circuits. It is easy to show
that X is a cyclic flat of a matroid on Q if and only if Q−X is a cyclic flat of the dual
matroid [9, Exercise 2.1.13]; also, the closure of any circuit is a cyclic flat. Applying
these ideas to identically self-dual matroids gives the following lemma.

Lemma 4.4. For a circuit C of an identically self-dual matroid M on a set Q, if
0 < r(C) < r(M), then

(
cl(C), Q− cl(C)

)
is a flat-partition of M.

5. A family of self-dually representable paving matroids. The girth g(M)
of a matroid M is defined as the minimum cardinality of the circuits of M. Observe
that g(M) ≤ r(M) + 1 and that the uniform matroids Uk,n with n > k are the only
ones with g(M) = r(M)+1. Matroids with g(M) ≥ r(M) are called paving matroids.
In this section, we study the identically self-dual matroids with g(M) = r(M).

Let M be an identically self-dual matroid on the set Q with r(M) = g(M) = k.
Since g(M) = k, a k-element subset of Q is either a circuit or a basis, and so M is
determined by the set Ck of its k-element circuits. For i ∈ Q, let Ck(i) be {C ∈ Ck :
i ∈ C}. Since M is identically self-dual, Ck = Ck(i)∪ {Q−C : C ∈ Ck(i)}. If k ≥ 2
and C ∈ Ck, then cl(C) is a cyclic flat of M with ∅ � cl(C) � Q, and so Q− cl(C) is
a cyclic flat of M with ∅ � Q − cl(C) � Q; it follows that cl(C) = C since |Q| = 2k
and both cl(C) and Q − cl(C) contain k-element circuits. Thus, by Lemma 4.4, if
k ≥ 2 and C ∈ Ck, then (C,Q− C) is a flat-partition of M.

Lemma 5.1. For C1, C2 ∈ Ck, if C1 �∈ {C2, Q−C2}, then 2 ≤ |C1∩C2| ≤ k−2.
Proof. If C ∈ Ck and x ∈ C, then C = cl(C − x). Thus, C1 �= C2 implies

|C1 ∩ C2| ≤ k − 2; also, C1 �= Q − C2 implies |C1 ∩ (Q − C2)| ≤ k − 2; that is,
2 ≤ |C1 ∩ C2|.

Let K be a field with |K| ≥ 2k, and let α1, α2, . . . , α2k ∈ K be different elements
such that α1 + · · · + α2k = 0. Let Q = {1, . . . , 2k}. It is not difficult to check that
B(α1, α2, . . . , α2k) = {{i1, . . . , ik} ⊆ Q : αi1 + · · ·+αik �= 0} is the family of bases of a
matroid with ground set Q, which will be denoted by S(α1, α2, . . . , α2k). All matroids
of this form are identically self-dual paving matroids. Moreover, as we prove in the
next proposition, they are self-dually representable. Observe that S(α1, α2, . . . , α2k)
is precisely the uniform matroid Uk,2k if αi1 + · · · + αik �= 0 for all distinct indices
i1, . . . , ik.

Proposition 5.2. Let K be a field with |K| ≥ 2k, and let α1, α2, . . . , α2k ∈ K be
different elements such that α1 + · · ·+α2k = 0. The matroid M = S(α1, α2, . . . , α2k)
can be represented over K by an almost self-dual code, and hence it is self-dually
representable over some finite extension of K.

Proof. If g(M) = k + 1, then M is the uniform matroid Uk,2k. Since |K| ≥ 2k,
there exists an almost self-dual code representing M over K.

If g(M) = k, we can suppose without loss of generality that α1 + · · · + αk = 0.
Consider the linear forms πi = (1, αi, α

2
i , . . . , α

k−2
i , αk

i) ∈ (Kk)∗, where i = 1, . . . , 2k,
and the matrix M = (π1, . . . , π2k). We prove that M is a K-representation of the
matroid M and a generator matrix of an almost self-dual code.

1052 CARLES PADRÓ AND IGNACIO GRACIA

The first claim is proved by showing that k different vectors πi1 , . . . , πik are
linearly dependent if and only if αi1 + · · · + αik = 0. Since the linear depen-
dency of the columns of a k × k matrix is equivalent to the linear dependency
of its rows, these vectors are linearly dependent if and only if there exist values
(c1, . . . , ck) �= (0, . . . , 0) such that c1 + c2αij + c3α

2
ij

+ · · ·+ ck−1α
k−2
ij

+ ckα
k
ij

= 0 for

every j = 1, . . . , k. This is equivalent to the polynomial (x− αi1) · · · (x− αik) having
the form c′1 + c′2x + · · · + c′k−1x

k−2 + xk, which is equivalent to αi1 + · · · + αik = 0.
To prove that the code C with generator matrix M is almost self-dual, we check

that the vectors π1, . . . , π2k satisfy (k − 1)(k − 2)/2 linearly independent quadratic
equations

∑
1≤i≤j≤k c

�
ij vivj = 0, where � = 1, . . . , (k − 1)(k − 2)/2.

Observe that the (k − 2)(k − 3)/2 equations vivj = vi−1vj+1, where 2 ≤ i ≤ j ≤
k−2, are satisfied by those vectors, as are the k−3 equations vivk = vi+2vk−1, where
1 ≤ i ≤ k − 3. Only one more equation is needed, which is (a0v1 + · · · + ak−2vk−1 +
vk)(b0v1 + · · · + bk−2vk−1 + vk) = 0, where (x− α1) · · · (x− αk) = a0 + a1x + a2x

2 +
· · ·+ak−2x

k−2+xk and (x−αk+1) · · · (x−α2k) = b0+b1x+b2x
2+ · · ·+bk−2x

k−2+xk.
To prove that these (k− 1)(k− 2)/2 equations are linearly independent, we check

that we can reorder them in such a way that, for every � = 1, . . . , (k − 1)(k − 2)/2,
there exists a pair (i, j) such that c�ij �= 0 and c�

′

ij = 0 for every �′ > �. We take

first the last equation, which is the only one with c�kk �= 0. Afterwards, we take the
equations vivk = vi+2vk−1, i = 1, . . . , k− 3, because each of them will be the last one
with c�ik �= 0. Next we will find, for every j = 2, . . . , k − 2, only one equation with
c�1j+1 �= 0. At this point the same applies to the coefficients c�2j+1 for j = 3, . . . , k−2,
and so on.

6. Identically self-dual matroids with rank at most four. This section
is devoted to proving Theorem 1.3. We determine all identically self-dual connected
matroids with rank at most four, and we prove that each of them is self-dually repre-
sentable.

Obviously, the uniform matroid U1,2 is the only identically self-dual matroid with
rank one. Let M be an identically self-dual connected matroid with 2 ≤ r(M) ≤ 4.
By Lemmas 4.2 and 4.4, the connectedness of M implies that g(M) ≥ 3. It follows
that M = U2,4 if r(M) = 2. If k is 3 or 4 and g(M) = r(M) + 1 = k + 1, then
M = Uk,2k. If g(M) = r(M) = 3, by Lemma 4.4 there exists a flat-partition (X1, X2)
of M with r(X1) = r(X2) = 2. From Proposition 4.3, M = U2,4⊕2U2,4. If r(M) = 4
and g(M) = 3, we apply again Lemmas 4.2 and 4.4 and Proposition 4.3, and we get
that M = U2,4 ⊕2 M1, where M1 is an identically self-dual connected matroid with
r(M1) = 3. Therefore, M = U2,4 ⊕2 U3,6 or M = U2,4 ⊕2 U2,4 ⊕2 U2,4.

Summarizing, if M is an identically self-dual connected matroid with rank at
most three, or if it has rank four and g(M) is 3 or 5, then M is an uniform matroid
or a 2-sum of uniform matroids. Therefore, for every prime p, the matroid M is
self-dually K-representable for some finite field K with characteristic p.

Let M be an identically self-dual connected matroid on the set Q = {1, 2, . . . , 8}
with r(M) = g(M) = 4. Consider the set C4 of the circuits of M with exactly four
points and C4(8) = {C ∈ C4 : 8 ∈ C} = {C1, . . . , Cm}, which contains half of the
circuits in C4.

Consider D = {D1, . . . , Dm}, where Di = Ci−{8} ⊆ {1, . . . , 7}. From Lemma 5.1,
|Di ∩ Dj | = 1 if i �= j. The matroid M is completely determined by D, which is a
family of 3-element subsets of {1, . . . , 7}, each pair of which intersects in exactly one
point. Moreover, there exists an identically self-dual paving matroid with rank 4 for
every such family D.

SMALL SELF-DUAL MATROIDS AND SELF-DUAL CODES 1053

The projective plane over the finite field Z2, which is called the Fano plane,
consists of 7 points and 7 lines and every line has exactly 3 points. Of course, any two
lines intersect in a single point. One can check by case analysis that every family D
with the properties described above can be completed to a family {R1, . . . , R7}, the
set of the lines of some Fano plane defined on the set of points {1, . . . , 7}.

If we identify every point in Q−{8} = {1, . . . , 7} with the point in Z
3
2−{(0, 0, 0)}

corresponding to its binary representation, we obtain a Fano plane whose lines are
R1 = {2, 4, 6}, R2 = {1, 4, 5}, R3 = {3, 4, 7}, R4 = {1, 2, 3}, R5 = {2, 5, 7}, R6 =
{1, 6, 7}, R7 = {3, 5, 6}. Therefore, up to isomorphism, the only identically self-dual
matroids with both rank and girth equal to 4 are the matroids Mi, where i = 1, . . . , 9,
determined by D1 = {R1}, D2 = {R1, R2}, D3 = {R1, R2, R3} (three lines intersect-
ing in one point), D4 = {R1, R2, R4} (three lines without any common point), D5 =
{R1, R2, R4, R7} (the other three lines intersect in one point), D6 = {R1, R2, R3, R4}
(the other three lines do not have any common point), D7 = {R1, R2, R3, R4, R5},
D8 = {R1, R2, R3, R4, R5, R6}, D9 = {R1, R2, R3, R4, R5, R6, R7}.

The proof of Theorem 1.3 is concluded by proving that, for every i = 1, . . . , 9,
the matroid Mi is representable and that, for every finite field K such that Mi is K-
representable, there exists an almost self-dual code that is an L-representation of Mi

for some algebraic extension L of K. This is done in Propositions 6.1, 6.2, 6.3, and 6.4.
For every i = 1, . . . , 7 we take Ci = Ri ∪ {8} ⊆ Q.

Proposition 6.1. For i = 1 and i = 3 and for every prime p, and for i = 2 and
for every prime p �= 2, there exists a finite field K with characteristic p and 8 elements
α1, . . . , α8 ∈ K such that Mi = S(α1, . . . , α8), and hence Mi can be represented by
an almost self-dual code over the field K.

Proof. From the definition of S(α1, . . . , α2k), it follows that the 4-element circuits
of S(α1, . . . , α8) are the sets {i1, i2, i3, i4} for which αi1 + αi2 + αi3 + αi4 = 0. Thus,
M1, in which the only 4-element circuits are {1, 3, 5, 7} and {2, 4, 6, 8}, is S(1 + β2 +
β4, β + β3 + β5,−1,−β,−β2,−β3,−β4,−β5), where β is any element of degree at
least 6 over the prime field Zp (that is, β is not a root of any polynomial over Zp with
degree smaller than 6). The 4-element circuits of M3 are precisely all unions of pairs
of sets among {1, 5}, {2, 6}, {3, 7}, and {4, 8}. Therefore, if β is any element of degree
at least 4 over Zp, the matroid M3 is S(1, β, β2, β3,−1,−β,−β2,−β3) if p �= 2 and is
S(1+β, β+β2, 1+β2, 1, β2 +β3, 1+β3, β+β3, β+β2 +β3) if p = 2. Finally, M2, in
which the 4-element circuits are {1, 3, 5, 7}, {1, 4, 5, 8}, {2, 3, 6, 7}, and {2, 4, 6, 8}, is
S(−β,−β−β2, 1+β+β2 +β3, β+β2,−β2−β3,−β3,−1, β3), where β is any element
of degree at least 4 over Zp and the prime p is not 2.

Proposition 6.2. The matroid M2 can be represented by an almost self-dual
code over some finite field K with characteristic 2.

Proof. In the corresponding algebraic extension K of Z2, take ω ∈ K with ω13 = 1
and ω �= 1. Then the matrix

M = M(π1, . . . , π8) =

⎛
⎜⎜⎝

ω 0 ω3 0 ω−1 0 ω−3 0
0 ω2 1 0 0 ω−2 1 0
0 1 0 ω5 0 1 0 ω−5

1 0 0 1 1 0 0 1

⎞
⎟⎟⎠

is the generator matrix of an almost self-dual code C that represents the matroid
M2 over K. This can be proved by using a simple computer program to check that
det(πi1 , πi2 , πi3 , πi4) = 0 if and only if {i1, i2, i3, i4} = C1, Q−C1, C2, Q−C2 and that
dim〈π1 ⊗ π1, . . . , π8 ⊗ π8〉 = 7.

1054 CARLES PADRÓ AND IGNACIO GRACIA

Proposition 6.3. For every finite field K and for every i = 4, . . . , 9, if a code C
is a K-representation of the matroid Mi, then C is almost self-dual.

Proof. Let M be one of the matroids M4, . . . ,M9, and let M = (π1, . . . , π8) be
such that the code C with generator matrix M is a K-representation of M. Since
{R1, R2, R4} ⊆ Di for every i = 4, . . . , 9, we have that C1 = {2, 4, 6, 8}, C2 =
{1, 4, 5, 8}, and C4 = {1, 2, 3, 8}, and their complements are circuits of M. For every
i = 1, 2, 4, let ai1v1 + ai2v2 + ai3v3 + ai4v4 = 0 and bi1v1 + bi2v2 + bi3v3 + bi4v4 = 0 be,
respectively, the equations of the hyperplanes Vi = 〈πj : j ∈ Ci〉 and Wi = 〈πj : j ∈
Q− Ci〉. Therefore, the three quadratic equations

(ai1v1 + ai2v2 + ai3v3 + ai4v4)(b
i
1v1 + bi2v2 + bi3v3 + bi4v4) = 0,

where i = 1, 2, 4, are satisfied by each vector πj . We have to prove only that these
quadratic equations are linearly independent. Let Q1, Q2, Q4 ⊆ K

4 be the quadrics
defined by these equations. Observe that Qi = Vi ∪Wi. By symmetry, it is enough
to prove that Q1 ∩ Q2 �⊆ Q4. This is clear by taking into account that Q1 ∩ Q2 =
〈π4, π8〉∪〈π2, π6〉∪〈π1, π5〉∪〈π3, π7〉 and Q4 = 〈π1, π2, π3, π8〉∪〈π4, π5, π6, π7〉.

To conclude the proof of Theorem 1.3, it is enough to prove that the matroids
M4, . . . ,M9 are representable. This is done in the next proposition and, even though
it is not necessary, we determine, for completeness, the characteristics of the fields
over which these matroids admit representations.

Proposition 6.4. For every i = 4, . . . , 7 and for every prime p the matroid Mi

is K-representable for some finite field K with characteristic p. The matroid M8 is
K-representable if and only if the characteristic of K is not 2. Finally, the matroid
M9 is K-representable if and only if the characteristic of K is 2.

Proof. Let p be a prime. Take a prime q with q ≥ 5 and q �= p. Let K be a finite
field of characteristic p that contains a primitive q-root of unity ω ∈ K. Then the
matrix

M4 =

⎛
⎜⎜⎝

ω3 0 ω2 0 ω4 0 ω 0
0 ω 1 0 0 1 1 0
0 1 0 ω3 0 1 0 1
1 0 0 1 1 0 0 1

⎞
⎟⎟⎠

is a K-representation of M4. The matrix

M5 =

⎛
⎜⎜⎝

ab 0 a 0 1 0 1 0
0 b 1 0 0 a−1 1 0
0 1 0 a 0 1 0 1
1 0 0 1 1 0 0 1

⎞
⎟⎟⎠

provides a representation of the matroid M5 if a, b �= 0, 1 and b �= a−1. A represen-
tation of the matroid M6 is given by the matrix

M(a, b) =

⎛
⎜⎜⎝

1 1 1 1 1 1 1 1
0 1 1 0 0 1 1 0
1 0 1 0 1 0 1 0
0 0 0 1 a b a + b− 1 0

⎞
⎟⎟⎠

if a, b �= 0, 1 and a �= b and a + b �= 1. The code with generator matrix M(a, 1)
represents M7 if a �= 0, 1,−1. Therefore, M5, M6, and M7 are K-representable for

SMALL SELF-DUAL MATROIDS AND SELF-DUAL CODES 1055

every finite field with |K| ≥ 5, and hence they can be represented over fields of ev-
ery characteristic. Moreover, the matrix M(1, 1) is a representation of M8 for every
finite field with characteristic different from 2, and it provides a K-representation of
the matroid M9 if K has characteristic 2. Finally, it is well known that M8 cannot
be represented over any field with characteristic 2, while M9 can be represented
only over fields with characteristic 2. See, for instance, the Appendix “Some in-
teresting matroids” in [9], in which M8 and M9 appear, respectively, as R8 and
AG(3, 2).

Acknowledgments. We would like to thank the anonymous referees for their
many valuable comments and suggestions, which have greatly improved this paper.

REFERENCES

[1] A. Beimel, T. Tassa, and E. Weinreb, Characterizing ideal weighted threshold secret sharing,
in Theory of Cryptography, Proceedings of the Second Theory of Cryptography Conference
(TCC 2005), Lecture Notes in Comput. Sci. 3378, Springer, New York, 2005, pp. 600–619.

[2] E.F. Brickell and D.M. Davenport, On the classification of ideal secret sharing schemes,
J. Cryptology, 4 (1991), pp. 123–134.

[3] R. Cramer, I. Damg̊ard, and U. Maurer, General secure multi-party computation from any
linear secret-sharing scheme, in Advances in Cryptology (Eurocrypt 2000), Lecture Notes
in Comput. Sci. 1807, Springer, New York, 2000, pp. 316–334.

[4] R. Cramer, V. Daza, I. Gracia, J. Jiménez Urroz, G. Leander, J. Mart́ı-Farré, and

C. Padró, On codes, matroids and secure multi-party computation from linear secret
sharing schemes, in Advances in Cryptology (Crypto 2005), Lecture Notes in Comput.
Sci. 3621, Springer, New York, 2005, pp. 327–343.

[5] I.M. Duursma, Combinatorics of the two-variable zeta function, in Finite Fields and Applica-
tions, Lecture Notes in Comput. Sci. 2948, Springer, New York, 2004, pp. 109–136.

[6] C. Greene, Weight enumeration and the geometry of linear codes, Stud. Appl. Math. 55,
Elsevier, Amsterdam, 1976, pp. 119–128.

[7] M. Hirt and U. Maurer, Complete characterization of adversaries tolerable in secure multi-
party computation, in Proceedings of the 16th Annual ACM Symposium on Principles of
Distributed Computing (PODC ’97), Santa Barbara, CA, 1997, ACM, New York, 1997,
pp. 25–34.

[8] F. Matúš, Matroid representations by partitions, Discrete Math., 203 (1999), pp. 169–194.
[9] J.G. Oxley, Matroid Theory, Oxford Science Publications Clarendon Press Oxford University

Press, New York, 1992.
[10] J. Simonis and A. Ashikhmin, Almost affine codes, Des. Codes Cryptogr., 14 (1998), pp. 179–

197.
[11] D.R. Stinson, An explication of secret sharing schemes, Des. Codes Cryptogr., 2 (1992),

pp. 357–390.

SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 4, pp. 1056–1078

HIGHER-DIMENSIONAL PACKING WITH ORDER CONSTRAINTS∗

SÁNDOR P. FEKETE† , EKKEHARD KÖHLER‡ , AND JÜRGEN TEICH§

Abstract. We present a first exact study on higher-dimensional packing problems with order
constraints. Problems of this type occur naturally in applications such as logistics or computer
architecture and can be interpreted as higher-dimensional generalizations of scheduling problems.
Using graph-theoretic structures to describe feasible solutions, we develop a novel exact branch-
and-bound algorithm. This extends previous work by Fekete and Schepers; a key tool is a new
order-theoretic characterization of feasible extensions of a partial order to a given complementarity
graph that is tailor-made for use in a branch-and-bound environment. The usefulness of our approach
is validated by computational results.

Key words. higher-dimensional packing, higher-dimensional scheduling, reconfigurable com-
puting, precedence constraints, exact algorithms, modular decomposition

AMS subject classifications. 90C28, 68R99

DOI. 10.1137/060665713

1. Introduction.

Scheduling and packing problems. Scheduling is arguably one of the most im-
portant topics in combinatorial optimization. Typically, we are dealing with a one-
dimensional set of objects (“jobs”) that need to be assigned to a finite set of contain-
ers (“machines”). Problems of this type can also be interpreted as (one-dimensional)
packing problems, and they are NP-hard in the strong sense, as problems like 3-
Partition are special cases.

Starting from this basic scenario, there are different generalizations that have
been studied. Many scheduling problems have precedence constraints on the sequence
of jobs. On the other hand, a great deal of practical packing problems consider
higher-dimensional instances, where objects are axis-aligned boxes instead of intervals.
Higher-dimensional packing problems arise in many industries, where steel, glass,
wood, or textile materials are cut. The three-dimensional problem is important for
practical applications such as container loading.

In this paper, we give the first study of problems that comprise both generaliza-
tions: these are higher-dimensional packing problems with order constraints—or, from
a slightly different point of view, higher-dimensional scheduling problems. In higher-
dimensional packing, these problems arise when dealing with precedence constraints
that are present in many container-loading problems. Another practical motivation

∗Received by the editors July 28, 2005; accepted for publication (in revised form) July 21, 2006;
published electronically December 26, 2006. A preliminary extended abstract version reporting on
parts of this paper appeared in [4, 5].

http://www.siam.org/journals/sidma/20-4/66571.html
†Department of Mathematical Optimization, Braunschweig University of Technology, D–38116

Braunschweig, Germany (s.fekete@tu-bs.de). This author was partially supported by Deutsche
Forschungsgemeinschaft (DFG) within the special focus program “Reconfigurable Computing” (SPP
1148), project “ReCoNodes,” grants Fe407/8-1 and 8-2.

‡Department of Mathematics, Technical University Berlin, D–10623 Berlin, Germany (ekoehler@
math.tu-berlin.de).

§Department of Computer Science 12 (Hardware-Software-Co-Design), University of Erlangen-
Nuremberg, D–91058 Erlangen, Germany (teich@informatik.uni-erlangen.de). This author was par-
tially supported by Deutsche Forschungsgemeinschaft (DFG) within the special focus program “Re-
configurable Computing” (SPP 1148), project “ReCoNodes,” grants Te 163/14-1 and 14-2.

1056

HIGHER-DIMENSIONAL PACKING WITH ORDER CONSTRAINTS 1057

for considering multidimensional scheduling problems arises from optimizing the re-
configuration of a particular type of computer chip called FPGAs—described below.

FPGAs and higher-dimensional scheduling. A particularly interesting class of in-
stances of three-dimensional orthogonal packing arises from a new type of recon-
figurable computer chip, called field-programmable gate arrays (FPGAs). An FPGA
typically consists of a regular rectangular grid of equal configurable cells (logic blocks)
that allow the prototyping of simple logic functions together with simple registers and
with special routing resources (see Figure 1.1). These chips (see, e.g., [1, 34]) may
support several independent or interdependent jobs and designs at a time, and parts
of the chip can be reconfigured quickly during run-time. (For more technical details
on the underlying architecture, see the previous paper [32] and the more recent ab-
stract [6].) Thus, we are faced with a general class of problems that can be seen both
as scheduling and packing problems. In this paper, we develop a set of mathematical
tools to deal with these higher-dimensional scheduling problems, and we show that
our methods are suitable for solving instances of interesting size to optimality.

t

x

y

Fig. 1.1. An FPGA and a set of five jobs, shown as projections in ordinary two-dimensional
space and in three-dimensional space-time. Jobs must be placed inside the chip and must not overlap
if executed simultaneously on the chip.

Related work. We are not aware of any exact study of higher-dimensional packing
or scheduling problems with order constraints. For a comprehensive survey of classi-
cal “one-dimensional” scheduling problems, the reader is referred to [24]. A related
problem is dynamic storage allocation, where “processing jobs” means storing them
in contiguous blocks of memory from a one-dimensional array. Considering time as
the second dimension leads to a two-dimensional packing problem, possibly with or-
der constraints. However, this problem is primarily an online problem; for example,
see [25]. In an offline setting, precise starting and ending time values imply order
constraints but also provide more information. (See our paper [32] for exact methods
for that scenario.)

Closest to our problems is the class of resource-constrained project scheduling prob-
lems (RCPSP), which can be interpreted as a step towards higher-dimensional packing
problems: In addition to a duration ti and precedence constraints on the temporal

order of jobs, each job i may have a number of other “sizes” x
(1)
i , . . . , x

(k)
i ; x

(j)
i indi-

cates the amount of resource j required for the processing of job i. The total amount∑
i x

(j)
i of each resource j is limited at any given time. See the book [33] and the

1058 SÁNDOR P. FEKETE, EKKEHARD KÖHLER, AND JÜRGEN TEICH

references in the article [28] for an extensive survey of recent work in this area. Even
though RCPSPs can be formulated as integer problems, solving resource-constrained
scheduling problems is already quite hard for instances of relatively moderate size:
The standard benchmark library used in this area consists of instances with 30, 60,
90, and 120 jobs. Virtually all work deals with lower and upper bounds on these
instances, and even for instances with 60 jobs, a considerable number has not yet
been solved to optimality.

It is easy to see that two-dimensional packing problems (possibly with precedence
constraints on the temporal order) can be relaxed to a scheduling problem with one
resource constraint, by allowing a noncontiguous use of resources, i.e., the higher-
dimensional analogue of preemption. However, the example in Figure 1.2 shows that
the converse is not true, even for small instances of two-dimensional packing prob-
lems without any precedence constraints: An optimal solution for the corresponding
resource-constrained scheduling problem may not correspond to a feasible arrange-
ment of rectangles for the original packing problem. (We leave it to the reader to
verify the latter claim.) For d ≥ 2 the difference becomes more pronounced: The d
knapsack constraints for RCSPSP require that for all of the d individual resources and
every pair of jobs, a disjointness property must be satisfied; on the other hand, the
more geometric conditions on d-dimensional packing require that any pair of boxes
must be disjoint in at least one of their coordinate intervals. Arguably, the disjunctive
constraints on (d + 1)-dimensional packing problems are harder to model.

8

x

1
7

532
4

6

t
(a)

x

x1

2

1

2

(b)

x

x1

2

2

3

1

4

(c)

Fig. 1.2. Differences between RCPSP and packing: (a) A set of jobs that is feasible for schedul-
ing with one resource constraint but infeasible for two-dimensional packing: Job 8 does not violate a
resource constraint but does not fit as a contiguous rectangle. (b) A set of jobs that is just feasible for
RCPSP with d = 2 constraints, i.e., that does not allow any tightening of either constraint without
becoming infeasible. (c) A set of boxes that is just feasible for packing in d = 2 dimensions.

Higher-dimensional packing problems (without order constraints) have been con-
sidered by a great number of authors, but only few of them have dealt with the exact
solution of general two-dimensional problems. See [7, 10] for an overview. It should
be stressed that unlike one-dimensional packing problems, higher-dimensional pack-
ing problems allow no straightforward formulation as integer programs: After placing
one box in a container, the remaining feasible space will in general not be convex.
Moreover, checking whether a given set of boxes fits into a particular container (the
so-called orthogonal packing problem (OPP)) is trivial in one-dimensional space but
NP-hard in higher dimensions.

Nevertheless, attempts have been made to use standard approaches of mathe-
matical programming. Beasley [2] and Hadjiconstantinou and Christofides [18] have
used a discretization of the available positions to an underlying grid to get a 0-1
program with a pseudopolynomial number of variables and constraints. Not surpris-
ingly, this approach becomes impractical beyond instances of rather moderate size.

HIGHER-DIMENSIONAL PACKING WITH ORDER CONSTRAINTS 1059

More recently, Padberg [29] gave a mixed integer programming formulation for three-
dimensional packing problems, similar to the one anticipated by Schepers [30] in his
thesis. Padberg expressed the hope that using a number of techniques from branch-
and-cut will be useful; however, he did not provide any practical results to support
this hope.

In [12, 7, 10, 11, 32], a different approach to characterizing feasible packings and
constructing optimal solutions is described. A graph-theoretic characterization of
the relative position of the boxes in a feasible packing (by so-called packing classes)
is used, representing d-dimensional packings by a d-tuple of interval graphs (called
component graphs) that satisfy two extra conditions. This factors out a great deal
of symmetries between different feasible packings, it allows one to make use of a
number of elegant graph-theoretic tools, and it reduces the geometric problem to
a purely combinatorial one without using brute-force methods like introducing an
underlying coordinate grid. Combined with good heuristics for dismissing infeasible
sets of boxes [8, 9], a tree search for constructing feasible packings was developed.
This exact algorithm has been implemented; it outperforms previous methods by a
clear margin.

For the benefit of the reader, a concise description of this approach is contained
in section 3.

Graph theory of order constraints. In the context of scheduling with precedence
constraints, a natural problem is the following, called transitive ordering with prece-
dence constraints (TOP): Consider a partial order P = (V,≺) of precedence con-
straints and a (temporal) comparability graph G = (V,E), such that all relations in
P are represented by edges in G. Is there a transitive orientation D = (V,A) of G,
such that P is contained in D?

Korte and Möhring [21] have given a linear-time algorithm for deciding (TOP),
using modified PQ-trees. However, their approach requires knowledge of the full set
of edges in G. When running a branch-and-bound algorithm for solving a scheduling
problem, these edges of G are known only partially during most of the tree search, but
already this partial edge set may prohibit the existence of a feasible solution for a given
partial order P . This makes it desirable to come up with structural characterizations
that are already useful when only parts of G are known.

Such a set of precedence constraints may be described by a dependency graph;
see Figure 1.3.

For a problem instance of this type, we describe a general framework for finding
exact solutions to the problem of minimizing the height of a container of given base
area, or minimizing the makespan of a higher-dimensional nonpreemptive scheduling
problem.

Results of this paper. In this paper, we give the first exact study of higher-
dimensional packing with order constraints, which can also be interpreted as higher-
dimensional nonpreemptive scheduling problems. We develop a general framework for
problems of this type by giving a pair of necessary and sufficient conditions for the
existence of a solution for the problem TOP on graphs G in terms of forbidden sub-
structures. Using the concept of packing classes, our conditions can be used quite
effectively in the context of a branch-and-bound framework, because it can recognize
infeasible subtrees at “high” branches of the search tree. In particular, we describe
how to find an exact solution to the problem of minimizing the height of a container
of given base area. If this third dimension represents time, this amounts to mini-
mizing the makespan of a higher-dimensional scheduling problem. We validate the

1060 SÁNDOR P. FEKETE, EKKEHARD KÖHLER, AND JÜRGEN TEICH

x

t

y

x

t

wx

wy
wt

y

vvv v

vvv

v

v

v

v

ADD

MUL

MUL MUL ADD

MUL

SUB

MUL

COMP

MUL

1

ADD

MUL

3

SUB 4

7 9 11

10862

5

Fig. 1.3. Dependency graph of jobs and shape of modules (three-dimensional boxes) with the
spatial dimensions x and y and the temporal dimension t (execution time).

usefulness of these concepts and results by providing computational results. Other
problem versions (like higher-dimensional knapsack or bin packing problems with or-
der constraints) can be treated similarly.

The rest of this paper is organized as follows. In section 2, we describe basic
assumptions and some terminology. The notion of packing classes and a solution to
packing problems without precedence constraints is summarized in section 3. In sec-
tion 4, we introduce precedence constraints, describe the mathematical foundations
for incorporating them into the search, and explain how to implement the resulting
algorithms. Section 5 provides the necessary mathematical foundations for the cor-
rectness of our approach. Finally, we present computational results for a number of
different benchmarks in section 6.

2. Preliminaries. An FPGA consists of a rectangular grid of identical logic
cells. Each job v (or “module”) requires a rectangle of size wx(v) by wy(v) with fixed
axis-parallel orientation and needs to remain available for at least the time wt(v). Any
logic cell that is not occupied by a module may be used by one of the rectangular jobs.
As shown in Figure 1.1, we are dealing with a three-dimensional packing problem,
possibly with order constraints. In the following, we describe technical as well as
mathematical terminology and assumptions.

2.1. Architecture assumptions. The model of having relocatable, rectangular
modules is justified by current FPGA technology [1, 34].

Intermodule communication. Intermodule communication is assumed to occur
at the end of operation of the sending module (task model). The issuing module
may store its result register values into an external memory connected to the FPGA
interface (read-out) via a bus interface. Memory is allocated for temporary storage of
intermediate results.1 Afterwards, the receiving module will read the communicated
data into its registers via the bus interface. With this communication style, it is
justifiable to ignore routing overhead between modules that otherwise might introduce
additional placement constraints.

I/O-overhead. The communication time needed for writing out and reading in
communicated data may be accounted for by considering this as an offset and being

1A static memory allocation may be deduced directly from the static placement.

HIGHER-DIMENSIONAL PACKING WITH ORDER CONSTRAINTS 1061

part of the execution time of a job.

Reconfiguration overhead. The time needed for carrying out reconfigurations may
be modeled by a constant (possibly a different number for each job), depending on
the target architecture. This may be considered a simplification because the recon-
figuration time might depend on the result of the placement. Consider two equal
modules with identical placements. A reconfiguration for the second module might
not be necessary in case no third module is occupying a (sub)set of cells in the time
interval between the execution of the two modules. However, there are many different
models for accounting for reconfiguration times, and the particular choice should be
adapted individually to the target architecture.

2.2. Mathematical terminology.

Problem instances. We assume that a problem instance is given by a set V of
jobs. Each job has a spatial requirement in the x- and y-directions, denoted by wx(v)
and wy(v), and a duration, denoted by a size wt(v) along the time axis. The available
space H consists of an area of size hx × hy. In addition, there may be an overall
allowable time ht for all jobs to be completed. A schedule is given by a start time
pt(v) for each job. A schedule is feasible, if all jobs can be carried without preemption
or overlap of computation jobs in time and space, such that all jobs are within spatial
and temporal bounds.

Graphs. Some of our descriptions make use of a number of certain graph-theoretic
concepts. An (undirected) graph G = (V,E) is given by a set of vertices V and a set
of edges E; each edge describes the adjacency of a pair of vertices, and we write {u,w}
for an edge between vertices u and w. We consider only graphs without multiple edges
and without loops. For a graph G, we obtain the complement graph G by exchanging
the set E of edges with the set E of nonedges. In a directed graph D = (V,A),
edges are oriented, and we write (u,w) to denote an edge directed from u to w. A
graph G = (V,E) is a comparability graph if there is a transitive orientation for it,
i.e., the edges E can be oriented to a set of directed arcs A, such that we get the
transitive closure of a partial order. More precisely, this means that D = (V,A) is a
cycle-free digraph for which the existence of edges (u, v) ∈ A and (v, w) ∈ A for any
u, v, w ∈ V implies the existence of (u,w) ∈ A. Comparability graphs have a variety
of nice properties. For our purpose we will make use of the algorithmic result that
computing maximum weighted cliques on comparability graphs can be done efficiently
(see [17]). A closely related family of graphs, the interval graphs, is defined as follows.
Given a set of intervals on the real line, every vertex of the graph corresponds to an
interval of the set; two vertices are joined by an edge if the corresponding intervals
have a nonempty intersection. Interval graphs have been studied intensively in graph
theory (see [17, 26]), and, similar to comparability graphs, they have a number of
very useful algorithmic properties.

Precedence constraints. Mathematically, a set of precedence constraints is given
by a partial order P = (V,≺) on V . The relations in ≺ can be interpreted as a directed
acyclic graph DP = (V,AP), where AP is a set of directed arcs corresponding to the
relations in ≺. In the presence of such a partial order, a feasible schedule is required to
satisfy the capacity constraints of the container, as well as these additional constraints.

Packing problems. In the following, we treat jobs as axis-aligned d-dimensional
boxes with given orientation, and feasible schedules as arrangements of boxes that
satisfy all side constraints. This is implied by the term of a feasible packing. There may
be different types of objective functions, corresponding to different types of packing
problems. The OPP is to decide whether a given set of boxes can be placed within

1062 SÁNDOR P. FEKETE, EKKEHARD KÖHLER, AND JÜRGEN TEICH

a given “container” of size hx × hy × ht. For the constrained OPP (COPP), we
also have to satisfy a partial order P = (V,≺) of precedence constraints in the t-
dimension. To emphasize the motivation of temporal precedence constraints, we write
t to suggest that the time coordinate is constrained, and x and y to imply that the
space coordinates are unrestricted. Although our application mainly requires us to
consider those temporal constraints, it should be mentioned that our approach works
the same way when dealing with spatial restrictions; that is why we are using a
generic index i in the mathematical discussion, while some of our benchmark examples
consider a temporal dimension t.

There are various optimization problems that have OPP or COPP as their un-
derlying decision problems. The base minimization problem (BMP) is to minimize
the size hx for a fixed ht such that all boxes fit into a container hx × hx × ht with
quadratic base. This corresponds to minimizing the necessary area to carry out a set
of computations within a given time. Because our main motivation arises from dy-
namic chip reconfigurations, where we want to minimize the overall running time, we
focus on the constrained strip packing problem (CSPP), which is to minimize the size
ht for a given base size hx×hy, such that all boxes fit into the container hx×hy ×ht.
Clearly, we can use a similar approach for other objective functions.

3. Solving unconstrained orthogonal packing problems.

3.1. A general framework. If we have an efficient method for solving OPPs,
we can also solve BMPs and SPPs by using a binary search. However, deciding the
existence of a feasible packing is a hard problem in higher dimensions, and methods
proposed by other authors [2, 18] have been of limited success.

Our framework uses a combination of different approaches to overcome these
problems:

1. Try to disprove the existence of a packing by classes of lower bounds on the
necessary size.

2. In case of failure, try to find a feasible packing by using fast heuristics.
3. If the existence of a packing is still unsettled, start an enumeration scheme

in the form of a branch-and-bound tree search.
By developing good new bounds for the first stage, we have been able to achieve

a considerable reduction of the number of cases in which a tree search needs to be
performed. (Mathematical details for this step are described in [8, 11].) However, it is
clear that the efficiency of the third stage is crucial for the overall running time when
considering difficult problems. Using a purely geometric enumeration scheme for this
step by trying to build a partial arrangement of boxes is easily seen to be immensely
time-consuming. In the following, we describe a purely combinatorial characterization
of feasible packings that allows us to perform this step more efficiently.

3.2. Packing classes. Consider a feasible packing in d-dimensional space, and
project the boxes onto the d coordinate axes. This converts the one d-dimensional
arrangement into d one-dimensional ones (see Figure 3.1 for an example in d = 2).
By disregarding the exact coordinates of the resulting intervals in direction i and con-
sidering only their intersection properties, we get the component graph Gi = (V,Ei):
Two boxes u and v are connected by an edge in Gi iff their projected intervals in
direction xi have a nonempty intersection. By definition, these graphs are interval
graphs.

Considering sets of d component graphs Gi instead of complicated geometric ar-
rangements has some clear advantages (algorithmic implications for our specific pur-

HIGHER-DIMENSIONAL PACKING WITH ORDER CONSTRAINTS 1063

G

1
G

2

Fig. 3.1. The projections of the boxes onto the coordinate axes define interval graphs (here in
two dimensions: G1 and G2).

poses are discussed later). It is not hard to check that the following three conditions
must be satisfied by all d-tuples of graphs Gi that are constructed from a feasible
packing:

C1: Gi is an interval graph for all i ∈ {1, . . . , d}.
C2: Any independent set S of Gi is i-admissible for all i ∈ {1, · · · , d}, i.e., wi(S) =∑

v∈S wi(v) ≤ hi, because all boxes in S must fit into the container in the
ith dimension.

C3: ∩d
i=1Ei = ∅. In other words, there must be at least one dimension in which

the corresponding boxes do not overlap.

A d-tuple of component graphs satisfying these necessary conditions is called
a packing class. The remarkable property (proven in [30, 10]) is that these three
conditions are also sufficient for the existence of a feasible packing.

Theorem 3.1 (Fekete, Schepers). A set of d-dimensional boxes allows a feasible
packing iff there is a packing class, i.e., a d-tuple of graphs Gi = (V,Ei) that satisfies
conditions C1, C2, C3.

This allows us to consider only packing classes in order to decide the existence of
a feasible packing, and to disregard most of the geometric information.

3.3. Solving OPPs. Our search procedure works on packing classes, i.e., d-
tuples of component graphs with the properties C1, C2, C3. Because each packing
class represents not only a single packing but a whole family of equivalent packings, we
are effectively dealing with more than one possible candidate for an optimal packing
at a time. (The reader may check for the example in Figure 3.1 that there are 36
different feasible packings that correspond to the same packing class.)

For finding an optimal packing, we use a branch-and-bound approach. The search
tree is traversed by depth first search; see [12, 30] for details. Branching is done by
deciding about a single pair of vertices b, c, whether the corresponding edge is con-
tained in Ei or is not contained in Ei, i.e., {b, c} ∈ Ei or {b, c} /∈ Ei. So in fact, there
are three classes of edges; those which are fixed to be in Ei, those which are fixed not
to be in Ei (nonedges), and those for which it is not decided yet whether or not they

1064 SÁNDOR P. FEKETE, EKKEHARD KÖHLER, AND JÜRGEN TEICH

will be contained in Ei. After each branching step, it is checked whether one of the
three conditions C1, C2, C3 is violated with respect to the currently fixed edges and
nonedges; furthermore it is checked whether a violation can be avoided only by fixing
further (formerly undecided) edges or nonedges. Testing for two of the conditions C1–
C3 is easy: enforcing C3 is obvious; checking C2 can be done efficiently, since Gi is
a comparability graph and, as mentioned before, in those graphs maximum weighted
cliques can be done efficiently. Note that for this step only nonedges are used, i.e.,
pairs of vertices for which it has been decided already that they are not contained in
Ei. In order to ensure that property C1 is not violated, we use some graph-theoretic
characterizations of interval graphs and comparability graphs. These characteriza-
tions are based on two forbidden substructures. (Again, see [17] for details; the first
condition is based on the classical characterizations by [15, 16]: a graph is an interval
graph iff its complement has a transitive orientation, and it does not contain any
induced chordless cycle of length 4.) In particular, the following configurations have
to be avoided:

G1: induced chordless cycles of length 4 in Ei;
G2: so-called 2-chordless odd cycles in the set of edges excluded from Ei (see

[12, 17] for details);
G3: infeasible stable sets in Ei.

Each time we detect such a fixed subgraph, we can abandon the search on this node.
Furthermore, if we detect a fixed subgraph, except for one unfixed edge, we can fix
this edge, such that the forbidden subgraph is avoided.

Our experience shows that in the considered examples these conditions are al-
ready useful when only small subsets of edges have been fixed, because by excluding
small subconfigurations like induced chordless cycles of length 4, each branching step
triggers a cascade of more fixed edges.

4. Packing problems with precedence constraints. As mentioned in the
above discussion, a key advantage of considering packing classes is that it makes pos-
sible the consideration of packing problems independent of precise geometric place-
ment, and that it allows arbitrary feasible interchanges of placements. However, for
most practical instances, we have to satisfy additional constraints for the temporal
placement, i.e., for the relative start times of jobs. For our approach, the nature of the
data structures may simplify these problems from three-dimensional to purely two-
dimensional ones: If the whole schedule is given, all edges Et in one of the graphs are
determined, so we need only to construct the edge sets Ex and Ey of the other graphs.
As worked out in detail in [31, 32], this allows it to solve the resulting problems quite
efficiently if the arrangement in time is already given.

A more realistic but also more involved situation arises if only a set of precedence
constraints is given but not the full schedule. We describe in the following how further
mathematical tools in addition to packing classes allow useful algorithms. Note that
our method of dealing with order constraints is not restricted to one (the temporal)
dimension; in fact, we can also deal with constraints in several dimensions at once, as
demonstrated in section 6; see Figure 6.4.

4.1. Packing classes and interval orders. Any edge {v1, v2} in a component
graph Gi corresponds to an intersection between the projections of boxes 1 and 2 onto
the xi-axis. This means that the complement graph Gi given by the complement Ei

of the edge set Ei consists of all pairs of coordinate intervals that are “comparable”:
Either the first interval is “to the left” of the second, or vice versa.

HIGHER-DIMENSIONAL PACKING WITH ORDER CONSTRAINTS 1065

Any (undirected) graph of this type is a comparability graph. By orienting edges
to point from “left” to “right” intervals, we get a partial order of the set V of vertices,
a so-called interval order [13, 26]. Obviously, this order relation is transitive, inducing
a transitive orientation on the (undirected) comparability graph Gi. See Figure 4.1
for a (two-dimensional) example of a packing class, the corresponding comparability
graphs, the transitive orientations, and the packing corresponding to the transitive
orientations.

(d)(c)(b)(a)

1(V,A)

2(V,A)

G

G

1

2
G

G

2

1

Fig. 4.1. (a) A two-dimensional packing class. (b) The corresponding comparability graphs.
(c) Two transitive orientations. (d) A feasible packing corresponding to the orientation.

Now consider a situation where we need to satisfy a partial order P = (V,AP) of
precedence constraints in the time dimension. It follows that each arc a = (u,w) ∈
AP in this partial order forces the corresponding undirected edge e = {u,w} to be
excluded from Ei. Thus, we can simply initialize our algorithm for constructing
packing classes by fixing all undirected edges corresponding to AP to be contained in
Ei. After running the original algorithm, we may get additional comparability edges.
As the example in Figure 4.2 shows, this causes an additional problem: Even if we
know that the graph Gi has a transitive orientation, and all arcs a = (u,w) of the
precedence order (V,AP) are contained in Ei as e = {u,w}, it is not clear that there
is a transitive orientation that contains all arcs of AP .

v v

vv
4

32

1

(comparability edges)

(component edges)

E

E
i

i

Fig. 4.2. A comparability graph Gi = (V, Ei) with a partial order P contained in Ei, such
that there is no transitive orientation of Gi that extends P .

4.2. Extending partial suborders. Consider a comparability graph G that is
the complement of an interval graph G. The problem TOP of deciding whether G
has a transitive orientation that extends a given partial order P has been studied in
the context of scheduling. Korte and Möhring [21] give a linear-time algorithm for

1066 SÁNDOR P. FEKETE, EKKEHARD KÖHLER, AND JÜRGEN TEICH

determining a solution, or deciding that none exists. Their approach is based on a
very special data structure called modified PQ-trees.

In principle it is possible to solve higher-dimensional packing problems with prece-
dence constraints by adding this algorithm as a black box to test the leaves of our
search tree for packing classes: In case of failure, backtrack in the tree. However, the
resulting method cannot be expected to be reasonably efficient: During the course
of our tree search, we are not dealing with one fixed comparability graph but only
build it while exploring the search tree. This means that we have to expect spending
a considerable amount of time testing similar leaves in the search tree, i.e., compara-
bility graphs that share most of their graph structure. It may be that already a very
small part of this structure that is fixed very “high” in the search tree constitutes
an obstruction that prevents a feasible orientation of all graphs constructed below
it. So a “deep” search may take a long time to get rid of this obstruction. This
makes it desirable to use more structural properties of comparability graphs and their
orientations to make use of obstructions already “high” in the search tree.

4.3. Implied orientations. As in the basic packing class approach, we consider
the component graphs Gi and their complements, the comparability graphs Gi. This
means that we continue to have three basic states for any edge:

1. edges that have been fixed to be in Ei, i.e., component edges;
2. edges that have been fixed to be in Ei, i.e., comparability edges;
3. unassigned edges.

In order to deal with precedence constraints, we also consider orientations of the
comparability edges. This means that during the course of our tree search, we can
have three different possible states for each comparability edge:

2a. one possible orientation;
2b. the opposite possible orientation;
2c. no assigned orientation.

A stepping stone for this approach arises from considering the following two con-
figurations; see Figure 4.3. The first configuration (shown in the left part of the

(I) (II) (III)

(I’) (II’) (III’)

(D1) (D2)

v1

v1v1 v1

v1 v1

v2

v2v2 v2

v2 v2

v3

v3v3 v3

v3
v3

E

E

(comparability edges)

(component edges)

(unassigned or

comparability edges)

Fig. 4.3. Implications for edges and their orientations: Above are P3 implications (D1, left)
and transitivity implications (D2, right); below are the forced orientations of edges.

HIGHER-DIMENSIONAL PACKING WITH ORDER CONSTRAINTS 1067

figure) consists of the two comparability edges {v1, v2}, {v2, v3} ∈ Ei, such that the
third edge {v1, v3} has been fixed to be an edge in the component graph Ei. Now any
orientation of just one of the comparability edges forces the orientation of the other
comparability edge. In Figure 4.3 the oriented edge in (I) forces the orientation of the
second edge as shown in (I’), and similarly for (II) and (II’). Because this configura-
tion corresponds to a partially oriented induced path on three vertices, a P3 in Gi,
we call this arrangement a P3 implication.

The second configuration (shown in the right part of the figure) consists of two
directed comparability edges (v1, v2), (v2, v3). In this case we know that edge {v1, v3}
must also be a comparability edge, with an orientation of (v1, v3). Because this config-
uration arises directly from transitivity in Gi, we call this arrangement a transitivity
implication.

Clearly, any implication arising from one of the above configurations can induce
further implications.

In particular, when considering only sequences of P3 implications, we get a parti-
tion of comparability edges into P3 implication classes that will be used in more detail
in section 5. Two comparability edges are in the same P3 implication class, iff there
is a sequence of P3 implications, such that orienting one edge forces the orientation of
the other edge. It is not hard to see that the P3 implication classes form a partition of
the comparability edges, because we are dealing with an equivalence relation. For an
example, consider the arrangement in Figure 4.2. Here all three comparability edges
{v1, v2}, {v2, v3}, and {v3, v4} are in the same P3 implication class. Now the orienta-
tion of (v1, v2) implies the orientation (v3, v2), which in turn implies the orientation
(v3, v4), contradicting the orientation of {v3, v4} in the given partial order P .

We call a violation of a P3 implication a P3 conflict.
As the example in Figure 4.4 shows, excluding only P3 conflicts when recursively

carrying out P3 implications does not suffice to guarantee the existence of a feasible
orientation: Working through the queue of P3 implications, we end up with a directed
cycle, which violates a transitivity implication.

(a) (b) (c)

Fig. 4.4. (a) A graph Gi with a partial order is formed by three directed edges; (b) there are
three P3 implication classes that each have one directed arc; (c) carrying out P3 implications creates
directed cycles, i.e., transitivity conflicts.

We call a violation of a transitivity implication a transitivity conflict.
Summarizing, we have the following necessary conditions for the existence of a

transitive orientation that extends a given partial order P :
D1: Any P3 implication can be carried out without a conflict.

1068 SÁNDOR P. FEKETE, EKKEHARD KÖHLER, AND JÜRGEN TEICH

D2: Any transitivity implication can be carried out without a conflict.
These necessary conditions are also sufficient.
Theorem 4.1. Let P = (V,<) be a partial order with arc set AP that is contained

in the edge set E of a given comparability graph G = (V,E). AP can be extended to a
transitive orientation of G iff all arising P3 implications and transitivity implications
can be carried out without creating a P3 conflict or a transitivity conflict.

A full proof and further mathematical details are described in section 5. This
extends previous work by Gallai [14], who extensively studied implication classes of
comparability graphs. See Kelly [20], Möhring [26] for helpful surveys on this topic,
and Krämer [23] for an application in scheduling theory.

5. Extending partial orientations.

Modular decomposition. The concept of modular decomposition of a graph was
first introduced by Gallai [14] for studying comparability graphs. This powerful de-
composition scheme has a variety of applications in algorithmic graph theory; for
further material on this concept and its application the interested reader is referred
to [20, 27].

A module of a graph G = (V,E) is a vertex set M ⊆ V such that each vertex
v ∈ V \ M is either adjacent to all vertices or to no vertex of M in G. (Intuitively
speaking, all vertices of a module “look the same” to the other vertices of the graph.)
A module is called trivial if |M | ≤ 1 or M = V . A graph G is called prime if
it contains only trivial modules. Using the concept of modules one can define a
decomposition scheme for general graphs by decomposing it recursively into subsets,
each of which is a module of G, stopping when all sets are singletons. First of all,
observe that every connected component of a given graph G forms a module. It is
not hard to see that also every coconnected component of G is a module. If both
G and its complement are connected, then the decomposition needs a further idea.
Consider the graph in Figure 5.1. Obviously it is connected and coconnected and has
a huge number of nontrivial modules. However, if one identifies the maximal proper
submodules of G, i.e., those modules M that are inclusion-maximal modules of G with
M 	= V , then one obtains a partition of the vertex set. The corresponding modules
of the example G are M1 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, M2 = {20}, M3 = {10, 11},
M4 = {12, 13, 14, 15, 16, 17, 18, 19}.

Gallai [14] showed that any graph G has a particular decomposition (the so-called
canonical decomposition) of its vertex set into a set of modules with a variety of nice
properties. He observed that any graph G is either of parallel type, i.e., G is not
connected; or G is of series type, i.e., G is not connected; or G is of prime type, i.e.,
G and G are connected. In the first case the canonical decomposition is defined by
the set of connected components; in the second case the canonical decomposition is
given by the connected components of G; finally, for prime-type graphs, the canonical
decomposition is given by decomposing G into its maximal proper submodules. Gallai
also showed that this decomposition is unique.

This recursive decomposition defines a decomposition tree T (G) for a given graph
G in a very natural way: Create a root vertex of T (G) for the trivial module G itself.
Label it series, parallel, or prime, depending on the type of G. For each nonsingleton
module of the canonical decomposition of G create a tree vertex, labeled as series-,
parallel-, or prime-type node, depending on the type of the module, and make it a
child of the vertex corresponding to G; for each singleton module add a tree vertex
labeled with the corresponding singleton. Now proceed recursively for each subgraph
corresponding to a nontrivial module in the decomposition tree, until all leaves of the

HIGHER-DIMENSIONAL PACKING WITH ORDER CONSTRAINTS 1069

0 1

2 3 4 5

6

7

8

9

10 11

12 13

14

1516

17 18 19

20

Fig. 5.1. An example graph G.

prime

parallel 20 parallel prime

10 11
parallel 12 13 series 15 16

series series

0 1

prime

6 7 8 9
17 18 14 19

2 3 4 5

Fig. 5.2. A modular decomposition tree for the graph G shown in Figure 5.1.

tree are labeled with singletons. Consequently, the leaves of the tree correspond to the
vertices of the graph, while all internal vertices correspond to nontrivial modules of the
canonical decomposition of the corresponding parent vertex in T (G). See Figure 5.2
for the decomposition tree of our example.

The decomposition graph G# of a graph G is the quotient of G by the canonical

1070 SÁNDOR P. FEKETE, EKKEHARD KÖHLER, AND JÜRGEN TEICH

decomposition into the set of modules {A1, . . . , Aq}, i.e., V (G#) = {A1, . . . , Aq}, and
distinct vertices Ai and Aj are joined by an edge in G# iff there is an AiAj-edge in G.
In the following we will look at the decomposition graphs corresponding to internal
vertices of T (G) and refer to them as the decomposition graphs of T .

In our example, the decomposition graph G# of G, i.e., to the root node of T (G),
is a path on four vertices, given by

G# = ({M1,M2,M3,M4}, {{M1,M2}, {M2,M3}, {M3,M4}}).

Modular decomposition and transitive orientations. An important property of the
modular decomposition is its close relationship to the concept of P3 implication classes.
Gallai observed the following properties of P3 implication classes with respect to the
modular decomposition.

Proposition 5.1 (see Gallai [14]). Let G = (V,E) be an undirected graph.

(1) If G is not connected and G1, . . . , Gq (q ≥ 2) are the components of G, then
the P3 implication classes of G1, . . . , Gq are exactly the P3 implication classes
of G.

(2) If G is not connected (so that G is connected), G1, . . . , Gq (q ≥ 2) are the
components of G, and Ai = V (Gi), then Ai and Aj are completely connected
to each other whenever 1 ≤ i < j ≤ q. Moreover, for all such i and j, the
set of AiAj-edges form an P3 implication class Eij of G. The P3 implication
classes of G that are distinct from any Eij are exactly the P3 implication
classes of the graphs Gi = G[Ai] (i = 1, . . . , q).

(3) If G and G are both connected and have more than one vertex, and the canon-
ical decomposition of G is given by {A1, . . . , Aq}, then we have the following:
(a) If there is one edge between Ai and Aj (1 ≤ i < j ≤ q), then all edges

between Ai and Aj are in G.
(b) The set of all edges of G that join different Ai’s forms a single P3 im-

plication class C of G. Every vertex of G is incident with some edge of
C (i.e., V (C) = V (G)).

(c) The P3 implication classes of G that are distinct from C are exactly the
P3 implication classes of the graphs Gi = G[Ai] (1 ≤ i ≤ q).

This strong relationship between P3 implication classes and the modules in the
canonical decomposition of a given graph is a powerful tool for studying graphs hav-
ing a transitive orientation. Note that the fastest known algorithms for recognizing
comparability graphs make extensive use of this relationship. Gallai used the above
properties (among others) for proving the following theorem.

Theorem 5.2 (see Gallai [14]). Let G be a nonempty graph, let T = T (G) be the
tree decomposition of G, and let H be a vertex set corresponding to a node of T .

(1) If G is transitively oriented, and A and B are descendants of H in T , then
every A,B-edge of G is oriented in the same direction (to or from A). There-
fore, H# receives an induced transitive orientation.

(2) Conversely, assuming that H# is transitively orientable for each H ∈ T , one
can choose an arbitrary transitive orientation of each H# and induce a tran-
sitive orientation of G by orienting all A,B-edges (for A and B descendants
of H in T) in the same direction that {A,B} is oriented in H#.

It is straightforward to draw the following helpful corollaries from this theorem.

Corollary 5.3. A graph G is a comparability graph iff every decomposition
graph in the tree decomposition of G is a comparability graph.

HIGHER-DIMENSIONAL PACKING WITH ORDER CONSTRAINTS 1071

Corollary 5.4. Let G be a comparability graph and T its tree decomposition.
Assigning to each of the decomposition graphs of T a transitive orientation indepen-
dently results in a transitive orientation of G.

Furthermore, if only a partial orientation of G is given and we are interested
in extending this orientation to a transitive orientation of G, we can formulate the
following lemma.

Lemma 5.5. Let G be a comparability graph and T its tree decomposition. Fur-
thermore, let P be a partial orientation of G, assigning orientations to some but not
all P3 implication classes of G. P is extendible to a transitive orientation of G iff for
each decomposition graph H# of T the orientation induced on H# by P is extendible
to a transitive orientation on H#.

Proof. The proof follows immediately from Theorem 5.2(2).

Now we are ready to prove Theorem 4.1: Conditions D1 and D2 are also sufficient.

Proof of Theorem 4.1. Suppose there is a transitive orientation F of G that
contains P . Because F is a transitive orientation, all arcs implied by P3 or transitivity
implications are contained in F . Furthermore, there cannot be any P3 or transitivity
conflict in F , again because F is a transitive orientation. Thus F shows that all
arising P3 and transitivity implications can be carried out without creating a P3 or
transitivity conflict.

Suppose now that D1 and D2 are satisfied, i.e., that there is a directed graph F
consisting of all arcs of P together with all orientations of edges of G that are implied
by a sequence of P3 and transitivity implications of arcs of P . In other words, F
contains all arcs that are forced by P3 or transitivity implications together with all
their implied arcs; i.e., all arcs that are forced by arcs of F are also contained in F .
We show that F can be extended to a transitive orientation of G.

First, observe that, by assumption, there cannot be a P3 or transitivity conflict
in F . In particular, F is an orientation of edges of G and for each P3 implication class
C of G that has at least one edge that is oriented in F , all edges of C are oriented
in F and this orientation is conflict-free. By Corollary 5.4, every single conflict-free
oriented P3 implication class of G by itself is extendible to a transitive orientation of
G.

Now let T be the decomposition tree of G and consider the decomposition graphs
corresponding to T . By the above observation, the orientation of an P3 implication
class C in F implies an orientation of the edge(s) corresponding to this P3 implication
class in the decomposition graphs of T . More precisely, by Proposition 5.1(2), for
every series-type node H of T each edge e = {AB} of H# corresponds exactly to
one P3 implication class Ce of G. If Ce is oriented conflict-free in F , this orientation
directly induces an orientation of e (see Theorem 5.2). For a prime-type node H
the set of edges joining different Ais forms exactly one P3 implication class CE of G
(see Proposition 5.1(3). Again, if CE is oriented conflict-free in F , this orientation
immediately implies an orientation on H#.

All we have to show now is that for each decomposition graph H# of T , the
partial orientation implied by F can be extended to a transitive orientation of H#.
Then, by Corollary 5.4, the implied orientation of G is transitive.

By Corollary 5.4, a parallel-type node of T cannot create a contradiction to
transitivity—it does not contain any edges.

Also a prime-type node of T cannot create a contradiction: All of its edges are
contained in only one P3 implication class and, because all P3 implication classes of
G contained in F are oriented conflict-free, the corresponding orientation induced by

1072 SÁNDOR P. FEKETE, EKKEHARD KÖHLER, AND JÜRGEN TEICH

F on this single P3 implication class has to be transitive.
This leaves the case of series-type nodes. Suppose there is a series-type node

H of T with decomposition graph H#, for which the partial orientation implied by
F cannot be extended to a transitive orientation of H#. Then we claim that this
partial orientation has to be cyclic: By definition for each series-type node H of T the
decomposition graph H# is a complete graph and every acyclic partial orientation of
a complete graph can be extended to a transitive orientation of this complete graph by
taking any topological ordering of the vertices that agrees with the partial orientation.
Hence, the partial orientation on H# has to contain a directed cycle.

However, by the definition of T and the implied orientation of H# by F , a directed
cycle in H# immediately implies a cyclically oriented cycle in F . Furthermore, with
every consecutive pair of oriented edges (x, y), (y, z) of this cycle also the oriented
edge (x, z) (which is implied by transitivity) has to be contained in F . Iterating this
argument results in an cyclically oriented triangle in F , which is a transitivity conflict.
This contradicts our assumption that there are no transitivity conflicts.

6. Computational experiments.

6.1. Solving problems with precedence constraints. We start by fixing for
all arcs (u, v) ∈ AP the edge {u, v} as an edge in the comparability graph Gi, and we
also fix its orientation to be (u, v). In addition to the tests for enforcing the conditions
for unoriented packing classes (C1, C2, C3), we employ the implications suggested by
conditions D1 and D2. For this purpose we check directed edges in Gi for being part
of a triangle that gives rise to either implication. Any newly oriented edge in Gi gets
added to a queue of unprocessed edges. Like for packing classes, we can again get
cascades of fixed edge orientations. If we get an orientation conflict or a cycle conflict,
we can abandon the search on this tree node. The correctness of the overall algorithm
follows from Theorem 4.1; in particular, the theorem guarantees that we can carry out
implications in an arbitrary order. In the following we present our results for different
types of instances: The video-codec benchmark described in section 6.3 arises from
an actual application to FPGAs. In section 6.4 we give a number of results arising
from different geometric packing problems.

Our code was implemented in C++ and was run on a SUN Ultra 10 with 333
MHz.

The first example is a numerical method for solving a differential equation (DE)
with 11 nodes. The node operations are either multiplications or ALU-type opera-
tions. In a second example, a video-codec using the H.261 norm is optimized. These
examples are meant to demonstrate the general applicability of our method for prac-
tical problems; given other problem instances, or additional constraints, we can easily
adapt our algorithm.

6.2. DE benchmark. Let the module library contain two hardware modules
(box types): an array-multiplier and a module of type ALU that realizes all other
node operations (comparison, addition, subtraction). For a word-length of n=16 bits,
we assume a module geometry of 16 × 1 cells for the ALU module and of 16 × 16
cells for the multiplier. Furthermore, the execution time of an ALU node takes one
clock cycle, while a multiplication requires two clock cycles on our target chip.

The dependency graph is shown in Figure 1.3. First, we compute the transitive
closure of all data dependencies to allow our algorithm to find contradictions to feasible
packings already in the input.

Next, we solve several instances of the BMP problem for different values of ht

HIGHER-DIMENSIONAL PACKING WITH ORDER CONSTRAINTS 1073

reported in Table 6.1. Each ht listed yields a test case for which the container size
is minimized (MinA), assuming hx = hy. Also shown is the CPU-time needed for
finding a solution.

Table 6.1

Computational results for optimizing reconfigurations for the DE benchmark.

Test Container sizes

ht hx hy CPU-time

1 6 32 32 55.76 s
2 13 17 17 0.04 s
3 14 16 16 0.03 s

The reported optimization times were measured as the CPU-times on a SUN
Ultra 10 with 333 MHz.

For the DE benchmark, it turns out that a chip of 32 × 32 freely programmable
cells is necessary to obtain a latency between 6 and 12 clock cycles. As the longest
path in the graph has length 6, there does not exist any faster schedule. For 12 and
13 cycles, a chip of size 17 × 17 is necessary; for ht ≥ 14, a chip of size 16 × 16
cells is sufficient, which is the smallest chip possible to implement the problem, as one
multiplication by itself uses the full chip.

The SPP is solved in a similar way. The tradeoff between area size and necessary
time is visualized in Figure 6.1, in which the Pareto-optimal points are shown. The
figure also shows the Pareto points for the case where no partial order needs to be
satisfied (shown dashed).

12
13
14

6
4
2

h

9664321716

t

xh = hy

Fig. 6.1. Pareto-optimal points for minimizing chip area and processing time for the DE
benchmark, including partial order constraints (solid lines), and without consideration of partial
order constraints (dashed lines).

6.3. Video-codec benchmark. Figure 6.2 shows a block diagram of the opera-
tion of a hybrid image sequence coder/decoder that arises from the FPGA application.
The purpose of the coder is to compress video images using the H.261 standard. In
this device, transformative and predictive coding techniques are unified. The com-
pression factor can be increased by a predictive method for motion estimates: blocks
inside a frame are predicted from blocks of previous images.

The blocks of the operational description shown in the figure possess the granu-
larity of more complex functions. However, this description contains no information
corresponding to timing, architecture, and mapping of blocks onto an architecture.
The resulting problem graph contains a subgraph for the coder and one subgraph for
the decoder.

1074 SÁNDOR P. FEKETE, EKKEHARD KÖHLER, AND JÜRGEN TEICH

+

RLC

motion vector

loop frame memory

Q

motion

-1

motion

DCT

-1

estimation

filter

- prediction errorcurrent frame
a[i]

g[i]
compensation

previous frame
f[i]

DCT Q

k[i]
h[i]

e[i]

c[i]b[i]

d[i]

predicted frame

Fig. 6.2. Block diagram of a video-codec (H.261).

For realizing the device we have a library of three different modules. One is a
simple processor core with a (normalized) area requirement of 625 units (25 × 25 cells,
normalized to other modules in order to obtain a coarser grid) called PUM. Second,
there are two dedicated special-purpose modules: a block matching module (BMM)
that is used for motion estimation and requires 64 × 64 = 4096 cells; and a mod-
ule DCTM for computing DCT/IDCT-computations, requiring 16 × 16 = 256 cells.
Again, the BMP and the CSPP were considered, and the makespan was minimized
for different latency constraints. Here there is only one Pareto point found, shown in
Table 6.2.

Table 6.2

Optimizing reconfigurations for the video-codec.

Test Container sizes

ht hx hy CPU-time

1 59 64 64 24.87 s

6.4. Geometric instances. We describe computational results for two types of
two-dimensional objects. See Table 6.3 for an overview. The first class of instances
was constructed from a particularly difficult random instance of the two-dimensional
knapsack problem (see [7]). Results are given for order constraints of increasing size.
In order to give a better idea of the computational difficulty, we give separate running
times for finding an optimal feasible solution and for proving that this solution is best
possible.

Table 6.3

Optimal packing with order constraints.

Instance Optimal Upper Lower
ht hx bound bound

okp17-0 169 100 7.29 s 179 s
okp17-1 172 100 6.73 s 1102 s
okp17-2 182 100 5.39 s 330 s
okp17-3 184 100 236 s 553 s
okp17-4 245 100 0.17 s 0.01 s

square21-no 112 112 84.28 s 0.01 s
square21-mat 117 112 15.12 s 277 s
square21-tri 125 112 107 s 571 s

square21-2mat [118,120] [118,120] 346 s 476 s

See Table 6.4 for the exact sizes of the 17 rectangles involved, Table 6.3 for
the resuting optimal packings, and Figure 6.3 for their geometric layout. For easier

HIGHER-DIMENSIONAL PACKING WITH ORDER CONSTRAINTS 1075

reference, the boxes in the okp17 instances are labeled 1–17 in the given order.
The second class of instances arises from the well-known tiling of a 112 × 112

square by 21 squares of different sizes. Again we have added order constraints of
various sizes; see Table 6.5 for the exact dimensions. For the instance square21-2mat
(with order constraints in two dimensions), we could not close the gap between upper
and lower bound. For this instance we report the running times for achieving the best
known bounds. Layouts of best solutions are shown in Figure 6.4, with corresponding
dimensions listed in Table 6.3.

Table 6.4

The problem instances okp17.

okp17: base width of container = 100, number of boxes = 17
sizes = [(8,81),(5,76),(42,19),(6,80),(41,48),(6,86),(58,20),(99,3),(9,52),

(100,14),(7,53),(24,54),(23,77),(42,32),(17,30),(11,90),(26,65)]

okp17-0: no order constraints

okp17-1: 11→8, 11→16

okp17-2: 11→8, 11→16, 8→16

okp17-3: 11→8, 11→16, 8→16, 8→17, 11→7, 16→7

okp17-4: 11→8, 11→16, 8→16, 8→17, 11→7, 16→7, 17→16

8
10

16

5 14

12 13

6

17

7

315

1

4
9

2

11

17

7

14
6

9

8

42
1

13 1

16
5

3
10

12

15

8 16
11

1

10

164 1
6

8

17

13

121
3

14

5

15
9

7

2

1
8

6

11

1

9

13

17

10

7

166421
5

8
3

1
14

12
15

8 11
1

77 6
1

1

Fig. 6.3. (top left) An optimal packing of okp17-0 of height 169; (top right) an optimal packing
of okp17-1 of height 172; (lower left) an optimal packing of okp17-2 of height 182; (lower right) an
optimal packing of okp17-3 of height 184.

1076 SÁNDOR P. FEKETE, EKKEHARD KÖHLER, AND JÜRGEN TEICH

Table 6.5

The problem instances square21.

square21: base width of container = 112, number of boxes = 21
sizes = [(50,50),(42,42),(37,37),(35,35),(33,33),(29,29),(27,27),(25,25),

(24,24),(19,19),(18,18),(17,17),(16,16),(15,15),(11,11),(9,9),(8,8),
(7,7),(6,6),(4,4),(2,2)]

square21-0: no order constraints

square21-mat: 2→4, 6→7, 8→9, 11→15, 16→17, 18→19, 24→25, 27→29,
33→35, 37→42, 2→50, 50→4

square21-tri: 2→15, 15→17, 2→27, 4→16, 16→29, 4→29, 6→17, 17→33,
6→33, 7→18, 18→35, 7→35, 8→19, 19→37, 8→37, 9→24,
24→42, 9→42, 11→25, 25→50, 11→50

square21-2mat: x-constraints:
2→19, 6→25, 8→29, 11→35, 16→42, 18→4, 24→7, 27→9,
33→15, 37→17, 50→4, 18→50
y-constraints:
2→4, 6→7, 8→9, 11→15, 16→17, 18→19, 24→25, 27→29,
33→35, 37→42, 2→50, 50→4

15

17

24

35

50

18
42

68

16

29

9

33

7

11

4

37
25

27 19

2

25

24

42

373327

2919

18

17

16

15

11

 9 7

 6

 4

 2

50

 8

35

29
42

15

19
11

27

7

24
37

17

35

188 16

6

25

9

50

4

2

33

17 19 2416 2515
27 29 33 37 42 50

18

 11 9 8 7 6 4 2

35

25
17

19
16

24
15

29

11

33

9

18

8

37

7

42

2

35

4

27

6

50

17
50

19 29 422515 35 9

 7

 4

50
17

15
 9

 7
4216

3511

29 8

25 6

19 2

 4

27
33

37
24

18

42
15

37

17
35

33

11
50

18

2

25

924

29

8

7

6
416

19

27

16 18 27 372411 33862

Fig. 6.4. (top left) An optimal packing of square21-0 of height 112; (top right) an optimal
packing of square21-mat of height 117; (lower left) an optimal packing of square21-tri of height 125;
(lower right) a packing of square21-2mat of size 120 × 120.

HIGHER-DIMENSIONAL PACKING WITH ORDER CONSTRAINTS 1077

Acknowledgments. We are extremely grateful to Jörg Schepers for letting us
continue the work with the packing code that he started as part of his thesis, and for
several helpful hints, despite his departure to industry. We thank Nicole Megow for
helpful comments, Marc Uetz for a useful discussion on resource-constrained schedul-
ing, and an anonymous referee for a number of helpful suggestions that helped to
improve the presentation of this paper.

REFERENCES

[1] Atmel, AT6000 FPGA Configuration Guide, Atmel Inc., San Jose, CA, 1997.
[2] J. E. Beasley, An exact two-dimensional non-guillotine cutting tree search procedure, Oper.

Res., 33 (1985), pp. 49–64.
[3] J. E. Beasley, OR-Library: Distributing test problems by electronic mail, J. Oper. Res. Soc.,

41 (1990), pp. 1069–1072.
[4] S. P. Fekete, E. Köhler, and J. Teich, Extending partial suborders, in Proceedings of the 1st

Cologne-Twente Workshop on Graphs and Combinatorial Optimization, J. H. H. Broersma,
U. Faigle and S. Pickl, eds., Electron. Notes Discrete Math. 8, Elsevier, Amsterdam, 2001.

[5] S. P. Fekete, E. Köhler, and J. Teich, Multi-dimensional packing with order constraints,
in Proceedings of the 7th International Workshop on Algorithms and Data Structures,
Lecture Notes in Comput. Sci. 2125, Springer-Verlag, Berlin, 2001, pp. 300–312.

[6] S. P. Fekete, E. Köhler, and J. Teich, Optimal FPGA module placement with temporal
precedence constraints, in Proceedings of Design, Automation and Test in Europe, IEEE
Computer Society Press, Los Alamitos, CA, 2001, pp. 658–665.

[7] S. P. Fekete and J. Schepers, A new exact algorithm for general orthogonal d-dimensional
knapsack problems, in Proceedings of the 5th Annual European Symposium on Algorithms,
Lecture Notes in Comput. Sci. 1284, Springer-Verlag, Berlin, 1997, pp. 144–156.

[8] S. P. Fekete and J. Schepers, New classes of lower bounds for bin packing problems, in
Proceedings of the 6th International Conference on Integer Programming and Combina-
torial Optimization, Lecture Notes in Comput. Sci. 1412, Springer-Verlag, Berlin, 1998,
pp. 257–270.

[9] S. P. Fekete and J. Schepers, New classes of lower bounds for the bin packing problem,
Math. Program., 91 (2001), pp. 11–31.

[10] S. P. Fekete and J. Schepers, A combinatorial characterization of higher-dimensional or-
thogonal packing, Math. Oper. Res., 29 (2004), pp. 353–368.

[11] S. P. Fekete and J. Schepers, A general framework for bounds for higher-dimensional or-
thogonal packing problems, Math. Methods Oper. Res., 60 (2004), pp. 311–329.

[12] S. P. Fekete, J. Schepers, and J. v. d. Veen, An exact algorithm for higher-dimensional
orthogonal packing, Oper. Res., to appear.

[13] P. C. Fishburn, Interval Orders and Interval Graphs, John Wiley & Sons, New York, 1985.
[14] T. Gallai, Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hungar., 18 (1967), pp. 25–

66.
[15] A. Ghouilà-Houri, Caractérization des graphes non orientés dont on peut orienter les arrêtes

de manière à obtenir le graphe d’une relation d’ordre, C.R. Acad. Sci. Paris, 254 (1962),
pp. 1370–1371.

[16] P. C. Gilmore and A. J. Hoffmann, A characterization of comparability graphs and of in-
terval graphs, Canad. J. Math., 16 (1964), pp. 539–548.

[17] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York,
1980.

[18] E. Hadjiconstantinou and N. Christofides, An exact algorithm for general, orthogonal,
two-dimensional knapsack problems, European J. Oper. Res., 83 (1995), pp. 39–56.

[19] C.-H. Huang and J.-Y. Juang, A partial compaction scheme for processor allocation in hy-
percube multiprocessors, in Proceedings of the 1990 International Conference on Parallel
Processing, 1990, Pennsylvania State University Press, University Press, University Park,
PA, pp. 211–217.

[20] D. Kelly, Comparability graphs, in Graphs and Order, I. Rival, ed., D. Reidel, Dordrecht, The
Netherlands, 1985, pp. 3–40.

[21] N. Korte and R. Möhring, Transitive orientation of graphs with side constraints, in Pro-
ceedings of the 11th International Workshop on Graph-Theoretic Concepts in Computer
Science, H. Noltemeier, ed., Trauner Verlag, Linz, Austria, 1985, pp. 143–160.

[22] N. Korte and R. H. Möhring, An incremental linear–time algorithm for recognizing interval

1078 SÁNDOR P. FEKETE, EKKEHARD KÖHLER, AND JÜRGEN TEICH

graphs, SIAM J. Comput., 18 (1989), pp. 68–81.
[23] A. Krämer, Scheduling multiprocessor tasks on dedicated processors. Doctoral thesis, Fach-

bereich Mathematik und Informatik, Universität Osnabrück, Osnabrück, Germany, 1995.
[24] E. L. Lawler, J. K. Lenstra, A. H. G. Rinooy Kan, and D. B. Shmoys, Sequencing and

scheduling: Algorithms and complexity, in Logistics of Production and Inventory, S. C.
Graves, A. H. G. Rinnooy Kan, and P. H. Zipkin, eds., Handbooks Oper. Res. Mangmt.
Sci. 4, North–Holland, Amsterdam, 1993, pp. 445–522.

[25] M. G. Luby, J. (S.) Naor, and A. Orda, Tight bounds for dynamic storage allocation, SIAM
J. Discrete Math., 9 (1996), pp. 155–166.

[26] R. H. Möhring, Algorithmic aspects of comparability graphs and interval graphs, in Graphs
and Order, I. Rival, ed., D. Reidel, Dordrecht, The Netherlands, 1985, pp. 41–101.

[27] R. H. Möhring, Algorithmic aspects of the substitution decomposition in optimization over
relations, set systems, and Boolean functions, Ann. Oper. Res., 4 (1985), pp. 195–225.

[28] R. H. Möhring, A. S. Schulz, F. Stork, and M. Uetz, Solving project scheduling problems
by minimum cut computations, Management Sci., 49 (2003), pp. 330–350.

[29] M. Padberg, Packing small boxes into a big box, Math. Methods Oper. Res., 52 (2000), pp. 1–
21.

[30] J. Schepers, Exakte Algorithmen für orthogonale Packungsprobleme, Technical report 97-302,
Doctoral thesis, Universität Köln, Köln, Germany, 1997.

[31] J. Teich, S. P. Fekete, and J. Schepers, Compile-time optimization of dynamic hardware
reconfigurations, in Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications, Las Vegas, 1999, pp. 1097–1103.

[32] J. Teich, S. P. Fekete, and J. Schepers, Optimal hardware reconfiguration techniques, J.
Supercomput., 19 (2001), pp. 57–75.

[33] J. Weglarz, Project Scheduling. Recent Models, Algorithms and Applications, Kluwer Aca-
demic Publishers, Norwell, MA, 1999.

[34] Xilinx, XC6200 Field Programmable Gate Arrays, Technical report, Xilinx, Inc., San Jose,
CA, 1996.

	SJDMEC_V20_i1_p0001
	SJDMEC_V20_i1_p0011
	SJDMEC_V20_i1_p0026
	SJDMEC_V20_i1_p0042
	SJDMEC_V20_i1_p0049
	SJDMEC_V20_i1_p0055
	SJDMEC_V20_i1_p0062
	SJDMEC_V20_i1_p0079
	SJDMEC_V20_i1_p0096
	SJDMEC_V20_i1_p0105
	SJDMEC_V20_i1_p0119
	SJDMEC_V20_i1_p0137
	SJDMEC_V20_i1_p0143
	SJDMEC_V20_i1_p0160
	SJDMEC_V20_i1_p0171
	SJDMEC_V20_i1_p0189
	SJDMEC_V20_i1_p0203
	SJDMEC_V20_i1_p0213
	SJDMEC_V20_i1_p0227
	SJDMEC_V20_i1_p0240
	SJDMEC_V20_i1_p0261
	SJDMEC_V20_i2_p0273
	SJDMEC_V20_i2_p0287
	SJDMEC_V20_i2_p0291
	SJDMEC_V20_i2_p0302
	SJDMEC_V20_i2_p0328
	SJDMEC_V20_i2_p0344
	SJDMEC_V20_i2_p0357
	SJDMEC_V20_i2_p0372
	SJDMEC_V20_i2_p0395
	SJDMEC_V20_i2_p0412
	SJDMEC_V20_i2_p0428
	SJDMEC_V20_i2_p0444
	SJDMEC_V20_i2_p0463
	SJDMEC_V20_i2_p0502
	SJDMEC_V20_i2_p0523
	SJDMEC_V20_i2_p0529
	SJDMEC_V20_i2_p0536
	SJDMEC_V20_i3_p0545
	SJDMEC_V20_i3_p0564
	SJDMEC_V20_i3_p0568
	SJDMEC_V20_i3_p0578
	SJDMEC_V20_i3_p0588
	SJDMEC_V20_i3_p0597
	SJDMEC_V20_i3_p0603
	SJDMEC_V20_i3_p0610
	SJDMEC_V20_i3_p0623
	SJDMEC_V20_i3_p0628
	SJDMEC_V20_i3_p0649
	SJDMEC_V20_i3_p0656
	SJDMEC_V20_i3_p0669
	SJDMEC_V20_i3_p0682
	SJDMEC_V20_i3_p0690
	SJDMEC_V20_i3_p0705
	SJDMEC_V20_i3_p0727
	SJDMEC_V20_i3_p0741
	SJDMEC_V20_i3_p0748
	SJDMEC_V20_i3_p0769
	SJDMEC_V20_i3_p0799
	SJDMEC_V20_i4_p0811
	SJDMEC_V20_i4_p0829
	SJDMEC_V20_i4_p0841
	SJDMEC_V20_i4_p0880
	SJDMEC_V20_i4_p0893
	SJDMEC_V20_i4_p0913
	SJDMEC_V20_i4_p0920
	SJDMEC_V20_i4_p0932
	SJDMEC_V20_i4_p0947
	SJDMEC_V20_i4_p0960
	SJDMEC_V20_i4_p0977
	SJDMEC_V20_i4_p0999
	SJDMEC_V20_i4_p1015
	SJDMEC_V20_i4_p1031
	SJDMEC_V20_i4_p1042
	SJDMEC_V20_i4_p1046
	SJDMEC_V20_i4_p1056

